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Abstract

Data Mining is a broad term for a variety of data analysis techniques applied to the

problem of extracting meaningful knowledge from large, noisy databases. An important

feature present in most of these techniques is an ability to adapt to the local characteris-

tics of the data. Such techniques are applied to electric load profiling tasks; load profiling

consists of modelling the way in which daily load shape (load profile) relates to various

factors such as weather, time and customer characteristics. An implementation of an

adaptive load profiling methodology is presented.

An atom is defined as a set of load profiles for which certain predictor attributes take

identical values. Weather-dependent loads are recovered from the raw data by subtract-

ing certain atomic profiles, and weather dependency modelled by the method of Multi-

variate Adaptive Regression Splines.

Nominally weather-free load profiles are constructed from this model, and aggregat-

ed into new atoms. These atoms are subjected to adaptive clustering algorithms, with the

objective of condensing the vast amount of data in the original database into a small

number of representative (end) profiles each pertaining to a particular subset of the do-

main of the database. The clustering of individual customers’ profiles (rather than atoms)

is investigated as an extension to clustering of atoms.

Various possible extensions to and alternatives to the methodology are discussed.
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Chapter 1 — Why Data Mining?

‘Computers have promised us a fountain of wisdom but deliv-
ered a flood of data’    -   A frustrated MIS executive, quoted in
[1].

1.1  The Need For Data Mining

All manner of businesses and research organisations have vast collections of data

stored in databases and flat files. As the cost of data storage becomes lower and lower,

and the means for collecting data continue to multiply, the volume of data accessible to

researchers can only be expected to increase further and further; inevitably, an ever in-

creasing proportion of this data is never seen by human eyes. Outcomes of database que-

ries, and the statistics and graphics produced by statistical software, are capable of

answering some of the questions that the proprietors of databases may have about their

data. However the sheer bulk of that data may be such that important underlying struc-

tures in the data may never be discovered: there are so many potentially ‘good’ questions

we might ask about the data that only a tiny fraction of such questions are ever posed,

less answered.

The term Data Mining (nearly synonymous with the term Knowledge Discovery in

Databases) is a blanket term which describes the many ways in which statisticians and

data engineers are attempting to automate the process by which intelligible knowledge

can be derived from large databases. Frawley, Piatetsky-Shapiro and Matheus give a def-

inition,

‘The non-trivial extraction of implicit, previously unknown, and
potentially useful information from data’

in their thorough overview of data mining in [1]. Another good introductory paper on the

subject is found in [2].

1.2  Volume Versus Interpretability

It is common sense that a small volume of information (such as a concise set of rules

about some data, or a well conceived graphical display representing features of the data)

convey more meaning (whether to a data engineer, a field expert, or a lay person), than

disks or reams filled with raw data. However it is equally obvious that the total amount

of information contained in a large database is greater than that contained in any at-a-
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glance distillation of the database; that is, we gain insight only at the expense of detail.

We can regard data mining, in part, as the search for representations of data which strike

the best compromise between volume and interpretability. Exactly how much volume re-

duction is desirable will vary enormously according to the intended use of the reduced

data.

1.3  Specificity Versus Generality

In any relational data, the two extreme representations of the data are to present the

entire database (so that every record in the database has a unique description); and to

present a single ‘average’ data record (so that every record in the database is associated

with some global modal or mean description). In between these extremes are represen-

tations of the data which agglomerate records by some criteria, so that every record has

a description common to all records in the same agglomeration. Many data mining tasks

can be seen as searches for the correctdata resolution; that is, searches for partitions of

records which are coarse enough that the number of cells is not overwhelming, but fine

enough that all the records in a cell comply well with any generalisation we might make

about them. A crucial feature of most data mining techniques is their ability to represent

different regions in the total data space atdifferent resolutions: where data are more di-

verse finer partitions are sought, with the objective that the subset of records in any cell

are of comparable homogeneity to the subset of records in any other cell (see section

4.1).

1.4  Concepts of Informativeness and Utility

In the preceding three sections we have touched on ideas of informativeness and use-

fulness of data representations. A set of rules or generalisations derived from a database

has less utility if very bulky, but carries less information if the representation is too

coarse or indiscriminate.

By whatever method knowledge is to be ‘mined’ from data, it is important to estab-

lish measures for the utility and informativeness of discovered knowledge. Formal meas-

ures, such as statistical significance of derived rules; the amount of total variance

explained by a model; and measures for the information content of data representations

(deriving frominformation theory), can be used to guide searches through data. It may

be equally important that informal criteria of utility and informativeness play a part in
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the design and application of a data mining technique.

A practitioner of data mining who has a good understanding of the scientific or social

scientific field from which the data derives (and in which discovered knowledge might

be applied) has a much better chance of finding useful and informative representations

of the data than a practitioner who sees the data as just tables of numbers and symbols.

Domain heuristics, and intuition about the nature of hidden structures, should be utilised

at every stage in the data analysis. Furthermore, if formal measures indicate that a par-

ticular representation is maximally informative, but a human with understanding of the

problem domain find some modified representation more informative, the second repre-

sentation is likely to be preferable.1

1. An exception might arise where the mined representation is to be used as input to another computer

program, such as a knowledge based system or forecasting program, so that human interpretability of

representations is not paramount.
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Chapter 2 — The Scope of Data Mining

This chapter briefly describes the variety of approaches to the extraction of intelligi-

ble knowledge from large noisy databases, which fall under the umbrella of ‘Data Min-

ing’. The large variation in the nature and quality of data in databases is also covered and

some notation introduced. Chapters 3-5 describe concepts which recur in several data

mining methods (information theory; hierarchical partitioning and decision trees; varia-

ble reduction) and chapters 6-8 describe some important data mining techniques in some

detail. Some techniques of only limited relevance to the task and methodology eventu-

ally selected are dealt with more scantly.

