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Traditional mechanical device-based voltage regulation becomes less effective when the high

penetration of photovoltaic (PV) generation introduces rapid and frequent voltage fluctu-

ations to the distribution networks. The PV inverters which are able to provide fast and

flexible reactive power compensation are thus encouraged to participate in the voltage reg-

ulation. Particularly, the smart PV inverters with sensing, communicating and computing

capabilities are able to act autonomously and cooperatively. This dissertation studies the

coordinated voltage regulation for distribution networks with smart PV inverters. For the

coordination among the large number of smart inverters, we develop an adaptive coalition

formation-based strategy. This strategy enables the PV inverters to determine their scope

of cooperation according to the real-time network operating condition. The PV inverters

are thus able to eliminate voltage violations and fairly share the required reactive power

contribution according to their maximum available regulation capacity. For the coordination

between the smart inverter group and the utility-controlled mechanical devices, we propose a

bi-level optimization-based voltage regulation framework. This bi-level optimization model

captures the interactions between the different types of devices and allows them to coopera-

tively optimize their voltage regulation goals. This two-timescale framework ensures global

economical efficiency while maintaining satisfactory dynamic regulation performances. Both

studies are demonstrated based on realistic distribution networks with field-recorded data.
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Chapter 1

INTRODUCTION

1.1 Voltage regulation in distribution networks

Keeping the network voltage within a satisfactory range plays a vital role in maintaining

the performance of the distribution networks and the quality of the power delivered. In a

traditional distribution network, voltage magnitude typically decreases from the substation

to the end of the distribution feeder. To compensate for such line drops, voltage regulation

usually employs the on-load tap-changing (OLTC) transformer or step voltage regulators

(SVR) to raise their downstream voltage, or the capacitor banks (CBs) to boost the local

voltage level [1]. However, in recent years, the distribution networks have been experiencing

a rapid increase of the distributed generation (DG), particularly the small-scale photovoltaic

(PV) generation. For example, Fig. 1.1 shows the increase of the small-scale solar capacity

in eight states of the United States. With 1.5 gigawatts (GW) added in 2020, the total

installation capacity of California reaches 10.6 GW as of December 2020. Together with the

environmental benefits, new voltage regulation challenges have also been brought into the

distribution networks with the proliferation of PV generation[2, 3].

Traditionally, the power flows in a single direction, i.e., from the transmission grid to the

load. However, in a distribution network with high penetration of small-scale PV generation.

Reverse power flow would occur when the PV generation exceeds the local load. As the

distribution lines generally have a high impedance and low X/R ratio, the reverse power

flow can cause a increased terminal voltage which might even exceed the upper voltage limit

[4]. In addition, the PV generation is highly variable due to the intermittency in the solar

irradiance. Such rapid variations in PV active output would induce fast voltage fluctuations

in the distribution networks [5]. Traditional mechanical voltage regulation devices are less
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effective in handling these voltage fluctuations. Moreover, such fluctuations may trigger

the frequent operation of these voltage regulation devices, which lead to their increased

mechanical wear-and-tear [6, 7]. Another voltage regulation challenge arises as the small-

scale PV generations are usually randomly scattered in the distribution networks [8]. The

uneven distribution of PV generation capacity would result in different impacts to the voltage

across the geographical zones [9]. The large voltage differences exist in a distribution network

can become problematic for the voltage regulation with OLTC [10]. To deal with these issues,

new voltage regulation devices and methods are needed in the distribution networks.
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Figure 1.1: Source: U.S. Energy Information Administration, based on states’ small-scale

solar PV capacity. https://www.eia.gov/todayinenergy/detail.php?id=46996.

1.2 Voltage regulation with smart PV inverters

The integration of PV generation also introduces a new voltage regulation device to the dis-

tribution network - the smart PV inverter. The smart PV inverters are generally equipped

with measuring, computing and communicating capabilities [11, 12]. They are thus able to

provide advanced and autonomous control functions beyond the basic power conversion and
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energy feeding functions [13]. The participation of the smart inverters in voltage regulation

has been advocated by grid codes like IEEE standard 1547 and CA Rule 21. Their volt-

var function is also defined as one of the smart inverter’s common functions by worldwide

stakeholders in the industry collaborative initiative facilitated by EPRI [14]. Currently, the

PV inverters provides reactive power compensation mainly according to their local voltages

based on piece wise-linear functions. While with the development in information and com-

munication technology, as well as the establishment of distributed energy resource (DER)

interconnection and interoperability standards, a more coordinated voltage regulation archi-

tecture for the distribution network would become possible.

To accommodate the smart PV inverters, voltage regulation in distribution networks

generally facilitates the coordination on two timescales. The faster timescale coordination

just involves the large number of smart inverters that are distributed across the distribution

networks. These smart inverters are able to act autonomously according to the real-time

network operating condition. They are also able to act cooperatively by using communi-

cation tools like Wi-Fi, ZigBee or power line communication (PLC). Due to their fast and

flexible operation, the smart inverters are usually applied to eliminate the real-time network

voltage violations caused by the variability in load or PV active generation. Ideal coordina-

tion strategies for these devices need to be able to quickly adapt to the network operating

condition, reliably function under communication problems, flexibly support their plug-and-

play operation, etc. On the other hand, traditional mechanical voltage regulation devices

like OLTC and CBs operate on a much slower timescale. They are also less flexible in the

regulation actions. However, these devices typically have a larger impact on the network

voltage level and the reactive power flow. Their setpoints are thus usually optimized and

dispatched by the system operator based on a full knowledge of the network to improve the

economical performance of the entire distribution network. To ensure the optimal schedule

of these mechanical devices in the presence of a large group of cooperative smart PV invert-

ers, a proper way to model the interactions between these two types of devices and thus to

coordinate their regulation actions are necessary.
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1.3 Scope and outline of the work

This thesis is organized as follows:

• Chapter 1: Introduction presents research background and motivation.

• Chapter 2: Adaptive Coalition Formation-Based Coordinated Voltage Regulation in

Distribution Networks addresses the coordination among the smart PV inverters. Sec-

tion 2.3 proposes a coalition formation scheme for the PV inverters to determine their

scope of cooperation. Section 2.4 develops a distributed strategy to coordinate the

control actions within each voltage regulation coalition.

• Chapter 3: Bi-level Volt/VAR Optimization in Distribution Networks with Smart PV

Inverters focuses on the coordination among all the voltage regulation devices. 3.2

presents a bi-level optimization model to capture the interactions between the smart

inverter group and the utility-controlled mechanical device. 3.3 proposes the solution

approach and the corresponding two-timescale voltage regulation framework.

• Chapter 4: Conclusion concludes the thesis and provides suggestions for future work.
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Chapter 2

ADAPTIVE COALITION FORMATION-BASED
COORDINATED VOLTAGE REGULATION IN

DISTRIBUTION NETWORKS

High penetrations of photovoltaic (PV) systems can cause severe voltage quality prob-

lems in distribution networks. This chapter proposes a distributed control strategy based on

the dynamic formation of coalitions to coordinate a large number of PV inverters for voltage

regulation. In this strategy, a rule-based coalition formation scheme deals with the zonal

voltage difference caused by the uneven integration of PV capacity. Under this scheme, PV

inverters form into separate voltage regulation coalitions autonomously according to local,

neighbor as well as coalition voltage magnitude and regulation capacity information. To co-

ordinate control within each coalition, we develop a feedback-based leader-follower consensus

algorithm which eliminates the voltage violations caused by the fast fluctuations of load and

PV generation. This algorithm allocates the required reactive power contribution among the

PV inverters according to their maximum available capacity to promote an effective and fair

use of the overall voltage regulation capacity. Case studies based on realistic distribution

networks and field-recorded data validate the effectiveness of the proposed control strategy.

Moreover, comparison with a centralized network decomposition-based scheme shows the

flexibility of coalition formation in organizing the distributed PV inverters. The robustness

and generalizability of the proposed strategy are also demonstrated.
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2.1 Introduction

Installations of rooftop photovoltaic (PV) systems are growing rapidly. In 2019, around 42

GW of rooftop PV systems were installed worldwide and SolarPower Europe estimated that

the global installed capacity will rise to 65 GW by 2024 [15]. Because they have a much

larger R/X ratio than transmission networks, voltages in distribution networks are quite

sensitive to the active power generated by distributed PV systems. Distribution networks

with a high penetration of PV are therefore likely to experience several voltage quality

problems[16, 17, 10]:

• Over-voltages when the PV generation exceeds the local load and the power flow re-

verses;

• Rapid voltage fluctuations caused by sudden changes in solar irradiance;

• Large voltage differences between nodes due to the uneven distribution of PV genera-

tion capacity.

Traditional voltage regulation relies on devices such as step voltage regulators (SVR), on-

load tap-changing (OLTC) transformers, and capacitor banks (CB). However, these devices

are intended to manage voltage variations on a time-scale of hours, and they are not able

to deal with the rapid fluctuations in the output of PV systems [6, 7]. On the other hand,

PV inverters are capable of providing fast and flexible reactive power compensation. IEEE

standard 1547 standard encourages their contribution to voltage regulation [18].

2.1.1 Literature Review

Existing voltage regulation architectures can be broadly classified into three categories. Con-

trol schemes of the first category, such as the droop-based Volt/VAR control (VVC) [19],

rely solely on local measurements. Because they lack a global perspective and coordination,

these controllers may not deploy the available resources effectively. The second category
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involves a centralized architecture, where a central controller with full knowledge of the net-

work dispatches all controllable devices [20]. While theoretically optimal, such an approach

requires extensive communications and involves complex computations. Moreover, it makes

the system susceptible to a single point of failure. Distributed control architectures make up

the third category. In this approach, individual controllers cooperate using communications

with a limited number of neighbors to achieve a common goal. The computation and com-

munication burden are allocated to individual controllers, which makes this approach more

robust to communication failures and better able to coordinate the control of distributed

voltage regulation devices in real-time.

Several authors have approached distributed voltage control as an optimization problem

and implemented algorithms such as dual-ascent [21], primal-dual gradient [22] to solve it in

a distributed manner. Though these optimization-based control strategies provide conver-

gence and optimality guarantees under assumptions of power flow linearity and static power

consumption, they usually require knowledge of the exact values of the system parameters,

such as line impedance, which are not always available for distribution networks. Several

model-free control strategies have also been proposed to coordinate local droop-controlled

voltage regulation devices, among them strategies based on consensus algorithms. Using

peer-to-peer communication, these strategies aim to allocate the required control actions,

e.g. reactive power compensation or active power curtailment, fairly among PV inverters

based on their available capacity [23, 24, 25, 26, 27, 28]. In [23, 24, 25], a leader inverter

measures its local voltage and updates its utilization ratio, which is the ratio of the in-

verter’s power output used for voltage regulation to its maximum available power capacity.

This ratio is delivered to all the follower inverters via neighboring communication according

to the leader-follower consensus algorithm. Every follower inverter accepts this utilization

ratio and adjusts its power output accordingly. After the leader inverter stops updating

and the utilization ratio has been fully communicated, every participating inverter shares

an equal utilization ratio. Some authors [23, 24] make the assumption that the highest or

lowest voltage always occurs at the end node of the radial feeder and choose the inverter at
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this node to be the leader. However, this assumption does not always hold true when PV

capacity is unevenly distributed along the feeder. Zeraati et al. [25] extended this approach

to let any PV inverter that can experience a voltage limit violation act as the leader. The

need to appoint a leader is relaxed in [26, 27, 28]. In those control strategies, each inverter

measures the local voltage and determines its own utilization ratio. This ratio is gradually

adjusted based on the consensus algorithm to reflect its neighbors’ contribution to voltage

regulation.

