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Abstract 
 

In many wholesale electricity markets, the demand-side is merely treated as a 

forecasted load to be served under all conditions: balancing generation and load is 

done almost entirely through actions taken from the supply side. Likewise, end-

consumers in retail markets are rarely offered time-varying prices that reflect the 

underlying costs of serving the system load. Without active demand-side 

participation in closing the gap between the retail and wholesale markets, generators 

have less incentive to sell their capacities at true cost. This could lead to market 

failures in forms of price spikes, which is ultimately endured by the end consumers.  

 

It has been widely recognised that consumers could adjust their demand in response 

to time-varying prices. However, most analyses did not consider the fact that 

consumers might want to make up for the fact that they reduced or increased their 

demand in response to variations in prices. In the long run, demand-side participation 

in electricity markets is likely to be roughly energy neutral. This means that 

consumers merely shift some of their demand from one period to another in response 

to price signals. If consumers reduced their demand during periods of high prices, 

and did not catch up at other times, this would mean that the value they put on 

electrical energy is not consistent.  

 

The challenge that remains is how to incorporate these demand responses into 

market design to achieve the efficient market performance. To achieve this goal, the 

economic feasibility of demand-side participation has to be evaluated. This is done 

mainly from the perspective of an energy neutral industrial consumer in this thesis. 
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Chapter 1  

Introduction 
 

1.1 OBJECTIVE AND MOTIVATION 
 

The absence of Demand-Side Participation (DSP)1 has been noted as the prime 

reason for causing the price spikes, shortages, and exercises of market power that 

have plagued several electricity markets for the past few years. Ever since 

Schweppe’s seminal work on spot pricing of electricity (Schweppe et al., 1988), it 

has been widely recognised that demand-side participation would have a significant 

impact on the operation of competitive electricity market.  

 

Many of the competitive electricity markets in operation today are characterised by a 

paradigm where generators bid to supply a fixed amount of forecasted load. The 

market then clears at a price set by the marginal price of the most expensive 

generator scheduled to serve the forecasted load. This is a “fake” market in the sense 

that the demand-side does not assume any active role in the price setting process. 

The demand-side is treated as a load to be served under all conditions2. It can be 

shown that the overall benefit that derives from trading is optimal when suppliers 

and consumers in a competitive market are allowed to operate freely and the price 

settles at the intersection of the supply and demand curves (Kirschen and Strbac, 

2004). The design of the electricity market should therefore approximate a “real” 

market, where interactions between the supply and demand-side determine the 

market equilibrium. Without demand-side participants actively responding to the 

dynamic wholesale prices, generators would have less incentive to bid closer to their 

                                                 
1 Throughout the thesis, the term Demand-Side Participation (DSP) is used to refer to the participation 
of retailers or consumers either directly or indirectly in electricity markets, by seeing and responding 
to prices as they change over time. It is used interchangeably with Demand Response (DR) 
2 This is deemed a reasonable representation of actual demand because end-consumers are largely 
insensitive to hourly wholesale price changes. 
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true marginal cost in the electricity markets and so electricity prices could not be set 

closer to the perfectly competitive market price.  

 

As it is not cost-effective to store electrical energy in bulk, this can result in extreme 

price volatility due to shortages during times of high demand. This market behaviour 

has already been exhibited in the wholesale markets of today, with prices during 

peak demand periods reaching more than 100 times normal market prices (Caves et 

al., 2000). Inefficient or high marginal cost generators are installed just to supply 

this peak demand during such extreme events. This results in significant under-

utilisation of the installed generators during off-peak periods. A more economical 

way to design the electricity network would be to induce reduction of system load at 

peak periods through demand-side participation.  

 

To understand how demand-side participation functions in an electricity market, it is 

necessary to introduce the economic characteristics of demand for electricity. The 

electricity market involves sellers (supply) and buyers (demand) negotiating the 

exchange of electricity commodity. Supply is determined by the operating capability 

and the availability of existing generators while demand is mainly affected by the 

daily consumption patterns of the energy consumers. When there are supply 

restricting and demand enhancing events, the wholesale price can be expected to be 

higher than average. According to microeconomic theory, consumers will increase 

demand up the point where the cost of consumption is equal to the marginal benefits 

obtained from the consumption (Kirschen, 2003). Hence, increasing the price of 

electricity by small amount should decrease demand and vice versa. This behaviour 

is called the price elasticity of demand, which is defined as the ratio of the relative 

change in demand to the relative change in price. The price elasticity of demand for 

electricity is said to be elastic if a given change in price yields a larger change in 

demand or inelastic if the opposite holds, 

 

dQ
Q d
πε

π
= ⋅   (1.1) 

 

where ε  is elasticity of demand, Q  is the quantify of electricity purchased, π  is the 

price of electricity.  
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Figure 1.1 Illustration of how price sensitive of demand might response to time varying prices 

 

However, if retail electricity consumers purchase electricity on regulated and time 

invariant prices, they have no incentive to respond to wholesale prices. Figure 1.1 

illustrates the mechanism of price spikes and how price elasticity of demand can 

affect electricity market clearing prices. The key factors behind price spikes can be 

explained by the shifting of the supply curve. When supply is restricted due to 

disruptions such as unexpected generation outages, transmission constraints or even 

strategic biddings, the supply curve, S may be shifts leftward to S’. As shown in this 

example, substantial reduction of price ( highhigh ππ −′ ) can occur when even a small 

fraction of the load ( highhigh QQ −′ ) responds to varying prices.  

 

For these reasons, demand-side participation has been recognised as a key element in 

closing the gap between retail and wholesale electricity markets. The challenge that 

remains is how to incorporate demand-side participation into market design to 

achieve the most efficient and effective market performance. To achieve this goal, 

the economical viability of demand-side participation has to be evaluated. 

 

That is: what’s in it for the demand-side?  

 

Hence, the objective of this research project is to investigate the issues related to the 

participation of demand-side in organised energy markets. To perform this 
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investigation, mathematical models of market participants’ behaviours and a market 

mechanism are developed to quantify the economic impacts of demand-side 

participation. Cost/Benefit evaluations obtained from this approach are hypothetical 

and speculative and they are in contrast with performance-based studies, which 

measure the actual delivered value of demand response programs implemented in 

existing markets. The following section describes the main aims of the research 

project in more details.  

 

1.2 AIMS OF THE RESEARCH 
 

Before we delve into the possible roles of DSP within a competitive market, it is 

useful to introduce the characteristics of such a market. A competitive electricity 

market generally can take two forms of trading methods: bilateral trading 

(decentralised) or electricity pool (centralised).  

 

In a decentralised market, participants enter into contracts without interference from 

a third party. As the trading only involves two parties, a buyer and a seller, this form 

of securing a contract is called bilateral trading. Bilateral trading offers potential 

benefits and opportunities that are not available through the pool-based market, for 

example, the flexibility to specify terms and conditions on a contract (Shahidehpour 

et al., 2002). The disadvantages cited for bilateral trading are inefficiency and 

reduced reliability due to lack of coordination from a central authority (Stoft, 2002).  

 

The focus of this research project is on the centralised pool market model and this 

section attempts to give a brief explanation on how the centralised model functions. 

The pool market provides a mechanism to determine the market equilibrium of the 

interactions between the suppliers and consumers in a systematic way while there are 

several variations of the pool model it generally functions in the following manner. 

 

The pool operator accepts bids from suppliers and consumers and then dispatches 

generation and load in an economic manner based on the characteristics of the bids. 

The suppliers and consumers do not interact with one another directly, but only 

indirectly through the pool operator. The benefit of this arrangement is that the pool 
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operator can have better control over managing the transmission network congestion 

and procuring sufficient ancillary services to ensure smooth operation of the system. 

The shortcomings attributed to a pool include gaming opportunities (Green, 2000) 

and also inequities caused by uplift payments (Galiana et al., 2003). In some markets, 

the pool operator’s task of matching bids and maintaining the security of the system 

are assigned to separate organizations (Arroyo and Conejo, 2002). The economic 

organization is called the market operator (MO), while the technical organization is 

called the independent system operator (ISO). 

 

The methods that have been used to dispatch supply and demand economically have 

been based on one of two methods: “pay-as-bid” pricing and last accepted bid. In the 

“pay-as-bid” method, suppliers and sometimes consumers submit bidding curves to 

the pool operator and an optimisation routine is used to determine the dispatch 

results. Suppliers are then paid a price according to their bids and similarly 

consumers must also pay a price according to their bids. The “pay-as-bid” pricing 

finds its application in the managed spot market to handle imbalances between 

generation and load when close to the point of delivery 3  (Sioshansi and 

Pfaffenberger, 2006) and also in decentralised market such as BETTA (ELEXON, 

2006). In the last accepted bid method, market participants submit blocks of 

generation and sometimes load along with associated prices. All the supply bids are 

then aggregated and sorted by price in ascending order to create the aggregate supply 

curve. If consumer bidding is included, then the ranking of demand bids are done in 

decreasing order of price to create the aggregate demand curve. In markets such as 

the former Electricity Pool of England and Wales (EPEW), the demand is assumed 

to be inelastic and is set at a fixed value determined using a forecast of load. The 

aggregate demand and supply curves are then plotted against one another, and the 

point of intersection defines the market-clearing price (MCP). All bids to the left of 

this point are accepted and all suppliers are paid based on this market price, 

regardless of their initial submitted prices (as depicted in Figure 1.2). This is why 

this system is also referred to as “uniform pricing”. The same procedure is then 

repeated for each period (hourly or half-hourly) of the planning horizon to obtain the 

pool prices of the market.  
                                                 
3 It should be noted that “point of delivery” refers to some time in the future, not some physical 
location. 
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Figure 1.2 Last accepted bid dispatch model 

 

In the “Demand Bidding” (Elastic Demand) model, the market operator optimises 

the social welfare of supplying and consuming electricity and thus, the demand-

side’s benefit (or gross surplus) of energy consumption is “optimised” centrally. 

Conversely, in the “Fixed Demand” (Inelastic Demand) model, the demand-side is 

responsible for self-scheduling its load to optimise consumption benefits. We will 

now propose the research topics for this project in the following sections.  

 

1.2.1 Optimal Load Shifting  
 

• What are the opportunities of demand-side participation in the Elastic Demand 

and Inelastic Demand models of pool markets?  

• How can the electricity consumers self-schedule their consumption to make the 

most out of pool prices? 

 

As retailers purchase wholesale electricity at volatile rates from the pool market and 

resell them to end users at a fixed tariff, it is in the interest of the retailers to 

minimise risk by exposing some of their consumers to the wholesale pool prices. 

This can be done by offering consumers dynamic pricing4 through marking up of the 

pool prices. On the other hand, large consumers may opt to purchase energy directly 

from the pool at wholesale prices. If the dynamic pricings or pool prices are 
                                                 
4 From now on, dynamic pricing refers to any time varying electricity rates offered by retailers to 
consumers that vary according to time periods  
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determined and made available to the demand-side before the day of the actual trade 

of electricity (ex-ante), the demand-side can adjust its activities and subsequently its 

demand profiles. Consumers can respond to dynamic pricing by shifting demand to 

lower price periods or giving up consumption totally. As consumers are not in the 

business to curtail energy usage, the curtailed load will usually be recovered at 

another period. However, load shifting could be disruptive to consumers’ normal 

activities and consequently, the effectiveness of demand response is limited.  

 

Using a model of an industrial consumer with storage ability, the optimal response to 

dynamic pricings/pool prices without interrupting the consumer’s process is 

illustrated in this thesis. In this model, the industrial consumer is assumed to produce 

a generic product called “widget”. The basic concept is to produce and store widgets 

during lower price periods and uses storage to meet demand for widgets at higher 

price periods or at the end of the day. As electricity is consumed in order to produce 

widgets, electricity is stored indirectly through storing widgets. Hence electricity 

consumption cost savings are achieved through production and storage of widgets 

during lower price periods without disrupting the normal manufacturing process of 

the industrial consumer. 

 

In the Elastic Demand model of pool market, the consumption is optimised centrally 

by the market operator that decides how much demand is allocated to every demand-

side bidders at each market clearing period. Since the storage-type industrial 

consumer is self-optimising its consumption, the consumer may not be well suited to 

participate directly in the Elastic Demand model. Hence, to participate directly in the 

Elastic Demand model, demand-side bids that reflect the industrial consumer’s 

marginal benefit of consuming electricity will have to be formulated. The 

formulation of such demand-side bids is presented in this thesis. Nevertheless, the 

consumer can still participate directly in the Inelastic Demand model, or indirectly in 

the Elastic Demand model through a retailer that offers the consumer “pay-as-you-

go” energy consumption based on the dynamic pricing rates agreed ahead on time 

between the parties. 

 

From simulation results of the optimal storage model, it can be seen that the savings 

in electricity consumption cost achieved through dynamic pricing are influenced not 
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only by the price difference between “peak” and “off-peak” electricity prices; the 

storage and production capabilities of the industrial consumer also play a part in 

restricting the consumer’s ability to response. While dynamic pricing is an 

exogenous factor beyond the consumer’s control, the consumer may however, 

consider expanding both its storage and production capacities to obtain more benefits 

from facing dynamic prices in the long run. Capacity expansion comes at a cost and 

this poses an investment problem to the consumer. 

1.2.2 Optimal Capacity Investment 
 
• How much capacity should the industrial consumer invest to gain the most 

benefits in the long run from facing dynamic pricing?  

• What are the factors that affect making investment decisions?  

 

A joint operation-investment model for solving the optimal investment problem has 

been developed and is presented in this thesis.  

 

An issue related to the optimal investment problem is that future electricity prices are 

not known exactly by the consumer and therefore, it is tempting to dismiss the 

optimal investment as a stochastic optimisation problem. However, it can be justified 

that the optimal investment problem can be solved as a “deterministic” optimisation 

problem, as will be explained next. It has been observed that the consumer does not 

always take advantage of all the price differences of dynamic pricing by producing 

more at lower price periods and avoiding production at higher price periods. This 

happens because the saving in electricity consumption cost due to the modification 

of consumption pattern has to be greater than the relevant costs incurred in order to 

justify shifting load economically. As a result, price profiles with similar shapes may 

produce exactly the same optimal consumption patterns. This observation justifies 

the assumption that the future price profiles can be generalised into a few categories 

without affecting the creditability of the optimal investment made. Moreover, the 

model is also applicable if the consumer purchases electricity from a retailer on 

dynamic pricing rates agreed ahead of time. Nevertheless, sensitivity analysis studies 

have been performed to check how the optimal values of production and storage 

capacities invested are affected by the prediction of future price profiles. 
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Depending on pool market designs, a supply bid can be formed using either complex 

bids or simple bids.  

 

A complex bid, sometimes known as a multipart bid, comprises various components 

of the operating cost of a generating unit, including incremental costs, start-up cost 

and no-load cost. This kind of bid reflects the cost structure and technical constraints 

of the generating unit. The market clearing procedure associated with complex bids 

is based on an optimisation algorithm that takes into account not only the bid prices, 

but also the technical constraints of the unit such as minimum up and down time. 

This approach leads to a unit commitment (UC) decision at a centralised level, as the 

bidders are required to send all relevant information on the generators’ 

characteristics to the market operator. The advantage of this approach is that it 

guarantees not only the technical feasibility of the resulting UC schedule but also 

reimburses the generating units’ fixed cost components (start-up cost and no-load 

cost) of the supply bid. This reduction in risk however increases the complexity of 

the pool rules and hence increases suppliers’ opportunities to game the market 

(Kirschen, 2001). 

 

In the simple bid scheme, generating units usually submit independent bids for each 

hour. A simple market clearing procedure based on the intersection of supply and 

demand bid curves is used to determine the market clearing prices and accepted bids 

for each hour. As the market operator does not make central unit commitment 

decisions, this bidding method exposes generators to scheduling risks: generators 

have to internalise physical constraints and all cost components of bids formation as 

the bidding structure does not explicitly account for units’ constraints and the 

recovery of these costs. As supply bids are accepted on per period basis, the units run 

the risk of not having sold enough energy to keep the unit running. At that point, the 

unit has to choose between selling energy in the short term balancing market or to 

shut down and face the expense of another start-up at a later time (Kirschen and 

Strbac, 2004). Therefore, this approach does not guarantee the most economical 

operation and technical feasibility. 

 

In current market designs, complex bidding structure is usually associated with 

Inelastic Demand model. In such markets, the generating companies bid to supply 
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fixed forecasted system load such as was the case in the EPEW. Conversely, in 

simple bid markets such as Nord Pool, the demand-side is allowed to participate 

actively in the market by submitting price responsive bids. However, simple bid 

markets usually do not recognised the technical (physical and intertemporal) 

constraints and the economical (e.g. fixed costs) properties of the generating units.  

1.2.3 Direct Participation in Wholesale Market 
 

• Is it possible to implement a new market-clearing tool that allows flexible 

consumers to shift demand in such a way that meets their energy requirement 

while manages the risks of going unbalanced after gate closure?  

• Will this market have difficulties in reaching market equilibrium?  

• Is this tool transparent and fair for the market participants? 

 
This combined market-clearing framework can be described as two-sided in which 

complex bids are used to set market prices on a marginal Ex-ante basis. 

Conventional minimum cost/price approach cannot be employed as buyers are now 

active and their benefits of demand consumption should be accounted by the market 

operator. In this case, the maximisation social welfare should be utilised for bid 

clearance.  

 

A novel market-clearing tool has been developed in this research project to 

implement complex bidding within an elastic demand model. Several market 

performance aspects have been studied using this simulation tool. The effects of 

accounting fixed cost components of generation biddings within clearing procedure 

is contrasted with the no fixed cost model presented in (Arroyo and Conejo, 2002). 

The impact of the price elasticity of demand on market economic indicators such as 

market clearing prices is also studied. Furthermore, comparisons between inelastic 

and elastic demand models are also conducted, assuming perfect competitive 

conditions 5 , to evaluate the effects of demand-side biddings in such auction 

mechanism.  

 

                                                 
5 Under perfect competitive conditions all market participants are assumed to bid their true benefits 
(or costs) of consuming (or producing) energy  
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In conventional single bid pool markets, the demand-side bids are rejected if their 

values are lower than the market clearing prices. This means that the “curtailed” 

energy has to be procured from spot markets (5 minutes to 1 hour ahead) where 

prices can be rather erratic. A novel bidding mechanism that allows the demand to 

specify how much energy is required on the scheduling day of the auction market is 

introduced in this thesis. This approach effectively enables demand-side bidders to 

“shift” demand in a way that maximises the social welfare while managing the risk 

of going unbalanced in the spot market. As such, this auction market is suitable for 

the participation of energy neutral industrial consumers. The simulation results are 

presented and discussed. 

 

1.3 OUTLINE OF THE THESIS  
 

Chapter 2: Demand-Side Participation within Competitive Electricity Market 

In this chapter, some fundamental concepts of DSP are discussed and illustrated with 

examples of demand response programs from around the world.  

 

Chapter 3: Optimal Response to Day-Ahead Prices for Storage-Type Industrial 

Consumers 

This chapter discusses the optimal response of an energy consumer with storage 

ability to dynamic pricing. The time-varying dynamic pricing tariff is given to the 

consumer one-day ahead so this gives the end user more flexibility in rescheduling 

its normal energy usage. Case studies are then presented to demonstrate the 

economic viability of responding to day-ahead dynamic pricing. 

 

Chapter 4: Optimal Capacity Investment Problem for an Industrial Consumer 

This chapter presents how a consumer with a manufacturing process and storage 

ability can reap greater benefits from facing dynamic pricing in the long run by 

expanding its manufacturing and storage capabilities. The technique employed to 

solve the investment problem is able to predict the net savings of electricity cost due 

to expansion while taking into consideration investment parameters such as 

investment lifetime and interest rate. 
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Chapter 5: Generation and Demand Scheduling 

This chapter presents how complex bidding scheme can be combined with an elastic 

demand model to accept energy bids not only from the suppliers but also from 

demand-side participants such as retailers and consumers. The objective of this 

combined market-clearing tool is to maximise the social welfare, while recognising 

the participants’ physical and intertemporal constraints.  

 

Chapter 6: Conclusions and Suggestions for Further Work 

This chapter contains the conclusions of the work and proposes some topics for 

further research. 
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Chapter 2  

Demand-Side Participation within Competitive 
Electricity Market  
 

2.1 INTRODUCTION 
 

Demand-Side Participation, when defined broadly, refers to the mechanism for 

communicating prices between wholesale and retail electricity markets, with the 

immediate objective of achieving load changes, especially at high wholesale price 

periods (Braithwait and Eakin, 2002). Demand-Side Participation may be defined 

more specifically as follows: variations of retail consumers’ load from normal 

consumption patterns in response to changing electricity prices over time, or 

incentives given to consumers that are designed to induce less consumption during 

high wholesale price periods or when the reliability of the system is put at risk 

(Department of Energy, 2006). The later definition suggests that DSP activities are 

not necessarily confined to energy markets; it also finds other applications such as 

the provision of ancillary services to maintain the security and quality of electricity 

supply (Eto et al., 2002). This thesis however, focuses solely on the role of DSP in 

the retail and wholesale energy markets. 

 

The move towards competitive electricity markets has changed how electricity is 

traded, and thereby opened the door for DSP. A limited number of electricity 

consumers are presently exposed to retail prices that reflect varying wholesale 

market prices. While wholesale electricity prices fluctuate hourly, retail consumers 

generally do not see these price changes. Without clear price signals, consumers 

have no incentive to change their load according to the conditions in electricity 

markets. Earlier work (Halvorsen, 1975; Taylor, 1975; Barnes et al., 1981) and more 

recent work (Earle, 2000; Patrick and Wolak, 2001; Goldman et al., 2005) have 

shown that retail consumers are indeed price responsive to varying degrees. The 

challenge that remains is to offer DSP programs with proper financial incentives to 
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consumers for making changes to their electricity consumption. Allowing consumers 

to be charged for their actual usage according to wholesale prices rather than 

socialisation of peak usage through flat rates will enable cost saving opportunities to 

both consumers and retail suppliers (Moezzi et al., 2004; Goldman et al., 2005).  

 

Retailers would increase their profits if they could induce its consumers to consume 

less energy during high wholesale price periods. By rescheduling loads or agreeing 

to load reductions, the retailers’ consumers can exert downward force on electricity 

prices and also help to maintain the quality and security of supply. The result is a 

more efficient electricity market and power system. The resulting reduction in 

peaking loads will reduce the need to produce electricity using the most inefficient, 

high cost generating units (Borenstein, 2005). The reduction of such inefficient 

electricity production will not only reduce the cost of generation but also will have a 

positive environmental effect since most of these plants tend to produce higher level 

of pollution than newer, more efficient units. DSP can thus be regarded as a means 

of optimising overall system efficiency by reducing the need for such plants. 

 

The focus of this thesis is on the optimal response of retail consumers to dynamic 

pricing in the short run (Chapter 3) and in the long run (Chapter 4). Furthermore, the 

impact of retailers and consumers in the price setting process of wholesale day-ahead 

market are examined in Chapter 5. Hence the emphasis of this chapter is placed on 

reviewing the theories relevant to some of the DSP programs currently implemented 

in both the retail and wholesale electricity market. This chapter first attempts to 

generalise the possible DSP options within a competitive electricity market in 

Section 2.2. These DSP options are then further classified into two categories: DSP 

in the wholesale and retail energy market. From Section 2.3 onwards, some of the 

issues related to DSP are discussed mainly from the perspective of retailers and 

consumers. Lastly, some examples of DSP programs from around the world are 

presented.  
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2.2 DEFINING AND CHARACTERISING DEMAND-SIDE 
PARTICIPATION 
 

The profusion of terms used for Demand-Side Participation may lead to confusion 

when one tries to compare DSP programs from different liberalised electricity 

markets. The following sections attempts to generalise DSP options based on their 

role in the wholesale and retail electricity markets.  

 

Demand-Side Management  

DSP is the evolution of earlier efforts towards what is called Demand-Side 

Management (DSM), which involves a deliberate intervention by the monopoly 

utility in the marketplace so as to influence the amount and timing of consumers’ 

energy use (Gellings and Chamberlin, 1992). Regulatory driven DSM was initially 

introduced to maximise energy efficiency to avoid or postpone the need to construct 

new generating units (Gellings and Smith, 1989). It involves consumers’ changing 

their energy use habits and using energy-efficient appliances, equipment, and 

buildings. These programs have been driven primarily by the utility’s resource 

planning and system reliability requirements rather than by competitive market 

pressures and the interests of individual consumers (Ruff, 1988; Hirst, 2001). As 

electricity markets move towards liberalisation, competition among suppliers for 

retail sales to consumers resulted in DSM programs becoming unsustainable. The 

monopoly utility no longer has a franchise to supply captive consumers, over whom 

it had sufficient authority to raise enough revenues to cover DSM costs (Brennan, 

1998).  

 

The traditional DSM programs that result in permanent demand reductions are 

outside the scope of this thesis. Nevertheless, the difference between DSM and DSP 

programs are summarised in Table 2.1 for completeness. They are closely related as 

both offer consumers the opportunity to receive financial compensation for making 

changes to their electricity consumption patterns and may involve utilisation of 

monitoring, control and communication equipments to track and influence the load 

profile. 
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Table 2.1: Differences6 between DSP and DSM 

DSP DSM 
Provided by 

retailers/aggregators7 to 
consumers 

Provided by vertically 
integrated utilities to captive 

consumers 
Market driven Mostly regulatory driven 

Involves short term actions by 
the consumer 

Involves permanent changes 
to demand profile 

Encouraging consumer 
flexibility 

Encouraging load reduction 
or other long term changes to 

consumption patterns 
Consumers given the 

opportunity to earn money in 
the energy markets 

Cost savings for consumers 

 

2.2.1 Classifying Demand-Side Participation Options within a Competitive 
Market  
 

Depending on the nature of goals, there are four main categories of DSP options 

within a competitive market framework: 

 
Table 2.2: Four categories of Demand-Side Participation options 

DSP Category DSP Products 

Price setting and accessing
Spot markets 

Retail contracts 

Electrical energy balancing Balancing market 

Maintain quality of supply
Ancillary services 

(e.g. voltage regulation, frequency response)

Ease network constraints 
Transmission constraints 

Distribution constraints 

 

The solid box in Table 2.2 denotes the focus of this thesis. Price setting involves 

demand-side participating directly in the price setting process of the wholesale 

electricity market. On the other hand, price accessing bridges the gap between 

wholesale and retail markets by exposing end consumers the underlying costs of 
                                                 
6 A detailed comparison of the differences between DSM and DSP can be found in IEA (2003). 
7 An aggregator is any organisation or individual that brings retail energy consumers together as a 
group with the objective of obtaining better prices, services, or other benefits when acquiring energy 
or related services. 
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serving the system load. These DSP options will be examined in further detail in 

Sections 2.2.2 and 2.2.3. 

 

The main difference between the categories above is the length of time given to the 

participants before they begin to manipulate their load profile as illustrated in Figure 

2.1. 

 
Figure 2.1 Timeframe for bids associated with different DSP categories 

 

For example, price setting in the day-ahead electricity market may occur before spot 

market closure while load curtailment requirement under ancillary services contracts 

may be announced a few seconds ahead of real-time. 

2.2.2 DSP for Setting Wholesale Market Prices  
 

As described in Chapter 1, the demand-side may or may not participate actively in 

the price setting process of the wholesale pool market. In “elastic demand” markets, 

the pool operator takes both supply offers and demand bids and sets the market 

clearing prices at the intersection of the aggregate supply and demand curves. 

Conversely, offers are only taken from the supply side in “inelastic demand” pool 

markets, as the demand curve is determined using a fixed forecast value. The 

“inelastic demand” market model however, can be modified to permit the 

participation of a limited number of consumers by treating a bid for a reduction in 

demand in a similar way to an offer for generation. This DSP bidding mechanism 

was introduced into the Electricity Pool of England and Wales (EPEW) on 24 

December 1993 (EPEW, 1997) and similar programs are offered in some markets in 

the US in response to the California crisis (Black, 2005). In this section, the DSP 

opportunities in the pool market model will be examined in further detail. As the 
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demand-side is involved directly in setting the wholesale market prices by 

submitting bids, this type of DSP mechanism is also known as Demand-Side Bidding 

(DSB). The demand-side participants in DSB usually include retailers, aggregators, 

traders and large consumers (e.g. industrial and commercial users).  

 

Bid for load reduction (BLR) in inelastic demand market 

In this DSP option, the demand-side participates in the wholesale spot market by 

bidding load reductions at specific prices. This is normally done through the resale of 

electricity that they have secured the right to consume or reduction of demand below 

baseline8 load level. These programs pay the participants a market price for reducing 

their demand in the same way that the generators are paid to supply electricity. The 

participants submit bids for a specific volume, duration and availability. The 

program operator compares these demand bids and the supply offers from generators 

and chooses the most economical dispatch for the next day. In programs such as 

NYISO’s Day-Ahead Demand Response Program (DADRP), consumers typically 

bid a price and amount in MW at which they would be willing to curtail their load on 

a day-ahead basis. Load reduction is then measured against the customer baseline 

load (CBL) level of the past few days (up to 10 days) and remunerations are given 

according to the amount reduced from the CBL, but receive higher payments for 

their load reductions when wholesale spot prices are high. Therefore, such programs 

suffer from the difference between consumers’ willingness to pay (WTP) and 

willingness to accept (WTA) (Shogren et al., 2001). Nevertheless, BLR is a short-

term solution deliberately introduced to alleviate system constraints at extreme 

events that can jeopardise the security of the system (Fahrioglu and Alvarado, 2000). 

 

Bid for total demand (BTD) in elastic demand market 

In this DSP option, participants can submits price responsive bids to determine how 

much electricity to purchase at various price levels, as described in Chapter 1. As 

BTD involves the bulk purchase of electricity, smaller retail consumers, however, 

can only participate indirectly through their retailers or aggregators by subscribing to 

retail supply contracts (e.g. real-time pricing) as will be described in detail in Section 

2.2.3. BTD has been proposed as an effective way of mitigating market power in 
                                                 
8 Baseline represents the historical consumption level 
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electricity markets (Borenstein and Bushnell, 1999) but it has not been widely 

adopted in pool-type markets (Amundsen et al., 1999).  

 

Bid for load reduction (BLR) Vs Bid for total demand (BTD) 

In the bid for load reduction option, the program operator usually evaluates bid for 

load reduction simultaneously with generator bids within the generation scheduling 

program. As load reduction does not involve any fixed cost and generation 

constraints, BLR is treated as a favourable highly flexible generation source. While 

BLR in markets such as the California Power Exchange and New Zealand permit the 

system operator to switch off the load at predetermined prices, consumers are 

however not permitted to vary the prices at which they are willing to curtail demand 

(Johnsen et al., 1999). On the other hand, the bid for total demand approach, in 

which consumers pay for what they bid, is often viewed as only a long-term option. 

However, a number of papers (Borenstein et al., 2002; Faruqui and George, 2002) 

have suggested that BTD offers the natural benchmark for demand-side participation 

mechanisms, at prices reflecting the interactions between demand and supply.  

 

BTD are favoured over BLR programs for several reasons. The fundamental problem 

with BLR is that load reductions cannot be measured directly. Load reductions have 

to be derived from subtracting actual energy usage from a baseline level that is 

determined according to certain rules. Unless the baseline level is agreed at some 

pre-determined level in advance (from forward contracts or other means) between 

suppliers and consumers, inaccurate baseline loads will be subject to gaming on the 

part of consumers. The proper amount of remuneration that should be paid for the 

load reduction is also a debatable subject (Ruff, 2002). There is no complication in 

determining the payment of reduction if the baseline load is purchased through 

forward contract, as the amount is undisputable; however, if the baseline load is 

determined through estimation, questions regarding the fairness of the estimation 

approach will arise. If the baseline load is over estimated, higher payment will imply 

the need for subsidy to cover the difference between the incentive payment and the 

cost saved by the load reduction. Conversely, if the baseline load is underestimated, 

the incentive payment may not be worthwhile for the participants. Furthermore, 

(Strbac and Kirschen, 1999) have argued that BLR may not be as competitive as it 

seems due to the load recovery effect which invariably accompany load reductions.  
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Under BTD, demand-side participants are charged for what they consume, rather 

than for how much they reduce consumption. Since consumption may be readily 

metered, there is no need to measure individual participants’ changes in usage from a 

baseline level. The major barrier associated with implementing a significant amount 

of BTD is that very few end consumers in these markets face retail prices that 

reflects the hourly wholesale prices (Patrick and Wolak, 2001). Retailers or 

aggregators9 will have to develop an understanding of the aggregate response of their 

consumers so that they can provide accurate price-sensitive bids into the wholesale 

energy market. This can be done through offering appropriate retail supply contracts 

(Section 2.2.3) designed to induce load reduction to end-consumers during high price 

periods. Such contracts will be especially valuable during periods of high wholesale 

prices, when retailers can avoid high-cost purchases to the extent that their 

consumers reduce their usage in response to price.  

 

Bid for total demand in elastic demand market will be examined in further detail in 

Chapter 5.  

2.2.3 Retail Supply Contract for Accessing Market Price 
 

The traditional time invariant retail electricity tariff socialises the costs of 

consumption across consumers, regardless of whether they have a flat or peaky load 

profile. Consumers with large variations in the load profile contribute to excessive 

investment in infrastructure and procurement of ancillary services even though these 

extreme loads may occur for only a few hours a year. However, all consumers have 

to bear these socialised costs. These peaky loads also present the greatest potential 

for demand response (Caves et al., 1987). A more economical approach would be to 

eliminate this socialisation of costs that benefits consumers with peaky loads by 

exposing them to the underlying short-term cost of supplying electricity. Because 

consumers on a fixed tariff have no incentive to adjust their demand to supply 

conditions, innovative retail supply contracts should be offered to induce load 

reduction during times of high demand and thereby eliminate the needs for 

subsidising peak consumption. 

                                                 
9 From now on, retailers and aggregators are grouped together as “retailers” as they both serve the 
interest of retail end-consumers.  
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As described in the previous section, in order to submit accurate price sensitive BTD 

in the wholesale market, the retailers must have control over their consumers’ load 

profile to some extent. The level of control can range from direct manipulation of 

consumers load (e.g. direct load control) to complete flexibility given to the 

consumers to decide when to respond (e.g. real-time pricing). Such retail supply 

contracts are designed to enable saving opportunities to retailers by reducing the 

possibility of being out of balance between wholesale purchases and retail revenues. 

Remuneration in terms of bill discounts or financial payments are given consumers 

to compensate their demand response efforts. 

 

There are two basic categories of retail supply contracts: time varying price-based 

tariffs and incentive-based programs. These retail supply contracts can be classified 

according to the mechanism of giving incentives for consumers’ changes in load 

profile. 

 

Price-based time varying tariff 

The retail electricity prices reflect two components: the electricity commodity and 

the insurance premium (Hirst, 2001). Any fixed electricity tariff would include 

insurance premiums to protect the retailers against price risks. Therefore, the 

challenge for the retailers is to offer their consumers appropriate time varying tariffs 

that are designed to share the price risk among themselves (O'Sheasy, 1998; Boisvert 

et al., 2002; O'Sheasy, 2003). The time varying tariffs that are currently being 

implemented include real-time pricing, critical peak pricing and time-of-use. These 

tariffs are typically offered as an alternative of traditional fixed electricity rate to 

consumers who wish to “self-insure”. Consumers on these tariffs face lower 

electricity costs on average if they are able to adjust the timing of electricity 

consumption by taking advantage of lower-priced periods and/or avoiding usage 

when prices are higher. A consumer’s decision to respond is based solely on its 

own internal economical criteria and hence, the modification of its normal energy 

usage is entirely voluntary.  
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Real-Time Pricing (RTP): In RTP, prices offered to the participants are 

closely tied to the wholesale prices; as a result the risk of exposure to high 

prices increases. It is sometimes known as “spot market pricing” or “flexible 

pricing”. RTP prices are typically known to participants on a day-ahead or 

hour-ahead basis. Participants then make decisions day to day or hour to hour 

to adjust consumption according to RTP prices. The optimal response of 

industrial consumers to day-ahead RTP is examined in Chapters 3 and 4 for 

the short-run and long-run cases respectively. 

 

Time-of-Use (TOU): TOU is a method of pricing electricity based on the 

estimated cost of electricity during a particular time block. TOU rates are 

usually divided into two to four time-blocks per twenty-four hour period (e.g. 

peak and off-peak) and by seasons of the year (e.g. summer and winter). For 

example, “Economy 7” is a type of TOU tariff provided by electricity 

suppliers in the UK. The energy use during the night costs less, per unit, than 

energy used during the day with Economy 7. TOU offers fixed electricity 

rates to domestic consumers for a period and the rates are known in advance. 

The implementation of TOU is based on the assumption that consumers 

facing TOU rates will shift some of their electricity usage to off-peak periods 

in the long run and hence reduce the retailer’s risk in making losses during 

high price periods.  

 

Critical-Peak-Pricing (CPP): CPP is a hybrid version of TOU and RTP. 

Consumers on this program are on TOU rate most of the time throughout the 

year except during the critical peak event, where the rate will increase by a 

factor of 3 to 10 for a few hours (Borenstein et al., 2002). The specific 

number of days with critical peak pricing, the number of hours per event and 

per season or year is normally defined in the rate.  

 

The main differences in terms of risk premium among these time varying prices can 

be summarised in Figure 2.3.  
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Figure 2.2 Risks sharing between retailer and consumer in retail supply contract 

 

Incentive-based program option  

This DSP option is designed to give consumers load reduction incentives that are 

additional to their retail electricity rate, which may be fixed or time varying. The 

load reductions are requested when the retailer feels the wholesale electricity prices 

are too high. There are two major incentive-based programs, which will be described 

next: 

 

Direct Load Control (DLC): DLC are typically used by the utility or the 

system operator to shed consumer loads unilaterally at times of system 

contingencies and can be deployed within minutes without waiting for a 

customer-induced response. However, retailers can also use DLC when it is 

more economical to avoid high wholesale electricity purchases (Ng and 

Sheble, 1998). DLC interrupts consumer load by remotely shutting down or 

cycling consumers’ electrical appliances such as air conditioners and water 

heaters. Consumers usually receive remuneration in the form of a bill 

reduction in return for participation. This type of program usually involves 

residential or small commercial consumers. Another DSP option that is 

closely related to DLC is known as Interruptible Load contract. The main 

difference between the two is that the latter allows consumers to control their 

load independently according to the load curtailment signals sent by the 

program operators. The interruptible load programs were effective at 

reducing load during the California Energy Crisis. However due to frequent 

outage requirements by the system operator at times close to system collapse, 

customer response declined and many left the program (Marnay et al., 2001). 
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Demand buyback program: In this DSP option, participants are encouraged 

to identify how much load they would be willing to curtail at the retailer’s 

posted price (Larson et al., 2004). The retailer then decides which bids to 

accept and compensation is based on performance. Enrolment in these 

programs is voluntary, however, participants whose load reduction offers are 

accepted must reduce load as contracted. Failure to reduce demand by the 

agreed value involves penalties in the form of high electricity prices that 

come about because of the contingencies or removal from the program. The 

retailer may set requirements such as minimum reduction levels and 

necessary metering and communication equipment before signing up 

consumers. Such programs are typically scheduled on a day-ahead basis and 

incentive payments are valued and coordinated with day-ahead energy 

markets (Ritschel and Smestad, 2003; Larson et al., 2004). 

