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Distributed Energy Resources (DERs) comprise of distributed generation (DG), energy storage 

(ES) and demand response (DR). DERs are different from other participants because of their 

distinctive characteristics: they are located on the demand side and they have some flexibility. 

DERs bring many streams of benefits for different system participants. Various methods have 

been proposed to capture and quantify the benefits DERs bring and distribute them to DERs. In 

general, these methods can be put into two categories: avoided-cost based methods and tariff 

based methods. Both categories have disadvantages: the avoided-cost methods calculate the 

benefits indirectly which makes it complicated for DERs to be rewarded. The tariff based 

methods fail to represent some benefits while mispresent some other benefits. The goal of this 

work is to bridge the gap for valuing distributed energy resources. We first evaluate on the tariff 

based methods: we study the financial impacts of DERs owned by commercial customers on 



 

their load serving entity. The study shows the tariff should be modified in order to fairly 

represent the true values of DERs. Then we design value of DERs tariffs and conduct many case 

studies to show these tariffs provide DERs with higher savings at the same time reduce the 

amount of losses the load serving entity experiences. Secondly, we study the avoided-cost based 

methods. We propose a battery scheduling algorithm that simultaneously maximize multiple 

streams benefits calculated by avoided-cost methods. Next, we develop a battery aggregator 

model that combines the tariff based methods with the avoided-cost based methods. This model 

incorporates the advantages of both categories and bridges the gap for valuing DERs.           
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Chapter 1. INTRODUCTION  

Distributed Energy Resources (DERs) have attracted considerable attention as their penetration 

increases in recent years. In general, DERs comprise of distributed generation (DG), energy 

storage (ES) and demand response (DR). DERs are different from other participants because of 

their distinctive characteristics: they are located on the demand side and they have some flexibility. 

Traditionally the demand has been treated as a passive market player with little price elasticity. 

The current electricity markets, retail tariffs and distribution networks are designed based on this 

assumption. The presence of DERs brings flexibilities to the demand side, which might alter the 

operations of electricity markets and require a redesign of electricity tariffs.  

DERs brings various streams of benefits to different parties in the electricity sector. Studies 

have analyzed the benefits of DG[1][2], ES[3][4] and DR[5][6] from different perspectives and 

enumerated the streams of benefits each type of DERs can achieve. These benefits are defined 

based on the “avoided cost” method: how much costs can be avoided at the wholesale level due to 

the presence of DERs. The streams of benefits can generally be put into three categories: electricity 

supply, electricity transmission and distribution and other benefits. Each category contains several 

streams of benefits. The above studies have defined the streams of benefits belonging to each of 

the three categories. Apart from the studies that enumerate the streams of benefits, numerous 

studies focus on analyzing a specific benefit and carry out a detailed estimation of how much cost 

could be avoided with the presence of DERs and how to dispatch DERs in order to maximize these 

avoided costs. These studies provide benchmarks for the fair compensations of DERs for providing 

various services.  
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However, under the great majority of current market structures, methods based on the 

“avoided cost” are hard to implement because the end-use customers, in many cases the owners of 

DERs, do not interact directly with the beneficiaries. For example, DERs could reduce the peak 

demand on some transmission lines, helping the transmission company defer the upgrade of those 

lines and achieve savings from the deferred investment. But the transmission company has no 

direct contact with end-use customers. Without intermediate parties and proper mechanisms, the 

DERs owner cannot obtain the benefits directly from the transmission company. Similar issues 

affect many other streams of benefits. These issues pose obstacles for “avoided cost” methods to 

be implemented in practice.  

These obstacles lead researchers to find alternative methods to reward DERs. Under the 

current electricity market structure, the Load Serving Entities (LSE) serve as intermediaries 

between customers and wholesale level parties: generation companies, transmission companies 

and distribution companies. The LSE collects payments from customers through electricity bills 

and pays generation companies, transmission companies and distribution companies for the 

services they provide. The presence of DERs alter their owners’ demand profiles, leading to 

changes in the customers’ electricity bills. The benefits of DERs can be gauged as the reduction in 

electricity bills, which is defined as tariff-based methods. Tariff-based methods provide a different 

mechanism to evaluate the benefits of DERs. These methods are relatively simple and easy to 

implement. However, as the subsequent chapters show, paying DERs through the reduction in bills 

may not be fair for either DERs or the LSE. Some of the DERs benefits are not represented by 

tariffs, so the tariff-based methods cannot not capture these benefits. Current tariffs may have 

corresponding components for other benefits, but the design of these components might not reward 

DERs fairly or even discourage DERs to produce or operate. 
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The goal of this research is to estimate the benefits of DERs and propose new valuation 

methods that could reward DERs with justified amounts for the multiple streams of benefits they 

provide. The literature review chapter will begin by enumerating the streams of benefits DERs 

bring. Then in-depth analyses on avoided cost-based methods and tariffs based methods for 

evaluating the benefits of DERs will be conducted. Next, a comparison between the two methods 

will be carried out to identify the advantages and disadvantages of each and suggest possible 

directions for improvement.   

Two research directions are described: one on the design of tariff customized for DERs, the 

other on bridging DERs to wholesale level parties through aggregators. The first research study 

analyzes the impacts of DERs owned by commercial customers on the LSE. Assuming that DERs 

are rewarded based on the reduced bills, the study suggests that LSEs will lose money because its 

reduced payments are less than its lost revenue from customers with DERs. These results suggest 

that the tariffs should be redesigned to accommodate customer-owned DERs. Following the first 

study, the second study aims to design a tariff suitable for customers with DERs. The tariff 

transmits the system level situations and provide financial incentives for customers dispatch their 

DERs to reduce the resource procurement costs of the LSE.   

The other research direction focus on scheduling energy storage for multiple streams of 

benefits. The third study focuses on LSE-owned energy storage and evaluates the optimal strategy 

for operating energy storage to maximize the benefits it can obtain. Since they are owned by the 

LSE, these energy storage facilities are not subject to tariffs. Avoided cost methods can be 

implemented to analyze how DERs can harness multiple streams of benefits simultaneously from 

different parties, including the benefits that tariffs fail to capture. The fourth study develops an 
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aggregator model that schedules many customer-owned energy storages to achieve both customer 

and system level benefits.  

The conclusion chapter summarizes the contribution of this research. The goal is to provide 

novel DER valuation mechanisms that can fairly reward DERs for their contribution. We also point 

out the possible future research directions.   
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Chapter 2. LITERATURE REVIEW 

The literature review chapter consists four sections. The first section enumerates the streams 

of benefits different types of DERs provide. The second section explores previous work about 

quantifying DERs benefits based on system-level, avoided cost methods. The third section 

summarizes the existing literature about evaluating DERs benefits based on retail tariffs. Finally, 

the last section compares the benefits based on avoided cost and tariff-based methods. 

2.1 DISTRIBUTED ENERGY RESOURCE BENEFITS 

Distributed energy resources include distributed generation, energy storage and demand response. 

Numerous studies have been conducted to enumerate the benefits of the three types of DERs. 

These studies broadly categorize the streams of benefits DERs can provide to different system 

participants. 

 For distributed generation, the study conducted by the U.S. Department of Energy[1] lists the 

potential benefits of distributed generation (DG) as reducing peak power requirements, providing 

ancillary services, improving power quality, reducing land use and reducing vulnerability. The 

benefits are listed according to the different applications of distributed generation. This report also 

mentions rate-related issues that may impede the expansion of distributed generation. Since 

distributed generation in[1] is assumed to be dispatchable, some of the benefits require consistent 

and controllable production. However, non-dispatchable technologies, such as wind and 

photovoltaic, account for a large proportion of all the distributed generation installations. For non-

dispatchable technologies, the streams of benefits that they can provide might be different from 

those of dispatchable DG. A study by the Rocky Mountain Institute[2] lists the benefits of 
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photovoltaic solar generation (PV). Due to its intermittent and non-dispatchable nature, some of 

the benefits that require scheduling distributed generation in[1] cannot be achieved by PV.  

Energy storage (ES) also provides various streams of benefits. The study conducted by Sandia 

National Lab[3] lists the benefits of energy storage according to their impact on different power 

system sectors: electric supply, ancillary service, grid system, end-user and renewable integration. 

The report also estimates the benefits and incidental benefits if the energy storage is dispatched 

for different applications. Another study by the Electric Power Research Institute[4] enumerates 

energy storage applications and evaluates their market potential. The study also provides a 

comprehensive study on energy storage technology options and their costs.  

The benefits of demand response (DR) was investigated by the U.S. Department of Energy[5]. 

The report lists the benefits of demand responses for different market participants: the customers 

undertaking demand response actions, other non-DR consumers and other parties. The study also 

categorized the existing demand response programs. Woolf et al.[6] conduct an in-depth analysis 

of DR costs and benefits. In term of demand response program benefits, the study analyzed the 

avoided costs on different sectors: energy, capacity, transmission & distribution, ancillary services 

and environmental compliance costs.    

Although the above studies enumerated the benefits for different types of DERs, most of the 

benefits have similar origins among all three types of DERs. To summarize the streams of benefits 

DERs provide, we categorize the benefits according to the sectors that they are present: electricity 

supply (energy, capacity and ancillary services), electricity transmission and distribution and other 

benefits. Table 2-1 summarizes the streams of benefits provided by different categories of DERs. 

Here we treat solar as a sub-type of DG, the benefits that are achievable by solar, which make up 

a subset of DG benefits, are specified in red color.  
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Table 2-1: Summary of benefits provided by distributed energy resources 

Sectors  Distributed Generation 

(Solar) 

Energy Storage Demand Response 

Electricity Supply Energy Reduced fuel costs Energy arbitrage Reduced generation 

Capacity Capacity value Capacity value Capacity value 

Ancillary 

Services 

Regulation service 

Spinning reserve 

Non-spinning reserve 

Regulation service 

Spinning reserve 

Non-spinning reserve 

Load balancing 

service 

Spinning reserve 

Non-spinning reserve 

Electricity 

Transmission & 

Distribution 

 Overhead line/cable 

deferred investment 

Transformer deferred 

investment 

Reduced losses 

Relieved congestion 

Overhead line/cable 

deferred investment 

Transformer deferred 

investment 

Relieved congestion  

Overhead line/cable 

deferred investment 

Transformer deferred 

investment 

Reduced losses 

Relieved congestion 

Other Benefits  Improved reliability 

Improved power quality. 

Environmental benefits 

 

Improved reliability 

Improved power 

quality 

Environmental 

benefits 

Improved reliability 

Environmental 

benefits 

 

From Table 2-1 shows that most of the benefits are common among dispatchable distributed 

generation, energy storage and demand response. Though some benefits can be slightly different 

in a few instances: 1) distributed generation increases energy supply, demand response 

reshape/reduce energy demand while energy storage shifts the energy demand. 2) some demand 

response technologies cannot react fast enough to follow signals used for regulation service, but 

they can participate in other ancillary services with slower signals.  
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This section broadly lists and categorizes the streams of benefits provided by three types of 

DERs. The studies reviewed are high-level and briefly define the various streams of benefits from 

an avoided cost perspective. Numerous papers focus on a specific stream of benefits in more 

details. These studies offer different methods for estimating the same stream of benefit. In the next 

section, an in-depth literature review will be carried out to analyze the different methods for each 

stream of benefit. 

2.2 REVIEW OF AVOIDED COSTS BASED DERS BENEFITS 

 
Figure 2-1: Benefits of DERs based on avoided cost 

 

This section surveys papers dealing with the benefits of DERs based on avoided costs. The 

avoided costs reflect the value of DERs based on wholesale markets (energy, capacity and ancillary 

service markets) or reduced costs for loads serving entities, transmission companies, or distribution 

companies for grid infrastructure. Estimating the streams of benefits answers the question “how 

much should DERs be rewarded for providing certain types of services?” These studies contribute 
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to finding a fair compensation to DERs for providing specific services. This section consists of 

three parts: electricity supply, electricity transmission and distribution and other benefits. 

The “avoided cost” methods are distinct from other perspectives that evaluate customers’ 

savings from DERs based on reduced electricity bills, which will be discussed in the next section. 

The studies in this section provide benchmarks to the justified amount of compensations DERs 

should obtain.  

Distributed Generation (DG) can be dispatchable (e.g. fossil fuel based distributed generation) 

or non-dispatchable (e.g. wind and solar). Some of the benefits of dispatchable DGs do not apply 

to non-dispatchable DGs. In the following paragraphs, dispatchable and non-dispatchable DGs are 

treated separately. 

2.2.1 Electricity supply benefits 

The electricity supply sector includes energy, generation capacity and ancillary services. The 

value of DERs in the above three categories will be analyzed. Figure 2-2 lists the methods used 

for estimating each stream of benefits on the energy supply sector. 

 

• United commitment 

• Market clearing

• Locational marginal price
Energy

• Capacity markets

• Reliability based methodsCapacity

• Ancillary service markets
Ancillary 
Services
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Figure 2-2: Benefits of DERs on the energy supply sector 

 

Energy value of DERs 

DGs affect the operation of wholesale energy markets. One way to estimate the values of DGs 

is to integrate them as generation resources in the wholesale markets. Palma-Behnke et al.[7] 

formulate a market structure that considers DGs as market participants and presents a day-ahead 

energy acquisition model for distribution companies. Based on reference[7], Palma-Behnke et 

al.[8] propose a market integration mechanism for DGs that includes energy and capacity 

payments. The DGs in these two references are assumed to be dispatchable.   

For non-dispatchable DGs, the impact of solar on wholesale energy market clearing prices is 

studied in[9][10]. Bode et al.[9] evaluate the clearing prices reduction resulting from the 

integration of distributed photovoltaic generation on the German electricity market. A similar 

study by McConnell et al.[10] is conducted on the Australian National Electricity Market.   

Energy storage can store energy when the price is low and discharge when the price is higher, 

acquiring the energy arbitrage benefits. Several studies have integrated energy storage into unit 

commitment models to evaluate its impact on energy prices. Pozo et al.[11] develop a generic 

energy storage model that can be easily integrated with complex optimization problems like unit 

commitment and analyzes the role of energy storage. Daneshi and Srivastava[12] study the security 

constrained unit commitment problem with wind generation and compressed air energy storage. It 

evaluates the impact of energy storage systems on locational pricing and economics.  

Demand response resources are considered important elements for reliable and economic 

operation of the transmission system and the wholesale markets[13]. On the wholesale energy 

market level, the aggregated demand response may impact clearing prices and resource dispatch. 

Su and Kirschen[14] propose a new centralized complex-bid market-clearing mechanism that takes 
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into consideration the load shifting behavior of consumers who submit price-sensitive bids to study 

the impact of demand response on electricity markets. Khodaei et al.[15] incorporate demand 

response into a security-constrained unit commitment for economic and security purposes. The 

study results show that DR could shave the peak load, reduce the system operating cost, reduce 

fuel consumptions and carbon footprints, and reduce the transmission congestion by reshaping the 

hourly load profile. Wang et al.[16] develop a stochastic unit commitment model to study the 

impact of uncertain demand response on unit commitment decisions. A robust unit commitment 

model considering worst-case demand response scenario is developed in[17] by Zhao et al.   

According to the above papers the energy value of DERs can be estimated by integrating them 

into unit commitment formulations, integrating them into wholesale market models or through 

Locational Marginal Prices (LMP)[18]. Relying on unit commitment models can generate more 

accurate and suitable estimates for high penetration of DERs that alter the clearing prices 

considerably, but requires complex modeling and intensive computations. The LMP based method 

is more straightforward and easier to solve, but may be inaccurate if the penetration of DERs gets 

higher.  

Capacity value of DERs 

DERs have capacity value. Capacity represents a commitment of resources to deliver when 

needed, particularly in case of a grid emergency. Several ISOs establish capacity markets that 

define the markets structure, participants and market clearing mechanisms for generation 

capacity[19][20][21]. According to the capacity markets, the effective capacity of a source is 

reflected by its production during the periods coincident with the system’s aggregated peak 

demand. One way to estimate the capacity benefits of DERs is through capacity markets. Apart 

from that, Dent et al.[22] discuss the definition of capacity value of DG arising from its ability to 
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support additional demand without the need for new network capacity, by analogy with the 

definition of effective load carrying capability (ELCC) at the transmission level.  

Although they cannot be dispatched, photovoltaic panels and distributed wind power plants 

can still have capacity value if their outputs coincide with the system peaks. Madaeni et al.[23] 

estimate the capacity of photovoltaic solar plants in the western U.S. through simpler 

approximation methods and more-complex reliability based methods.     

The difference between ES and DG in providing capacity is that ES needs to be charged before 

discharging to supply power during the peak hours. Several papers focus on optimal scheduling of 

energy storage to provide peak shaving. The capacity shaved during peak hours reflects the 

capacity value of energy storage. Levron and Doron[24] describe an optimal peak shaving strategy 

that minimizes the power peak and derives an analytic design method for attaining optimal peak 

shaving schedules. Oudalov et al.[25] propose a sizing method that maximizes economic benefits 

by reducing the power demand payments. Rowe et al.[26] present a control method for energy 

storage to reduce peak demand in a distribution network. 

Demand response also has capacity values. ISOs have designed emergency demand response 

programs that give incentives to customers to shave loads during peak hours when the system is 

under contingency. With the presence of capacity market, ISOs have replaced the emergency 

demand response programs by introducing demand response into capacity markets and let it 

compete with other capacity resources. Nolan et al.[27] present a preliminary method for 

estimating the capacity value of demand response utilizing demand response availability profiles 

and applying a response duration constraint. The capacity value of demand response can also be 

estimated from capacity markets.  
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The capacity value of DERs can be analyzed through market clearing prices of capacity 

markets, assuming the penetration of DERs is not high and their impacts on prices is negligible. 

The reliability based methods for estimating effective capacity are more complex and suitable if 

the penetration of DERs is higher. The peak shaving methods that estimate the contribution of 

DERs coincident with peak hours contribute to quantify the capacity value of DERs. ES and DR 

have availability constraints that may limit them from producing at their maximum output levels 

during peak hours. Therefore, a number of studies focus on scheduling and dispatching ES and 

DR to maximize their capacity values. 

Ancillary service value of DERs 

Another stream of benefit comes from providing ancillary services. Most ISOs have 

established ancillary service markets that include regulation, spinning reserve and non-spinning 

reserve. The above three services have different signals, require different response times and have 

different clearing prices. Depending on their characteristics, different DERs may choose to provide 

different services that are more suitable for them.  

A study dating back to 2000[28] discusses the potential of DGs to provide some of these 

services. In particular, DGs can serve locally as the equivalent of spinning reserve and voltage 

support. Mashhour and Moghaddas-Tafreshi[29][30] address the bidding problem faced by a 

virtual power plant in a joint market for energy and spinning reserve. The virtual power plant 

consists of different DERs, including DGs. Non-dispatchable DGs cannot provide ancillary 

services without integration of other resources.    

Energy storage systems can adjust their output very fast, which is ideal for providing ancillary 

services like regulation and spinning reserve. The benefits of energy and ancillary services are 

simultaneously considered in some studies. Sandia National Laboratory[31][32] develops 
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deterministic linear programming models to schedule energy storage for energy arbitrage and 

regulation. Formulations to maximize revenue from energy, spinning reserve and regulation 

markets have also been developed for joint hydro and pumped-storage plants[33] and Vanadium 

redox battery energy storage[34]. Akhavan-Hejazi and Mohsenian-Rad[35] formulate a stochastic 

program that takes into account the fluctuating nature of market prices. He et al.[36] consider the 

effect of battery degradation cost on the provision of energy arbitrage and ancillary services. 

Demand response can provide ancillary services such as spinning reserves and regulation. 

ISOs have set up reserves markets where demand response can bid. Schisler et al.[37] describes 

how a load serving entity works with commercial and industrial customers to provide reliable load 

reductions in these markets. In another study[38] Ma et al. describe and implement a method to 

construct detailed temporal and spatial representations of demand response resources and to 

incorporate these resources into power system models to analyze the economic value of demand 

response for ancillary services. Not only can large commercial and industrial customers participate 

in ancillary service markets, once aggregated, residential appliances can also provide ancillary 

services. Studies have been conducted to utilize HVAC loads to provide load balancing 

service[39], utilize water heater loads to provide regulation service[40]. The impacts of forecasting 

errors, minimum HVAC turn-off times, response delays, and consumer overrides on the 

performance of regulation service provided by HAVCs are evaluated in[41].  

The above papers estimate DERs’ benefits for providing ancillary services through the market 

clearing prices of ancillary service markets. Some of these services require participants to follow 

fast-changing signal while others require participants to adjust their output more slowly but sustain 

it for a certain amount of time. A specific type of DER, depending on its characteristics, may 

choose to participate in providing different ancillary services. 
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2.2.2 Transmission and distribution 

DERs also provide several benefits in transmission and distribution, in particular investment 

deferral, loss reduction and congestion relief.   

Investment deferral 

Transmission and distributions network infrastructures are designed to meet the peak load. As 

the load grows, the aggregated peak load increases and could overload overhead lines, 

underground cables and transformers or cause safety issues. As a result, these costly components 

need to be upgraded or replaced. DERs could counter the impact of load growth by shaving peak 

loads, and defer the investments on network components. 

In the transmission and distribution sectors, DGs are capable to defer the investments in 

overhead lines, underground cables and transformers; DGs can also reduce network losses by 

supplying energy locally; in addition, DGs may help relieve congestion in transmission and 

distribution networks. Gil and Joos[42] quantify the distributed network capacity deferral value of 

distributed generation according to the contribution of DG in shaving peak demand. The network 

capacity deferral benefit is combined with other benefits such as reduced losses and avoided 

wholesale market purchases to quantify the potential of benefits brought by distributed 

generation[43]. Piccolo and Siano[44] consider different regulations for distribution network 

operators ownership of DG and how they would influence the optimal connection of new 

generation within existing networks are examined in order to capture the effects of DGs on network 

investment deferral. Wang et al.[45] capture the potential security of supply benefits of DGs that 

incorporating the system security standards (N-1) into network planning formulations. The method 

is applied to a meshed distribution network.  
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Energy storage could reduce peak demand and therefore defer the need for investment in 

transmission and distribution infrastructure. The investment deferral benefits of energy storage are 

discussed in reference[46][47]. Chacra et al.[46] evaluate the impact of ES on peak shaving to 

reduce substation transformer peak load and defer the need to upgrade substation transformers. 

Oudalov et al.[47] compare different battery storage technologies for providing network 

investment deferral services.  

Demand response could also defer the need for investments in transmission and distribution 

infrastructure. Martinez Cesena and Mancarella[48] develop a method to assess the economic 

value of deploying demand response for distribution network reinforcement planning.   

The investment deferral benefit of DERs can be estimated by various methods. One category 

of approaches is to analyze how much DERs can produce during peak demand hours. The same 

method is also applied to estimate the capacity value of DERs. The production of dispatchable 

DGs can be estimated since they are always available. For energy storage and demand response, 

they are subject to availability issues during peak demand periods. For example, the energy storage 

might not have enough energy available when called to discharge to reduce the peak demand. 