2.1.2 Contribution

This chapter considers the same voltage regulation objectives as in [23, 24, 25, 26], i.e.

maintaining the voltage magnitude within a satisfactory range and equalizing the utilization

ratio of the participating inverters. These two objectives can conflict because equalizing the

utilization ratio means that voltage violations are eliminated by increasing or decreasing the

voltage across the entire network. However, if the PV generation capacity and the load are

distributed unevenly, simultaneous upper and lower voltage limit violations can occur on a

feeder. In this case, requiring an equal utilization ratio would either solve the over-voltage

problem at certain nodes at the expense of making the under-voltage problem at other

nodes even worse, or vice-versa. Therefore, a system-wide consensus on the utilization ratio

becomes detrimental. To fairly share the voltage regulation burden among PV inverters while

satisfying the voltage constraints, one must be able to distinguish between situations where

reaching a system-wide consensus is desirable and situations where the inverters should reach

a localized consensus about an equal utilization ratio. In multi-agent control, a coalition

refers to a goal-directed and short-lived group formed by the smart agents to complete a

common task cooperatively[29]. PV inverters equipped with sensing, communicating and

computing capabilities can be treated as smart agents who can work together at regulating

voltages [11, 12]. These smart PV inverters could be empowered to form coalitions that can

reach an effective consensus about what needs to be done to regulate voltages.

This chapter proposes a distributed scheme where PV inverters organize themselves into
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different voltage regulation coalitions using local decision-making based on voltage magnitude

as well as regulation capacity information. Within each coalition, a feedback-based leader-

follower consensus algorithm determines the utilization ratio of each inverter. The main

contributions of this chapter are:

• An adaptive coalition formation scheme which effectively solves potential conflicts be-

tween voltage regulation and reactive power sharing. In this scheme, PV inverters use

a simple and clear decision logic to determine the scope of their cooperation. They

can therefore organize themselves efficiently and flexibly to adapt to constantly varying

network operating condition.

• An improved leader-follower consensus algorithm which effectively eliminates voltage

violations and equalizes the utilization ratios in each coalition. Instead of relying

on a fixed leader, this algorithm enables each PV inverter to adaptively determine

whether it is a leader or a follower based on its voltage deviation. The connection with

the distributed optimization algorithm demonstrates the theoretical foundation of this

algorithm.

• A model-free two-timescale distributed control strategy which fully exploits the au-

tonomous capability of the smart PV inverters to regulate voltages. This strategy

enables each inverter to act in response to real-time network conditions, and does not

require central control or prior knowledge of the network. Hence, it is not only able

to adapt to changing network conditions and configurations, but can also scale to ac-

commodate an arbitrary number of inverters. We demonstrate the robustness and

generalizability of the proposed strategy using simulation-based case studies.

2.1.3 Chapter Organization

The remainder of this chapter is organized as follows. Section 2.2 introduces the overall con-

trol framework. Sections 2.3 and 2.4 describe the details of the voltage regulation coalition
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formation scheme and the within-coalition coordination. Section 2.5 discusses the imple-

mentation issues. Section 2.6 and 2.7 present and analyze simulation results. Section 2.8

concludes.

2.2 Overview of the Proposed Control Strategy

2.2.1 Communication Network

In this chapter, we treat the distribution network as a cyber-physical system, where each PV

inverter is able to:

• Acquire local measurements;

• Communicate with its neighbors;

• Compute necessary control actions;

• Execute these control actions.

Communication within a network of n PV inverters can be represented by a directed

graph G = (V , E), where V = {1, 2, ..., n} is the set of nodes and E ⊆ V × V is the set of

edges. Each node corresponds to a PV inverter and (i, j) ∈ E if inverter i can receive infor-

mation from inverter j. The graph is connected if for every pair of nodes there is a path

connecting them. The graph is undirected if (i, j) ∈ E implies (j, i) ∈ E . The set of neighbors

of inverter i is denoted by Ni = {j ∈ V : (i, j) ∈ E}. We define the neighbor set Ni of inverter

i as the collection of inverters that are directly connected to it through power lines without

passing other inverters. Specifically, if two inverters are installed on different laterals, they

are neighbors if they do not have a common upstream inverter. For example, one could as-

sume that the inverters communicate with their neighbors using Power Line Communication

(PLC) [30]. Therefore, the communication network for a typical distribution network is a

connected and undirected graph with a tree topology.
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2.2.2 Control Objective

The first control objective is to maintain the voltages within the regulation range based on

the grid code:

V ≤ Vi ≤ V̄ (2.1)

where Vi is the voltage magnitude of node i, V and V̄ are the lower and upper voltage limits.

To prevent the excessive use and early saturation of the voltage regulation devices at

certain nodes, several authors [23, 24, 25, 26] argue that all devices should operate at the

same utilization ratio after reaching equilibrium. However, voltages in some parts of a

distribution feeder may exceed the upper limit while voltages in other parts may be below

the lower limit. To address this problem, we develop a scheme that allows the PV inverters

to self-organize into coalitions. Within each coalition, all inverters operate at the same

utilization ratio:
Qi

Qmax
i

=
Qj

Qmax
j

= ua, ∀i, j ∈ Ga (2.2)

where ua is the utilization ratio of coalition Ga = (Va, Ea), Va ⊆ V and Ea ⊆ E . Qi and

Qmax
i are the required reactive power contribution for voltage regulation and the maximum

available reactive power capacity of PV inverter i.

2.2.3 Control Framework

Fig. 2.1 illustrates the two time-scale voltage regulation strategy. Due to the uneven distri-

bution of load and PV generation capacity, their regular daily variations can lead to large

zonal voltage differences at certain times. On the slower time-scale, e.g. every 5 minutes,

the coalition formation scheme guides PV inverters to form into separate groups to solve

the over-voltage and under-voltage problems that may arise simultaneously in different parts

of the network. On the faster time-scale (i.e., the inverter sampling period of tens to hun-

dreds of milliseconds [23, 24, 25, 26, 27, 28]), the feedback-based leader-follower consensus

algorithm eliminates the real-time voltage violations and distributes the voltage regulation

burden fairly to every inverter within each coalition. Throughout the process, PV inverters
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make control decisions based on simple calculations and only need to exchange information

with a limited number of neighbors. This control strategy is thus able to coordinate the

PV inverters in real-time. Moreover, since there is no need for system information such

as line impedance, network topology or nodal upstream-downstream relation, this control

strategy can adapt to changes in the network topology and supports a flexible plug-and-play

operation of the inverters.

T T+1

Coalition Formation

• Information gathering

• Coalition updating

T+2

time

T+3

Within-coalition Coordination

• Role identification

• Utilization ratio adjustment

k = 1, 2, …

…… …

Figure 2.1: Framework of the proposed control strategy.

2.3 Coalition Formation

Upon initialization, the coalition formation scheme starts with a single coalition consisting

of every PV inverter. It then periodically alters the set of coalitions to:

• Separate the over- and under-voltage violations and assign them to different coalitions

to prevent conflicts between PV inverters;

• Allocate sufficient voltage regulation capacity to each coalition;
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• Maintain the connectivity of the communication network within each coalition.

Each time the coalitions are updated, the PV inverters first gather necessary data. Based

on this information, they evaluate the current coalition status and determine their actions.

2.3.1 Information Gathering

Before updating the coalitions, each inverter i, i ∈ Ga needs to gather the following data:

• Local data: the local voltage magnitude Vi and utilization ratio ui;

• Neighbor data: the voltage magnitude Vj and utilization ratio uj of neighbors j,

∀j ∈ Ni;

• Coalition data: the assessed coalition maximum voltage V max
i and minimum voltage

V min
i of Ga.

Algorithm 1 shows how inverters obtain the coalition data through neighboring communica-

tion. Each inverter measures its local voltage Vi and uses it to initialize its estimate of the

coalition maximum voltage V max
i and minimum voltage V min

i . At each iteration within the

time window [T −∆T, T ], the inverter communicates with its neighbors within the same

coalition to exchange their estimates. As the iterations progress V max
i and V min

i are updated

based on the max and min-consensus algorithm. Since the communication network is con-

nected, in a coalition with |Va| inverters, after a maximum |Va| − 1 iterations [31], V max
i and

V min
i converge to the coalition maximum voltage V max

a and minimum voltage V min
a .

2.3.2 Coalition Updating

Having gathered these data, each PV inverter follows the decision logic of Fig. 2.2 to de-

termine if the coalition it currently belongs to needs to be divided, refined or left intact.

Fig. 2.3 shows the transformation of the coalition under different updating actions.
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Algorithm 1 Algorithm for assessing coalition voltage status

Initialization: V max
i (0) = Vi and V min

i (0) = Vi

Iteration: At the kth iteration:

Step 1: Sends V max
i (k) and V min

i (k) to neighbors j ∈ N a
i

Step 2: Receives V max
j (k) and V min

j (k) from neighbors j ∈ N a
i

Step 3: Updates these two variables as follows:V
max
i (k + 1) = max(V max

i (k), V max
j∈Nai

(k))

V min
i (k + 1) = min(V min

i (k), V min
j∈Nai

(k))

(2.3)

where N a
i = {j ∈ Va : (i, j) ∈ Ea} is the set of inverter i’s neighbors within the same coalition

as i.

Yes

uj > uth, ui < uth,

Yes

No

Start

ui − uj ≤ εu ? 

No

Divide

Vi − Vref Vj − Vref < 0 ?

Yes

Yes

Preliminary Coalition Division Coalition Refinement

Switch

Merge

Vi
max > Vth and Vi

min < Vth?
Vth ≤ Vi

min ≤ Vi
max ≤ Vth ,

No

No Action

No

Vth ≤ Vi ≤ Vth , 𝒩𝑖 ≤ 2 ?

Figure 2.2: Decision logic for updating the coalitions.

Dividing

Merging

Switching

h                 i                 j

a

a

b

a

b

h                 i                 j h                 i                 j

Figure 2.3: Coalition transformation under different updating actions.
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a) Dividing : PV inverter i, i ∈ Ga first compares the coalition maximum voltage V max
i

and minimum voltage V min
i with the upper and lower voltage thresholds, V̄th and V th, to

determine whether over and under-voltage problems coexist in the coalition. If this is the

case, inverter i will decide to separate from its neighbor j, j ∈ Ga if its local voltage magnitude

Vi is lower than the voltage reference value Vref while its neighbor j’s is higher, or vice-versa.

If inverter i decides to separate from j, j will draw the same conclusion. They will therefore

ignore the information they receive from each other in the calculation of the utilization ratio.