 

2.3  HOW TO ACCOMPLISH DEMAND-SIDE PARTICIPATION? 
 
In this section, we will look at how DSP can be accomplished from retailers and 

consumers’ perspective.  

2.3.1 Demand-Side Participation from the Retailer’s Perspective  
 

Optimal energy purchase allocation 

The retailers face a significant challenge in offering consumers appropriate retail 

supply contracts and to balance the risks associated with buying energy in bulk 

between volatile spot markets and forward contracts10. Therefore it is desirable for a 

retailer to be able to forecast its load behaviour and to predict future average 

electricity prices accurately. This poses an optimal energy purchase allocation 

problem to the retailer. Liu and Guan (2003) have presented a stochastic 

optimisation method to address the purchase allocation problem for long-term 

forward market and short-term spot market. A method for generating demand-side 

bids is then developed based on the optimal purchase allocation. Philpott and 

Pettersen (2006) have presented a model of optimal bidding strategy in the Nordic 

                                                 
10 Forward contract is an agreement between two parties to trade a commodity at a pre-agreed price in 
a future point in time. It is used to control and hedge risk associated with trading in the volatile spot 
market.  
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day-ahead pool market. As deviations from the day-ahead purchase are bought in the 

real-time balancing market at a price that differs from the day-ahead price, the 

retailer must arrange the purchase for an uncertain demand that occurs at real-time. 

The review of (Bunn, 2000) provides some of the innovative techniques used to 

address the problem of forecasting both consumer loads and prices in  competitive 

electricity markets.  

 

Forecasting load and its price elasticity behaviour 

Ideally a retailer would like to match the demand from its consumers exactly with 

the power it purchased using long-term forward contracts or on the day-ahead market. 

However, a perfect match of demand and the power purchased before the point of 

delivery cannot be achieved due to the random consumption behaviour of the 

demand. As the retailer has to trade the imbalance in the balancing market, which is 

usually erratic, this imbalance imposes a risk on the retailer. To reduce this risk, the 

retailer must forecast as accurately as possible the demand of its consumers. Many 

papers proposing techniques for short-term load forecasting have been published 

(Papalexopoulos and Hesterberg, 1990; Chow and Leung, 1996). The best strategy 

for a retailer to estimate its load based on certain probability distribution of future 

prices is analysed in Gabriel et al. (2002).. 
 

As has been noted, DSP programs often involve the use of price incentives to modify 

demand profile to obtain lower electricity prices. Price responsive consumers may 

take advantages of the DSP programs by curtailing or shifting consumption. This 

behaviour creates more uncertainty to the load profile to be served by a retailer; 

therefore, predicting the price elasticity of load is essential to the overall 

effectiveness of DSP programs. Econometric models of the price elasticity effect of 

load are presented in Caves and Christensen (1980); Patrick and Wolak (2001). The 

retailers can use these models to estimate the price responsive behaviour in order to 

submit appropriate demand-side bids into the wholesale electricity markets. A 

method to integrate the short-term elasticity of demand for electricity with a 

generation scheduling algorithm in a pool-based electricity market is presented in 

Kirschen et al. (2000). Nevertheless, the existing studies on the estimation of the 

consumers’ price elasticity of demand on TOU and RTP tariffs lack consistency 

(Aigner and Ghali, 1989; Taylor et al., 2005). This is due to reasons such as different 
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time frames (short-term or long-term) and sampling sizes (e.g. 250 vs 1000 

consumers) used among different studies. For example, a long term study in 

Hausman and Trimble, (1981) estimates a cross price elasticity11 of approximately 

0.3 while the short term study of (Caves and Christensen, 1980) predicts a much 

lower elasticity of between 0.1 to 0.5.  

 

Price forecasting 

Price forecasting in competitive markets is certainly not an easy task as there are 

many uncertainties involved, such as the volatility in demand and availability of 

generators that ultimately affect the electricity prices. Nevertheless, it is essential for 

both consumers and retailers to predict the prices of electricity on the spot market as 

accurately as possible in order to assess the risk of trading at forecast prices and 

decide the optimal strategy that maximise benefits. A few papers have proposed 

techniques for electricity price forecasting (Angelus, 2001; Nogales et al., 2002). A 

reasonable accuracy can be achieved when the forecast methods takes into account 

all major sources of volatility (Deb et al., 2000). 

 
Designing retail supply contracts 

A critical issue regarding DSP programs is the incentive that should be given to the 

customer to induce the desired load relief during a DSP event. Appropriate time-

varying tariff structure can improve the load factor and hence increase the 

profitability of retail suppliers. Hence, the challenge for the retailers is to design cost 

effective DSP programs that are able to obtain load reduction when needed in the 

most cost effective way. Theoretical analyse have identified potential efficiencies 

that result from having consumers pay prices reflecting costs at the time of use 

(Vickrey, 1992; Seeto et al., 1997). As described in Section 2.2.3, there exist two 

main categories of DSP programs: priced based time varying tariff and incentive 

based program option and are mentioned here for convenience. The design of price-

based time varying tariff is largely influenced by the pioneering works of spot 

pricing electricity (Caramanis, 1982) and peak-load pricing (Boiteux, 1960). Kirsch 

et al. (1988) explored the concept of spot pricing further by pricing retail electricity 

based on the estimation of day-ahead marginal cost of serving load at every hour. A 

                                                 
11 Cross price elasticity of electricity demand measures the responsiveness of the demand for 
electricity at one period to a change in the electricity price at another period. 
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hierarchical framework has been developed in (Hobbs and Nelson, 1992) to 

maximise the retailer/utility’s benefits while controlling marginal cost based tariffs 

subject to investment of demand response tools. Furthermore, the theory of inverse 

pricing based on the fact that energy consumption is inversely proportional to price 

has been applied in (Sheen et al., 1994) for TOU rate design.  

 

On the other hand, designing appropriate rates for incentive-based DSP options such 

as direct load control can be based on performing statistical survey in the form of 

questionnaire (Chen and Leu, 1990) or estimating the cost of interruptions to the 

participants (Ng and Sheble, 1998). While the outage costs to a consumer can be 

estimated easily it is difficult to know how much incentive to offer in order to attract 

consumers to interrupt their load. In Fahrioglu and Alvarado, (2000), game theory is 

used to design optimal load curtailment program without requiring the knowledge of 

customer outage costs. Chao et al. (1986) develop a customer value model for both 

the program operator and consumer for selecting optimal pricing rates for 

interruptible load.  

2.3.2 Demand-Side Participation from the Consumer’s Perspective  
 

From the consumer’s perspective, participating in DSP programs involves making a 

series of decisions both before and after subscribing to a particular DSP option. 

Consumers are driven largely by the financial benefits that can be realised when 

subscribing to DSP programs. In addition, they may be motivated by implicit 

reliability benefits such as reduced exposure to forced outages.  

 

In contrast to pre-liberalisation of the retail electricity market, consumers have taken 

over monopoly utilities’ role in making decision on investing in demand response 

technologies. As consumers are no longer held captive, retailers may be reluctant to 

invest in technologies that assist consumer to respond (Hamalainen et al., 2000; 

Brennan, 2004). Upfront investments such as programmable thermostats, or even 

onsite generation may make responding easier, however, uncertainties about the 

benefits of responding may make these investment decisions difficult to justify. The 

problem of optimal investment in demand response enhancing technologies is 

analysed in Chapter 4.  
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DSP Enabling Technologies and Management Systems 

Metering, communications and control technologies are needed to support dynamic 

pricing and voluntary load-reduction programs. Traditional energy-efficiency 

measures (such as energy saving light bulbs and direct load control technologies) 

require minimal customer attention once installed. Demand response in competitive 

retail markets however, requires constant evaluation of expected costs and benefits 

of participating in DR, especially if the consumer subscribes to a time-varying tariff. 

Therefore, these technologies should provide a certain level of automation and offer 

simple solutions for consumers, on top of communicating electricity prices. There 

are many technologies available that makes demand response possible. Some of the 

common DSP technologies and management system for controlling and automating 

the switching of assets capable of load reduction are presented below. 

 

Metering equipment: Meters are for measurement of cumulative electricity 

use. Time differentiated meters can record and store information about 

electricity consumption in regular intervals at resolution smaller than 1 hour. 

Advanced metering such as Automated Meter Reading (AMR) is able to 

communicate data between the meter and the energy supplier (or meter 

management provider). Depending on the design, AMR may be able to 

transmit simple energy usage data to more advanced functionality such as 

outage detection, complex measurement of energy usage, or remote 

programming of the meter (Fischer et al., 2000).  

 

Communication equipment: This involves equipments that transmit 

electricity usage data from consumers to the relevant authorities and also 

gives information to consumers on DSP program about changes in prices. 

The type of the equipment and the frequency of communication depend on 

the utility and customer functional needs, for example consumers on real-

time pricing tariffs have to receive price information within minutes.  

 

Control equipment: Control equipment enables the response of the load to 

market led signals by switching on/off or cycling the electrical load (heating 

and air conditioning systems, water heaters, lighting etc). The selection 
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between the different technological options for control depends on the 

required notice time and speed required for switching and also whether there 

will be an automated or manual response. Key technologies for load control 

include load switches and thermostats. 

 

Demand Response Strategies 

Once consumers are subscribed to a DSP program, the decision to respond depends 

on the financial benefits that can be derived from participation, the length of the DSP 

event and also the amount of load that the consumer is able to modify. There are 

three basic strategies for load response during a DSP event.  

 

Foregoing: This strategy involves curtailing load when prices exceed some 

threshold and service is less than critical. For example, a commercial 

consumer might adjust the thermostat setting to switch the air conditioners 

within the premise off according to DSP event signals. The consumer might 

experience temporary loss of comfort due to rising air temperatures. As such, 

this strategy may involve recovery of the air conditioning load during non-

event periods (payback) as additional electrical energy is required to bring 

the temperature back to the original level.  

 

Substitution: Involves substituting electricity consumption to an alternative 

resource. Typical examples include on-site generation: Fuel and maintenance 

costs are incurred whenever on-site generation is used to respond. The load 

requirement from the power system is reduced even though the consumer 

may face little or no interruption of supply.  

 

Shifting: Involves rescheduling usage from high-price or DSP event periods 

to other periods. Any load where energy must be used, but the time of use is 

not critical is a prime candidate for load shifting. For example, a foundry 

with hot metal storage may alter the heat cycle of furnaces depending on 

tariff variations or time delay needed. Therefore, suitable candidates for this 

response strategy usually have some form of storage ability to maintain the 

output resulting from electricity consumption at desirable level (Ilic et al., 

2002). Other examples include rescheduling of air-conditioning systems and 
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refrigeration units. Consumers that reschedule their energy usage may incur 

costs from losses of productivity due to the adjustment of usual production 

process.  

 

It should be noted that the foregoing strategy is distinctively different from load 

shifting: the overall consumers’ load with foregoing strategy is reduced as the 

amount of curtailed load is greater than the additional load due to the payback effect. 

Where as with load shifting, the consumer remains “energy neutral” as consumers 

merely shift some of their demand from one period to another in response to price 

signals. 

 

Managing risks of bulk energy purchase 

Consumers on dynamic pricing tariffs may need hedging tools to manage the risk of 

facing volatile spot market prices. A few hours of very high prices at a time when the 

DR participants cannot reduce consumption substantially can defeat months of 

economical consumption at times of relatively low prices. Hedging tools such as 

forward contracts and bilateral contracts for differences12 (CfD) could be used in 

conjunction with dynamic pricing tariffs to mitigate such risks. For example, a “two-

part RTP” program where a portion of the consumer load is hedged against risk 

through a fixed forward contract provides some financial protection against 

unexpectedly high prices, as only a fraction of the load is not hedged. This has been 

implemented successfully by Georgia Power Company (Barbose et al., 2005). A 

risk–constrained mechanism for profit maximisation in energy procurement process 

is presented in (Conejo et al., 2005). This paper takes the perspective of a large 

consumer that intends to optimise energy purchase from bilateral contracts and the 

spot market. The risk of high prices associated with these energy purchase options is 

managed through operating an on-site generation facility. 

 

                                                 
12 A Contract for Differences is a two-way contract that allows the seller and purchaser to fix the price 
of a volatile commodity. For example, consider a deal between a producer and a retailer to trade 
electricity through a pool market. Both parties agree to trade at a price of $40 per MWh, for 1 MWh 
in a trading period. If the actual pool price is $60/MWh, then the producer receives $60 from the pool 
but has to return $20 (the difference between the agreed price and the pool price) to the retailer.  



Chapter 2 Demand-Side Participation within Competitive Electricity Market  

 
 
  50  
 
 

2.4 IMPLICATIONS OF THE VALUE OF DEMAND-SIDE 
PARTICIPATION 
 

The most important benefit of DSP is improved economic efficiency due to 

narrowing the gap between the value consumers put on consuming energy and the 

prices they pay. This increase in economic efficiency however has several 

implications on the market participants and the system as a whole. 

 

2.4.1 Implications on the Demand-Side  
 

Lower wholesale prices in pool markets as a result of demand response during high-

price periods benefit not only retailers, but also large consumers that participate 

directly in the spot market. Part of this savings of retailers’ wholesale energy 

procurement is eventually relocated to the consumers that respond to time-varying 

retail tariffs or load shedding events. However, if system-wide demand response 

efforts do not reduce wholesale peak electricity prices significantly, retailers could 

suffer losses from offering DSP programs. Likewise, subsidising DSP programs 

beyond what individual consumers would find worthwhile is economically 

inefficient. In addition, many studies on the effectiveness of DSP programs have 

failed to measure the energy savings appropriately by over-estimating the real 

savings (Nichols, 1995). This has resulted in over-subsidising DSP programs. As the 

retailers are in the business to make profits, these financial losses will only lead to 

increasing socialised costs, which ultimately has to be paid by the consumers. 

 

Although the benefits of DSP are widely acknowledged, it should be implemented to 

the extent that the resulting increase in total benefits is more than the total cost of 

implementation. Improving DSP may involve transition costs and also investment in 

infrastructure and technology, but if the investments are well targeted, the benefits 

obtained may well justify the overall efforts. However, it should be noted that 

increasing demand response through providing consumers better price signals and 

technology is distinctly different from increasing demand response simply by forcing 

or subsidising, which could result in costs greater than the benefits obtained. Lastly, 

the “cost” of inconvenience and discomfort from any consumer response strategy 
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cannot be easily quantified in monetary terms but should also be an important 

consideration when designing DSP options. 

 

2.4.2 Implications on the Supply-Side 
 

Demand response during peak demand periods lowers the wholesale electricity 

prices as expensive generating units are displaced due to reduction in system load. 

Consequently, the scarcity rents13 (see Figure 2.3) to the remaining generators during 

these peak periods are reduced; as the electricity prices are lower than they would 

have been should the displaced units set the market clearing prices.  

 

In the short run, the scarcity rents, which normally go to the generators and help 

recover capacity investment and fixed costs, would be relocated to the demand-side. 

Payments for electricity from the demand-side will tend to fall as the load factor is 

improved. All these factors might subsequently encourage generators to increase 

bidding prices during off-peak periods to make up for the loss of peak period rents in 

the long run (Ruff, 2002). Therefore, the overall long run benefits of DSP in 

centralised electricity markets are uncertain in this context. While relocating scarcity 

rents from the generators to the demand-side is a desirable goal if market power 

exists, proving the existence of market power is difficult. Hence, using DSP solely to 

reduce such rents without compensating the fixed costs of generators would be unfair 

to generators. 

 

 
Figure 2.3 Lost scarcity rent 

                                                 
13 In the field of power system economics, scarcity rent is usually defined as revenue minus variable 
operating cost (which does not include fixed costs such as startup costs and no-load costs). It is 
sometimes known as economic rent or inframarginal rent (Stoft, 2002). 
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2.4.3 Implications on the System  
 

1000 consumers providing a certain amount of reserve is more reliable than a single 

large generator as it is unlikely that all consumers will fail to respond. The 

diversification of reserve resources also increases the system reliability and reduces 

the likelihood of forced outages. Large penetration of DSP might delay the need of 

transmission and distribution network upgrades. However, in the long term, demand 

response resources must be available and perform reliably at high-demand periods. 

Otherwise, the reliability of the system may be compromised due to under-

investment in system capacity as a result of adopting demand response to relieve 

system contingencies. Environmentally wise, emission reductions due to DSP during 

peak period need to be balanced against the possible increases in emissions during 

off-peak periods, as well as from the increasing use of on-site generation (Keith et al., 

2003) that are employed to avoid high prices during DSP events.  

 

2.5 BARRIERS TO THE IMPLEMENTATION OF DEMAND-SIDE 
PARTICIPATION 
 

If a retailer is buying electricity for £273.09/MWh14 (ELEXON, 2007) and selling it 

for only £105.9/MWh15 (Powergen, 2007), it must have a huge incentive to pay its 

consumers to adopt DSP programs. But why isn’t there widespread adoption? While 

innovations in communication and load control technologies have made possible 

implementing DSP, a combination of factors has prevented wide adoption of DSP to 

improve the economic efficiency of the power system. Some of these barriers are 

discussed below. 

 

2.5.1 Regulatory and Structural Barriers 
 

The prerequisite criterion to justify introducing retail competition within the 

electricity market is that the retail electricity prices in a competitive environment 
                                                 
14 Price is adopted from System Buy Price of the balancing market (ELEXON) at period 36 on 
13/02/07. 
15 Price computation is based on Powergen’s “Price Protection” tariff for a customer with an average 
spending of £25/month on electricity bill. The customer takes out “dual fuel” option and makes 
payment on a quarterly basis. 
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must be lower than the average level prior to introducing retail competition (Hirst, 

2001). Otherwise, regulators and consumers will object to the restructuring of the 

electricity market. For example, the states regulators in some parts of the US (also 

known as the public utility commissions) provide “inappropriate” price protection to 

consumers by requiring utilities to provide rate discounts or rate freezes as part of the 

standard tariff offer. These utilities will have difficulties in marketing dynamic 

pricing to potential consumers as standard electricity rates are too low.  

 
The liberalisation of the retail market presents difficult problem to retailers, as 

consumers are free to choose their supplier, unlike the traditional regulated model 

where captive consumers are served by monopoly utilities. Retailers are reluctant to 

invest in metering and communication system necessary to make DSP options 

happen as consumers are free to change suppliers at short notice, potentially making 

such investment redundant (O'Sheasy, 2002). In the UK for example, although 

residential consumers are free to change their supplier, most of these consumers do 

not have the opportunity to choose dynamic pricing tariffs, as equipments necessary 

to implement demand response (such as time differentiated meters) are not in place 

at consumers’ premises. They are offered fixed tariffs that do not reflect the 

wholesale production costs instead. In addition, the lack of competition at retail level 

reduces the incentives for retailers to offer innovative services such as dynamic 

pricing to lure potential consumers (Joskow, 2000). Joskow further argues that retail 

competition is not likely to be successful unless new entrants provide innovative 

services.  

 

2.5.2 Customer Barriers 
 

Most consumers have a misconception that volatility of prices translates into a higher 

cost of purchasing electricity (Hirst, 2002). They generally do not recognise that low 

prices during most of the time is more than enough to compensate for a few hours of 

high prices, resulting a lower overall bill. Consumers prefer DSP programs that 

provide ample advance notice, as it would be more convenient for taking action. 

However, long notification periods lower the value of load reduction and hence 

lower the amount that can be paid to the consumers for load reduction (Rosenstock, 

1996). This in turn lowers the attractiveness of DSP programs to the consumers.  
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2.5.3 Technological Barriers 
 

Technological barriers prevent DSP products from being properly monitored and 

controlled. The barriers are not inherently technological as the required technologies 

are already available in the marketplace. It is the lack of widespread adoption of DSP 

programs that actually increases the capital costs of implementing DSP and in turn, 

limits the market penetration of DSP technologies (Faruqui et al., 2002). Most DSP 

programs are usually customised to requirement with components from different 

manufacturers as standardised “off-the-shelf” equipments and communication 

packages are not available. Until the requirements for these DSP services is 

standardised, mass production of the components that could reduce the cost of 

implementation are less likely to happen.  

 

2.5.4 Other Barriers  
 

The benefit of having lower wholesale prices as a result of demand response has a 

certain “public good” aspect. A consumer does not necessarily need to respond to 

prices to get the benefit of lower wholesale prices. This is also known as the “free-

rider” problem. To achieve successful demand response therefore requires sufficient 

incentives given to individuals to modify their usual consumption pattern. Innovative 

retail supply contracts have to be designed and offered to consumers to ensure 

correct incentives. As such, the investment in demand response equipments (e.g. 

metering and data communication devices) is essential. The IEA report (IEA, 2003) 

however has noted that the long pay-back period on the investment in these 

equipments has hampered the attractiveness of DSP programs. Regulators and 

relevant authorities should be aware of these externalities and take appropriate 

actions to enhance the attractiveness of DSP programs. As reducing the wholesale 

electricity prices is not in the best interests of generators, the impetus will need to 

come from regulatory authorities.  
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2.6 EXPERIENCES OF IMPLEMENTATION OF DEMAND-SIDE 
PARTICIPATION 
 

Despite the barriers discussed in the last section, there have been some successful 

implementations of DSP programs. The following presents some of the DSP 

programs currently implemented. All these programs witness the same results: 

Consumers do respond to price changing tariffs. However, the level of participation 

and elasticity findings vary considerably among different programs. 

 

Demand-side bidding: Bid for Load Reduction 

In 2001, the New York Independent System Operator (NYISO) initiated several DSP 

programs with the purpose of enabling load to participate in the wholesale market 

(NYSERDA, 2004). One of the programs introduced was called the Day Ahead 

Demand Response Program (DADRP). This program allows curtailable loads a way 

of bidding into the market. The participants in the program are required to submit 

two bids: 

 

Load bid: the normal load bid that the Load Serving Entity (LSE) would 

submit to buy an amount of energy the LSE intends to consume the next day. 

Smaller participants are not required to submit a load bid. 

Generator bid: specifies the amount of load curtailment to be scheduled in 

the Day Ahead Market.  

 

In the summer of 2003, more than $100,000 in payments was distributed among the 

27 day-ahead program participants. 1,750 MWh of load reductions bids were 

accepted over a wide range of hours and days (NYSERDA, 2004).  

 

Demand-side bidding: Bid for Total Demand (BTD) 

The Nordic spot market (Elspot) is a day-ahead physical delivery power market 

based on the “demand bidding” model, as explained in Chapter 1 (Elspot, 2006). 

There are three different bid types in Elspot: hourly bids, block bids and flexible 

hourly bids that cover the 24 hours of the next day. 
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Hourly bid: A price/MW bid for each specified hour. The bid may consist of 

up to 62 price steps.  

Block bid: A block bid set a fixed bidding price and volume for several 

consecutive hours. The block bid must be accepted as a whole, thus setting an 

“all or nothing” condition for all the hours within the block. 

Flexible hourly bid: A bid for a single hour with a fixed price and volume. 

This bid is used only for power sales and is included here for the sake of 

completeness. The hour is not specified within the bid, but instead the bid 

will be accepted in the hour with the highest price, with the condition that the 

price must be higher than the limit set in the bid. This type of bids gives also 

companies with power-intensive consumption the ability to sell power to the 

spot market by closing down production for the hour in question. 

 

As with all types of Elspot bids, a demand-side bid is defined in terms of the bidding 

price, volume of electricity in MW and the trading periods to which the bid applies. 

The demand-side bidders in Elspot are mainly large consumers such as industrial and 

commercial consumers as the minimum bid size requirement is set at 0.1MW (Elspot, 

2006). The fees involved in participating directly in the market involve a fixed 

annual fee and a variable trading fee. The participation fees tend to make energy 

trading directly from Elspot only viable for consumers with intensive electricity 

usage.  

 

Price-based time varying tariff: Real-Time Pricing (RTP) 

Georgia Power Company (GPC) introduced a two-part tariff called RTP-DA-2 with 

a customer baseline load shape, which is based upon the consumer’s historical load 

prior to going on Real-Time Pricing (Barbose et al., 2004). It is priced at a standard 

embedded tariff and comprises the first part of the tariff. The second part of the tariff 

is an hourly load deviations from the CBL priced at hourly RTP prices. These hourly 

RTP prices are based upon GPC’s hourly forecasted marginal cost plus revenue 

reconciliation16 . These marginal costs are computed a day-ahead (DA), and 24 

hourly prices are transmitted to DA consumers the prior day. Deviations below the 

                                                 
16 The revenue reconciliation may include lump-sum payments, fixed monthly charges, and adders or 
multipliers on energy purchase (Schweppe et al., 1988). These forms of revenue reconciliation are 
designed to pay for the retailers’ capital expenses, fixed cost charges and investor profit.  
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CBL are credited to the customer at the hourly RTP price. This feature, which is 

common to all products in the RTP family, enables GPC to enjoy remarkable 

demand response to high prices. 

 

Price-based time varying tariff: Time of Use (TOU) 

Pacific Gas & Electric (PG&E) has implemented the option of TOU rates since 1982 

(IEA, 2003). Since then the number of residential participants has increased to over 

86,000. In the early 1990’s 80% of the consumers claimed that they were saving 

$240 per year by participating in the program (IEA, 2003). 

 
Price-based time varying tariff: Critical Peak Pricing (CCP) 

In France, Electricité de France (EDF) has the world’s largest Critical-Peak-Pricing 

program, called Tempo, with 10 million participants (IEA, 2003). The program 

introduces three-day types (1) blue days – least expensive (2) white days – mid-

range in price (3) red days – most expensive. The participants can check pricing for 

the following day from the utility’s website or by using other communication means. 

Experience of these programs indicates that a doubling of peak prices results in load 

reductions of up to 20% (IEA, 2003).  
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Chapter 3  

Optimal Response to Day-Ahead Prices for Storage-
Type Industrial Customers 
 

3.1 INTRODUCTION 
 

Successful implementation of Demand-Side Participation in competitive electricity 

markets is essential for economical efficiency. In this regard, a major step towards 

competitive markets is to expose retailers and consumers to the cost of their own 

energy imbalances against purchases.  

 

In this competitive trading environment, retail supply contracts that capture accurate 

customer consumption data are very attractive options for retailers to reduce risk of 

going unbalanced in the spot market. As described in Section 2.2.3, there are two 

basic categories of retail supply contracts: incentive-based programs and price-based 

time varying tariffs. While incentive based programs such as interruptible contracts 

have been successful in curtailing load during high price periods or contingencies, 

these programs are not sustainable in the long run as consumers are not exposed to 

the actual cost of energy production. Time varying tariffs, on the other hand, offer 

consumer costs saving opportunities by sharing some risks of volatile wholesale 

electricity prices with the retailers.  

 

The development of electricity market towards innovative dynamic pricing coupled 

with a large penetration of low cost time differentiated metering makes demand 

response to time varying electricity prices economically feasible. However, small 

consumers may find facing hour ahead real-time pricing impractical as a decision to 

respond can only be made close to the time of consumption. This makes planning 

ahead of time difficult. A residential user, as an example, would not be willing to 

stay at home during the whole day to watch prices. Automatic control of demand 
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usage enhances the ability to respond but would require additional investments on 

control equipments. The cost of installation of such equipments may be difficult to 

justify, as residential consumers do not use electricity intensively. 

 

Medium and large power consumers such as industrial consumers face a different set 

of challenges, in that their ability to economically reduce power consumption on a 

very short notice is limited. Minimum call out times for labour, for instance, are 

typically four hours (Li and Flynn, 2006), so any rescheduling work at an interval 

shorter than this may not be feasible. Most industrial processes cannot be stopped on 

a short notice without incurring economic penalty: for example, electric arc melting 

of steel or plastic moulding industrial processes require completion of a cycle or a 

cool down and clean out procedure. Hence, the critical factor in industrial demand 

response is the ability to anticipate prices with sufficient accuracy to realise a reward 

for time shifting of power consumption. 

 

Thus, this chapter discusses the optimal response of an industrial consumer to the 

day-ahead time varying tariffs. A linear programming (LP) based algorithm is 

developed to solve the optimal response problem. A thorough examination of this 

technique is presented in (Foulds, 1981) and in this thesis, only a brief description is 

made in Section 3.2.1. Simulation results are then presented to demonstrate the 

economic viability of industrial consumer responding to day-ahead prices. 

3.1.1 Implication of Retailers Offering Day-Ahead Prices 
 

Day-ahead tariffs has been offered to consumers by many electricity suppliers such 

as Electricité de France (Aubin et al., 1995), Niagara Mohawk Power Corporation in 

the US (Herriges et al., 1993) and Midlands Electric in the UK (King and Shatrawka, 

1994). As such, the optimal response model introduced in this chapter will be 

applicable in these markets.  

 

The success of implementing day-ahead tariffs will ultimately depend upon the 

extent to which consumers are able to alter their load in a manner favourable to the 

retail supplier. A retailer that offers day-ahead tariffs to its consumers has the option 

of purchasing electricity in bulk from the forward and the real-time markets. 
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Assuming a two-settlement market system (Stoft, 2002), the retailer purchases t
DQ  

amount of electricity at a price t
Dπ  from a day-ahead (forward) market, and then 

settles the difference between the actual demand t
RQ  and t

DQ  in the real-time market 

at the real-time prices t
Rπ . The total cost of procuring energy ( PEC ) would be:  

 

∑
=

⋅−+⋅=
T

t

t
R

t
D

t
R

t
D

t
DPE QQQC

1

)( ππ   (3.1) 

 

where: 

T  total number of time periods, hours 

 

Assuming that all the consumers of the retailer are on a same day-ahead tariff, with a 

price of t
DRπ , the revenue obtained from serving these consumers ( REC ) would be: 
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To stay in business the retailer must ensure that this revenue is greater than the cost 

of serving all its consumers, i.e. RE PEC C> . The design of t
DRπ  would involve 

forecasting t
RQ  and t

Rπ  as accurately as possible and also deciding how energy 

purchase should be allocated between the forward and the real-time markets. The 

retailer might even consider negotiating a Contract for Difference to hedge against 

the risk associated with trading in the real-time market. The papers that deal with 

these problems have been discussed in Section 2.3.1. This chapter is only concerned 

with the optimal response of these consumers to t
DRπ .  

3.1.2 Literature Survey 
 

Depending on the nature of electricity usage, consumers’ response to dynamic 

pricing can be classified into three different strategies: load shedding (foregoing), 

substitution and load shifting. Modelling the first two demand response strategies 

involve simple rules based on instantaneous prices (Schweppe et al., 1989). However, 
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the modelling of load shifting is less straightforward due to the inter-temporal nature 

of the demand response (Bannister and Kaye, 1991). Suitable candidates for load 

shifting can usually defer electricity consumption through means of storage devices, 

which can be used for depositing commodities that change costs or values with time. 

Economic benefits are gained whenever the commodity is stored when its cost/value 

is low, for use at other times when the cost/value is higher.  

 

While numerous papers are concerned with estimating the consumers’ price 

elasticity responses to dynamic pricing, only a limited number of studies model the 

optimal response to dynamic pricing. The following paragraphs review some papers 

on optimal storage utilisation and response to dynamic pricing. They are categorised 

according to the principle of the storage method.  

 

Electrical Storage  

The most intuitive way of deferring electricity consumption is to store electricity 

directly. This method is typically applied by power plants to minimise the production 

cost through the storage of surplus low cost energy. The energy is then released as 

demand rises in order to avoid the use of peak capacities (Kandil et al., 1990). 

Electrical storage systems also find applications in supplementing the intermittent 

nature of renewable energy sources (Baker and Collinson, 1999). Typical storage 

media for electricity include high capacity electrochemical batteries, fuel cells, 

super-capacitors and superconducting magnetic energy storage (SMES) systems 

(Cau and Kaye, 2001). As electrical storage is presently economically prohibitive to 

implement in homes, businesses or industries this method is rarely used among end 

consumers of electricity to avoid peak consumptions. 

 

Pumped Storage Hydro-electricity 

A pumped storage hydro-turbine is a unique storage device in the sense that it can be 

used to store and produce electricity by moving water between reservoirs at different 

elevations. The pump-hydro unit has a strong incentive to optimise its schedule in 

such a way that the pumping period occurs at price valleys and the generating period 

occurs at price peaks. Conejo et al. (2002) addresses the scheduling problem of a 

generating company with pumped hydro units. The objective is to maximise the 

profit of selling energy generated from pumped hydro units in the day-ahead market 
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based on forecasted prices. Lu et al. (2004) explores the concept further by 

developing optimal bidding strategies for pumped hydro units in a competitive pool 

market.  

 

Scheduling Without Storage 

For the sake of completeness, some papers on the scheduling of electricity 

consumption without utilising any forms of storage are briefly discussed here. The 

optimal starting time for a sequence of operations of a process type industrial load is 

presented in David and Lee (1989). An integer-programming algorithm is developed 

to determine the optimal match between the consumption curves of these operations 

to the time-varying price curve. An analytical approach is presented in (Roos and 

Lane, 1998) to describe the potential cost savings of scheduling energy usage 

according to real-time electricity prices. The model determines when the consumer 

should control its loads based on marginal rate duration curve analytical method. As 

the duration curve does not represent the time sequence of the electricity rates, this 

model cannot be extended to incorporate storage. This is due to the inherent loss of 

time dependency of storage operations during charging and discharging process 

(Kandil et al., 1990). 

 

Thermal Energy Storage  

The economics of thermal energy storage can usually be justified under any tariff 

that penalises consumers for on-peak power consumption. The principal application 

of thermal energy storage is to deposit heat in an insulated repository during lower 

price periods for later use in space heating, domestic or process hot water. 

Alternatively, ice or chilled water solution may be produced during lower price 

periods to cool environments during the day. In the US, air-conditioning equipment 

contribute principally to poor load profiles for commercial consumers and hence 

represents a suitable candidate for thermal energy storage application (Silvetti and 

MacCracken, 1998). 

 

Lee and Wilkins (1983) explore the possibility of reducing system load through 

water heater control from the perspective of a utility. In the model, the utility 

minimises generation costs by switching off consumers’ water heaters in such a way 

that the most desirable system load profile is achieved. However, the study did not 
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consider explicitly the remuneration that should be given to consumers that respond. 

An experiment is conducted in Daryanian et al. (1991) to observe the benefits of 

consumers with electric thermal storage responding to RTP. The cost to the utility to 

serve consumers is reduced by a further 10 percent when compared to the savings 

achieved under the original TOU based tariff without storage. Hu et al. (2001) 

complement this paper by analysing the effect of thermal storage energy loss on the 

scheduling of the thermal storage system under RTP tariffs. 

 

Product Storage  

Product storage bears a close resemblance to thermal energy storage application, as 

products that require intensive energy to manufacture are stored rather than the 

heated water or air medium. However, little attention has been paid to this storage 

method in the literature.  

 

A linear programming (LP) based approach to solving the optimal demand response 

of time varying prices for an industrial consumer is discussed in Daryanian et al. 

(1989). In the developed model, the industrial consumer optimises the schedule of 

storing products manufactured during lower price periods to meet hourly product 

demand. It is assumed in the model that manufacturing costs of the industrial 

costumer is approximated as a simple linear function. This is unrealistic in practical 

situation as the per-unit cost of manufacturing goods usually increases with output as 

production facilities become more inefficient when operating at higher output level. 

In Bannister and Kaye (1991), a LP based method for solving a general class of 

deterministic problem with a single storage and a production facility is presented. 

The production facility is described by a piecewise linear cost function. However, 

the developed model does not consider explicitly the optimisation of the production 

facility and the storage device according to dynamic pricing. Hence the contribution 

of the model introduced in this chapter is to combine the work of (Daryanian et al., 

1989) and (Bannister and Kaye, 1991) and addresses the issues aforementioned. This 

is done through taking account of the complexity of the manufacturing cost as the 

industrial consumer optimises its electricity consumption according to dynamic 

pricing. Furthermore, rescheduling of load usually results in a loss of efficiency, 

especially when the industrial process is shut down to avoid high prices and then 

brought online at later periods. Consideration of the optimal on-off statuses of the 
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process transforms a simple LP problem into a more complicated mixed-integer 

linear programming17 (MIP) problem. MIP problems can be solved efficiently using 

branch and bound technique with tried and tested commercial optimisation packages 

such as XpressMP (Dash Associates, 2007) or CPLEX (ILOG, 2007). 

3.1.3 DSP Opportunities for Product Storage-Type Consumers  
 

To participate in demand response, product storage type industrial consumers can 

stockpile components or intermediate products that require intensive energy, for use 

in a later process. The following identifies some of the DSP opportunities for 

product storage-type consumers. 

 

Foundries 

A foundry has plenty of opportunities for demand response as it typically processes 

metal in batches, which can be interrupted. The alteration of the heating cycle of 

furnaces (40 – 60kW loads) is possible depending on the time delay requirement and 

the variations of the dynamic pricing. Hot metal storage is then used to hold furnace 

loads that are reduced temporarily from say 50kW to 20 kW. 

 

Paper Mills 

This industry is highly automated and electricity intensive. The production of paper 

involves preparing the stock from pulp and then pumping the pulp directly to an 

integrated paperboard plant where it may be mixed with other pulps or recycled fibre, 

before going to the paper machine. The paper machine is inflexible and requires a 

relatively constant inflow of pulp. The intermediary process of pumping pulp to the 

paper machine is where storage can be utilised by storing pulp during the pumping 

intervals. 

 

3.2 PROBLEM STATEMENT AND FORMULATION 
 

This chapter is mainly concerned with modelling the optimal response of a product 

storage type industrial consumer to day-ahead prices. It is worth noting again that the 

                                                 
17 Mixed-Integer Linear Programming is also known as Mixed Integer Programming. These terms are 
used interchangeably throughout this thesis. 
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storage device used in the model does not store electricity directly. As electricity is 

consumed in order to make products, electricity is stored indirectly through storing 

these products. The customer will have to respond to the day-ahead electricity prices 

adequately in order to reap the greatest benefits. This requires the capability of 

adjusting load in respond to the price signals, while observing the constraints 

associated with their operations. The customer must have some excess capacity of 

production and storage so that the potential of rescheduling exist.  

 

Day-ahead prices are usually announced about 24 hours in advance and therefore 

allow the customer to plan its production schedule ahead of time. However, in order 

to schedule production for a longer time scale e.g. weeks to months, a reasonably 

accurate forecasting of prices is required. The forecasting of prices and load has been 

addressed by (Hobbs et al., 1999; Deb et al., 2000; Angelus, 2001). It is assumed in 

this thesis that the product demand and day-ahead electricity prices are deterministic. 

As it is impossible to take account of all factors that could affect the customer 

response, a general model is presented in this report. Additional features can be 

added for practical implementation provided the characteristics of the model are not 

violated.  