Reliability based methods rely on more complex system models to estimate the investment deferral 

benefit of DERs.  

Loss reduction 

DERs can reduce network losses. DERs are located in the distribution network energy locally 

without going through the transmission network. When DERs supply energy to their owners, even 

the distribution network losses can be avoided. Quezada et al.[49] compute annual energy losses 

variations when different penetration and concentration levels of DERs are connected to a 

distribution network. In addition, the impacts on losses of different DER technologies are 
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compared. Ochoa and Harrison[50] apply a multi-period AC optimal power flow to determine the 

optimal accommodation of renewable DERs in a way that minimizes the system energy losses. 

This reference also addresses the extra power losses benefits that can be harnessed through voltage 

control and power factor control of DERs. 

Congestion relief 

The congestion relief is a byproduct of DERs providing other services like energy, capacity 

and investment deferral. Network congestion happens when the lines are heavily loaded, which 

usually coincides with peak demand. By producing energy during peak demand hours, DERs 

reduce the demand and reduce the loading on congested lines. The benefit of congestion relief is 

reflected in reduced locational marginal prices. 

2.2.3 Other benefits 

Apart from energy supply and energy transmission & distribution sectors, DERs also have 

other streams of values. These benefits may require coordination of different resources. For 

example, energy storage could interact with photovoltaic solar power to achieve win-win situation 

for both parties. In addition, some of the benefits, for example, the back-up source benefit of DERs 

are not considered in the above two categories.  

Interaction with renewable energy 

The fast ramping capability of energy storage makes it ideal for smoothing the intermittent 

power output of renewable generation. The increasing penetration of renewable sources of energy 

may raise the requirement for balancing power and reserve capacity. Su and Gamal[51], Qin et 

al.[52] develop risk-limited energy storage dispatch models that smoothes the power output 

fluctuations of renewable energy resources and therefore reduce ancillary service requirements. 

Control strategies are developed in[53] to utilize energy storage to smooth out the power output of 



 

 

18 

a wind farm.  Artificial neural network strategies are developed in[54] to determine the size and 

schedule of energy storage that smooth the variability of wind farm output. Li et al.[55] propose a 

control method to reduce wind/PV hybrid output power fluctuations and regulating battery SOC. 

Liu et al.[56] coordinate energy storage with voltage regulators to solve the voltage rise problem 

caused by high photovoltaic penetration in distribution networks. Song et al.[57] develop a 

Markov-chain based photovoltaic-energy storage model that can assist planning and operations of 

energy storage and solar generation. 

Back-up support 

DGs can restore critical loads when natural disasters cut off the conventional electricity supply 

from the transmission network. By controlling switching devices, a distribution network can be 

sectionalized in several microgrids, each of which is supplied by DGs. Several studies have been 

conducted to analyze network restoration through microgrids powered by DERs. Lim et al.[58] 

presents detailed models for DGs and their inverters and a sequence of actions for microgrid black 

start. Li et al.[59] apply a graph theoretical spanning tree approach for finding optimal microgrid 

topology and providing a sequence of switching operations. Xu and Liu[60] propose a multi-agent 

coordination scheme for microgrid restoration. Castillo[61] presents a stochastic mixed-integer 

linear programming model; however, it requires the microgrids to be installed beforehand. Chen 

et al.[62] proposes a mixed-integer linear programming method that dynamically forms microgrids 

to achieve a resilient distribution system. It also provides distributed multi-agent coordination for 

global information discovery. Non-dispatchable DGs cannot secure their outputs to supply loads 

on their own.   
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2.3 REVIEW OF TARIFF-BASED DERS TARIFFS 

The previous section conducted an in-depth study of different approaches for estimating each 

of the benefits DERs provide based on “avoided cost” methods. The “avoided cost” methods 

calculate the costs reductions for wholesale level parties when DERs provides certain services and 

estimates the value of DERs accordingly. These methods provide relatively fair compensations for 

DERs providing certain services. However, a large proportion of DERs are owned by end-use 

customers. In most cases, customers neither directly participate in the wholesale level markets nor 

have transactions with wholesale level parties. Instead they only interact with their load serving 

entity and pay their electricity bills according to tariffs. The load serving entities act as middlemen 

between customers and wholesale level parties. Therefore, another perspective to estimate DERs 

benefits is through their impact on electricity bills. This section presents an in-depth survey of 

methods used to estimate the benefits of DERs according to bill reduction. First, a brief 

introduction of residential and commercial tariffs and description of their components is carried 

out. Then tariffs based assessment of PV (non-dispatchable DERs) values are summarized. After 

the assessment of PV, we will analyze the tariff-based studies on dispatchable DERs (ES and DR). 

2.3.1 Summary of tariffs 

Customers acquire the benefits of their DERs through tariffs. Individual customers do not 

directly participate in wholesale markets, instead they interact with load serving entities (LSEs) 

and their bills reflect their demand profile. Installing DERs reshape their demand profile and 

therefore changes how much they pay to the load serving entities. So on the customer side, the 

values of DERs are reflected through reduced electricity bills.  

There are hundreds of electricity LSEs in the U.S. Different LSEs offer various types of tariffs 

with different structures and designs. Most offer at least two categories of tariffs: residential tariffs 
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and commercial tariffs. Residential tariffs are designed for residential customers whose sizes are 

relatively small. Commercial tariffs are designed for customers with greater sizes. A customer may 

have several tariff options with distinctive structures from the same load serving entity.    

 

Figure 2-3: Benefits of DERs on the energy supply sector 

 

Commercial tariffs 

Commercial tariffs commonly consist of three components: a basic customer charge ($ per 

customer per billing period), an energy usage charge ($/kWh) and a demand charge ($/kW). The 

basic customer charge component is designed to cover the cost of metering, billing and other 

administrative work. The energy usage component accounts for at least the cost of fuel needed to 

generate this energy. It may also account for other costs, including the cost of procuring ancillary 

services[63][64] or the cost of delivering energy[65][66][67][68]. The rationale behind the demand 

charges is to recoup investments made in the generation, transmission, and distribution 

• Customer charge ($/month)

• Energy charge ($/kWh)

• Demand charge ($/kW)

Commercial

Tariffs

• Customer charge ($/month)

• Energy charge ($/kWh)

• Demand charge (rare)

Residential
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infrastructures. Some LSEs unbundle demand charges and quantify specific rates for transmission, 

distribution and generation capacity[69]. 

LSEs may offer their commercial customers the option of a fixed-rate or time-of-use 

tariff[70]. In most tariffs the energy component is either fixed, time-of-use or has critical peaks  

where the prices jump to several times the regular prices during windows of a few hours for a 

couple of days per year. In the U.S., tariffs with dynamic energy charge components which directly 

reflects the wholesale market clearing price are rare. Most commercial customers pay a demand 

charge based on their monthly peak usage of either the highest 15-min, 30-min or 1-hour interval. 

Residential tariffs 

Residential tariffs are usually simpler than commercial tariffs. Most residential tariffs have 

two components: a basic customer charge ($ per customer per billing period), and an energy usage 

charge ($/kWh). The energy charge can be fixed or increases in blocks as the monthly usage goes 

up[71]. There are also variable energy tariffs: time-of-use tariffs that divide the day into two or 

three price periods with different rates[72]; critical peak tariffs that charge customer on-peak rates 

several times the regular prices during several time windows for a couple of days per year, when 

the system aggregated demand approach the annual peak[73]; real-time pricing directly expose 

customers to the wholesale market clearing prices[74]. Charging customer real-time prices is the 

subject of current discussions. Roozbehani et al.[75] point out that since customers have more and 

more flexibility, they may react to real-time prices by modifying their demand profile and this 

might result in more volatile market prices.  Although tariffs that charge residential ($/kW) charges 

do exist[74], they are not very common. 
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2.3.2 Review of tariff-based DERs benefits of photovoltaic generation 

Currently there are two common solar tariff structures: feed-in-tariff and net metering. A feed-

in tariff (FIT) is an energy-supply policy focused on supporting the development of new renewable 

power generation. The FIT contract provides a guarantee of payments in dollars per kilowatt hour 

($/kWh) for the full output of the system for a guaranteed period of time (typically 15-20 

years)[76]. There are two main methods for setting the overall return that renewable energy 

developers receive through FIT policies. The first is to base the FIT payments on the levelized cost 

of renewable energy generation; the second is to base the FIT payments on the value of that 

generation to the utility and/or society. 

Germany’s experience with feed-in-tariffs is often cited as a model to be replicated elsewhere. 

Germany has more than doubled its renewable electricity production since 2000 and has already 

significantly exceeded its minimum target of 12.5% set for 2010. However, the increasing 

penetration of renewable energy comes at a cost: roughly 7.5% of average electric prices go to 

subsidies for renewable generation and the feed-in-tariff of solar is about twice as much as the 

average electric prices[77]. Another study focusing on Ontario also shows that solar feed-in-tariffs 

are several times the average electricity prices[78]. A study on Australian feed-in-tariffs suggested 

that the feed-in-tariffs designed based on PV production costs are also much higher than 

customers’ electricity prices[79]. Table 2-2 and 2-3 list feed-in-tariffs in Germany and Australia. 
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Table 2-2: Feed in Tariff in Ontario and Germany 

 

Table 2-3: PV production cost and current feed-in-tariff in Australia 

 
The above references indicate that averaged production cost of PV are still much higher than 

electricity prices. Feed-in-tariff credited PV owners according to the cost of PV, which encourages 

installation because the investments are guaranteed to be paid back. However, all customers, 

including the non-PV customers foot the bill of subsidizing PV, which is unfair. In addition, the 

feed-in-tariff is fixed and does not reflect the time varying streams of values that PV provides.  

Another rate structure for distributed renewable generation is net metering. Net metering 

provides customers with PV bill credits for each unit of PV generation at the underlying retail rate, 

regardless of the temporal correlation between PV generation and customer load. Under net 

metering, the power produced by PV is paid the same price as the customer’s demand, which is 

quite different from the much higher feed-in-tariffs. Mills et al.[80] analyze the impact of retail 

rate structures on the economics of commercial photovoltaic systems. The authors picked up 
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several commercial tariffs, one with the $/kW charge to recover fixed costs and the other with 

$/kWh charge to recover the same costs. The results suggest that under $/kWh charge the benefits 

of PV are higher. Darghouth et al.[81] analyze photovoltaic systems installed by residential 

customers under three typical types of residential tariffs: fixed, time-of-use and real-time pricing. 

The results suggests that PV benefits are around 10% higher under a time-of-use tariff compared 

with benefits under a fixed-tariff and under a real-time tariff. Darghouth et al.[82] (a continuation 

of[81]) explored the impact of the following assumptions on the bill savings from residential PV: 

a wholesale electricity market design with a price cap (as opposed to an energy-only market); a 

retail rate with a fixed customer charge (as opposed to a fully volumetric rate); and increasing-

block pricing (as opposed to a flat rate). 

Critics of net metering point out that it allows PV owners to avoid paying fixed costs and shift 

those costs to non-net metering customers. Because of this unsustainable and potentially unfair 

cost shifting, several states have begun to shift away from net metering. Table 2-4 compares the 

characteristics of feed-in tariff and net metering. 

 

Table 2-4: Comparison between feed-in tariff and net metering 

 Feed-in tariff Net metering 

Definition  An energy-supply policy focused 

on supporting the development 

of new renewable power 

generation.  

Feed-in tariff provide a 

guarantee of payment in dollars 

per kilowatt hour ($/kWh) for the 

full output of the system for a 

guaranteed period of time. 

Net metering provides customers 

with PV bill credits for each unit 

of PV generation at the 

underlying retail rate, regardless 

of the temporal match between 

PV generation and customer 

load. 
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Rates Fixed energy charge Depending on the tariff structure, 

could be fixed, time-of-use or 

real-time pricing.  

Concerns All customers, including non-PV 

customers subsidize the PV 

customers.  

Does not reflect the true value of 

PV. 

Fixed costs of PV are shifted to 

other non-PV customers. 

Does not reflect the true value of 

PV. 

2.3.3 Review of tariff-based DERs benefits of dispatchable DERs 

Different from photovoltaic generation, energy storage and demand response are dispatchable and 

can be scheduled to minimize the electricity bills. Plenty of studies have targeted the scheduling 

of DERs owned by residential and commercial customers.  

Household appliance scheduling has been drawing research interests over the past few years. 

Research works are diverse in terms of mathematical models and solution approaches. 

Pipattanasomporn et al.[83] tackle the load power control problem. The load serving entity 

determines the thresholds of energy consumptions that the aggregated customer demand should 

not exceed at different times. Then the load serving entity broadcast the signals to customers. Then 

customers make scheduling decisions to adapt to the utility signal based on the predefined 

appliance priority levels. Pedrasa et al.[84] optimally schedules DERs (including renewables) 

under time-of-use and critical peak pricing tariffs. The above two studies assumed that the 

appliances demands are deterministic and schedulable, without any uncertainty.  

Many studies choose real-time pricing as the electricity tariffs. Real-time pricing reflects the 

time-varying energy production cost of the power system, which could possibly guide customers 

to better schedule their DERs[85]. However, since many customers may shift their demand to 
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lower-price periods, real-time pricing may create market stability issues[86] i.e. market prices, 

instead of flattening, might become more volatile.  

Developing home energy management systems under real-time pricing has become a hot 

research topic. Mohsenian-Rad and Leon-Garcia[87] develop an optimization framework is 

developed to schedule residential appliances to minimize customer electricity bills. The study also 

discussed prediction of real-time prices. Kim and Poor[88], Tischer and Verbic[89] employ 

dynamic programming to determine an optimal control policy to schedule different appliances to 

minimize the bills customers pay. Chen and Wu[90], Wallace et al.[91] develop algorithms to 

schedule various types of appliances under uncertain real-time prices by using rolling horizon 

online stochastic programming.  

The above papers focus on energy management of residential customers subject to residential 

tariffs, which typically don’t include demand charges. In fact, most residential tariffs allocate the 

capacity related costs (generation capacity, transmission & distribution investments) to the energy 

charges. Under this allocation, a kWh produced at any hour worth has the same capacity value, 

which is not very accurate.  

Research on optimal scheduling of DERs owned by commercial customers are less common. 

Appliances in commercial buildings, for example HVAC systems, are much more complex 

compared with their residential counterparts. The models to simulate those commercial building 

appliances are still quite complex to apply in optimization problems. Instead, these models are 

incorporated in control-based algorithms to achieve some specific targets like peak 

shaving[91][92]. These studies suggest commercial customers can achieve demand charge savings 

by dispatching DERs to reduce peak demands.  
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2.4 COMPARISON BETWEEN AVOIDED COSTS BASED BENEFITS AND TARIFF-BASED 

BENEFITS 

 

Figure 2-4: Illustration of avoided-cost-based methods and tariff-based methods 

 

2.4.1 DERs benefits evaluation: two perspectives 

In the last two sections, we have summarized the literature on the streams of benefits based on 

avoided costs and benefits based on electricity tariffs. Figure 2-4 illustrates the avoided costs based 

methods and the tariff based methods. In this section, we compare the two methods, state the 

deficiencies of each method and point out potential research directions. 

2.4.2 Deficiencies of avoided-cost based methods 

The avoided-cost methods can provide most accurate estimations on the benefits that DERs 

provides. These studies evaluate the impacts of DERs on the beneficiaries and estimates how much 

costs could be avoided due to the presence of DERs. However, among all these studies, few address 

the issue of allocate the avoided-costs to DERs.  
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Many studies estimate the aggregated impacts of many DERs on their beneficiaries. But most 

of the studies did not cover the methods/algorithms to distribute the benefits to DERs. For example, 

an aggregator can schedule and control a bunch of batteries to provide frequency regulation service 

and achieve considerable amount of revenues. Having collected the revenues from the market, the 

aggregator need to distribute the benefits back to individual batteries. The batteries have different 

power ratings, energy ratings, efficiencies, availabilities, degradation costs. The dispatches of 

different batteries could be very different. Considering these factors, developing fair methods to 

distribute the benefits back to DERs is a non-trivial task.     

DERs can be owned by end-use customers, who has no direct financial interaction with many 

beneficiaries: generation companies and transmission companies. A single 

generation/transmission company could face potentially thousands or even millions of customers 

with DERs. To enable for generation companies and transmission companies distribute benefits to 

DERs, the modifications on communication infrastructure and operation costs are considerable. 

Establishing and maintaining interactions between the company and the DERs is a significant 

burden.  

To fully utilize the avoided-cost methods, significant changes need to be made on the existing 

power system economics structure. This requires changes on tariff structure, market structure and 

a lot of investments for DERs to directly interact with their beneficiaries. Compared with the tariff 

based methods, avoided-cost based methods are more difficult to implement.   

2.4.3 DERs benefits not reflected in tariffs 

In addition to reshaping customers demand profiles, DERs can also provide other services that 

conventional customers cannot provide, e.g. ancillary services and back-up support. Since most 
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tariffs are designed for conventional customers, they do not explicitly reflect the non-conventional 

benefits of DERs. 

Ancillary Services 

The first non-conventional benefits of DERs is the provision of ancillary service. 

Reference[28][29][30] analyze the potential of distributed generation in providing ancillary 

services. Reference[31][32][33][34][35][36] focus on the provision of ancillary services by energy 

storage. In particular, references[34][35][36] discusses optimal battery energy storage scheduling 

strategies to maximize revenue. References[37][38][39][40][41] evaluates demand response as a 

provided of ancillary services. Among other studies, references[39][40][41] provide scheduling 

strategies for the aggregation of appliances (HVAC and water heater) to provide ancillary services. 

The above references apply avoided-cost-based methods by letting the aggregation of DERs 

participate into ancillary service markets. 

On the other hand, conventional end-use customers have no ability to provide ancillary 

services. LSEs divide the cost of ancillary services by their total energy usage and add the $/kWh 

charge to the energy charge[63][64]. So customers’ payments for ancillary services are 

proportional to their energy usage. Therefore, it is not suitable for DERs to obtain ancillary service 

benefits simply through tariff itself. References[39][40][41] suggest individual DERs can be 

aggregated by aggregators. The aggregators schedule the DERs and bid their aggregated output 

into the ancillary service markets. Introducing aggregators has two advantages: first, the size of an 

individual DER may be too small to directly participate in the ancillary service markets. When 

DERs are aggregated, they meet ancillary service markets’ minimal size requirements. Second, 

it’s more difficult for an individual DER to follow the ancillary service signals than a bunch of 

DERs coordinated by an aggregator. Therefore, aggregation may facilitate DERs in obtaining 
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ancillary service benefits. Figure 2-5. describes the market structure of DERs obtain ancillary 

service benefits through aggregator. 

 

Figure 2-5: Structure of DER obtaining ancillary service benefits through aggregators 

 

Back-up support 

DERs can provide back-up support when outages happen that the conventional supply from 

transmission network is cut off. Reference[58][59][60][61][62] proposed DERs support for critical 

loads after outages by forming microgrids so some of the loads could be picked-up. 

Although studies have been conducted to estimate the value of lost load, most load serving 

entities do not compensate customers when outages cut off their electricity supply. So the back-up 

support benefit is not reflected through electricity tariffs. Instead the critical loads picked-up 

during outages could in theory settle with DERs through bilateral transactions. A centralized 

dispatcher may be necessary in order to formulate microgrids and dispatch DERs if the load pick-
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up is determined through centralized optimization[61][62]. The pick-up plan could also be carried 

out through negotiations among agents[60].  

Ancillary services and back-up support are two examples of benefits of DERs that are not 

reflected in tariffs. This suggests that the tariff-based methods do not capture some of the streams 

of benefits that DERs provide. For DERs to get these benefits, new market structures should be 

established with possibly additional market participants. 

2.4.4 DERs benefits misrepresented by tariffs: 

Although current tariffs do not reflect some of the DERs benefits, they do have components 

corresponding to other benefits. Commercial tariffs usually have two parts with an energy charge 

and a demand charge. The energy fuel cost of the LSE is recovered through the energy charge. In 

some tariffs the LSE cost of generation capacity, transmission and distribution are recovered 

through the demand charge. Other tariffs recover a certain proportion of the above costs through 

the energy charge and the rest through the demand charge. Most residential tariffs only have an 

energy charge. Therefore LSE’s energy fuel cost, generation capacity cost, transmission and 

distribution costs are all recovered through the energy charge. 

For conventional customers, the existing tariffs are adequate in helping the LSE recover its 

costs. However, once customers install DERs the existing tariffs may not represent the benefits of 

DERs correctly. Situations where LSE over-compensate or under-compensate DERs are possible. 

This chapter presents a qualitative analysis of these situations. A quantitative analysis is presented 

in the next chapter.  

Energy charge 

In some tariffs, the energy charge is flat or involves incremental blocks. The flat tariff does 

not reflect accurately the benefits of DERs because it stays the same for the entire day, while the 
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fuel cost varies throughout the day. For residential tariffs without demand charge, the energy 

charge is also responsible to recover other LSE costs. The cost of generation capacity, transmission 

and distribution is proportional to peak load, so the peak hours have more values than non-peak 

hours, yet the flat tariff does not capture the time-varying values of DERs.  

Like the flat tariff, an incremental blocks tariff involves constant rates throughout the day. 

The rates get higher when customers’ monthly usage gets higher, not because the cost of electricity 

gets higher. Subject to these two tariffs, DERs obtain benefits according to their monthly 

productions, which are likely to be much different from what they should be paid. Flat tariffs also 

offer no incentive for energy storage and demand response to be dispatched at specific hours of 

the day.  

Other tariff designs, including time-of-use tariffs, critical peak pricing tariffs and real-time 

tariffs reveal the time-varying costs of electricity in greater and greater details. Reference[83] 

solved the DERs scheduling problem under a time-of-use tariff. Scheduling DERs under a real-

time tariff is more challenging because the real-time price is not known in advance. 

References[87][88][89][90][91] solved the scheduling problem under real-time pricing from 

different perspectives.  

In conclusion, among the different structures of energy charges, the flat tariff and incremental 

block tariffs offers little incentive for dispatchable DERs to operate. These two tariff structures 

misrepresent the energy value of DERs. The time-varying tariffs (time-of-use tariff, critical peak 

tariff and real-time tariff) provide better incentives for DERs to dispatch.  

Demand charge 

A customer’s demand charge is usually equal to the $/kW rate multiplied by the customer’s 

monthly peak demand measured over a specific interval (15min, 30min, or 1 hour). DERs reduce 
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customers’ demand payments by cutting the peak demand. Demand payments help the LSE 

recover its costs for generation capacity, as well as transmission and distribution services. These 

costs are calculated at the LSE’s aggregated peak demand multiplied by the rates charged to the 

LSE at the wholesale level. So how much DERs benefit LSE depends on how much reduction 

DERs contribute to the LSE’s aggregated peak demand. Some customers have peak demands not 

coincident with the LSE’s peak demand, and thus have little impact on the LSE’s peak demand. 