As they no longer cooperate, the coalition Ga is split. For the coalition communication

network, this action is equivalent to the removal of the edge between nodes i and j. Since

the communication network of a typical distribution network has a tree topology, the removal

of edges decomposes the original communication network into disjoint sub-networks. Each

of these smaller networks still forms a connected graph with tree topology and supports the

interactions of PV inverters in the newly formed coalitions. This voltage-based coalition

division rule ensures that the PV inverters experiencing an upper voltage limit violation

can be separated from those experiencing a lower voltage limit violation. Moreover, the PV

inverters whose voltage is closer to the upper voltage limit are generally grouped with the

former, while the PV inverters whose voltage is closer to the lower voltage limit are grouped

with the latter.

b) Merging : If no further division is needed for a coalition, the PV inverters execute the

capacity-based coalition refinement rules to improve the distribution of voltage regulation

capacity among coalitions. For example, when both the maximum and minimum voltages

of a coalition Ga have returned to the threshold range [V th, V̄th], PV inverter i, i ∈ Ga can

reasonably assume the over/under-voltage problem that existed before has been solved and

the coalition can merge with others to share their voltage regulation burden. Therefore, if an

inverter had separated from a neighbor, it checks the utilization ratio uj of that neighbor j,

j ∈ Gb. If the difference between uj and its own utilization ratio ui is smaller than a threshold

εu, then inverter i determines that it is safe to merge Ga with Gb. Since this merger does

not cause a large change to the reactive power output of the PV inverters currently in Ga,
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this action would not create voltage problems for them. PV inverter i then reconnects with

j, and thus Ga merges with Gb. This action reconnects node i and j in the communication

network, to form a larger connected network that supports the communications within the

newly merged coalition.

c) Switching : A coalition Ga cannot merge as a whole with another coalition Gb if its

voltage problems persist or the difference in their utilization ratio is too large. However,

some inverters can switch from coalition Ga to Gb when Gb suffers from a lack of voltage

regulation capacity. Assuming the utilization ratio of j, j ∈ Gb exceeds an upper threshold

ūth, that is, almost all the voltage regulation capacity has been used up in coalition Gb. When

j’s neighbor i, i ∈ Ga detects this situation, it can switch to Gb and thus bring extra regulation

capacity to Gb under two conditions: 1) The coalition Ga has extra capacity, i.e. |ui| < uth.

2) This switch does not bring a new voltage problem to coalition Gb, i.e. V th ≤ Vi ≤ V̄th.

Moreover, to preserve the connectivity of a coalition’s communication network, this switching

action is limited to PV inverters with no more than two neighbors. For example, in Fig. 2.3,

PV inverter i can switch to Gb when necessary, while j is not allowed to switch coalitions

because this would split the communication network of Gb. For the communication network,

the impact of a switch is the same as removing the edge between node i and its neighbor

h ∈ Ga while reconnecting node i with its other neighbor j ∈ Gb. Neither action would impact

the connectivity or the tree topology of the newly formed coalitions’ communication networks.

If the above conditions are not satisfied, the PV inverter takes no action in this coalition

formation time interval.

2.3.3 Discussion

The actions of individual PV inverters periodically update the coalitions to solve poten-

tial conflict between voltage regulation and reactive power sharing. Compared with other

strategies, the main characteristics of this coalition formation scheme are as follows:

• This scheme provides a simple, clear and uniform decision logic to each PV inverter.
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The execution of this logic immediately results in a unique set of coalitions. Other

dynamic coalition formation schemes involve several rounds of negotiation between

potential partners [32, 33], or require a coordinating agent to construct the coalition

gradually by contacting every possible member sequentially [34].

• This scheme allows the inverters to flexibly organize themselves using dividing, merging

and switching actions in response to real-time network operating condition. In contrast,

centralized network decomposition-based strategies [35, 36] use the voltage sensitivity

matrix to divide the network and the regulation resources. These approaches give

inverters less flexibility to determine the scope of their cooperation.

2.4 Coordination within a Coalition

Once a coalition has been formed, the PV inverters within that coalition autonomously

select one member as their leader. A feedback-based leader-follower consensus algorithm

then coordinates the real-time control of the inverters. The leader adjusts its output to

eliminate the voltage violation. The followers, i.e. the other inverters in the coalition, adjust

their outputs correspondingly to share the regulation burden.

2.4.1 Role Identification

In existing leader-follower consensus control strategies, the system operator usually prede-

termines which inverter is most likely to experience the largest voltage deviation and selects

it as the leader for the entire control process [23, 24, 25]. On the other hand, under our

proposed control, the PV inverters first determine the largest voltage deviation within their

coalition and then identify their roles accordingly. As in the coalition maximum voltage

assessment process described in Algorithm 1, during a time window [T, T + ∆T ] after the

coalition formation, PV inverters exchange their local voltage deviations ∆Vi = |Vi − Vref |

with their neighbors and update their estimation of the coalition maximum voltage devi-

ation ∆V max
i . The PV inverter whose voltage deviation is the largest assumes the role of
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leader, while the rest become followers.

2.4.2 Utilization Ratio Adjustment

a) Feedback Control : After role identification, the leader inverter of a coalition Ga takes its

local voltage magnitude Vl as the feedback signal and adjusts its utilization ratio ua at each

iteration k as follows

ua(k + 1) = λ(k)− λ̄(k) (2.4)

λ̄(k + 1) = [λ̄(k) + α(Vl(k)− V̄ )]+ (2.5)

λ(k + 1) = [λ(k) + α(V − Vl(k))]+ (2.6)

where λ̄ and λ are control states. α is the step-size parameter. [∗]+ denotes the projection

operator onto [0,+∞). This calculation is similar to an integral controller with a dead-

band. When the local voltage magnitude exceeds the upper voltage limit, the leader inverter

reduces its utilization ratio ua and hence its reactive power output. On the other hand, if the

local voltage magnitude is too low, it increases its utilization ratio to support the voltage.

b) Leader-follower Consensus Algorithm: The utilization ratio determined by the leader

inverter is then communicated within coalition Ga according to the logic shown in Algorithm

2. At each iteration, inverter i sends its utilization ratio to its neighbors in the same coalition

and receives their utilization ratios. It then updates its utilization ratio to be the average

of its own and its neighbors’ utilization ratio. Since the communication network for the

coalition is connected, a consensus on the utilization ratio ua will be reached globally and

exponentially [37].

c) Reactive Power Output : The maximum available reactive power capacity of PV in-

verter i is constrained by its rated capacity Sri and real-time active power output Pi:

Qmax
i =

√
Sri

2 − P 2
i . (2.8)

Since PV inverters are typically oversized, they can provide reactive power compensation
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Algorithm 2 Algorithm for adjusting the utilization ratio

Iteration: At the kth iteration:

Step 1: Sends ui(k) to neighbors j ∈ N a
i

Step 2: Receives uj(k) from neighbors j ∈ N a
i

Step 3: Updates the utilization ratio:

ui(k + 1) =
1

1 + |N a
i |

ui(k) +
∑
j∈Nai

uj(k)

 . (2.7)

even when they generate their rated active power output P r
i ,

Sri = (1 + β)P r
i (2.9)

where β is the over-sizing percentage. Based on the utilization ratio, the reactive power

contribution from PV inverter i for voltage regulation is

Qi(k) = [ui(k)]1−1Q
max
i (2.10)

where [∗]1−1 denotes the projection operator onto the utilization ratio limit set [−1, 1].

2.4.3 Algorithm Analysis

In this subsection, we demonstrate the analytical connections between the feedback-based

leader-follower consensus algorithm and distributed optimization algorithms.

Within a coalition, the voltage regulation can be formulated as the following optimization

problem:

min
∑
i∈Ga

1

2
γiQ

2
i

s.t. V ≤ Vl ≤ V̄

Qi ∈ Qi, ∀i ∈ Ga

(2.11)
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where γi > 0 is a penalty parameter associated with the reactive power output of inverter i

and Qi = [−Qmax
i , Qmax

i ]. The local voltage magnitude of the leader inverter can be approx-

imated by linearizing the power-flow equation as:

Vl ≈
∑
i∈Ga

∂Vl
∂Qi

Qi + Vuncon (2.12)

where ∂Vl
∂Qi

> 0 is the sensitivity of the local voltage at the leader inverter to the reactive

power output of inverter i. Vuncon is the uncontrollable part of the voltage magnitude, which

depends on the load and active PV generation.

Assuming problem (2.11) is feasible and the Slater condition is satisfied, i.e. there exist

Qi, ∀i ∈ Ga such that Qi ∈ Qi and V < Vl < V̄ . Given the strong convexity of the cost

function, this problem has a unique optimal solution which can be obtained using a projected

primal-dual dynamics feedback optimization algorithm [38]:

Q̇i = ΠT QiQi

[
−γiQi +

∂Vl
∂Qi

(λ− λ̄)

]
, ∀i ∈ Ga (2.13)

˙̄λ = ΠT λ̄R+

(Vl − V̄ ) (2.14)

λ̇ = ΠT λR+

(V − Vl) (2.15)

where λ̄, λ ∈ R+ are the dual variables for the upper and lower voltage limit constraints in

problem (2.11). Due to the special structure of the objective function in problem (2.11), as

proved in [21], (2.13) can be simplified as

Qi =

[
γ−1
i

∂Vl
∂Qi

(λ− λ̄)

]Qmax
i

−Qmax
i

, ∀i ∈ Ga. (2.16)

Assuming in problem (2.11), γi = (Qmax
i )−1 ∂Vl

∂Qi
. (2.16) becomes

ui =
Qi

Qmax
i

=
[
(λ− λ̄)

]1
−1
, ∀i ∈ Ga. (2.17)

To execute this ”gather and broadcast” algorithm under the neighboring communication

constraint, different distributed algorithms have been proposed [21, 38]. The algorithm we

implement is similar to the method in [38]. The leader inverter (i.e., actuators who access
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sensor data in [38]) measures its local voltage and updates the dual variables λ̄, λ according

to (2.14) and (2.15). The discrete-time version of this process is (2.5) and (2.6). For the

update of the utilization ratio, the leader inverter has direct access to (λ− λ̄) and is thus

able to adjust its utilization ratio according to (2.17), i.e., (2.4) in discrete-time. However,

the followers (i.e., actuators who do not access sensor data in [38]) rely on the peer-to-peer

communication to pass the dual variables (λ− λ̄) from the leader. Therefore, they keep

a local copy (λ− λ̄)i of (λ− λ̄) and update this local copy when information arrives from

their neighbors. That is, the follower inverters preserve their own utilization ratio ui and

update this value iteratively as described in Algorithm 2. It is proved in [38] that this

modified algorithm is guaranteed to converge to the optimal solution when the coupling in

the communication graph is sufficiently strong. The feedback-based leader-follower consensus

algorithm is thus able to eliminate upper or lower voltage limit violations within the coalition

effectively and the utilization ratio converges to the optimal solution of problem (2.11). The

detailed convergence proof can be found in [38].

2.5 Implementation

With their increased deployment, distributed energy resources (DERs) play a more active

role in system operation. Various stakeholders have been developing standards to spec-

ify DER interconnection criteria and requirements (e.g., IEEE 1547-2018), as well as to

guide DER interoperability and communication (e.g., IEEE 1815, IEEE 2030.5, IEC 61850).

Accordingly, inverters are evolving towards more advanced, standardized and autonomous

functionalities, which makes their cooperative control actions possible [12]. For example, a

project by the Toronto and Region Conservation Authority (TRCA) demonstrated the prac-

ticality of organizing the smart inverters under a multi-agent peer-to-peer communication

framework for distribution network voltage regulation [39]. Our proposed voltage regulation

strategy coordinates the smart PV inverters located on the low-voltage network under a sim-

ilar framework. For large-scale deployment, considering there are abundant utility-owned

voltage regulation devices on the primary side and the cost for communication, it is recom-
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mended to divide the distribution network and implement the strategy on each low-voltage

network independently. An important obstacle is that these inverters are usually owned by

utility customers. The utility would therefore not be able to coordinate their actions directly.

To address this issue and encourage the participation of smart inverters in voltage regulation,

incentive schemes [40] and alternative forms of inverter ownership [41] are being considered.

Since the proposed strategy supports flexible plug-and-play operation, it can accommodate

a variable number of inverters.