2.1  The Breadth of the Term ‘Data Mining’

Data Mining (abbreviatedDM) is currently a fashionable term, and seems to be gain-

ing slight favour over its near synonym Knowledge Discovery in Databases(KDD).

Since there is no unique definition, it is not possible to set rigid boundaries upon what is

and is not a data mining technique; the definition proffered in section 1.1 could conceiv-

ably cover virtually the entire body of statistics and of knowledge based systems, and a

good deal of current research in database technology and machine learning. In this tract

we shall somewhat limit the scope of the term toexclude techniques whose principal do-

main is intermediate or small databases which contain little or no discrepancies, anom-

alies, omissions or noise in the data.1 Further, it is convenient for us to discriminate

between ‘data mining’ and ‘classical’ statistical methods (like analysis of variance and

parametric regression, which operate globally on a set of variables), although such tech-

niques often have ‘walk-on parts’ in what we shall call data mining.

We are primarily concerned with techniques which seek to extract important features

from large, noisy, real-world databases which may have many missing entries and in-

consistencies. Real-world databases are characterised by the fact that unlike data derived

from controlled experiments, such data tend to be sparse in most regions of the variable

space — records or events which are less common usually have less representation in the

database. Accordingly we seek methods which are capable of adapting well to varying

levels of data density and noise;adaptive methods automatically search and analyse the

1. This type of problem is often termed ‘learning from examples’ in Artificial Intelligence and Knowl-

edge Based Systems literature.
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denser and more heterogeneous regions of variable space more thoroughly.

The principal areas of data mining, as it has been described above, might be broken

down into

1. Exploratory data analysis and variable reduction

2. Visualisation techniques

3. Regression — particularly non-parametric regression, adaptive regression, hierarchi-

cal regression

4. Classification (aka supervised learning)

5. Clustering (aka unsupervised learning)

6. Hybrids of any of the above.

2.2  Types and Qualities of Data

2.2.1  Predictors and Responses

Let the variables (attributes) in the data set be denoted by

 where the  arepredictor (independ-

ent) variables and the  areresponse(dependent) variables. The selection

of this division is not always trivial, and is part of the task definition in a data mining

exercise. Moreover, there may be tasks in which some or all of the variables are to be

considered as both predictors and responses.

2.2.2  Types of Domain

Let thecases, which we will sometimes refer to asrecords orobservations, be denot-

ed  and let theith case, , have associated attribute values

X1 … Xj … XJ Y1 … Yk … YK, , , ,;, , , , Xj 1 j J≤ ≤( );

Yk 1 k K≤ ≤( );

C1 … Ci … CN, , , , 1 i N≤ ≤

X1i x1i X
˜ 1∈=

…
XJi xJi X

˜ J∈=

Y1i y1i Y
˜ 1∈=

…
YKi yKi Y

˜ K∈=
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where  are the domain sets ordomains of the respective . The domains gen-

erally fall into one of four categories; consider some predictor (analogous descrip-

tions apply to responses ):

1. Categorical. Categorical variables take one of a finite number of unordered dis-

crete values .

2. Ordered. Ordered variables take one of a number (possibly infinite) of discrete val-

ues . Often  is a finite set of contiguous inte-

gers.

3. Hierarchical. Hierarchical variables are categorical variables whose categories are

arranged in some hierarchy, usually an‘is-a’  (i.e. transitive) hierarchy. For example,

if records the type of animal in a vetinary database, taking values {boxer, terrier,

cat, dog, iguana, mammal, reptile}, it admits anis-a hierarchy including relation-

ships like {terrieris-a dog, catis-a mammal, terrieris-a mammal,...}.

4. Continuous. Real variables, whose domain is a (possibly infinite) range of real num-

bers, .

2.2.3  Noisy Data

There are principally two sources of noise which arise in databases (although they

are generally treated alike). First, some or all of the attribute values for any given obser-

vation might be of dubious accuracy: if they are measurements they may be imperfect or

may be inexact due to rounding (continuous quantities cannot be measured exactly); if

they are derived from questionnaires, they may be subjective responses to questions and

hence not wholly reliable.

Second (and generally more importantly) the attribute values, particularly for re-

sponse variables, are often samples drawn from populations of random variables. To

make matters worse, the underlying probability distribution for these random variables

is almost never known in real-world databases.

For a single continuous response variable we might propose a model

X
˜ j Y

˜ k, Xj Yk,

Xj

Yk

X
˜ j

xji X
˜ j∈ xj1 xj2 … xj X

˜ j
, , ,{ }=

xji X
˜ j∈ xj1 xj2 … xj X

˜ j
< < <{ }= X

˜ j

Xj

Xj
min Xj

max,[ ]

Y
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(EQ 1)

where  is the value observed,  the expectation of  (the population mean, condi-

tional on the values of ).

 is the (additive) error due to measurement,  the (additive) error due to sam-

pling (i.e. the deviation of  from  due to the inherent randomness of.

Since the 's cannot (usually) be separated, we write , and make

some assumption about the distribution of , often that it has zero-mean Gaussian

distribution of unknown variance  (which may be approximated from the sample var-

iance ).

Where there are multiple continuous response variables, the situation becomes far

more complicated, since we are concerned with thejoint distribution of

. We might write

(EQ 2)

on case  (with  ak-vector of errors due to measurement and sampling). However

 is now the multivariate population mean conditional on the values of

, and any assumption that the observed

deviations  have a certain multivariate probability distribution is likely to be the-

oretically tenuous, and demonstrable only empirically.