Therefore, they don’t help LSE cut its capacity costs. The LSE observes reduced demand charge 

revenue from these customers but still pays the about the same capacity costs at the wholesale 

level. Alternatively, the outputs of DERs could coincide with LSE’s peak demand while not 

coincide with the customers’ peak demands. In that case, LSE observes relatively the same amount 

of demand charge revenues but pays less for capacity. Neither of these two cases is fair. Therefore, 

the ($/kW) demand charges may not be suitable for customers with DERs. The next chapter 

provides a detailed quantitative study of the economic impact of DERs on LSEs under the current 

demand charge design.  

The $/kW demand charge may not be a good design for non-disptachable DERs like PV. 

Since PV cannot be dispatched, whether their production coincides with customer’s peak demand 

is determined by meteorological factors such as solar irradiance, temperature that have significant 

randomness. The study[80] pointed out under $/kW demand charge, PV obtained much less 

revenue compared with a $/kWh charge.  

In summary, the $/kW demand charge misrepresents the benefits of DERs if the customer 

peak demand does not coincide with the LSE’s aggregated peak demand. The $/kW charge is not 

favorable to PV because it provides less benefits compared with the $/kWh charge. 
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2.4.5 DERs obtaining multiple streams of benefits simultaneously: 

DERs could obtain multiple streams of benefits by providing multiple services 

simultaneously. For example, references[31][32][36] provide scheduling strategies for energy 

storage to provide energy arbitrage and ancillary services. Reference[43] estimates the benefit that 

distributed generation provides through energy arbitrage, loss reduction and investment deferral 

together. 

2.5 ORGANIZATION OF THE FOLLOWING CHAPTERS 

So far we have identified the streams of benefits DERs bring to various participants. We 

evaluated the references that quantify different streams of benefits. The methods to quantity DERs 

benefits can be divided into two categories: avoided-cost based methods and tariff based methods. 

We compared the two categories and pointed out the pros and cons of each category. 

In the following chapters, we will present four studies evaluating the streams of benefits DERs 

bring. The first two studies adapt tariffs based methods while the following two studies adapt 

avoid-cost based methods.  

The first study evaluates the financial impact of DERs owned by commercial customers on 

their LSE. In this study, we stick with the current commercial tariff. The savings brought by DERs 

to their customers are calculated based on the tariff. In addition, DERs also alter the aggregated 

demand profile of the LSE and reduce costs LSE pays to wholesale level participants for energy, 

generation capacity and transmission. Case studies suggest that customer savings outweigh the 

LSE’s reduced costs, resulting in financial losses of the LSE.    

To address the financial loss issue, the second study aims at redesigning the tariff for DERs. 

In the second study, we purpose two value of DERs tariffs that convey LSE’s peak demand 

information to end-use customers in from of event-based charges. Simulations show that customers 
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react to event-based charges by dispatching DERs and help the LSE shave its peaks. Compared 

with the current tariff, the DERs tariffs reward customers more savings and help the LSE reduce a 

lot more payments for generation capacity and transmission. Both customers and the LSE have 

financial incentives to switch to the DERs tariffs. 

In the third study, we switch to avoided-cost based methods to evaluate DERs. We look at 

multiple streams of avoided-cost benefits. The study aims to maximize the streams of benefits a 

LSE-owned battery energy storage can achieve. In specific, we include the frequency regulation 

benefit, which can only be awarded through avoided-cost methods, as one stream of benefit. Case 

studies suggest that frequency regulation benefit account for a large share among the total benefits 

the storage achieves.  

The last study aims to integrate tariff based methods: customer level energy arbitrage and 

peak shaving, with avoided-based methods: frequency regulation. We develop an aggregator 

model that coordinates many customer-owned batteries and dispatch batteries to achieve energy 

arbitrage, peak shaving and frequency regulation. To cope the computational burden from 

optimizing plenty of batteries, we develop a two-stage model that shift the computations to day-

ahead stage model and effectively simplifies the real-time stage model that reduces the real-time 

stage solution time.   
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Chapter 3. FINANCIAL IMPACTS OF DERS OWNED BY 

COMMERCIAL CUSTOMERS ON THEIR LSE 

3.1 BACKGROUND 

This study analyzes the financial impacts of commercial customer-owned DERs on utilities. 

Specifically, we consider the impact of PV and energy storage systems (ESS). Impacts of DERs 

on the utility are twofold. First, when DERs supply part of the customers’ demand, customers 

purchase less electricity and the utility loses revenue. Second, DERs reshape and/or reduce the 

aggregate demand profile, reducing the utility’s costs for energy, capacity, and transmission 

charges. If a large number of commercial customers install DERs, the utility’s reduced costs might 

not be adequate to compensate for the loss of revenue. 

Since customer bill savings ultimately result in utility revenue losses, the structure and design 

of the customer’s retail electricity rate plays a huge role in defining the financial impact of PV. 

Several studies have estimated the savings that customers achieve when they install PV panels. 

Darghouth et al. examine the bill savings that residential customers achieve under several retail 

rate structures. A further study projects customer savings under high renewable penetrations[81]. 

Reference[80] studies the impact of a two-part rate structures (i.e. separate energy and demand 

charges) on customers with PV systems in San Diego. They concluded that PV can help customers 

save approximately 30% in demand charges and 30% to 50% in energy charges. Another study 

focuses on a large PV system installed at a university under two-part rate structure[94]. The results 

showed that it will be very difficult for PV to demonstrate cost-effectiveness for large commercial 

customers, even if PV costs continue to drop.  While these studies have focused solely on the role 

of rate design on bill savings, our research also considers the role of customer demand profiles and 

cost recovery on the utility side. 
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Bill savings due to energy storage is similarly dependent upon the rate structure.  Lee and 

Chen[95] set up formulations to determine the optimal contract capacities and optimal energy 

storage system size for time-of-use rate customers, with several battery dispatch rules applied. The 

maximum economic benefits of battery energy storage systems for time-of-use rate customers can 

be estimated. Gantz et al.[96] investigate ESS that are simultaneously used for both outage support 

and economic dispatch under time-of-use tariff. Additional objectives, including improving 

utilization of grid assets and reduced emissions are incorporated in[97]. ESS can also be dispatched 

to minimize electricity bills by facilitating the integration of renewable distributed generation, 

including wind[98] and PV[99]. Each of these studies quantified customer savings. In contrast, our 

research investigates the financial impacts from the utility’s perspective. 

Utilities acquire electricity and related services through bilateral settlements and market 

transactions.  Since DERs reduce or reshape the aggregate demand, utilities can, in most cases, 

purchase less energy from wholesale markets and avoid other related charges. 

In determining DER benefits to the utility, this article considers avoided energy, generation 

capacity and transmission payments. 

3.2 METHOD 

In most tariffs, the energy component is either fixed or time-of-use (including critical peak 

pricing). In the U.S., tariffs that charge customers a dynamic price which directly reflects 

wholesale market clearing prices are rare. Most commercial customers pay demand charges based 

on their individual monthly peaks. The monthly bill of a commercial customer with this type of 

unbundled rate is described by Equation (3.1): 
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  Equation Chapter 3 Section 1(3.1) 

where tE is customer hourly energy usage, onpeakD is the peak demand over the on-peak period 

of the month, and
onpeakD is the peak demand over the entire month. The four lines of Equation (1) 

correspond to the energy component, the capacity component, the transmission component and the 

distribution component of a customer’s electricity bill, respectively. 

To calculate bill savings, the electricity bill is unbundled into its energy, capacity and 

transmission parts. Suppose the customer’s hourly energy usage, peak demand over the on-peak 

period and peak demand over the month are t

DERE , onpeak

DERD and DERD , respectively. Savings due to 

the DERs in the energy, capacity and transmission components are: 

S_Energy= ( ) ( )
onpeak offpeak

onpeak t t offpeak t t

energy DER energy DER

t T t T

E E E E 
 

      (3.2) 

S_Capacity= (D D )onpeak onpeak

capacity DER                     (3.3) 

S_Transmission= (D D )onpeak onpeak

transmission DER               (3.4) 

3.3 CASE STUDY 

We selected several commercial customer demand profiles as well as a time of use tariff with 

demand charge components unbundled. We then compared the utility’s reduction in costs to its 

loss in revenue. Wholesale market clearing prices and transmission tariffs were selected to 

calculate utility savings. To measure the utility’s cost recovery in different categories, the balance 

sheet is broken into accounts for energy, generation capacity and transmission. 
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The tariff chosen for this case study is Virginia Electric and Power Company’s Schedule GS-

2T. This tariff features a time of use energy usage charge that includes a fuel charge component 

and an energy delivery charge component. The demand charge component is unbundled into 

elements including generation capacity, transmission and distribution. Riders related to adjusted 

fuel cost as well as the expenses from wholesale market transactions are applied to adjust the rate. 

The on-peak period is defined as: June 1 through September 30, 10 a.m. to 10 p.m., Mondays 

through Fridays and October 1 through May 31, 7 a.m. to 10 p.m., Mondays through Fridays. All 

other hours are off-peak. Table 3-1 summarizes the components of selected tariff. 

Table 3-1: Components of the selected electricity tariff 

Components Rate Symbol 

Basic Customer 
Charge 

$26.17/month customer  

Generation 
kWh Charge 

5.727¢/kWh, 
On-peak  

3.096¢/kWh, 
Off-peak 

onpeak

energy  
offpeak

energy  

Distribution 
kWh Charge 

0.025¢/kWh delivery  

Generation kW 
Charge 

 

Transmission 
kW Charge 

Distribution 
kW Charge 

4.784$/kW, 
On-peak 

3.375$/kW, 
On-peak 

2.171$/kW, 
On-peak 

3.387$/kW 

capacity  

Jun. - Sep. 

capacity  

Oct. – May 

transmission  

distribution  

 

The chosen utility company, Virginia Electric and Power Company lies within the PJM 

territory. Therefore, PJM’s market clearing prices for wholesale energy markets and capacity 

markets as well as the transmission service rates are applied. The utility’s hourly load profile is 

acquired from PJM. We assume that the selected utility has no generation or transmission assets, 

so that energy and capacity obligations are fulfilled solely by purchasing from the wholesale 

energy and capacity markets. We also assume that the DER penetration is not high enough to 

significantly impact market clearing prices. 
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Commercial customer demand profiles are extracted from the National Renewable Energy 

Laboratory. This dataset contains hourly demand profiles for 16 commercial building types that 

represent approximately 70% of the commercial buildings in the U.S. Models of commercial 

buildings were developed by the U.S. Department of Energy in conjunction with three national 

laboratories, integrated in the simulation software EnergyPlus. We select 4 locations within the 

jurisdiction of Virginia Electric and Power Company. The commercial customer demand profiles 

of the 4 locations are simulated using EnergyPlus. 

Daily demand profiles of the 16 types of commercial customers in July are presented in Figure 

3-1. The number at the end of each subplot’s title is the number of customers in thousand. Lines 

in blue are weekday demand profiles while lines in green are weekends. This figure illustrates that 

each type of building has more or less a fixed demand profile pattern.  Commercial establishments 

with similar functions but different sizes, (i.e. small offices, medium offices and large offices) 

share similar consumption patterns. 
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Figure 3-1: Customer monthly demand profiles by type, July 

 

Three DER cases are considered. In the first case, a portion of the commercial customers 

install PV sized at 10% of their annual peak demand. Hourly solar irradiation data at the 12 

locations where commercial customers are sited were obtained from SolarAnywhere. In the second 

case, the same portion of customers installs ESS with a power rating also equal to 10% of their 

annual peak demands. The energy rating is four times the ESS’s power capacity. This means that 

at rated charging capacity, it takes 4 hours to fully charge the ESS. For both cases, the total installed 

DER capacity is set at 1% of the LSE’s annual peak demand. The third case consists of two types 

of DR. The first represents emergency demand response, an event-based DR. The resource can 

only be dispatched several times per month and the duration of each dispatch is limited to 6 hours. 

The second represents economic demand response. This resource requires customers to make 

regular, everyday modifications to their consumption patterns. Comparing the two types of DR, 
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the first type of DR has more demand reductions during events, but the total number of events is 

capped. The second type has a relatively lower magnitude of overall reduction but the impact of 

demand response is present every day. The demand response strategy includes dimming lights and 

adjusting temperature set-points for HVAC systems. Since most commercial establishment models 

in Energyplus use electricity for cooling but gas for heating, heating temperature set-points 

adjustment will not impact electricity consumption. In this study, the analysis of DR will be 

confined to summer months (from June 1 to September 30). For both types of DR, customers 

decide when to dispatch their demand resources to minimize their bills. DR capacity is defined as 

the average demand reduction when DR is dispatched. Again, for either type of DR, the total 

capacity is set at 1% of the LSE’s annual peak demand. This penetration is assumed to be sufficient 

to have a considerable impact on the LSE’s aggregated demand yet not large enough to alter the 

clearing prices in the wholesale market. The DERs are distributed among the 16 types of 

commercial customers in proportion to their population.    

3.4 RESULTS 

Before taking DERs into consideration, a reference case without DERs is used to examine the 

selected tariff. Utility revenue (bills paid by the customers) is broken into three categories: energy, 

capacity and transmission. We neglect other components, such as the basic customer charge and 

distribution charge, for simplicity. Utility expenses consist of energy market payments, capacity 

market payments and transmission charge payments, each corresponding to one category of 

revenue. Among the 16 types of commercial buildings, the ratios between their bills unbundled 

into three categories (rows in equation (3.1)), divided by their shares of the utility company’s 

expenses in the corresponding categories, is presented in Figure 3-2 to illustrate the cost recovery 
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ratio of the above three categories. This figure is to gauge the utility’s cost recovery from its 

commercial customers. 

 

Figure 3-2: Utility company cost recovery ratios in three categories: energy, capacity and 

transmission 

In the energy category, the cost recovery ratios for all 16 types of buildings are fairly close to 

1, meaning the utility recovers its energy costs markets from the energy component of the 

customers’ bills. 

With respect to capacity and transmission categories, cost recovery ratios among different 

types of commercial customers vary substantially. Some types of commercial customers, including 

large offices, medium offices, outpatients, primary schools, secondary schools, small offices, 

standalone retails, and strip malls, have higher cost recovery ratios (1.5 to 1.7). Warehouses have 

exceptionally high recovery ratios. In general, all 16 profiles achieve a cost recovery ratio of at 

0

0.5

1

1.5

2

2.5

c
o

s
t 
re

c
o

v
e

ry
 r

a
ti
o

utility company cost recovery among 16 types of commercial buildings

 

 

full service
restaurant

hospital
large
hotel

large
office

medium
office

midrise
apartment

outpatient
primary
school

quick service
restaurant

secondary
school

small
hotel

small
office

stand alone
retail

strip
mall

supermarket warehouse

Energy

Capacity

Transmission



 

 

44 

least 0.9. This means that the utility collects nearly all its share of capacity and transmission 

expenses back from these corresponding bill components. 

One explanation for the variance in cost recovery ratios between the 16 types of customers 

lies in their distinctive consumption patterns. Customers pay capacity and transmission charges 

according to their own monthly peak demands. The utility, however, pays according to its daily 

peak aggregated demand. The aggregated demand of the utility selected for this study combines 

residential, commercial and industrial sectors. In this particular region daily peak demand hours 

are likely to happen late in the afternoon or evening during summer, early in the morning during 

winter, and either early in the morning or evening during spring and fall. Daily aggregate peak 

demands seldom happen during working hours (between 9am to 5pm). However, most commercial 

customers have higher demands during working hours. If one customer’s hourly consumption does 

not coincide with the utility company’s peak, then it contributes little to utility’s expenses yet pays 

a lot for demand charges, resulting in a high cost recovery ratio for the utility company in both 

capacity and transmission categories. Therefore, customers with high daytime consumptions and 

low morning/evening consumptions: warehouses, schools, office buildings etc. provide higher cost 

recovery ratios than customers with evening peaks that coincide with the utility company’s daily 

peak: hotels and restaurants. 

Distributed Generation 

The correlation between the PV generation profiles and the customer consumption patterns is 

a determining factor in reducing customers’ demand charges. If customers have higher daytime 

demands when solar irradiance peaks, then solar generation will reduce the energy, capacity, 

transmission and distribution components of their bills. However, bill reductions for evening-

peaking customers would mostly come from the energy component, since peak demands in the 
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evening are less likely to be shaved by solar generation. In these cases, reduced payments for 

capacity, transmission and distribution charges are therefore less evident. 

Figures 3-3 and 3-4 compare the LSE’s overall annual savings in terms of capacity and 

transmission payments with the savings achieved by commercial customers. The annual savings 

are in $ per kW of installed PV. 

 

Figure 3-3: Comparison between the savings achieved by commercial customers and the LSE 

in terms of capacity charges due to customer-installed PV 
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Figure 3-4: Comparison between the savings achieved by commercial customers and the LSE 

in terms of transmission charges due to customer-installed PV 

 

The red line in the middle of each box indicates the median, the edges of the box indicate the 

25th and 75th percentiles, and the whiskers extend to the extreme data points while the outliers are 

captured by plus marks. Two dashed lines represent the maximum and minimum LSE savings. 

This range in LSE savings reflects the possible variation in savings when PV panels are installed 

in different regions with various solar irradiation profiles across the company’s service area. The 

upper bound occurs when all PV panels are installed in the sunniest location within the LSE’s 

territory. 

Figure 3-3 shows that, for 12 out of 16 customer types, the customer savings are higher than 

the range of LSE savings with respect to capacity charges. In particular, primary schools and 
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supermarkets achieve the highest customer savings. PV performs poorly in helping hotels save on 

capacity charges. Overall, most customers save 10 to 25 dollars per year in capacity charges for 

each kW of PV they install, while the LSE only saves around 10 dollars. Figure 3-4 shows that 

similar conclusions can be drawn regarding transmission charges. Table 3-2 summarizes the 

financial impacts of PV on the LSE in terms of lost revenue and reduced expenses. 

Table 3-2: Summary of the Financial Impacts of PV on the LSE 

Components Lost 

Revenue 

(Million $) 

Reduced 

Expense 

(Million $) 

Energy  15.40 15.94  

Capacity  2.85  1.79 

Transmission 2.02 0.85 

The most significant portion of the LSE’s lost revenue comes from the energy component. As 

distributed generators, PV produces power that offsets part of the customers’ energy consumption. 

That is not the main problem for the LSE because it purchases less energy on the wholesale markets 

and the reduced expense outweighs the lost revenue by about 3%. However, reduced expenses 

account for only 63% and 42% of lost revenues in the capacity and transmission categories, 

respectively. The LSE would therefore lose a significant amount of money in these categories as 

a result of the installation of PV panels by its commercial customers. 

Energy Storage 

In this case, commercial customers install energy storage systems (ESS) and schedule their 

charge and discharge to minimize their electricity bills. Since customers are usually not able to 

forecast their demands perfectly, we introduce demand uncertainty in our simulation and assume 

that it is handled by robust optimization. For each customer that has installed an ESS, robust 

optimization schedules the storage against a worst-case scenario within an uncertain but bounded 

demand profile to maximize the customer savings. This approach produces more realistic results 

than assuming a perfect forecast. 
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Since ESS do not produce electricity, their main effect is to level the daily demand profile. 

Figure 3-5 shows that optimized ESS schedules save commercial consumers money primarily by 

reducing their demand charges. This makes sense because the on-peak energy price in the tariff 

under consideration is only slightly higher than the off-peak energy price, making energy arbitrage 

less profitable than shaving peak demand. 

 

Figure 3-5: Customer’s energy, capacity and transmission savings due to ESS 

 

Since the LSE’s aggregated demand profile is reshaped by the ESS installed by its customers, 

its expenses in terms of energy, capacity and transmission are affected. Figures 3-6 and 3-7 

compare the LSE’s and the commercial customers’ annual savings in these three categories. These 

figures show that many types of commercial customers save 3 to 4 times as much as the LSE. The 

boxes capture the uncertainty in demand profiles due to the forecast inaccuracy. 
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Figure 3-6: Comparison of customer capacity savings and LSE capacity savings due to 

customer-installed ESS 

 

 

Figure 3-7: Comparison of customer transmission savings and LSE transmission savings due 

to customer-installed ESS 
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Peak shaving is more effective for customers with spiky consumption patterns. Customers 

with morning and evening peaks, such as restaurants, hotels and apartments save more with ESS. 

Hospitals with ESS installed save less than any other customer type, primarily because hospitals’ 

weekday daily demand profiles over the entire month are similar and their demand during the 

daytime is relatively flat. 

Table 3-3 summarizes the financial impacts of ESS on the LSE in terms of lost revenue and 

reduced payments.  Compared with PV of equal capacity, ESS achieves higher generation capacity 

and transmission bill savings. The LSE’s reduced energy, capacity and transmission expenses 

amount to only 55%, 26% and 31% of the lost revenues in these categories. 

 

Table 3-3: Summary of the Financial Impacts of ESS on the LSE 

Components Lost 

Revenue 

(Million $) 

Reduced 

Expense 

(Million $) 

Energy  2.96 1.63 

Capacity 8.45 2.20 

Transmission 3.38 1.05 

 

Demand Response 

We consider two types of demand response in the case study: an event-based type and a long 

term demand shape modification type. Due to safety reasons, hospital and outpatient facilities are 

excluded from our DR analysis. The DR strategy involves dimming lights and increasing HVAC 

system cooling set-points. The first type of DR dims the lighting to two thirds of its baseline level 

and increases temperature the set-point two Celsius degrees higher. The demands drop sharply 

when this type of DR is dispatched. Though occasional sharp reductions in demand might be 

acceptable, deploying the same strategy every day will be uncomfortable, so the second type only 

dims lighting to ninety percent of its baseline level and increases temperature set-point one degree 
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higher. The first type DR has exactly 4 events per month, in total 16 events per summer. Each 

event lasts 6 hours and the customers decide when to dispatch their DR resources according to 

their own interests. The second type of DR is dispatched every day throughout the entire summer. 

There is no limitation on the duration of the demand shape modification. Customers modify their 

demand shapes to attenuate periods of high demands during the day. The analysis is limited to the 

summer because most commercial buildings in the case study use gas for their heating systems. 

Adjusting the heating set-points would therefore not significantly affect their electricity 

consumption. Since lighting only accounts for a small fraction of a building’s electricity demand, 

dimming lights would hardly make a difference. Table 3-4 summarizes the characteristics of the 

above two DR strategies. 

 

Table 3-4: Summary of the DR characteristics 

Components Event 

Based  

Long-term 

Demand  

Modification 

Control-Lighting  Reduced to two thirds Reduced to 90 percent 

Control-HVAC Increase 2 ℃ Increase 1 ℃ 

Per Event Duration 6 hours Not applicable 

Event Limit 

Per Month 

4 times Everyday 

 

Lighting and HVAC set-point schedules of baseline and DR cases are fed into Energyplus to 

generate electricity consumption profiles with hourly granularity for the entire summer. The 

difference between the two consumption profiles yields demand reduction due to DR. The average 

demand reduction when DR is dispatched is defined as the average DR capacity. When DR 

dispatch is over and the set-points are adjusted back to normal values, the overall consumption in 

the DR cases is higher than that for the baseline cases because of the demand rebound 

phenomenon. If designed improperly, the rebound could coincide with customer daily peak and 
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result in higher demand charges. The demand rebound is not taken into account for determining 

DR capacity. 