2.6 Case Study

2.6.1 Test System

Fig. 2.4 shows the single-line diagram of the balanced 230/400V 103-node radial distribution

network used to demonstrate the performance of the proposed control strategy. The squares,

circles and dashed lines represent the load nodes, PV nodes and the communication links,

respectively. This network was extended based on the topology of a real semi-urban feeder

in Flanders, Belgium. Its detailed network parameters can be found in [42]. To assess the

effectiveness of the proposed strategy in a network where the load and PV generation are

very unevenly distributed, we connected four heavy loads (a school, a bank, a grocery store

and an office) at nodes 38, 56, 58, 96. Two small PV farms are located at nodes 69 and

76. Sixty houses are connected to the network, 30 of which are equipped with PV inverters.

The 1-minute-resolution daily profiles for the PV generation and residential consumption

were constructed based on the Pecan Street data set of June 16, 2014 [43]. The commercial

load profiles are from [44]. Fig. 2.5 shows the normalized load and PV generation profiles.

Table 2.1 gives the capacity of these loads and DERs. According to the European Standard

EN50160, the maximum allowable voltage deviation for this network is ±10%. Fig. 2.6

shows the voltage profiles of the distribution network when the only regulation device is the

distribution transformer. This transformer raises the system voltage during periods of heavy

load and lowers the system voltage when the PV generation creates a high reverse power



23

flow, i.e., from 10:00 to 16:30. However, during this period, even when the voltage at the end

of laterals 1 and 4 hovers around the lower voltage limit, the voltage at the end of lateral 3

exceeds the upper voltage limit.

Although the analysis of the leader-follower consensus algorithm is built on a linearized

power flow model, the power system is simulated using a full nonlinear AC power flow

model based on MATPOWER [45]. The voltage regulation coalitions are reformed every 5

minutes and the sampling period of the local controllers is 200 milliseconds. To mitigate

the impact of the volatility in PV generation, the voltage information gathered for coalition

formation is its moving average value over a 15-minute rolling window. The control strategy

regulation range [V̄ , V ] also reserves a small buffer. Moreover, as the coalition formation is

taken as a preventive action, the threshold range [V̄th, V th] is set to be more conservative

than the regulation range. Table 2.2 gives the detailed parameters of the proposed control

strategy. We demonstrate this strategy’s effectiveness through a 24-hour simulation. It is

then compared with a simple localized controller and a state-of-the-art centralized network

decomposition-based actuator organization scheme. The robustness and the generalizability

of the proposed strategy are also assessed.

Table 2.1: Capacity of the Load and DERs

Type Houses School Bank Grocery

Size (kW) 2.2–14.5 68.4 31.4 45.1

Type Office Residential PV PV Farm 69 PV Farm 76

Size (kW) 62.3 2.5–7.5 45.5 140.0
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Figure 2.4: Single-line diagram of the test system.
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Figure 2.5: Normalized daily profiles of the PV located on node 6, 69 and the load located

on node 6, 38.
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Figure 2.6: Voltage profiles of the network without PV reactive power compensation over a

24-hour period.

Table 2.2: Parameters of the Control Strategy

V̄th V th V̄ V Vref

1.05 p.u. 0.95 p.u. 1.09 p.u. 0.91 p.u. 1.00 p.u.

εu ūth uth α β

0.02 0.90 0.70 20 0.10

2.6.2 Performance Analysis

a) Convergence and Accuracy : Fig. 2.7 shows the iteration process of the PV inverters

assuming that the load and PV generation remain static at the values they have at 9:07. At

this time, all the PV inverters belong to the same coalition and they work together in about

100 iterations, i.e. 20 seconds, to bring the voltage at node 40 back up to the prescribed
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lower voltage limit of 0.91 p.u. Meanwhile, the utilization ratio of each inverter gradually

converges to the value determined by the leader inverter. The red dashed lines show the

optimal solution of problem (2.11) where the voltage sensitivity value is calculated based on

the Jacobian matrix, and the power flow equation constraints are modeled with the AC power

flow model under Second-Order Cone Programming (SOCP) relaxation [46]. The leader-

follower consensus algorithm drives the system to the optimal solution of problem (2.11),

which confirms the analytical connection discussed in Section 2.4.
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Figure 2.7: Iteration process of the feedback-based leader-follower consensus algorithm. (a)

Utilization ratios of each inverter, (b) Voltage magnitude at the leader inverter, (c) Objective

function of problem (2.11)

.

b) Control over a 24-hour period : Fig. 2.8 illustrates the voltage regulation achieved by

the proposed control strategy over the course of a day and demonstrates how the PV invert-

ers are able to form into coalitions autonomously and solve the voltage violation problems

cooperatively. Fig. 2.9 shows the coalitions that were formed at 15:15. Coalition 1 consists

mainly of PV inverters on laterals 1 and 2, coalition 2 covers the inverters located on laterals

3, 6 and the first half of lateral 4. Inverters on the second half of lateral 4 form coalition 3.

These coalitions evolve based on real-time voltage measurements. For example, coalition 3

reunites with coalition 2 to help solve its over-voltage problem at noon. However, this only
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happens when the voltages within coalition 3 are inside a safe range. Otherwise, coalition

3 separates from coalition 2 to prevent suffering from a lower voltage limit violation. In

addition, coalitions can also be refined by the switching action of individual inverters. For

instance, inverter 41 switches from coalition 2 to coalition 1 at 15:15 when coalition 1 lacks

sufficient regulation capacity. Most of the time, coalitions 1, 2, 3 are led by inverters 60, 76,

and 40, respectively.

2.6.3 Comparison with Other Approaches

a) Local Control : When all the communication links are removed, the proposed strategy

reduces to a simple local controller, the same as the one proposed in [47]. In this case,

each coalition contains a single inverter, which measures its local voltage and adjusts its

reactive power output based on (2.4)-(2.6). Fig. 2.10 shows that this local control strategy

is able to improve the voltage profile. However, lower voltage limit violations persist, mainly

caused by the saturation of the PV inverters reactive power capacity. For example, during

the time interval 15:13–15:19, only PV inverters 55, 59, 60 detect an under-voltage problem

on lateral 1 and produce reactive power to solve it. However, due to their limited capacity

and while their utilization ratios rise to the upper limit of 1.0, (i.e. they produce maximum

reactive power), this voltage violation problem persists. To solve this problem, the active

power generation from these PV inverters might need to be curtailed, which would lead to

an economic loss for their owners. This problem does not occur with the proposed control

strategy because coalition 1 in Fig. 2.9 involves more PV inverters that can help deal with

these low voltages. Moreover, throughout the entire control process, only the PV inverters

installed at the end of laterals actively participate in voltage regulation. Frequent actions

and large reactive power output can affect the lifetime of these inverters [48]. In contrast,

the reactive power capacity of the rest of PV inverters is barely used.

b) Centralized Organization Scheme: In the centralized actuator organization scheme

proposed in [35], a central agent derives the sensitivity matrix A from the Jacobian matrix
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Figure 2.8: Voltage regulation results of the proposed control strategy. (a) 24-hour voltage

profiles; (b) Utilization ratios.
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Figure 2.9: Voltage regulation coalitions under the proposed strategy at 15:15.

of the Newton-Raphson power flow solution:∆θ

∆V

 =

AθP AθQ

AV P AV Q

∆P

∆Q

 = A

∆P

∆Q

 . (2.18)

This agent then applies epsilon decomposition to AV Q:

AV Q = A′V Q + εB (2.19)

which decomposes the original voltage magnitude-reactive power sensitivity matrix AV Q into

strong couplings A′V Q and weak couplings B. The weak couplings, i.e. any element less than

ε, in AV Q are then set to 0. Correspondingly, the weakly coupled nodes in the network, and

the inverters on these nodes, are partitioned into different voltage regulation zones. The

central agent controls the partition result by updating the magnitude of ε between 0 and

1. If ε = 0, all nodes are considered as strongly coupled and there is no partition, while

if ε = 1, there is no cooperation. For comparison, we replace our coalition formation with

this scheme. The central agent checks the network voltage magnitudes every 5 minutes. If
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Figure 2.10: Voltage regulation results of the local control strategy. (a) 24-hour voltage

profiles; (b) Utilization ratios.
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a voltage threshold is violated, it initiates the partition and selects the smallest ε to ensure

that the inverters whose local voltage is higher than V̄th can be separated from those inverters

whose local voltage is lower than V th. The leader-follower consensus algorithm still guides the

within-coalition coordination. Fig. 2.11 shows the corresponding voltage regulation results.

Similar to our proposed scheme, this scheme is able to organize the inverters in different

groups to solve the voltage violation problems. However, this coupling strength-based scheme

is essentially different from our real-time voltage/capacity-based coalition formation scheme.

Fig. 2.12 illustrates this difference. At 15:15, inverter 40 needs to be separated from inverter

76. Under our scheme, this separation is completed as inverter 18 separates from inverter

21 based on their voltage magnitudes. However, under the coupling strength-based scheme,

the central agent finds the weakest coupling is between nodes 15 and 16 and sets the ε value

correspondingly to remove this coupling. However, couplings weaker than this ε, e.g. the

coupling between 46 and 48, are also removed, which results in a smaller coalition 1 than ours.

In general, with this network decomposition-based actuator organization scheme, inverters

that are closer to the substation, and thus have a weaker coupling with their neighbors, are

prone to be excluded from any cooperation.

2.6.4 Robustness

a) Communication Latency : Communication latency is inevitable in real-world implemen-

tations. One way to handle the latency is to allocate a longer time for each iteration. To

analyze the robustness of the proposed approach in handling latency, we increased the sam-

pling period to 10 times its original value, i.e. 2000 milliseconds. Fig. 2.13 shows the voltage

regulation results. In this case, the coalition formation is barely impacted. This is because

the coalitions are updated every 5 minutes, which allows the inverters sufficient time to as-

sess the coalition voltage status and make decisions. On the other hand, it becomes more

difficult for the inverters within the same coalition to fully communicate and reach consensus

on their utilization ratios, particularly when the size of the coalition is large. For example,

when all the inverters return to the same coalition after 20:00, discrepancies in the utilization
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Figure 2.11: Voltage regulation results with the centralized organization scheme. (a) 24-hour

voltage profiles; (b) Utilization ratios.
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Figure 2.12: Voltage regulation coalitions under centralized organization scheme at 15:15.

ratio become obvious. However, the trends in these utilization ratios remain similar and the

voltage regulation results are almost the same as in the normal case.

b) Communication Failure: Communication failure is another problem that can deteri-

orate the effectiveness of the proposed strategy. For the robustness test, we assume that

10% of the communication links fail at random every hour and these failure last for 15 min-

utes. For the inverters, a communication link failure is similar to a coalition division, as

two neighboring inverters no longer cooperate. The difference is that the separated inverters

are no longer able to merge or switch to each other’s coalition since no information can be

transmitted between them. Once the communication resumes, these actions are possible

again. Fig. 2.14 shows the voltage regulation results. In this case, as the unnecessary “coali-

tion division” happens frequently, the scopes of cooperation are intermittently constrained.

Therefore, the utilization ratios are quite different from the normal case and the coalition

regulation capacity insufficiency problem can occur. However, as an adaptive coalition for-

mation scheme, the proposed strategy is able to handle those undesirable separations when
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Figure 2.13: Voltage regulation results under communication latency. (a) 24-hour voltage

profiles; (b) Utilization ratios.
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the communication recovers. The voltage magnitude can still be effectively constrained.
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Figure 2.14: Voltage regulation results under communication failure. (a) 24-hour voltage

profiles; (b) Utilization ratios.
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2.6.5 Generalizability

To test the extent to which the proposed approach can be generalized, we created 50 dif-

ferent network scenarios with varying inverter locations, quantities and capacities. In the

construction of each case, 60 houses, 20–40 of which are equipped with smart PV inverter,

are randomly sampled out of 167 candidate profiles from the Pecan Street data set. These

houses are then randomly allocated to the 103-node network. For comparison, the local

control strategy and the centralized organization scheme are also tested. In the simulations,

as the over-voltage problem always occurs on lateral 3 and the abundant inverter reactive

power resources of the small farm located at node 76 can effectively solve this problem, the

over-voltage limit violation comparison results are not presented here. Fig. 2.15 shows the

average daily lower voltage limit violations. All three control strategies are able to improve

the voltage profiles. However, as the local control suffers from inverter saturation problems,

the average daily lower voltage limit violation time under this control is as high as 27.5

minutes. On the other hand, this value reduces to 4.6 minutes and 3.6 minutes when the

centralized organization scheme or the proposed strategy is implemented. This is because

these two strategies are able to coordinate the inverters for voltage regulation, and mitigate

the insufficiency in local control resources. Furthermore, the proposed strategy achieves

slightly better performance than the centralized organization scheme as it is able to organize

the inverters in a more flexible way.