 

3.2.1 Linear Programming 
 
The scope of Linear Programming is to optimise (minimise or maximise) a function 

called the objective function. In this chapter, this function represents the production 

cost that has to be minimised. The major advantage of LP is that, as long as the 

problem is totally linear, it can be proven mathematically that an optimal solution 

has been found, if it exists. One disadvantage with LP is that the mathematical 

problem must be linear entirely. However, nonlinear functions can be linearised 

piecewise, at the expense of losing the exact representation of the original function.  

 

Mixed Integer Programming 

Suppose we wish to minimise an objective function where some variables are 

restricted to a certain feasible region by mathematical constraints. Assuming that 

some of these variables are restricted to either a value of zero or one (i.e. Boolean 

variable) and this corresponds to a Mixed Integer Linear Programming (MIP) 
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problem, which is a combinatorial problem. Mathematical methods such as branch-

and-bound (B&B) can solve a MIP problem efficiently by dividing the original 

minimization problem into sub problems. In essence, B&B first minimises the 

objective function by ignoring the integrality constraints of the Boolean variables so 

that the optimisation problem can be solved as a relaxed LP problem. This is done by 

“temporarily” allowing one of the Boolean variables to be fractional. The solution of 

this relaxed LP problem (which is infeasible as the integrality constraints are ignored) 

forms the lower bound, since a feasible solution has a higher value when the 

integrality constraints are enforced. Then, two sub problems are created by turning 

the fractional (Boolean) variable into one or zero while relaxing other Boolean 

variables. Relaxed LP is solved again in each of these sub problems. If one of the 

solutions in these sub problems meets all the integrality constraints, a feasible 

solution is found and this solution forms the upper bound. If the upper and lower 

bounds match, then an optimal solution has been found. Otherwise, two new sub 

problems are created out of another sub problem by turning a fractional variable into 

one or zero while relaxing other Boolean variables. This branching process is 

repeatedly performed until the two bounds match or the solution gap between these 

bounds is sufficiently small. For a general overview of B&B, see Lawler and Wood 

(1966). A thorough examination of B&B is presented in Foulds (1981). MIP can also 

be solved alternatively using methods such as cutting-plane and branch and cut (a 

hybrid of B&B and cutting-plane methods). 

 

Optimisation package such as XpressMP allows the setting of the solution gap, which 

limits how far the branching process should go in searching for a better upper bound 

feasible solution. Thus, setting the solution gap to zero guarantees the final solution 

to be optimal, but almost certainly increases the computational time. In all the 

simulation studies performed in this thesis, the solution gap is set to be zero, unless 

specified otherwise.  

 

3.2.2 Objective Function 
 

The objective function of the optimal response problem is to maximise the profit of 

an industrial consumer, which is defined as the difference between the revenue and 
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the production cost of a manufactured good, over a planning horizon. The planning 

horizon is partitioned into T  equally sized intervals with duration of t∆ . For 

simplicity, the duration of every interval is assumed to be one hour throughout this 

thesis, unless specified otherwise: 

 

1=∆t   (3.3) 

 

The manufactured good is referred generically as widget (W ) throughout this thesis. 

Assuming the selling price of widgets is time-invariant, the revenue becomes 

constant and can be omitted from the objective function. Therefore, the optimisation 

problem can then be represented as minimising the production cost ( TC ), or 

mathematically: 
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where: 
t
EC  cost of electrical energy used, $/h 

t
MC  cost of manufacturing widgets, $/h 

t
SC  cost of starting the manufacturing process, $/h 

t
StC  cost of storing widget, $/h 

t  index of time periods running from 1 to T , h 

T  optimisation horizon, hours 

 

Other costs such as labour and materials are assumed to be time invariant and hence 

can be omitted from the objective function.  

 

Electricity Consumption Cost 

The cost of electricity consumption ( t
EC ) is expressed as a function of the demand 

for electricity: 

 
t
W

tt
E DC π=   (3.5) 
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where: 
tπ  electricity price during period t , $/MWh 
t
WD  demand for electricity needed for widget production during period t , 

MW 

 

Assuming that the demand for electricity ( t
WD ) is linearly proportional to widget 

production level ( tW ), and that all other loads that consume electricity (e.g. lightings 

and electric heating) are negligible or constant, then t
WD  can be expressed as: 

 
tt

W WD α=   (3.6) 

 

where α , is the incremental demand, or the energy needed to produce the next unit 

of widget. Its unit is MWh/widget. Figure 3.1 illustrates the relationship between α  

and t
WD . 

 

From (3.5) and (3.6), t
EC  can be restated as: 

 
ttt

E WC απ=   (3.7) 

 

 
Figure 3.1 Demand for electricity as a function of widget output 

 

Manufacturing Cost 

The manufacturing cost includes the cost of the input resources required (e.g. raw 

materials and fuel) to transform them into widgets (e.g. intermediate or final 

products) at the output of the process. The manufacturing cost does not take account 

of the cost of electricity needed to produce widgets as it is computed separately in 
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t
EC . Due to the principle of diminishing returns18, the manufacturing cost ( t

MC ) can 

be represented as a convex quadratic function (3.8), which has a non-decreasing 

slope in the positive interval, or mathematically:  
 

( )2ttt
M WcbWaC ++=   (3.8) 

 

where a, b, and c are the coefficients of the manufacturing cost function.  

 

An approximation of this quadratic function can be obtained by a linearization 

process, which is presented in Appendix A. The motive of this linearization is to 

transform a computationally expensive Quadratic Programming (QP) problem into a 

LP problem which can be solved more efficiently. (3.8) can be approximated by 

piece-wise linear cost functions, as shown in Figure 3.2, for which the following 

holds: 
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Alternatively (3.9) can be stated as: 
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where: 
jσ  incremental manufacturing cost. It is also the slope of the piecewise 

linear manufacturing cost function at segment j, $/widget.h 

WN  no-widget-output cost of process. This fixed cost is required to maintain 

the process online without any production of widget, $/h 

                                                 
18 Usually in a production system, as more of an input is applied, each additional unit of input yields 
less and less additional output. This is known as the principle of diminishing returns. 
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tj
SgW ,  output level of widget at segment j of the process during period t, widget

j
EW  output level of widget at elbow point j, widget 

S  total number of incremental manufacturing cost segments 

 

 
Figure 3.2 An example of piece-wise linear manufacturing cost function with 3 segments 

 

The first and second terms of (3.10) represent the fixed and variable parts of the 

manufacturing cost function respectively. The amount of widgets produced in each 

segment of the manufacturing cost function gives the total widget output during 

period t: 

 

t
S

j

tj
Sg WW∑

=

=
1

,     (3.11) 

 

Process Start-up Cost 

The process start-up cost ( t
SC ) is incurred whenever a process is restarted. It includes 

the wastage resulting from restarting the process. 

 

⎪⎩

⎪
⎨
⎧

≥

−⋅= −

0

)( 1

t
S

t
M

t
MS

t
S

C

uuC β
  (3.12) 

 

where: 

Sβ  fixed cost of starting up a process, such as maintenance costs and crew 

costs, $ 
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t
Mu  up/down status of a process during period t 

t
Mu = 1, process is on 
t
Mu = 0, process is off 

 

Storage Cost 

Storage device deteriorates through use and cost is incurred whenever it needs to be 

serviced. Hence, the cost resulting from the maintenance of the storage device can be 

modelled as storage cost ( t
StC ). As an example, if the average cost to service the 

storage device is $1,000 for every 200 widgets, the per unit storage cost is then $5. It 

is assumed that the cost of storing each unit of widget (ω ) is constant throughout the 

planning horizon, T, or mathematically: 

 
tt

St SC ω=   (3.13) 

 

where: 
tS  storage level at the end of period t, Unit 

ω  incremental storage cost. It is also the cost of storing a unit of widget, 

$/Unit.  

 

3.2.3 Constraints 
 

The minimisation of the objective function (3.4) is subject to process constraints. 

This section describes these constraints.  

 

Production Limit 

There is a limit on the production rate of widgets:  

 

WWW t ≤≤   (3.14) 

 

where W ,W  are respectively the lower and upper limits of the production rate of 

widget. 
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Storage Limit  

The storage level must not exceed the storage size, as described in (3.15):  

 

SSS t ≤≤   (3.15) 

 

where S , S  are the lower and upper storage limits. 

 

Inventory Balance 

The inventory balance constraint ensures that sufficient widgets are produced to 

meet the forecasted hourly widget demand ( t
DW ), or mathematically: 

 
t

D
ttt WWSS −+= −1   (3.16) 

 

If the customer has to meet a certain amount of widget demand at the end of the 

planning horizon ( DYW ) instead, (3.16) can be restated as follows: 
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ttt

  (3.17) 

 

Equation (3.16) can be further extended to model storage losses by multiplying the 

storage level by an efficiency coefficient, θ  as shown below:  

 
t

D
ttt WWSS −+⋅= −1θ   (3.18) 

 

Initial-Final Storage Condition 

This is a surplus stock requirement to meet an unexpected increase in demand: 

 
TSS =0   (3.19) 

 



Chapter 3 Optimal Response to Day-Ahead Prices for Storage-Type Industrial Customers  

 
 
  73  
 
 

where 0S  and TS  are the storage level at the beginning and at the end of the 

planning horizon respectively. 

 

Equation (3.19) also ensures that the widget demand throughout the planning 

horizon is satisfied solely through the production within the same horizon, which is 

shown mathematically next:  

 

Summing the inventory balance constraint (3.16) for every period gives: 

 

∑∑∑∑
===

−

=

−+=
T

t

t
D

T

t

t
T

t

t
T

t

t WWSS
111

1

1
  (3.20) 

 

As TSS =0 , (3.20) can be restated as follows: 

 

0
11

=−∑∑
==

T

t

t
D

T

t

t WW   (3.21) 

 

If the customer realises that the widget demand deviates significantly from the 

forecasted value, the optimisation model can be re-run, with 0S  set to the storage 

level at the period when the model is run. Obviously, the time frame of production 

schedule would now have to start from that period up until T .  

 

Omission of Manufacturing Cost Function 

Consider an industrial process which requires that the total amount of widgets 

produced within an optimisation horizon to be equal to the total widget demand of 

the same horizon. This condition can be represented mathematically as (3.21). It 

follows that if the cost of manufacturing the next unit of widget does not depend on 

the production level (i.e. t
MC  is modelled as a single segment linear function) then, 

t
MC  can be omitted from the objective function. This is because the total 

manufacturing cost will always be constant, regardless the production pattern. 
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However, it should be noted that t
StC  cannot be omitted from the objective function 

even though it is modelled as a single piece linear function. As it is not compulsory 

to utilise storage, the total amount of widgets stored throughout a planning horizon is 

not constant. As such, t
StC  is proportional to the amount of widgets stored by the end 

of each period t . 

 

3.2.4 Simple Analysis of the Process Optimisation Problem 
 

Consider a simple two period example where the electricity price is higher in period 

2 (i.e. 12 ππ > ) and where the widget demand is the same at both periods 

(i.e. 21
DD WW = ). Assume that the customer has an unlimited storage and production 

capacity. Without load shifting, the production schedule of widgets would be such 

that 11
DWW =  and 22

DWW = . Let the total manufacturing cost and electricity 

consumption cost of this schedule be 21
MAMAMA CCC +=  and EAC  respectively.  

 

In order to save on the electricity consumption cost, the customer should produce 

widgets in such as way that the amount of widgets produced in period 1 meets the 

total widget demand in both periods, i.e. 211
DD WWW +=  and 02 =W . Let the total 

manufacturing cost and electricity consumption cost of this second schedule be 
21
MBMBMB CCC +=  and EBC  respectively. Assuming that the manufacturing cost 

function of the customer has a non-decreasing slope, as shown in Figure 3.3, the total 

manufacturing cost would be lower for the first schedule, i.e. MBMA CC < , as seen in 

Figure 3.3. Conversely, the total electricity consumption cost would be lower for the 

second schedule, i.e. EBEA CC > . Hence, for the load shifting in the second schedule 

to be economically worthwhile, the saving in electricity cost has to at least overcome 

the corresponding increase in manufacturing cost, i.e. MAMBEBEA CCCC −>− . A 

mathematical derivation of this empirical observation is given in the next Section 3.3. 

 

As load shifting may also involves other costs such as a process start-up cost and a 

storage cost, consideration of all these costs will affect the saving of electricity 
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consumption cost, which is obtained from avoiding widget production during high 

price periods.  

 

 
Figure 3.3 Manufacturing cost function with non-decreasing slope 

 

3.3 SOLVING SIMPLIFIED MODEL USING LAGRANGE’S METHOD 
 

This section attempts to find the optimal solution to the optimisation problem 

formulated in Section 3.2.2 using Lagrange’s method. The complete solution 

technique of this method can be found in Wood and Wollenberg (1996). For 

convenience, (3.4) is presented below:  

 

[ ]∑
=

+++=
T

t
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t
S

t
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t
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min     

 

Without loss of generality, t
SC  and t

StC  are assumed to be negligible as compare to 

the electricity consumption cost and the manufacturing cost so that the objective 

function can be simplified as: 

 

[ ]∑
=

+=
T

t

t
M

t
ET CCC

1

min   (3.22) 

 

Equation (3.22) is subject to constraints (3.14), (3.15) and (3.16), which are stated 

below for convenience: 
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0≤−WW t   (3.23) 

 

0≤− SS t   (3.24) 

 

01 =+−− − t
D

ttt WWSS   (3.25) 

 

The constraint on the final value of storage (3.19) is ignored, as it is not essential 

towards finding the optimal solution. The lower limit of production and storage 

capacity are assumed to be zero. Assigning Lagrangian multipliers tλ , tµ and tη , to 

the constraints above gives the corresponding Lagrangian function:  

 

[ ] [ ] [ ]{ }∑
=

− −+−++−−++=
T

t

ttttt
D

ttttt
M

t
E

ttttt

SSWWWWSSCC

SW

1

1

),,,,(

ηµλ

ηµλl
 (3.26) 

 

Assuming that the electricity consumption cost is linearly proportional to the day-

ahead prices and that the manufacturing cost function is polynomial, identical to 

ones defined in (3.7) and (3.8), and are shown respectively below for convenience: 

 
ttt

E WC πα=  

( )2ttt
M WcbWaC ++=  

 

The necessary conditions for optimality are obtained by setting the partial derivatives 

of the Lagrangian function (3.26):  

 

02 =+−++≡
∂
∂ tttt

t cWb
W

µλαπl  (3.27) 

1..1,01 −=∀=+−≡
∂
∂ + Tt
S

ttt
t ηλλl  (3.28) 

01 =+−−≡
∂
∂ − t

D
ttt

t WWSS
λ
l  (3.29) 

 

The solution must also satisfy the inequality constraints  
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0≥−≡
∂
∂ t

t WW
µ
l   (3.30) 

0≥−≡
∂
∂ t

t SS
η
l   (3.31) 

 

And the complementary slackness conditions 

 

0)( =−⋅ tt WWµ   (3.32) 

0)( =−⋅ tt SSη   (3.33) 

 

The complementary slackness conditions state that an inequality constraint is either 

binding or non-binding19. If it is binding, it behaves like an equality constraint and it 

can be shown that the corresponding Lagrange multiplier is equal to the marginal 

cost of the constraint. As a binding inequality constraint always increases the cost of 

the optimal solution, the Lagrange multipliers of binding constraints must be positive. 

On the other hand, a non-binding inequality constraint has no impact on the cost of 

the optimal solution and therefore its Lagrange multiplier has a zero value. Hence, 

the Lagrange multipliers for inequality constraints can be expressed mathematically 

as:  

 

0≥tµ   (3.34) 

0≥tη   (3.35) 

 

Equations (3.27) to (3.35) form the necessary conditions for the optimal response 

problem. They are also known as the Karush Kuhn Tucker (KKT) conditions20. 

Assuming that the time horizon considered is two period, i.e. { }2,1=t , equations 

(3.27) and (3.28) can be restated as: 

 

                                                 
19 A constraint is said to be binding when the optimum solution to a constrained optimisation problem 
occurs at the boundary of the feasible region defined by the constraint. Otherwise, the constraint is 
non-binding. 
20 KKT conditions can be subdivided into: primal feasibility (3.27) to (3.31), complementary 
slackness (3.32) to (3.33) and dual feasibility conditions (3.34) to (3.35).  
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02 1111 =+−++ µλαπ cWb   (3.36) 

02 2222 =+−++ µλαπ cWb   (3.37) 

0121 =+− ηλλ   (3.38) 

 

Equations (3.36) to (3.38) can subsequently be simplified as: 

 
1211212 )(2)( ηµµππα +−=−+− WWc  (3.39) 

 

The KKT conditions do not tell us which inequality constraints are binding. Hence 

we do not know whether the Lagrangian multipliers, 1µ , 2µ  and 1η  in (3.39) are 

zero or greater than or equal to zero. To solve this system of equalities and 

inequalities, we consider full enumeration of possibilities 21  for the Lagrangian 

multipliers.  

 

Assuming that the demand for widget is the same for periods 1 and 2 and that the 

electricity price is higher during period 2 (i.e. 12 ππ > ), we would expect the optimal 

production level of widget to be higher during period 1 (i.e. 21 WW > ). For the 

moment, let us assume that the assumption made previously is true and that load is 

shifted from the higher to the lower price period.  

 

In the optimal solution, the surplus production stored in period 1 is used to meet part 

or all of the widget demand in period 2 to avoid higher electricity consumption costs 

at period 2. Hence, we can ignore cases where the production level is limited at 

period 2 since the solution would be sub-optimal (recall that 21 WW >  at optimal 

and therefore we cannot have WW =2 ). Consequently, we can ignore cases with 

02 >µ  and consider only the following four possible combinations for Lagrangian 

multipliers.  

 

Case 1: 01 =µ ; 02 =µ , 01 =η ; (both production and storage capacity are not limited) 

                                                 
21 Technique such as Newton’s algorithm can also be used to solve the equations presented in (3.22) 
to (3.35). 
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In this case, all Lagrangian multipliers are equal to zero and therefore, none of the 

inequality constraints are binding. Equation (3.39) can be restated as: 

 

)(2)( 2112 WWc −=− ππα   (3.40) 

 

This equation states that at the optimum, the Left-Hand Side (L.H.S.) of (3.40), 

representing the marginal saving of electricity consumption cost is equal to the 

Right-Hand Side (R.H.S.) of (3.40), representing the marginal increase in 

manufacturing cost, if both the production and storage capacity are not limited. It 

also implies that whenever there is a price difference between two periods, there will 

be a corresponding change in the production levels in such a way that the production 

level would be lower at the period where the electricity price is higher. 

 

If the manufacturing cost function were to be modelled as a single piece linear 

function, it can be shown that the change in marginal manufacturing cost would be 

zero as a linear function has a constant gradient. This would result in a zero value in 

the R.H.S. of (3.40) and cause the optimal condition to be infeasible, unless the price 

difference ( 12 ππ − ) is also zero. Hence, this implies that either the production or 

storage capacity must be limited whenever there is a price difference with a single 

piece linear function. This is a result that can be expected as the optimum feasible 

solution of a linear programming problem will be on the boundary of the feasible 

region (Roos and Lane, 1998).  

 

Case 2: 01 =µ ; 02 =µ ; 01 >η ; (Production capacity is not limited, storage capacity 

is limited at the end of period 1) 

 

Substituting the conditions for Lagrangian multipliers above into (3.39) gives: 

 
11212 )(2)( ηππα =−+− WWc   (3.41) 

 

As 01 >η , (3.41) can be stated as: 
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)(2)( 2112 WWc −>− ππα   (3.42) 

 

The optimal condition (3.42) states that the marginal saving of electricity 

consumption cost (L.H.S) has to be greater than the marginal increase in 

manufacturing cost (R.H.S) if the storage capacity is limited at the end of period 1. It 

also implies that the full potential of saving in electricity consumption cost is 

constrained by the storage capacity.  

 

Case 3: 01 >µ ; 02 =µ ; 01 =η ; (Production capacity is limited at period 1, storage 

capacity is not limited) 

 

Substituting the conditions for Lagrangian multipliers above into (3.39) gives 

 
11212 )(2)( µππα =−+− WWc   (3.43) 

 

As 01 >µ , (3.43) can be stated as: 

 

)(2)( 2112 WWc −>− ππα   (3.44) 

 

which gives the same optimal condition as in case 2. The optimal condition (3.44) 

implies that the potential savings of electricity consumption cost is constrained by 

the production capacity.  

 

Case 4: 01 >µ ; 02 =µ ; 01 >η ; (Production capacity is limited at period 1, storage 

capacity is limited at the end of period 1) 

 

Substituting the conditions for Lagrangian multipliers above into (3.39) gives 

 
111212 )(2)( µηππα +=−+− WWc  (3.45) 

 

As 01 >η  and 01 >µ  (3.45) can be stated as 
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)(2)( 2112 WWc −>− ππα   (3.46) 

 

Again, the optimal condition (3.46) gives the same optimal condition as in previous 

two cases. It implies that the potential savings of electricity consumption cost is 

constrained by both the storage and production capacity.  

 

Condition for Optimal Load Shifting 

From the optimality conditions (3.41), (3.42), (3.44) and (3.46), the following 

conclusions can be made: 

 

For a load shifting from a higher price period to a lower price period to be optimal, 

the marginal saving of electricity consumption must be greater than the marginal 

increase in manufacturing cost, if one or both of production and storage capacity is 

limited in the solution. If the production and storage capacity are not limited in the 

solution, the marginal saving of electricity consumption must be equal to the 

marginal increase in manufacturing cost; otherwise, the solution is not optimal. The 

optimal solutions obtained from Lagrange’s method confirm the empirical 

observation made earlier in Section 3.2.4. 

 

Although the Lagrange’s method is able to solve the simplified two-period problem 

with relative ease, finding the optimal response under more complicated multi-period 

problems cannot be solved practically using this mathematical approach. This is due 

to the complex influence of electricity price profiles on the optimal response, on top 

of the dramatic size increase of the problem as more considerations are taken into 

account. As such, numerical optimisation approach is taken in this thesis, as will be 

presented in the next section. Nevertheless, the Lagrange’s method provides insight 

to the nature of the optimal response problem. 

3.4 APPLICATION TO THE PROCESS OPTIMISATION PROBLEM  
 

A practical industrial situation is used to illustrate the application of the proposed 

algorithm to the process optimisation problem. The subject of the study is an 

industrial consumer that manufactures widgets subject to a deterministic widget 
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demand at every period of the planning horizon. The production process for the 

customer consists of a production line for assembling widgets and a storage device. 

 

3.4.1 Simulation Study 1: Economic Feasibility of Facing Day-ahead Prices 
 

The purpose of this study is to evaluate the benefit of responding to day-ahead prices. 

Consider an industrial plant whose production target is 100 widgets per hour over a 

24-hour period22. For simplicity, all relevant parameters in this study are normalised 

and divided by 100. For example, the normalised widget demand would be 

represented as TtW t
D ,...,1 ,1 =∀= . The following summarises the operational and 

physical characteristics of the industrial process: 

 

Time Horizon: T = 24 

Widget Demand: TtW t
D ,...,1 ,1 =∀=  

Production: WN  = 10, 1σ  = 10, 2σ  = 15, 3σ  = 20, W = 0.25, 1
EW  = 0.75,  

2
EW  = 1.00, W = 1.25, α = 1, Sβ = 2.5  

Storage: 0S = 8, S = 0, θ  = 1, S = 24, ω  = 0 

 

The manufacturing cost function is linearised into a piecewise-linear function with 

three segments, as shown in Figure 3.4. The cost function can be linearised into more 

than three segments to better approximate the original cost function. 2
EW  is 

deliberately chosen to be 1 so that operating at an output level higher than the 

required hourly widget demand ( TtW t
D ,...,1 ,1 =∀= ) will incur a higher incremental 

cost. The intention is to capture the characteristic of diminishing return of the 

original manufacturing cost function. S  is chosen to be 24 so that the storage 

capacity is never constrained because a fully charged storage could satisfy the total 

widget demand. 0S  is given a value of 8 so that the initial storage can satisfy widget 

demand for 8 consecutive hours without producing any widgets. 

 

                                                 
22 A weekly (168-hour) optimisation may be more appropriate to reap the benefits of lower electricity 
prices during weekends. The 24-hour horizon is used for illustration purposes only.  



Chapter 3 Optimal Response to Day-Ahead Prices for Storage-Type Industrial Customers  

 
 
  83  
 
 

 
Figure 3.4 Manufacturing cost function of the process 

 

All developed algorithms for this research project were coded in Mosel (a 

proprietary language of XpressMP, Dash Associates) and tested on a Pentium 4 1.6 

GHz Personal Computer (PC) with 512 MB Random Access Memory (RAM). The 

computation time taken for this simulation study is only 0.1 second as the size of the 

problem is relatively small, with 314 constraints and 193 decision variables. The 

day-ahead prices are taken from the Feb 2001 average PPP (pool purchasing price) 

of EPEW, as given in Appendix B.1. 

 

The optimal production and storage schedules are shown in Figure 3.5 for the EPEW 

price profile. As expected, the production level varies according to the electricity 

prices. It can be seen that the production level is generally at zero, at capacity level 

or elbow points of the piece-wise linearised manufacturing cost function. This is 

expected as the optimal solution of a LP problem is usually on the boundary of the 

feasible region. It can also be seen that the highest storage level achieved for this 

particular case study is 11.25. Therefore, the storage will be limited if the storage 

capacity is lower than 11.25.  
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Figure 3.5 Production schedule of Simulation Study 1 

 

Table 3.1 summarises the optimal production cost of facing flat rate and day-ahead 

prices. The flat rate is obtained by taking the average of the EPEW price profile. As 

expected, the electricity cost for the case of facing day-ahead prices is lower, with a 

saving of 7.78% with respect to the flat rate case. The total manufacturing cost under 

day-ahead price is found to be lower than the case with flat rate. This saving in 

manufacturing cost is mainly due to the reduction in fixed cost ( WN ), which resulted 

from a complete shutdown of the process from periods 18 to 21, as shown in Figure 

3.5. Furthermore, the amount of saving in both electricity and manufacturing cost 

justified the need of shutting down and restarting the process.  

 
Table 3.1: Summary of various costs of production 

Electricity Price 

Profile 

Total 

Electricity 

Cost [$] 

Total 

Manufacturing 

Cost [$] 

Process 

Start-up Cost 

[$] 

 

Production 

Cost [$] 

Flat rate 450.53 510.00 0.00 960.53 

Day-ahead price 415.91 505.00 2.50 923.41 

% saving 7.78 0.98 N/A 3.86 

 

3.4.2 Simulation Study 2: Sensitivity Analysis  
 

A sensitivity analysis has been performed to investigate how the change in various 

parameters of the process affects the production cost. Attention is paid to the storage 

and production capacities that enable the customer to be responsive to the day-ahead 
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prices. The analysis changes each parameter of interest separately and the resulting 

change in the total production cost is noted. The parameters that are varied in the 

sensitivity analysis are: 0S , S ,ω  and W . 

 

Constant Parameters  

The parameters that are held constant in this study are presented below: 

 

  Time Horizon: T = 24 

 Price Profile: can be found in Appendix B.1 

 Widget Demand: TtW t
D ,...,1 ,1 =∀=  

Production: WN  = 10, 1σ  = 10, 2σ  = 15, 3σ  = 20, W = 0.25, 1
EW  = 0.75,  

2
EW  = 1.00, W = 1.25, α = 1, Sβ = 2.5  

Storage: S = 0, θ = 1.0 

 

Base Parameters 

To establish comparison quantitatively, the resulting change in the production cost is 

measured against the case with base parameters. The values of these base parameters 

are: 

Production: 
′

W  = 1.25 

Storage: ′0S  = 2.0, 
′

S  = 5.0, ω′  = 0.1  

 

Variable Parameters 

Each of the four parameters: 0S , S ,ω  and W , is modified one at a time at a step of 

10% from –100% to 100%, while the remaining parameters are held constant at their 

base values, or mathematically: 

 

0.1 ( 1) , 1,..., 21X m X m′′ ′= ⋅ − ⋅ ∀ =   (3.47) 

 

where 0.1 ( 1)m⋅ −  represents the fraction of the change in the parameters and 

⎭
⎬
⎫

⎩
⎨
⎧ ′

′
′′

∈′ WSSX ,,,0 ω . 
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Percentage Change in Saving 

The resulting change in the production cost is represented as the percentage change 

in saving ( PS ), as shown below: 

 

%100
)(

)()(
⋅

′
′′−′

=
XC

XCXCPS
T

TT   (3.48) 

 

PS  is plotted against the percentage change in the parameters, as shown in Figure 

3.6. 

 

 
Figure 3.6 Sensitivity analysis of Simulation Study 2 

 

The following summarises the results of the sensitivity analysis.  

 

Varying Initial Storage Level  

It can be seen that the optimal initial storage level is between -70% and –80% of ′0S . 

Below the optimal point, the saving is increasing because the customer is taking 

advantage of the initial storage for an immediate curb in production during high 

price periods. Beyond that optimal point, the storage is never fully utilised to curb 

production. As ω′  is non-zero, the saving is decreased as 0S  is increased beyond the 

optimal point. As the value of 0S  is approaching
′

S , the ability to store surplus 
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widget becomes more limited, which is why the rate of reduction of PS  is further 

increased between 75% to 100%. 

 

Varying Incremental Storage Cost 

As expected, the relationship between PS  and ω  is linear. This is because the 

storage cost is a modelled as a linear function. 

 

Varying Storage Capacity  

The solution is infeasible between 0.0 and 2.0 (-60% to –100% of 
′

S  = 5.0) as 
′

S  = 

5.0. Beyond a certain point, an increase in S  does not improve savings, as there is 

no further surplus widgets to charge the storage device. It can also be observed that 

the storage capacity is not constraining at base value as increasing S  beyond base 

value does not increase PS . 

 

Varying Production Capacity 

PS  is found to be most sensitive to the value of W . This is partly because W  is 

constraining at base value, as increasing W  beyond base value increases PS . The 

shape of W curve exhibits a diminishing return, as there are only a finite number of 

high-price periods during which widget production can be replaced by production 

from lower-priced periods. 

 

It can be concluded from the sensitivity analysis shown on Figure 3.6 that the 

production and storage capacity has the greatest impact on PS . 

 

3.4.3 Simulation Study 3: Relationship between the Need for Storage and the 
Production Capacity 
 

It can be seen from Figure 3.5 in simulation study 1 that storage will be limited if the 

capacity is lower than 11.25. The production cost will increase when such a case 

happens, which is undesirable to the industrial consumer. The minimum capacity 

needed to avoid the storage being limited depends on the size of the production 

capacity. As such, this simulation study examines how much storage capacity is 
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needed as the industrial consumer expands its production capacity. For ease of 

understanding, the length of the optimisation horizon in this study is reduced. Hence, 

a 5-period price profile is used in this study. The findings of this study is however 

applicable to larger size problems. For readability, the minimum capacity needed to 

avoid the storage being limited is referred to as the need for storage from here on.  

 

Constant Parameters  

The parameters that are held constant in this study are presented below: 

 

 Time Horizon: T = 5 

 Price Profile: as given in Table 3.2 

 Widget Demand: TtW t
D ,...,1 ,1 =∀=  

Production: W = 0, α = 1, Sβ = 0.0  

Storage: 0S = 0, S = 0, θ  = 1, S = 5, ω  = 0 

 

The 5-period price profile is given in the table below:  

 
Table 3.2: Price profile of simulation study 3 

Period 

[hour] 

Price 

[$/MWh]

1 10 

2 20 

3 30 

4 15 

5 25 

 

For simplicity, the hourly widget demand is assumed to be constant at 1. The 

manufacturing cost function is assumed to be modelled as a single segment linear 

function and can therefore be omitted from the objective function. W  and Sβ  are 

assumed to be zero. The intention is to simplify the analysis of the simulation results 

without having to consider non-linear conditions such as starting up or shutting 

down the process to reduce fixed costs. 0S  is set at zero so that there is no initial 

storage to supply widget demand at the beginning of the optimisation horizon. S  is 



Chapter 3 Optimal Response to Day-Ahead Prices for Storage-Type Industrial Customers  

 
 
  89  
 
 

deliberately chosen to be equal to the total widget demand so that the storage 

capacity will never be limited. The cost of storage is assumed to be negligible. Thus, 

the production cost of the industrial consumer in this study consists of only the 

electricity consumption cost as all other costs are omitted. 

 

Variable Parameter 

The production capacity is increased from 1 to 5 with a step W∆ = 0.10. The 

corresponding values for the need for storage are plotted on the vertical axis in 

Figure 3.7, as shown below: 
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Figure 3.7 Need for storage of simulation study 3 

 

It can be seen from the figure above that the need for storage does not necessarily 

increase as the production capacity is expanded. The slope of the need for storage 

curve becomes negative when the production capacity ranges between 1.7 and 2.0. 

For the purpose of explaining the need for storage curve in Figure 3.7, the electricity 

prices of the 5-period profile are arranged in descending order, as shown in Table 3.3: 
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Table 3.3: Price profile arranged in descending order of prices 

Period 

[hour] 

Price 

[$/MWh]

3 30 

5 25 

2 20 

4 15 

1 10 

 

As the production capacity is expanded, the industrial consumer improves its 

capability to reduce electricity consumption cost by shifting its electricity demand 

from higher price periods to lower price periods. Hence, the demand for electricity 

should be reduced in a such way that the production of widgets during the highest 

price period is decreased as much as possible, followed by the second highest price 

period, and so forth in the order of period shown in Table 3.3. 

 

Case 1: Production Capacity Marginally Meets Widget Demand 

We start off by considering the case where the production capacity of the industrial 

consumer is 1. As the production capacity is just enough to meet the hourly widget 

demand, the customer cannot produce any surplus widgets. As a result, the need for 

storage is zero in this case. 

 

Case 2: Production has a spare capacity of W∆  

As the production capacity is increased by W∆  beyond 1, we would expect the 

increased capacity W∆  to be fully utilised in all periods except for the highest price 

period, which is period 3 according to Table 3.3. Therefore the production level at 

3=t  is expected to be reduced by 0.4 widgets/hour (i.e. W∆×4 ), while the 

unsatisfied demand at 3=t  would be met through the surplus widgets produced in 

the remaining four periods. However, this is not a feasible solution as any surplus 

widgets produced in 4=t  and 5 cannot be used to meet the unsatisfied demand that 

has already occurred at 3=t .  

 

Consequently, the optimal solution is such that the production level at 3=t  is 

reduced by only 0.2, where the reduced production is replenished through the storage 
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accumulated from the surplus productions of 1=t  and 2. This in turn increases the 

storage level at the beginning of 3=t  by 0.2, as shown in the Figure 3.8:  
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Figure 3.8 Production schedule at W = 1.1  

 

It has been observed that the peak storage level at 3=t  follows the same rate of 

increase (at 0.2) for every subsequent W∆  increase of production capacity. This 

pattern continues up until production capacity of 1.7. As such, the slope of the need 

for storage curve in Figure 3.7 is 0.2/ W∆  = 2 between the production capacity range 

of 1 and 1.7. 

 

Case 3: Increasing production capacity between 1.7 and 2.0 

As the production capacity is increased beyond 1.7, the customer is able to avoid 

widget production completely at two of the highest price periods (i.e. 3=t  and 5). 

According to Table 3.3, period 2 is now the highest price period where electricity 

consumption has not been avoided completely. As such, it is desirable to reduce 

widget production at 2=t  as much as possible.  

 

Now consider the case where the production capacity is increased slightly from 1.7 

to 1.8 by W∆ . As expected, the increased capacity is fully utilised at 1=t  and 4, as 

the prices are lower than the price at 2=t . As a result, the production level at 2=t  

is reduced by 0.2, as shown in Figure 3.9 
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Figure 3.9 Production schedule at W = 1.7  
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Figure 3.10 Production schedule at  W = 1.8 

 

Recall in Case 2 that 2=t  was originally used together with 1=t  to produce surplus 

widgets for meeting unsatisfied demand at 3=t . However, period 2 has now 

become the highest price period where widget productions should be avoided. As 

such, the production level is reduced at 2=t  and the peak storage level at the 

beginning of 3=t  is reduced, by 0.1. The slope of the need for storage curve 

between 1.7 and 2.0 follows the same rate of decrease in peak storage level at the 

beginning of 3=t , which works out to be 0.1/ 1W− ∆ = −  between production 

capacity range, as can be verified in Figure 3.7. 

 

Reduction of peak storage level 

As the production capacity is expanded, the need for storage may reduce when at 

least one period within a cluster of charging periods (i.e. 1=t  and 2) become 
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candidate periods for avoiding electricity consumption/discharging. Suppose this 

cluster of charging periods is responsible to contributing to the peak storage (i.e. at 

3=t ). Then, the peak storage level will reduce when one or more than one of the 

period from this cluster (i.e. 2=t ) ceases to become a charging period. This in turn 

decreases the need for storage.  

 

Case 4: Increasing production capacity beyond 2 

As the production capacity is increased beyond 2.0, the widget production stops 

completely at three of the highest price periods (i.e. 2=t , 3 and 5). The slope of the 

need for storage curve now increases at a rate of 0.1/ 1W∆ =  from here onwards.  

 

The need for storage may reduce as the production capacity of the industrial 

consumer is expanded. This occurs when some periods within a cluster of charging 

periods become discharging periods, and this in turn reduces the peak storage level 

and the need for storage. Furthermore, the chronological order of electricity prices 

has an effect on the production schedule. This will be examined in more detail in 

simulation study 5.  

 

3.4.4 Simulation Study 4: Optimisation of Production Schedules under Two-
Part Electricity Price Profiles 
 

It can be seen from simulation study 1 that the scheduling of the industrial 

consumer’s process depends largely upon the shape of the day-ahead price profile. 

This observation provides motivation to determine the effect of different price 

profiles on the production cost. As it is prohibitive to perform simulation on all 

different combinations of price profiles, a generic two-part price profile is used for 

this simulation study. This two-part price profile captures two important 

characteristics of price profiles, which are:  

• Price ratio: The price between “peak” and “off-peak” periods 

• Peak duration: The durations of the “peak” periods  

 

Therefore, the aim of this simulation study is to examine how these two 

characteristics affect the saving that can be achieved.  
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Formation of the two-part price profile 

The two-part price profile is formed using two parameters: the Price Ratio (ξ ) and 

the Peak Duration ( Pτ ). ξ  is defined as the ratio between the peak price ( Pπ ) and 

the off-peak price ( OPπ ), as given below: 

 

OP

P

π
π

ξ =   (3.49) 

 

Pτ  determines the length (in hour) of the peak price periods. The peak periods are 

assumed to occur consecutively after the off-peak periods in this study. Hence, the 

two-part price profile can be represented mathematically as:  

 

⎪⎩

⎪
⎨
⎧

−−=∀=
−+−−=∀=

1,...,1,
,1,...,1,,

POP
t

PPP
t

Tt
TTTTt

τππ
ττππ

 (3.50) 

 

Variable Parameters 

To determine how different two-part price profiles affect the production cost, ξ  and 

Pτ  are varied in a way according to the following two equations: 

 

19,...,1),1(5.01 =∀−⋅+= mmmξ   (3.51) 

24,...,1, =∀⋅= nnn
Pτ   (3.52) 

 

As mξ  and n
Pτ  are varied 19 and 24 times respectively, it requires a total of 

4462419 =×  simulation runs. 