Figure 3-8: Comparison of customer savings and LSE savings on energy, capacity and 

transmission due to event-based DR 

 

Firstly, we conduct an analysis of the impact of event-based DR on LSEs. We assume the 

objective of customers is to minimize their electricity bills. Customers dispatch DR during four 

days of highest demands, enabling demand reductions during event that reduce monthly peaks and 

minimize demand payments. Demand reductions also lower energy consumption during events 

that reduce the energy charge.  Again the individual demand reduction of DR customers are 

summed to analyze their impact on the LSE. Figure 3-8 shows the customers’ savings in terms of 

energy, capacity and transmission charges per kW DR capacity. The dashed line is the LSE’s 

savings. 
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Figure 3-8 shows that the LSE saves more in terms of energy charges than it loses in energy 

related revenue. But for the capacity and transmission components, the LSE savings are far less 

than its reduced revenue. The extra savings in the energy category are due to the fact that the 

locational marginal prices are higher than the energy retail rate during the summer months because 

the selected LSE is summer peaking. Customers dispatch DR to reduce their demand charges, but 

their demand reductions do not usually coincide with the LSE’s daily peak demand. In addition, 

for some types of customers, their demand rebounds when the LSE’s aggregated demand is at its 

daily peak, thus increasing instead of reducing the LSE’s capacity and transmission payments. The 

total number of hours of DR dispatch is limited to 96 (6 hours per event times 16 events), so unlike 

PV and ESS that are dispatched throughout the year, event-based DR results in lower annual 

customer savings. Another factor that limits savings is the event limitation per month. For a 

commercial customer, DR could significantly reduce demands on the four peak days, but the fifth 

peak might be very close to the monthly peak, leading to poor demand savings. The time-of-use 

structure is not preferred for event-based DR. 

A critical peak pricing tariff that occasionally has energy charges that can be several times 

larger than the normal charge would be preferable for event-based DR. DR could then be 

dispatched during high price events to help customers avoid paying extreme energy charges.  The 

savings that customer achieve from event-based DR thus depend heavily on the tariff design.  In 

addition, with critical peak pricing the LSE decides the timing of high energy charges, which 

provides it the opportunity to incentivize DR in its favor. Since the bill savings are limited by the 

number of DR events, long-term demand modification would make possible increased bill savings. 

This leads us to the second type of DR, i.e. demand shape modification. 
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Compared with event-based DR, demand shape modification is smaller in terms of DR 

capacity but does not have limits on the number of events. Since this type of DR is “dispatched” 

every day, it should provide more opportunities for savings by the customers. Demand shape 

modification also differs from event-based DR in that event-based DR has a fixed continuous 6 

hour DR dispatch duration, while demand shape modification does not impose any limit on 

continuity or event duration. For example, full service restaurants have noon and evening peaks, 

so their DR could be designed to dispatch from 10:00 to 14:00 and from 17:00 to 21:00 every day 

to shave their daily peaks. Figure 3-9 shows the savings that different categories of commercial 

customers might achieve in terms of energy, capacity and transmission per kW DR capacity. 

 

Figure 3-9: Comparison of customer savings and LSE savings on energy, capacity and 

transmission due to demand shape modification DR 
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This figure shows that, compared with event-based DR, customers save more money in 

energy, capacity and transmission categories. Here the HVACs and lights as demand response 

resources are dispatched more often compared with the event-based DR, which explains the larger 

savings in the energy category. The reason behind higher capacity and transmission savings is the 

modification of the demand shape. Figure 3-6 illustrates that buildings have consumption patterns. 

These patterns are modified by DR to make the consumption pattern flatter. Although DR is 

dispatched only for 4 months, customer savings in capacity and transmission charges are 

comparable to that of PV. Similar to that of event-based DR, the LSE saves more in the energy 

category than it loses revenue from customers. In the capacity and transmission categories, DR 

contributes little to reduce the LSE’s demand payments. Table 3-5 summarizes the financial 

impacts of the two types of DR on the LSE. 

Table 3-5: Summary of the Financial Impacts of DR on the LSE 

Components Lost 

Revenue 

(Million $) 

Type 1/Type 2 

Reduced 

Expense 

(Million $) 

Type 1/Type 2 

Energy  0.73/4.40 0.97/5.68 

Capacity 0.53/2.18 0.03/0.54 

Transmission 0.30/0.95 0.02/0.26 

 

3.5 DISCUSSION 

In the previous section, we quantified the financial impacts of three types of DERs on LSEs: 

photovoltaic systems (PV), energy storage systems (ESS) and demand response (DR). Each of 

these has distinct characteristics. PV is a non-controllable type of DER that customers cannot 

dispatch. ESS and DR are both controllable resources that customers can operate to maximize 

savings. PV is always an energy producer and will never increase its owner’s metered demand. 

However, ESS and DR increase their owner’s demand due to losses or demand rebound effect. PV 
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and ESS can operate throughout the year, while DR in this study is assumed to be available only 

during the summer. The event-based type DR is limited to 4 events per month, further constraining 

its availability. PV helps customers shave demand, ESS contributes by shifting demands, and DR 

lies between these two, involving both demand shaving and demand shifting.  

Since PV is not controllable, we assume that it is installed similarly among all 16 

establishments, that their production capacities are the same, and that they are determined by the 

local weather, solar irradiance and other meteorological data. Similar production patterns yield 

similar energy charge savings per kW capacity but distinct demand charge savings. The correlation 

between customer demand profiles and PV production patterns plays an important role in 

determining demand charge savings. ESS and DR, however, are controllable and their owners can 

tailor the dispatch schedules to their demand patterns. ESS can easily double or triple demand 

charge savings compared to PV. Event-based DR achieves less savings because of its event limit. 

In addition, demand profiles are repetitive. So in order to shave peak demand, DR needs to be 

dispatched several days over a month. Demand shape modification results in higher savings than 

event-based DR and its effect is comparable to PV. It is worth noting that demand shape 

modification is only available for 4 months while PV is available throughout the year. This case 

study shows that controllable DERs achieve higher demand charge savings. In terms of energy 

savings, PV leads the other two. This is because unlike the ESS and DR, PV is an energy producer 

and its production is high during on-peak hours as currently defined by the tariff.  

In the energy category, the LSE is almost financially neutral when customers install PV: 

reduced expenses make up for the lost revenue. Speaking of demand response, both types of DR 

help the LSE save more than its lost revenues. However, ESS leads to financial losses that reduced 

expenses cannot recover. The positive financial impact in the energy category is due to the 
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discrepancy between locational marginal prices that the LSE pays and the energy rate it collects. 

Locational marginal prices changes on an hourly basis, but the time-of-use energy rate has only an 

on-peak and an off-peak value, and remains fixed for the entire season. The time-of-use energy 

tariff cannot reflect the volatility of locational marginal prices.  If DERs produce when the 

locational marginal price is higher than the energy rate, then the LSE would save money. 

Otherwise, it would lose money.  

In both the capacity and transmission categories, all three types of DERs save more for 

customers than for the LSE. The LSE’s capacity and transmission payments are determined by its 

daily peak aggregated demand, so the production of DERs at that peak hour will impact the LSE’s 

payments. However, the tariff used in this study, like many other commercial tariffs, insulates 

customers from the LSE’s aggregated demand. Customers pay their demand charges based on their 

own monthly peak, which may or may not coincide with the LSE’s aggregated peak. Thus the 

DERs are operated in customers’ favors, regardless of the LSE’s needs. Like the energy rate, the 

demand rate could be designed in a time-of-use structure. The higher on-peak period with a higher 

demand charge, should cover the aggregated peak. The off-peak period with a lower demand 

charge should not cover a period when the aggregated peak is likely to happen. Such a time-of-use 

demand charge would, to a certain extent, pass information about the LSE’s peak to the customers.  

Since different commercial establishments have distinct consumption profiles, they may 

choose to install different types of DERs. For establishments with a working hour peak (e.g. 

supermarket, stand-alone retail, strip mall and offices), installing PV is a good choice. PV 

production is relatively high during regular business hours, helping customers save energy and 

demand charges. Other establishments with morning or evening peaks (such as restaurants and 

hotels), should install ESS or deploy DR as this might bring benefits that outweigh that of PV, 
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especially in terms of demand charges. We assume that all establishments install the same type of 

DERs with capacities proportional to their peak demands. Customers may choose to install 

different types of DERs or install more than one type of DER at their facilities, which will 

potentially pose a larger financial challenges for LSEs. Designing tariffs that allow LSEs to recover 

a justified amount of revenue under certain penetration of DERs is a meaningful research direction. 

3.6 CONCLUSION 

We have analyzed the financial impacts that the deployment of DERs by commercial 

customers would have on their LSE if the current tariff structure does not change. In terms of 

energy revenues, the LSE is neutral to PV, collecting roughly the same amount of revenue needed 

for energy purchases with or without PV installed. On the one hand, the LSE under-collects energy 

revenue when storage is installed. On the other hand, the LSE over-collects energy revenue with 

either event-based DR or demand shape modification. With respect to demand charges (capacity 

and transmission), all three types of DERs save more money to the commercial customers than the 

LSE would save in reduced wholesale market costs. Overall, ESS and DR have a more severe 

impact on the LSE than PV because the dispatchable DERs enable customers to operate these 

resources to minimize their bills. Under the current tariff, this bill minimization strategy may not 

be as favorable for the LSE as it is for its customers. The growing penetration of DERs may prompt 

LSEs to redesign the energy and demand charge components of their tariffs.   

Customers under a time-of-use tariff are incentivized to dispatch their ESS only when the 

retail price is high, and this does not always correlate well with higher prices in the wholesale 

market. Replacing a two-level, time-of-use tariff with a real-time locational marginal price would 

make wholesale locational marginal prices visible to customers. This would encourage them to 
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dispatch their controllable DERs during periods of high wholesale prices. It would thus align their 

interests with those of the LSE. 

The deployment of DERs by commercial customers would reduce the LSE’s revenues by a 

greater amount than its expenses for generation capacity and transmission charges. In order for the 

LSE to accommodate DERs without losing money, the tariffs applied to commercial customers 

should be redesigned. Demand charges should be based not only on the customers’ monthly peaks, 

but also on the customer’s demand at hours coincident with the peaks in the LSE’s aggregated 

demand. A time-of-use demand charge would be desirable once customers choose to install DER. 
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Chapter 4. VALUE OF DER TARIFF 

4.1 BACKGROUND 

In the previous chapter, we concluded that, under the current tariff, the deployment of DERs by 

commercial customers would reduce the LSE’s revenues by a greater amount than its expenses for 

generation capacity and transmission charges would decrease. For the LSE to accommodate DERs 

without losing money, the tariffs applied to commercial customers should therefore be redesigned. 

In this chapter, we design two DER tariffs for commercial and industrial customers that consider 

the timing of the LSE’s peak loads and provide incentives for DERs to dispatch in a way that helps 

the LSE shave its peak loads. By reducing its peak loads, the LSE pays less for generation and 

transmission services, which offsets the loss of revenue caused by the DERs. It is very important 

to keep the consistency of the reference database file in the writing process, especially when you 

work on multiple computers.  

We begin this study by reviewing some of the current tariffs, for both residential and 

commercial customers. In addition, we go over studies that quantify the economic benefits of 

DERs under different tariffs. 

4.2 LITERATURE REVIEW 

Residential customers can choose from many different tariffs. Most LSEs offer residential 

customers fixed tariffs, incrementing block tariffs[71] and time-of-use electricity tariffs[72]. Some 

utilities offer residential customers a Peak Day Pricing option[73]. Peak Day Pricing is an optional 

rate that offers customers a discount on regular summer electricity rates in exchange for higher 

prices during 9 to 15 Peak Pricing Event Days per year, typically occurring on the hottest days of 

the summer. The duration of each event is fixed at 4 hours, from 2:00pm to 6:00pm. The rate is a 
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$/kWh charge during every hour of the events. One LSE offers dynamic pricing to its residential 

customers[74], which means that it charges its customers based on the real-time LMP. 

Some tariffs are specially designed for DERs. As we have discussed in previous chapters, 

there are two primary categories of solar tariffs: feed-in-tariff and net metering. The feed-in tariff 

rewards PV based on their costs, which pays PV a rate much higher than average tariffs. Our 

literature review and the research described in the previous chapter question the fairness of net 

metering. Since the two primary categories of solar tariffs have major drawbacks, alternative rate 

structures have been proposed. For example, the authors of[112] propose a value of solar tariff that 

compensates PV based on its contributions to the energy and demand components. Customers’ 

demands and PV productions are subject to two different tariffs: the value of solar tariff applies to 

the PV production while the customers’ load is still charged per the conventional tariffs. The value 

of solar tariff designed in[112] has the following components:   the energy charge component, the 

capacity charge component, the transmission charge component and the distribution charge 

component. All these components take the form of $/kWh, the tariff is a fixed tariff with 

components covering energy, capacity, transmission and distribution costs:  

t t t t t

V ene cap trans dist                                                         Equation Chapter 4 Section 1      (4.1) 

A study conducted by Lawrence Berkeley National Laboratory and the National Renewable 

Energy Laboratory[113] explores demand charge savings from residential PV. This study analyzes 

the demand charge savings of residential PV under many different demand charge designs 

including non-coincident monthly peak, seasonally varying demand charges, with ratchets and 

with averaging intervals of varying lengths. The study shows that the savings on the PV demand 

charge vary a lot under different demand charge designs. 
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Our research aims at designing tariffs for commercial and industrial customers. Typically, 

tariffs applied to commercial and industrial customers are binomial that they involve both a $/kWh 

energy charge and a $/kW demand charge which aims to cover the cost of generation capacity, 

transmission capacity and distribution capacity[114]. However, some tariffs allocate part of the 

generation capacity, as well as the transmission and distribution charges to the $/kWh component. 

Some LSEs offer Peak Day Pricing options to commercial customers[115]. 

Some studies develop DERs scheduling strategies and analyze customer level savings under 

commercial tariffs. For example,[116] develops a stochastic optimization model that schedules 

battery energy storage to help commercial customers minimize their demand charges. The study 

described in[117] develops an optimization model that dispatches a PV-battery storage system to 

help customers reduce their demand charges. Case studies suggest that the PV-battery system helps 

customers achieve significant reductions in non-coincident peak load.   

This chapter is organized as follows: In the next section, we will discuss the design of the 

energy, generation capacity and transmission components of the proposed DER tariffs. The tariffs 

reflect the peak loads of the LSE to end-use customers and encourage them dispatch their DERs 

accordingly. Once the structures and rates of the proposed tariffs are determined, we evaluate its 

impact on customers with three types of DERs and on the LSE. We conclude this chapter by 

highlighting the major findings and providing some directions for future research. 

4.3 DESIGN OF VALUE OF DER TARIFF 

To evaluate the fairness and effectiveness of the proposed DER tariffs, we consider several criteria: 

1) The electricity bills based on DER tariffs for customers that do not install DERs should be 

roughly the same compared with their bills calculated based on the current tariffs. This criterion 

ensures that customers will not face much different electricity costs if they switch to a DER tariff. 
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2) If all the customers switch to the proposed tariffs, the LSE’s total revenue should not be less 

than its current revenue. This criterion provides the LSE economic validation to design and 

implement the DER tariffs. 3) When customers dispatch their DERs under the proposed DER 

tariffs, their impacts on the LSE should be financially better than what happens under the current 

tariff. We observed from the previous study that under the current tariff, the deployment of DERs 

by commercial customers would reduce the LSE’s revenues by a greater amount than its reduced 

expenses for generation capacity and transmission charges. The new tariff should encourage DERs 

to dispatch during the LSE’s peaks and help the LSE reduce its peak demand, thereby reducing 

what it is charged for generation and transmission capacity. 

4.3.1 Electricity bills based on the current tariff 

Before going through the components of DER tariffs, we review the components of the current 

tariffs. We select the typical binomial tariff[114] that is used in the previous study as the current 

tariff. The equations below detail the energy, capacity, transmission and distribution charges: 
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Equations (4.2-4.5) defines the annual charges on energy, capacity, transmission and 

distribution of a commercial or industrial customer, where m stands for month. The energy rate is 

a two-tier time-of-use charge. The capacity and transmission charges are calculated as the 
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applicable rates multiplied by the monthly peak demand during the on-peak period. The on-peak 

periods are defined by the LSE as: June 1 through September 30, 10 a.m. to 10 p.m., Mondays 

through Fridays and October 1 through May 31, 7 a.m. to 10 p.m., Mondays through Fridays. The 

distribution charge is calculated as the rate multiplied by the monthly peak demand. The annual 

charge is the sum of the 12 monthly charges for the above four components. In the following 

sections, we compare the annual charges under DER tariffs against the current tariff to evaluate 

the impacts of different tariffs on DERs customers and on the LSE. 

Our goal is to design the structure and rates for the energy, generation capacity and 

transmission components. Due to the lack of data about the distribution system costs, we leave the 

design of the distribution component for future research. 

4.3.2 Design of the energy component 

We apply dynamic energy rate in our proposed DER tariffs.  The rate for energy should thus reflect 

the wholesale energy market clearing prices to customers and DERs. The question is whether this 

rate should be based on the Day-ahead LMP or the real-time LMP. The day-ahead LMP is less 

volatile (less price spikes) than the real-time LMP. In addition, the system operator publishes day-

ahead LMP signals in the afternoon before the day, providing customers enough time to schedule 

their DERs.  

Furthermore, since the real-time LMP is the sport market clearing price, its value remains 

unknown until the hour ends. End-use customers may therefore find it difficult to cope with a 

more-volatile, less-predictable price. For these reasons, we use the day-ahead LMP for the energy 

component of the DER tariffs that we design. 

Next, we formulate a simple optimization problem to determine the rates of the DER tariff 

energy charge component. 
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The objective function (4.6) minimizes the sum of the square of the payment deviations of 

many types of customers. The subscript i represent customer type i. The payment deviations are 

defined in (4.7) as the difference between the energy charges under the DER tariff and these 

charges under the current tariff, divided by the energy charges under the current tariff. The 

payment deviations are unit less. If the payment under the DER tariff is equal to that under the 

current tariff, the deviation ,i energy is equal to 0. The energy component of the DER tariff is defined 

as the day-ahead LMP plus an offset offset (4.8). This offset is adjusted to ensures that the LSE 

collects sufficient energy charge payments from the customers. Equation (4.9) defines the annual 

energy payment ,

DERs

i energyB under the DER tariffs. Equation (4.10) ensures that the LSE would not be 

worse off, in terms of total energy payments, if all its commercial & industrial customers switch 

to the DER tariff. in is the number of customers of type i. 

Equations (4.6-4.10) thus define the energy component of the DER tariff. The rate is time-

varying and exposes end-use customers to the wholesale energy prices. 
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4.3.3 Design of the generation capacity and transmission components 

The capacity and transmission components should represent the capacity and transmission values 

of DERs respectively. The avoided cost method to estimate the benefits of DERs in terms of 

generation capacity and transmission suggest that the contribution of DERs should be reflected 

through their outputs coincident with the system level peak demands. In fact, demand response 

programs have been designed to capture the peak hours that happen occasionally. Several ISOs 

have emergency demand response programs[13] that compensate DERs at rates several times 

higher than the average retail rates for several dozens of hours each year when the system level 

aggregated loads approach their peaks. If the DER tariff is designed solely based on methods based 

on the avoided cost, 
t

cap and t

trans will be greater than zero for only a few dozens hours per year. 

However, distributing the capacity and transmission values over only a few dozens hours per 

year makes the tariff very volatile and may discourage DERs from producing consistently. If the 

components are designed solely based on avoided cost methods, they resemble the current design 

of $/kW charge because only peak hours are valuable whereas for the vast majority of hours over 

the year the tariff provides no benefits to DERs at all. In fact, some LSEs have realized this issue 

and provide the Peak Day Pricing tariffs to end-use customers[115]. The demand charges based 

on monthly peaks are discounted. On the other hand, customers face a high $/kWh charge during 

events.  

As with the Peak Day Pricing tariff structure mentioned above, we also divide the demand 

charge into two parts: 
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                                                        (4.12) 

The first part is applicable to peak events. We assume that there are about 20 events 

throughout the year and that each event lasts about 3-6 hours. The LSE notifies its customers about 

the time and duration of these events on the day-ahead. The 
event

cap  and event

trans charges only apply to 

those events. The second part 
kW

cap and kW

trans is similar to the demand charge components. Since the 

LSE aims to only recover a portion of capacity and transmission costs through
kW

cap and
kW

trans , the 

rest of the costs is recovered through the event-based charges 
event

cap  and 
event

trans . The rate of 
kW

cap  is 

different from that of the current tariff. 

We provide two designs of the event-based component: the $/kWh design and $/kW design. 

The first design is similar to Peak Day Pricing, and the event-based rate are
,event kWh

cap and
,event kWh

trans . 

The rate applies to every hour of the events
eventt T . Therefore, a customer’s annual capacity and 

transmission charges are: 
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The second design is the $/kW design, where the event-based rates are
,event kW

cap and
,event kW

trans . 

These rates apply to the peak demand during each event. The capacity and transmission charges 

of the $/kW design tariff are: 
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                  (4.16) 

To better understand the proposed tariff structure, let us consider the activities of the LSE. 

Every day, the LSE forecasts its aggregated demand profile for the next day. If the forecasted 

demand profile is very high, the LSE issues an event notice to its customers, informing them about 

the starting and ending hours of the event. During the event, the LSE charges its customers the 

event-based charges. In return, the rates for monthly peaks:
kW

cap and kW

trans are discounted.  

As with the energy component, we introduce optimization models to calculate the values of 

the capacity and transmission components of the proposed $/kW and $/kWh tariffs. We discuss 

only the method used to calculate the rates for the capacity components because the model for the 

transmission component is quite similar. 

,min : i cap

i

                                                            (4.17) 

2

, ,

,

, 2

ref DERs

i cap i cap

i cap ref

i cap

B B

B



                                              (4.18) 

(1 )kW

cap cap eventr                                                  (4.19) 

, ,

DERs ref

i i energy i i energy

i i

n B n B                                          (4.20) 

The objective function is similar to that of the energy component model, i.e. to minimize the 

sum of the squares of the deviations. Equation (4.19) defines the ratio of between the event-based 

charge and the capacity payment. 0.3eventr   means that 30% of the capacity payment is expected 

to recover from the event-based charge (second term in equation 4.13 or 4.15) and the remaining 

70% is recovered from the monthly charge (first term in equation 4.13 or 4.15). The last equation 

ensures that the LSE will not be worse off if all its commercial and industrial customers switch to 
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the DER tariffs. We can use either the $/kWh design (equations 4.13-4.14), or the $/kW design 

(equations 4.15-4.16), to solve for event-based charge rates. 