2.7 Implementation in Unbalanced Networks

To assess the effectiveness of the proposed strategy in unbalanced networks, we modeled

the IEEE European LV test feeder in OpenDSS [49]. The detailed network parameters and

customer loading profiles can be found in [50]. We extended this network by connecting the

bank and the office load described in Section 2.6 at nodes 819 and 881. A small PV farm

with a capacity of 28 kW at each phase is connected at node 617. The smart PV inverters

are allocated to 10, 7 and 9 randomly selected houses on phases a, b and c, respectively.
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Figure 2.15: Average daily lower-voltage limit violations under varying network settings with

different control strategies.

The daily PV generation profiles are the same as described in Section 2.6. Fig. 2.16 shows

the modified test feeder. To maintain the voltage deviation within ±5% [25, 26], we set the

regulation range [V̄ , V ] as [1.049, 0.951], the threshold range [V̄th, V th] as [1.025, 0.975]. The

other parameters are as in Table 2.2. We implemented the proposed control strategy in each

phase separately.

Fig. 2.17 demonstrates that the proposed strategy effectively improves the voltage profiles.

Fig. 2.18 shows the coordinated actions of the smart PV inverters over the day. During the

control process, the PV inverters at phase a mainly form two coalitions since inverter 349

separate from inverter 629 at 10:45. These two coalitions are led by inverters 617 and 898 to

solve their over-voltage and under-voltage problems. On the other hand, the PV inverters

in phase b remain in the same coalition the whole day while the coalition leader changes.

For example, inverter 899 leads the coalition to eliminate the lower voltage limit violations

from 9:25 to 10:25, while inverter 617 takes the leader position in the middle of the day to

solve the over-voltage problems. The PV inverters on phase c belong to the same coalition
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for most of the time. However, inverter 539 separates from inverter 342 at 13:45 and thus

inverter 539, 778, 701 and 780 stop absorbing reactive power until 14:00. This happens as

the voltage of these inverters are relatively low during this period.
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Figure 2.16: Diagrams of the unbalanced test feeder. (a) Phase a, (b) Phase b, (c) Phase c

.
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Figure 2.17: Voltage profiles of the network over a 24-hour period. (a) Without PV reactive

power compensation; (b) With the proposed strategy.
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Figure 2.18: Utilization ratios of the smart PV inverter over a 24-hour period. (a) Phase a;

(b) Phase b; (c) Phase c.
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2.8 Summary

This chapter developed and demonstrated a dynamic distributed control strategy to form

coalition of PV inverters and their coordinated control for voltage regulation in distribution

networks. This strategy is required when uneven integration of PV capacity creates large

voltage differences along a feeder. On the slower time-scale, the coalition formation scheme

separates opposing voltage violation problems and assigns them to groups of inverters with

similar voltage margins and sufficient regulation capacity. On the faster time-scale, the

feedback-based leader-follower consensus algorithm guides PV inverters within each coalition

to eliminate the voltage violations while reaching a consensus on their utilization ratios. This

control strategy effectively maintains voltages within the acceptable range while ensuring a

sufficient and fair utilization of the available voltage regulation resources.
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Chapter 3

BI-LEVEL VOLT/VAR OPTIMIZATION IN DISTRIBUTION
NETWORKS WITH SMART PV INVERTERS

Optimal Volt/VAR control (VVC) in distribution networks relies on the effective coordi-

nation between the conventional utility-owned mechanical devices and the smart residential

photovoltaic (PV) inverters. Typically, a central controller carries out a periodic optimiza-

tion and sends setpoints to the local controller of each device. However, instead of tracking

centrally dispatched setpoints, smart PV inverters can cooperate on a much faster timescale

to reach optimality within the PV inverter group. To accommodate such a PV inverter group

in the VVC architecture, this chapter proposes a bi-level optimization-based framework. The

upper-level determines the setpoints of the mechanical devices to minimize the network ac-

tive power losses, while the lower-level represents the coordinated actions that the inverters

take for their own objectives. The interactions between these two levels are captured in

the bi-level optimization model, which is solved based on the Karush-Kuhn-Tucker (KKT)

conditions. This framework fully exploits the capabilities of the different types of voltage

regulation devices and enables them to cooperatively optimize their goals. Case studies on

a typical distribution network with field-recorded data demonstrate the effectiveness and

advantages of the proposed approach.
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3.1 Introduction

Volt/VAR control (VVC) manages voltage levels and reactive power in distribution networks

to reduce active power losses and maintain acceptable voltage magnitudes using on-load

tap changers (OLTCs) and capacitor banks (CBs) [51]. However, the high penetration of

residential rooftop photovoltaic (PV) generation has caused rapid voltage fluctuations that

these conventional mechanical devices are not designed to handle [6, 7]. On the other hand,

smart PV inverters with sensing, communicating and computing capabilities are able to act

autonomously to provide fast and flexible reactive power compensation for voltage regulation

[11]. They are thus encouraged to participate in VVC by the IEEE 1547 Standard [18].

This chapter develops a bi-level optimization framework for the VVC in distribution

networks. The upper-level optimization determines the periodic dispatch of the slower me-

chanical devices to minimize the network active power losses. It is formulated as a mixed

integer second order cone programming (MISOCP) model that contains a nested lower-level

optimization as the constraint on PV inverter reactive output. This optimization problem is

intended to be centrally solved in an Advanced Distribution Management System (ADMS)

based on the network information after replacing the lower-level with its Karush-Kuhn-

Tucker (KKT) conditions. The lower-level optimization takes the settings of OLTCs and

CBs as input parameters and models the coordinated outputs of the smart PV inverters.

These inverters remove sudden voltage limit violations between upper-level dispatch periods

while optimizing their group objectives, e.g. minimizing the reactive power cost or equitably

sharing the reactive power contributions for voltage regulation. The lower-level optimization

is solved in a distributed manner as the PV inverters adjust their outputs autonomously

based on real-time voltage measurement and neighboring communication.

3.1.1 Literature Review

Various strategies have been proposed for the coordinated voltage regulation in distribution

networks. Based on the autonomy level of the inverters, they can be broadly classified into
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three categories.

Strategies of the first category periodically optimize the setpoints and send them to the

local controller of each device, which implements these setpoints directly. The autonomous

VVC control capability of the smart inverters is thus not fully exploited. For example, Jha

et al. [52] solve a mixed integer linear programming (MILP) problem to set the CBs and

OLTCs. While the inverters are dispatched based on the solution of a nonlinear programming

(NLP) problem that more accurately models the power flows. To accelerate the optimization

and maintain customer data privacy, the modified alternating direction method of multipliers

(ADMM) that can handle discrete variables is used in [53, 54] to solve the VVC optimization

problem. Two-stage stochastic optimization [55] and robust optimization [56] algorithms

have been implemented to handle uncertainty on the renewable generation in the optimal

reactive power dispatch. These control strategies are open-loop and implement feedforward

optimization techniques which rely on the network information and forecasts. They are

generally less robust to model and forecast errors and also less effective in dealing with fast

voltage fluctuations [57].

In the second category of strategies, the smart PV inverters follow the centrally-optimized

setpoints while they also adjust their reactive output based on real-time local measurements

to improve the control performance. In [58], the inverter generates the reactive power dis-

patched by the central controller when its local voltage is within the allowable operational

limits, otherwise the droop control is activated. Malekpour et al. further added a distributed

algorithm to allocate the voltage regulation burden among inverters in proportion to their

capacities [59]. Besides the reactive power setpoint, inverters can also be controlled to track

the voltage references [60]. Instead of just considering the upper and lower reactive power

limits of the inverters, several authors [61, 62, 63] model their reactive power generation as

a function of the local voltage in the optimization model, which allows the central controller

to also optimize the local droop control parameters for the PV inverter. These multi-level

control strategies combine the system-wide feedforward optimization with the real-time local

feedback control to increase robustness to forecast errors and fast fluctuations in renewable



45

generation. However, the local linear droop control in [58, 60, 61, 62, 63] may fail to maintain

the real-time voltage within the acceptable range when the locally available reactive power is

insufficient [64]. The reactive power capacity of the whole system is utilized in [59], while its

reactive power reallocation can cause a large deviation between the actual inverter output

and the optimized setpoint and affect the optimality of the VVC strategy.

The third category of strategies emerged recently with the development of smart inverter

technology. These inverters continuously and autonomously adjust their output while coop-

erating with each other through neighboring communication. Strategies in [24, 25] implement

the leader-follower consensus algorithm, which enables the smart inverters to regulate the

network voltage magnitude while sharing the regulation burden according to their maxi-

mum available capacity. Other strategies rely on the distributed optimization methodology,

such as dual ascent algorithm [64, 65, 66, 21] and primal-dual gradient algorithm [22]. By

emulating the iterative steps of these algorithms, the PV inverter group achieves optimal

coordination in real-time to remove local voltage violations while minimizing power losses

[64, 65, 66], reactive power cost [21] or a weighted sum of them both [22]. These strategies

fully exploit the flexibility and fast response capability of smart PV inverters. Moreover,

they do not need to model the variations of load or renewable generation explicitly, instead,

the smart PV inverters adjust their output by constantly monitoring the dynamic system.

Such feedback optimization-based strategies are more robust to model error and uncertainty

in renewable generation, and they can also improve the dynamic performance of the closed-

loop system [57]. However, the slower mechanical devices with discrete control actions are

unable to participate in such strategies and they still rely on the central controller. As the

PV inverters gain more autonomy, their interactions with the centrally controlled mechan-

ical devices need to be handled more carefully. Otherwise, unnecessary control actions or

even operational conflicts might occur [67]. Furthermore, because they are owned by the

consumers, the VVC objective of the PV inverters can be different from that of the utility’s.

Assuming PV inverters track the setpoint from the utility and simply modelling its reactive

output as box or quadratic constraint while optimizing the mechanical devices becomes less
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valid. A new frameworks is needed to effectively incorporate the smart PV inverter in VVC.

3.1.2 Contribution

The main contributions of this chapter are:

• A bi-level optimization model which captures the interactions between the utility and

consumer-owned devices. The upper-level contains the lower-level as a constraint,

which reflects that the residential PV inverters’ reactive output would influence the

network active power losses. On the other hand, the lower-level takes the upper-level

determined OLTC and CB settings as parameters, as those values would in turn impact

the local voltage magnitude of the PV inverters.

• A solution based on the KKT conditions that guarantees an optimal control of both

the mechanical devices and the PV inverters. The upper-level becomes a solvable

MISOCP model after replacing the lower-level with its KKT conditions. The ADMS

solves this problem to optimally schedule the mechanical devices while taking account

of the PV inverters’ response. The smart PV inverters emulates the KKT condition-

based distributed optimization algorithms to adjust their reactive output with local

voltage measurement, which iteratively solves the lower-level optimization under the

upper-level determined OLTC and CB settings.