 

Constant Parameters 

The parameters that are held constant throughout this study are presented below: 

 

 Time Horizon: T = 24 

Widget Demand: TtW t
D ,...,1 ,1 =∀=  
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Price Profile: Pπ = 29.78 

Production: WN  = 0, 1σ  = 10, 2σ  = 15, 3σ  = 20, W = 0, 1
EW  = 0.75,  

2
EW  = 1.00, W = 1.75, α = 1, Sβ = 0  

Storage: 0S = 0, S = 0, θ  = 1, S = 8, ω  = 0 

 

It is necessary to present the impact of different price profiles on the production cost 

meaningfully. The percentage change in saving ( PS ) is used again in this study to 

quantify the consumer ’ s benefit of facing different two-part price profiles 

formulated using equations (3.49) to (3.52). As emphasis is placed on the load 

shifting ability of the customer, PS  represents the saving of production cost when 

load shifting is performed, relative to the case without load shifting. In the case 

without load shifting, the demand for widget is met by production at the time this 

demand occurs. Since load shifting is made possible with storage utilisation, the 

production cost can be represented as a function of storage capacity. Mathematically, 

PS  can be represented as:  

 

%100
)0(

)0()0(),,,( ⋅
=

>−=
=

SC
SCSCWSPS

T

TTn
P

m τξ  (3.53) 

 

As the storage capacity of the customer is assumed to be 8 in this study, equation 

(3.53) can be restated as  

 

%100
)0(

)8()0(),,,( ⋅
=

=−=
=

SC
SCSCWSPS

T

TTn
P

m τξ  (3.54) 

 

The result of this simulation study is presented in  

Figure 3.11. It summarises the impact of mξ (y-axis) and n
Pτ  (x-axis) on PS  (the 

values on the contour plot). 
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Figure 3.11 Effect of Price Ratio and Peak Duration on Saving Ratio 

 

As PS  is a function of mξ  and n
Pτ , we will look at how each of these individual 

variables affects PS . For the purpose of explanation, the contour plot in Figure 3.11 

is separated into three regions of interest. In the following analysis, mξ is held 

constant at 5 while n
Pτ  is varied, unless specified otherwise. 

 

Left Region: When the duration of peak price periods is relatively short ( n
Pτ  < 8), 

the production capacity is never fully utilised during off-peak periods, as the length 

of peak periods where production of widgets can be avoided is limited. As a result, 

the storage is always under-utilised. An example of this is shown in Figure 3.12. 

 

  
 
 Left Mid Right 
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Figure 3.12 Production schedule at mξ = 5, n
Pτ  = 6  

 

Right Region: When the duration of peak price periods is relatively long ( n
Pτ  > 13), 

the production capacity is always limited during off-peak periods since there are 

plenty of opportunities to avoid production of widgets during peak periods. However, 

as production capacity is always constrained during cheap off-peak periods, the 

storage capacity is never fully utilised. An example of this is shown in Figure 3.13 

below. This suggests that the customer can reduce production cost, and thus increase 

PS  by expanding the production capacity, as shown in Figure 3.14. As an example, 

with price profile of mξ = 5, n
Pτ  = 16, PS increases from approximately 0.13 to 0.16 

as production capacity is expanded from 1.75 to 2.00. It is interesting to note that 

PS  in the left region of Figure 3.14 are not improved, as the production capacity is 

not fully utilised during off-peak periods in that region. 
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Figure 3.13 Production schedule at mξ = 5, n
Pτ  = 14 

 

Figure 3.14 Solid line: W =1.75. Dotted line: W =2.00 

 

Mid Region: In between the two regions ( 138 ≤≤ n
Pτ ), the production schedule is 

generally constrained by the size of the storage capacity. As a result, the production 

capacity is not fully utilised during off-peak periods. A typical example of a 

production schedule in this region is shown in Figure 3.15. As storage capacity is 

limited, expanding the storage capacity would increase PS in this region. For 

instance, with a price profile of mξ =5, n
Pτ  = 10, as storage capacity is expanded 

from 8 to 10, PS increases from approximately 19% to 23%, as shown in Figure 

3.16. Note that PS  in the left and right regions are not improved, as the storage 

capacity is never limited in these regions. 
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Figure 3.15 Production schedule at mξ = 5, n
Pτ  = 10 

 

Figure 3.16 Solid line: S = 8. Dotted line: S = 10 

 

We can conclude that, the highest PS is obtained if the production schedule is such 

that the production capacity of the customer is fully utilised during off-peak periods 

and the storage capacity is limited at some point of the planning horizon. Hence, to 

make the most out of a price profile, there must not be any redundancy in both the 

storage and production capacity. In other words, the relationship between the storage 

and production capacity is complementary: The customer is no better off having a lot 

of spare storage capacity if she has only limited production capacity. Likewise, 

increasing production capacity does not bring savings in production cost if the 

storage capacity is constraining. This empirical observation provides motivation to 

determine the optimal expansion of the storage and production capacity. This will be 
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discussed in detail in the next chapter. Furthermore, while holding Pτ  constant, it is 

evident that PS  is proportional to the ξ , as can be observed in all contour plots 

presented previously. This is expected as the amount of saving depends on the 

difference between electricity prices.  

 

3.4.5 Simulation Study 5: Impact of the Chronological Order of Electricity 
Prices on Production Schedule 
 

In simulation study 4, the effects of price ratio and peak duration of two part price 

profiles on industrial consumer’s production schedule have been examined. The 

peak price periods in the study are however, assumed to occur consecutively towards 

the end of the optimisation horizon. Hence, the purpose of the simulation study in 

this section is to observe the effect of the chronological order of electricity prices on 

the production schedule. As such, a generic two-part price profile similar to the one 

used in simulation study 4 is used in this study. The entire profile is then shifted 

along the optimisation horizon to observe the effect of shifting peak price periods. 

 

Shifting two-part price profile 

A new parameter called the Period Delay ( Sτ∆ ) is introduced in this study to shift 

the two-part price profile. Sτ∆  is defined as the number of period(s) the price profile 

is delayed, i.e. shifted towards the right on the optimisation horizon. Initially, the 

peak periods are assumed to occur consecutively after the off-peak periods, and 

towards the end of the optimisation horizon. As the peak periods are delayed beyond 

the optimisation horizon, the exceeded portion of the price profile “reappears” at the 

beginning of the optimisation horizon. In other words, the shifting of the price 

profile is circular. The two-part price profile can be represented mathematically as:  
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Variable Parameter 

The only variable parameter in this study is Sτ∆ . It is varied from 0 to 23 at a step of 

one period.  

 

Constant Parameters 

The parameters that are held constant throughout this study are presented below: 

 

 Time Horizon: T = 24 

Widget Demand: TtW t
D ,...,1 ,1 =∀=  

Price Profile: Pπ = 30.0, OPπ = 10.0, Pτ = 5 

Production: W = 0, W = 1.25, α = 1, Sβ = 0.0  

Storage: 0S = 0, S = 0, θ  = 1, S = 24, ω  = 0 

 
0S  is set at zero so that initial storage cannot be used to supply widget demand. As 

all other costs apart from the electricity consumption cost is omitted from the 

production cost of the industrial consumer, the results obtained from this simulation 

study are plotted against the electricity consumption cost, as shown in Figure 3.17.  
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Figure 3.17 Effect of shifting peak prices 

 

It can be seen from Figure 3.17 that the electricity consumption cost is lowest when 

all the peak periods occur consecutively towards the end of the optimisation period 

(i.e. Sτ∆ = 0). Conversely, the highest electricity consumption cost occurs when all 
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the peak periods occur at the beginning of the optimisation period (i.e. Sτ∆  = 5). The 

production schedules of these two cases are shown in Figure 3.18 and Figure 3.9 

respectively. 
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Figure 3.18 Production schedule at Sτ∆ = 0 
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Figure 3.19 Production schedule at Sτ∆ = 5 

 

As price profiles vary according to time periods, it offers the customer cost saving 

opportunity through rescheduling of energy usage. However, widgets that are stored 

at one period can only be used to meet the demand at a later period. Therefore, the 

opportunity to produce surplus widgets with low electricity prices becomes limited if 

the price profiles are always relatively high at the beginning of the optimisation 

horizon. This suggests that the electricity consumption cost may not always be lower 
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with time varying day-ahead prices, even if the average of the day-ahead prices is 

equal to the flat rate.  

 

If the customer has some initial storage (i.e. 00 >S ), the effect of the position of 

peak periods can however be mitigated, as can be seen in Figure 3.20. The hourly 

widget demand at the beginning of the optimisation horizon is now fully satisfied 

through the initial storage. The storage is then replenished23 through the surplus 

production capacity during the subsequent off-peak periods.  
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Figure 3.20 Production schedule at Sτ∆ = 5 and 0S = 5 

 

As a result of utilising initial storage to meet widget demand during peak periods, the 

electricity consumption cost for case of Sτ∆ = 5 and 0S = 5 is $245, which is 

identical to the case for Sτ∆ = 0 and 0S = 0.  

 

The sequence of a price profile may affect the electricity consumption cost of the 

industrial consumer as the surplus widgets that are produced at one period cannot be 

used to meet the demand at an earlier period. As such, the chronological order of the 

price profile has no effect on the electricity consumption cost if the demand for 

widgets occurs only at end of the optimisation horizon. Nevertheless, if the industrial 

consumer has to meet periodical or hourly widget demand, the sequential effect of 

                                                 
23 The storage is being charged from period 6 onwards in Figure 3.20 because of the constraint on the 
final value of storage (3.19). Otherwise, the production levels during these periods will only be equal 
to the hourly widget demand. 
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the electricity price profile can be mitigated by stocking surplus widgets prior to the 

starting of the optimisation horizon. This however, poses an additional problem to 

the consumer which involves optimising the initial storage level for the subsequent 

days and perhaps weeks. Alternatively, the industrial consumer may shift its 

optimisation period by requesting its electricity supplier to adjust the day-ahead 

prices in such a way that the peak price periods occur towards the end of the 

optimisation horizon.  

 

3.5 DIRECT PARTICIPATION IN DAY-AHEAD ELECTRICITY 
MARKET  
 

The industrial consumer may opt to participate directly in a day-ahead electricity 

market if the size of its load is large enough to meet the minimum entry level 

requirement. Obviously, the consumer has to use electricity intensively to justify the 

cost of participation, such as the administrative and Information and 

Communications Technology (ICT) associated with such markets.  

 

As described in Chapter 1, the electricity prices are announced ahead of time in a 

day-ahead pool market that clears with a fixed forecasted demand (inelastic model). 

The cost of serving the actual system demand in such market can only be known 

after the fact (ex post), as a result, the ex post prices are likely to deviate from the 

day-ahead prices. If the demand response is based entirely on the day-ahead prices, 

the consumption schedule may not be optimal. As an example, if a consumer had 

shifted a large portion of its load to a period where electricity price turned out to be 

higher than expected, this would defeat the whole purpose of demand shifting. A risk 

averse consumer could use contracts for differences (CfD) in conjunction with day-

ahead time varying rates to evade such “risks”. However, there is also a chance 

where the price could end up being lower than predicted and obtained more savings 

as a result. Hence, this CfD approach essentially passes on the risk of volatile day-

ahead prices to CfD sellers who can manage the risk well. Nevertheless, the 

deterministic model of Section 3.2 is still applicable in solving the optimal response 

problem, provided the differences between the day-ahead prices and the ex post 

prices are not significant. Since the deterministic model is used by the industrial 
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consumer for self-optimising its consumption, the model may not be suitable in the 

elastic demand model of a pool market, as consumption is optimised centrally by the 

market operator. In this regard, a demand bid that represents the benefit of 

consuming energy has to be formulated. The next section attempts to formulate such 

a demand bid.  

3.5.1 Formulation of Demand-Side Bid for the Industrial Consumer 
 

Using the case of the process type industrial consumer introduced in Section 3.2, 

suppose that the profit obtained from selling widgets at period t ( t
PC ) can be 

represented using the equation below:  
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where t
RC  is the revenue obtained from selling widgets at period t.  

 

The necessary condition for optimality is given by setting the derivatives of (3.57), 

which gives:  
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The derivatives of t
SC  and t

StC  are zeros, as they are not a function of t
WD . At the 

optimal, 0=t
W

t
P

dD
dC  thus (3.58) can be restated as: 
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Equation (3.59) states that, at the optimum, the marginal cost of consuming 

electricity ( MC ) is equal to the marginal benefit of consuming electricity ( MB ). 

MC  and MB  can be represented mathematically as: 
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MB  represents the highest price the industrial consumer is willing to pay for 1 MWh 

of electricity. Assuming that the demand for electricity is linearly proportional to the 

widget produced and that t
MC is a defined as a piecewise linear function, identical to 

(3.6) and (3.9), which are presented below respectively for convenience: 
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Let the revenue obtained from selling widgets ( t
RC ) be represented as: 

 
tt

w
t
R WC π=   (3.62) 

 

where t
wπ  is the selling price of widgets at period t. 

 

With equations (3.6), (3.9) and (3.62), (3.61) can be restated as: 
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 (3.63) 

 

Equation (3.63) can be represented graphically as a piece-wise decreasing step 

function, shown in Figure 3.21: 

 

 
Figure 3.21 Demand-side bidding curve 

 

Daily Energy Requirement 

Depending on the bidding strategy, there is a maximum amount of MWh that is 

required ( E ) by this consumer. Assuming that the consumer is rational, E  will be 

chosen at an amount that is necessary to produce enough widgets to meet the total 

demand throughout the time horizon, or mathematically: 

 

∑
=

∆⋅=
T

t

t
D tWE

1

α   (3.64) 

 

In an ideal world, the consumer will want to submit the lowest possible bidding 

prices and still meet its entire MWh requirement. However, there is a certain price 

below which no generators are willing to produce. Therefore, the energy requirement 

of the consumer has to be modelled as an inequality soft constraint, as shown below: 
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This is to ensure that the market will always clear regardless the bidding price of the 

consumer. The marginal benefit of consumption of (3.63), together with the 

maximum energy requirement of (3.64), forms the basic “price-amount” component 

of the demand-side bid. Depending on the market rules, the industrial consumer may 

not be allowed to specify its process operating constraints, such as those in Section 

3.2.3. Hence, the system schedule at market clearance may not be feasible to the 

customer. As such, the consumer has to internalise these constraints within the 

demand bid. These constraints are stated below for the sake of discussion:  

 

Production Limit 

This constraint will not be violated as it is specified indirectly in the bid through the 

upper and lower limit of MW demanded ( tWα  and 
t

Wα ). 

 

Storage Limit  

Ideally the storage capacity should be large enough to store any number of surplus 

widgets. Otherwise, the consumer may have to specify the parameter 
t

Wα of the bid 

conservatively to avoid the possibility of being allocated too much MWh, which 

cannot be used to produce widgets as storage space may have already been fully 

utilised.  

 

Inventory Balance and Initial-Final Storage Condition 

The main purpose of these constraints is to ensure that the widget demand is satisfied 

through the widget productions within the same day. If the consumer has an hourly 

widget demand that has to be satisfied, this can be get around by setting the lower 

limit of MW demanded to be equal to the MW needed to meet the hourly widget 

demand, or mathematically:  

 
t

D
t WW αα =   (3.66) 
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If the consumer has to meet a certain amount of widget demand at the end of the day 

instead, then the maximum energy requirement is simply:  

 

tWE DY ∆⋅= α   (3.67) 

 

However, it should be noted that the widget demand may not be satisfied entirely as 

the energy requirement is modelled as a soft-constraint, as described earlier in this 

section. Furthermore, the day-ahead system schedule at market clearance may not be 

optimal to the consumer if costs such as storage cost and process start-up cost, are 

not considered explicitly within the market clearing process. Hence, it is in the 

interest of the consumer to reduce the bidding prices accordingly to avoid paying too 

much for energy. 

 

The effect of a significant participation of such consumers in a day-ahead market is 

examined in Chapter 5. 

 

3.6 SUMMARY 
 

An algorithm to optimise the production schedule of an industrial consumer facing 

any type of day-ahead price profiles has been presented. The developed algorithm is 

able to determine the optimal energy consumption level of the customer throughout 

the planning horizon. The savings of production cost are derived from the avoided 

cost of using electricity during peak price periods, minus the additional cost due to 

load shifting. The magnitude of the savings would be greater if the price profiles are 

more variable and volatile. Furthermore, it has been observed that savings depend 

largely on the ability to avoid peak consumption. Hence, expanding production and 

storage capacity improves the consumer’s ability to avoid energy usage during 

peak price periods, which in turn improves savings. The complementary nature 

between the production and storage capacities has been identified. Lastly, the 

problems associated with determining the parameters for a demand bid and 

internalising the process constraints has been discussed 
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Chapter 4  

Optimal Capacity Investment Problem for an 
Industrial Consumer  
 

4.1 INTRODUCTION 
 

If an intensive energy consumer faces dynamic pricing for an extended period of 

time, it may consider improving its ability to avoid consumption of electricity during 

peak price periods to reduce cost. As discussed in the previous chapter, an industrial 

consumer can avoid peak consumption by storing surplus widgets produced during 

lower price periods for later use. This ability to avoid peak consumption depends 

largely on the storage and production capacities. The electricity consumption cost 

can therefore be reduced by expanding these capacities, provided they were fully 

utilised originally. However, this does not mean that the consumer should expand 

capacities to an extent where no further cost saving can be achieved as the associated 

cost of making the investment has to be taken into account. Therefore, the net benefit 

of capacity expansion has to be evaluated in order to determine the optimal 

investment strategy.  

 

The basic question this chapter addresses is to determine the optimal capacity 

expansion size, subjected to a return on the capital investment that is sufficiently 

attractive in view of alternative uses. A literature survey on this subject is presented 

in the next section. A mixed integer linear programming (MIP) based approach is 

used to solve the optimal investment problem. Lagrange’s method is also applied to 

illustrate the characteristics of the optimal solution to the problem. Simulation results 

are then presented to demonstrate the economic viability of making capacity 

expansion.  

 



Chapter 4 Optimal Capacity Investment Problem for an Industrial Consumer  

 
 
  111  
 
 

4.1.1 Literature Survey 
 

There is extensive literature concerning the optimal production capacity expansion in 

industries such as aluminium manufacturing (Manne, 1967) and electrical power 

services (Romero et al., 1996; Zhu et al., 1997). The reasons stated for the need for 

expanding capacity in these literatures are almost exclusively the need to meet the 

growth of demand for end products.  

 

Stochastic Models 

The nature of the optimal capacity expansion problem can be said to be stochastic 

due to the uncertainty involved in the prediction of future prices and demand. 

Among the literature in this vein, studies regarding the effect of storage sizing on 

cost are presented in (Daryanian and Bohn, 1993). The authors performed 

simulations on the economical feasibility for a utility to install Electric Thermal 

Storage (ETS) at consumers’ premises to shift some electrical heating load away 

from peak demand periods. The size of the ETS is simply set at an estimated highest 

demand (worst case) for electrical thermal heating if the consumer is on a TOU rate. 

The authors found that it is economically worthwhile to raise the storage size beyond 

the worst-case level if the consumer is on a RTP tariff. While simulation results have 

shown that higher ETS capacity reduces the utility’s cost of service, the study did not 

consider explicitly the associated cost of expansion and the optimal ETS capacity 

that should be installed. 

 

Pindyck (1988) explores the concept of marginal investment 24  using operations 

research theory. The mathematical model introduced in this paper states that a firm’s 

capacity choice is optimal when the expected benefit derived from a marginal unit of 

capacity equals the cost of that unit. In other words, the solution is optimal when the 

marginal benefit equals the marginal cost of the capacity. However, the model does 

not consider explicitly the case where an investment decision involves two 

interrelated capacity choices. As such, it is not applicable to the investment problem 

of this chapter, which requires determining the optimal capacities for both storage 

                                                 
24 For example, one car is very useful for getting around. An additional car might be useful in case the 
first is being repaired, but it is not as useful as the first. 
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and production. Nevertheless, the solution obtained with Pindyck’s model is intuitive 

and the long run marginal cost of meeting demand is readily measured. 

 

Apart from determining the optimal sizing, the capacity expansion problem may also 

involve deciding the optimal future expansion times as installing capacity before it is 

needed is wasteful. Dangl (1999) considers an optimal investment timing model 

under the condition of uncertainty in future demand. The model assumes that once 

the capacity is installed, it cannot be adjusted at a later period. Due to this one off 

decision, uncertainty in the future demand tends to increase the capacity installed. In 

Manne (1967), the author explores the reward of large capacity expansion derived 

from economies of scale. The model introduced in the paper is applied to solve the 

problem of meeting the growing demand for aluminium in India for the next 30 years. 

Bessiere (1970) argues that a sound economic policy should consider the trade-off 

between the cost of installing capacity before it is needed and the savings resulting 

from the economies of scale of a large expansion.  

 

Deterministic Models 

While the stochastic models are able to capture the effect of demand and price 

uncertainties on the optimal expansion policy and the associated costs, there have 

been several papers that deal with deterministic models. The seminal work of Manne 

(1961) solves the expansion problem by assuming a deterministic demand that grows 

linearly over time at a constant rate. As the expansion size considered is discrete, the 

capacity is expanded whenever the demand reaches the upper limit of the capacity. 

Bean et al. (1992) showed that a stochastic demand growth following a Brownian 

motion pattern can be transformed into its deterministic equivalent. In accord with 

Manne’s work, the model accounts for the opportunity cost by discounting future 

expansion cost as deferring expansion saves capital, which can be utilised elsewhere 

to obtain more benefits. Higle and Corrado (1992) further explore the value of 

deferring an expansion decision subject to a forecasted demand that grows 

deterministically over time. For a general survey on capacity expansion, see Luss 

(1982). 

 

Apart from Daryanian and Bohn’s work, all other mathematical models mentioned 

previously did not consider the expansion of storage capacity explicitly. The 
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consideration of storage complicates the optimal investment problem. As can be seen 

from the simulation studies presented in the last chapter, the need for both storage 

and production capacities depends not only on the duration of peak electricity prices 

(Section 3.4.4) but also on the chronological order of on-peak and off-peak prices 

(Section 3.4.5). Furthermore, it has been observed that the need for storage capacity 

does not necessarily increases with the expansion of production capacity (Section 

3.4.3). Therefore, the model introduced in this chapter extends the concept proposed 

in Daryanian and Bohn (1993) by incorporating the associated costs of expanding 

production and storage capacities within the model. The economic viability of 

expanding the production and storage capacities is then investigated using this model. 

 

4.2 PROBLEM STATEMENT AND FORMULATION  
 

In this chapter, we will look at the problem of an industrial consumer facing day-

ahead RTP over a long-term period. As seen from the simulation results in the last 

chapter, the industrial consumer can avoid peak consumption by meeting a fraction 

of widget demand using widgets produced during lower price periods. This load 

shifting behaviour would not be possible without storage. As the consumer optimises 

its production schedule over a relatively short time horizon25, certain factors that 

could improve load shifting ability cannot be adjusted in time to reduce the 

production cost further. For example, the consumer could improve its load adjusting 

capability by bringing in new machineries (production capacity) and building a new 

warehouse for storing surplus widgets (storage capacity). As making such 

investments takes time to complete and comes at a cost that cannot be possibly 

recovered through short-term profits, this presents a long run optimisation problem 

to the consumer. There is, however, no specific length of time that determines a long 

run from a short run. Economists define the long run as being a period of time that is 

long enough to allow all factors of productions to be adjusted (Kirschen and Strbac, 

2004). Hence the problem of determining the long-run equilibrium output of the 

consumer can be treated as a problem of determining the most profitable amount of 

                                                 
25 24-hour horizon is used. It is worth noting again that a longer weekly optimization horizon may be 
more appropriate for some consumers if lower electricity prices occur at weekends. 
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investment in expanding production and storage capacity to produce it (Gravelle and 

Rees, 1992).  

4.2.1 Money-Time Relationship  
 

Investment in capacity expansion involves commitment of capital for an extended 

period of time. Therefore, the effect of time on the capital investment must be 

evaluated. In this regard, it is recognised that an amount of money in hand today is 

worth more than the same amount at some point in the future because of the potential 

profit it can earn. Hence, money has a time value.  

 
Before presenting the solution technique to the optimal investment problem, it is 

necessary to understand several key concepts and tools for evaluating the economic 

benefits of an investment. These are described next. 

 

Net Present Value 

The Net Present Value ( NPV ), as the name suggests is based on the concept of 

finding the equivalent worth of cash flow26 to the present value. In other words, all 

cash inflows and outflows are discounted to the present point in time at an interest 

rate ( IR ). The Net Present Value is also known as Net Present Worth or Net 

Discounted Revenue. Mathematically, NPV  can be represented as: 

 

∑
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)1(   (4.1) 

 

where: 
yF  net cash flow at year y, $. It is the difference between the total amount of 

cash being received and spent.  
y  index for each compounding period, yr 

K  number of compounding periods in the planning horizon, yr 

 

It should be noted that the calculation of NPV  in (4.1) is based on the assumption 

that IR  is constant throughout the planning horizon. 
                                                 
26 In this thesis, a cash flow refers to the amount of cash being received (inflow) and spent (outflow) 
as a result of an investment project during a defined period of time. 
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Interest Rate  

The IR  in (4.1) is usually taken as the interest rate of borrowed capital or the 

opportunity cost of the capital (Sullivan et al., 2000). In this regard, IR  is also 

known as the discount rate. As a general rule, it is appropriate to use the interest rate 

on the borrowed capital as IR  for cases where money is borrowed specifically for 

the investment project. If several projects of comparable risk are being considered 

and the capital available is limited, then the IR  used is normally associated with the 

best opportunity forgone. As capital is invested in a project, the firm would expect a 

return at least equal to the amount it has sacrificed for not using it in other available 

opportunities. Consider for example a firm with $10 million budget which has three 

projects under consideration: The expected rates of returns of these projects are 35%, 

32% and 29% respectively and each of these projects cost $5 million. The last 

accepted project with the limited capital has an expected rate of return of 32% per 

year. By the opportunity cost principle, the forgone opportunity is worth 29% per 

year, since with 5 more million dollars, the firm would expect to obtain 29% return 

from the third project. In this regard, if the firm were to be presented with a fourth 

project proposal that also costs $5 million; the return rate of this project is expected 

to be higher than that of the third project. As such, the 29% return of the third project 

is also known as the Minimum Attractive Rate of Return ( MARR ). 

Hence, %29== MARRIR  in this example.  

 

Application of NPV 

To illustrate how NPV  can be applied in evaluating the economic feasibility of a 

capital investment, consider another example: An industrial consumer has a choice to 

make an initial investment of $2,100 in expanding its production capacity to improve 

profits. It is expected that the expansion would result in revenues of $1,200 and 

expenses of $700 annually throughout the useful life of the new capacity (hence a 

prospective saving of $500 per year). The capital is borrowed at an interest rate of 

10%. For simplicity, the useful life of the expansion is assumed to be 5 years and its 

associated investment cost cannot be recovered at the end of its life (i.e. sunk cost). 

Substituting these values into (4.1) gives: 
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61.204         
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Therefore, with %10=IR , the capacity expansion project in this example is not 

worthwhile as the Net Present Value is not sufficient to repay the interest of the 

borrowed capital (i.e. 0<NPV ). If IR  is reduced to zero, it can be worked out that 

NPV  would be a net profit of $400 (i.e. 0>NPV ), making the capacity expansion a 

credible option.  

 

Internal Rate of Return  

It can be seen from the last example that IR  affects the feasibility of the capacity 

expansion project. With a low IR  (e.g. 0%), the project is feasible ( 0>NPV ) and 

conversely, the project is rejected when IR  is increased to 10% ( 0<NPV ). In this 

regard, the IR  that results in 0=NPV  can be interpreted as the expected return 

generated by the investment. This IR  is also known the Internal Rate of Return 

( IRR ). Thus, to find the IRR  of an investment, the IRR  has to satisfy the following 

equation, which is given by simply equating (4.1) to zero: 
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The IRR  in (4.2) can be calculated by solving a polynomial. The equation however, 

can only be solved iteratively, using an algorithm such as the Newton Raphson 

method (Lowenthal, 1983). 

 

In general, an investment is worth making if the IRR  is greater than the MARR . 

The IRR from the last example is found to be 6% by solving (4.2) iteratively. 

Therefore, the capacity expansion project will be undertaken only if the MARR  is 

less than 6%. Similarly, if the project is funded solely from borrowed capital and 

there are no other comparable alternative projects, the interest rate of the borrowed 

capital must be less than IRR  to make the investment worthwhile.  
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In summary, it is essential that proper considerations are taken to the time value and 

the opportunity cost associated with making an investment. A company should 

invest in a project only if NPV  is greater than zero. If NPV is less than zero, the 

project will not provide enough financial benefits to justify the investment, since 

there are alternatives that will earn at least the rate of return of the investment. 

Conversely, the IRR  calculates the rate of return of a project and is compared to the 

MARR  (which is derived from the best foregone alternative) to determine whether 

an investment project is acceptable. Although NPV  and IRR  are two different 

techniques for evaluating the economic profitability of an investment, they should 

come to the same conclusion on whether the investment is more attractive compared 

to its alternatives.  

 

In the next section, we will look at how these concepts and theories are applied to 

determine the long run optimal response to RTP and investment strategy for storage 

type industrial consumers.  

 

Some of the notations used in this chapter are inherited from the last chapter and will 

not be reintroduced.  

 

4.2.2 Objective Function 
 

The objective function of the long run optimal response to RTP problem is to 

maximise the profit of an industrial consumer, which is defined as the difference 

between the revenue and the production cost of widgets over a long planning 

horizon27  ( LT ). If the industrial consumer cannot influence the selling price of 

widgets (i.e. it is a price taker) and the widget demand has to be met under all 

condition (i.e. the widget demand is modelled as a hard constraint), then the revenue 

becomes a constant and can be omitted from the objective function. The long run 

production cost ( LRC ) consists of the electricity consumption cost ( t
EC ) and the cost 

of building storage and production capacity ( t
IC ), should any capacity expansion be 

made. To make the optimisation problem easier to understand, all other costs (such 
                                                 
27 In this thesis, a long planning horizon is defined as period of time that is long enough to allow all 
factors of productions to be adjusted. 
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as manufacturing cost and storage cost) are assumed to be negligible and are 

therefore omitted from LRC . Hence, the optimisation problem can be represented as 

minimising LRC , or mathematically:  

 

[ ]∑
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Net Present Value Revisited 

The time value of the investment and its associated opportunity cost is not 

considered explicitly in the objective function (4.3). As such, an objective function 

based on the Net Present Value concept of (4.1) is formulated below to take these 

factors into consideration:  
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Saving Cash Flow 

The net cash flow ( yF ) in (4.4) represents the potential savings achieved through 

capacity expansion, discounted by the interest rate through the factor yIR −+ )1( . As 

such, the net cash flow will be called the saving cash flow28. It can be expressed 

mathematically as: 

 

,..,KyCCF y
L

y
LO

y 0 ,*
=∀−=   (4.5) 

 

where: 
*y

LOC  the expected long run production cost at year y, with the original storage 

and production capacities, $ 
y
LC  the expected long run production cost at year y, with expanded storage 

and production capacities, $ 

 

                                                 
28 The term saving cash flow is preferred over net cash flow as it emphasises the fact that the cash 
flows are savings derived from making capacity expansion. 
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We will assume that the industrial consumer cannot make a profit by selling off its 

original manufacturing plant (i.e. there is no point reducing its present production 

and storage capacities). If the industrial consumer decided not to make any 

adjustment to its manufacturing plant throughout the long planning horizon, we 

would have: 

 

,..,KyFCC yy
L

y
LO 0,0*

=∀=⇒=   (4.6) 

 

As the objective function in (4.4) maximises NPV  and the lower bound of NPV  is 

limited to zero due to (4.6), the optimal value29 of NPV  in (4.4) is therefore at least 

equal to zero, or mathematically: 

 

0* ≥NPV   (4.7) 

 

This implies that the optimal solution of (4.4) is always economically feasible, 

provided the IR  in (4.4) takes the value of MARR or the interest rate of a borrowed 

capital.  

 

If y
LC  consists of only the electricity consumption cost and the capacity expansion 

cost, then (4.5) can be extended as:  
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Assuming that the decision to expand capacities is made only at the beginning of the 

investment lifetime and that the saving cash flow is only discounted at the end of 

every year throughout the investment lifetime, then with (4.8), the objective function 

(4.4) can be restated as: 
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29 From here on, the superscript asterisk (*) denotes that a corresponding variable is at its optimum, 
subjected to meeting all its associated constraints.  
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The variables 0
IC  and y

EC  , together with the parameter *y
LOC  of (4.9) will be defined 

in more details next. 

 

Investment Cost 

As described earlier, the option to expand capacities is assumed to be one-off and 

can only be exercised at the beginning of the investment lifetime. It is also assumed 

that 0
IC  is a sunk cost. 0

IC  can be expressed mathematically as: 

 

0 ( ) ( )a b
I O I OI I W SC u W W S Sκ κγ υ υ= + − + −  (4.10) 

 

where: 
γ  fixed cost of building storage and production capacity, $.  

aκ , bκ  constants that determine the cost of building storage and production 

capacities 

Sυ , Wυ  incremental cost of building storage or production capacity, $/Unit 

IS , IW  expanded size of storage or production capacity. IS and IW  are both 

decision variables 

OS , OW  original size of storage and production capacities 

Iu  investment decision on expanding storage and production capacities: 

0=Iu , neither the storage capacity nor the production capacity is 

expanded 

1=Iu , at least one of the storage capacity or the production capacity is 

expanded 

 

γ  can be used to model the fixed cost of building a new warehouse to accommodate 

expanded capacities or even the installation cost of installing DSP enabling systems 

(as described in Chapter 2). The values of γ , Sυ , and Wυ  in (4.10) are all assumed to 

be constants. This means that the industrial consumer has only one choice of 

technology in expanding the storage and production capacities and the economies of 

scales of capacity expansion are not considered. For simplicity, aκ and bκ  are taken 
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as 1 in the following simulation studies so that the variable part of investment cost is 

linear.  

 

In reality, the expansion sizes available for IS  and IW  may be limited and may 

come in discrete values. For example, the machinery for producing widget can only 

be custom made with three possible choices of 20, 40 or 65 widgets per hour. On the 

other hand, a warehouse that is able to stockpile 153.34 cars is meaningless. 

Therefore, if the optimal values of IS  and IW  are found to be fractional or different 

from the expansion size available, they can always be rounded to the closest 

significant values, corresponding to the capacity expansion choices available. 

However, the rounding of the optimal values of IS  and IW  may result in sub-

optimality.  

 

Long Run Electricity Consumption Cost 

To determine the long run electricity consumption cost ( y
EC ) of the industrial 

consumer, it is necessary to estimate the future electricity prices ( ty ,π ) and the 

demand for electricity needed for widget production ( ty
WD , ). As electricity prices vary 

hourly, it seems intuitive to account for the costs of facing RTP in the long run by 

analyzing the hourly prices throughout 8760 hours of the year, which could be the 

previous year or a typical year. As such, y
EC  can be expressed mathematically as: 

 

KyDC
t

ty
W

tyy
E ,..,1 ,

8760

1

,, =∀= ∑
=

π   (4.11) 

 

However, this approach ignores the underlying structure of a RTP rate. The 

algorithms used by electricity retailers in generating RTP may be based on the use of 

typical day types, or seasons of nearly repeatable variations of hourly prices. Even if 

it is not, the daily price patterns can still be characterised into a small number of day 

types. For example, all winter-weekday price profiles can be generalised as a single 

typical winter-weekday profile, using technique such as linear regression. With these 

assumptions, y
EC  can be restated as: 
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KyD
T

C
G

f

T

t

yfty
W

tyf
G

y
E ,..,1 ,8760

1 1

,,,, =∀Φ= ∑∑
= =

π  (4.12) 

 

where: 

f  index of generalised RTP profiles  

G  total number of generalised RTP profiles 
tyf

G
,,π  generalised RTP profile f  in year y, $/MWh 

yf ,Φ  probability of occurrence of a generalised RTP profile f  in year y .  
yf ,Φ  has a value between zero and one i.e. 10 , ≤Φ≤ yf .  

 

It is implied in (4.12) that the time horizon in hours (T ) for all the generalised RTP 

profiles is the same. As an example, if 24=T  for all generalised RTP profiles, then 

summing 365 (i.e. 36524
87608760 ==T ) generalised profiles will cover a year.  

 

The sum of probability of occurrence all the generalised RTP profiles equals to 1, i.e.: 

 

Ky
G

f

yf ,..,1 ,1
1

, =∀=Φ∑
=

  (4.13) 

 

It is assumed that ty
WD ,  is linearly proportional to widget production:  

 

TtKyWD tyyty
W ,..,1 ,,..,1 ,,, =∀=∀=α   (4.14) 

 

Expected Long Run Production Cost Without Capacity Expansion 

The objective function in (4.9) maximises the Net Present Value benefits of capacity 

expansion, which is shown below for convenience: 

 

0

1

* )1()( max I

K

y

yy
E

y
LO CIRCCNPV −+⋅−=∑

=

−  
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The benefits are in turn determined by the difference between *y
LOC  and y

EC , which 

is then discounted by IR . The customer would want to reduce *y
LOC  if it did not have 

the opportunity to expand capacities. However, the maximisation of the objective 

function above will attempt to increase *y
LOC . As such, *y

LOC  has to be computed in a 

separate minimisation routine. The objective of the minimisation routine can be 

expressed mathematically as: 

 

       

,..,1 ), ,(min* KySWCC OO
y
E

y
LO =∀=   (4.15) 

Therefore, the optimal capacity expansion problem is separated in two parts. The 

first part of the problem in (4.15) determines the minimal value of *y
LOC . Once *y

LOC  

is computed, it is then being input as a constant parameter to the second part of the 

problem in (4.9) to find the optimal expansion sizes of IS  and IW , among other 

variables of interest.  

4.2.3 Constraints 
 

The optimisation problems of (4.9) and (4.15) are subject to process constraints. 

Some of these constraints have been discussed in the last chapter and will not be 

repeated here. They are listed below for convenience.  

 

Production Limits 

O
ty WWW ≤≤ ,   (4.16) 

I
ty WWW ≤≤ ,   (4.17) 

 

Storage Limits  

O
ty SSS ≤≤ ,   (4.18) 

I
ty SSS ≤≤ ,   (4.19) 
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It should be noted that constraints (4.16) and (4.18) are only valid for (4.15) while 

constraints (4.17) and (4.19) are only applicable to (4.9). 