4.4 CASE STUDY: DETERMINING THE VALUES OF THE DER TARIFF COMPONENTS 

In the previous section, we defined the structure of DER tariffs and formulated models to calculate 

the rates. In this section, we present case studies illustrating the implementation of these DER 

tariffs. 

4.4.1 Data 

As in the previous study, we select the same commercial customer demand profiles and the same 

time of use tariff. Commercial customer demand profiles are based on data from the National 

Renewable Energy Laboratory[118].  

The utility’s hourly load profile is acquired from PJM[119]. We assume that the selected 

utility has no generation or transmission assets, which means that its energy and capacity 

obligations are fulfilled by purchases from the wholesale energy and capacity markets and 

purchases of transmission services. We extract the day-ahead LMP and LSE demand profile of the 

entire year 2016 from PJM[120] and remove February 29th to make the year 8760 hours, and thus 

compatible with our customer demand profiles. We also assume that the DER penetration is not 

high enough to significantly impact the market clearing prices. 

4.4.2 Energy Component 

Using the model (4.6-4.10), we calculate the optimal value of offset and determine the energy 

component of the proposed DER tariff to be 0.0145$/kWhoffset  . The mean of the time-varying 
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energy component of DER tariff is about 0.0425$/kWh. Figure 4-1 illustrates the energy 

component over the entire year. 

 

Figure 4-1: Energy component rate of the DER tariff 

 

From figure 4-1 it is easily seen that the rate of the energy component has seasonal and daily 

patterns. During the winter and summer, the rates during peak hours are higher, and appear as the 

“spikes” in the figure. This happens because the demand during those hours are higher and the 

more expensive generators are dispatched to meet the demand.   

 



 

 

71 

 
Figure 4-2: Energy component and LSE aggregated load 

 

Figure 4-2 selects two months, July and August to illustrate the relationship between the 

energy component rate and the LSE’s aggregated load profile. Every day the price goes up and 

down, providing DERs the opportunity for energy arbitrage. The energy rate is higher during the 

peak hours of the day. The time-varying energy rate thus serves as a good indicator of the LSE’s 

aggregated demand. Charging customers this time-varying rate could encourage DERs to assist 

the LSE achieve peak-shaving and valley-filling goals. 

4.4.3 Capacity & Transmission Component 

In order to design the event-based tariff, the LSE must specify the total number of hours of events 

(for the $/kWh design) or the number of events (for the $/kW design). For this case study, we 

chose 20 events, with a total of 105 hours. The events and hours are selected based on peaks of the 

LSE’s demand profile. Three events happen in winter and in the morning. The rest happen in July 

and August, during late afternoon and evening. Table 4-1 shows the timing: date, start hour and 

end hour of the events over the year. 
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Table 4-1: Distribution of the events over the year 

Hou

r 

/date 1 2 3 4 5 6 7 8 9 

1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

1/18                                                 

2/13                                                 

7/13                                                 

7/17                                                 

7/22                                                 

7/23                                                 

7/24                                                 

7/25                                                 

7/26                                                 

7/27                                                 

8/9                                                 

8/10                                                 

8/11                                                 

8/12                                                 

8/13                                                 

8/14                                                 

8/15                                                 

8/16                                                 

8/25                                                 

12/5                                                 

 

Based on the model (4.17-4.20), we can calculate the rates for the capacity and transmission 

components. We vary the ratio eventr and get a series of rates based on different values of eventr ratios. 

Tables 4-2 and 4-3 summarize the rates for the $/kWh design and $/kW design respectively.  
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Table 4-2: Rates of event-based part of capacity and transmission component, $/kWh design 

CPP_
eventr

ratio 

cap ,event kWh

cap

($) 

,event kWh

cap ($) 

0.05 0.024 0.013 

0.1 0.048 0.027 

0.15 0.072 0.040 

0.2 0.095 0.053 

0.25 0.119 0.066 

0.3 0.143 0.080 

0.35 0.167 0.093 

0.4 0.191 0.106 

0.45 0.215 0.119 

0.5 0.239 0.133 

 

Table 4-3: Rates of event-based part of capacity and transmission component, $/kW design 

CPP_
eventr

ratio 

cap ,event kW

cap ($) ,event kW

cap ($) 

0.05 0.144 0.080 

0.1 0.287 0.160 

0.15 0.431 0.239 

0.2 0.574 0.319 

0.25 0.718 0.399 

0.3 0.861 0.479 

0.35 1.005 0.559 

0.4 1.148 0.638 

0.45 1.292 0.718 

0.5 1.435 0.798 

 

4.4.4 The impact of the DER tariffs on non-DER customers 

We evaluate the effects of DER tariffs with the rates calculated in the previous section on the 

annual bills of various types of customers. We assume that even for the same type of customers 

(e.g. restaurants) located in the same area, there demand profiles are different. Therefore, we add 

some random perturbations to the customer demand profile to create many demand profiles 

simulating the variance customer demand profiles. 
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We define its annual bill ratio as the amount paid based on the DER tariffs divided by the 

amount paid based on the current tariff. Figure 4-3 shows the annual bill ratios of 16 types of 

customers. Each type has two columns representing the two locations. The dashed lines show the 

range [0.97, 1.03]. For each type of customer, the first box indicates the range of bill ratio with the 

$/kWh tariff, the second box indicates the range of bill ratio with the $/kW tariff. 

 

Figure 4-3: Annual bill ratios of 16 types of customers 

 

For each box, the central mark indicates the median, and the bottom and top edges of the box 

indicate the 25th and 75th percentiles. The whiskers extend to the most extreme data points not 

considered outliers. From this figure we can observe that most of the bill ratios lies within the 

range [0.97, 1.03]. This means for customers without DERs, their annual bills calculated by the 

proposed DER tariffs are roughly the same compared with their bills calculated using the current 

tariff.  

These results validate the rate design of the proposed DER tariffs. Non-DERs customers will 

pay roughly the same amount under DER tariffs compared to what they pay with under the current 

tariff. In the following sections, we evaluate the impacts of the proposed tariffs on customers with 

various types of DERs and on the LSE. 
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4.5 CASE STUDY: IMPACT OF THE PROPOSED DER TARIFFS ON DERS CUSTOMERS 

AND THE LSE 

In this section, we assume that customers install DERs to help them minimize their electricity bills. 

We showed previously that, if customers are charged based on the current tariff and dispatch their 

DERs accordingly, the LSE is not able to recover the capacity and transmission costs because the 

decreased revenues from customers outweigh the reduced expenses. To tackle this issue, the 

proposed DER tariff is designed to reflect the LSE’s peak periods through event-based charges 

and provide incentives for customers to dispatch DERs in a way that helps the LSE shave the 

peaks. We will evaluate the impacts of three types of DERs: PV, energy storage and demand 

response.  

For each customer, we calculate the annual bills with and without DERs. The differences 

between the two amounts give us the annual saving achieved by the DERs. We divide the savings 

by the installed capacity of the DERs to normalize the annual saving into “saving per kW 

capacity”. The equations below show how these savings are calculated: 

/  /  ( ) /w o DER w DER DER

ene ene ene ratingS B B P                                    (4.21) 

/  /  ( ) /w o DER w DER DER

cap cap cap ratingS B B P                                         (4.22) 

/  /  ( ) /w o DER w DER DER

trans trans trans ratingS B B P                                      (4.23) 

Given a customer with DERs, we can calculate its annual bills based on the current tariff with 

and without DERs which helps us get the “saving per kW capacity” based on the current tariff. 

Similarly, we also calculate the “saving per kW capacity” based on the kWh design and kW design 

of the DER tariffs. In the following case study, the term “saving per kW capacity” will be 

frequency mentioned as we gauge the savings of energy, capacity and transmission under different 

tariffs may help us evaluate the effects of DER tariffs on customers.  
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On the other hand, we aggregate the customers’ demand profiles, with and without DERs to 

analyze the system level impacts of DERs on the LSE. DERs alter LSE’s aggregated loads and 

result in the LSE paying less on the wholesale markets for the procurement of energy, capacity 

and transmission.  

 

4.5.1 The impact of DER tariffs on PV 

PV is generally considered to be a non-controllable resource because customers cannot 

schedule and dispatch PV. Therefore, applying different tariffs will not change the production of 

PV. In this case study, we assume that the customers install PV with a rated capacity equal to 20% 

of their peak demand. PV production profiles from various locations within the LSE territory are 

extracted from the National Renewable Energy Laboratory’s PVWatts Solar Calculator[121]. We 

use these profiles to represent PV productions.  

From equations (4.21-4.23), we calculate the saving per kW of PV under the three tariffs. 

Figure 4-4 and 4-5 show the per kW capacity and transmission savings under three tariffs: current, 

kWh design and kW design. 
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Figure 4-4: per kW savings of commercial customers under three tariffs (current: left, kWh 

design: middle, kW design: right), DER: PV  tariff component: capacity 

.  
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Figure 4-5: per kW savings of commercial customers under three tariffs (current: left, kWh 

design: middle, kW design: right), DER: PV  tariff component: transmission 

 

From the above figures we observe that for most types of customers the savings under the 

three tariffs are within the same range. For a few types of customers (restaurants, hotels and midrise 

apartments), the kWh tariff reward PV with more savings than the other two tariffs. However, even 

under the kWh tariff, the savings of these customers are still less that the level of savings that other 

types of customers can achieve.  

The reason lies in the demand profiles of these customers. Since customers cannot dispatch 

their PV, two PVs installed by two customers at the same location and with the same configuration 

should have the same production profiles. PV production is directly related to the sunlight. The 

power production peaks around noon and gradually drops to zero towards sunset. Restaurants, 
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hotels and apartments typically have evening peaks, when PV production is less. Thus, PV 

contributes little to a reduction in these customers’ peak demands.  

The per kW savings are smaller when calculated using the current tariff. On the other hand, 

the kWh design applies the same rate during every hour of the events. Many events encompass 

afternoons when the PV production is still considerable. Therefore, the kWh design rewards PV 

with more savings. The kW design calculates the event charge based on the peak of each event. 

For the above three types of customers, their peaks during events are more likely to happen during 

evenings than afternoons, when PV produces some energy. The kW design thus rewards PV less 

than the kWh design. Other customers generally have peaks during working hours, which align 

their production profiles with that of the PV. Therefore, the savings for those customers are 

generally higher.  

Since PV is non-controllable, we can assume that PV production is not affect by tariffs. The 

LSE’s aggregated load profile will therefore be the same regardless of the tariff structure. 

Depending on the penetrations of DERs, the LSE’s “reduced cost per kW” is within the range of 

[$10.43, $11.12] for generation capacity and [$4.85, $5.41] for transmission. The “reduced cost 

per kW capacity” is still lower than the “savings per kW capacity” of most customers.  

Table 4-4 shows the total customer savings under three tariffs (LSE’s lost revenues) and the 

LSE’s reduced costs. In these figures, we have assumed that commercial customers account for 

30% of the LSE’s load and that half of the commercial customers install PV.  

Table 4-4: Summary of financial impacts of PV on the LSE (lost revenues/reduced costs) 

Unit: Million $ Energy Capacity Transmission 

Current 43.53/28.23 7.06/9.15 3.83/6.55 

kWh 41.31/28.23 7.99/9.15 4.38/6.55 

kW 41.31/28.23 7.90/9.15 4.33/6.55 
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This table shows that the amount of lost revenue/reduced costs in the energy component 

outweighs that of capacity and transmission components. Under all three tariffs, the LSE will lose 

money on the energy component. On the other hand, the LSE profits on the capacity and 

transmission components since its reduced costs are higher than the corresponding lost revenues.      

4.5.2 The impact of DER tariffs on energy storage 

Unlike PV, energy storage is dispatchable. Customers who own energy storage can schedule 

its charge/discharge schedule to minimize their electricity bill. The customer demand profile and 

tariff structure are important factors that affect the dispatch of energy storage.  

The current tariff has no uncertainty: customers know well in advance its structure and rates. 

On the other hand, the proposed tariff involves some uncertainty. A customer doesn’t know the 

exact values of energy charge and timing of peak events until the day-ahead when the energy rate 

and the duration of any event for the next day become available to customers so they can schedule 

their energy storages. If we assume that customers can forecast their demand perfectly, they can 

solve a deterministic optimization problem on the day-ahead to schedule their energy storage 

dispatch. 

However, demand forecasts are not perfect. In fact, forecasting the demand profiles of 

commercial customers could be a challenging task. Studies have been conducted to forecast the 

demand profiles of distribution network demand profiles, which is easier to forecast since 

distribution network aggregates demand profiles of many customers. But even for aggregated 

profiles, forecasts are not perfect. In this study, we adapt several methods discussed in the 

study[122] to conduct day-ahead forecasts for commercial customer demand profiles.  

To cope with the uncertainties of customer demand profiles, we rely on the demands forecasts 

generated by methods mentioned in[122] as our forecast scenarios. Then we use a stochastic 
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optimization to help energy storage make dispatch decisions. The stochastic optimization is 

executed once per day at day-ahead and determines the energy storage dispatch schedule for the 

following day: 

24
s ,

1 1

min : ( ) [( ) ]
S

t t t kW kW onpeak s s s

ene chg dsg cap trans dist event

t s

P P B      
 

        (4.24) 

The objective function is to minimize the total cost. In the objective function, the first term is 

the cost from energy charge, where ene is the energy rate at hour t; chgP and dsgP  are the battery 

charging and discharging powers; S is the number of scenarios; s  is the probability of scenario s. 

kW

cap and kW

trans are monthly peak rates of capacity and transmission. s

onpeak is the on-peak demand 

violation of scenario s; dist is the distribution rate; 
s is the monthly peak violation of scenario s. 

Since there is only about 20 events per year, the event-based charges s

eventB are absent during most 

days. In case there is an event on the following day, the customer include the event-based charges

s

eventB into the objective function and dispatch energy storage accordingly. 

max0 t t

chgP P                                                        (4.25) 

max0 (1 )t t

dsgP P                                                 (4.26) 

The above two constraints prevent simultaneously charging and discharging.
maxP is the power 

rating of energy storage.
t  is a binary variable that indicates whether the battery is charging or 

discharging.  

, ,  t s t t onpeak onpeak s onpeak

chg dsg prevL P P D t T                    (4.27) 

,t s t t s

chg dsg prevL P P D                                        (4.28) 

, , 0onpeak s s                                                               (4.29) 
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Constraints (4.27) and (4.28) define the peak demands and peak violations. ,t sL  is the 

forecasted load of scenario s at hour t; onpeak

prevD and prevD define the on-peak peak demand and overall 

peak demand so far. The peak demand over the entire month should not be less than the peak 

demand observed from the beginning of month till so far. s

onpeak and
s are peak demand violations. 

Their values are positive in case the peak demands of the following day are higher than the 

corresponding peak demands so far. If the peak demands of the following day are not higher the 

corresponding peak demands so far, s

onpeak and
s are 0. 

min maxtE E E                                                         (4.30) 

1 /t t t t

chg dsgE E P P                                           (4.31) 

24 0E E                                                                   (4.32) 

Constraint (4.30) forces the energy stored in battery to be between its lower and upper bounds

minE and maxE . Constraint (4.31) relates battery charging and discharging with battery energy. 

Constraint (4.32) ensures that the state of charge at the end of day is the same as that at the 

beginning of day.   

The last term in the objective function
s

eventB only applies when there is an event for the 

following day.
s

eventB may take different forms, depending on the tariff design. 

,( ) ( )
event

s kWh kWh t s t t

event cap trans chg dsg

t T

B L P P 


                   (4.33) 

Based on the kWh design, the event charge is the sum over capacity and transmission rates, 

multiplied by the sum over net demands during the event period. 

( )s kW kW s

event cap trans eventB D                                                  (4.34) 

,  t s t t s

chg dsg event eventL P P D t T                                                                                                    (4.35) 
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Based on the kW design, the event charge is the sum over capacity and transmission rates, 

multiplied by the peak demand during the event period.  

As with PV, we also assume that the power rating of an energy storage device is 20% of its 

owner’s annual peak. The energy to power ratio of energy storage is set at 4, which means 

max4ratingE P  . The upper and lower bounds of energy are 0.95 ratingE and 0.1 ratingE . Charging and 

discharging efficiencies are both assumed to be 0.95.  

Together the stochastic model determines the optimal storage dispatch under various load 

profile scenarios. On the following day, the storage is dispatched according to the schedule made 

at day-ahead.  

We conducted a series of simulations on realistic cases under non-perfect forecasts. We rely 

on the stochastic optimization to generate the energy storage dispatch schedule for the following 

day. On the following day, we apply the storage dispatch to the actual demand to get the net 

demand. Based on the net demand, we calculate the annual bills and therefore the annual savings 

from energy storage. Figure 4-6 shows the annual savings per kW storage capacity for different 

types of customers.  
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Figure 4-6: Annual per kW savings of energy storage under normal forecast 

 

Under the current tariff, customers with sharper peak, such as restaurants, hotels and midrise 

apartments, achieve higher levels of savings than other customers with flatter peaks. The DER 

tariffs help some customers boost their storage savings from all energy, capacity and transmission 

components. To get a closer look at the energy storage savings, we break down the annual savings 

to energy, capacity, transmission and distribution components. Figure 4-7 and 4-8 illustrate the per 

kW savings on capacity and transmission under three tariffs: current, kWh design and kW design. 
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Figure 4-7: per kW savings of commercial customers under three tariffs (current: left, kWh 

design: middle, kW design: right), DER: ES  tariff component: capacity 

 

 

Figure 4-8: per kW savings of commercial customers under three tariffs (current: left, kWh 

design: middle, kW design: right), DER: ES  tariff component: transmission 
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From the above two figures, we observe that for most customers, the savings under the current 

tariff or the kW design tariff outweigh the savings under the kWh tariff. The kWh tariff applies a 

$/kWh rate during each hour of the events, requiring the storage to dispatch throughout the entire 

event. However, the events could reach up to 6 hours but the storage can only discharge at full 

capacity for no more than 4 hours. Therefore, energy storage may not be able to take full advantage 

of the kWh design. On the other hand, the current design and kW design are based on peaks, either 

the monthly peak or the peak during events. Energy storages in this study are better at shaving 

peaks, especially sharp peaks rather than at discharging for many hours. 

Next, let’s evaluate the impact of energy storage on the LSE. The kWh and kW tariffs are 

designed to encourage customers to react during the LSE’s peaks. Here we will evaluate the peak 

reduction effects of energy storage on LSE’s aggregated demand profiles. As in the PV case, we 

assume that the commercial customers account for 30% of the total demand. Among the 

commercial customers, half of them are assumed to install energy storage. These customers 

dispatch their energy storage differently under the three tariffs. There will therefore be three 

aggregated demand profiles corresponding to the three tariffs. For each of the demand profile, we 

sort the 8760 hourly demands in descending order and pick the top 100 hours that represent the 

highest demand over the year. Figure 4-9 shows the peak demands of four cases: no DER, current 

tariff, kWh tariff and kW tariff. 
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Figure 4-9: Top 100 hours of the LSE’s aggregated demand, sorted in descending order 

 

Table 4-5 summarizes the financials impacts of energy storage on the LSE, under the current 

tariff and the two proposed tariffs.  

Table 4-5: Summary of financial impacts of ES on the LSE (lost revenues/reduced costs)   

Unit: Million $ Energy Capacity Transmission 

Current 8.21/3.16 11.60/5.94 6.50/4.26 

kWh 8.58/8.23 12.88/18.11 7.12/12.97 

kW 8.53/8/19 15.96/15.42 8.84/11.04 

 

Compared with PV, energy storage in total does not cause as big a loss of revenue or a 

reduction in costs. Unlike PV, energy storage does not produce energy. Savings in the energy 

component therefore arise from energy arbitrage rather than selling energy. On the other hand, 

energy storage achieves higher customer savings on capacity and transmission components (lost 

revenues) since they can be dispatched for demand charge management purposes.  

Speaking of the energy component, the LSE is financially balanced under the kWh and kW 

tariffs. These two tariffs transmit wholesale level energy prices to customers. However, under the 
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current tariff the LSE’s lost revenue in the energy component is much larger than its cost reduction. 

This happens because the energy component of the current tariff is decoupled from the day-ahead 

LMP that the LSE pays to the wholesale energy market.  

Under the current tariff, the LSE will also suffer losses in the capacity and transmission 

components. As mentioned in the previous study, the demand charge structure of the current tariff 

does not provide any information about the LSE’s demand profiles and peak hours. In contrast, 

the event-based tariffs, both the kWh and kW design, convey peak hour information to the 

customers through event-based charges. The customers thus can help the LSE reduce its peaks 

because they are economically encouraged to discharge their energy storage during event hours. 

In the kWh design, the LSE benefits on both the capacity and transmission components. In the kW 

design, the LSE is almost neutral on the capacity component and saves on the transmission 

component. In addition, under the proposed two tariffs the total customer savings in capacity and 

transmission components are higher, compared with the total customer savings under the current 

tariff. Therefore, both customers and the LSE have an economic incentive to switch from the 

current tariff to the proposed DER tariff.  

4.5.3 The impact of DER tariffs on demand response 

Like energy storage, demand response is dispatchable. Customers can modulate the settings of 

their appliances to alter their demand profiles and reduce their electricity bills. Therefore, different 

tariff designs may result in different reactions from the customers.  

In the case study, we consider two types of demand response: an event-based type and a long-

term demand shape modification type. The event-based DR is dispatched about 20 times per year. 

Under the current tariff, the event-based DR is dispatched twice per month. The two events 

correspond to the two days with highest demands over the month. Each event is 4 hours long. 
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Under the DER tariffs, the events are defined according to the system level peaks. The duration of 

these events ranges from 3 to 6 hours. Overall, a customer with event-based DR is expected to 

dispatch its load around 20 times annually, for a total of around 100 hours per year.  

The demand shape modification type modifies the settings of appliances more constantly. We 

apply the demand response strategies to customers every weekday. Under the current tariff, 

customers modify their demand shapes to reduce their own daily peaks. DR is dispatched during 

a few hours when the customers’ demand approaches their daily peak. Under the DER tariffs, 

customer dispatch their DR in the same manner on non-event days. However, on event days, the 

schedules of DR are overridden by and DR are dispatched based on events. 

Due to safety reasons, hospital and outpatient facilities are excluded from the demand 

response analysis. We consider the remaining 14 types of customers to provide demand response. 

The DR strategy involves dimming lights and altering the HVAC temperature set-points. The 

event-based DR dims the lighting to two thirds of its baseline level and increases the temperature 

set-point two Celsius degrees higher (in summer) or lower (in winter). The demand drop sharply 

when this type of DR is dispatched. Though occasionally sharply reducing demand might be 

acceptable, deploying the same strategy every day makes customers uncomfortable, so the second 

type DR only dims lighting to 90 percent of its baseline level and changes the temperature set-

point by only one degree Celsius. These demand response strategies have been tested by Lawrence 

Berkeley National Laboratory[123]. We alter the settings in EnergyPlus input files, then execute 

EnergyPlus to get the building demand profiles with demand response. 