• A two-timescale VVC framework which combines the advantages of feedforward and

feedback optimizations. The upper-level deals with the slower voltage variations caused

by regular daily variations in load and PV generation. It makes use of the available net-

work information in the ADMS to achieve a system-wide optimal coordination. On the

real-time scale, the fast and autonomous PV inverters cooperate to remove the instan-

taneous voltage violations, which improves the dynamic voltage control performance

and the robustness of the framework.
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3.1.3 Chapter Organization

The remainder of this chapter is organized as follows. Section 3.2 describes the details of the

bi-level optimization model. Section 3.3 presents the solution approach and its implementa-

tion. Section 3.4 demonstrates and analyzes simulation results. Section 3.5 summarizes and

concludes.

3.2 Bi-level Optimization Model

This section describes the objectives and constraints of the upper and lower-level optimization

models. The composite bi-level optimization model is then presented.

3.2.1 Upper-level

The upper-level dispatches OLTCs and CBs to minimize the network active power losses

over the time horizon {1, ..., tH}:

F =

tH∑
t=1

∑
(i,j)∈E

rijlij,t. (3.1)

Meanwhile, it must satisfy the following constraints ∀i ∈ N , ∀(i, j) ∈ E , ∀t ∈ {1, ..., tH}.

a) System Operational Constraints : The DistFlow model proposed in [68] has been ex-

tensively used for modeling distribution networks because of its accuracy and computational

efficiency. It formulates the power flow constraints as follows:

Pij,t =
∑

k:(j,k)∈E

Pjk,t + rijlij,t + p̂lj,t − p̂
g
j,t (3.2)

Qij,t =
∑

k:(j,k)∈E

Qjk,t + xijlij,t + q̂lj,t − q
g
j,t − qcj,t (3.3)

vj,t = vi,t − 2(rijPij,t + xijQij,t) + (r2
ij + x2

ij)lij,t (3.4)

lij,tvi,t = P 2
ij,t +Q2

ij,t (3.5)
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Since the equality constraint (3.5) is non-convex, we relax it to an inequality constraint using

the method proposed in [46] to obtain a global optimal solution:∥∥∥ [2Pij,t 2Qij,t lij,t − vi,t
]T ∥∥∥

2
≤ lij,t + vi,t. (3.6)

On the primary and secondary sides of an OLTC, (3.4) is modified as follows:

vj,t
Tij,t

= vi,t − 2(rijPij,t + xijQij,t) + (r2
ij + x2

ij)lij,t (3.7)

where Tij is the squared turns ratio. For each tap position n ∈ {1, ..., NT
ij}, there is a corre-

sponding T nij. Thus,

1

Tij,t
=

NT
ij∑

n=1

wnij,t
T nij

(3.8)

where
NT
ij∑

n=1

wnij,t = 1, wnij,t ∈ {0, 1}, (3.9)

i.e. only one of the auxiliary binary variables wnij,t is nonzero, which specifies the selection

of one turns ratio. Moreover, the nodal voltages and branch currents must be maintained

within the acceptable range:

vi ≤ vi,t ≤ v̄i, (3.10)

lij,t ≤ l̄ij. (3.11)

b) Control Devices Operational Constraints : The tap change between two dispatch peri-

ods, as well as the total tap change of the OLTC during the whole dispatch horizon should

be limited to reduce mechanical wear and tear:

|nTij,t − nTij,t−1| ≤ ∆n̄Tij (3.12)

tH∑
t=1

|nTij,t − nTij,t−1| ≤ n̄Tij (3.13)

nTij,t ∈ {1, ..., NT
ij}. (3.14)
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Similarly, the operational constraints for CBs are:

|nCi,t − nCi,t−1| ≤ ∆n̄Ci (3.15)

tH∑
t=1

|nCi,t − nCi,t−1| ≤ n̄Ci (3.16)

nCi,t ∈ {0, ..., NC
i }. (3.17)

The reactive power injection from CBs is

qci,t =
nCi,t
NC
i

QC
i . (3.18)

The equality constraint on the PV inverters reactive output is a nested optimization problem

corresponding to their coordinated autonomous operation:

qgt ∈ arg min
qgt

{f(qgt ) : G ≤ 0} (3.19)

where qgt is the vector containing qgi,t, ∀i ∈ NG. f(qgt ) and G are the objective function and

set of constraints of the lower-level optimization, which are detailed in the next subsection.

3.2.2 Lower-level

In the lower-level, the PV inverters cooperate to achieve an optimal utilization of their

reactive power while removing instantaneous voltage limit violations:

min
qgt

f(qgt )

s.t. v ≤ vi,t ≤ v̄, ∀i ∈ NG

q
i,t
≤ qgi,t ≤ q̄i,t, ∀i ∈ NG

(3.20)

where q̄i,t and q
i,t

are the upper and lower PV inverter reactive output limits, q̄i,t =
√

(sgi )
2 − (pgi,t)

2

and q
i,t

= −q̄i,t. Different objective functions can be set:

a) Minimize Reactive Power Cost : The provision of reactive power for VVC normally

requires excess capacity on the inverters, and thus over-sizing hardware design or active power
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curtailment. The PV inverters could seek to minimize their reactive power cost [21, 22]:

f(qgt ) =
∑
i∈NG

a2
i (q

g
i,t)

2 + bi(q
g
i,t) + ci (3.21)

where ai, bi, ci are synthetic cost parameters.

b) Minimize Network Active Power Losses : The PV inverter group could also minimize

the network active power losses associated with their reactive output. For ease of implemen-

tation, the objective function is usually defined as [64, 65]:

f(qgt ) = (qgt )
TXgg(q

g
t ) (3.22)

where Xgg is a submatrix of X, whose elements are:

Xij := 2
∑

(h,k)∈Pi∩Pj

xhk (3.23)

where Pi is the set of distribution lines on the unique path from the substation to bus i.

Partition X based on i ∈ NG or i /∈ NG:

X =

Xgg Xgl

Xlg Xll

 . (3.24)

Xgg is the submatrix associated with the PV nodes and it is a positive definite matrix [64, 22].

Besides, this objective function also promotes uniform voltage drops [64].

c) Equalize Utilization Ratios : The utilization ratio of an inverter in the VVC is the

proportion of its maximum available reactive power capacity used for voltage regulation, i.e.,

ui = qgi /q̄i. To prevent excessive use and early saturation of certain inverters, the PV inverter

group could cooperate to generate at the same utilization ratio. The leader inverter, typically

the inverter at the end node as it usually experiences the largest voltage deviation, measures

its local voltage to determine the utilization ratio [24, 25]. The lower-level optimization

objective can be formulated as:

f(qgt ) =
∑
i∈NG

Xli

2q̄i,t
(qgi,t)

2 (3.25)
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where l ∈ NG is the index of the leader inverter. The proof is detailed in the Appendix.

Moreover, f(qgt ) can also be defined as a weighted sum of these objectives. For example,

the PV inverter objective function in [22] combines (3.21) and (3.22). For a network that

contains several groups of PV inverters located in different control zones and where there

is no inter-group coordination, the lower-level can be modified into a set of two or more

optimization models. Each of these models describes the coordinated action of a PV inverter

group.

3.2.3 Bi-level Optimization Model

The bi-level optimization can be summarized as follows:

min
nTij,t, n

C
i,t

F

s.t. (3.2)− (3.4), (3.6)− (3.18),

qgt ∈ arg min
qgt

{
f(qgt ) : v ≤ vi,t ≤ v̄,

q
i,t
≤ qgi,t ≤ q̄i,t, ∀i ∈ NG

}
(3.26)

Each of the two optimization tasks has its own objective, constraints and decision variables.

The two levels are coupled because the active network losses depend on the PV inverter

reactive output and the PV inverters’ local voltage magnitude is influenced by the settings

of the mechanical devices. This bi-level optimization model is an extension of the traditional

single-level model. It reduces to the single-level model if we remove the lower-level objective

function and make qgt an upper-level decision variable. This bi-level extension is necessary

to effectively utilize the reactive power from the PV inverters for system-wide VVC while

fully exploiting their autonomous real-time VVC capability.

3.3 Solution Approach and Implementation

This section describes the solution approach and the implementation of the bi-level opti-

mization model. The key idea involves representing the lower-level optimization by its KKT
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conditions. The ADMS and the smart PV inverters operate to ensure these conditions are

satisfied in their own ways.

PVPV PV

ADMS

q𝑔

t t+1 t+2

time

t+3

k = 1, 2, …

…

nij
T

ni
C

q𝑔 q𝑔

• PV & Load Forecast

• Network Model

• PV Objective Function

• 𝑣 • 𝑣 • 𝑣

… …

Switching of OLTCs and CBs

Adjusting of PV inverter reactive output

Input information

Communication

Control action

k = 1, 2, … k = 1, 2, …

Figure 3.1: Overview of the implementation of the bi-level optimization model.

3.3.1 KKT Conditions

With objective function (3.21), (3.22) or (3.25), the lower-level optimization problem (3.20)

is convex. Assume the Slater condition is satisfied, i.e. there exist q
i
< qgi,t < q̄i, ∀i ∈ NG

such that v < vi,t < v̄, ∀i ∈ NG, then this problem can be replaced by its KKT conditions:

∇qgi,t

{
f(qgt ) +

∑
i∈NG

λi,t(v − vi,t) +
∑
i∈NG

λ̄i,t(vi,t − v̄)

+
∑
i∈NG

µ
i,t

(q
i,t
− qgi,t) +

∑
i∈NG

µ̄i,t(q
g
i,t − q̄i,t)

}
= 0

(3.27)

v ≤ vi,t ≤ v̄, q
i,t
≤ qgi,t ≤ q̄i,t (3.28)

λi,t(v − vi,t) = 0, λ̄i,t(vi,t − v̄) = 0 (3.29)

µ
i,t

(q
i,t
− qgi,t) = 0, µ̄i,t(q

g
i,t − q̄i,t) = 0 (3.30)

λi,t, λ̄i,t, µi,t, µ̄i,t ≥ 0 (3.31)

∀i ∈ NG. In which, λi,t, λ̄i,t, µi,t, µ̄i,t are dual variables.
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3.3.2 Control of OLTCs and CBs

As Fig. 3.1 shows, The ADMS dispatches OLTCs and CBs based on a full knowledge of the

network, which includes forecast of the load and PV generation, network model, as well as the

objective function selected by the PV owners. For each dispatch horizon, it constructs the

bi-level optimization model described in Section II and then takes the single-level reduction

approach [69] to replace the lower-level with its KKT conditions. The sensitivity of the

squared voltage to the inverter reactive output ∂vi,t/∂q
g
j,t in (3.27) can be approximated

by Xij [70] or calculated based on the Jacobian matrix. The bi-linear constraint stemming

from the complementary slackness condition can be handled using the big-M method, which

replaces Eqs. (3.29)-(3.30) by:

λi,t ≤Mσi,t, vi,t − v ≤M(1− σi,t) (3.32)

λ̄i,t ≤Mσ̄i,t, v̄ − vi,t ≤M(1− σ̄i,t) (3.33)

µ
i,t
≤Mδi,t, qgi,t − qi,t ≤M(1− δi,t) (3.34)

µ̄i,t ≤Mδ̄i,t, q̄i,t − qgi,t ≤M(1− δ̄i,t) (3.35)

∀i ∈ NG, where M is a large number, σi,t, σ̄i,t, δi,t, δ̄i,t are auxiliary binary variables. Conse-

quently, the bi-level optimization problem becomes a solvable single-level MISOCP problem:

min
nTij,t, n

C
i,t, q

g
t , λi,t, λ̄i,t, µi,t, µ̄i,t

F

s.t. (3.2)− (3.4), (3.6)− (3.18), (3.27), (3.28), (3.31)− (3.35).