 

Inventory Balance 
ty

D
tytyty WWSS ,,1,, −+= −   (4.20) 

 

Initial-Final Storage Condition 
Tyy SS ,0, =   (4.21) 

 

The production schedule for a generalised RTP profile will be affected by 

subsequent price profiles if the constraint on the initial and final storage condition is 

not considered. Therefore, the constraint is essential for the validity of the modelling 

of electricity consumption cost in (4.9) as the chronological order of the future price 

profiles is lost when they are generalised into fewer numbers of price profiles.  

 

Expansion limit 

The industrial consumer is assumed not to be able to divest its original storage and 

production capacities. Otherwise, 0
IC  in (4.10) would be negative, indicating a profit. 

Therefore, the capacity expansion sizes have to be greater than their original values, 

or mathematically:  

 

0≥− OI WW   (4.22) 

0≥− OI SS   (4.23) 

 

4.3 MATHEMATICAL ANALYSIS OF SIMPLIFIED MODEL USING 
LAGRANGE’S METHOD 
 

As seen from the simulation results, the utilisation of storage is closely related to the 

time sequence of the peak and off-peak prices (Section 3.3.1). The duration of peak 

prices has also a profound effect on the need for storage capacity (Section 3.3.3). 

Although these phenomenon can be expressed mathematically, finding the optimal 

capacity that should be installed cannot be practically solved entirely using a 
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mathematical model due to the sheer size of the problem. Nevertheless, the following 

uses Lagrange Method’s to analyse the nature of the optimal solution of the problem.  

 

This section attempts to find the optimal solution to the capacity investment problem 

formulated in (4.3) using Lagrange’s method. This method has been described in 

more detail in Section 3.3. For the sake of simplicity, the effect of the time value of 

money on investment (Section 4.2.1) is not considered and the decision to expand 

capacity is assumed to be made at the beginning of the investment lifetime. As such, 

(4.3) can be restated as:  

 

{ } 0

1
min I

T

t

t
EL CCC

L

+=∑
=

  (4.24) 

 

Equation (4.24) is subjected to constraints (4.17), (4.19) and (3.16), which are stated 

below for convenience. From here on, t has a range of 1 to LT  unless specified 

otherwise. 

 
t

D
ttt WWSS −+= −1   (4.25) 

0≥− t
I WW   (4.26) 

0≥− t
I SS   (4.27) 

 

Assigning Lagrangian multipliers tλ , t
Aµ  and t

Aη  to the constraints above gives the 

corresponding Lagrangian function:  

 

[ ] [ ] [ ]{ } 0

1

1
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I

T

t
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tt
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tt
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t
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ttttt
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t
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t
A

t
II

tt

CSSWWWWSSC

SWSW

L
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− ηµλ

ηηµµλl

 (4.28) 

 

The electricity consumption cost is assumed to be linearly proportional to the future-

electricity prices (4.10): 

 
ttt

E WC πα=   (4.29) 
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Assuming that the investment cost is proportional to the amount of capacity 

expanded:  

 

0 ( ) ( )a b
I O I OI I W SC u W W S Sκ κγ υ υ= + − + −  (4.30) 

 

The necessary conditions for optimality are obtained by setting the partial derivatives 

of the Lagrangian function (4.28) to zero:  

 

0=+−≡
∂
∂ t

A
tt

tW
µλαπl   (4.31) 

1..1,01 −=∀=+−≡
∂
∂ +

L
t
A

tt
t Tt

S
ηλλl  (4.32) 

1

1

( ) 0
L

a

T
t

I Oa W A
tI

W W
W

κκ υ µ−

=

∂
≡ − − =

∂
∑l  (4.33) 

1

1
( ) 0

L
b

T
t

I Ob S A
tI

S S
S

κκ υ η−

=

∂
≡ − − =

∂
∑l  (4.34) 

01 =+−−≡
∂
∂ − t

D
ttt

t WWSS
λ
l  (4.35) 

 

The solution must also satisfy the inequality constraints  

 

0≥−≡
∂
∂ t

It
A

WW
µ
l   (4.36) 

0≥−≡
∂
∂ t

It
A

SS
η
l   (4.37) 

 

And the complementary slackness conditions 

⎪⎩

⎪
⎨
⎧

≥

=−⋅

0

0)(
t
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t
I

t
A WW

µ

µ   (4.38) 
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A SS
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η   (4.39) 
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Assuming that the time horizon considered is two period, i.e. { }2,1=t , equations 

(4.31) to (4.34) can be combined as: 

 

1 12 1 2 2( ) ( ) ( ) 2a bI O I Oa W b S A AW W S Sκ κα π π κ υ κ υ µ η− −− = − + − − −  (4.40) 

 

Assuming that the demand for widgets is the same for periods 1 and 2 (i.e. 21
DD WW = ) 

and that the electricity price is higher during period 2 (i.e. 12 ππ > ). We would 

expect 21 WW >  and 21 SS >  at the optimum. For the moment, let us assume that 

these assumptions are true and that load is shifted from the higher to the lower price 

period. As such, we cannot have IWW =2  and ISS =2 , should these capacities are 

expanded. Hence, we can ignore cases with 02 >Aµ  and 02 >Aη . Equation (4.40) can 

then be restated as: 

 

1 12 1( ) ( ) ( )a bI O I Oa W b SW W S Sκ κα π π κ υ κ υ− −− = − + −  (4.41) 

 

Consequently, we have eliminated all Lagrangian multipliers in the optimal 

condition (4.41). The condition states that at the optimum, the marginal saving of 

electricity consumption cost due to capacity expansion ( MSE ) is equal to the 

marginal investment cost ( MIC ).  

 

MSE  and MIC  can be represented mathematically as: 

 

)( 12 ππα −=MSE   (4.42) 

 

1 1( ) ( )a bI O I Oa W b SMIC W W S Sκ κκ υ κ υ− −= − + −  (4.43) 

 

Discontinuity of MSE 

As an example, assume that OW = 121 == DD WW  and there is no initial storage. OS  is 

assumed to be sufficiently large so that it is never limited. The saving of electricity 
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consumption cost as a function of production capacity can be represented graphically 

below:  

 

 
Figure 4.1 Saving of electricity consumption cost 

 

The saving of electricity consumption cost increases at a constant rate of )( 12 ππα −  

as IW  is increased from 1 and becomes constant when IW  is expanded beyond the 

capacity needed to avoid consumption during period 2 completely. By differentiating 

the saving of electricity consumption cost curve, we obtain the curve for MSE , 

which can be represented graphically below: 

 

 
Figure 4.2 Marginal saving of electricity consumption cost 

 

Assuming that the constant Wυ  in MIC  (3.61) is sufficiently small, MIC  curve will 

intersect MSE  curve at 21
DDI WWW += , where MSE  becomes discontinuous, as 

shown in Figure 4.2. As a result of this discontinuity, MSE  does not necessarily 

equal to MIC  at optimum. However, as the industrial consumer will prefer a higher 

saving over a lower one, MSE  has to be greater than MIC . As such, the optimal 
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condition (4.41) is amended to take account of the discontinuity of MSE , as given 

mathematically below:  

 

1 12 1( ) ( ) ( )a bI O I Oa W b SW W S Sκ κα π π κ υ κ υ− −− ≥ − + −  (4.44) 

 

While the constant aκ  that determines the slope of MIC  is chosen to be greater than 

1 in this example (Figure 4.2), it should be noted that (4.44) is applicable regardless 

the values of constants aκ  and bκ . 

 

How do we know if the expanded capacities are optimal?  

Writing the optimality conditions (4.33) and (4.34) for the case considered, we have:  

 

1

1
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t

I Oa W A
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W W κκ υ µ−

=

− = ∑   (4.45) 

1

1
( )

L
b

T
t

I Ob S A
t

S S κκ υ η−

=

− =∑   (4.46) 

 

Assuming that the production capacity is expanded at optimum, then the L.H.S. of 

(4.45) would be non zero. This implies that there exists at least one period t such 

that 0>t
Aµ , or mathematically: 

 

0| >∃ t
At µ   (4.47) 

 

As a result of the condition (4.47), the expression )( I
t WW −  in the complementary 

slackness condition (4.38) must be equal to zero for at least one period t, or 

mathematically: 

 

I
t WWt =∃ |   (4.48) 

 

The condition (4.48) states that at optimum, the production level must meet the 

expanded production capacity at some point of the planning horizon. 
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Similarly, if the storage capacity is expanded at optimum, the L.H.S. of (4.46) would 

be greater than zero and this implies that there exists at least one period t such 

that 0>t
Aη . Therefore, the expression )( t

I SS −  in the complementary slackness 

condition (4.39) must be equal to zero for at least one period t, or mathematically: 

 

I
t SSt =∃ |   (4.49) 

 

Hence, it can be concluded that an expanded storage or production capacity has to be 

fully utilised at some point of the planning horizon, as otherwise the solution is not 

optimal as there will be redundancy in the expanded capacity. This optimality 

condition confirms the empirical observation made earlier in Section 3.4.4. 

 

4.4 APPLICATION TO THE INVESTMENT PROBLEM 
 

A practical industrial situation is used to illustrate the application of the proposed 

algorithm to the optimal capacity investment problem. The subject of the study is an 

industrial consumer that uses electricity to produce widgets for meeting its demand 

throughout a long planning horizon. The consumer is confronted with an investment 

problem of expanding the capacities of its manufacturing plant to take advantage of 

time varying electricity prices in the long run.  

4.4.1 Simulation Study 1: Economic Feasibility of Capacity Expansion 
 

The purpose of this study is to evaluate the long run benefit of capacity expansion. 

The consumer is considering expanding production capacity to improve the 

capability of load shifting. It is estimated that the expanded capacity has a usable 

lifetime of 1 year, after which it is decommissioned. The following summarises the 

characteristics of the investment problem: 

Investment: K = 1, γ = 0, Wυ = 3.5×105 

Widget Demand: KyTtW ty
D ,...,1 and ,...,1 ,1, =∀=∀=  

Production: W = 0, OW = 1.0, α = 1 

Storage: OS = 24 
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It is assumed that the current manufacturing plant of the industrial consumer is large 

enough to accommodate any production capacity expansion size and therefore γ  is 

set at zero. Wυ  is given a value such that an installation of production capacity of 1 

widget/hour (i.e. doubling its existing capacity) costs approximately 1.3 times the 

yearly electricity consumption cost without any expansion. The widget demand is 

assumed to be constant through the investment lifetime. OW  is deliberately chosen 

to be 1 so that the original production capacity is just enough to meet the hourly 

widget demand. OS  is chosen to be sufficiently large enough to avoid being limited.  

 

Case 1: Interest Rate = 0% 

In this case study, it is assumed that the consumer has some spare capital for 

investment and there are no investment alternatives. As such, the interest rate is 

assumed to be zero. The consumer is also optimistic that future price profiles will be 

quite similar such that all the future profiles can be generalised into a single profile. 

The consumer is also confident that there will be at least one period a day where the 

electricity price is extremely high. Therefore, this generalised profile is called the 

“peaky” profile. The price details of this “peaky” profile can be found in Appendix 

B.2. 

 

 

Figure 4.3 Production Schedule at IR  = 0%  
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From simulation, the optimal IW  is found to be 1.12. Figure 4.3 shows the 

production schedule on a typical day with the generalised “peaky” profile. It can be 

observed that the production levels are equal to the optimal IW  during the lower 

price periods prior to the peak periods at 18 and 19. This observation is in 

accordance with the optimality condition derived in (4.48) which states that the 

production level must meet the expanded production capacity at some point of the 

planning horizon. NPV  and 0
IC  are found to be $19,921.52 and $41,176.47 

respectively. As NPV  is greater than zero, the investment is worth making.  

 

Case 2: Interest rate = 10%  

Assume that the capital is now being borrowed at an interest rate of 10% while there 

are still no other investment alternatives.  

 

 

Figure 4.4 Production Schedule at IR = 10% 

 

The optimal IW  is found to be reduced from 1.12 to 1.06, as can be seen in Figure 

4.4. NPV  and 0
IC  are both reduced to $15,502.26 and $20,588.24 respectively. 

Table 4.1 summarises the cost breakdown for Cases 1 and 2:  
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Table 4.1: Summary of various costs  

 
Case 1 

IR = 0% 

Case 2 

IR = 10% 

Cost without Expansion [$] 269,026.90 269,026.90 

Cost with Expansion [$] 207,928.91 229,327.35 

Saving of Expansion [$] 61,097.99 39,699.55 

Saving at Present Value [$] 61,097.99 36,090.50 

Investment Cost [$] 41,176.47 20,588.24 

Net Present Value [$] 19,921.52 15,502.26 

 

If the production capacity in Case 2 was to be expanded to 1.12, as in case 1, the 

savings in electricity consumption cost would have been increased by $21,398.44 (i.e. 

$61,097.99 – $39,699.55). This increase in total savings would still be higher than 

the additional investment cost of $20,591.23 (i.e. $41,176.47 – $20,588.24). 

However, due to the discounting effect of interest rate, the saving is worth only 

$19,453.13 at present value, as can be verified using (4.1). As such, the additional 

expansion in production capacity of 0.06 cannot be justified economically. 

 

Analysis using concept of Marginalism  

The following diagram shows the effect of interest rates on the savings of electricity 

consumption cost as a function of production capacity. 

 

 

Figure 4.5 Saving at IR = 0% and IR = 10% 
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The corresponding marginal saving of electricity consumption cost ( MSE ) curves is 

determined by the slopes of the saving curves in Figure 4.5. The MSE  curves are 

shown in Figure 4.6. 

 

Figure 4.6 Marginal saving at IR = 0% and IR = 10% 

 

It can be observed that the marginal saving curve is “shifted” downwards as the 

interest rate is increased from 0% to 10%. The horizontal dotted line in Figure 4.6 

represents the marginal investment cost ( MIC ), which is also equal to Wυ . The 

intersections of MSE and MIC  curves determine the optimal production capacities, 

which are 1.06 and 1.12 respectively. These values are in agreement with the results 

obtained from the simulation study.  

 

Discontinuity of MSE revisited 

This section attempts to explain why the MSE  curves are behaving like piece-wise 

decreasing step functions. The first segment of the MSE  curve at IR = 10%, which 

has a production capacity range between 1 and 1.06, is used as an example in the 

explanation. It has been observed that for every slight increase in the production 

capacity ( IW∆ ), say from 1.02 to 1.03, the expanded capacity of IW∆ = 0.01 will be 

fully utilised in all the lower price periods prior to the peak (i.e. t = 1 to 17) in order 

to reduce electricity consumption during the peak period (i.e. at t = 18). As such, the 

saving in electricity consumption cost ( SE ) can then be represented mathematically 

as: 

 

Marginal Cost 
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I

t

t
HP WSE

LP

∆⋅−= ∑
Τ∈

)( ππα   (4.50) 

 

where LPΤ  is the set of lower price periods and HPπ  is the price of the higher period 

where electricity demand is reduced. 

 

As the price differences between the peak period and all the lower price periods prior 

to the peak are constant, the saving in electricity consumption cost is increasing at a 

constant rate as production capacity is expanded. This explains why MSE  is 

constant when the production capacity is expanded between 1 and 1.06, which can 

be shown mathematically below: 

 

∑
∈

−=
LPTt

t
HPMSE )( ππα   (4.51) 

 

On the other hand, the elbow point at 1.06 is determined by the minimum amount of 

production capacity needed to avoid consumption during the highest peak period 

completely, as can be observed in Figure 4.4. As the production capacity is expanded 

slightly beyond 1.06 (second segment of MSE ), the algorithm now attempts to 

reduce the demand for electricity in the second highest price period towards zero. 

The saving that can be achieved from reducing the electricity demand during the 

second highest price period is lower than that of the highest price period, i.e. HPπ  in 

(4.51) is decreased. Therefore, MSE  tends to decrease in discrete manner as the 

production capacity is increased. 

 

Case 3: Two Generalised Price Profiles  

We now look at a more realistic scenario where the industrial consumer predicts that 

the “peaky” profile will occur for only about 75% of the time throughout the 

investment lifetime. The capital is still borrowed at an interest rate of 10%. The 

electricity price profiles during the remaining periods are expected to have moderate 

peaks. As such, the profiles during these remaining periods are generalised into a 

“flat” profile. The price details of the “flat” profile can be found in Appendix B.2. 
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From here on, all the future profiles are generalised into the “peaky” and “flat” 

profiles in order to simplify analysis, unless specified otherwise.  

 

Probability of Occurrence 

To determine how a deviation of the prediction affects the optimal production 

capacity, the probability of occurrence ( yf ,Φ ) is varied according to the following 

equation: 

 

, 0,0.05,..,0.95,1,  for 1
, 1,..,5

1,0.95,..,0.05,0,  for 2 
f y f

y
f
=⎧

Φ = ∀ =⎨ =⎩
 (4.52) 

 

where:  

f  index of generalised RTP profiles: 

1=f  refers to the “peaky” profile 

2=f  refers to the “flat” profile 

y  index of time periods measured in years, yr 

 

As y,1Φ  is increased at a step size of 0.05, y,2Φ  is decreased at the same step size so 

that the sum of y,1Φ  and y,2Φ  is always equal to 1. 

 

It can be seen from Figure 4.7 that the optimal production capacity is relatively 

insensitive to yf ,Φ . In fact, the optimal production capacity is maintained at 1.06 as 

the probability of occurrence of the “peaky” profile ( y,1Φ ) is varied from 0.5 to 1.0. 

This means that if the consumer was to predict that the “peaky” profile to occur 75% 

throughout the investment lifetime, the consumer can still be confident that the 

production capacity is optimal, even if y,1Φ  is deviated by± 25%. However, as y,1Φ  

is reduced below 0.5, it is not worthwhile to make any capacity expansion.  
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Figure 4.7 Optimal storage and production capacities for Case 3 

 

Figure 4.8 shows the MSE  curves of the case study with y,1Φ  at 0, 0.5 and 1, plotted 

in logarithm scale in the vertically axis. The MSE  curve tends to “shift” downwards 

as y,1Φ  is reduced from 1 towards 0. It can also be seen that the first segment of 

MSE  of y,1Φ = 0.5 is exactly at 350,000, which incidentally is equal to MIC . As 

such, if y,1Φ  is below 0.5, MSE  will never intersect MIC  and no production 

capacity expansion will be met. Conversely, MSE  will intersect MIC  at production 

capacity of 1.06 if y,1Φ  is equal or above 0.5. This observation is in agreement with 

the simulation results of Figure 4.7.  

 

Due to the piece-wise linear decreasing nature of MSE , the optimal production 

capacity is insensitive to “small” deviation of probability of occurrence. Furthermore, 

it is interesting to note that between the production capacity range of 1.25 to 1.33, 

the MSE  curve at 0,1 =Φ y  is higher than that of 1,1 =Φ y . This means that the need 

for production capacity does not necessarily increase as the “peaky” profile occurs 

more often than the “flat” profile. 

 



Chapter 4 Optimal Capacity Investment Problem for an Industrial Consumer  

 
 
  138  
 
 

 
Figure 4.8 Marginal saving curves with various probabilities of occurrence  

 

4.4.2 Simulation Study 2: Impact of Investment Lifetime  
 

In the previous study, it was assumed that the consumer will invest if the return at 

present worth is enough to recover the associated expansion cost. In practise, the 

decision to invest also depends on the prospective profits that can be reaped over the 

years. Hence, the main purpose of this study is to determine the effect of the length 

of investment lifetime on the economics of capacity expansion. Attention is paid to 

the optimal production and storage capacities and the economic indicator: net present 

value. 

 

Variable Parameters 

To observe the effect of the length of investment lifetime on various variables of 

interest, K  is modified from 1 to 10 with a step of 1 year.  

 

We have observed in simulation study 1 the effects of the probabilities of occurrence 

of the generalised profiles on the optimal capacities. In this study, the future profiles 

are also generalised into the “peaky” and “flat” profiles and yf ,Φ  is varied according 

to (4.52) to determine the compounding effects of yf ,Φ  and K  on the optimal 

capacities. 
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Constant Parameters  

The parameters that are held constant in this study are:  

 

Investment: γ = 7×104, Wυ = 1×105, Sυ = 1×104 

Widget Demand: KyTtW ty
D ,...,1 and ,...,1 ,1, =∀=∀=  

Production: W = 0, OW = 1.0, α = 1 

Storage: OS = 0 

 

γ  is chosen to be approximately a quarter of the electricity consumption cost of 

facing only the generalised “peaky” profile for a year without any capacity 

expansion. Wυ  is given a value such that the installation of production capacity of 1 

widget/hour costs approximately 1.4 times the value of γ . Sυ  is assumed to be 10 

times smaller than Wυ . OS  is chosen to be 0 so that no demand shifting is possible if 

no capacity expansion is made. 

 

Minimum Attractive Rate of Return 

In this study, the consumer is comparing the performance of the capacity expansion 

project with the best alternative investment (e.g. investing in the stock market). The 

prospective return of the alternative investment determines the minimum attractive 

rate of return and will be taken as the value of the interest rate (i.e. IRMARR = ). We 

will consider MARR  to be at 10%. For simplicity, these MARR  values are assumed 

to be valid for any length of investment lifetime and are comparable in risk to the 

capacity expansion project. The results of this simulation study are presented in 

Figures 4.9 and 4.10. They summarise the impact of yf ,Φ  (left-horizontal axis) and 

K  (right-horizontal axis) on IW  and IS  (the values on the mesh plots). 
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Figure 4.9 Optimal IW  at IR = 10% 

 

Figure 4.10 Optimal IS  at IR = 10% 

 

It can be seen from the two figures that in general, the optimal IW  and IS  tend to 

increase with K  and y,1Φ .  

 

Effect of Investment Lifetime on Optimal Capacities 

As the expanded capacities are assumed to have an infinitely long usable lifetime, 

this provides a constant inflow of savings at every subsequent year, only to be 

discounted by the compounding interest rate at 10%. The following diagrams show 

two examples of cash flows where the investment lifetime is longer in the second 

example: 
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K = 4 K = 7 

Figure 4.11 Cash flows at y,1Φ = 0.5 

 

Figure 4.12 below shows the differences of the cash flows of the two cases above.  

 
Figure 4.12 Change in cash flows  

 

It can be observed from the figures above that greater capacity expansion is possible 

with a longer K  as the associated increased in investment costs (in year 0) can be 

amortised by the saving cash flows (from year 1 onwards) over a longer period. 

Conversely, if K  is relatively short, the investment cost cannot be possibly 

recovered through the short-term saving cash flows. As depicted in Figures 4.9 and 

4.10, the optimal capacities are zero when K  is relatively low.  

 

Figure 4.13 summarises the effect of both yf ,Φ  and K  on NPV .  
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Figure 4.13 NPV  at IR = 10% 

 

Figure 4.14 summarises the effect of yf ,Φ  and K  on IRR . It can be seen that IRR  

is greater than MARR = 10% whenever capacity expansion is made. This is 

consistent with the requirement that capacities are only expanded if the associated 

IRR  is greater than MARR . 

 

 

Figure 4.14 IRR  at IR = 10% 

 

Further analysis on the effect of Investment Lifetime 

Assume that the consumer predicts y,1Φ  = 0.5. However, the consumer is unsure 

whether it should make a long term or a short term investment. The left diagram of 

Figure 4.15 shows the optimal capacities that should be invested at y,1Φ  = 0.5. It is 

excerpted from the optimal capacity diagrams of Figures 4.9 and 4.10. 

 

Marginally 
Acceptable 



Chapter 4 Optimal Capacity Investment Problem for an Industrial Consumer  

 
 
  143  
 
 

 

Optimal IW  and IS   NPV  and IRR   

Figure 4.15 Optimal capacities and economic indicators at y,1Φ = 0.5 

 

The figure on the right shows the associated NPV  and IRR , which are extracted 

from Figures 4.13 and 4.14. 

 

While NPV and IRR  generally increase with the investment lifetime and the optimal 

capacities, they will increase even if the optimal capacities are not increased (e.g. 

K = 4 to 5 and K = 9 to 10). On the other hand, when K  is increased from 8 to 9, 

IRR  is decreased even if the optimal capacities are increased. The following 

attempts to explain these phenomenons using mathematical analysis.  

 

Mathematical Analysis 1:  

For ease of establishing comparison, the variables NPV , IRR , 0
IC  and F  in the 

objective function are assigned subscripts A and B, as shown below, to denote two 

cases with different investment lifetime: 

 

0

1
)1( IA

K

y

yy
AA CIRFNPV

A

−+⋅=∑
=

−   (4.53) 

0

1
)1( IB

K

y

yy
BB CIRFNPV

B

−+⋅=∑
=

−   (4.54) 

 

Assuming that investment lifetime in case B is longer than in case A by K∆  , then 

4.53 can be restated as: 
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−  (4.55) 

 

If the optimal capacities remain constant as K  is increased, then the investment cost 

will remain unchanged (i.e. 0
IC∆ = 0). As such, the saving cash flow will be constant 

since no expansion is made (i.e. F∆ = 0). Substituting 0
IC∆  and F∆  as zeros into 

(4.55) and then subtracting (4.53) gives:  

 

( )∑
∆+

+=

−+⋅=
KK

Ky

yy
AAB

A

A

IRFNPVNPV
1

1-  (4.56) 

 

It can be seen from (4.56) that extending the investment lifetime by K∆  years will 

increase NPV  by K∆ years’ worth of saving cash flow. This additional saving is 

obtained without any incurrence in investment cost and NPV  is increased as a result.  

 

Mathematical Analysis 2: 

IRR  for cases A and B earlier can be obtained by equating NPV  of (4.53) and (4.55) 

to zero, which give the following equations respectively: 
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Case B:  
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while IRRIRRIRR AB ∆+=  

 

Assume that the optimal capacities in case B are now increased. If the investment 

cost increases by only a “small” positive 0
IC∆  and this increases the saving cash 

flow by a “large” positive F∆ , then IRR∆  in (4.58) is expected to be positive. In 
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other words, BIRR  is greater than AIRR . Conversely, BIRR  is smaller than AIRR  (i.e. 

IRR∆  is negative) if a “large” increase in investment cost yields only a “small” 

return of saving cash flows.  

 

As the return on capacity expansion is diminishing, as seen in the MSE  curves in 

simulation study 1, the slope of IRR  tends to reduce with increasing expansion and 

can become negatives as the capacities are expanded beyond certain values.  

 

Furthermore, if the optimal capacities remain constant as K  is increased, we will 

obtain 0
IC∆ = 0 and F∆ = 0. Substituting 0

IC∆  and F∆  as zeros in (4.58) and then 

subtracting (4.57) gives: 
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Due to this additional saving cash flow from the extension of investment lifetime by 

K∆ , IRR∆  must be positive for the equation above to be valid. Hence, IRR will 

increase with the investment lifetime, even if the optimal capacities are not increased.  

 

4.4.3 Simulation Study 3: Prediction Error of Price Profiles (Part 1): Impact of 
Deviation of the Probability of Occurrence 
 

We have observed that the algorithm is able to determine the optimal capacities that 

should be invested, based on the prediction of how often the “peaky” and “flat” 

profiles occur. However, if the consumer invests based on findings of the optimal 

capacities for a particular configuration of the “peaky” and the “flat” profiles, the 

invested capacities are unlikely to be optimal if the frequencies of occurrence of 

these profiles deviate from their predicted values. Hence, the main purpose of this 

study is to determine the impact of yf ,Φ  deviating from its predicted values on the 

economies of the consumer’s investment.  
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On the other hand, the invested capacities are also likely to be sub-optimal if the 

magnitudes of the future price profiles are more volatile than predicted. The effects 

of the magnitudes of generalised profiles deviating from their predicted values will 

be investigated in the subsequent simulation study, which completes a two-part 

investigation on the effect of prediction error of future price profiles on the 

consumer’s investment.  

 

From here on, all the constant and variable parameters used in the simulation study 

are taken from simulation study 2 in Section 4.4.2, unless specified otherwise. 

 

Case 1: MARR = 10% 

A sensitivity analysis has been performed to observe how the net present value is 

affected by the deviation of the probability of occurrence from its predicted value. 

Again, it is assumed that the probability of occurrence of the “peaky” profile is 

predicted as 0.5. The sensitivity analysis is performed by varying yf ,Φ  according to 

(4.52), while maintaining the production and storage capacities at the optimal values 

found in the base case, i.e. at y,1Φ = y,2Φ = 0.5. Let the probability of occurrence at 

the base case be denoted as ′
Φ yf , .  

 

The deviation in the optimal production and storage capacities from base values as a 

result of yf ,Φ  differing from ′
Φ yf ,  can be represented mathematically below:  

 

, ,( ) ( )f y f y
I I IW W W′∆ = Φ − Φ   (4.60) 

, ,( ) ( )f y f y
I I IS S S′∆ = Φ − Φ   (4.61) 

 

The base values of the optimal capacities are shown previously in Figure 4.15. The 

following figures show the deviation of capacities from base case values:  
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Figure 4.16 Deviation of optimal capacities from base case 

 

The valleys and peaks in Figure 4.16 represent capacity underinvestment and 

overinvestment respectively. A zero value on the vertical axis means that the optimal 

capacities at the base case are still optimal even if yf ,Φ  deviates from the base case. 

The consumer tends to over-invest if the “peaky” profile occurs less often than the 

base case, i.e. y,1Φ < 0.5 and conversely, it is likely to under-invest if y,1Φ > 0.5. It 

can also be observed that the deviation of optimal capacities tends to be more serious 

in short term investment.  

 

The deviation of NPV as a result of yf ,Φ  differing from ′
Φ yf ,  can be represented 

mathematically below:  

 

, ,( ) ( )f y f yNPV NPV NPV ′∆ = Φ − Φ  (4.62) 

 

The base values NPV  are shown previously in (4.13). The figure below shows the 

values of NPV∆ :  

 

Base Case
Base Case
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Figure 4.17 Deviation of Net Present Value from base case: NPV∆  

 

The valleys in the figure correspond to the deviation of optimal NPV  due to under 

or over investment of the capacities. As expected, NPV∆  tends to increase if yf ,Φ  

deviates from its predicted value at ′
Φ yf , . It can also be observed that NPV∆  is 

more sensitive to IW∆  and IS∆  in the short term case. This is because of the 

following reasons: 

 

Diminishing of MSE: The marginal saving of capacity expansion is diminishing, as 

can be seen in the MSE curves. Therefore, for a given amount of IW∆  and IS∆  (due 

to wrong prediction of profiles), the short term case would suffer higher departure 

from the optimal NPV (where the consumer had guessed the profiles correctly) as 

optimal capacities tend to be smaller with short term investment.  

 

Fixed Cost of Investment: The saving at present worth of a capacity expansion 

project must at least be equal to its associated investment cost to make the project 

economically worthwhile. As such, if the project consists of a fixed cost component 

that will be incurred whenever the capacity is expanded, then the savings must first 

overcome the fixed cost in order to justify the expansion. For purpose of explanation, 

let us reconsider the same example as in simulation study 1 where γ = 0 and the 

Base Case 
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storage capacity is never limited. As such, the problem involves only finding the 

optimal IW .  

 

 
Figure 4.18 Marginal saving at two different probabilities of occurrence 

 

Assuming the marginal investment cost of the consumer is $100,000 h/widget and 

y,1Φ  is predicted to be 0.5. The optimal IW  that should be invested would be 1.19, 

which is determined by the intersection of the MSE and MIC curves, as shown in the 

figure above. If y,1Φ  turns out to be higher at 1, the optimal IW  is 1.25. This means 

that the consumer will be 0.06 away from the optimal IW , i.e. IW∆ = 0.06 if it 

invests according to the optimal IW  at predicted y,1Φ . 

 

Now consider the case where the fixed costγ  is greater than zero, then the net saving 

of investment (the enclosed area between MSE and MIC curves) must at least be 

equal to the fixed cost to justify the investment. Assuming that the net saving of 

investment at y,1Φ = 0.5 is not enough to recover γ , as such, the optimal IW  is 

reduced to 1 (i.e. no expansion). If y,1Φ  turns out to be 1, and that the net saving at 

IW = 1.25 is greater than γ , then the prediction error of the optimal IW  would 

increase from 0.06 to 0.25 (i.e. 1.25 – 1.00 = 0.25). Similarly, if y,1Φ  is predicted to 

be 1.0 but turns out to be smaller, at 0.5, γ  would have the same effect on IW∆  (i.e. 

IW∆  would also increase from 0.06 to 0.25). 

 

Marginal Cost 
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In summary, γ  causes the consumer to invest only when the optimal capacities at a 

particular y,1Φ are large enough to provide sufficient net saving to overcomeγ . This 

tends to increase the effect of the prediction error of the optimal capacities. It is also 

worth noting that the effect of γ  on IW∆  and IS∆  only occurs when the prediction 

error of y,1Φ  (and hence the optimal capacities) could result in a net saving that is 

insufficient to overcomeγ . As such, this effect tends to occur when the investment 

lifetime is relatively short where investments tend to be marginally acceptable (i.e. 

when NPV  is relatively close to 0), as can be observed from Figure 4.13 and Figure 

4.17. 

 

Figure 4.19 summarises NPV∆  obtained with γ  reduced to 0 while all other 

parameters are unchanged. It can be seen that IW∆  and IS∆  are now relatively 

smaller compared to the results of Figure 4.17, where 0>γ . As such, the results are 

in accordance with the earlier explanation. Furthermore, as shown in Figure 4.20, 

IW∆  and IS∆  are generally proportional to γ  since greater capacities are needed to 

provide sufficient net saving to recover higherγ . Hence, NPV∆  tends to increase 

with increasingγ . 

 

  
Figure 4.19 Deviation of Net Present Value from base case atγ = 0 
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Figure 4.20 Deviation of optimal capacities from base case at γ = 0 

 

The following figure shows the net present value obtained with the base case 

capacities. It can be seen that the consumer is expected to obtain a positive NPV  for 

most cases. However, NPV  can become negative in region where the “peaky” 

profiles occur much less frequent than predicted and the investment lifetime is 

relatively short, as shown as the valley in Figure 4.21. Incidentally, the valley is near 

to the region where investments are close to being marginally acceptable.  
 

 

Figure 4.21 Net Present Value with base case capacities: )( , yfNPV Φ  

 

Case 2: MARR = 20%, Base Case: y,1Φ = y,2Φ = 0.5 

We now look at the case where the consumer faces a higher opportunity cost from its 

alternative investment project. As such, MARR  is chosen to be 20% in this case 

study. As expected, the consumer is now more conservative in making capacity 

investment, as can be seen in Figure 4.22. 

 

Base Case
Base Case
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Figure 4.22 Optimal IW  and IS  at IR = 20% 

 

It is interesting to note that at K = 10, the optimal capacities decrease as y,1Φ  

increases beyond 0.5. This is because the need for production capacity does not 

always increase as the “peaky” profile occurs more often than the “flat” profile, as 

has been observed in Figure 4.8 of simulation study 1. Although not shown in Figure 

4.22, it is worth noting that the optimal IS  may reduce even if the optimal IW  is 

increased. This phenomenon has been explained in Section 3.4.3.  

 

NPV∆  has less fluctuation compared to the previous case with lower MARR  as the 

optimal capacities are generally relatively “flat”.  
 

 

Figure 4.23 Deviation of Net Present Value from base case: NPV∆  
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Figure 4.24 Deviation of optimal capacities from base case at IR = 20% 

 

It can also be observed from Figure 4.23 and Figure 4.24 that the “lower” valley of 

NPV∆  (which is due to positive IW∆  and IS∆ ) is deeper than the “upper” valley of 

NPV∆  (which is due to negative IW∆  and IS∆ ). In other words, with higher 

interest rate, NPV∆  is becoming more sensitive to capacity overinvestment than to 

capacity underinvestment. This is mainly because saving cash flows are worth less 

now with a higher interest rate. As a result, the amount of NPV  that is foregone due 

to capacity underinvestment is decreased in value. Conversely, the savings that can 

be provided by the over-invested capacities are further discounted by the increasing 

interest rate. This means that with a higher interest rate, the consumer will be getting 

less in return for its over-invested capacities, which is undesirable.  

 

Nevertheless, NPV∆  is improved with increasing investment lifetime even though 

the invested base case capacities do not grow much with K . This is because 

extending the investment lifetime by K∆  years will increase NPV  by K∆ years’ 

worth of saving cash flow. This additional saving helps to compensate the 

consumer’s over-invested capacities.  

Base Case
Base Case
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Figure 4.25 Deviation of Net Present Value from base case: NPV∆  at IR = 20% 

 

Consistent with the findings earlier, NPV∆  can become negative in regions where 

investments are close to being marginally acceptable, as can be seen in Figure 4.25. 

 

In summary, the consumer should exercise more caution in making investment at 

regions where y,1Φ  and K  are relatively small. These regions usually correspond to 

investments close to being marginal acceptable, which in turn are more susceptible 

to larger deviation from the optimal NPV  due to the prediction error of y,1Φ . 

Furthermore, a higher interest rate would aggravate deviation from optimal NPV  in 

capacity overinvestment situations where y,1Φ  turns out to be less than predicted. As 

such, it is more favourable to make long term investment (high K ) where the 

“peaky” profiles are expected to occur frequently (large y,1Φ ).  

 

4.4.4 Simulation Study 4: Prediction Error of Price Profiles (Part 2) Impact of 
Amplification and Attenuation of Future Price Profiles  
 

The purpose of this study is to determine how volatility of the magnitudes of the 

generalised profiles’ affects the capacity investment of the industrial consumer. Two 

cases of volatility will be considered in this study. They are the amplification and the 

attenuation of the generalised profiles, respectively. While it is reasonable to expect 

that the magnitudes of future profiles to increase, the consideration of the scenario 

where the profiles are attenuating may puzzle the reader. As noted in Section 2.4.2, 

large system-wide demand-side participation may reduce the wholesale electricity 
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prices as the load factor is improved, especially during peak price periods. As such, 

the attenuation scenario will be examined in this study.  

 

Formation of amplified and attenuated price profiles 

The generalised profiles used in this simulation study are formed according to base 

profiles ( ′tf
G

,π ). As such, ′tf
G

,π  determines the fundamental shape of the amplified 

and attenuated generalised profiles as they evolve through the years. The generalised 

profiles are represented mathematically below: 

 

Amplified Profiles:  

)()exp( ,,,, f
GM

tf
GG

tf
G

tyf
G y ππδκππ −

′
⋅⋅+

′
=  (4.63) 

 

Attenuated Profiles:  

)()]exp(1[ ,,,, f
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tf
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G

tyf
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⋅−−⋅+

′
=  (4.64) 

 

where:  

Gκ , δ  constants that shape the generalised RTP profiles  

f
GMπ  

average of the base profile as defined above, $/MWh.  

 

The average of the base profile can be expressed mathematically as: 

 

∑
=
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′
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1,ππ   (4.65) 

 

It can be proven mathematically that f
GMπ  is also equal to the average of the 

amplified and attenuated profiles in (4.63) and (4.64), i.e.: 
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This is because the equations (4.63) and (4.64) are deliberately chosen to keep this 

average constant and produce simulation results on a comparable basis. 