Where noise (due to measurement and sampling) is appreciable, any rules and/or rep-

resentations which we may derive for the datamust be ‘fuzzy’ (inexact) in some sense.

We can associate confidence intervals with estimators of continuous variables; we can

give measures of confidence for rules which assert exact logical truths; allow fuzzy

membership of any discovered groupings of cases; and allow discrete probability distri-

butions for class memberships (rather than a uniquely determined class) where cases are

to be classified.

Noise in data can be reduced by at least three means:

5. Data Smoothing. This includes exponential smoothing of time series and the fitting

of smoothing curves/surfaces/hypersurfaces to noisy data.

Yi Yi εi
m( ) εi

s( ) 1 i N≤ ≤( );+ +=

Yi Yi Yi

X1i … XJi, ,

εi
m( ) εi

s( )

Yi Yi εi
m( )+ Yi

ε εi
ms( ) εi

m( ) εi
s( )+=

εi
ms( )

σ2

S2

Y Y1 … YK, ,( ) T=

Yi Yi εi
ms( ) 1 i N 1 k K≤ ≤,≤ ≤( );+=

Ci εi
ms( )

Yki

X1i … XJi Y1i … Y k 1–( ) i Y k 1+( ) i … YKi, , , , , , , ,

εi
ms( )
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6. Data Aggregation. We aggregate cases which have the same or similar values

amongst their predictors. Their aggregate response(s) should be determined in a sen-

sible manner, such as taking mean or modal value(s). Conversely we may aggregate

those cases which have the same or similar values amongst their response variables.

In this case the aggregate predictor variables should be determined in a sensible

manner, often by partitioning the predictors’ domains (e.g. values {Mon, Tue, Wed,

Thu, Fri, Sat, Sun} replaced by {workday, Sat, Sun}, for a day-of-week variable). A

further option is to aggregate those cases which are similar in the values taken by

both their predictorsand responses.

7. Identification and Exclusion of Outliers. Outliers may be ‘good’ or ‘bad’ outliers. A

bad outlier contains erroneous (severely mismeasured) data. Atype-1good outlier

has been recorded with sufficient fidelity, but due to the inherent randomness in the

data, has response values which are exceptional given the values taken by its predic-

tors. Atype-2 good outlieris a case which has exceptional values in its predictor var-

iables— the values taken by its predictors are not ‘near’ those of the other cases.

Type 2 good outliers may be discarded (since one cannot reliably make inferences on

the basis of a unique case) or retained according to discretion.

Type 1 good outliers can be particularly instructive, whereas we would usually

prefer to identify and exclude bad outliers from consideration. Unfortunately they are

usually very difficult to distinguish from one another, although a series of exceptional

cases, say, over a certain time period, might point to faulty measuring equipment.

Outliers of any type are often excluded or given reduced weight whilst building mod-

els, but then analysed in relation to the constructed model.

Any form of noise reduction may take place wholly in advance of other data analysis,

but is often an ongoing and integral part of the data mining process. Noise reduction, and

the production of inexact rules and representations, are both crucial to the analysis of

noisy data.

2.2.4  Incomplete Data

Large real-world databases more often than not contain missing values for some cas-

es in some attributes. The simplest way to deal with such cases is to discard them, but

this might ‘throw out the baby with the bathwater’ and is infeasible when many or most



Applications of Data Mining Techniques to Electric Load Profiling

Applications of Data Mining Techniques to Electric Load Profiling 15

of the cases have a missing value. Seeking good ways to deal with missing values is an

important area of data mining research, and certain techniques are capable of coping with

very substantial numbers of missing entries. Where only a few data are missing, it is

common practice to replace each missing datum with the variable value which is mean

or modal for the variable in question,given the values of the known attributes, which

may be variously determined. Other schemes allow fuzzy values for missing entries, so

that a case may fall partly into one part of the model, and partly into another or others.

2.2.5  Inconclusive Data

Due to the local sparsity of the data, the randomness of some attributes, and the ran-

dom manner in which the cases in the database are selected from all possible cases, the

data may be inherently inconclusive: there may be parts of the attribute space for which

no reliable rules apply. A further and very important source of inconclusiveness in data

is the absence of certain predictors which would be necessary to fully describe the vari-

ation in the responses. Typically there are practically limitless numbers of predictor var-

iables which might possibly affect responses, only a fraction of which can feasibly be

recorded.

Inconclusive data is commonly handled by the use of inexact rules, and data aggre-

gation (as with noisy data, section 2.2.3). It may sometimes be necessary to accept the

inconclusiveness of the data, particularly in the sparsest parts of the domain, and to avoid

making any assertions about parts of the data where no assertions can be relied upon.

‘Giving up’ on part of the data can still be instructive if we can use the results of data

mining to guide future database design— particularly, identifying regions of data space

in which records are too sparse to draw conclusions, so that more data of that ilk can be

collected.
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Chapter 3 —A Crash Course in Information Theory for Data

Mining

3.1  Introduction

Most of the statistics used to describe data in this tract are widely known: means,

modes, variances, Euclidean distances, and so on. Information Theory is an area of study

which was initiated by theorists studying the communication and coding of signals, and

accordingly the nomenclature (sources, receivers, messages, channels, codes, and so on)

may be less familiar. Information theory seeks to measure the amount of information in

a message—a sample of a random variable, or a time series of a random variable; the

amount of information preserved in the presence of noise; and the amount of information

conveyed by one random variable (source) about another random variable (receiver). In-

formation theoretic measures appear frequently in data mining literature, particularly in

the construction of decision trees (chapter 4). This chapter is primarily inspired by [4]

and [5].