(3.36)

The ADMS can solve this problem using off-the-shelf optimization tools. At each dispatch

period t, it delivers the setpoints to the local controllers of OLTCs and CBs via the supervi-

sory control and data acquisition (SCADA) system or the communication link between the

devices and ADMS. These setpoints are then implemented and kept unchanged until the

next dispatch period t+ 1.
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3.3.3 Control of PV Inverters

The PV inverters cooperate to solve the lower-level optimization problem autonomously.

While individual inverters do not have access to global information about the system, they are

able to take rapid control actions by measuring their local voltage magnitude and exchanging

information with other inverters via Wi-Fi, ZigBee or power line communication (PLC).

These capabilities enable them to iteratively adjust their output towards the satisfaction

of the KKT conditions by implementing fully-distributed control strategies [64, 66, 21, 22].

These strategies are of different design, for example, the strategy proposed in [64] adds an

additional feedback loop to deal with the reactive power constraint, while this constraint is

handled by a special quadratic penalty function in [22]. [66] focuses on the limited bandwidth

of the communication link, whereas [66] addresses the delayed communication. However, the

execution of these strategies are similar. As Fig. 3.1 shows, at each iteration cycle k ∈ [t, t+1],

a inverter performs the following four major steps:

• Measure the local voltage magnitude;

• Calculate the control signal based on pre-defined logic;

• Implement the control signal to adjust reactive output;

• Exchange information with neighbors.

This four-step action is similar to one iteration step in the dual ascent or primal-dual gra-

dient algorithms. As these algorithms solve the lower-level optimization problem iteratively,

the inverter output converges to the optimal value asymptotically. The detailed strategies

and theoretical proof of convergence and optimality can be found in [64, 66, 21, 22]. More-

over, the practicability of the feedback optimization-based strategy, such as its robustness

against measurement noise, real-time computational feasibility, effectiveness under asyn-

chronous communication, etc., has been validated by field test results in the real distribution

network [70].
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3.3.4 Discussion

In the implementation, the ADMS follows the feedforward optimization process. It models

the coordinated actions of the PV inverters based on a full knowledge of the network and is

thus able to influence those actions indirectly via changing the PV inverters’ local voltage

magnitude using the OLTCs and CBs. In this way, the ADMS exploits the reactive power

compensation capability of PV inverters for system-wide optimal VVC while respecting their

autonomy. On the other hand, the feedback optimization-based lower-level solution approach

enables the PV inverters to take actions based on the constant monitoring of their local

voltage. The switching of the mechanical devices are essentially taken into consideration

when they optimize their goals.

3.4 Case Studies

3.4.1 Test System

Fig. 3.2 shows the single-line diagram of the balanced IEEE 33-bus radial distribution net-

work [68] used to demonstrate the performance of the proposed VVC framework. The green

dashed lines represent the communication links between neighboring inverters. The nonlinear

AC power flow model of the test system was constructed using MATPOWER [45]. Table 3.1

shows the capacities of the 12 aggregated residential PV systems. The peak load is assumed

to be 1.25 times the load value in [68]. The 1-minute-resolution daily profiles for PV gener-

ation and load consumption was constructed based on the Pecan Street data set of June 16,

2014 [43]. The hourly PV and load forecast value used by the ADMS are their hourly average

value with a random percent error, ±20% for PV generation and ±10% for load consump-

tion. Fig. 3.3 shows their normalized profiles and forecast values over the course of one day.

Each PV inverter is oversized by 10% so it can provide reactive power compensation while

generating at its rated active power capacity [18]. An OLTC allows for ±0.05 p.u. voltage

regulation connects the network with the substation. Each of its 17 tap positions, labeled as

{−8,−7, ...,−1, 0, 1, ..., 7, 8}, provides 0.00625 p.u. regulation. 3 identical CBs are installed
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at nodes 6, 16 and 24. The acceptable voltage range is 0.95 p.u. to 1.05 p.u. The upper-level

optimizes over a 3-hour horizon and sends hourly setpoint to the OLTC and CBs. The PV

inverter objective function in the lower-level is f(qgt ) = a2
i (q

g
i,t)

2 + (qgt )
TXgg(q

g
t ) where ai is a

synthetic value in the range of [0.5, 1.5]. The PV inverters implement the strategy proposed

in [22] to adjust their output every 0.5 seconds. Table 3.2 summarizes the rest operational

parameters of the mechanical devices.

Fig. 3.4 shows the voltage profiles of the network when no control strategy is imple-

mented. Due to the fast fluctuation in load and PV generation, the voltage magnitude

changes rapidly. Moreover, the system experiences over-voltage issues at mid-day, when the

high PV generation exceeds the local load and causes reverse power flow. On the other hand,

after 19:00, the heavy load leads to under-voltage problems.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

26 27 28 29 30 31 32 33

PVPVPV

PV

PV

23 24 25

19 20 21 22

PV PV

PV

PV PV

PV

PV

0

Figure 3.2: Single-line diagram of the test system.

3.4.2 Results and Analysis

Fig. 3.5 shows the voltage regulation results with our proposed optimal VVC. Over the course

of the day, all the voltage regulation devices cooperate together and effectively constrain the
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Table 3.1: Capacities of the PV Systems

Capacity (kW) 200 220 240 250 300 450 600 650

Node 3, 20 7 18 33 4, 8, 10 14 32 29, 31

Table 3.2: Parameters of the Mechanical Devices

∆n̄Ci n̄Ci ∆n̄Tij n̄Tij NC
i QC

i (kVAr)

1 2 2 5 3 300
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Figure 3.3: Normalized daily profiles and forecast of PV and load.
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Figure 3.4: Network voltage profiles without any control.

voltage profiles within the specified range. Moreover, the average daily active power loss

across the network is reduced by 22.48%, from 101.26 kW to 78.50 kW.
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Figure 3.5: Network voltage profiles with the proposed control.

Fig. 3.6 shows the switching actions of the mechanical devices and Fig. 3.7 illustrates the
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PV inverter reactive power output. Before 19:00, the ADMS adjusts the OLTC tap position

and the number of CB units to maintain a relatively high voltage level across the network so

as to reduce the active power losses. During this period, since the ADMS only updates the

setpoints of the OLTC and CBs on an hourly basis and forecast errors arise, voltage limit

violations occur within the dispatch period. When the fast-reacting PV inverters detect these

violations, they cooperate to remove them at the minimal value of their group objective. For

example, the rapid increase in active PV generation leads to an instant over-voltage problem

at 11:53. In response, the PV inverters absorb reactive power to lower the voltage. Moreover,

as shown in Fig. 3.8, the reactive power outputs of the PV inverters (solid lines) converge

to the optimal solution of problem (3.20) (dashed lines) within about 30 seconds, thereby

illustrating their ability to solve the lower-level optimization problem cooperatively. After

19:00, however, the ADMS determines that it can minimize the upper-level optimization

objective by forcing the PV inverters to provide reactive power to mitigate the loading of

the distribution lines. Therefore, the ADMS switches down the mechanical devices and

deliberately sets the voltage magnitude of node 18 at the lower voltage limit. As a result,

the PV inverter group maintains a constant reactive power provision to the network, which

alleviates the loading of the distribution network and reduces the active power losses. This

reactive power varies in response to the fast fluctuations of the load consumption and the

switching of the mechanical devices.

3.4.3 Comparison with other Approaches

The proposed bi-level optimization model is necessary to accommodate the coordinated

actions of the PV inverters in the VVC architecture. We demonstrate this by comparing the

above simulation results with two other approaches where the PV inverters still implement

the strategy proposed in [22] but the OLTC and CBs are dispatched using two traditional

single-level optimization models. These two models are obtained by removing the lower-

level objective function from the bi-level model and treating the PV inverter reactive power

outputs in two ways:
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Figure 3.6: Switching actions of the mechanical devices.
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61

0 10 20 30 40 50 60

Time (s)

-30

-25

-20

-15

-10

-5

0
R

e
a
c
ti

v
e
 P

o
w

e
r 

(k
V

a
r)

3

3
*

8

8
*

29

29
*

32

32
*

Figure 3.8: PV inverter reactive output iteration process at 11:53.

• Model 1: Assume the PV inverters follow the centrally-dispatched setpoints and include

qgt as a decision variable;

• Model 2: Ignore the PV inverter reactive power output and remove qgt from the opti-

mization model.

We compare these models based on the theoretical power loss obtained by solving the op-

timization problem and based on the actual power loss observed after implementing the

optimized switching plans for the OLTC and CBs. Table 3.3 shows the theoretical and ac-

tual average daily active power loss P ∗loss and Ploss. Fig. 3.9 and Fig. 3.10 show these profiles

over the 24-h simulation period. For the theoretical power loss, since Model 1 assumes that

the PV inverters are directly controllable, it achieves the minimum value. On the other

hand, as Model 2 does not use the PV inverters at all, the resulting loss is thus the highest.

Our proposed model does not assume the PV inverters can be directly controlled, while

it allows the ADMS to indirectly influence their reactive output when necessary. Hence it

achieves a medium level power loss result. However, when it comes to the actual power loss,
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Model 1 results in the highest value among the three cases. In particular, the actual loss is

much higher than the theoretical value. This is mainly because Model 1 fails to model the

actual operation of the coordinated PV inverter group. It is thus overly optimistic about

the participation of the consumer-owned PV inverters in the optimization of the utility’s

VVC objective. By contrast, the theoretical loss with Model 2 is close to the actual loss.

However, because this model is unable to use the reactive output from the PV inverters, its

actual loss is higher than that with our proposed model. In particular, during the peak load

period (19:00-22:00), the average power loss with Model 2 is 11% higher than the loss with

our bi-level model, which demonstrates the benefits of incorporating the autonomous PV

inverters in the utility’s VVC optimization.

Table 3.3: Average Daily Active Power Loss

Bi-level Model 1 Model 2

Theoretical value P ∗loss (kW) 75.92 59.70 79.58

Actual value Ploss (kW) 78.50 92.82 81.82

3.5 Summary

This chapter proposes a bi-level optimization-based VVC framework for distribution net-

works with both conventional voltage control devices and smart residential PV inverters.

The centralized upper-level optimization determines the setpoints for the OLTCs and CBs

on an hourly-basis by solving a MISOCP optimization problem based on single-level reduc-

tion approach. This level takes advantages of the network information available to the ADMS

and achieves system-wide optimal coordination among all control devices. The distributed

lower-level optimization exploits the autonomous capability of the smart PV inverters by

enabling them to adjust their outputs based on local voltage measurements and neighboring
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Figure 3.9: Theoretical daily network active power losses.
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Figure 3.10: Actual daily network active power losses.
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communication. It corrects the sudden voltage violations that occur during the upper-level

dispatch periods and also achieves an optimal utilization of all the available inverter reac-

tive power capacity. This VVC framework successfully captures the interactions between

the mechanical devices and the autonomous inverters. Hence, it facilitates the coordination

between these devices and fully exploits their capabilities for the voltage regulation. This

framework represents an effective and flexible way for the distribution networks to accom-

modate autonomous PV inverters in the VVC architecture.
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Chapter 4

CONCLUSION

This dissertation studies the coordinated voltage regulation for distribution networks with

smart PV inverters. The adaptive coalition formation-based strategy developed in Chapter

2 enables the smart PV inverters to determine their scope of cooperation in response to

the constantly-changing network operating condition. In this way, the potential conflict

between voltage regulation and reactive power sharing can be effectively solved. The PV

inverters within each coalition are thus able to eliminate real-time voltage violations while

achieving an equal utilization ratio of their available reactive capacities. In Chapter 3, we

extended the coordination scope into the whole distribution network, which includes both the

autonomous smart PV inverters and the utility-dispatched mechanical devices. We applied

the bi-level optimization model to capture the interactions between these two types of voltage

regulation devices. Hence, the system operator would be able to schedule the mechanical

devices while taking account of the voltage regulation actions of the smart PV inverter group.