  

It is assumed in the study that the consumer predicts the generalised profiles to 

remain the same throughout its investment lifetime, but that they turn out to be either 

attenuated or amplified. To compare the results with the previous study, the “peaky” 

and “flat” generalised profiles we have been using thus far are chosen to be the base 

profiles in this study. For the same reason, MARR  is chosen as 10%. 

 

As examples, the amplified and attenuated profiles formed using (4.63) and (4.64) 

are shown in Figure 4.26 and Figure 4.27 respectively, along with the base profiles: 

 

 
Base: “peaky” profile Base: “flat” profile 

Figure 4.26 Amplified profiles: Gκ  = 0.15, δ = 0.1 

 

 
Base: “peaky” profile Base: “flat” profile 

Figure 4.27 Attenuated profiles: Gκ  = 1, δ = 0.04 
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A sensitivity analysis has been performed to observe how NPV  is affected by the 

amplified and attenuated profiles. The amplified and attenuated profiles are formed 

using the following parameters:  

 

Amplified Profiles: Gκ  = 0.15, δ = 0.1 

Attenuated Profiles: Gκ  = 1, δ = 0.04 

 

The sensitivity analysis is performed by varying the generalised profiles according to 

(4.63) and (4.64), while maintaining the production and storage capacities at the 

optimal values found in the base case with ′tf
G

,π , where the generalised profiles 

remain constant throughout the investment lifetime. 

 

The deviation in the optimal production and storage capacities from their base values 

as a result of tyf
G

,,π  differing from ′tf
G

,π  can be represented mathematically as 

follows:  
 

, , ,( ) ( )f t f y t
I I IG GW W Wπ π′∆ = −   (4.67) 

, , ,( ) ( )f t f y t
I I IG GS S Sπ π′∆ = −   (4.68) 

 

While the deviation of NPV as a result of tyf
G

,,π  differing from ′tf
G

,π  can be stated as:  

 

)()( ,,, tyf
G

tf
G NPVNPVNPV ππ −
′

=∆  (4.69) 

 

The valleys and peaks in Figure 4.28 below represent underinvestment and 

overinvestment in the capacities respectively. As expected, the consumer tends to 

under-invest if the profiles are amplified and on the contrary, it is likely to over-

invest if the profiles attenuating. Consistent with the previous study, the 

deviations IW∆  and IS∆  are relatively large when the investments are close to being 

marginally acceptable. It can also be observed that the deviation of optimal 

capacities tends to be more serious in short term investment. 
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Figure 4.28 Deviation of optimal capacities from base case: Amplified profiles 

 

 
Figure 4.29 Deviation of optimal capacities from base case: Attenuated profiles 

 

The base values of NPV  are shown earlier in Figure 4.13 while Figure 4.30 and 

Figure 4.31 below show the values of NPV∆  as results of amplified and attenuated 

profiles respectively. 

 

 
Figure 4.30 Deviation of Net Present Value from base case: Amplified profiles 
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Figure 4.31 Deviation of Net Present Value from base case: Attenuated profiles 

 

Although the deviations of IW∆  and IS∆  are relatively large when the future 

profiles are amplified or attenuated, NPV∆  is relatively insensitive to these 

deviations, when comparing Figure 4.30 and Figure 4.31 with Figure 4.17 of 

simulation study 3. This is largely because the deviations in the shape of the profiles 

are more dramatic if the probabilities of occurrence of the profiles are not as 

predicted. Therefore, we can conclude in this study that the consumer should put 

more emphasis on predicting the number of times a particular generalised price 

profile occurs as accurately as possible as it has greater impact on NPV .  

 

4.5 SUMMARY 
 

While the electricity commodity cannot be stored in bulk economically, the 

utilisation of product storage effectively allows an industrial consumer to reduce its 

production costs by shifting manufacturing of widgets to lower electricity price 

periods. The electricity commodity also processes a characteristic where its prices 

are volatile within short time span (e.g. 24-hour period) and it is difficult to predict 

these prices accurately. However, prices over a long period exhibit certain trend (e.g. 

peaky during weekdays and flat during weekends). Therefore, it is more desirable for 

a consumer to optimise its consumption over long run period to alleviate the 

volatility effect of electricity prices.  

 

This chapter introduced a new demand response concept that allows flexible 

consumers to reap the benefits of facing time-varying prices in the long run by 

expanding both their production and storage capacities.  
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For a given amount of capacity investment, the financial return that can be obtained 

increases with the investment lifetime. However, this financial return diminishes 

with increasing expanded capacities. Nevertheless, the developed algorithm ensures 

that an investment is only made only if the rate of return is higher than the interest 

rate.  

 

The optimal capacities are insensitive to “small” deviation in the amount of times the 

predicted generalised price profiles occur. The consumer should be more cautious in 

making short term investment, especially if the future profiles are very likely to be 

less “peaky” than predicted. Furthermore, a higher interest rate would aggravate 

capacity overinvestment but this effect is less prominent as investment lifetime is 

increased. As such, it is concluded that a long term investment is more favourable. 

This is mainly because the invested capacities are assumed to have infinite usable 

lifetime with zero wear-and-tear. This assumption allows constant inflow of savings 

throughout the investment lifetime without any incurrence of maintenance cost or 

additional investment cost. While a long study period naturally decreases the 

probability of all the factors turning out as estimated, the uncertainty in capital 

investment requirements can be reflected as a mark-up of the cost of plant and 

equipment. Alternatively, higher interest rates can be applied to cash flow that 

occuring further along the time span to reflect the premium for long-term debt. 

 

Results from the simulation studies have shown that load shifting strategy is 

economically feasible in the long run. This implies that a significant number of 

flexible consumers may be attracted to partake in demand response in the long run. 

In other words, this could result in a significant portion of system demand becoming 

price responsive. Therefore, it is necessary to study the implication of large 

penetration of demand shifting at the wholesale scheduling level, as will be 

discussed in the next chapter. 
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Chapter 5  

Generation and Demand Scheduling 
 

5.1 INTRODUCTION 
 

In the previous two chapters, models of short run and long run optimal response of 

storage-type industrial consumers to day-ahead electricity prices have been 

introduced. These models are suitable to storage-type consumers that participate in 

wholesale pool markets where system demand is taken as inelastic, and also in retail 

markets through suppliers that offer dynamic pricing rates. However, to participate 

directly in pool markets which model demand bidding explicitly, these consumers 

will have to give up self-optimising opportunities as their consumption schedules are 

determined centrally by the market operator. Therefore, it is desirable to have an 

elastic demand pool market that facilitates bidding mechanism and offers auction 

outcomes feasible to not only conventional generators and consumers, but also to the 

storage-type consumers. The market must be fair for all these participants to ensure 

sustainable active demand-side participation at wholesale market level. 

 

The modelling of a day-ahead elastic demand pool market suitable for the storage-

type industrial consumers is the subject of this chapter. As the day-ahead market 

would provide stronger advance price signals, enabling these consumers to better 

anticipate when prices might be higher or lower and respond by adjusting demand 

profile. The active demand will respond to varying wholesale market prices and 

consequently affect the market clearing prices at the scheduling level.  

 

The model essentially solves a demand-supply matching problem by maximising the 

social welfare, subject to the constraints of market participants. The problem is 

formulated in a way that can be solved using a mixed integer programming (MIP) 

technique. Several market performance aspects have been studied using this market 

clearing tool. Particular attention is paid to the fairness of the developed auction 



Chapter 5 Generation and Demand Scheduling  

 
 
  162  
 
 

algorithm and the impact of significant demand-side participation on day-ahead 

electricity market. 

 

5.1.1 Overview of Proposed Market Clearing Tool 
 

In existing pool markets that allow demand bidding, bids for MW purchase are 

rejected whenever the market clearing prices at the periods concerned are greater 

than the bid prices. For the sake of explanation, consider a simple 3-period auction as 

an example: Assume that a bidder requires 60 MWh of energy. This bidder values 

energy consumption at $40/MWh and has an hourly consumption limit of 30 MW. 

Assume that the market clearing prices during these three periods are totally 

unpredictable. As such, the bidder submits three equal-size hourly bids of 20MW 

(since it requires 60 MWh) at a price of $40/MWh at each period, with the intention 

of minimising the risk of not fulfilling its entire energy requirement. If the market 

clearing prices turn out to be as shown in Table 5.1, the demand bid at period 2 will 

be rejected.  

 
Table 5.1: Existing market rule  

Period 

[h] 

Market Clearing Price

[$/MWh] 

Allocated MW 

[MWh/h] 

1 25 20 

2 50 0  

3 35 20 

Imbalance of MW -20 

 

As a result, the bidder is 20 MWh away from meeting its energy requirement. 

 

As the bidder is not in the business to make profits through curtailing energy, the 

unsatisfied demand has to be acquired elsewhere, e.g. through balancing market, at 

periods closer to intended consumption. This exposes the consumer to greater risk of 

not meeting its energy requirement at a desirable cost, especially if the balancing 

market tends to be more expensive than the day-ahead market. If the bidder is 

flexible with the time periods of consumption, as in the case of the storage-type 

consumer, it would be useful if market rules allow the bidder to purchase MW in any 
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periods on the scheduling day, as long as the market clearing price is higher than the 

bidding price.  

 

Imbalance Management  

A novel market concept is introduced by allowing demand-side bidders to reduce the 

risk of going unbalanced after the gate closure of day-ahead market. To illustrate this 

concept, the same bidder described previously is used in the next example.  

 

It can be observed in Table 5.1 that the rejected bid at period 2 cannot be “shifted” to 

period 1 or 3, even if the shift would improve the welfare of the bidder. The results 

in Table 5.2 summarised the proposed market rule which allows “shifting” of 

unsatisfied demand to other periods.  

 
Table 5.2: Proposed market rule  

Period 

[h] 

Market Clearing Price

[$/MWh] 

Allocated MW 

[MWh/h] 

1 25 30 

2 50 0  

3 35 30 

Imbalance of MW 0 

 

For simplicity, it is assumed that the demand shifting does not affect the market 

clearing prices. With the proposed rule, the bidder is able to meet its entire energy 

requirement, as seen in Table 5.2 above. It can also be observed that not all of the 

previously “unsatisfied” demand is allocated to the lowest price period (at period 1) 

as the hourly consumption limit of the bidder is 30 MW. Hence, the proposed market 

clearing tool is able to recognise both the hourly and daily consumption limits of 

demand-side bidders, while managing the risk of these bidders of going unbalanced. 

The later feature is known as imbalance30 management throughout the remainder of 

this thesis.  

                                                 
30 The term “imbalance” is not to be confused with the popular definition of unbalance between 
generation and load. It is referred to in the remainder of this thesis as the consumers’ demand 
requirement that is not satisfied in the day-ahead market. 
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Complex Bid Mechanism 

Pool markets that incorporate demand bidding usually employ simple bid 

mechanisms, and therefore do not recognise generating units’ technical constraints or 

fixed costs properties. Conversely, markets with complex bidding structure perform 

the start-up and shut-down decision schedule of generating units in a centralised 

manner. This approach guarantees the technical feasibility of the resulting unit 

commitment schedule and reduces the generators’ risks associated with their fixed 

costs, at the expense of increasing the complexity of price setting mechanism. 

Nevertheless, the complex bidding scheme is incorporated in the proposed market 

clearing tool.  

 

Fixed Costs Reimbursement 

It is expected that significant activities of demand bidding will reduce wholesale 

electricity prices during peak periods, as expensive generating units are not needed 

due to the reduction of peak system load. This causes the scarcity rents of remaining 

generators to be reduced, as has been described in Section 2.4.2. As the scarcity rents 

help the generators to recover their fixed costs, this may subsequently encourage 

generators to increase bidding prices during off peak periods to make up for the loss 

of scarcity rents. Therefore, the proposed market clearing tool compensates the fixed 

costs of generators, with the intention of promoting generators to bid closer to their 

actual costs.  

 

5.1.2 Literature Survey 
 

Depending on the level of competition, a market structure can be described as 

monopoly, oligopoly or perfect competition, in increasing order of competitiveness. 

The main criteria by which one can distinguish between different market structures is 

the size of producers and consumers in the market and the amount of influence 

individual actions can have on the market price. As such, in a perfect competition 

model, no participant has the power to influence market prices. The reverse holds in 

a monopoly structure. The following paragraphs review some papers on the 

modelling of competitive electricity markets. 
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Imperfect Competition 

A market is said to be imperfect if a firm is able to exert market power by means of 

withholding output or raising offer price beyond its marginal cost in order to increase 

the market price. Profit is increased if the price rise is sufficient to compensate for a 

possible loss in sales volume. Electricity supply is a capital intensive industry with 

high barrier of entry to new producers. Couple this with the fact that electricity 

cannot be stored economically in bulk, electricity markets are more susceptible to the 

exercise of market power than other types of markets.  

 

A considerable amount of literature has been produced on the subject of bidding 

strategically in competitive markets. These works are triggered mainly by the needs 

of devising optimal bidding policies that maximise the profits of participating in 

these markets, or identifying market power abuse through the investigation of market 

participants’ bidding behaviour. In Philpott and Pettersen (2006), the opportunities 

for demand-side bidders to speculate in day-ahead market of Nord Pool are 

investigated. The authors observed that under certain conditions, the demand 

purchasers are better off bidding less than their expected demand in the day-ahead 

market. This is because the underbidding behaviour tends to decrease the wholesale 

prices in the day-ahead market relatively to the balancing market. Nevertheless, the 

conditions under which the consumers should bid their expected demand are also 

identified. An algorithm that allows a producer or a consumer to maximise its 

welfare by trading in electricity markets is presented in Weber and Overbye, (2002). 

The nature of the market equilibrium is investigated by solving the algorithm 

iteratively until all participants cease to modify their bids. The paper highlighted that 

the equilibrium does not always exist and that if it does, there may be more than one 

solution. A method of identifying market power is proposed in (Wen and David, 

2001). The authors modelled the bidding strategies of producers and consumers in 

such a way that each participant adjusts its bidding function subject to the 

expectation of rivals’ bidding actions. The study concluded that market power can be 

mitigated by increasing the level of demand bidding. For a comprehensive survey on 

the subject of strategic bidding in imperfect markets, see (David and Wen, 2000).  
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Perfect Competition 

Ideally, an electricity market should be sufficiently well-designed to ensure vigorous 

competition among participants and should leave no scope for gaming. While a 

majority of existing market structures are more akin to oligopoly than perfect 

competition, it can be expected that market power is less likely to occur if demand 

has high price elasticity (Borenstein et al., 2002; Rassenti et al., 2003). As the 

proposed market clearing tool encourages generators to bid at actual costs and 

incorporates active demand biddings, a perfect competitive model is used as the 

market structure of the demand-supply matching tool.  

 

According to economics definition of efficiency, perfect competition would lead to 

an allocation of resources that is completely efficient (Lipsey and Chrystal, 1999). A 

perfect market maximises social welfare in such a way that no individual participant 

can be made better off without making someone worse off. The market is said to 

achieve Pareto efficient at this optimal condition. In reality however, markets are 

always operating at a level lower than the maximum social welfare. Nevertheless, the 

assumption that market structure is perfectly competitive is useful when evaluating 

whether a hypothetical market clearing tool, such as the one proposed in this thesis, 

is functional at least under the condition without any market power.  

 

While numerous papers are concerned with optimising bidding policies and 

identifying market power under imperfect competition, only a limited number of 

studies proposed new auction models that incorporate demand-side bidding 

explicitly. The following paragraphs review some papers on complex bid based 

auction design in day-ahead electricity markets where the participants are taken as 

price taking and hence do not bid strategically.  

 

Contreras et al. (2001) introduced a multi-round auction algorithm that allows 

market participants to modify their bids consecutively until market equilibrium is 

reached. The authors observed that the market clearing prices produced by a single-

round auction with complex bids do not correlate well with the system demand 

profile, even if the iterative algorithm is applied. However, the authors did not 

provide a detailed explanation on the reasons behind the poor correlation. As the 

algorithm is performed iteratively, the market prices may oscillate from one iteration 
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to the next. The oscillatory behaviour of the solution is solved by choosing proper 

stopping criteria. This, however, raises concerns about the equity of the model as the 

stopping criteria are chosen heuristically. Nevertheless, the model can be used as a 

benchmark to evaluate the performance of traditional single-round auction designs, 

by comparing the economic efficiency indicators such as social welfare between 

auction models. 

 

Borghetti et al. (2001) developed an auction algorithm that attempts to reduce the 

market clearing price by reducing peak system load. The load reduction is dispatched 

on the basis of demand-side bids that represent the prices at which the bidders are 

willing to reduce consumption by the specified amounts. However, there are 

designated periods where the bidders may undertake load reduction or recovery. This 

unnecessarily complicates the market rules. The authors suggested that proper 

remuneration should be given to these bidders as the total cost of serving system 

load is reduced as a result of the load shifting activities. As the bidders do not 

contractually own demand, the auction model is most likely to suffer from gaming 

opportunities. This is because the bidders could have claimed to perform load 

reduction when they actually have no intention to use electricity. As aptly described 

by Ruff (2002): “paying a consumer for demand response “resources” it would have 

bought but did not is paying twice for the same thing”.  

 

In Arroyo and Conejo (2002), a MIP based market clearing tool for achieving 

maximum social welfare in a two-sided pool market is presented. Simulations are 

performed to determine the performance of the tool, with and without considering 

the operating constraints of generators. The study concluded that the social welfare is 

artificially increased if the inter-temporal constraints of generators are relaxed. The 

authors noted that the fixed costs of generators can be considered explicitly within 

the auction model, but did not further discuss the methodology. Furthermore, the 

consumers in this auction model are required to submit bids to purchase MW 

explicitly. This means that the consumers will contractually own the demand if the 

bids are accepted. As such, the auction model does not suffer from the gaming 

problem associated with Borghetti et al.’s (2001) model.  
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Contributions 

All the auction models described previously do not provide imbalance management 

that is useful to the storage-type industrial consumers. The concept of load reduction 

and recovery introduced by Borghetti et al. sparks the motivation to create a practical 

auction tool that incorporates imbalance management to flexible consumers, without 

the associated gaming problems. Therefore, this proposed tool is based on the social 

welfare maximisation model presented by Arroyo and Conejo (2002), while 

extending the authors’ concept of fixed cost consideration by providing 

reimbursement of fixed costs to generators. Furthermore, the poor correlation 

between market clearing price and system load profile associated with complex bid 

mechanism identified by Contreras et al. (2001) will be examined in Section 5.4.2. 

5.2 COMPETITIVE ELECTRICITY MARKET MODELS 
 

The electricity markets in different countries have employed different market rules 

or bidding mechanism, depending on factors such as the structure of the underlying 

power system (e.g. generation mix) and even the political configuration of 

government (Mendes, 1999).  

 

As described in Section 1.2, a competitive electricity market can depend on a 

centralised market or a bilateral trading model. As generators are paid exactly at the 

offer prices in bilateral trading, the generators would try to forecast the highest offer 

for MW sale (i.e. market clearing price). It would then bid at that price to maximise 

their profits. Therefore, there is generally no difference between bilateral trading and 

pool market framework in this sense. In this chapter, we will focus solely on the 

main features of the centralised model, using the two markets: EPEW and Nord Pool 

as examples as they constitute the basis of the proposed pool market model.  

 

5.2.1 The Electricity Pool of England and Wales 
 

The Electricity Pool of England and Wales (EPEW) was a centralised entity that 

controlled the scheduling and dispatch of generation to meet forecasted system load. 

The EPEW operated the spot market at least one day ahead of physical delivery and 

the market was cleared on a half-hourly basis. It was eventually replaced by a 
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bilateral trading system called the New Electricity Trading Arrangements (NETA). 

This restructuring was mainly triggered by EPEW’s inability to deliver lower 

electricity prices due to flaws in trading rules that led to the exercise of market 

power by the generators (Kirschen, 2001). While most of the features of EPEW are 

similar to the centralised framework described in Section 1.2, it had additional 

features, as will be described next.  

 

Complex Bids: The generators’ bidding data comprise parameters designed to 

reflect costs associated with operating a generating unit, which include: incremental 

offers, start-up costs, no-load costs and the operating limits of the unit such as: 

generation limits, minimum up and minimum down times. The generators are 

allowed to submit only one bidding function throughout the trading day. In other 

words, the generators are not allowed to change their offering prices at different 

periods. The bidding function contains up to a maximum of three segments, each of 

these corresponds to an incremental price that is non-decreasing in the subsequent 

segments.  

 

Fixed Costs Reimbursement: The EPEW allows marginal generating units to 

recoup fixed costs such as no-load cost and start-up cost by amortising these costs 

into the offering prices of these units31. This amortisation method will be described 

in detail in Section 5.3.5. The market clearing price that includes the amortised fixed 

costs is known as the System Marginal Price (SMP) in EPEW, and forms the basis of 

payments to generators.  

 

Passive Demand Role: The demand is assumed to be inelastic in EPEW. It is set at 

a fixed value determined by a demand forecast, which is based mainly on historical 

data and weather forecasts. Demand response to prices in EPEW is restricted to a 

mechanism in which demand-side bids are treated as “negative generation”. This is 

done by considering load reduction as a resource which can be added to the supply. 

This method is incorrect in concept and inefficient in practice, as has been described 

in Section 2.2.2. 

 

                                                 
31 From here on, generating units or simply “units” are used interchangeably to refer to generators. 
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Unconstrained Scheduling: The generators’ bidding data were input to the 

Generation Ordering and Loading (GOAL) program by the system operator 

(National Grid Company) to produce the generation schedule for the trading day. 

The schedule takes into account the forecast for electricity demand and the planned 

reserve for the relevant settlement periods, together with the bidding data. However, 

the scheduling program did not take account of transmission constraints.  

 

Ex ante Prices: Market clearing prices were determined and made available to all 

market participants before the actual trade of electricity. This allowed generators the 

opportunity to change their availability based on a commercial decision and allowed 

consumers to adjust their demand profile. It should be noted that the exact prices of 

serving the actual system load can only be known after the fact (ex post). This is 

largely because the actual system demand inevitably deviates from the forecasted 

value and requires adjustment to the final generation schedule. Nevertheless, the ex-

post prices are determined based on the reference prices of the unconstrained 

scheduling.  

 

Side Payments: Generators that were called upon to provide services such as 

removing network constraints, spinning reserve received a side-payment known as 

“uplift”. Furthermore, an incentive known as capacity payment were given to 

generators to ensure sufficient spare generating capacity during times of peak 

demand. These payments were incorporated into the SMP accordingly.  

 

5.2.2 The Nord Pool 
 

The Nord Pool was established in 1993, and is owned by the two national grid 

companies: Statnett SF (Norway) and Affärsverket Svenska Kraftnät (Sweden), with 

each of them holding a 50% stake. As opposed to the now defunct EPEW, Nord Pool 

is an elastic demand pool market which allows active participation of consumers 

through submission of bids for total demand. However, there are important 

differences as will be described in the paragraphs below.  
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The Nord Pool consists of two types of spot market for energy trading. They are 

Elspot and Elbas respectively: 

 

Day-ahead market (Elspot): Physical delivery of MW is traded on an hourly basis 

for the next day’s 24-hour period. The price calculation is based on the last demand 

accepted method, while taking into account transmission capacity auction implicitly. 

Elspot provides a common power market for the Nordic countries and requires that 

the market participants be physically connected to the grid for power delivery or 

consumption.  

 

Hour-ahead Market (Elbas): Provides market participants an opportunity to “fine-

tune” their positions after gate closure of Elspot, prior to the point of physical 

delivery. The trading has to be at least one hour before the delivery, after which all 

discrepancies between contracted and actual demand are settled in the real-time 

market. The settlement period is also hourly.  

 

As this chapter focuses on day-ahead market structure, only the main characteristics 

of Elspot are described next:  

 

Simple Bid: Elspot does not take account of the physical constraints of market 

participants. The bidders that are inflexible with production or consumption can 

however, utilise a bidding mechanism called block bid. The block bid allows the 

participants to consume/produce a specified amount of MW for consecutive hours, 

provided the average price of these periods is higher/lower than the associated bid 

price. As such, block bids are also effective in handling high cost of starting a 

consumption or production for a participant. Furthermore, purchase or sale of MW 

can also be made through two other bidding types: hourly bids and flexible hourly 

bids (as described in Section 2.5). While block bid is useful in providing feasible 

production or consumption schedule to an inflexible bidder, this bidding mechanism 

exposes the bidder to large amount of MW imbalances if the bid is rejected. 

 

Network Congestion Management: Nord Pool is divided into different auction 

areas geographically. These areas can have different prices if the contractual flow of 

power between bidding areas exceeds the transmission capacity allocated by the 
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transmission system operators. Hence, the area price mechanism is used to alleviate 

grid congestion. It is worth noting that the grid congestion is managed solely by 

offers from generators, i.e. consumers are not allowed to participate in easing 

network constraints. Nevertheless, all area prices are equal if there are no constraints 

between the bidding areas. 

 

The following table summarises the important differences between EPEW and Nord 

Pool:  

 
Table 5.3: Main differences between EPEW and Nord Pool 

 EPEW Nord Pool 

Bidding structure 

Complex bid: fixed costs and 

technical constraints of 

generators are considered 

Simple bid: fixed costs and 

technical constraints of 

participants are not considered

Role of Demand  
Passive: forecasted by the market 

operator 

Active: offer “hourly bid” or 

“block bid” 

Fixed costs reimbursement  Yes No 

Side Payment  Uplift + capacity payment None 

Area price 
Uniform price through the 

market 

Different area price if network 

is congested 

Balancing market Incorporated within the pool Elbas and real-time market 

 

5.2.3 Proposed Market Framework 
 

In this thesis, the proposed auction model is organised in a framework similar to 

EPEW and Nord Pool. The main features of this hybrid framework are presented in 

the following paragraphs. The name of the pool market in which the proposed 

framework is based on is shown within the brackets after the main features below.  

  

Two-sided Market (Nord Pool): Generators and demand-side participants such as 

retailers and large consumers are active in price setting of the market clearing prices.  

 

Complex bids (EPEW): Generators and consumers are required to send all relevant 

information on their financial (e.g. bid price) and technical characteristics (e.g. 

operating limits) to the market operator.  
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Ex ante prices (EPEW and Nord Pool): Market clearing prices are determined and 

made available to all market participants before the actual physical delivery.  

 

Pure Energy Trading (Nord Pool): Ancillary services such as spinning or standing 

reserves are assumed to be traded in a separate market.  

 

Settlement of Unbalances (Nord Pool): If the production and the consumption of 

the market participants deviate from the amount allocated through the day-ahead 

auction, the difference is settled in the hour-ahead or the real-time market, which is 

assumed independent of the day-ahead auction.  

 

Unconstrained Scheduling (EPEW): For simplicity, the transmission network is 

taken to be sufficiently large that the network is never congested under any condition. 

As such, the production and consumption schedule of the day-ahead auction does not 

require any adjustment to ensure technical feasibility.  

 

The next section discusses the formulation of the auction model in details.  

5.3 PROBLEM STATEMENT AND FORMULATION 
 

This chapter is mainly concerned with modelling the demand-supply matching 

problem of a pool electricity market. The goal of the problem is to maximise the 

social welfare of all market participants. The market operator (MO) determines the 

optimal production and consumption schedules based on the bidding files submitted 

by the participants.  

 

The demand-supply matching is an almost trivial problem when only simple bids are 

offered. It can be performed by building supply and demand curves and the 

intersection of these curves represents the market clearing price. In the proposed 

auction procedure, the market participants are allowed to include a set of parameters 

that define their complex operating characteristics, such as intertemporal constraints. 

The inclusion of these characteristics transforms the auction procedure into a 
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complicated unit commitment problem, in which there are strong dependencies 

between decisions in successive hours. 

 

5.3.1 Objective Function 
 

The objective is to maximise the social welfare ( SW ) of all market participants and 

can be formulated as: 

 

1

max ( )
T

t t

t

SW CGS SOC
=

= −∑   (5.1) 

 

where: 
tCGS  consumers’ gross surplus, $/h.  

tSOC  system operating cost, $/h.  

 

The consumers’ gross surplus ( tCGS ) represents the system-wide benefit of 

consuming demand, which is assumed to be measurable in monetary terms. It is 

given as the sum of every bidder’s32 benefit of demand consumption ( tk
DB , ), or 

mathematically: 
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where: 

k  index of demand-side bidders 

M  total number of demand-side bidders 

 

Conversely, the system operating cost ( tSOC ) is the generators’ total cost of serving 

system demand ( ,i t
GC ), which is given as:  

 

                                                 
32Demand-side bidders are referred to as bidders from here on for simplicity.  
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where: 

i  index of generating units 

N  total number of generating units 

 

We will look at how complex offers for generation and bids for demand are 

modelled in the following two sections. It is worth noting that if the generators or the 

consumers do not bid at their respective marginal benefits or costs, the objective 

function is not, strictly speaking, the social welfare but the ‘perceived’ social welfare. 

Nevertheless, a perfect competition model is adopted in this thesis which assumes 

that all participants bid at their true benefits or costs.  

 

5.3.2 Generators’ Offers 
 

The design of generators’ offer files is based on EPEW’s complex bid structure. This 

bidding structure allows generators to submit multipart bids that represent two of 

their main characteristics: operation cost and operational constraints. These 

characteristics will be described next: 

 

Operation Cost 

The operation cost ( ,i t
GC ), as the name suggest is the cost of operating a generator. It 

comprises the power production cost ( ,i tc ) and the start-up cost ( ,i tSU ) and can be 

given as: 

 

, , , ,

1
( )

N
i t i t i t i t
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C c P SU

=

⎡ ⎤= +⎣ ⎦∑    (5.4) 

 

where:  

)( ,, titi Pc  power production cost of unit i at period t. This is mostly the fuel cost.  

tiP ,  actual generation in MW of unit i at period t 
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,i tSU  start-up cost for unit i at period t, $ 

ti
Gu ,  up/down status of unit i at period t.  

ti
Gu , = 1, unit is on 

ti
Gu , = 0, unit is off 

 

Power Production Cost 

The power production cost of a unit is commonly expressed as a quadratic function: 

 
, , , , 2( ) ( )i t i t i i i t i i tc P a b P c P= + + ⋅    (5.5) 

 

where ia , ib  and ic  are given constants for the unit i 

 

In EPEW framework, the production cost (5.5) is approximated by a piecewise linear 

function using the technique shown in Appendix A, for which the following holds: 

 
0

, , , , , , , 1 , , , , 1

1 , , 1 , ,

0
 s.t.   0,  

 0, 0

G
ES

i t i t i i j i j t i t i j i j t i t i j
G G G Sg E Sg E

j i t i j i j t
E Sg

P
c u N P if P P P P P

if P P P
σ − −

= −

⎧ =
⎪= + − ≥ = −⎨
⎪ − < =⎩

∑   (5.6) 

 

where : 
tji

SgP ,,  output level of unit i at segment j during period t, MW 

ji
EP ,  output level of unit i at elbow point j, MW 

i
GN  no load cost of unit i. This fixed cost is needed to maintain the unit 

online without any production $/h. 
ji

G
,σ  incremental production cost. It is also the slope of the piecewise linear 

production cost at segment j of unit i, $/MW 

GS  total number of incremental production cost curve segments 

 

The amount of MW produced in each segment of the power production cost function 

gives the total output of a unit, or mathematically: 
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, , ,

1

GS
i t i j t

Sg
j

P P
=

=∑    (5.7) 

 

Start-up Cost 

The start-up costs are represented as an exponential function in EPEW, which can be 

given as: 

 
,

, [1 exp( )]
i t

i t i i O
i

HSU κ ρ
τ

−
= + −    (5.8) 

 

where  
iκ  fixed cost portion of start-up cost of unit i, $ 

iρ  cost to start-up unit i from “cold” condition, $ 

ti
OH ,  the number of hours t unit i has been turned off, h 

iτ  rate of cooling of unit i, h 

 

However, for the sake of simplicity, the start-up costs are considered constant for 

each unit, which can be given as: 

 
, , , 1

,

( )

0

i t i i t i t
G G

i t

SU u u

SU

κ −⎧ = ⋅ −⎪
⎨

≥⎪⎩
   (5.9) 

 

From here on, the second part of (5.6) is referred to as the variable cost while the no 

load cost, together with the start-up cost, are referred to as the fixed costs.  

 

Operational Constraints 

The constraint bidding information that any unit may provide consists of generation 

limits, minimum up-time, minimum down-time, ramp-up rate and ramp-down rate. 

They are described next:  
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Generation limits 

The generating units must be operated within their minimum stable generation and 

maximum capacity.  

 
itii PPP ≤≤ ,   (5.10) 

 

where iP , 
i

P  are the lower and upper operating limits  

 

Minimum up-time and Minimum down-time 

If a unit must be “on” for a certain number of hours before it can be shut down, then 

a minimum up-time ( i
UT ) is imposed. On the contrary, the minimum down-time ( i

DT ) 

is the number of hour(s) a unit must stay off-line before it can be brought on-line 

again. Mathematically, the minimum up/down time constraints33 for unit i can be 

expressed as: 

 
, 1 , , 1

, 1 , 1 ,

( ) ( ) 0
( ) ( ) 0

i i t i t i t
U I G G
i i t i t i t

D O G G

T H u u
T H u u

− −

− −

⎧ − ⋅ − ≥
⎨

− ⋅ − ≥⎩
  (5.11) 

 

where: 
1, −ti

IH  amount of time unit i has been running, h 

 

Ramp-up and ramp-down rates 

A committed generating unit has limitations on varying its output level within a 

specific period due to mechanical stress and thermal restriction (Wang and 

Shahidehpour, 1994). Therefore, the rate of change in power output of the unit has to 

be within the limits given by its ramp-up and ramp-down rate. The ramp-rate 

constraints can be represented mathematically as: 

 

⎪⎩

⎪
⎨
⎧

−=∆

≤∆≤−
−1,,,

,

tititi

i
U

tii
D

PPP

RPR
  (5.12) 

                                                 
33 (5.11) is nonlinear. It can be linearized using the method presented in Chang et al. (2001). 
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where: 
tiP ,∆  rate of change in the power output of unit i between period 1−t  and t, 

MW/h 
i
UR  ramp-up rate of unit i, MW/h 

i
DR  ramp-down rate of unit i, MW/h 

 

5.3.3 Demand-Side Bids 
 

Before we delve into the mathematical formulation of the consumers’ bid files, it is 

useful to understand some concepts associated with the behaviour of the demand. 

The figure below illustrates the assumption of the two categories of demand in the 

auction framework. They are the price taking demand and the price responsive 

demand respectively. 

 

 
Figure 5.1 Price taking and price responsive demand  

 

As it is unrealistic to expect all system load to be price responsive, a fraction of the 

system load is modelled as perfectly inelastic (i.e. does not react to price at all). 

Although represented as infinitely large in the figure, the benefits of the price taking 

part are taken to be zero in the model due to computational reason: If the benefit is 

taken as infinity, it will inflate the value of social welfare artificially. On the other 

hand, taking them at an arbitrary constant value that is sufficiently large does not 

affect the outcome of the welfare maximisation process. We will describe these two 

types of demand further in the following paragraphs. Our assumption is that the price 

responsive demand does not bid strategically. It is a price-taker in the sense that it 

will bid according to its actual benefit of consuming demand. The following 
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paragraphs discuss the bidding mechanism of price taking and price responsive 

demand.  

 

Price Taking Bid 

The auction model allows demand to purchase a certain amount of energy regardless 

of the market clearing prices. This bid for demand is thus price-independent and the 

bidder will receive a schedule of deliveries equal to the specified volume for all 

hours of the scheduling horizon. This price taking demand is specified as ,z t
TD , where 

z  is an index of price taking bidders from 1 to V . As described previously, the 

benefit of consuming demand by price taking bidders is taken as zero.  

 

Price Responsive Bid 

As the name suggests, the price responsive bid allows consumers to submit bids for 

MW that are sensitive to electricity prices. It is modelled in a way suitable for the 

participation of storage-type industrial consumers and is also flexible enough to 

allow for a simple “price-volume” bid at a specific period. The former bid feature is 

referred to as “demand shifting bid” and will be described in detail next while the 

later bid feature will be discussed under the heading “simple hourly bid” in this 

section. The bidder that submits a price responsive bid is also allowed to place a 

price taking bid (e.g. for meeting its inflexible demand) and vice versa. Similar to 

generators’ offer files, the consumers’ bid files are multipart and represent the two 

important characteristics of consumers: benefit of consuming demand and 

consumption limit. These characteristics will be described in detail next. 

 

Benefit of Demand Consumption 

The benefit of demand consumption ( ,k t
DB ) is represented as a piece-wise linear 

function, which can be given as:  
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where:  
, ,k j t

SgMB  marginal benefit of consuming demand at segment j of bidder k during 

period t, $/MWh 
,k tD  total demand allocated to bidder k during period t, MW 

tjk
SgD ,,  demand allocated at segment j of bidder k during period t, MW 

jk
ED ,  demand at elbow point j of bidder k, MW 

DS  total number of incremental demand-side bidding curve segments 

 

The total demand allocated to a price responsive demand ( ,k tD ) can be given as: 

 

, , ,

1

DS
k t k j t

Sg
j

D D
=

= ∑   (5.14) 

 

It should be noted that tjk
SgMB ,,  in (5.13) has to be non-increasing in subsequent 

segments to ensure convexity of the problem.  

 

Consumption Limits 

The consumption limits of the demand-side bidders are modelled by two constraints. 

They are the hourly consumption limit and the daily energy requirement respectively. 

 

Hourly Consumption Limit 

The bidders may specify the minimum and the maximum amount of MW that can be 

consumed during a scheduling period through the parameters tkD , and 
tk

D
,

 

respectively, for which the following constraint applies: 

 

tk
D

tktktk
D

tk uDDuD ,,,,, ⋅≤≤⋅   (5.15) 
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where: 
,k t

Du  bid status of bidder k at period t.  
tk

Du , = 1, bid is accepted 
tk

Du , = 0, bid is rejected 

 

Daily Energy Requirement Revisited 

The bidders are also allowed to specify the maximum amount of energy they are 

willing to purchase (
k

E ) on the scheduling day, in which the following constraint 

holds: 

 

kT

t

tk EtD ≤∆⋅≤∑
=1

,0   (5.16) 

 

The energy requirement (5.16) has to be modelled as an inequality constraint to 

ensure market clearance, as has been noted in Section 3.5.1. The modelling of both 

the hourly consumption limits (5.15) and the daily energy requirement (5.16) 

effectively allows the storage-type industrial consumer to manage its risk of going 

unbalanced in the spot market. From here on, this bidding mechanism will be 

referred as shifting bid for simplicity.  