Consider, by way of example, a digitally stored data file. Such data files are frequent-

ly compressed (orcoded) before being electronically mailed, in order to lessen transmis-

sion time. It is possible to compress data files (by factors of ten or more in extreme cases)

because there is redundancy in the manner in which the uncompressed file is stored. For

example, digital images may contain large areas with little spacial variation in shading;

a database of customer records is likely to contain many groups of conceptually similar

customers, whose recorded data differ only in a few variables, or only by a small margin

in some variables.

Commercial data compression programs are generally ignorant of the precise nature

and meaning of the data sets they are employed on. When certain information is known

about the nature of the data (in particular, information about the statistical distributions

of variables, and certain measures of correlation between variables), it is generally pos-

sible to compress the data much further. Loosely speaking, thetotal informationcontent

in a data set can be thought of as the size (in bits) of the most efficient coding possible—

various theorems (known as fundamental coding theorems) state that codings exist1

which can compress data sets to within an arbitrarily small margin of their theoretical

1. These theorems do not construct the actual codings, which are generally unknown.
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total information contents.

Whilst the data analyst is not generally interested in coding his or her data set for ef-

ficient transmission, the theoretical information can be of interest. In particular, when a

data set is simplified or represented in a new form, it is desirable that the new represen-

tation contains as much as possible of the information conveyed by the original data.

3.2  Discrete Memoriless Sources

Let a source  transmit a series of values of a discrete random variable, which

takes the values with respective probabilities . If

these probabilities are independent of the values of already transmitted, then is a

discrete memoriless source. Let the transmission of a particular value of be called an

event .

Define theself-informationof an event to be

(EQ 3)

and theentropy— the average (self) information— of the source variable to be

(EQ 4)

Base 2 logarithms are used so that the information is measured in bits. We shall drop

the 2 in subsequent equations. The entropy of a memoriless source is entirely determined

by the probability distribution of the associated random variable.

The presence of the log in the definition of self information can be justified thus: sup-

pose an experiment withl possible outcomes, probabilities  is per-

formed twice, and the results transmitted to a third party. If the two outcomes are

independent, the information associated with transmitting the two results one by one

should be the same as the information associated with transmitting the outcome of a sin-

gle compound equivalent experiment with possible outcomes with probabilities

. We require , satisfied by (EQ 3). The en-

tropy measures the informativeness of the source as a whole, and accordingly weights

each of the self informations with their frequencies of occurrence.  is max-

imised when  for , i.e. for a uniform distribution.

S X

x1 … xl … xL, , , ,{ } p1 … pl … pL, , , ,{ }

X S

X

El 1 l L≤ ≤{ };

I El( ) log2pl 1 l L≤ ≤( )˙;–=

H X( ) I El( ) pl log2pl
l 1=

L

∑–= =

X

p1 … pl … pL, , , ,{ }

l2

pl1l2
1 l1 l2 L≤,≤{ } I El1l2

( ) I El1
( ) I El2

( )+=

H p1 … pL, ,( )

pl L 1–= 1 l L≤ ≤
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3.3  Discrete Memoriless Channels

A discretechannelis defined by its joint probability structure for its discrete source

variableX and receiver variableY (receiver random variables have the same associated

information properties as source random variables).

Let  take values  with probabilities  and letY take val-

ues  with probabilities . Let

be the joint probabilities forX andY; if these are independent of previous transmissions,

the associated channel is a discrete memoriless channel. Such a channel is noise-free

only if , and we can think of the joint distribution as characterising the

noise properties of a channel, and vice versa. We associate five entropy measures with a

communications scheme:

(EQ 5)

(EQ 6)

(EQ 7)

(EQ 8)

(EQ 9)

These are, respectively, the source and receiver entropies (or marginal entropies); the

entropy ofY conditional onX (the average information per event received, given we

know the event transmitted); the entropy ofX conditional onY (vice versa); and the joint

entropy—the average informationper pair of transmitted/received events: i.e. the aver-

age uncertainty (noise) of the channel. The entropies are related by

(EQ 10)

X x1 … xn, ,{ } p1 … pn, ,{ }

y1 … ym, ,{ } p1 … pm, ,{ } pij 1 i n≤ ≤( ) 1 j m≤ ≤( ){ }

pij

1 if i j=

0 if i j≠
=

H X( ) pij pij
j 1=

m

∑ 
 
 

log
j 1=

m

∑
i 1=

n

∑–=

H Y( ) pij pij
i 1=

n

∑ 
 
 

log
i 1=

n

∑
j 1=

m

∑–=

H Y X( ) pij p yj xi{ }log
j 1=

m

∑
i 1=

n

∑–=

H X Y( ) pij p xi yj{ }log
j 1=

m

∑
i 1=

n

∑–=

H X Y,( ) pij pijlog
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(EQ 11)

For a noise-free channel, the conditional entropies are zero, and the marginal entro-

pies and the joint entropy are all equal. For arandom channel (X andY independent) the

inequalities in (EQ 11) become equalities.

Finally define themutual information between an event pair  as

(EQ 12)

and themutual information between X and Yas

(EQ 13)

and note that

(EQ 14)

 is the amount of information conveyed by one random variable about the oth-

er; for a noise free channel, it is equal to the joint entropy; for a random channel, it is

zero.