Figure 4-10 and 4-11 illustrate the per kW savings under three tariffs: current, kWh design 

and kW design. Figure 4-10 shows the savings of event-based DR. Figure 4-11 shows the savings 

of demand shape modification type DR.  



 

 

90 

 

Figure 4-10: per kW savings of commercial customers under three tariffs (current: left, kWh 

design: middle, kW design: right), DER: event DR 

Figure 4-11: per kW savings of commercial customers under three tariffs (current: left, kWh 

design: middle, kW design: right), DER: demand shape modification DR 
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From figure 4-10, we observe that under the DER tariffs demand response achieve more 

savings in capacity and transmission categories. According to the DER tariffs, customers dispatch 

their demand response resources only during events. The event-based charges of the DER tariffs 

are considerable, so customers can achieve significantly larger savings. In contrast, under the 

current tariff the demand charges are based on the monthly peak demands. With demand response 

dispatched twice per month customers manage to shave the peaks demand of the highest and 

second highest demand days. Therefore, the savings come from the difference between the 

monthly peak and the peak demand of the third highest day. Based on the commercial customer 

profiles that we have; the differences are not significant for some customers. In the energy 

category, the difference between savings under current tariff and under DER tariffs are less 

considerable.   

Compared with the event-based DR, load shape modification dispatches the DR resources 

much more often. Therefore, the annual savings of load shape modification DR are much higher 

than the savings of event-based DR, especially the savings in energy payments. For most 

customers, their savings in energy payments under the three tariffs are about the same. Under the 

DER tariff, savings on capacity and transmission come from two sources: customer peak shaving 

and system peak shaving. Therefore, customers achieve higher levels of savings in capacity and 

transmission payments under DER tariffs.  

To summarize the impacts of demand response on the LSE, Table 4-6 and 4-7 list the lost 

revenues and reduced costs of the LSE under event-based and load shape modification DR 

respectively.  
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Table 4-6: Summary of financial impacts of event-based DR on the LSE 

Lost Revenues/Reduced Costs (Million $) 

 Energy Capacity Transmission 

Current 2.59/1.84 2.58/0.30 1.47/0.21 

kWh 3.12/1.70 3.99/6.12 2.22/3.97 

kW 3.09/1.70 4.09/6.12 2.28/3.97 

 

Table 4-7: Summary of financial impacts of load shape modification DR on the LSE 

Lost Revenues/Reduced Costs (Million $) 

 Energy Capacity Transmission 

Current 26.67/18.68 7.06/2.93 4.81/1.81 

kWh 26.47/18.14 9.85/11.78 7.43/8.44 

kW 26.43/18.14 9.58/11.78 7.30/8.44 

 

From Table 4-6 we observe that the LSE’s lost revenues outweigh its reduced costs in energy 

component. The reason is that the energy components of the current tariff and of the two proposed 

DER tariffs are higher compared with the day-ahead LMP. The DER tariffs distinguish themselves 

from the current tariff in capacity and transmission components. Under the current tariff, customers 

can achieve certain levels of demand charge savings. But customers’ peaks usually do not coincide 

with LSE’s peaks, so their dispatch of demand response contribute little to shave LSE’s peaks. In 

contrast, under the DER tariff, customer dispatch demand response resources during events, which 

effectively helps the LSE reduce its payments for capacity and transmission services. Under the 

DER tariffs, customers enjoy more demand charge savings and the LSE reduces its costs for 

capacity and transmission.  

Load shape modification DR are dispatched more frequently. Therefore, customer savings 

and the LSE’s reduced costs are higher. Since average energy rates are higher than average day-

ahead LMP, we still observe the situation that the LSE’s lost revenues outweigh its reduced costs 

in the energy component. Considering the demand charge component, the customers achieve 

higher savings under the DER tariffs. The LSE’s lost revenues are greater than its reduced costs 
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under the current tariff. In contrast, the LSE’s lost revenues are less than its reduced costs under 

the DER tariffs. In conclusion, both customers and the LSE should favor the DER tariffs.  

4.6 DISCUSSION 

In the previous sections, we have designed two types of DER tariffs. These two DER tariffs apply 

a dynamic energy component and a combination of monthly peak and event-based charges for 

demand components. The DER tariffs transmit the system level demand profile and pricing 

information to end-use customers. By doing so, the LSE provides financial incentives for 

customers to dispatch their DERs and shave system level peak demands.  

We formulated optimization models to determine the rates of the DER tariffs. These rates are 

chosen to ensure that the annual bills of most customers under the DER tariffs are in the range of 

97% to 103% of their annual bills under the current tariffs. In the case study, customers can install 

either PV, storage or demand response as their DERs. We break down the savings of DERs into 

their energy, capacity and transmission components. To compare savings from different customers 

with different DERs, we adopt the “annual savings ($) per kW DERs capacity” as our metric.  

In the case study, we analyze customer savings from three types of DERs: PV, energy storage 

and demand response. Considering the savings from PV, most customers have roughly the same 

annual savings per KW under these three tariffs. A few types of customers with evening peaks 

have the highest savings under the kWh design.  For energy storage, we developed a storage 

scheduling model that takes the demand forecast uncertainty into account. The savings under the 

kW design outweigh the other two tariffs for most customers. Under the kWh design tariff, savings 

for evening-peak customers tend to be less than savings under the other two tariffs. However, 

savings for afternoon-peak customers under the kW and kWh tariffs are about the same, and both 

are higher than the savings under the current tariff. We evaluate two types of demand response in 
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the case study: event-based DR and load shape modification DR. The event-based DR dispatches 

about 20 times per year while the load shape modification DR dispatches every weekday. For most 

customers, no matter which type of DR is chosen, their savings under the two DER tariffs outweigh 

the corresponding savings under the current tariff. Overall, the kW and kWh tariffs generally give 

DERs more savings, compared with the current tariff.  

From the perspective of the LSE, the impact of DERs is twofold: on the one hand, customers 

use DERs to help then save on their electricity bills, which translates into the LSE’s lost revenues; 

on the other hand, the LSE’s demand profile changes because of DERs, which helps the LSE 

reduce its costs of purchasing from the wholesale markets for energy, capacity and transmission. 

In the case study we aggregate the individual customers and analyze their system level impacts. 

Considering the impacts of PV, the LSE’s lost revenues outweigh its reduced costs in energy, 

under all three tariffs. In capacity and transmission components, the LSE’s lost revenues are less 

than its reduced costs. PV is not dispatchable, so designing DER tariffs cannot encourage 

customers to change their PV outputs. Speaking of energy storage, under the current tariff the LSE 

suffers losses in all three categories: energy, capacity and transmission. In contrast, under the two 

DER tariffs the LSE is neutral on energy and enjoys profits in capacity and transmission. Similar 

results can be found when we switch from storage to demand response: the LSE suffers losses in 

all three categories under the current tariff, but achieves savings in capacity and transmission 

categories under the two DER tariffs. 

Overall, compared with the current tariff, both customers and the LSE can achieve higher 

savings/less losses under the two DER tariffs. The DER tariffs are thus better for both customers 

and the LSE. 
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In the two DER tariffs we developed, one tariff charges customers a $/kWh charge during 

each hour of every events, the other tariff charges customers a $/kW charge for the peak hourly 

demand of every event. To determine the rates of event-based charges, the LSE needs to determine 

the total annual event hours (kWh tariff) or the total number of events (kW tariff) a year ahead. 

Determining the number of events/event durations is an interesting research question. Too few 

events might not help the LSE effectively shave its peak demand. In addition, the price during 

events might become so volatile that it distorts customers’ normal operation. On the other hand, 

too many events might require the customers to react very often. For customer with energy storage, 

more dispatch means more battery degradation costs. For demand response, too many events will 

affect customers’ comfort levels. Keeping the cost recovery ratio fixed, increasing the number of 

events (total hours) also means reducing the $/kWh and $/kW rates. The decrease in event-based 

rates discourages customers from dispatching their DERs.    

In the case study, we analyze the financial impacts of DERs on a single LSE. This methods 

of tariff determination and analysis of financial impacts on customers and the LSEs can also be 

applied to other test cases. 

4.7 CONCLUSION 

This research focuses on designing novel DER tariffs for commercial and industrial 

customers. Currently most tariffs for C&I customers are binomial with a time-of-use $/kWh energy 

charge and a $/kW demand charge based on customer’s monthly peak demand. The study 

described in the previous chapters showed that DERs help customers save more on capacity and 

transmission charges, than their contributions to the LSE in reducing its payments for capacity and 

transmission. To address this issue, we design two DER tariffs with dynamic energy charges and 
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a mixture of event-based and monthly peak demand charges. The proposed tariffs transmits the 

system level demand conditions to end-use customers. 

Case studies on customer savings and LSE impacts are conducted. We analyze three cases in 

which customers install PV, storage and demand response separately. Comparing the current tariffs 

with two DER tariffs, we find that customers achieve higher levels of savings in capacity and 

transmission components under DER tariffs. In addition, the LSE reduces more costs than its lost 

revenues under the DER tariffs, providing the LSE financial incentives to switch to DER tariffs 

from the current tariff.  

Future research could focus on customizing the DER tariffs for different DERs. For example, 

since PV are non-dispatchable, designing a tariff specific for PV might better reflect the impacts 

of PV on the LSE and system level participants. Another interesting research direction is the 

distribution charge component. Due to lack of available data, this research does not investigate the 

design of the distribution charge component. However, notifying end-use customers about the 

distribution system conditions through tariffs could also boost DERs savings and at the same time 

reduce or defer distribution system investment and upgrade costs.    
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Chapter 5. OPTIMAL SCHEDULING OF ENERGY STORAGE 

UNDER FORECAST UNCERTAINTIES 

5.1 BACKGROUND 

The last two studies focus on the analysis of tariff based methods. In this chapter, we will switch 

our research on avoided-cost based methods. In this study, we stand from the perspective of load 

serving entity which owns DERs and directly interacts with wholesale level parties. The allocation 

of benefits becomes trivial since the DERs can be directly rewarded from wholesale 

markets/services. This study aims to maximize the total benefits harnessed from multiple streams 

of benefits.  

Energy storage is attracting considerable interest as an enabling technology for integrating 

variable renewable generation into the grid, addressing grid reliability challenges, and increasing 

the utilization of the existing infrastructure. The declining cost of battery energy storage systems 

makes them an increasingly attractive option for these purposes. Some analysts and vendors 

project that the costs of battery systems will drop to approximately $350/kWh by 2020[100].  

Swierczynski et al.[101] choose the suitable energy storage technology to integrate with wind 

power and provide frequency regulation service. In this work, the revenue from frequency 

regulation only accounts for part of the total revenue. Part of the storage capacity is allocated for 

energy arbitrage, peak shaving and deviation minimization purposes. 

Peak shaving provides another stream of benefit. Many papers have covered scheduling of 

energy storage to shave customers’ peak demands. Alam et al.[102] provide a method to utilize 

electric vehicle battery to shave peak demands of household level customers. Wang et al.[103] 

provide novel photovoltaic and load forecasting algorithms and dispatch energy storage to 

minimize customer energy and demand charges based on the forecasts. Distribution network load 
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forecasts are more accurate than household customer load forecasts. With less uncertainty, energy 

storage peak shaving performance for distribution network’s aggregated loads could be better than 

for individual customers. In addition, since customers pay their demand charge based on monthly 

peak load, scheduling energy storage to shave the peak load over the entire month is difficult. On 

the other hand, LSEs settle their peak demand charge daily, which shortens peak shaving horizon 

to just one day.  

The bulk of an LSE’s energy purchases are in the day-ahead energy market. LSEs forecast 

hourly customer loads and submit the forecasts as load bids in the day-ahead market. The 

difference between the actual loads and the quantity acquired on the day ahead is settled in the 

real-time energy market. Since the real-time energy market is highly volatile, a risk averse LSE 

would prefer that its actual loads be as close to the day-ahead bids as possible. However, renewable 

portfolio standards (RPS) have been widely adopted[104]. The increasing penetration of 

intermittent renewable energy may pose challenges with respect to the adequacy of ancillary 

services. Considerable penetration of renewable resources may require additional ancillary service 

resources whose costs are eventually passed to the LSE. To reduce reserve capacity requirements, 

references[51] and[52] develop risk-limited energy storage dispatch models that facilitate power 

balancing. In summary, the LSE has good economic reasons to reduce the deviations between its 

actual load and its day-ahead bids. Perez et al.[105] schedule energy storage to coordinate with 

photovoltaic that manage the power deviations with regard to the commitments made in the daily 

and intraday electricity markets, with the objective of reducing economic penalties. We also 

consider other benefits in order to maximize the total storage revenue. The multiple streams of 

benefits result in different dispatch strategies and more revenues. 
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We assume that the LSE owns a three-phase distributed energy storage system connected to 

a node in one of its distribution networks. Roberts and Sandberg[106] provides some 

characteristics of distributed energy storage including common energy and capacity ratings. We 

further assume that the network has a substantial photovoltaic (PV) penetration and propose an 

optimal energy storage scheduling method that takes into account simultaneously energy arbitrage, 

regulation service, peak shaving and forecast deviation minimization benefits. By combining these 

benefits, the energy storage produces higher total revenues. The strategy developed in this study 

provides a short-term optimal schedule that spans 24 hours and repeats on a daily basis.  

The main contribution of this chapter is optimally segment energy storage capacity day-ahead 

for regulation and other benefits to maximize the total revenue. Case studies suggests the 

regulation services account for about half of the revenue. Peak shaving and deviation minimization 

account for the other half of benefits. Energy-arbitrage benefit is negligible compared with the 

other three streams of benefits. 

5.2 FORMULATION 

PV generation in the distribution network reduces the amount of energy that LSEs have to 

purchase in the day-ahead market. However, day-ahead solar forecasts can easily have mean 

absolute percentage errors of 15%-20% or even higher, especially during cloudy or rainy days.  

Since shorter forecast horizons have a significantly better accuracy, we design a two-stage 

scheduling formulation for optimal storage schedule.  This formulation consists of a day-ahead 

optimization and a series of real-time optimizations. The day-ahead optimization determines the 

hourly bids schedule for the day-ahead energy market and creates preliminary storage dispatch 

schedules, which are updated by the hourly (or real-time) optimizations based on more accurate 

forecasts, as illustrated on Figure 5-1.  
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Figure 5-1: Timeline of the proposed two-stage optimization 

Next, we present a day-ahead stage problem formulation without frequency regulation and 

another that takes the provision of frequency regulation services into account. We then present the 

formulation of the problem to be solved at the real-time stage. 

5.2.1 Day-ahead model without frequency regulation 

The LSE submits its hourly aggregated load bids t

fD  to the day-ahead energy market. For each 

hour t, the aggregated load combines all nodal loads with the outputs of photovoltaic generation 

and the inputs or outputs of energy storage. Ideally storage should contribute to minimizing the 

deviation between LSE’s actual load and its day-ahead bid. Since forecasts of prices, loads and PV 

generation are not perfectly accurate, we capture the forecast uncertainties by introducing S1 

scenarios of prices, loads and solar generation to represent the set of possible realizations.  

For the first formulation, the objective function of the day-ahead stage problem is: 
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 Equation Chapter 5 Section 1 (5.1) 

The first term in objective function is the energy charge, the second term is the demand charge 

and the third term is the penalty cost for deviations. The objective function is the weighted average 

over S1 scenarios.
s is the probability of scenario s.

,s t

DA  is the day-ahead energy price of scenario 
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s at hour t. d is the unit price of the demand charge, which combines the charges for generation 

capacity and transmission services. dev is the price of deviation, which is based on the difference 

between the load ,s tD and its day-ahead bids t

fD . ,s tD is the net aggregated load of scenario s at hour 

t. t

fD is the LSE’s day-ahead energy bid at hour t.
max

sD is the daily peak load of scenario s. 

1

,1 ,2 ,24
max , ..., ) max(s s s sD D s SD D                      (5.2) 

Constraints (5.3) and (5.4) are the power flow balance equations for nodes without energy 

storage and the nodes where energy storage is located, respectively. 
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,s t

ij is the three-phase complex power flowing from node i to j, if i and j are connected. ,s t

jI is 

the nodal injection at node j. This injection includes the demand and the PV generation at that 

node.    

, , , ,
1( )  ,s t s t s t H s t H

j i ij ij ij ijv v S z z S s S t T                                                                                  (5.5) 

min , max
1( )  ,s t

jv diag v v s S t T                          (5.6) 

Equation (5.5) calculates the voltage drop across line i to j. Equation (5.6) sets upper and 

lower bounds on the nodal voltages. ,s t

jv  is a 3x1 complex vector of three phase voltages for 

scenario s at node j and hour t. 
, , ,( )s t s t s t H

j j jv V V is a 3x3 matrix. 
,s t

ijS is a 3x3 line power matrix 

approximation of the three-by-one single phase power ,s t
ij , , ,( )s t s t

ij ijS diag   where is a matrix 

of approximation parameters.  

, , 1 , ,
1  / ,s t s t chg s t s t dsg

chg dsgSOC SOC P P s S t T                                                                      (5.7) 
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min , max
1 ,s tSOC SOC SOC s S t T                         (5.8) 

, , max
10  ,s t s t

chgu P P s S t T                                (5.9) 

, , max
10 (1 )  ,s t s t

dsgu P P s S t T                          (5.10) 

, ,0
1 s T sSOC SOC s S                                         (5.11) 

Equations (5.7) – (5.11) enforce the constraints on the energy storage. Equation (5.7) 

describes the evolution of the State of Charge (SoC) from hour t-1 to t. 
chg and

dsg are the 

charging and discharging efficiencies. ,s t

chgP and ,s t

dsgP are the charging and discharging powers.
,s tu is 

a binary decision variable that prevents simultaneously charging and discharging. Equation (5.8) 

constrains the SoC during each interval and for each scenario to remain within the storage’s lower 

and upper bounds. Equations (5.9) and (5.10) define the minimum and maximum 

charging/discharging powers. Equation (5.11) forces the SoC after the last interval to be equal to 

the SoC at the beginning of day. 

, ,
1( ) ,s t s t

subD real s S t T


                                               (5.12) 

Equation (5.12) defines the net aggregated loads as the summation of three phase real power 

at the substation node. The net aggregated load combines the nodal loads, the photovoltaic 

generation and the energy storage outputs across the network, downstream from the substation. 

The day-ahead stage optimization determines the hourly aggregated power bids t

fD . At the 

real-time stage, energy storage is dispatched to minimize the deviation between the realized net 

aggregated demand and its corresponding day-ahead bid t

fD . Although the demand charge and 

deviation charge are settled at the real-time stage, they are still included in the day-ahead model, 
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because ignoring them distorts the hourly energy bids, which in turn affects the real-time 

optimizations.      

5.2.2 Day-ahead model without frequency regulation 

The above formulation considers energy arbitrage, peak shaving and deviation minimization 

benefits. In this section we integrate frequency regulation benefit into the day-ahead model. To 

comply with the regulation market structure, the LSE needs to decide its hourly bidding capacity 

(in kW or MW) on the day ahead. The next day, the capacity settled in the regulation market 

follows the dispatch signal sent by the ISO. The remaining battery capacity is dispatched for other 

benefits.  

To take the regulation benefit into account at the day-head stage, the LSE must determine the 

hourly energy storage capacities that it bids into the regulation market for the next day. Thus, the 

day-ahead stage objective function is modified as follows: 
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                 (5.13) 

The first three terms are similar to those in Equation (5.1): day-ahead energy market 

payments, demand payments and deviation payments. The last term represents the revenue from 

providing regulation service. ,

t

reg s is the hourly price of regulation for scenario s at hour t. 
t

regC is 

the hourly storage capacity bid into the regulation market.   

Equations (5.7), (5.9) and (5.10) must be modified because part of the storage capacity is 

reserved for the provision of regulation service. The rest equations are the same as in the previous 

model. 
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, , 1 , , ,
1C   / ,s t s t chg s t s t dsg s t t

regchg dsg RSOC SOC P P s S t T                                                 (5.14) 

, . max
10  ,s t s t t

regchgu P P C s S t T                         (5.15) 

, , max
10 (1 )  ,s t s t t

regdsgu P P C s S t T                           (5.16) 

Equation (5.14) adds an additional term that represents the impact of providing regulation on 

the SoC. The parameter ,s tR  is the time integral over the 1-hour regulation signal divided by 1 

hour. ,s tR multiplied by regulation capacity
t

regC reflects the impact of the regulation signal on the 

battery stage of charge. Since a portion of the energy storage capacity is reserved for regulation 

service, the available capacity for other services is reduced. Equations (5.15) and (5.16) limit the 

charging and discharging power to the total capacity minus the capacity reserved for regulation.  

5.2.3 Real-time stage 

At the real-time stage, the proposed approach applies model predictive control, for a series of 

receding horizon optimizations. An optimization is executed at each hour with updated forecasts 

ranging from current hour
cT to the 24th hour. Although every optimization provides energy 

storage trajectories from
cT to the end of the day, only the energy storage dispatch for the current 

hour is implemented. Storage dispatches for future hours are determined by subsequent 

optimizations. The objective of each real-time optimization is: 
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cT represents the end of an hourly interval, e.g. 5cT   represents the interval from 4:00 am 

till 5:00 am. For every cT , the first two terms in (5.17) are real-time energy charge and deviation 

charge for the current hour. For the current hour cT , we determine the battery dispatch cT

chgP  and cT

dsgP  

.
, cs T

RT  is the real-time energy price of scenario s at hour cT .  

The third, fourth and fifth terms represent the energy, demand and deviation charges from 

hour 1cT   to the last hour. To address forecast uncertainties, S2 scenarios with probabilities s are 

chosen for each real-time stage optimization to represent possible realizations of load and solar 

generation from hour cT to the last hour. The expected demand charge in the objective function is 

calculated based on either the maximum realized load so far,
max

cT
D or the expected peak demands

max,
cT

futureD of scenario s.  

, ,1 2

max max( , ... )c cs T s T
D D D D                                                                                                        (5.18) 

, 1 , 2 ,
max, ,. ..,max( )c cs T s Ts s T

futureD D D D
                           (5.19) 

Real-time stage constraints are similar to the day-ahead stage constraints, but with some 

differences: 1) each optimization starts from the current hour cT and extends until the 24th hour T, 

instead of the entire 24-hour period; 2) the S2 scenarios are updated hourly and are thus different 

from previous real-time forecasts and day-ahead forecasts. 

Each real-time optimization settles the hourly transaction in the real-time energy market for 

the current hour. The deviation charge for that hour is also calculated. After the last hour, the 

hourly real-time energy charges and the deviation charges are summed over all 24 hours and the 

demand charge is determined based on the actual peak demand. 
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5.3 CASE STUDY 

After introducing the data used for this case study (i.e. network configurations, PV and ES ratings, 

energy and frequency regulation prices and PV forecasts), we illustrate the effectiveness of the 

proposed two-stage approach. We then compare the benefits that can be achieved with and without 

frequency regulation services.  