 

Simple Hourly Bid 

If the bidders require a demand that must be accepted as a whole at a specific price 

and period ( ,k t
SD ), this can be achieved by specifying the following parameter values 

into the bid files (5.13) to (5.16):  

 

1=DS   (5.17) 
,, ,k tk t k t

SD D D= =   (5.18) 

,

1

Tk k t
S

t
E D t

=

= ⋅∆∑   (5.19) 

 

This effectively forces the demand allocated to bidder k to be either 0 or ,k t
SD , as can 

be verified in (5.20):  
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, , , , ,k t k t k t k t k t

S D S DD u D D u⋅ ≤ ≤ ⋅   (5.20) 

 

The parameter , ,k j t
SgMB  in (5.13) can be simplified as ,1,k t

SgMB  since the bid consists of 

only one segment. The simple hourly bid is therefore a “special case” of the shifting 

bid, however it is distinguished from the shifting bid as it exposes the bidder to 

higher imbalance risk, as has been described in Section 5.1.1. 

5.3.4 System Constraints 
 

Apart from meeting the market participant constraints discussed in Sections 5.3.2 

and 5.3.3, the market also has to satisfy the following constraints:  

 

Power Balance  

The unit commitment schedule should provide the exact amount of power to meet 

the consumers’ demand. Hence: 

 

, , ,

1 1 1
0

N M V
i t k t z t

T
i k z

P D D
= = =

− − =∑ ∑ ∑   (5.21) 

 

Spinning Reserve 

To operate the power system in a reliable manner, it is necessary to have unused 

synchronised generation capacity in order to allow for sudden outages of committed 

generators or unexpected surges in the demand for electricity. The spinning reserve 

requirements tR can be represented as: 

 

∑
=

≤
N

i

tit rR
1

,   (5.22) 

 

where tir ,  is the contribution of unit i to the spinning reserve during period t. This 

contribution is given by: 

 

{ }, , , ,
Gmin ( ) ,  ( )

ii t i t i t i i t
G U Rr P P u R uτ= − ⋅ ⋅   (5.23) 
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in which Rτ  is the amount of time available for the generators to ramp-up their 

output for reserve delivery.  

 

5.3.5 Price Computation 
 

The market clearing price is determined for each time period after the welfare 

maximization problem (5.1) is solved. Because the incremental offers and bids of the 

market participants are modelled in a discrete manner, the demand and supply curves 

may intersect at a point where one of the two curves is discontinuous, as shown in 

Figure 5.2. 

 

 
Figure 5.2 Ambiguity of Market Clearing Price  

 

All the accepted generator bids are fully used while consumers are still willing to pay 

more than the marginal unit’s incremental price of production, if it could produce 

more. In this sense, the generators are scarce and the market clearing price can be 

determined by the marginal consumer at dπ . In markets such as Nord Pool, the 

generators are entitled to collect the rents (represented as the shaded area) between 

dπ  and gπ  when such a case arises. From an economic point of view however, both 

the producers and consumers would not oppose if the market clearing price ( MCP ) 

is chosen at any price between dπ  and gπ . For the time being, let us assume that the 

marginal generating unit is chosen to clear the market, or mathematically: 

 

gMCP π=   (5.24) 
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If the incremental price of unit i scheduled to produce at period t is given as ,i t
Gσ , 

then (5.24) can be restated more generally as: 

 
,max( )t i t

GMCP σ=   (5.25) 

 

Fixed Costs Reimbursement Revisited 

The marginal generating unit that determines the market clearing price in Figure 5.2 

would never be paid more than its offering price if the market rule in (5.25) is 

implemented. This is also the case in Nord Pool, if the marginal unit has some spare 

production capacity and is not scarce. If a unit tends to be marginal, it will inevitably 

need to bid higher than its actual cost to stay in business since the marginal unit does 

not collect any rents for recouping its fixed costs. This issue was addressed in the 

EPEW by accounting the fixed costs of units explicitly within the bid. The basic idea 

is to amortise the fixed costs of units over the total output of a consecutive running 

period ( ,i tAF ), as given below:  
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∑   (5.26) 

 

where 

ont  period at which the unit is started up 

offt  period before which the unit is shut down 

AΤ  set of periods where spare system capacity is less than 1,000 MW. It is 

also known as “Table A” periods in EPEW.  

 

The market clearing price is then given by:  

 
, ,max( + )t i t i t

GMCP AFσ=   (5.27) 
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The market clearing price above forms the basis of payments to units scheduled for 

generation in EPEW. It should be noted that the fixed cost reimbursement method 

from (5.26) to (5.27) is only valid in most conditions: If a marginal unit is scheduled 

to generate for less than 3 consecutive hours, the fixed costs are amortised over the 

total capacity of the unit rather than the denominator of (5.26). Furthermore, a side 

payment is given to the marginal unit if its operating costs are not recovered by the 

market clearing price in (5.27). A detailed treatment of this fixed cost recovery 

scheme can be found in EPEW (1995). It is also interesting to note that tiAF ,  is only 

considered at periods when the spare system capacity is less than 1,000 MW, which 

usually corresponds to periods of demand peaks. This is an attempt to produce 

higher prices to discourage consumption during these peak periods.  

 

Proposed Fixed Cost Reimbursement Method 

The social welfare obtained at market equilibrium does not exhibit its true value if 

the fixed costs of generators are not taken into account explicitly. On the other hand, 

appropriate payments should be given to generators if the fixed costs were to be 

considered in the centralised scheduling problem, otherwise the benefits of 

consumers would be artificially inflated.  

 

The implementation of the EPEW’s fixed cost recovery method is not 

straightforward and complicates the analysis of the impact of demand-side 

participation on the day-ahead electricity market. As such, a simple method is 

utilised to determine the amortisation factor, which is given below:  

 
, ,
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1 1

i t i i tT N
i t G G

P i t
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u N SUAF
P= =

⎛ ⎞⋅ +
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⎝ ⎠
∑∑   (5.28) 

 

where ,i t
PAF  is the proposed amortisation factor of fixed costs of generating units 

 

This method reimburses the units on a pro rata basis according to MW sales. 

Therefore, it is more favourable to units with low fixed costs that are scheduled to 

serve “large” amount of demand (i.e. efficient units), and penalises units with high 

fixed costs that produce “little” output (i.e. inefficient units). As such, the method 



Chapter 5 Generation and Demand Scheduling  

 
 
  187  
 
 

inherently provides incentive for generators to operate more efficiently. The equity 

of implementing such fixed costs allocation scheme is however, outside the scope of 

this thesis. Since we are only interested in avoiding the problem associated with the 

inflation of consumers’ benefits if the fixed costs are not reimbursed, no further 

treatment will be given to justify the method.  

 

It can also be observed that ,i t
PAF  is the same for every unit and for all periods. As 

such, it is simplified as a single variable ( PAF ). The adjusted market clearing price 

that incorporates the proposed fixed costs reimbursement ( t
PMCP ) can then be given 

as follow:  

 
,max( + )t i t

P G PMCP AFσ=   (5.29) 

 

The adjusted prices defined in (5.29) are not equilibrium prices as some generators 

may now find it profitable to increase generation. Likewise, certain demand-side 

bidders may want to reduce their consumptions as market clearing prices are now 

increased. Bouffard and Galiana (2005) have proposed a method to ensure that the 

adjusted prices are in equilibrium. However, the method explicitly assumed that 

demand is perfectly inelastic and therefore not applicable to our model. It is assumed 

in this thesis that PAF  is not significant enough to cause such problem.  

 

5.3.6 Implication of Bidding Structure  
 

This section discusses the implication of the proposed bidding mechanism to the 

following two types of market participants: 

 

Inflexible Demand 

Consumers who have to interrupt a process to reduce demand lose some of the 

benefit they get from the consumption. This could be modelled as a one-time benefit 

loss incurred when a chunk of demand is disconnected, similar to start-up cost of 

generating units. This issue has been addressed in model introduced in Borghetti et 

al. (2001). On the other hand, some consumers may want to consume a certain 
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amount of energy over a given period of time. As such, the “block bid” feature of 

Nord Pool would be useful to these consumers. As the focus of this research project 

is on flexible storage-type consumers, all these bidding features are not included in 

our model. These inflexible consumers can however make use of price taking bid 

( ,z t
TD ) that guarantees the amount of energy required.  

 

Intermittent Producers 

For conventional generation, there is no reason to change the offer prices. However, 

for intermittent sources such as wind generators, being able to change bids to reflect 

expected changes in availability would be useful. For example, a wind generator may 

submit high offer prices during periods where the wind is expected to be calm. This 

effectively excludes the wind generator from unit commitment schedule during these 

periods and hence reduces the risk of being out of balance (assuming no storage 

solutions available). For the sake of simplicity, all the generators are assumed to be 

thermal units in our model and do not suffer from unpredictable output.  

 

5.4 APPLICATION TO THE GENERATION AND DEMAND 
SCHEDULING PROBLEM 
 

The algorithm for the solution of the demand and supply matching problem has been 

applied to several scenarios to observe the effectiveness of the model. The developed 

algorithm cannot be compared directly with other approaches because of its unique 

demand-shifting feature. Emphasis is placed on the economical viability for 

industrial consumer to participate in the wholesale market. However, the next section 

will first examine the modelling of the consumers’ bidding.  

5.4.1 Modelling of Bidding Behaviour 
 

The modelling of consumer’s bidding behaviour relies on the concept of price 

elasticity of demand introduced in chapter 1. Assume that the system demand at a 

certain period of the scheduling day is determined by the forecast as FQ . If a fraction 

of FQ  is responsive to the electricity price ( REQ ), while the remaining is perfectly 

inelastic ( TQ ), then FQ  can be given as:  
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F RE TQ Q Q= +   (5.30) 

 

The price elasticity of demand ( ε ) defined in (1.1) provides a quantitative 

measurement of the sensitivity of demand to changes in electricity prices. It is 

restated below for convenience: 

 

Q
Q
πε

π
∆

= ⋅
∆

  (5.31) 

 

Assume that REQ  is linearly and inversely proportional to electricity price. Then, the 

price elasticity (ε ) of REQ  can be represented as: 

 

L F T

F H L

Q Q
Q
πε

π π
−

= − ⋅
−

  (5.32) 

 

where: 

Lπ  
electricity price at which the total of price responsive and price taking 

demand is equal to the forecasted demand, $/MWh.  

Hπ  
electricity price below which the demand becomes price responsive, 

$/MWh  

 

ε  is negative as demand is inversely proportional to the change in price. From here 

on, increasing elasticity would mean ε  becoming more negative.  

 

Let the fraction of forecasted system load being price responsive ( LPF ) be 

represented as: 

 

RE

F

QLPF
Q

=   (5.33) 

 

Then, substituting (5.33) into (5.32) gives: 
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L

H L

LPF πε
π π

= − ⋅
−

  (5.34) 

 

Hence, we can model an increased elasticity by increasing LPF. It is assumed that 

the price responsive demand is always consistent with the value it places on 

consuming demand (i.e. price parameters Lπ  and Hπ  are constant) throughout the 

scheduling horizon.  

 

In the following simulation studies, we will look at the economic benefit of 

participating in the wholesale market based on the bidding behaviour model 

described previously.  

 

5.4.2 Simulation Study 1: Performance of Simple Hourly Bid  
 

The main purpose of this study is to examine the implication for the industrial 

consumers of submitting simple hourly bids for demand. The results obtained in this 

study will serve as a benchmark for comparing the results obtained in subsequent 

studies on shifting bids. A MIP gap no longer than 0.08% was considered adequate. 

Each simulation run takes an average of 10 minutes (with 0.08% MIP gap) and in 

rare cases could take up to 2 hours to reach a MIP gap of 0.9%.  

 

Bidding Behaviour 

The consumers’ bidding behaviour in this study is based on the concept illustrated in 

Section 5.4.1. Assume that there are M  bidders and that the value they place on 

consuming electrical energy is time invariant. All of these bidders place simple 

hourly bids for demand, which are modelled using the following two formulas:  

 

,1, ( 1),  1,..,k t H L
Sg LMB k t T

M
π ππ −

= + ⋅ − ∀ =   (5.35) 

, ,  1,..,
t

k t F
S

LPF DD k M
M
⋅

= ∀ =   (5.36) 
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where: 
t
FD  forecasted day-ahead system load at period t, MW 

 

With (5.35) and (5.36), we can construct a series of discrete bids that can be 

represented as a step function with a negative slope. On the other hand, the price 

taking bids can be represented mathematically as:  

 

, (1 ) ,  1,..,
t

z t F
T

LPF DD z V
V

− ⋅
= ∀ =   (5.37) 

 

10-unit Test System  

The test system used in this study consists of 10 generating units with a total 

capacity of 5,545 MW. The peak load and minimum load are equal to 4,400 MW and 

1,850 MW, respectively while the total system forecasted demand is 77,095 MWh, 

as given in Appendix C.1. 

 

Constant Parameters  

The parameters that are held constant in this study are presented below: 

 

Time Horizon: T = 24 

Numbers of Market Participants: V = 1, M = 10, N = 10 

Generators’ Offer Files: can be found in Appendix C.1 

Consumers’ Bid Files: Lπ = 10.34, Hπ = 11.24  

 

Lπ  is chosen to be equal to the average value of the market clearing price of the 

condition when the system load at all period is perfectly inelastic, while Hπ  is given 

an arbitrary value slightly above the incremental price of the most expensive 

generator. The motive is to ensure that at least some price responsive bids are 

accepted when a fraction of system load becomes price responsive. The values of Lπ  

and Hπ  are subsequently substituted in (5.35) to determine the marginal benefit of 

consuming ,k t
SD  defined in (5.36). These values can also be substituted in (5.34) to 

determineε , which is given in (5.38):  
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11.489 LPFε = − ⋅   (5.38) 

 

The demand is considered as elastic if 1ε > − . Therefore, the system load is elastic if 

LPF is greater than approximately 0.087, as can be verified by (5.38).  

 

 

Variable Parameters 

To show the influence of the price elasticity of demand on the market, LPF is 

increased with a step of 0.01 from 0 (i.e. system demand is perfectly inelastic) to 

0.10 (i.e. system demand is elastic).  

 

Assumptions 

For the sake of simplicity, the units’ minimum up and down time, ramping rates and 

reserve constraints are not considered in this simulation study. PAF  is ignored and is 

taken as zero in the determination of market clearing prices.  

 

The following diagrams (Figure 5.3) show the effects of increasing LPF on system 

demand and market clearing prices. It can be observed that the system demand is 

reduced at periods with relatively high demand, which generally corresponds to 

higher prices. However, the reduction of system demand due to rejection of some 

price responsive bids has mixed effects on prices: it reduces the prices in periods 

such as 15 to 17, while increases the prices in other periods such as 10 and 11. It is 

also interesting to note that some bids for demand are rejected at period 23 even 

though the corresponding MCP is below Lπ . This is because the marginal cost of 

serving the demand would have been increased beyond Lπ  if they had been accepted.  
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Figure 5.3 Effect of LPF on system demand and Market Clearing Prices 

 

While it is expected that the reduction in system load would decrease the market 

clearing price (e.g. marginal unit’s output is replaced by production from cheaper 

units), the fact that demand reduction increases MCP seems counterintuitive34. We 

will attempt to explain this next.  
 

Effect of Fixed costs 

Consider a simple 1-period example with two generating units. The following table 

summarises the units’ characteristics.  

 
Table 5.4: Units’ generation characteristics  

Generation Limits 

[MW] Unit 

Min Max 

Incremental 

Price 

[$/MWh] 

Fixed 
Cost 
[$ or 
$/h] 

1 10 50 30 0 

2 10 50 10 500 

 
                                                 
34 This is because we are dealing with a sequence of prices/unit commitment statuses across multiple 
periods.  
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Among the two units, Unit 1 has a high variable output cost and a low fixed cost 

while Unit 2 is the opposite. Both units are assumed to be offline initially. The fixed 

cost in the last column can be either the start-up cost or the no-load cost of the units. 

The left diagram below shows the operating cost of each unit (the cost includes both 

fixed and variable costs), while the right shows the effective marginal cost of each 

unit (i.e. operating cost is divided by the output). 

 

Figure 5.4 Cost characteristics of Unit 1 and Unit 2  

 

It can be observed that Unit 2 is more economical when operating at higher output. 

This is because its fixed cost (at 500) can be amortised over a greater output. As such, 

if the system demand is less than 25 MW, Unit 1 will be selected in the UC schedule 

to serve the load. Conversely, Unit 2 will be chosen instead if the system demand is 

between 25 and 50MW. Also at exactly 25 MW of system demand, the market 

operator is indifferent between choosing Unit 1 or Unit 2.  

If the system demand is 10MW, MCP would be $30/MWh, as determined by the 

incremental price of Unit 1. On the contrary, the MCP is decreased to $10/MWh if 

the system demand is increased to 50MW. In other words, MCP could increase when 

the system demand is reduced. This is due to the fact that unit 2 is economically 

more efficient when operating at higher output. 

 

Amortisation Factor Revisited 

The effective marginal cost of Unit 2 is $20/MWh when operating at 50 MW (see 

Figure 5.4). This unit will be producing at a loss if MCP is determined solely by its 

incremental price at 50 MW (i.e. $10/MWh). The fixed cost allocation method in 

(5.29) adjusts MCP to $20/MWh by augmenting PAF  (i.e. 500/50) to the incremental 
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price of the marginal unit. Unit 2 now breaks even35 as the adjusted MCP is equal to 

effective marginal cost. Nevertheless, even if PAF  is considered, the adjusted MCP 

is still lower in the case where the system demand is actually higher, as summarised 

below:  

 
Table 5.5: MCP and adjusted MCP  

System Demand

[MW] 

MCP 

[$/MWh] 

Adjusted MCP 

[$/MWh] 

10 30 30 

50 10 20  

 

The fixed costs of generating units have a profound impact on the UC schedule, as 

has been illustrated in this example. As the objective of the demand-supply matching 

problem is to maximise the welfare of trading the electricity commodity, it does not 

attempt to minimise the market clearing price36  

 

The diagram on the left of Figure 5.5 shows that the average market clearing price 

can increase as more system demand becomes price responsive. This means that 

more consumers will be encouraged to submit price responsive bids as non-

participants are now exposed to higher electricity prices.  

 

Figure 5.5 Effect of LPF on average value and volatility of MCP  

 

                                                 
35 It should be noted that the fixed cost allocation method does not guarantee the marginal unit to 
recover all of its fixed costs, as discussed in Section 5.3.6.  
36 Models that perform minimisation on pool prices can be found in Mendes and Kirschen (1998) and 
Hao (1998). 
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It can also be seen on the right that MCP is becoming more volatile as LPF is 

increased. The volatility of MCP ( SD ) is computed using the technique of standard 

deviation, as shown in the following equations:  

 

2

1

1 ( )
T

t

t
SD x x

T =

= −∑   (5.39) 

 

where: 

( 0) ( )t t tx MCP LPF MCP LPF= = −   (5.40) 

1

1 T
t

t
x x

T =

= ∑   (5.41) 

 

This suggests that it will be more difficult for consumers to predict the day-ahead 

prices accurately. Using the bottom left diagram of Figure 5.3 for example, the peak 

price periods at LPF = 0 (e.g. periods 15 and 17) are now “shifted” to other periods 

as LPF is increased to 0.05 (e.g. periods 10 and 13). This increase in price volatility 

exposes the price responsive bidders to greater risk of MW imbalances. This is 

because they may have submitted simple hourly bids at periods where prices are 

predicted to be reasonably high but turned out to be lower than expected. As a result, 

these bids are rejected.  

 

We will examine a new imbalance management feature of the proposed auction 

model in the subsequent simulation studies (Sections 5.4.4 to 5.4.6). This feature 

provides consumers the opportunity to purchase energy at a lower cost compare to 

conventional price taking bid for demand while reducing the risk of going 

unbalanced after the gate closure of the day-ahead market. As this market 

mechanism allows the consumer to shift demand to other periods, it would be useful 

to measure the benefits of demand shifting quantitatively. The next section describes 

this quantification method.  
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5.4.3 Quantifying the Impacts of Demand Shifting37 
 

Suppose the total purchase cost of the demand shifting price responsive bidder ( PRC ) 

can be expressed as: 

 

1,

1

T
t t

PR
t

C MCP D
=

= ⋅∑   (5.42) 

 

The weighted average cost per 1 MWh of energy to the demand shifting bidder ( Rπ ) 

can then be given as:  

 
1

1, 1,

1 1

T T
t t t

R
t t

MCP D Dπ
−

= =

⎛ ⎞
= ⋅ ⋅⎜ ⎟

⎝ ⎠
∑ ∑   (5.43) 

 

The average of MCP (i.e.
1

1 T
t

t
MCP

T =
∑ ) does not represent the consumption cost of 

the demand shifting bidder adequately as the bidder’s consumption pattern is likely 

to vary in different periods. Therefore, it is more useful to utilise Rπ  rather than the 

average of MCP to indicate the effective cost to the demand shifting bidder to 

consume 1 MWh as Rπ  puts more weight on tMCP  at periods where consumption 

1,tD  is higher.  

 

We can apply the weighted average concept introduced earlier to find the effective 

consumption or production cost of 1 MWh for all the other participant groups. 

Before we delve into that, let us express weighted average (π ) as the generic 

equation below: 

 
1

1 1

T T
t t t

t t
X Y Yπ

−

= =

⎛ ⎞
= ⋅ ⋅⎜ ⎟

⎝ ⎠
∑ ∑   (5.44) 

 

                                                 
37 Definition of symbols used in this and the next sections can also be found on the List of Symbols in 
pages 9 to 15.  
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where: 
tX  economic elements used in defining the weighted average variable 

tY  variable parameters that provide weights to the economic elements 

 
tX  and tY  can be defined by the set members given in (5.45) and (5.46) 

respectively: 

 
, ,

,
,

1
,

i t i i tN
t t i t G G

G i t
i

u N SUX MCP
P

σ
=

⎧ ⎫⎛ ⎞⋅ +⎪ ⎪∈ +⎨ ⎬⎜ ⎟
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∑   (5.45) 

1, 1, ,

1

, ,
N

t t t i t
T

i
Y D D P

=

⎧ ⎫
∈⎨ ⎬
⎩ ⎭

∑   (5.46) 

 

We can then define the following weighted average variables according to different 

set members of tX and tY : 

 
Table 5.6: Weighted average variables 

 
Weighted 
Averageπ  

Economic Elements 
tX  

Weights 
tY  

Rπ  tMCP  1,tD  

Tπ  tMCP  1,t
TD  

Dπ  tMCP  1, 1,t t
TD D+  

Pπ  tMCP  ,

1

N
i t

i
P

=
∑  

Gπ  
, ,

,
,

1

i t i i tN
i t G G
G i t

i

u N SU
P

σ
=

⎛ ⎞⋅ +
+⎜ ⎟

⎝ ⎠
∑ ,

1

N
i t

i
P

=
∑  

 

where: 

Tπ  weighted average electricity cost of price taking demand, $/MWh 

Dπ  weighted average electricity cost of system demand, $/MWh  

Pπ  weighted average electricity price received by generators, $/MWh 

Gπ  weighted average operation cost of generators, $/MWh 
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As such, π  of (5.44) can be defined by one of the set member below: 

 

{ }, , , ,R T D P Gπ π π π π π∈   (5.47) 

 

In summary, the weighted average variable π  represents the “normalised” effective 

cost or revenue of 1 MWh of the three participant groups, i.e. price taking bidder, 

price responsive bidder and generators. As such, we can evaluate the impact of 

demand shifting on these groups on a comparable basis. For example, if the price 

responsive bidder were to place a lower bid value, some of its energy requirement 

may not be met at market clearance. However, we can still compare the new 

effective consumption cost of the bidder with the original cost since Rπ  represents 

the effective cost of consuming 1 MWh in both conditions. Furthermore, as we will 

observe in the simulation studies later, direct comparison of π  (defined by one of the 

set members in (5.47)) in different market conditions (e.g. LPF becomes larger or 

intertemporal constraints are omitted) can be made as a result of utilising this 

weighted average technique.  

 

Quantifying the Impacts of Demand Shifting Relative to the Case Without 

The demand shifting bidder should submit a price taking bid if Rπ  is higher than Tπ . 

Therefore, we need to compare the benefit obtained by the bidder to perform demand 

shifting, with respect to the case without demand shifting. The relative saving of the 

shifting price responsive bid ( Rπ ) can then be given as:  

 

( ) ( 0) ( )R R RLPF LPF LPFπ π π= = −   (5.48) 

 

Or more generally as the relative benefit or loss (π ) given below: 

 

( ) ( 0) ( )LPF LPF LPFπ π π= = −   (5.49) 
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Therefore, π  measures the saving of cost or loss or revenue resulted from demand 

shifting quantitatively by comparing the relevant weight average variable π  (defined 

by one of set members in (5.47)), relative to the case without any demand shifting.  

 

π  is defined by one of the set members below: 

 

{ }, , , ,R T D P Gπ π π π π π∈   (5.50) 

 

where: 

Rπ  
relative saving in electricity cost of the shifting price responsive bidder, 

$/MWh 

Tπ  relative saving in electricity cost of the price taking bidder, $/MWh 

Dπ  relative saving in electricity cost of the system demand, $/MWh 

Pπ  relative loss in revenue of the generators, $/MWh 

Gπ  relative saving in operation cost of the generators, $/MWh 

 

It follows that the following relationship can be deduced: 
 

D P D Pπ π π π= → =   (5.51) 
 

which states that the saving of electricity cost of the system demand as a result of the 

introduction of demand shifting is obtained at the expense of a loss in revenue of the 

generators.  

 

On the other hand, the total relative benefit obtained by the supply side generators 

( TGπ ) can be given as: 

 

TG G Pπ π π= −   (5.52) 

 



Chapter 5 Generation and Demand Scheduling  

 
 
  201  
 
 

While the total relative benefit obtained by the demand-side ( TDπ ) i.e. the price 

responsive and price taking bidders can be given as: 

 
1

1, 1, 1, 1,

1 1 1 1

T T T T
t t t t

TD R T T T
t t t t

D D D Dπ π π
−

= = = =

⎛ ⎞ ⎛ ⎞
= ⋅ + ⋅ ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑  (5.53) 

 

Or simply:  

 

TD Dπ π=   (5.54) 

 

It should be noted that in a strict definition, TDπ  must take account of the 

consumers’ gross surplus. However, it is intentionally ignored in (5.53) and (5.54) 

because the marginal benefit of consumption of the price responsive bidders is given 

an arbitrary large number and has no significant meaning. Furthermore, considering 

the marginal benefit of consumption into these equations would exaggerate the 

benefit of demand shifting. This is because the marginal benefit of consumption of 

the demand shifting bidder is assumed to be zero at LPF = 0 (where it submits a 

price taking bid instead).  

 

The total relative benefit obtained by all the participant groups ( TAπ ) can be given by 

summing (5.52) and (5.54), which gives: 

 

TA D G Pπ π π π= + −   (5.55) 

 

Substituting (5.51) into (5.55) gives: 

 

TA Gπ π=   (5.56) 

 

which states that the savings in operation cost of generators due to demand shifting 

is shared among all the market participants.  
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5.4.4 Simulation Study 2: Performance of Demand Shifting: Simple Bid 
Mechanism 
 

The main purpose of this study is to evaluate the benefit of placing a shifting price 

responsive bid quantitatively. The net benefit that can be achieved from demand 

shifting should at least be greater than a price taking bid for it to be worthwhile. In 

this study, all the market participants are categorised into the following three groups: 

price responsive bidders of shifting type, price taking bidders and generators. We 

then analyse the impact of demand shifting from each of these individual groups’ 

perspectives.  

 

Bidding Behaviour 

For simplicity, it is assumed that there is only one demand shifting bidder and one 

price taking bidder respectively in this study. The demand shifting bid is modelled 

using the equations below:  

 

1

1

T
t
F

t
E LPF D t

=

= ⋅ ⋅∆∑   (5.57) 

1
1,

,  1,..,
t ED t T

t
= ∀ =
∆

  (5.58) 

1, 0,  1,..,tD t T= ∀ =   (5.59) 
1,1, , 1,..,t
Sg H LMB t Tπ π= = ∀ =   (5.60) 

 

The demand shifting bidder is assumed to place the same value on consuming 

electrical energy in every period throughout the scheduling horizon, as given in 

(5.60). This assumption is valid for the case of the industrial consumer described in 

Section 3.5.1, provided the consumer’s selling price of widget ( t
Wπ ) is time invariant. 

 

The price taking bid is modelled by (5.37), which can be restated as: 

 
1, (1 )t t
T FD LPF D= − ⋅   (5.61) 

 

We will adopt the same 10-unit test system from the previous section in this study.  
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Constant Parameters  

The parameters that are held constant in this study are presented below: 

 

Time Horizon: T = 24 

Numbers of Market Participants: V = 1, M = 1, N = 10 

Forecasted System Load: can be found in Appendix C.1 

Generators’ Offer Files: can be found in Appendix C.1 

Consumers’ Bid Files: H Lπ π= = sufficiently large 

 

The marginal benefit of consumption of the demand shifting bidder in (5.60) is given 

a sufficiently high value so that its entire energy requirement defined in (5.57) will 

definitely be accepted. As H Lπ π= , the price responsive part of system demand is 

perfectly elastic (i.e. ε → −∞ ) regardless of the value of LPF, as can be verified by 

(5.34). In other words, the price responsive demand at each period will be shifted 

across the scheduling horizon in a way that minimises the system operating cost as 

the gross benefit of demand consumption is constant. The intention is to facilitate 

comparison of demand shifting benefits on equal ground among different system 

conditions (e.g. increasing LPF or omission of fixed costs in scheduling). 

 

Variable Parameter 

LPF is now increased with a step of 0.02 over a range from 0 to 0.30. While it seems 

unreasonable to expect 30% of the total system forecasted load to behave as demand 

shifting bidders, it useful to examine the economic implication if such a situation 

were indeed to occur.  

 

Assumptions 

The auction structure in this study is taken to be similar to a simple bid mechanism. 

As such, the units’ constraints such as minimum up and down time and ramping 

rates and the system’s reserve constraints are ignored in this simulation study. 

Furthermore, the no-load costs and start-up costs of generating units are also omitted 

from the UC problem.  
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The following diagrams in Figure 5.6 show the effects of increasing price responsive 

demand on the system load profile and the market clearing prices. It can be observed 

from the two upper diagrams that the system demand is shifted from high demand 

periods (i.e. t = 7 to 12) to fill up the valleys at both ends of the planning horizon. 

 

Figure 5.6 Effect of LPF on system demand and Market Clearing Prices 

 

It can be observed from the diagrams above that MCP correlates well with system 

load when fixed cost is not modelled. While the reduction of system demand 

generally reduces MCP, the recovery of demand that fills up the two valleys can 

cause price increase at the corresponding periods. We observe a significant increase 

of MCP in periods such as 4 and 24 (increased by 0.48 and 0.49 respectively), which 

is largely due to intensive demand shifting to these periods. On the other hand, the 

decrease in MCP due to demand reduction is relatively moderate (maximum 

reduction is about 0.35), and at times no effect at all (e.g. t = 7 and 16). Therefore, 

demand shifting does not necessarily reduce MCP38. This is largely due to the 

discrete nature of generators’ incremental prices. Furthermore, the average MCP was 

found to be increased by 0.05 from $9.95/MWh to $10.00/MWh as a result of this 

                                                 
38 Likewise, demand recovery may not always increase MCP, although this is not shown on the figure. 
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demand shifting. These observations certainly reduce the attractiveness of submitting 

a demand shifting bid. Nevertheless, demand shifting allocates MW to consumer in 

such a way that “energy neutrality” is preserved, i.e. the overall change in system 

demand in the upper left diagram above is zero. This is in contrast with pumped 

storage technique (described in Section 3.1.2) as energy losses are incurred (due to 

evaporation of the exposed water surface and lossy energy conversion).  

 

We will now look at how the weighted average method formulated in (5.44) to (5.56) 

is used to measure the impact of significant demand shifting on market participants 

quantitatively.  

 

The following figures summarises the effective costs (left) and the relative savings 

(right) of both the shifting price responsive and price taking bidders:  

 

Rπ  and Tπ  
Rπ and Tπ  

Figure 5.7 Costs and savings of the two demand-side bidders for Simulation Study 2 

 

It can be observed on the left that the effective cost of price responsive bidder drops 

significantly as some demand becomes price responsive. However, the saving of the 

price responsive bidder decreases as the size of the demand shifting bid increases (i.e. 

LPF increases) as shown on the right. On the other hand, the price taking bidder 

generally benefits from lower electricity prices as a result of the demand shifting as 

Tπ  is positive in most cases, except at LPF = 0.06 where the relative saving of price 

taking bidder is comparable to the case without demand shifting (i.e. close to zero). 

This is because MCP is generally increased as LPF is increased from 0 to 0.06 (recall 

that the average MCP is increased by $0.05/MWh). The shifting bidder however 
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obtains savings at LPF = 0.06 (i.e. approximately $0.30 for every 1 MWh of energy 

consumed) as it is generally able to “shift” consumption to lower price periods. We 

will discuss this in more detail in the next study. 
 

Figure 5.8 summarises the relative benefits obtained by the demand-side bidders 

( TDπ ) and the supply side generators ( TGπ ): 

 

 
Figure 5.8 Relative benefits obtained by demand and supply sides for Simulation Study 2 

 

It can be observed that benefits of demand and supply are complementary while the 

generators only benefit from demand shifting behaviour at LPF = 0.06. The sum of 

the two plots of TDπ  and TGπ  gives the relative benefits of all participants ( TAπ ) or 

the relative savings in system operating cost ( Gπ ), as shown in Figure 5.9. As 

expected, the system is more efficient with increasing level of demand shifting. 

Nevertheless, the savings in system operating cost saturate as LPF increases. This is 

mainly due to the non-decreasing nature of the incremental production cost of 

generators.  

 
Figure 5.9 Relative benefits obtained by all market participants for Simulation Study 2 
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5.4.5 Simulation Study 3: Performance of Demand Shifting: Complex bid 
Mechanism 
 

It has been observed in simulation study 1 that the consideration of fixed cost within 

the scheduling problem has a profound impact on MCP. Hence, the main purpose of 

this study is to evaluate the implication of incorporating complex bid features such 

as fixed costs and units’ constraints on the benefit of placing a demand shifting bid.  

 

Bidding Behaviour 

The bidding behaviours of both price-responsive and price-taking bidders are the 

same as in the previous studies, which are defined by equations (5.57) to (5.61).  

 

Constant and Variable Parameters  

Same as previous study 

 

Assumptions 

The generating units’ ramping rates and system’s reserve constraints are ignored in 

this simulation study. However, the minimum up and down time constraints of the 

units are considered. The intention is to restrict the availability of certain units to 

increase the volatility of MCP. The no-load and start-up costs of units are taken from 

the 10-units data in Appendix C.1. Throughout this study, the minimum up and 

down time constraints and the fixed costs of the units will be referred to as the 

“scheduling factors”. The amortisation factor of fixed costs is not taken into account 

in this study to allow a “fair” comparison of the results with the previous study.  

 

The diagrams in Figure 5.10 summarise the effective consumption costs of the 

shifting and price taking bidders under various combination of scheduling factors. It 

can be observed that among the two scheduling factors, the consideration of the fixed 

costs of the units generally increases the effective costs of consumption ( Rπ  and Tπ ) 

of the bidders. The diagrams in Figure 5.11 show the relative savings of these 

bidders. Negative relative savings indicate losses with respective to the case without 

any demand shifting. It can be observed that consumers get diminishing returns from 

demand shifting as more and more consumers do so.  
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Figure 5.10 Effective costs of bidders with different scheduling factors39 consideration 

 

Figure 5.11 Relative savings of bidders with consideration of different scheduling factors 

                                                 
39 “No fixed costs” denotes the case where fixed costs of units are ignored in the scheduling problem, 
i.e. only the variable costs are considered. 
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Mitigating Free-Riding Effect with Fixed Costs 

Similar to the previous study, the demand shifting bidder generally pays less for 

consumption compared to the case where it places a price taking bid. Conversely, the 

price taking bidders do not necessarily benefits from demand shifting externality 

associated with lower electricity prices when fixed costs are modelled, as can be 

observed in the bottom half of Figure 5.11: Tπ  can be negative at certain LPF (e.g. 

0.06 and 0.08). As an example, the results in Figure 5.12 below are obtained with 

only fixed costs considered. The graph on the right shows the price taking demand 

profile at LPF = 0.06, while the reference case at LPF = 0 is given on the left.  

 

Figure 5.12 Price taking demand and MCP profiles at base case and LPF = 0.06 

 

We observe that the price taking demand is rigid and its peak demand coincides with 

all the peak price periods at LPF = 0.06. As a result, the price taking bidder is paying 

effectively more than the base case (i.e. ( 0.06) 0.08T LPFπ = = −  as shown in Figure 

5.11). While the peaks of price taking demand are occurring during peak price 

periods is valid for this particular case, it should be noted that it may not necessary 

be true for other cases.  

 

On the other hand, the price responsive bidder’s demand is generally allocated to 

lower price periods and therefore it obtains savings in consumption cost compared to 

the reference case, as shown in Figure 5.13: 
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Figure 5.13 Shifting demand and MCP profiles at LPF = 0.06 

 

The MCP does not correlate well with the system demand when the fixed costs of 

units are considered within the UC problem: MCP could increase at periods where 

the system demand is reduced. Therefore, the consideration of fixed costs within 

auction mechanism can mitigate to some extent the negative effects of price taking 

bidder purchasing MW at lower prices as a result of the demand shifting of the price 

responsive bidder. While we have seen in this example that the behaviour of price 

responsive demand can have effect on MCP, each individual price responsive 

consumer is small and thus cannot influence the outcome of market on its own. 

 

Effect of the Marginal Benefit of Consumption  

It can be observed in Figure 5.13 that not all price responsive demand is shifted to 

the lowest price periods (i.e. t = 23 and 24). Upon inspection of the units’ dispatch, it 

can be observed that all the committed units are loaded up to maximum levels during 

lower price periods (i.e. t = 1 to 8, 15 to 16 and 21 to 24). As shifting further demand 

to these periods would cause additional start-up costs, a fraction of price responsive 

demand (at 78 MW) is allocated to t = 17, where the corresponding MCP (at 

$10.37/MWh) is higher than those at lower price periods. Therefore, if the bidding 

price 1,1,t
SgMB  is chosen to be slightly below $10.37/MWh (e.g. at $10.35/MWh), not 

all of the demand requirement of the demand shifting bidder will be satisfied, as 

shown in Figure 5.14:  
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Figure 5.14 Imbalance of demand shifting bidder 

 

Incidentally, the amount of imbalance at 1,1,t
SgMB = $10.35/MWh is equal to 78 MW, 

which is consistent with the argument made earlier. The following figure shows that 

Rπ  (y-axis) is reduced as 1,1,t
SgMB  of the shifting bidder is decreased. However, this 

will result in increasing MW imbalance to the bidder, as can be observed in Figure 

5.14.  