3.4  Continuous Memoriless Sources and Channels

Consider now a source variableX and received variableY which take values in a con-

tinuous range [a, b]. We might try to approximate the information content of the source

by discretisingthe range [a, b] into n equal cells and calculating the associated discrete

probabilities and entropy. This approach is fundamentally flawed, as the resulting entro-

py is strongly dependent onn, and always tends to infinity asn tends to infinity; such an

entropy measure is arbritary and meaningless. It is only to be expected that a variable

taking unrestricted continuous values should have infinite entropy—consider that an

arbritary real number cannot be completely stored in any amount of computer memory,

and entropy is measured in bits. However we can derive meaningful measures which de-

scribe the information content of one message relative to another. The five entropies for

a continuous memoriless channel are exact continuous analogues of (EQ 5) to (EQ 9),

with integrals replacing the summations and continuous probability density functionsf
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replacing probabilitiesp. It can be shown (see e.g. [4]) that ifX has range  and

known finite variance , thenX has maximal marginal entropy when it has a Gaussian

distribution.

These entropies can be problematic, however: they may be negative; they may be in-

finite; and they are not invariant under linear transformations of the coordinate system.

By analogy with the discrete case, define themutual (or trans-) information between

continuous variables X, Y as

(EQ 15)

(EQ 14) also holds in the continuous case. Mutual information does not suffer from the

above-mentioned problems.

Under the assumptions thatX andY have a joint Gaussian distribution with correla-

tion parameter , and known marginal variances,

(EQ 16)

3.5  Additive Gaussian Noise

The transinformation  is also known as the rate of transmission; the maximum

rate of transmission possible is known as thechannelcapacity, I.Theadditive noise as-

sumption is that

(EQ 17)

where  is the distribution of additive noiseZ. We further assume thatZ andX are inde-

pendent. TheGaussian additive noise assumption further stipulates that noise is zero-

mean with a Gaussian (normal) distribution, with knownpower (i.e. variance)  and

that the signal is zero-mean with known power (the zero-mean assumptions are not

strictly necessary). It can be shown (see e.g. [4]) that channel capacity (maximum

transinformation) under these assumptions occurs when input (equivalently, output) is

Gaussian, in which case

(EQ 18)
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whereS/N is known as thesignal-to-noise ratio.

3.6  Continuous Band-Limited Signals

Now suppose that the sourceX is a continuous function of a continuous variablet

(time). We no longer have a discrete sequence of continuous events; furthermore, the

continuity constraint implies that the source has memory (isstochastic)— the probability

density function forX at timet is not independent of previous transmissions. In general,

the maximum transinformation for channels carrying continuous stochastic time signals

is unknown. Many simplifications and assumptions must be made in order to derive a

channel capacity for such channels.

First consider the simpler case in which a discrete sequence of continuous variables

 are transmitted. Under Gaussian additive noise assumptions, with inde-

pendent noises at any two time points, maximum transinformation has been shown to oc-

cur when the  aren independent Gaussian random variables, in which case

(EQ 19)

Returning to the case whereX andY are continuous functions of time, we wish to re-

duce the infinity of time points to a discrete, finite sequence of time points (asample)

without loss of information in order to enable a calculation of channel capacity. In fact,

the class ofband-limited, time-limited continuous signalsadmits such an analysis. A

continuous signal isband-limited if its fourier integrals have no frequency content be-

yond some frequency range , and time-limited if the signal is negligible out-

side some timespan [-T/2, +T/2]. The Sampling Theorem (see e.g. [4]) tells us that a

band-limited signal is completely determined by its values at the points

, and time-limitation allows us to replace this infinite sample

with a finite sample. Under independent Gaussian additive noise assumptions, and the

assumption of constant signal power in [-T/2, +T/2], the Channel Capacity Theorem for

Time-Limited, Band-Limited Signals (Shannon, see e.g. [4]) derives

(EQ 20)

The assumption of band-limitation is essentially an imposition of a smoothness con-

straint on the signal. A continuous signal typically has a frequency spectrum which tails
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off for higher frequencies; the frequency for which the fourier integral  be-

comes ‘negligible’ is greater when the signal is less smooth. We can interpret the result

(EQ 20) as a quantitative expression of the intuitive notions that more information is con-

veyed in the transmission of ‘bumpy’ signals than smooth signals, and that more infor-

mation is conveyed when the signal-to-noise ratio is greater.

Applications of information theory to more general source variables and channels

have been studied (particularly more general stochastic sources, and stochastic chan-

nels), though the models become rapidly more complex as simplifying assumptions are

dropped.

Fω x t( )[ ]
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Chapter 4 —Decision Trees and Hierarchical Partitioning

4.1  Adaptivity

Many Data Mining techniques are distinguished by their adaptive nature. An adap-

tive methodology is one which modifies its strategy according to the local nature of the

data. Such adaptivity allows a model to tailor itself to the local data qualities; where data

is denser or more heterogeneous, it can be modelled at a greater resolution (specificity);

where data are noisier, a smoother model can be imposed; and so on.

Commonly, adaptive methods employ a ‘Divide and Conquer’ strategy (orrecursive

hierarchical partitioning). The principle is to recursively subdivide the population into

exclusive exhaustive subsets (partitions) in such a way that records in one partition be-

have by some criterion similarly, and records from different partitions behave relatively

dissimilarly. The process is repeated for each partition, but the type and/or details of the

algorithm employed are allowed to vary according to local criteria (that is, based on the

data in the partition being processed). The decision of when to stop subdividing each par-

tition is also based on local criteria, i.e. when the records contained in a partition are

deemed sufficiently similar, or model fit sufficiently good. Accordingly, different parts

of the data find themselves represented at different resolutions: where data is relatively

sparse and/or uniform, fewer subdivisions occur; where data is dense and/or heterogene-

ous, the domain is more subdivided, and so the data more intensively processed. A con-

sequence is that each of the final partitions in such a model display a similar degree of

within-partition heterogeneity (each cluster bears a similar share of the data’s total var-

iability).