The corresponding two-timescale voltage regulation framework fully exploits the capabilities

of the available devices to improve the dynamic voltage regulation performance and enhance

the economical efficiency of the entire distribution network.

4.1 Key Results

The results showed that the adaptive coalition formation-based strategy proposed in Chapter

2 possesses the following properties:

• It provides an effective way for the smart PV inverters to achieve self-organization.

Compared with traditional network partition strategy, the coalition formation scheme

is more flexible and has better scalability.
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• It coordinates the actions of the smart PV inverters within each coalition by emulating

the iteration process of a distributed optimization algorithm, which guarantees the

elimination of voltage violations and the convergence to the same utilization ratio.

• It is robust to communication latency and failure, and also generalizes well to networks

with varying inverter quantities, locations and capacities.

In Chapter 3, we developed a two-timescale VVC framework based on the bi-level opti-

mization model. The properties of this framework can be summarized as follows:

• It fully exploits the autonomous capability of the smart PV inverters to remove real-

time voltage violations, which improves the dynamic voltage regulation performance

and the robustness of the framework to the variability of load and PV active generation.

• It makes a sufficient use of the information available in the ADMS to optimally schedule

the mechanical devices while considering the response of the smart PV inverters, which

minimizes the network active power losses.

• It facilitates the coordination between different types of voltage regulation devices and

thus effectively accommodates the autonomous and cooperative smart PV inverter

group in the overall VVC architecture.

4.2 Suggestions for Future Research

On the basis of the research carried out in this dissertation, problems that merit further

investigation include:

• Addressing the potential data privacy and cyber-attack issues. The cooperation of the

smart PV inverters relies on the exchange of their state information among neighboring

inverters. During the transmission process, either wired or wireless, these sensitive

information are vulnerable to hackers [71]. The strategy proposed in Chapter 2 can
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be improved with data encryption technology [72] or augmented privacy-preserving

consensus algorithms [73, 74]. On the other hand, the cooperation of the smart PV

inverters is conducted on the basis that all inverters are trustworthy and reliable.

However, in the real-world implementation, cyber-attacks like false data injection and

denial-of-service can happen [75]. Further study is needed to improve the robustness

of the strategy proposed in Chapter 2 under various cyber-attacks.

• Handling the uncertainties in the PV active generation. The lower-level of the frame-

work proposed in Chapter 3 organizes the smart PV inverters to eliminate the real-time

voltage violations. However, the upper-level schedules the mechanical devices based on

an hourly forecast of PV active power generation, where there can be forecast errors

and uncertainties. Robust optimization algorithms [76, 77] can be employed to improve

this upper-level.

• Applying data-driven algorithms for the optimal voltage regulation. Besides the PV

active power forecast, errors and uncertainties also exist in the distribution network

models. Data-driven optimal control strategies have been proven effective in dealing

with such issues [78, 79, 80, 81, 82]. It can be expected that this will continue to be

an exciting research field in the future.

• Designing the smart inverter reactive power compensation incentive mechanism. The

small-scale PV inverters in the distribution networks are currently owned and operated

by the power consumers. The utility does not have the authority to coordinate their

control actions directly. Although the strategies we proposed in Chapter 2 and 3

support a flexible plug-and-play operation. The effectiveness of these strategies depends

on the amount of PV inverters that are willing to participate in the voltage regulation.

Incentive mechanisms which carefully balance the cost and benefit from both the utility

and the consumer sides worth further exploration.
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[21] S. Magnússon, G. Qu, and N. Li. Distributed optimal voltage control with asynchronous
and delayed communication. IEEE Transactions on Smart Grid, 11(4):3469–3482, 2020.

[22] G. Qu and N. Li. Optimal distributed feedback voltage control under limited reactive
power. IEEE Transactions on Power Systems, 35(1):315–331, 2020.



70

[23] G. Mokhtari, A. Ghosh, G. Nourbakhsh, and G. Ledwich. Smart robust resources control
in LV network to deal with voltage rise issue. IEEE Transactions on Sustainable Energy,
4(4):1043–1050, 2013.

[24] Y. Wang, K. T. Tan, X. Y. Peng, and P. L. So. Coordinated control of distributed energy-
storage systems for voltage regulation in distribution networks. IEEE Transactions on
Power Delivery, 31(3):1132–1141, 2016.

[25] M. Zeraati, M. E. Hamedani Golshan, and J. M. Guerrero. A consensus-based cooper-
ative control of PEV battery and PV active power curtailment for voltage regulation in
distribution networks. IEEE Transactions on Smart Grid, 10(1):670–680, 2019.

[26] M. Zeraati, M. E. H. Golshan, and J. M. Guerrero. Voltage quality improvement in
low voltage distribution networks using reactive power capability of single-phase PV
inverters. IEEE Transactions on Smart Grid, 10(5):5057–5065, 2019.

[27] G. Mokhtari, G. Nourbakhsh, and A. Ghosh. Smart coordination of energy storage units
(ESUs) for voltage and loading management in distribution networks. IEEE Transac-
tions on Power Systems, 28(4):4812–4820, 2013.

[28] Y. Wang, M. H. Syed, E. Guillo-Sansano, Y. Xu, and G. M. Burt. Inverter-based
voltage control of distribution networks: A three-level coordinated method and power
hardware-in-the-loop validation. IEEE Transactions on Sustainable Energy, 11(4):2380–
2391, 2020.

[29] B. Horling and V. Lesser. A survey of multi-agent organizational paradigms. Knowledge
Engineering Review, 19(4):281–316, 2004.

[30] V. C. Gungor and F. C. Lambert. A survey on communication networks for electric
system automation. Computer Networks, 50(7):877–897, 2006.

[31] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents
with switching topology and time-delays. IEEE Transactions on Automatic Control,
49(9):1520–1533, 2004.

[32] D. Ye, M. Zhang, and D. Soetanto. Decentralized dispatch of distributed energy re-
sources in smart grids via multi-agent coalition formation. Journal of Parallel and
Distributed Computing, 83:30–43, 2015.

[33] F. Luo, Z. Y. Dong, G. Liang, J. Murata, and Z. Xu. A distributed electricity trading
system in active distribution networks based on multi-agent coalition and blockchain.
IEEE Transactions on Power Systems, 34(5):4097–4108, 2019.



71

[34] F. Ren, M. Zhang, D. Soetanto, and X. Su. Conceptual design of a multi-agent system
for interconnected power systems restoration. IEEE Transactions on Power Systems,
27(2):732–740, 2012.

[35] B.A. Faiya, D. Athanasiadis, M. J. Chen, S. McArthur, I. Kockar, H. Lu, and F. de
León. A self organizing multi agent system for distributed voltage regulation. IEEE
Transactions on Smart Grid, 2021.

[36] P. Li, C. Zhang, Z. Wu, Y. Xu, M. Hu, and Z. Dong. Distributed adaptive robust volt-
age/var control with network partition in active distribution networks. IEEE Transac-
tions on Smart Grid, 11(3):2245–2256, 2020.

[37] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.
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Appendix A

SUPPLEMENTARY MATERIAL TO CHAPTER 3

A.1 Nomenclatures

Sets and Indices

E , ij Set, index of all the network branches

NG Set of nodes with PV

N , i Set, index of all the network nodes

k Index of the iteration cycles in the lower-level

t Index of the dispatch periods in the upper-level

Variables

lij Squared current magnitude on branch ij

nTij Tap position of the OLTC on branch ij

nCi Number of the CB units at node i

Pij, Qij Active, reactive power flow on branch ij

qgi Reactive power output of the PV at node i

vi Squared voltage magnitude at node i

Parameters
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l̄ij Upper limit for the squared current magnitude on branch ij

n̄Tij Maximum total tap change of the OLTC on branch ij over the dispatch horizon

n̄Ci Maximum total change of the CB units at node i over the dispatch horizon

q̄gi , q
g
i

Upper, lower limit of the reactive power output of the PV at node i

v̄i, vi Upper, lower limit for the squared voltage magnitude at node i

∆n̄Tij Maximum tap change of the OLTC on branch ij between two dispatch periods

∆n̄Ci Maximum change of the CB units at node i between two dispatch periods

p̂gi , p
g
i Forecast, actual active power output of the PV at node i

p̂li, q̂
l
i Forecast active, reactive load at node i

NT
ij Total tap positions of the OLTC on branch ij

NC
i Total number of the CB units at node i

QC
i Total capacity of the CB units at node i

rij, xij Resistance, reactance of branch ij

sgi Capacity of the PV inverter at node i

A.2 Proof of Objective Function (3.25)

The lower-level optimization model for equalizing the utilization ratios can be summarized

as follows (the subscript t is omitted in this section):

min
qg

∑
i∈NG

Xli

2q̄i
(qgi )

2

s.t. v ≤ vgl ≤ v̄,

q
i
≤ qgi ≤ q̄i, ∀i ∈ NG

(A.1)
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where vgl is the local voltage of the leader inverter. The voltage constraint v ≤ vi ≤ v̄,

∀i ∈ NG in (3.20) is replaced by v ≤ vgl ≤ v̄ here because the the utilization ratio of the

inverter group is determined solely by this voltage. Assume problem (A.1) is feasible and

the Slater condition is satisfied, i.e. there exist q
i
< qgi < q̄i, ∀i ∈ NG such that v < vgl < v̄,

given the strong convexity of the cost function, this problem has a unique optimal solution.

To prove that this optimal solution promotes an equal utilization ratio in the PV inverter

group, we first ignore the reactive power constraint and obtain the following Lagrangian

function:

L(qgi , ξ, ξ̄) =
∑
i∈NG

Xli

2q̄i
(qgi )

2 + ξ(v − vgl ) + ξ̄(vgl − v̄) (A.2)

where ξ and ξ̄ are the dual variables for the lower and upper voltage limit constraints. The

derivative of L(qgi , ξ, ξ̄) is:

∇qgi
L(qgi , ξ, ξ̄) =

Xli

q̄i
qgi + (ξ̄ − ξ)∂v

g
l

∂qgi
(A.3)

where ∂vgl /∂q
g
i is the sensitivity of the leader inverter’s local voltage to inverter i’s reactive

output. By approximating it as Xli [70] and setting ∇qgi
L(qgi , ξ, ξ̄) = 0, we obtain the critical

point:

qgi,unc = q̄i(ξ − ξ̄). (A.4)

This is the critical point when the reactive output is unconstrained. The solution to the

constrained optimization problem (A.1) is obtained by projecting qgunc onto the set of feasible

reactive output region. Due to the special structure of the objective function, this can be

handled by projecting each qgi,unc, ∀i ∈ NG to its independent bounds [q
i
, q̄i]. Details of the

proof can be found in [21]. Thus, we have the constrained optimizer:

qgi,opt =
[
q̄i(ξ − ξ̄)

]q̄i
q
i

. (A.5)

The utilization ratio of the inverter is:

ui =
qgi,opt

q̄i
=
[
(ξ − ξ̄)

]1
−1
. (A.6)

That is, a group of PV inverters that cooperate to solve the optimization problem (A.1) will

converge on the same utilization ratio.
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