 
Figure 5.15 Effective consumption cost of demand shifting bidder 

 

Managing Imbalance at a lower cost 

In simulation study 1, the price responsive bidders submitted simple hourly bids in 

which the lowest bidding price of 1,1,t
SgMB  is $10.34/MWh. We have observed that at 

LPF = 0.05, some of these bids were rejected and caused the bidders to face 

imbalances. With shifting bid at 1,1,t
SgMB  = $10.34/MWh (and all other conditions 

unchanged), the entire demand requirement of these bidders would have been 

satisfied. The demand would be allocated in a way similar to Figure 5.13. The 

following table summarises the performance of the two bidding methods: 
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Table 5.7: Demand Shifting Bid Vs Simply Hourly Bid  

 
Bidding Price

[$/MWh] 

Effective Cost

[$/MWh] 

Total Imbalance 

[MW] 

Simple Hourly  10.34 to 11.24 10.24 34% of total energy requirement40

Shifting  10.34 10.10 0  

 

It can be deduced from the table above that submitting a shifting bid is more 

beneficial, provided the consumers are flexible with the time period of consumption, 

such as the case of storage-type industrial consumers. It outperforms simple hourly 

bid in both effective cost of consumption and management of imbalance.  

 

The “special case” 

It has been observed in the bottom of Figure 5.10 that the effective consumption cost 

of price responsive bidder can be significantly higher than the price taking bidder 

(e.g. at LPF = 0.30). This will be explained next using the case where only fixed 

costs are considered. The figure below summarises the price responsive demand and 

the resulting MCP profiles for the case where LPF = 0.30:  

 

 
Figure 5.16 MCP and price responsive demand 

 

It occurs that some units are online prior to the beginning of the planning horizon. 

Therefore, it can be more economical to allow these units to remain online to serve 

the system load at the beginning of the planning horizon, even though some of these 

units have relatively high running costs. As more units are online initially, the 

system capacity is increased and subsequently more demand can be served. As a 

                                                 
40 The total energy requirement is calculated by substituting (5.36) into (5.19). For the benefit of 
reader, it is equal to 3854.75 MWh and therefore, the total imbalance is 1310.62 MWh.  



Chapter 5 Generation and Demand Scheduling  

 
 
  213  
 
 

result, fewer units are needed at a later stage of the planning horizon and this saves 

on both the no-load and starts up costs. However, this is at the expense of increasing 

the running cost at the start of the planning horizon (i.e. t = 1 to 4) which increases 

the MCP of these periods. It should be stressed that this example is a “special case”. 

It is unreasonable to expect 30% of the system load to be shifted in such a way that 

the resulting system demand at market clearance is approaching a “flat profile”, as 

shown in Figure 5.17. Nevertheless, this example highlights the fact that a shifting 

bid does not necessarily outperform a price taking bid as it may not be allocated to 

periods with the lowest prices. The shifting bidder can however submit a lower value 

for 1,1,t
SgMB  to reduce its consumption cost, usually at the expense of not meeting its 

entire energy requirement, as observed in Figure 5.14 and Figure 5.15. 

 

 
Figure 5.17 System demand at market clearance 

 

5.4.6 Simulation Study 4: Factors that Affect the Potential Saving of Demand 
Shifting  
 

It has been observed in the previous study that demand shifting does not reduce the 

effective cost of the consumers substantially. As an example, approximately one 

quarter of the total forecasted system demand behaving as shifting demand would 

only reduce the demand shifting bidder’s effective cost by 1.3%41. This saving may 

not be worthwhile to the demand shifting bidder as the auction algorithm does not 

take into account the loss incurred when it cannot consume demand continuously, 

such as the process start-cost of an industrial consumer. Hence in this study, we will 

                                                 
41 This value is obtained from the case without consideration of any scheduling factors by using the 
following expression: ( 0) ( 0.24) 100%
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determine the factors that could significantly influence the potential savings from 

placing a shifting price responsive bid.  

 

Bidding Behaviour 

Again, the bidding behaviours of consumers are adopted from simulation study 2, 

unless specified otherwise.  

 

26-unit Test System  

The test system used in this study consists of 26 generating units with a total 

capacity of 3,105 MW, while the capacity of the largest unit is 400 MW. The 

minimum load and peak load are equal to 1,690 MW and 2,670 MW, respectively. 

Therefore, the system spare capacity at peak load is 435 MW (i.e. 3,105 – 2,670). 

The forecasted system load profile and the generators’ offer files of the 26-unit test 

system can be found in Appendix C.2.  

 

Assumptions 

All the generating units’ and system’s constraints are considered in this simulation 

study unless specified otherwise. PAF is now incorporated within the calculation of 

MCP. 

 

Transferring of economic rents 

The spinning reserve requirement in this study is deliberately chosen to be the 

capacity of the largest unit at 400 MW. This means that the spare generation capacity 

at peak load would be only 35 MW (i.e. 435 – 400). The intention is to evaluate the 

benefit of demand shifting under such an extreme condition. Assume that 2% of the 

total forecasted system load behaves as a demand shifting bidder. The following 

figure show the resulting MCP when the demand shifting bidder places large values 

on 1,1,t
SgMB .  
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Figure 5.18 MCP: large marginal benefit of consumption 

 

The MCP profile is relatively flat because it is determined by the incremental prices 

of marginal units that have similar economic and technical characteristics throughout 

the time horizon. As the system has limited spare capacity, the spinning reserve 

requirement is found to be binding in all periods. The lowest incremental price 

among all the marginal units (they are units 2, 3, 4 or 5) is found to be approximately 

$26/MWh. If 1,1,t
SgMB  is reduced to a value less than that price, say at $25/MWh, 

these marginal units will be removed from the UC schedule in periods such as 1 to 6 

and 24, as shown in the figures below: 

 

1,1,t
SgMB >> $25/MWh 1,1,t

SgMB  = $25/MWh 

Figure 5.19 Unit commitment schedule: a dot denotes a unit is committed 

 

This subsequently causes MCP to decrease abruptly in the corresponding periods, as 

shown below; 
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Figure 5.20 MCP: marginal benefit of consumption is reduced to $25/MWh 

 

and results in a large transfer of economic rents from generators to the consumers, 

particularly the price responsive bidder as summarised in Table 5.8: 

 
Table 5.8: Various economic indicators  

 

With PAF  

 
1,1,t
SgMB >> 

$25/MWh

1,1,t
SgMB  

= 

Change 

in 

Tπ  27.3731 25.7203 -6.43% 

Rπ  27.1923 19.7678 -

Dπ  27.3695 25.6013 -6.91% 

P Gπ π− 14.0587 12.2888 -

 

 

Without PAF  

 
1,1,t
SgMB >> 

$25/MWh

1,1,t
SgMB  

= 

Change 

in 

Tπ  26.2186 24.5635 -6.74% 

Rπ  26.0378 18.611 -

Dπ  26.215 24.4445 -7.24% 

P Gπ π− 12.9042 11.132 -

 

 

It can be observed from the tables that the demand shifting bidder could reap a large 

amount of saving in consumption cost (close to 40%) if it were able to guess the 
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incremental prices of the marginal units correctly and bid slightly below those values. 

It is also evident that the net profit of generators is a further 1.52% lower (i.e. 15.92 

– 14.40) if their fixed costs are not reimbursed. Nevertheless, the generators are still 

making net profit as P Gπ π−  is positive whether or not fixed costs are compensated.  

 

Figure 5.21 summarises the relative saving in consumption cost with the two 

conditions for 1,1,t
SgMB  as a function of LPF. It is evident that submitting a 

lower 1,1,t
SgMB  can potentially yield significant savings to the consumers.  

 

 

Figure 5.21 Relative savings of bidder at two different 1,1,t
SgMB  

 

Shape of Supply Curve 

The relative saving in Figure 5.21 can be as high as $9/MWh while in the 10 unit 

system of the previous study, the potential saving of Rπ  is considerably less (is never 

higher than $0.7/MWh as shown in Figure 5.11). This is largely due to the shape of 

the supply curves of the two test system, as given below: 

 

Figure 5.22 Supply curves of 10 and 26 units system  
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Therefore, if the supply curve is relatively flat, the opportunity for saving electricity 

cost by demand shifting will be limited. 

 

5.5 SUMMARY 
 

A day-ahead market clearing tool that maximises the social welfare has been 

presented. The tool offers consumers the opportunity to save consumption cost by 

submitting a shifting bid, provided they are flexible with the timing of consumption. 

This bidding mechanism is also useful in managing the risk of going imbalance, 

especially if the day-ahead prices are volatile. The impact of significant demand 

shifting activities on market participants has been measured quantitatively through 

the utilisation of weighted average technique. The market clearing prices tend to 

reduce with increasing level of demand shifting, which benefits all bidders even if 

they do not participate in shifting activities. Nevertheless, the free-rider’s effect can 

be mitigated by considering the fixed costs of generators explicitly within the auction 

algorithm. Furthermore, it is evident from simulation studies that demand shifting 

improves the economic efficiency of the day-ahead market as the effective costs of 

serving system demand tends to reduce. However, certain demand shifting behaviour 

may result in large transfer of economic rents from generators to the demand-side. 

As such, the fixed cost of generating units should be adequately compensated. Lastly, 

the magnitude of savings from demand shifting depends largely on the shape of 

supply curve and also the consumer’s ability to predict the market clearing prices 

accurately. 
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Chapter 6  

Conclusions and Suggestions for Further Work 
 

6.1 CONCLUSIONS 
 

A significant penetration of demand-side participation at retail electricity markets 

would have an impact on wholesale electricity prices (as has been observed in 

Chapter 5). As such, this thesis proposed a holistic approach towards the 

investigation of the economic viability of demand-side participation at both retail 

and wholesale market levels. This was achieved mainly from the perspective of an 

industrial consumer that maintains energy neutrality by shifting demand to other 

periods.  

 

The assumption used throughout this thesis that consumers are energy neutral in the 

long run is crucial towards designing a sustainable DSP program. Load reduction-

based DSP program such as Direct Load Control (Section 2.2.3) fails to recognise 

this energy shifting behaviour. As a result, it suffers from under or over-pricing of 

demand response services as load recovery effect is not taken into account explicitly. 

All the DSP programs introduced in this thesis do not suffer from this pricing 

inconsistency as consumers are charged for what they consume, rather than for how 

much they reduce demand.  

 

The main research topics that form the basic structure of this thesis can be 

summarised as shown in Table 6.1:  
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Table 6.1: Main research topics of this thesis  

Research Topic Time Scale Market Applicability Chapter(s) 

Optimal load shifting  Short  
Retail or  

inelastic demand wholesale markets 
3 

Optimal capacity 

investment 
Long Retail or wholesale markets 4 

Direct participation 

in wholesale market 
Short  Elastic demand wholesale market 

3 (Section 3.5), 

5 

 

The following summarises the major and original contributions with regards to the 

research topics listed in Table 6.1:  

• An algorithm for optimising the electricity consumption of energy neutral 

industrial consumers in retail and wholesale markets has been developed in 

Section 3.2. The proposed algorithm improves its original model by taking 

account explicitly the costs associated with rescheduling the demand (i.e. 

demand shifting) to avoid over-estimating the benefit of demand response.  

• A novel pool-based market amenable to a direct participation by these 

demand shifting industrial consumers has been designed (Section 5.3). This 

market model is a) flexible enough for participation of conventional 

generators and consumers (Section 5.1). The benefit of having lower 

wholesale prices as a result of demand shifting has a “public good” aspect as 

a consumer does not necessarily need to respond to enjoy this benefit. The 

proposed market model b) is able to mitigate this free riding effect through 

the incorporation generators’ fixed costs explicitly within the auction 

algorithm (Section 5.4.5). It c) inherently provides a mechanism for 

managing shifting bidders’ risk of going unbalanced after gate closure 

(Section 5.4.5) and d) the effective cost of submitting such a demand-shifting 

bid outperforms conventional simple “price-volume” bid for MW in most 

cases (Section 5.4.5).  

• A formulation of demand-shifting bids that allows industrial consumers to 

participate directly in the novel pool market described above has been 

proposed in Section 3.5. This further narrows the gap between retail and 

wholesale markets as end-consumers could respond to electricity prices that 

reflect the actual cost of meeting system demand directly, rather than through 

mark-up retail real-time pricing that may not truly reflect wholesale prices.  
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•  A weighted average method has been formulated to measure the impact of 

significant demand shifting on wholesale market participants quantitatively 

(Section 5.4.3). This approach is useful in evaluating the benefits of placing a 

shifting price responsive bid, while allowing analysis of the impact of 

different market rules on a comparable basis.  

• An algorithm for optimising the investment in production and storage 

capacity by an industrial consumer facing day-ahead prices has been 

developed (Section 4.2). The algorithm explicitly compares the economic 

feasibility of the investment project to its best alternative. As such, precise 

knowledge of the shape of future price profiles is not required as higher 

interest rates (i.e. opportunity costs) can be applied to reflect uncertainty in 

the potential savings of the investment project.  

• The conditions for optimal load shifting (Section 3.3) and optimal capacity 

investment (Section 4.3) have been derived mathematically using Lagrange’s 

method. While solving the formulated problems directly using this method is 

impractical, the derived optimal conditions are useful in assessing the validity 

of numerical optimisation results. 

• An extensive literature review on the role of demand-side participation in 

organised energy markets has been presented (Chapter 2).  

 

The remainder of this chapter summarises the findings that contribute to the main 

research topics presented in Table 6.1. It also provides some suggestions for further 

research.  

6.1.1 Optimal Load Shifting  
 

This research topic mainly involves the development of an algorithm that allows the 

industrial consumer to optimise its production schedule under any type of 

deterministic time varying tariffs. As it is prohibitive to perform simulation on all 

different combinations of price profiles, a generic two-part price profile was utilised 

in several simulation studies. This profile captures two main characteristics of time 

varying tariffs: price ratio and peak duration and is useful to present important 

concepts associated with load shifting in a simple manner. Nevertheless, emphasis 

was placed on day-ahead real-time pricing. This tariff provides a significant cost 
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saving opportunity to the industrial consumer as it is closely tied to the wholesale 

prices, while it reduces the retail supplier’s risk associated with consumption during 

periods of peak prices: a win-win situation. 

 

The developed algorithm improves the original model it is based on by considering 

explicitly the costs associated with load shifting. As such, the savings in production 

cost derived from the avoided cost of using electricity during peak price periods have 

to overcome the associated cost to justify load shifting economically. This empirical 

observation was verified with mathematical derivation using Lagrange’s method.  

 

If the price profiles are always high at the beginning, the opportunity to produce 

surplus widgets with low electricity prices is limited as widgets that are stored at one 

period can only be used to meet widget demand at a later period. Nevertheless, this 

effect can be mitigated by stocking surplus widgets before the starting of 

optimisation horizon. The magnitude of savings would be greater if the price profiles 

are more variable. However, price profiles are exogenous factors beyond the control 

of the consumer. Among the endogenous factors that can affect electricity 

consumption cost, savings are found to be highly sensitive to the consumer’s 

production and storage capacities. This observation sparked the initiative to explore 

the optimal capacity investment problem. The need for storage capacity does not 

necessarily increase as the production capacity is expanded. On the other hand, 

having a lot of spare storage capacity is redundant if the production capacity is 

limited, and vice versa. As such, the optimal capacity investment problem is 

challenging as it cannot be solved in a straightforward manner.  

6.1.2 Optimal Capacity Investment 
 

Investment in capacity expansion involves commitment of significant amount of 

capital for an extended period of time that could have been put into alternative 

investment vehicles. In this regard, it is necessary for the consumer to evaluate the 

prospective return on this investment against its best-forgone opportunity. The 

consideration of opportunity cost is incorporated explicitly within the developed 

optimal capacity investment algorithm through the interest rate parameter.  
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The concept of marginalism is useful in explaining phenomena such as the 

insensitiveness of the optimal production capacity to small deviation in the 

probability of occurrence. However, this technique cannot be used practically to 

solve a realistic size problem. Likewise, Lagrange’s method has limited practical use 

and only finds its use in analysing the nature of the optimal solution of the problem.  

 

A perfect forecast of future price profiles is unattainable in reality. Nevertheless, it is 

useful to generalise forecasted profiles into a few categories to allow extensive 

sensitivity analysis studies of the impact of price variability on the financial return of 

an investment in storage and additional production capacity. While a long study 

period naturally decreases the probability of all factors that can affect the financial 

return turning out as estimated, these uncertainties can be reflected as a mark up of 

interest rate. The estimation of interest rate depends on the industries, with higher 

opportunity cost yields higher interest rate. While conventional wisdom suggests that 

high interest rate would promote a short-term outlook whereby an investment 

decision is based on immediate benefits, some results from simulation studies 

suggest otherwise. These studies have shown that the consumer may not be able to 

recoup its investment with short term saving cash flow when it is over-optimistic 

about future profiles. It follows that a higher interest rate would further penalise the 

consumer due to its discounting effect on savings. Therefore, the consumer should be 

cautious when making short-term investments under high interest rates, especially if 

the optimal investment is close to being marginally acceptable. It is concluded that a 

long term investment is more favourable. This is largely due to the assumption that 

the invested capacities have infinite usable lifetime without deterioration in 

performance. It was also assumed that these capacities would provide constant 

saving cash flows throughout the investment lifetime, without requiring any 

additional cost such as maintenance. Nevertheless, higher interest rates can be 

applied to saving cash flow that occurs further along the optimisation horizon to 

reflect the payment for long-term debt.  

6.1.3 Direct Participation in Wholesale Market 
 

If a significant fraction of the system load is flexible within the timing of 

consumption, it would be beneficial to design an auction mechanism that offers 
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demand-side bidders an opportunity to save consumption costs by shifting demand to 

lower price periods. The auction has to be fair to all market participants to ensure 

sustainable demand-side participation at the wholesale market level. Therefore, the 

objective of the market clearing tool is chosen to maximise the social welfare of all 

market participants. The demand shifting behaviour of demand-side bidders tends to 

displace generating units with high incremental prices. This subsequently reduces the 

scarcity rents to the remaining generators as the electricity prices become lower than 

they would have been would the displaced units have set the market clearing prices. 

Therefore, the fixed costs of generators must be compensated adequately to 

discourage generators from bidding strategically, which can cause deviation of social 

welfare from its maximum value. Studies have also shown that consideration of 

fixed costs mitigates free-rider’s problem associated with the public good property of 

lower electricity prices. In these regards, implementing a complex bid mechanism is 

more favourable than a simple bid structure.  

 

The proposed market clearing tool allows demand-side bidders to specify how much 

energy is required on the scheduling day of the auction market. This approach is 

effective in managing the bidder’s risk of going unbalanced in the spot market, 

especially if the day-ahead prices are volatile. Studies have also shown that shifting 

bid outperforms conventional simple hourly bid in both imbalance management and 

effective cost of consuming energy. However, the shifting bid does not necessarily 

perform better than a price taking bid as demand may not be allocated to periods 

with the lowest prices. Nevertheless, the shifting bidder can submit a lower bidding 

price to reduce its consumption cost, usually at the expense of not meeting its entire 

energy requirement.  

 

Although the objective of the market clearing tool is to maximise social welfare, this 

economic indicator has not been used to represent the benefits obtained by market 

participants. This is because the marginal benefits of both the elastic and inelastic 

consumers are given an arbitrary value and therefore have no significance. 

Throughout the studies, the cost or revenue associated with MW purchase or sale is 

represented using a weighted average technique. This method is effective in 

analysing the effect of different market rules on a comparable basis and in measuring 

the impact of significant demand shifting on market participants quantitatively.  
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6.2  SUGGESTIONS FOR FUTURE RESEARCH 
 

In this section, a few ideas for further research are presented.  

 

Profit maximisation of electricity retailer providing day-ahead tariffs  

A retailer that offers day-ahead tariffs has a strong incentive to influence its 

consumers to reduce consumption at periods which coincide with high energy 

procurement costs. To stay in business, the retailer must ensure that the revenues 

obtained from the provision of such day-ahead tariffs are large enough to overcome 

the associated costs, as described in Section 3.1.1. This poses a profit maximisation 

problem to the retailer which involves solving the following five sub-problems: 

• Purchase allocation – deciding the allocation of MW purchase between 

forward and spot markets 

• Risk hedging – negotiating contracts for difference or bilateral forward 

contracts to hedge against the risk associated with trading close to the point 

of MW delivery.  

• Tariff design – charging day-ahead tariffs competitively as otherwise the 

consumers would revert to their original tariffs or even switch to other retail 

suppliers.  

• Price forecast – forecasting wholesale day-ahead and spot market prices.  

• Demand forecast – forecasting the consumption patterns of consumers on 

regular and day-ahead tariffs. Special attention should be paid to consumers 

on day-ahead tariffs as it requires accurate modelling of the price elasticity of 

demand. This is further described in the next paragraph.  

 

For the case of an aggregator of the load of several industrial consumers, the 

aggregator may have to have an accurate knowledge of the operating characteristics 

of its consumers, such as the daily energy requirements and hourly consumption 

limits. As such, the model introduced in Chapter 3 can be extended to predict the 

aggregated demand profiles of these consumers for a given day-ahead tariff. The 

modified model should have some learning ability that can enhance its accuracy in 

predicting the aggregated consumption patterns under different day-ahead tariffs as 
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more consumption data are acquired and analysed. Most existing research involves 

solving the inter-related sub-problems presented above in a separate manner. 

Therefore, the profit maximisation problem that unifies all these sub-problems 

deserves research attention.  

 

Demand-side participation in the control of intermittent sources 

A significant increase in the penetration of renewable generation within the power 

system of the UK and other countries is expected in the near future. As more 

electrical energy will be produced by intermittent renewable sources, random 

mismatch between generation and load will increase because it will no longer be 

driven only by the fluctuations of the load. Under such conditions, controlling the 

system may become very expensive as flexible plants may have to be built for the 

sole purpose of controlling the system. Rather than controlling the system purely 

from the supply side, it is important to investigate if a substantial part of the control 

could be achieved through demand-side actions. This involves economic studies 

such as comparing the costs of demand-side actions against the cost of applying 

conventional supply-side actions and also technical feasibility studies by identifying 

the types of load suitable for control actions. In this regard, the storage-type 

industrial consumer’s load described in Chapter 3 presents a potential candidate for 

providing demand-side control actions. Remunerations will need to be designed 

according to the size of the demand that is made flexible and the speed of response 

when called upon to provide the control. 

 
Refinement to optimal capacity investment model  

The growth of widget demand of the industrial consumer has to be modelled 

explicitly within the optimal capacity investment problem if it can increase 

substantially over the investment horizon. Making investment in batches by 

deferring capacity installations only when demand reaches the expanded capacities 

avoids commitment of large capital. On the other hand, single large initial expansion 

can yield substantial economies of scale. The optimum lies between these two 

investment strategies. A warehouse that is built for storage purpose can be disposed 

of when it is no longer needed. Therefore, it would be more realistic to take account 

of the depreciation of such a tangible asset by discounting the saving cash flows 

appropriately, as opposed to writing off its value as sunk cost. Furthermore, the 
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nature of the optimal capacity expansion problem is stochastic by nature due to the 

uncertainties involved in the prediction of future prices and demand for widgets. 

Comparing the performance of the developed deterministic model presented in this 

thesis with a stochastic model is an interesting issue for further investigation.  

 

Spinning reserve trading and price equilibrium 

The spinning reserve requirement was explicitly considered within the generation 

and demand scheduling problem presented in Section 5.4.5. However, the generators 

were not compensated for the provision of such ancillary services as the focus of the 

thesis is focused solely on energy trading. To meet the reserve requirement, efficient 

generators may have to be part-loaded while expensive units have to be committed. 

Therefore, these part-loaded generators have to be rewarded adequately for 

foregoing the opportunity to supply energy. If the cost of providing ancillary services 

is incorporated within the market clearing prices in the form of uplift, the augmented 

prices may become higher than the prices at which some demand-side bidders are 

unwilling to consume. Subsequently, some of the associated demand-side bids will 

be rejected. This means that the scheduling problem needs to be solved in an 

iterative manner until there is no change in the acceptance of bids and offers. 

Heuristic stopping rules may have to be applied to ensure market clearance and this 

can considerably increase the complexity of the auction mechanism. While trading of 

ancillary services in separate markets has been adopted in several electricity markets 

for reasons of simplicity, co-optimisation of energy and reserve is likely to yield a 

lower overall operation cost in serving system load. This is because the formal 

simple approach is likely to result in committing additional units that are part-loaded 

solely to provide such services and this in turn causes deviation from the optimal 

system generation schedule. Assessing the merits of the two reserve trading methods 

is a challenging topic to be addressed. Furthermore, it has been described in Section 

5.3.5 that the consideration of uplift (fixed cost amortisation factor) may cause 

competitive market equilibrium ceases to exist. This issue of marginal pricing and 

uplift augmentation is an interesting future research opportunity as noted in Bouffard 

and Galiana (2005). 
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Performance of proposed market clearing tool under imperfect competition 

It has been observed in Section 5.4.5 that a substantial amount of economic rents 

could be transferred to the demand-side if the price responsive bidder is able to 

predict the market clearing prices accurately. In this regard, the extent to which 

market participants, especially the demand-side bidders are able to "game the 

system" by bidding strategically under the proposed auction market design is worth 

investigating. A method for building optimal bidding strategies for both demand-side 

consumers and supply side generators will need to be devised. Each of the 

individuals from these participant groups will choose appropriate bidding parameters 

that maximise the individuals’ benefits, subject to expectation of how other 

participants would behave. The problem could be formulated in a way that can be 

solved using stochastic optimisation technique to reflect the uncertainties involved in 

predicting the participants’ bidding strategy. 
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Appendix A 

Linearization of the Cost Function 
 

A.1 PIECEWISE LINEAR APPROXIMATION 
 

The original quadratic cost function can be approximated by piece-wise linear 

function where the elbow points are obtained by the dividing the range between the 

minimum and the maximum output level into several segments. For the sake of 

simplicity, the cost function is linearized into three cost segments throughout this 

thesis. The incremental prices (i.e. the slopes of the piece-wise linear curves) are 

such that the prices at the minimum and the maximum output levels, together with 

the elbow points, are all equal to those obtained with the original quadratic function. 

This approximation method has been applied to both the linearization of the 

manufacturing cost function of the industrial consumer in Chapter 3 and the 

production cost function of generators in Chapter 5.  

 

 
Figure A.1 Linearization of the quadratic cost function 
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Appendix B 

Electricity Prices Used In Simulation Studies 
 

B.1 DAY-AHEAD PRICES 
 

The day-ahead prices used for simulation studies are derived from the February 2001 

average PPP (pool purchase price) of the Electricity Pool of England and Wales 

(EPEW, 2001). As EPEW operates in a half-hourly time span, the values for day-

ahead prices are sampled hourly instead. 

 
Table B.1: Average PPP  

Time 
Prices 

[£/MWh] 
Time 

Prices 

[£/MWh] 

1:00 16.89 13:00 21.92 
2:00 17.87 14:00 18.91 
3:00 17.14 15:00 19.02 
4:00 15.57 16:00 15.21 
5:00 13.75 17:00 16.02 
6:00 13.60 18:00 28.80 
7:00 14.92 19:00 29.78 
8:00 17.86 20:00 21.86 
9:00 21.13 21:00 20.33 

10:00 21.60 22:00 18.52 
11:00 20.06 23:00 14.93 
12:00 20.52 0:00 14.32 

 

B.2 “PEAKY” AND “FLAT” PRICE PROFILES 
 

The “peaky” and “flat” price profiles used for simulation studies are derived from 

the January and July 2001 average PPP from EPEW (2001). These months 

correspond to winter and summer periods respectively in the UK. The values for the 

“peaky” and “flat” price profiles are also sampled hourly. 
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Table B.2: “Peaky” profile 

Time 
Prices 

[£/MWh] 
Time 

Prices 

[£/MWh] 

1:00 13.33 13:00 30.89 
2:00 17.86 14:00 26.13 
3:00 16.08 15:00 23.34 
4:00 18.79 16:00 19.93 
5:00 14.93 17:00 49.23 
6:00 13.06 18:00 132.1 
7:00 15.61 19:00 81.96 
8:00 21.59 20:00 42.75 
9:00 28.94 21:00 27.45 

10:00 27.77 22:00 23.12 
11:00 28.77 23:00 20.05 
12:00 30.43 0:00 12.95 

 
Table B.3: “Flat” profile 

Time 
Prices 

[£/MWh] 
Time 

Prices 

[£/MWh] 

1:00 12.69 13:00 36.5 
2:00 10.89 14:00 25.76 
3:00 10.62 15:00 21.87 
4:00 10.57 16:00 18.91 
5:00 10.81 17:00 20.59 
6:00 10.89 18:00 26.84 
7:00 11.46 19:00 19.58 
8:00 14.75 20:00 16.38 
9:00 19.93 21:00 13.57 

10:00 27.15 22:00 14.33 
11:00 27.99 23:00 22.42 
12:00 31.16 0:00 15.67 
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Appendix C 

Test System Data 
 

C.1 10-UNIT SYSTEM 
 

The 10-unit system is abstracted from Bard (1988). The parameters of the original 

polynomial cost functions are presented in Table 3.1, while the corresponding data 

for the piecewise approximation of the cost function is given in Table C.2. The 

approximated data are derived using the technique presented in Appendix A. Table 

C.3 shows the operational characteristics of the units. The data for ramp-up and 

ramp-down rates are omitted as they are not available in the reference. As such, these 

parameters are not considered in the simulation studies that utilised this test system. 

Table C.4 presents the load level for this system. It is used as the forecasted system 

load profile in this thesis.  

 
Table C.1: Production limits and coefficients of the quadratic cost function of the 10-unit system 

Unit 
iP  

[MW] 

i
P  

[MW] 

a 
[$/h]

b 
[$/MWh]

c 
[$/MW2h] 

1 50.00 200.00 820 9.023 0.00113 
2 75.00 250.00 400 7.654 0.00160 
3 110.00 375.00 600 8.752 0.00147 
4 130.00 400.00 420 8.431 0.00150 
5 130.00 420.00 540 9.223 0.00234 
6 160.00 600.00 175 7.054 0.00515 
7 225.00 700.00 600 9.121 0.00131 
8 250.00 750.00 400 7.762 0.00171 
9 275.00 850.00 725 8.162 0.00128 

10 300.00 1000.00 200 8.149 0.00452 



Appendix C Test System Data  

 
 
  233  
 
 

Table C.2: Offering prices of the 10-unit system 

Unit
,1i

EP  

[MW] 

,2i
EP  

[MW] 

i
GN  

[$/h] 

1
Gσ  

[$/MWh]

2
Gσ  

[$/MWh] 

3
Gσ  

[$/MWh] 

1 100.00 150.00 200.00 820 9.023 0.00113
2 150.00 200.00 250.00 400 7.654 0.00160 
3 200.00 300.00 375.00 600 8.752 0.00147 
4 230.00 300.00 400.00 420 8.431 0.00150 
5 200.00 350.00 420.00 540 9.223 0.00234 
6 300.00 500.00 600.00 175 7.054 0.00515 
7 300.00 500.00 700.00 600 9.121 0.00131 
8 400.00 600.00 750.00 400 7.762 0.00171 
9 400.00 600.00 850.00 725 8.162 0.00128 

10 500.00 800.00 1000.00 200 8.149 0.00452 
 

Table C.3: Operational characteristics of the 10-unit system  

Unit 
iκ  

[$/h] 

iτ  

[$/MWh] 

i
DT  

[h] 

i
UT  

[h] 

History42

[h] 

1 750.00 2.00 2 2 -1 
2 625.00 2.00 1 2 -7 
3 550.00 3.00 3 1 -1 
4 650.00 3.00 2 3 5 
5 650.00 4.00 3 1 -2 
6 950.00 4.00 4 2 1 
7 900.00 3.00 5 4 -8 
8 950.00 4.00 4 3 6 
9 950.00 4.00 3 4 2 
10 825.00 4.00 4 5 -4 

 
Table C.4: Load profile for the 10-unit system 

Period 

[h] 

t
FD  

[MW]

Period

[h] 

t
FD  

[MW]

Period

[h] 

t
FD  

[MW] 

1 2025 9 3850 17 3725 
2 2000 10 4150 18 4200 
3 1900 11 4300 19 4300 
4 1850 12 4400 20 3900 
5 2025 13 4275 21 3125 
6 2400 14 3950 22 2650 
7 2970 15 3700 23 2300 
8 3400 16 3550 24 2150 

 

                                                 
42 This parameter indicates the length of time in hours the unit is online (positive sign) or offline 
(negative sign) initially.  
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C.2 26-UNIT SYSTEM 
 

This test system is derived from the IEEE-RTS (IEEE, 1979) and the data can also 

be found in Wang and Shahidehpour (1993). The parameters of the original 

polynomial cost functions are presented in Table C.5, while the corresponding data 

for the piecewise approximation of the cost function is given in Table C.6. Tables 

C.7 and C.8 present the units’ operating characteristics and the load level for the test 

system respectively.  

 
Table C.5: Production limits and coefficients of the quadratic cost function of the 26-unit system 

Unit 
iP  

[MW] 

i
P  

[MW] 

a 
[$/h] 

b 
[$/MWh]

c 
[$/MW2h] 

1 2.40 12.00 24.3891 25.5472 0.0253 
2 2.40 12.00 24.4110 25.6753 0.0265 
3 2.40 12.00 24.6382 25.8027 0.0280 
4 2.40 12.00 24.7605 25.9318 0.0284 
5 2.40 12.00 24.8882 26.0611 0.0286 
6 4.00 20.00 117.7551 37.5510 0.0120 
7 4.00 20.00 118.1083 37.6637 0.0126 
8 4.00 20.00 118.4576 37.7770 0.0136 
9 4.00 20.00 118.8206 37.8896 0.0143 

10 15.20 76.00 81.1364 13.3272 0.0088 
11 15.20 76.00 81.2980 13.3538 0.0090 
12 15.20 76.00 81.4641 13.3805 0.0091 
13 15.20 76.00 81.6259 13.4073 0.0093 
14 25.00 100.00 217.8952 18.0000 0.0062 
15 25.00 100.00 218.3350 18.1000 0.0061 
16 25.00 100.00 218.7752 18.2000 0.0060 
17 54.25 155.00 142.7348 10.6940 0.0046 
18 54.25 155.00 143.0288 10.7154 0.0047 
19 54.25 155.00 143.3179 10.7367 0.0048 
20 54.25 155.00 143.5972 10.7583 0.0049 
21 68.95 197.00 259.1310 23.0000 0.0026 
22 68.95 197.00 259.6490 23.1000 0.0026 
23 68.95 197.00 260.1760 23.2000 0.0026 
24 140.00 350.00 177.0575 10.8616 0.0015 
25 100.00 400.00 310.0021 7.4921 0.0019 
26 100.00 400.00 311.9102 7.5031 0.0020 
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Table C.6: Offering prices of the 26-unit system 

Unit 
,1i

EP  

[MW] 

,2i
EP  

[MW] 

i
GN  

[$/h] 

1
Gσ  

[$/MWh]

2
Gσ  

[$/MWh] 

2
Gσ  

[$/MWh]

1 5.60 8.80 24.0487 25.7498 25.9119 26.0741
2 5.60 8.80 24.0550 25.8872 26.0568 26.2263
3 5.60 8.80 24.2617 26.0268 26.2060 26.3853
4 5.60 8.80 24.3785 26.1592 26.3411 26.5229
5 5.60 8.80 24.5045 26.2895 26.4722 26.6549
6 9.33 14.67 117.3070 37.7109 37.8388 37.9667
7 9.33 14.67 117.6380 37.8318 37.9663 38.1009
8 9.33 14.67 117.9500 37.9582 38.1032 38.2481
9 9.33 14.67 118.2860 38.0807 38.2335 38.3864

10 35.47 55.73 76.4139 13.7710 14.1261 14.4812
11 35.47 55.73 76.4731 13.8073 14.1700 14.5328
12 35.47 55.73 76.5583 13.8416 14.2104 14.5793
13 35.47 55.73 76.6015 13.8795 14.2573 14.6351
14 50.00 75.00 210.1080 18.4673 18.7787 19.0903
15 50.00 75.00 210.6850 18.5590 18.8650 19.1710
16 50.00 75.00 211.3000 18.6485 18.9475 19.2465
17 87.83 121.42 120.6730 11.3518 11.6628 11.9738
18 87.83 121.42 120.4910 11.3875 11.7052 12.0229
19 87.83 121.42 120.3990 11.4201 11.7432 12.0663
20 87.83 121.42 120.3920 11.4502 11.7773 12.1045
21 111.63 154.32 239.1960 23.4677 23.6888 23.9099
22 111.63 154.32 239.6820 23.5695 23.7915 24.0134
23 111.63 154.32 239.9330 23.6749 23.8994 24.1240
24 210.00 280.00 132.0760 11.3971 11.6113 11.8255
25 200.00 300.00 271.2020 8.0741 8.4621 8.8501
26 200.00 300.00 272.9100 8.0881 8.4781 8.8681 
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Table C.7: Operational characteristics of the 26-unit system  

Unit 
iκ  

[$/h] 

iτ  

[$/MWh]

i
DT  

[h] 

i
UT  

[h] 

History 

[h] 

i
DR  

[MW/h] 

i
UR  

[MW/h] 

1 0.00 1.00 0 0 -1 48.00 60.00
2 0.00 1.00 0 0 -1 48.00 60.00 
3 0.00 1.00 0 0 -1 48.00 60.00 
4 0.00 1.00 0 0 -1 48.00 60.00 
5 0.00 1.00 0 0 -1 48.00 60.00 
6 20.00 2.00 0 0 -1 30.50 70.00
7 20.00 2.00 0 0 -1 30.50 70.00 
8 20.00 2.00 0 0 -1 30.50 70.00 
9 20.00 2.00 0 0 -1 30.50 70.00 

10 50.00 3.00 3 2 3 38.50 80.00
11 50.00 3.00 3 2 3 38.50 80.00 
12 50.00 3.00 3 2 3 38.50 80.00 
13 50.00 3.00 3 2 3 38.50 80.00 
14 70.00 4.00 4 2 -3 51.00 74.00
15 70.00 4.00 4 2 -3 51.00 74.00 
16 70.00 4.00 4 2 -3 51.00 74.00 
17 150.00 6.00 5 3 5 55.00 78.00
18 150.00 6.00 5 3 5 55.00 78.00 
19 150.00 6.00 5 3 5 55.00 78.00 
20 150.00 6.00 5 3 5 55.00 78.00 
21 200.00 8.00 5 4 -4 55.00 99.00
22 200.00 8.00 5 4 -4 55.00 99.00 
23 200.00 8.00 5 4 -4 55.00 99.00 
24 300.00 8.00 8 5 10 70.00 120.00
25 500.00 8.00 8 5 10 50.50 100.00
26 500.00 10.00 8 5 10 50.50 100.00 

 
Table C.8: Load profile for the 26-unit system 

Period 

[h] 

t
FD  

[MW]

Period

[h] 

t
FD  

[MW]

Period

[h] 

t
FD  

[MW] 

1 1700 9 2540 17 2550 
2 1730 10 2600 18 2530 
3 1690 11 2670 19 2500 
4 1700 12 2590 20 2550 
5 1750 13 2590 21 2600 
6 1850 14 2550 22 2480 
7 2000 15 2620 23 2200 
8 2430 16 2650 24 1840 
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