4.2  Notation

Recall the notation of section 2.2, where the domains of the predictors are denoted

, and define the (J-dimensional)predictor space (or thedomain) to be

their cross product

(EQ 21)

Also, call the product of the response domains theresponse space or codomain.

Every point  in the domain is specified by itsJ predictor values. Consider the case

where all predictors are discrete1; then there are an enumerable number of such points in

X
˜ 1 … X

˜ j … X
˜ J, , , ,

X
˜

X
˜ 1 …× X

˜ j× … X
˜ J××=

x
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. We can assume all domains are finite (since we have a finite number of records).

Denote a partition of

(EQ 22)

calling theexclusive,exhaustive subsets  thecells of the partition .

A hierarchical partition is a series of partitions of , which starts with the uni-

versal partition (whose only cell is the entire domain), and in which each partition is de-

rived from the previous partition by splitting one or more cells. Formalising,

(EQ 23)

is a hierarchical partition of  if

(EQ 24)

where we use , to denote that  is a proper subpartition of . We say

 is a subpartition of  if every

 is a subset of some ; the subpartition is proper if  (so that at

least one cell in  is a proper subset of some cell in).

4.3  Decision Trees

A hierarchical partition  is most easily represented by a tree. The root represents

the whole domain. Each level of the tree represents a partition, with nodes at that lev-

el representing partition cells (domain subsets); the leaves represent cells of. We can

mark the branches of the tree with conditions on attributes; these are the conditions

which exactly specify the child cell as a subset of the parent cell—thus the branches de-

scending from any one node have conditions which are mutually exclusive and exhaus-

tive. If the tree is such that each branch condition involves just a single predictor

attribute, the tree is called adecision tree, since any case in the database belongs to ex-

actly one cell (node) at any given level of the tree, and the conditions on each branch

1. Since continuous variables can bediscretised by partitioning their domains.
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decide in which cell each case should reside at the next level. (FIGURE 1.) gives an in-

complete example. Abinarydecision tree is one in which at most one cell is split at each

level, and always into exactly two children.

FIGURE 1.

Top-down tree building, also known asgeneral-to-specific partitioning, starts with

the universal partition and recursively splits cells until some (usually local) criteria lim-

iting tree size is met. Bottom-up tree building, orspecific-to-general partitioning, starts

with the maximal possible number of leaves, each of which contains either just one case

from the database, or all those cases which have identical values for every predictor. At

each stage, some of the cells are combined into a larger cell so as to form a superparti-

tion; at the final stage, all cells have been combined to form the universal partition at the

root.

Top-down methods are more common though are often augmented with bottom-up

methods. This is known asoverfitting and pruning a tree: a tree is grown top-down until

it is (deliberately) ‘too’ large, then pruned back by recursively combining cells, until a

‘right’ sized tree is found (this may be repeated iteratively). The pruning (cell joining)

criterion must, of course, be different from the growing (cell splitting) criterion.

Decision trees are used for regression, classification and clustering. The objective of

a decision tree is usually to find partitions of the predictor space whose cells are such that

the response variables of the cases in a cell behave similarly; or, such that the response

variables of two cases in different cells behavedissimilarly. Thus in a regression tree,

the objective is to seek partitions whose each cell contain cases whose responses fit the

X1 Sat, Sun{ }∈X1 Mon, Tue, Wed, Thu, Fri{ }∈

X4 winter=X4 summer= true
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same regression model well. In a classification tree there is one response,class, and cells

should ideally contain cases which are all in the same class with as few exceptions as is

possible. In decision tree clustering, cells should contain cases whose multivariate re-

sponses are ‘close’, according to some multivariate distance measure.
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Chapter 5 —Variable Reduction and Data Visualisation

5.1 Introduction

In order to visualise multidimensional data we wish to reduce its overall dimension-

ality to two or three to enable a graphical representation. The most common methods are

factor analysis, principal components analysis, and discriminant analysis, each of which

aims to replace a large variable set with a smaller variable set, the latter of which cap-

tures as much as possible of the interactional structure of the former. Of these, principal

components analysis (PCA) is the simplest, and arguably the most widely useful. The

new variables discovered by these methods (particularly PCA) have much utility in a

number of data analysis techniques, besides their usefulness in data visualisation. In high

dimensional data mining tasks in possibly noisy databases, variable reduction can prove

very useful in reducing computational complexity, and improving human conceptualisa-

tion of problems and data structures. It can prove especially so when the database has a

large number of strongly linearly dependent variables.

Other visualisation techniques are also important in representing complex underlying

structure in databases. Of course, graphs and charts of all manner can be starting points

in determining structures. Decision trees (section 4.3) are one example of an at-a-glance

distillation of multidimensional data structure. Other types of tree (e.g. dendrograms in

intrinsic cluster analysis, see section 8.5) can also be of use. Problem-specific visualisa-

tions may suggest themselves to the data analyst, whether they serve as exploratory

tools, or as final representations of discovered knowledge.

5.2  Principal Components Analysis

Suppose certain linear combinations of the continuous variables1

are to be introduced as replacements. Call them  where

(EQ 25)

or in matrix form,

1. The variable set to be reduced may be a set of predictor variables or of response variables, though not

usually a mixture.

u1 … up … uP, , , ,

v1 … vk … vK, , , ,

vk ak1u1 … akpup+ += 1 k K≤ ≤
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(EQ 26)

Thekth principal component of the data  is denoted .

 is defined as that linear combination which maximises the variance of the combi-

nation over theN observations, subject to the unity constraint,

(EQ 27)

The variance of a linear combination  is defined

(EQ 28)

where , the covariance of predictorsi,j over the observations; in matrix

algebra

(EQ 29)

whereC is the covariance matrix of over the observations. Often the variables are first

normalised to have unit variance; in this caseC becomes a correlation matrix (usually

denotedR).