5.3.1 Data 

This case study is based on the IEEE 37 node distribution test feeder. Figure 5-2 shows the 

topology of this test feeder, the locations of the PV generation and of the energy storage system. 

An energy storage system of 50kW per phase (150kW total) is located at node 702, which is close 

to the substation. Energy/power ratios of 1h, 2h, 3h, 4h and 5h are compared. PV accounts for 

about 30 percent of the peak load. Table 5-1 lists the size of the PV installations at 13 nodes across 

the network. 
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Figure 5-2: Topology of the distribution network and location of energy storage 

 

 

 

 

Table 5-1: Some parameters for the two-stage model 

DER Type Node Ratings (kW) 

  Phase A Phase B Phase C 
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PV 702 30 30 30 

PV 711 0 0 50 

PV 713 0 0 40 

PV 714 20 0 0 

PV 720 30 30 30 

PV 722 0 10 10 

PV 728 20 20 20 

PV 730 20 20 20 

PV 731 0 30 0 

PV 733 30 30 0 

PV 735 0 0 40 

PV 737 50 0 0 

PV 742 0 40 0 

ES 702 50 50 50 

The day-ahead and real-time price data are from PJM. Load forecast scenarios are generated 

from metered house-level load data extracted from the Pecan Street database[107]. Solar forecast 

scenarios are based on the one-minute resolution solar irradiance data is from NREL[108]. We 

adapt the ARIMA model in[109] to forecast locational marginal prices. The ARIMA model is 

selected for load forecasting, which yield comparable results as reference[11]. The Neural 

Network algorithm in[110] is picked up for photovoltaic power forecasting. We selected 122 days 

of data (June 1st to September 30th) for our case study. 20 day-ahead scenarios and 20 hourly-

updated real-time scenarios of price, load and solar forecasts are conducted via the above-

mentioned algorithms for each day based on historical data. The day-ahead forecast scenarios are 

statistically less accurate than the real-time forecast scenarios. Perturbations are included in the 

real-time solar irradiance realization to mimic unexpected solar irradiance variations. For example, 

the realized solar irradiance may suddenly drop to zero because of clouds moving in, which is not 

expected from solar forecasts made in previous hours. We also occasionally boost the real-time 

price to simulate the price spikes observed in our real-time locational marginal price data.   

PJM publishes clearing prices for capacity markets, as well as rates for transmission services. 

The price of deviation is assumed to be a fixed rate of 0.05$/kWh. 
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122 rounds of simulations representing 122 days were performed to analyze how the streams 

of benefits are affected by various parameters. Each simulation consists of the following set of 

parameters: S1 load and solar forecast scenarios at the day-ahead stage; 24 sets of real-time 

forecasts with horizons ranging from 24 hours to 1 hour, each set contains 20 scenarios. The S2 

scenarios of hour cT resemble the forecast scenarios made at hour 1cT  with probabilistic 

perturbations to simulate sudden changes in solar irradiance and random noise added to represent 

forecast inaccuracies. 

5.3.2 The effectiveness of the two-stage model 

In this section, we consider the day-ahead formulation without regulation services. The wholesale 

day-ahead energy market requires the LSE to submit its hourly energy bid t

fD , which we determine 

using our day-ahead formulation. Fig. 4.3 shows the hourly energy bids t

fD , the solar outputs 

scenarios and the battery SoC trajectories under different scenarios for a typical day and a 3-hour 

battery energy/power ratio. 

The hourly bids start to decrease from around 7 am when the solar power outputs begin to 

increase. In the afternoon the energy bids increase as solar irradiance declines. The daily peak 

demand arrives around 8 pm when the hourly bids reach their peak. The battery starts to charge 

around 5 am because of cheaper energy price. During the day time, the battery discharges to 

compensate for the drops in solar outputs. This ensures that the aggregated load follows the day-

ahead bids and reduces the deviation costs. In the evening the battery discharges for peak shaving. 

Due to the uncertainties on the solar power forecast, it is difficult to determine the battery schedule 

on the day-ahead. This justifies the use of the additional real-time stage optimization. 
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Figure 5-3: Hourly energy bids into the day-ahead energy market (top), solar outputs 

(middle) and battery SoC trajectories under different scenarios (bottom). Day No.45, 3-hour 

energy storage. 

 

The real-time model utilizes the latest forecasts. Compared with earlier forecasts, these 

forecast are generally more accurate, which leads to increased savings from the use of energy 

storage. To quantify these savings, we consider the results from the day-ahead model and several 

real-time models. From each set of results that contains storage dispatch for S1(S2) scenarios, we 

pick the dispatch of the scenario with the highest probability. If we assume that the storage follows 

the most probable scenario dispatch, we can calculate the LSE’s costs for energy, demand and 

deviation. For comparison, we calculate what these costs would be without energy storage. The 

differences between with the cases with storage and the reference case gives the storage benefits. 
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Table 5-2 lists these benefits by category. The columns RT 6h, RT 12h, RT 18h and RT 24h shows 

the storage benefits if the storage follows the dispatch results of the most probable scenario from 

the real-time optimization at 6h, 12h, 18h and 24h.  

 

Table 5-2: Benefits ($) based on storage dispatch solutions of the most probable scenario 

Benefit 

Category 

DA RT  

6h 

RT 

12h 

RT 

18h 

RT 

24h 

Energy 

Arbitrage 

-0.34 1.56 1.34 3.65 4.54 

Peak 

Shaving 

35.00 36.76 36.34 49.40 52.36 

Deviation 0.30 1.67 15.31 27.32 28.70 

Total Benefit 34.96 39.98 52.99 80.37 85.60 

 

Real-time storage schedules that utilize the latest forecast information achieve higher benefits 

compared with the earlier RT and DA schedules, especially in the deviation penalty category. The 

peak shaving benefit also increases with later demand forecasts. The results suggest that by 

adapting the two-stage model and making dispatch decisions every hour, the storage can achieve 

more benefits.  

 

5.3.3 Excluding regulation benefit 

In this section, we adapt the day-ahead model that excludes frequency regulation benefit. 

Different from the last section, we conduct simulations on all 122 days and 5 sizes of batteries. 

After each simulation, the cost of the reference case and the cost with the two-stage optimization 

for each of the energy storage sizes (1h, 2h, 3h, 4h and 5h) are recorded. The differences in cost 

between these 5 energy storage cases and the reference case are the benefits of energy storage.  

Figure 5-4 is a box plot of the daily benefits distribution. The red line in the middle of each 

box is the median, the edges of the box indicate the 25th and 75th percentiles, and the whiskers 
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extend to the 5th and 95th percentiles while the outliers are captured by plus marks. Figure 5-4 

suggests that most of simulations result in significant positive benefits. However, the benefits are 

occasionally negative because sudden changes in demand and solar generation cause the daily peak 

to occur at an unexpected hour when energy storage is dispatched to charge. Instead of being 

shaved, the peak is then increased, leading to a higher demand charge, which outweighs the savings 

from energy arbitrage and deviation minimization. 

 

Figure 5-4: Top: energy storage daily benefits under five different energy ratings; Bottom: 

breakdown of average daily savings according to categories energy 

Under the two-stage model the average total benefits gradually increase from $45 per day for 

a 1-hour energy storage to more than $80 per day for a 5-hour energy storage. Most of the benefits 

come from reduced demand and forecast-deviation charges. The energy storage is dispatched 

primarily for peak shaving and deviation minimization because these two are more lucrative than 
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energy arbitrage. Since the demand and deviation benefits are more closely related to the capacity 

rating than the energy rating, these two benefits saturate for batteries with energy ratings greater 

than 2-hours.  

5.3.4 Including regulation benefit 

In this case, the LSE dispatches the energy storage units according to the model which 

considers simultaneously the energy, demand, deviation and regulation benefits. The regulation 

signal data is extracted with a 2-second resolution from PJM data. The 2-second signals are 

integrated to 1-hour the parameters ,s tR which represent the impact of providing regulation on the 

battery SoC. The format of regulation forecasts is similar to load and solar forecasts: S1 scenarios 

for the day-ahead and S2 scenarios for each hour of the real-time stage.  

The day-ahead model determines not only the hourly energy bids t

fD , but also the hourly 

capacity allocated for regulation. As an example, let us consider storage with a 3-hour energy 

rating and one trial among the 122 rounds of simulations. 

 

Figure 5-5: Top: the price data; Bottom: allocation of energy storage capacity plot. Day 

No.45, 3-hour energy storage 



 

 

114 

 

Figure 5-5 shows the day-ahead, real-time energy prices and frequency regulation prices for 

that specific day on the top subplot.  The bottom subplot shows the allocation of storage capacity. 

The dark-colored bars indicate the capacity allocated for regulation, while the light-colored bars 

are capacities assigned for other benefits. From hour 12 to hour 22, most of the capacity is allocated 

for other benefits. During the rest of day more capacity is allocated for regulation benefits. Hour 

2 is an exception where it is optimal to charge the energy storage for future discharge needs.  

For the 3-hour energy rating storage, Figure 5-6 shows the average hourly savings from peak 

reduction, deviation minimization and regulation over 122 days. From around hour 22 to hour 10 

in the next day, many businesses are not active and the solar irradiance is rather low, which makes 

forecasts of load and solar more accurate. These accurate forecasts result in less uncertainty and 

thus less forecast deviation benefits. The locational marginal prices are relatively flat which makes 

energy arbitrage less profitable. Based on the above analysis, the day-ahead optimization decides 

that for this period of day, most of the capacity should bid into the frequency regulation market, 

which is more lucrative.  
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Figure 5-6: Average hourly savings of 3-hour energy storage 

 

Summer peak demands usually occur during the late afternoon or early evening. Storage can 

provide peak shaving benefits by discharging for just a few hours when the daily peak load is likely 

to happen. During the rest of the day, the dispatch of energy storage has no impact over the daily 

peak demand. Thus, the demand reduction benefits are significant during hours 16 to 22. While 

deviations originate from both load and solar forecast errors, the larger part of these deviations is 

caused by the less accurate solar generation forecasts. Since PV forecasts errors are significant 

only during daylight hours, there is a greater potential for energy storage to minimize deviations 

during that time. The timing of demand and deviation benefits, together with the decrease in 

regulation prices from hours 10 to 22 result in less capacity reserved for regulation service. 

However, during the morning and late evening hours, more capacity is assigned for regulation due 

to increased regulation prices, reduced need for peak shaving and low forecast-deviation.  
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Figure 5-7 compares the average benefits over the 122 simulations, with (right) and without 

(left) regulation benefit. The total benefits with regulation are much higher than if regulation is 

excluded. Regulation accounts more than half of the total benefits for every energy storage size. 

Since the price of regulation is more closely linked to the capacity rating than to the energy rating, 

the latter has little impact on the regulation benefit. Although much of the energy storage capacity 

is reserved to provide regulation, the remaining capacity achieves comparable level of benefits 

through peak shaving and deviation minimization. The energy arbitrage benefits are almost 

negligible whether regulation is included or not.  

 

Figure 5-7: Average total benefits with and without regulation as a function of the energy 

rating of the energy storage 
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5.4 CONCLUSION 

A two-stage, look-ahead optimization model is developed for daily scheduling of energy 

storage in a distribution network with a substantial photovoltaic penetration. The objective is to 

schedule energy storage to maximize the sum of multiple benefits: energy arbitrage, peak shaving, 

deviation minimization and frequency regulation.  

With substantial photovoltaic penetration, the accuracy of solar irradiance forecast is a key 

factor. Day-ahead solar forecasts often yield inaccurate results but these results can be improved 

when real-time forecasts are updated throughout the day. The proposed two-stage model takes 

advantage of these updated forecasts by making a preliminary schedule at the day-ahead stage, 

then updating the schedule using a series of look-ahead optimizations with receding horizons at 

the real-time stage.  

Regulation provides a significant benefit stream. The fast ramping capabilities of energy 

storage makes it ideal for providing regulation service. Results from the case study suggest that 

more than half of the total benefits come from regulation. Although a certain portion of hourly 

capacity is reserved for regulation, the remainder can still be dispatched to achieve peak-shaving 

and deviation minimization, which combined, provide benefits comparable to those achieved when 

the entire capacity is dedicated to non-regulation benefits.  
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Chapter 6. TWO-STAGE OPTIMAL SCHEDULING FOR 

AGGREGATORS OF BATTERIES OWNED BY 

COMMERCIAL CONSUMERS 

6.1 INTRODUCTION 

Case studies from the last chapter suggests that revenues from providing frequency regulation 

account for the majority share of battery’s total revenue. However, the model has only one battery. 

In this chapter, we would like to propose an aggregator model that coordinates multiple batteries 

to provide frequency regulation service. In addition, the owners of the batteries are end-use 

consumers rather than the LSE. Thus, the aggregator considers both consumer level benefits as 

well as frequency regulation benefits. The aggregator model combines the tariff based methods 

with avoided cost based methods.  

From a system perspective, storage facilitates the integration of variable renewable generation 

into the grid, helps address grid reliability challenges, and increases the utilization of the existing 

infrastructure[124]. From the perspective of individual participants in the electricity market place, 

storage can also provide several streams of monetary benefits. In this study, we consider batteries 

installed by end-use commercial consumers who are subject to typical commercial consumer 

tariffs that include $/kWh energy charges and $/kW demand charges. Storage can help these 

consumers reduce their electricity bills through energy arbitrage (i.e. charging the battery when 

the energy rate is lower and discharging it when this rate is higher), and through reducing demand 

charge by discharging the battery to shave the peak load. Besides these activities aimed at cost 

reduction, batteries could also be used to generate revenue by providing system services, such as 

frequency regulation. However, because batteries owned by individual consumers are likely to be 
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too small to participate directly in the provision of frequency regulation services, their dispatches 

need to be coordinated by an aggregator. 

The role of this aggregator is to maximize the sum of the benefits that consumers achieve 

from energy arbitrage, peak shaving and from the provision of frequency regulation. Figure 6-1 

shows how this aggregator serves as an intermediary between the consumers, their load serving 

entity (LSE) and the independent system operator (ISO) running the frequency regulation market. 

 

 

 

Figure 6-1: Interfaces between the consumers, the aggregator and the retail and frequency 

regulation markets  

 

The contributions of this chapter can be summarized as follows:  

• It proposes a method that enables the aggregator to maximize the benefits that consumer-

owned batteries can achieve at the retail level and from participation in the system level frequency 

regulation market 

• The model formulation adapts a two-stage approach. On the day-ahead, the aggregator 

determines energy consumption trajectories that minimize energy and demand charges, and the 
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spare battery capacity that can be bid into the frequency regulation market. In real-time, it 

dispatches the batteries to provide regulation while striving to follow the optimal trajectories. 

• The formulation ensures that the real-time stage model can be solved sufficiently fast, even 

under cases that the aggregator coordinates a lot of consumer-owned batteries. 

6.2 LITERATURE REVIEW 

Several papers propose methods for dispatching batteries to maximize consumer benefits, such as 

energy arbitrage under either time-of-use pricing or real-time pricing. Van de Ven et al.[125] 

propose an optimal threshold-structured control policy for consumer-owned energy storage under 

dynamic pricing. The model is formulated as a Markov decision process, hence addressing the 

stochastic nature of demand and prices. Grillo et al.[126] present a method based on Markov 

decision processes that optimally schedules energy storage devices in power distribution networks 

with renewable generation. Erseghe et al.[127] investigate the use of energy storage units to reduce 

the average cost of supplying power. These authors apply dynamic programming to develop an 

optimal control policy for a single battery. They also propose a simple method to extend the 

optimal solution from a single battery to multiple batteries. Harsha and Dahleh[128] propose a 

dynamic programming approach to minimize the long-run cost of electricity and the cost of 

investing in energy storage. Tan et al.[129] study the optimal operation of a distributed battery 

energy storage system for energy arbitrage under dynamic pricing and propose a constrained 

stochastic shortest path model to balance the energy arbitrage benefits and the battery degradation 

cost. 

Peak shaving provides another stream of benefit. Levron and Doron[130] describe an optimal 

peak shaving strategy and derive an analytic design method for attaining optimal peak shaving. 

Oudalov et al.[131] propose an energy storage sizing methodology that maximizes a consumer's 
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economic benefit by reducing the power demand payments. Alam et al.[132] show how an electric 

vehicle battery could be used to shave the peak demand of residential consumers. Wang et al.[133] 

provide novel photovoltaic and load forecasting algorithms and dispatch energy storage to 

minimize consumer energy and demand charges based on these forecasts.  

Several papers consider aggregators that dispatch the batteries of electric vehicles to provide 

regulation services. For example, Vagropoulos and Bakirtzis[134] develop an optimal bidding 

strategy for an electric vehicle aggregator participating in day-ahead energy and regulation 

markets. They also consider price deviations and statistical characteristics of regulation signals in 

their stochastic optimization. In[135], Vagropoulos et al. extend[134] to develop a framework for 

real-time charging management that the aggregator should use to meet day-ahead targets. Each 

vehicle is assigned a weight based on its SoC and departure time. Vehicles with lower weights 

have higher priorities to charge and provide regulation service. Vaya and Andersson[136] study 

the optimal bidding strategy of an electric vehicle aggregator in a day-ahead electricity markets 

and discuss the impact of such an aggregator on market clearing. These authors formulate a bi-

level problem where the upper level problem minimizes the charging cost of the aggregator and 

the lower level clears the market. Donadee and Ilic[137] investigate the application of stochastic 

dynamic programming to determine the charging powers and frequency regulation capacities of 

electric vehicles. Their study accounts for Markov random prices and Markov random regulation 

signals. 

6.3 PROBLEM FORMULATION 

We address this problem by dividing it into a day-ahead stage and a real-time stage. The day-ahead 

stage involves a hybrid of stochastic and robust optimizations to maximize the expected revenue 

for the next day. The values of the decision variables on the day-ahead become key inputs for the 
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real-time stage. This real-time stage involves two steps: a rule-based preprocessor and a snapshot 

optimization. At both stages, we assume that the aggregator is a price taker and that its decisions 

do not affect the market clearing price. 

6.3.1 Day-ahead stage 

At the day-ahead stage, the objective of the aggregator is to minimize the sum of several quantities: 

1) The consumers’ payments for energy and demand charges 

2) Minus the expected revenue from providing frequency regulation services  

3) The cost of purchasing regulation capacity from alternative sources if the aggregator cannot 

meet its obligations using the batteries that it controls 

4) The battery degradation costs.  

To this end, the aggregator gathers demand profile forecasts, electricity tariffs and battery 

characteristics from the consumers and uses scenarios to represent the uncertainty on regulation 

market clearing prices and demand profiles. This optimization is carried out with a granularity of 

15 minutes and a horizon of 24 hours, i.e. 96 time steps. In this study, the aggregator chooses to 

follow the dynamic regulation signal. This regulation signal is assumed to be energy neutral over 

a 15-minute time interval. Since customer’s demand is also metered over 15-minute intervals, 

providing regulation should not impact the metered demand of the consumers nor the SoC of the 

batteries. The decision variables of this optimization problem include the hourly regulation 

capacity bids h

aggB , the target energy level for each battery during each period
,i t

tarE and the peak 

demand target for each consumer max

iD . 

Mathematically, the objective is expressed as follows: 
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                       Equation Chapter 6 Section 1(6.1) 

where W is the set of scenarios, I is the set of consumers, T is the set of 15-minute time 

intervals, H is the set of 24 hours and  is the probability of scenario ω. The first term of this 

objective function is the sum of the energy payments over all consumers, where
,i t

e is the energy 

rate of consumer i’s tariff, 
, ,i t

chgP 
and

, ,i t

dsgP 
are the charging and discharging rates of the battery of 

consumer i for scenario ω during interval t. The second term is the sum of consumers’ demand 

payments, where i
d is the demand rate of consumer i’s tariff, and

max

iD is consumer i’s peak 

demand target. The third term is the revenue from the provision of frequency regulation service, 

where
,h

r

 is the hourly regulation market clearing price under scenario ω, and
h

aggB describes the 

aggregator’s regulation capacity bid for hour h. If the sum of the regulation capacities
, ,i tB 

that can 

be obtained from the consumers’ batteries is less than
h

aggB , the aggregator needs to buy regulation 

capacity from an alternative source
,t

altB
. The fourth term therefore represents the cost of 

purchasing this regulation capacity, where
,h

pen

 is the price of regulation from the alternative 

source, which is set to be several times more expensive than market clearing price
,h

r

 . The last 

term models the cost of battery degradation as a function of the cost of a daily charging/discharging 

cycle
,i

cycleC 
, which is calculated as follows:  
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where i

BC is the battery investment cost and
,( )iDoD  is a function that calculates battery’s 

cycle-life given a cycle’s depth-of-discharge. ,i

cycleC  can be modeled as a quadratic function on the 

depth-of-discharge variable ,iDoD  : 
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, , 

i i
i hi lo

i

Cap

E E
DoD

E
i I

 
  


                                    (6.3) 

, , ,  , ,i i t

hi i I tE E T                                    (6.4) 

 
, , ,  , ,i i t

lo i I tE E T                                      (6.5) 

where Eq. (6.3) defines the Depth of Discharge (DoD) of battery i under scenario ω, as the 

difference between the battery energy peak and the battery energy valley during the day, divided 

by the battery’s energy rating. Equations (6.4) and (6.5) constrain the battery energy peak (resp. 

valley) to be greater (resp. less) or equal than the battery energy at any time interval. The 

degradation cost thus captures the largest cycle during daily operation. This term of the objective 

function makes the problem a quadratically constrained quadratic program.  

 

This optimization is subject to a set of constraints.  

1) The aggregator must ensure that, under each scenario ω and for every time interval t, the sum 

of the consumers’ regulation capacities , ,i tB  plus the regulation capacity from an alternative source

,t

altB
is greater or equal than the capacity that it bid into the market: 

, , ,  ,i t t h

alt agg

i I

B B B t h  


                                   (6.6) 

where , ,i tB  is the battery capacity reserved to provide frequency regulation.   
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2) The charging/discharging power and capacity reserved for regulation are positive: 

, , , , , ,0,  0,  0 , ,i t i t i t

chg dsgP P B i I t T                                                                                  (6.7) 

3) For every battery, the sum of the capacity scheduled for charging or discharging and the capacity 

for provision of regulation service must be less than its power rating: 

, , , ,  , ,i t i t i

chg CapP B P i I t T                            (6.8) 

, , , ,  , ,i t i t i

dsg CapP B P i I t T                             (6.9) 

4) Consumer i’s peak demand target
max
iD is greater or equal than its grid power under any scenario 

for all time periods, where a consumer’s grid power is defined as its consumption
, ,i tD 

 (unknown 

but bounded) plus charging power
, ,i t

chgP 
minus discharging power

, ,i t

dsgP 
: 

, , , , , ,

max  , ,i i t i t i t

chg dsgD D P P i I t T                             (6.10) 

5) Assuming that the consumption
, ,i tD 

can take any value between

, , , , , , , ,[ , ]i t i t i t i t
f f f fD D D D     , where

, ,i t

fD 
is the consumption forecast of scenario and

, ,i t
f

D  is the range of forecast error, we optimize the battery schedule against the worst case 

consumption profile.  