The second PC is defined as that linear combination of which maximises

 subject to the constraints

(EQ 30)

The second constraint ensures linear independence (orthogonality) of the first two PCs.

The third PC maximises  subject to  and mutual linear independence

of the first three PCs, and so on, so that any two principal components are guaranteed

orthogonal.

Often  represents that linear combination of variables which best typifies the be-

haviour of  amongst the observations, and can be interpreted as the combination or-

thogonal to  which bestdistinguishes the different behaviours of  amongst the

observations. Further PCs often have clear interpretations, dependent on knowledge of

the field of study.

vk ak
Tu=

ui 1 i N≤ ≤( ); vk

v1

a1p
2

p 1=

P

∑ aTa 1= =

ak
Tu of u

var ak( ) akiakjσij
j 1=

p

∑
i 1=

p

∑=

σij cov ui uj,( )=

var ak( ) ak
T
Cak=

u

v2 u

var a2( ) a2
TCa2=

a2
Ta2 1=

a1
Ta2 0=î




a3
TCa3 a3

Ta3 1=

v1

u v2

v1 u



Applications of Data Mining Techniques to Electric Load Profiling

Applications of Data Mining Techniques to Electric Load Profiling 29

The  are the firstk eigenvectors of the covariance matrixC. Each eigenvec-

tor has a corresponding eigenvalue ; these are proportional to the proportion

of total variance in the data accounted for by the corresponding eigenvector, and

. Thus the firstk PCs account for

of the total variance where  are the variances of the original variables. The eigenvec-

tor matrix  relates the PCs to the original variables,

(EQ 31)

and . We can spectrally decompose the covariance matrix as

(EQ 32)

where  is the diagonal  matrix whose diagonal entries are the eigenvalues

, which expands to

(EQ 33)

5.3  Rotation of Principal Components

The loadings for thekth PC are obtained by scaling the coefficients :

(EQ 34)

and the  together form the loadings matrix, L. Note . Manual exami-

nation of the loadings is generally performed when trying to interpret the principal com-

ponents. Now if the firstk PCs account for a ‘significant’ proportion of total variance,

we know that the original data lie ‘close’ to ak-plane, the plane defined by thek eigen-

vectors. If these PCs are rotated in thek-plane, the rotated vectors still define the plane

with no loss of information; however, certain rotations of the components admit more

obvious interpretations. Thevarimax rotations are the unique orthogonality-preserving

rotation of the PCs which maximise the sum of variances of the loadings matrix (ob-

tained iteratively). The varimax-rotated components tend to have loadings which are

close to either 0 or 1 and hence have obvious interpretations as indicators of similarities

and dissimilarities between certain variables.
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5.4  Applications and extensions

We may wish to retain a subset of the original variables rather than linear combina-

tions, but use the PCs to select a reduced variable set. One method is to include the orig-

inal variable which has the greatest loading in, then that with the greatest loading in

 (unless already included), and so on.

PCs have particular validity in multiple simple linear regression. If the originalp pre-

dictors are replaced by theirp PCs, the resulting simple linear regression parameters

have variances inversely proportional to the variance of the corresponding PC. Thus low

variance (low eigenvalue) PCs are unreliable as simple linear regression predictors, and

are often omitted. Furthermore, the regression coefficient for a particular PC remains

constant regardless of how many other PCs are included in the model (since PCs are mu-

tually uncorrelated) and can thus be determined separately.

Two dimensional scatter plots for the cases’ loadings for the first two PCs may be

informative representations for multidimensional data (see FIGURE 2.). In particular

such plots can be used for the visual identification of outliers (marked x, y) and clusters

(marked a, b).

FIGURE 2.

Use of the first few PCs of the response(pattern) variables, rather than all the variables,

can reduce the size of a cluster analysis task.

In discriminant analysis, which relates to classification (chapter 7) in the same way

in which PCA relates to cluster analysis (chapter 8), the original cases

(variables ) each have an associatedclass variable (discrete response). The idea is

to obtain linear combinations of the predictors which have maximal discriminatory pow-

er between classes. Eigenvectors of  provide the coefficients for the linear combi-

nations, where  are (respectively) the within-group and between-group scatter

matrices defined by the class variable (related to the scalar scatters of section 8.3, which
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are scatter matrices summed over rows and over columns).

Factor analysis has similar aims to PCA but a more complex underlying model

which relies on the notion of a set of hypothetical, unobservablecommon factors; each

variable has an expression as a linear combination ofk common factors and one unique

factor. Factor analysis is popular in the social sciences, where data often contains sub-

stantial measurement error, and an underlying factor model can be postulated from the-

ory or experience.

Correspondence analysis is a form of PCA applicable to categorical variables, which

can be used to visualise the relationships between two categorical variables. Principal

components are induced from the contingency table of the two variables, and thecate-

gories of each variable are plotted as points on a graph which has principal components

as axes. Points which appear nearby on this diagram represent either similar categories

of the same variable, or highly contingent categories of the different variables.
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Chapter 6 —Regression in Large Noisy Databases

6.1  Formulation

It is convenient for us to suppose at this stage that the predictors

are all continuous. Regression on discrete predictors will be considered shortly. Regres-

sion requires continuous responses; usually multiple responses are dealt with separately

or somehow combined into one, so assume a single response. The general parametric

regression model (with additive errors) is

(EQ 35)

where  is theJ-vector of predictors,  is a vector of parameters , and

are the errors in the model for each case . If errors are assumed multiplicative,

we write

(EQ 36)

which can be transformed to the additive error model by taking logs:

(EQ 37)

where . The additive errors (or additive log errors in (EQ 37)) are assumed

independent and identically distributed (i.d.d), and generally assumed Gaussian.