, , , , , , , , , ,i t i t i t i t i t

f f f fD D D D D                                      (6.11) 

6) In addition, the peak demand must be greater than the historical peak demand max,

i

histD  , which 

is the maximum 15-minute interval demand since the beginning of the month till the present day.  

max max,

i i

histD D                                                                  (6.12) 

7) The evolution of the state of charge of the battery is: 

, , , , 1 , , , ,15min
( / )  , ,

1h

i t i t i i t i t i

chg chg dsg dsgE E P P i I t T                                                       (6.13) 
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where , ,i tE  is the energy stored in the battery. The initial state of charge of the battery is: 

, ,0 ,0
min  ,i i i i

tarE E E E i I                           (6.14) 

The day-ahead stage optimization determines the energy target trajectories ,i t
tarE . The scenarios 

represent the uncertainties of regulation price and consumer demand. To ensure that the stored 

energy , ,i tE  under any scenario does not deviate too far from ,i t
tarE , we impose the following 

constraint: 

, , , , +  , ,i t i i t i t i

tar tarE E E E E i I t T                                                                             (6.15) 

where
iE is the range of variation between , ,i tE   and the target ,i t

tarE . In addition, the target 

trajectory of a battery ,i t
tarE is constrained to ensure , ,i tE  lies between the minimum and maximum 

energy ratings: 

,

min max  ,i i i t i i

tarE E E E E i I t T                          (6.16) 

Combining constraints (6.15) and (6.16), , ,i tE  is bounded by the battery minimum and 

maximum energy ratings: 

, ,

min max  , ,i i t iE E E i I t T                          (6.17) 

The difference of target trajectory between any two successive intervals ,i t
tarE and , 1i t

tarE  is 

bounded by the maximum charging and discharging powers: 

, , 1 ,

max max

15min 15min
/

1h 1h

i t i i i t i t i i

tar dsg tar tar chgE P E E P                                                                   (6.18) 

8) Finally, the aggregator needs to make sure that individual consumers are no worse off by 

participating in aggregation than they would be on their own. If a consumer utilizes its battery to 

minimize its own energy charge, demand charge and battery degradation cost and does not 

participate in regulation, its non-cooperative cost
'Ci
is: 
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If this consumer decides to be aggregated and participate in frequency regulation, its share of 

the total cost is ,iC  : 

, , , ,

,

, ,

max

, , ,

15min
C ( )

1h

15min

1h

i i t i t i t

e chg dsg

t

i i

d

h i t

r

h t

i

cycle

h

P P

D

B

C





 

 








 









 
                            (6.20) 

To guarantee that this consumer is no worse off, its share of the cooperative cost should be no 

greater than its non-cooperative cost (which also means the benefit of cooperative is equal or 

greater than the benefit of on its own): 

, '  ,i iC C i I                                                        (6.21) 

6.3.2 Real-time stage 

At the real-time stage, the aggregator carries out the following tasks: 

1) It dispatches the batteries to satisfy its accepted regulation capacity bid
h

aggB and minimizes 

purchases from the alternative source
,t

altB
.  

2) It controls the charging/discharging of batteries to achieve no/minimal violations of the peak 

demand targets
max

iD . 

3) It makes sure that each battery follows its SoC trajectory ,i t
tarE determined at the day-ahead stage 

as closely as possible, hence ensuring the battery can achieve its arbitrage and peak shaving goals. 

The real-time stage involves two steps: 1) a rule-based pre-processing; 2) a real-time 

optimization. Both steps are executed every 15 minutes to determine the charging or discharging 
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rates and the regulation capacity for the next 15-minute interval. To make sure the real-time model 

can be solved sufficiently fast, the horizon of model is just one single time-interval.  

The aim of the rule-based preprocessing step is to prevent batteries from violating their 

minimum or maximum SoC constraints. The maximum and minimum SoCs are defined by 

equation (6.16), ensuring that the battery has enough energy to provide frequency regulation 

services for 15min, even under the most extreme regulation signals. If the SoC of a battery is higher 

than its upper bound, the aggregator forces the battery to discharge at maximum power. 

Conversely, if the SoC is less than the lower limit, the aggregator charges the battery at maximum 

power (or discharge at minimum power) without violating the peak demand target
max

iD . Table 6-

1 summarizes the rules used in this preprocessing step.  

 

Table 6-1: Rule-based real-time preprocessor 

(1): the energy is greater than ,

max

i t i iE E E   
, , ,0,  ,  0i t i t i i t

Capchg dsgP P P B     

(2): the energy is less than ,

min

i t i iE E E   

, 1 max ,

, , 1 ,

max

 : 0,

min( , ),  0

i t i t

f i chg

i t i i t i i t

dsg Cap f

if D D P

P P D D B





 

  
  

, ,
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, ,

: min( , )

0,  0

i t i i i t

chg Cap

i t i t

dsg

else P P D D

P B

 

 
 

 

The charging/discharging rates and regulation capacities of the batteries that are not affected 

by the preprocessing is determined by the real-time optimization, which considers only the next 

15-minute interval and whose objective is: 

2
, 1 , 1

2

min :
i t i t

h t i itar
dev pen alt di

i iCap

E E
B

E
   

 
                     (6.22) 
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Using dev as a penalty factor, the first term penalizes batteries if their stored energy
, 1i t

E


at the 

end of this 15-minute time window would deviate from the target , 1i t

tarE  . The second term is the cost 

of alternative regulation source. The third term is the cost of peak demand violation. i is a slack 

variable that describes violations of the peak demand. If the consumer’s metered demand at the 

next interval does not exceed
max

iD , i is zero. When the demand exceeds the peak demand target

max

iD , i becomes positive and indicates the amount of demand violation (net demand minus
max

iD

). At the end of this interval,
max

iD is updated to reflect the new peak demand
max max

i i iD D   . 

The total regulation capacity of the batteries plus the alternative source should be greater or 

equal than the aggregator’s regulation capacity
h

aggB for the current hour: 

,  i t t h

alt agg

i

B B B t h                                                       (6.23) 

The constraints on the charging/discharging rate and regulation capacities also apply: 

, , ,0,  0,  0 i t i t i t

chg dsgP P B i I                                           (6.24) 

, ,  i t i t i

chg CapP B P i I                                                    (6.25) 

, ,  i t i t i

dsg CapP B P i I                                                   (6.26) 

The energy at the end of this 15-minute interval is: 

, 1 , , , /  i t i t i i t i t i

chg chg dsg dsgE E P P i I                                (6.27) 

The demand over the 15-minute time window should not be greater than max

iD , plus the 

violation i : 

, ,

max

i i t i t i i

RT chg dsgD P P D                                             (6.28) 

0i                                                                              (6.29) 
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where i

RTD represents the real-time metered consumption at the beginning of the 15-minute 

interval, which we assume reflects accurately the consumer’s consumption during the next 15 

minutes.  

6.4 PROBLEM FORMULATION 

6.4.1 Data 

We selected 22 buildings on the campus of the University of Washington to represent 

consumers. These buildings include academic buildings, libraries, dormitories and a gym. We 

assume that a battery controlled by the aggregator has been installed in each building. The capital 

cost of the batteries is set at $500/kWh. The power rating
i

CapP of each battery is set at 20% of its 

building’s annual peak demand, with an energy rating
i

CapE of 4 hours. Table 6-2 summarizes the 

other battery parameters.  

 

Table 6-2: Battery parameters 

max

iE  
min

iE  
iE  

i

chg  
i

dsg  

0.95 i

CapE  0.1 i

CapE  15min i

CapP  0.95 0.95 

 

Regulation prices and regulation signal data are based on actual PJM data. At the real-time 

stage, the batteries dispatched to provide regulation service are assumed to follow the regulation 

signal accurately, giving them perfect performance scores. The regulation price is calculated based 

on the Regulation Market Capability Clearing Price and Regulation Market Performance Clearing 

Price under perfect performance score. The price of regulation from an alternative source
,h

pen

 is 

chosen as 5 times the regulation clearing price
,h

r

 . At the day-ahead stage, 20 scenarios are 

chosen to represent the uncertainties in the regulation market clearing prices and consumer demand 
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profiles. The range of forecast errors
, ,i t

fD  is set at 5% of the forecast value
, ,i t

fD 
. The penalty 

factor for deviation
dev is set at 100. 

The two-stage model is developed on YALMIP integrated in MATLAB, with CPLEX as the 

solver on a desktop with Intel Xeon E3 1220-v, 3.1-GHz CPU and 16 GB RAM. The day-ahead 

stage model takes on average about 120 seconds to complete. Since the real-time stage model is 

deterministic and relatively simple, every round of real-time stage requires less than a second to 

solve. 

6.4.2 Day-ahead stage 

We consider a typical weekday in June, before the summer break, when most of the university 

buildings that house classrooms are occupied during working hours. The consumption profiles of 

these building are similar in that the daily peaks occur around noon. Other buildings (such as the 

dormitories, the library and the gym) have different consumption profiles. Figure 6-2 depicts the 

hourly aggregated consumption of the 22 buildings and the aggregator hourly regulation bids
h

aggB

determined by the day-ahead optimization. 
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Figure 6-2: Hourly aggregated demand profiles and aggregator hourly regulation bids 

 

As this figure shows, the aggregated demand profile peaks around noon. Batteries are 

therefore mostly discharging around that time for peak shaving and do not have much capacity 

available for frequency regulation. Correspondingly, the hourly regulation bids
h

aggB submitted by 

the aggregator are low around noon. These regulation bids are even lower from 1am to 3am when 

most batteries are scheduled to charge because 1) the energy rate is lower at that time; 2) the 

consumer demand profiles are also lower, allowing batteries to charge at higher rates without 

violating their peak demand targets max

iD . 

Figure 6-3 illustrates the battery energy target trajectories. the target trajectories of all 22 

batteries as determined by the day-ahead optimization. For each battery, its energy trajectory is 

divided by its energy rating that normalizes energy to SoC. During the early morning hours, the 

SoCs of most batteries increase rapidly to ensure that they have enough energy for future 
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discharging purposes. From hour 4 to around hour 10, the SoC targets of many batteries stays high 

and flat because their power capacities are assigned to provide regulation. From around hour 11 to 

around hour 18, the SoCs decrease as batteries discharge to shave consumers’ peak demands. From 

around hour 18 to around hour 22, the SoCs remain low and flat because the batteries are again 

participating in frequency regulation.  

 

Figure 6-3: Normalized daily SoC target trajectories of all batteries 

 

Because of the uncertainty on the regulation prices and demands, each battery’s SoC follows 

different trajectories , ,i tE  under different scenarios. Figure 6-4 shows the SoC trajectories of 

battery No.10 for all 20 scenarios, the target trajectory in the middle, and the SoC bounds. The 

constraint (6.15) ensures that all the trajectories remain within the bounds. This suggests a battery 

could have similar charging/discharging profiles under various scenarios of regulation prices and 

uncertain demand profiles. 
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Figure 6-4: The SoC target trajectory (middle dashed line), the SoC upper and lower bands 

(upper and lower dashed lines), and the SoC trajectories under 20 scenarios (colored lines) for 

battery No. 10 

 

6.4.3 Real-time stage 

At the real-time stage, the two-step process is executed every 15 minutes. The realization of 

consumers’ demand profiles may turn out to be different from what was anticipated on the day-

ahead. The real-time stage handles the demand deviations and adjusts the dispatch of the batteries 

accordingly. The model also prevents the SoC of batteries deviate too far away from their targets. 

In addition, the aggregator dispatches the batteries to fulfill the hourly regulation bids.  

Figure 6-5 illustrates the real-time stage for consumer No. 10 over the course of a typical day. 

The top two plots show that the building demand peaks around 3pm., the peak is shaved by 

discharging the battery. In return, the valley from midnight to 5am is filled by the charging of the 

battery. 
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Figure 6-5: Real-time stage for Consumer No.10’s over the course of a typical day. (a) 

Building load (dashed line) and grid power (solid line); (b) battery charging/discharging power; 

(c) battery regulation capacity; (d) battery SoC target (dashed line) and actual SoC (solid line) 

The third plot shows the battery capacity that is used for regulation. Combining the second 

and third plots, we see that the capacity of battery is fully utilized either for energy shifting and 

for regulation during most of the day except for the first few hours after midnight. The fourth plot 

shows that the actual SoC profile follows quite well with the target profile. The difference between 

the target and realized SoCs is due to customer demand forecast errors. These forecast errors alter 

the charging and discharging powers of batteries as well as their capacity contributions to 

frequency regulation. Since the batteries are providing frequency regulation service 
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collaboratively, the forecast error of one consumer may also impact the dispatch of other 

consumers’ batteries.  

The performance of the real-time stage can be assessed by comparing the day-ahead expected 

benefits with the real-time realized benefits. As in the day-ahead objective function (6.1), the 

benefits include energy arbitrage, peak shaving, frequency regulation, from which must be 

subtracted the cost of purchasing frequency regulation from alternative source and the battery 

degradation cost. Table 6-3 compares these various benefits and costs as optimally expected on 

the day-ahead vs. realized in real-time. 

 

Table 6-3: Summary of day-ahead and real-time benefits and costs($) 

 DA RT  DA RT 

Energy 

Arbitrage 
149.89 147.23 

Reg. from 

Alt. Source 
-4.09 -18.97 

Peak 

Shaving 
375.74 373.28 

Battery 

Degradation 
-188.48 -179.23 

Frequency 

Regulation 
850.58 850.58 

Total 
1183.64 1172.89 

The real-time realizations of energy arbitrage and peak shaving benefits are close to their day-

ahead expectations. Different from other cost/benefits, we rely on actual market clearing price to 

calculate frequency regulation benefit, so the day-ahead “expectation” and real-time realization 

should be the same. The deficit in battery regulation capacity is compensated by purchases from 

the alternative regulation source, which increases the overall actual cost compared to the day-ahead 

expected value. Overall, the real-time total benefit is quite close to what had been calculated on 

the day-ahead. 



 

 

137 

6.4.4 Analysis on the penalty of SoC deviation dev  

The penalty factor dev associated with SoC deviations in the real-time objective function 

(6.22) balances consumer cost savings and revenues from frequency regulation. Setting dev too 

high forces the SoC to follow closely the day-ahead target trajectory. Because day-ahead scenarios 

cannot predict the consumer demand perfectly, this restriction on battery SoC (stringent constraint 

on charging/discharging) causes a deficit in regulation capacity and force the aggregator to 

purchase more regulation capacity from the alternative source. On the other hand, choosing dev

too low lets the SoC deviate from the day-ahead target a lot, the benefits from energy arbitrage 

and peak shaving could be reduced. Table 6-4 summarizes the benefits for different values of dev  

Table 6-4: Summary of real-time benefits under different values of dev  

dev  10 100 1000 10000 

Energy 

Arbitrage 
122.12 147.23 148.92 149.11 

Peak 

Shaving 
365.01 373.28 375.74 375.74 

Frequency 

Regulation 
850.58 850.58 850.58 850.58 

Reg. from 

Alt. Source 
0 -18.97 -57.76 -90.19 

Battery 

Degradation 
-167.38 -179.23 -184.23 -188.07 

Total 1170.33 1172.89 1133.25 1097.17 

 

Figure 6-6 illustrates the regulation capacities bought from the alternative source for different 

values of dev . When 10dev  , no capacity from the alternative source is required. As dev increases, 

more and more capacity needs to bought from the alternative source. These purchases are highest 

from 3:00 am until 4:00 am, when most batteries are charging at high power.  



 

 

138 

 

Figure 6-6: Regulation capacities bought from the alternative source with: (a) 10dev  ; (b) 

100dev  ; (c) 1000dev  ; (d) 10000dev   

6.4.5 Performance of the model on different days  

We have described the results of the two-stage model on a single day. Here we examine the 

effectiveness of two-stage model by repeating the solution process on 30 different days with 

different demand profiles and regulation prices.  
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Following the procedures above, we keep dev at 100 and calculate various benefits and costs 

as optimally expected on the day-ahead vs. realized in real-time. The difference between the 

benefit achieved in real-time and its day-ahead expectation is defined as “Realization Error”: 

Real-time Day-aheadRealization Error = Benefit Benefit                                                                     (6.30) 

Figure 6-7 shows the errors of each cost/benefit category: 

 

Figure 6-7: Realization errors for 30 days in each cost/benefit category 

 

Overall, the total errors are relatively small compared with the total benefits. The errors in 

regulation from alternative source and peak shaving all have negative signs, showing that real-

time realizations are a little less than day-ahead expectations. The reduction in benefits is due to 

demand forecast errors.  
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6.4.6 Scalability of the proposed approach 

The results described so far are based on 22 consumers, which is a relatively small number. To 

evaluate the scalability of the proposed method, we consider two additional cases, one with 240 

consumers and a second with 960 consumers. The consumer demand profiles of the two larger test 

cases come from the commercial customer demand profile database of NREL. Table 6-5 lists the 

solution time for the day-ahead and real-time models in the same simulation environment.   

Table 6-5: Solution time for the day-ahead and real-time models 

No. of consumers DA Model Average 

Solution Time (s) 

RT Model Average 

Solution Time (s) 

22 Consumer 120s Less than 1s 

240 Consumer 2132s 3.5s 

960 Consumer 15698s 25.1s 

 

For the case with 960 consumers, the DA model takes more than 4 hours to solve. On the 

other hand, the RT stage, which needs to be solved every 15 minutes, requires considerably less 

computations because it is a deterministic optimization over a single time interval. The simplicity 

of RT stage model enables it be frequently executed.   

6.5 CONCLUSIONS 

In this chapter, we demonstrated a two-stage optimal scheduling method for an aggregator 

dispatching batteries owned by commercial consumers. This optimization combines several 

streams of benefits: consumer level benefits such as energy arbitrage and peak shaving, as well as 

system level benefits like frequency regulation.  

The day-ahead stage maximizes the expected benefits considering uncertainties on regulation 

prices and consumer demand profiles It also considers the battery degradation cost. The real-time 

stage dispatches the batteries to follow the regulation capacity bids, to track the battery state of 
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charge target trajectories and to ensure that the peak demand targets are not violated. Case studies 

demonstrate that this two-stage approach can effectively dispatch batteries to achieve both 

consumer and system level benefits.  
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Chapter 7. CONCLUSIONS, CONTRIBUTION AND FUTURE WORK 

Distributed Energy Resources (DERs) comprise of three types of resources: distributed generation 

(DG), energy storage (ES) and demand response (DR). DERs are different from other resources 

because of their distinctive characteristics: they are located on the demand side and they have some 

flexibility. DERs bring many streams of benefits to different system participants. Various methods 

have been proposed to capture and quantify the benefits DERs bring and distribute them to DERs. 

In general, these methods can be put into two categories: avoided-cost based methods and tariff 

based methods. Both categories have disadvantages: the avoided-cost methods calculate the 

benefits indirectly making it complicated for DERs to be rewarded. The tariff based methods fail 

to represent some benefits while mispresent some other benefits.  

The gaps between the benefits that DERs bring and fair methods to allocate the benefits 

motivate us to explore possibilities to improve the existing methods and develop new algorithms. 

This work evaluates the tariff based methods, avoided-cost based methods and develops methods 

that combine tariff based methods with avoided-cost based methods.  

 First, we analyze the financial impacts that the deployment of DERs by commercial 

customers would have on their LSE if the current tariff structure does not change. The result 

suggests: 

A. The deployment of DERs by commercial customers would reduce the LSE’s revenues by a 

greater amount than its expenses for generation capacity and transmission charges. 

 B. In order for the LSE to accommodate DERs without losing money, the tariffs applied to 

commercial customers need to be redesigned.  

The second part of this work aims to design tariffs for DERs that, compared with the current 

tariff, provide better economic incentives for both DERs customers and the LSE: 
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A. the energy charge component represents the variations in day-ahead locational marginal pricing, 

which betters indicates the time-varying costs of energy production.   

B. the demand charge components are based not only on the customers’ monthly peaks, but also 

on the customer’s demand at hours coincident with the peaks in the LSE’s aggregated demand. 

C. case studies show both DERs customers and the LSE achieve more savings under the proposed 

DERs tariff.  

Next, we switch our focus to the avoided-cost based methods. The third part proposes a model 

that optimally schedules the LSE owned battery energy storage to maximize multiple streams of 

benefits, the result shows: 

A. Because different benefits are present at different hours of the day. The duration of a day can 

be split into several time slots. At each slot, the battery is primarily providing one stream of benefit. 

This increases the utilization of battery energy storage. 

B. Frequency regulation benefit outweigh other benefits and accounts for the majority of battery 

revenue.  

Frequency regulation benefit is difficult to integrate into the tariff. In the last part, we develop 

an aggregator model that controls consumer owned batteries and combine the tariff based benefits: 

energy arbitrage and peak shaving with the avoided-cost based frequency regulation benefit: 

A. The model formulation adapts a two-stage approach. On the day-ahead, the aggregator 

determines energy consumption trajectories that minimize energy and demand charges, and the 

spare battery capacity that can be bid into the frequency regulation market. In real-time, it 

dispatches the batteries to provide regulation while striving to follow the optimal trajectories. 

B. The formulation ensures that the real-time stage model can be solved sufficiently fast.  
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Building on this foundation, future work could further explore different streams of benefits 

that DERs provide. The benefits can be quantified and allocated to DERs through tariff based 

methods, avoided-cost based benefits or the combination of two methods. Studies that evaluate the 

benefits of DERs are mostly focus on long term/planning stage. The strategies to dispatch DERs 

in operational stage (day-ahead and real-time), especially for multiple streams of benefits have not 

been thoroughly studied.     

DERs brings many local benefits to distribution systems. The outputs of DERs change the 

demand profiles of distribution systems which could relief the electrical stress on substation 

transformers, overhead wires and underground cables. With less electrical stress, these devices 

enjoy longer lifespans that the time to upgrade or replace them could be deferred. Methods need 

to be developed to quantify and allocate these investment deferral benefits.  

DERs could also supply power to consumers through the formation of microgrids during 

outages when the primary supply from substation is cut off. The DERs could increase the reliability 

of power supply to some critical customers and be rewarded at appropriate rates.   

Apart from evaluating the benefits of DERs, the costs associated with providing various 

benefits should be considered. Distributed generation, energy storage and demand response are 

very different resources. Studies that estimate the cost of DERs mostly focus on the longer time 

scale, life-cycle cost analysis. Further research could investigate the operational cost of DERs as 

a function of DERs dispatch. For example, the battery degradation cost associates with charging 

and discharging dispatches. With better understanding of the costs, we can better distinguish the 

various characteristics between DERs and find the suitable benefits/dispatch strategies for different 

DERs.  
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There are other possible directions for research. The contributions can come from identifying 

new streams of benefits, quantifying the cost and revenues DERs achieve for providing 

one/multiple streams of benefits and allocating the total economic savings to individual DERs. 

More researches are necessary to facilitate the economically competitive business models of DERs.  
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