The parametric model is linear when the regression functionf can be written in a form

(EQ 38)

(whether or not the  are linear). Thus fourier regression and polynomial regression are

linear.

Visual examination of scatter plots of the errors will usually be enough to determine

whether additive or multiplicative error assumptions are more appropriate. If the distri-

bution of errors in both cases is too far from Gaussian, a more complex transformation

of the data may be considered.

Theregressionequation is the criterion for parameter selection. Most common is the

least-square-error criterion:
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(EQ 39)

Weights  may be absent, or selected according to various criteria. Least-square-error

minimisation is particularly sensitive to outliers, which may distort the final regression

function. Outliers can be removed before regression modelling, or an error measure less

punitive to outliers may be adopted.

Non-linear parametric regression models (EQ 35) have many associated problems

[6]. Firstly it is difficult to select a form for the regression function unless there is a sound

domain-dependent precedent for choosing one. Secondly, different parametrisations are

possible for each candidate function, some of which may lead to poorly conditioned

equations. Thirdly, the regression equation is usually insoluble except by iterative meth-

ods, often with poor convergence rates. On the other hand, linear multivariate parametric

models (which have easily soluble regression equations) can rarely be found which fit

the data well in all parts of the predictor space. Since data mining tasks often have high

dimensional domains, and high-noise response variables which do not vary smoothly,

non-classical regression techniques which have greater flexibility are often preferable.

6.2  Stepwise Regression

It is supposed that the response  has a univariate, possibly weak, relationship

with each of the predictors  individually. Each univariate regression model is usually

linear with few parameters unless there is a particular reason to adopt a non-linear model.

Different models may be used for each predictor.

The basic idea behind stepwise regression is that each predictor is used in turn to

model the response. Having found the regression function for the first predictor, the ac-

tual values of the response  are differenced with the values  predicted by the

regression function, to create a new response variable. This can be thought of as

the original response ‘filtered for’ the effect of the first predictor. Next a new predictor

is selected and used to model the residual response. This continues until no more

significant relationships can be found.

The order in which predictors are used may be decided by heuristics; a simple linear

correlation coefficient can be computed for each predictor with the response and the

most highly correlated predictor used; or the regression function can be determined for
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each predictor, and the predictor resulting in the closest fit selected. Predictors may be

selected more than once.

It is simple to reconstruct a single equation for  in terms of the predictors by

chaining backwards, but there is no guarantee that the reconstructed model will be glo-

bally least-square-error.

6.3  Hierarchical Regression

In a hierarchical regression, an initial regression is used as a means of variable reduc-

tion. An initial regression model

(EQ 40)

is postulated, with the number of parameters in significantly smaller than the number

of responses in . In general, not all of the predictors  will be used; and in

general, not all of the cases  will be used at once—sometimes a separate fit is

determined for each case, or for each cell in a partition of the cases.

In the second phase, the discovered parameters  are now treated as

new response variables, and each in turn is regression modelled as a function of the

, usually only using those predictors which were not used in the initial stage.

The process is not normally extended beyond the second tier of regressions. Via back-

substitution, a single regression function forY in terms of  can be recovered, although

as with stepwise regression the errors are not least-square globally.

Example.Suppose we wish to model a database of analogue communications signals.

As a first step, we might decompose each signal into a linear combination of a handful

of preselected sinusoids, using linear regression; here the only predictor is time. Next,

any remaining predictors can be used to regression model the coefficients for each sinu-

soid.

6.4  Piecewise Regression and Non-Parametric Regression

6.4.1  Regression with Piecewise Polynomials

Consider fitting a polynomial regression model to the data in (FIGURE 3.). Simple

linear or quadratic curves do not fit the data well; even a cubic or a quartic fares badly,
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FIGURE 3. 1

and the danger of fitting higher and higher order polynomials is overfitting the data—

high order polynomial regressions tend to fit the noise rather than smooth the data. Ex-

tending to a multivariate case, where we would like to fit a surface or hypersurface to

noisy data with many local minima and maxima, any attempt to fit the data with a single

global regression function is almost certainly doomed, however complicated the form of

the function. In (FIGURE 4.), the same data have been fitted with two cubic equations,

each of which is least-square-error for a subdomain ofX.

FIGURE 4.

Not only is the fit much better than the single cubic fit in (FIGURE 3.), but the possibility

of fitting the noise rather than the trend is less likely than with a single high-order poly-

nomial. This is an example of piecewise polynomial regression.

6.4.2  Splines

Note the discontinuity at  in (FIGURE 4.) It is highly unlikely that the true nature

1. (FIGURE 3.) and (FIGURE 4.) depict hand drawn approximations to least-square-error cubic fits only.
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of the data is discontinuous at this point, or that the gradient should be discontinuous at

this point. If we fit the two cubics again, with the additional constraints that the com-

pound curve is bothcontinuous andonce differentiable at , we obtain a (cubic)regres-

sion spline. A spline is essentially a piecewise polynomial fit to data with additional

constrains at the junctions between constituent curves. These junctions (such as in

(FIGURE 4.)) are known as knots (since the constituent curves are ‘tied together’ by

continuity constraints at these points). Aninterpolating cubic spline for the above data

would pass through every data point, be continuous with continuous first derivative eve-

rywhere, and twice differentiable everywhere excepting the knots—every data point is a

knot for an interpolating spline. Clearly this is unsuitable for noisy data and what is re-

quired is asmoothingspline. A smoothing spline may have a knot at every data point.

We do not wish to interpolate every (or even any) point, so the regression equation con-

sists of restrictions on the least-square-error of the fit,and of continuity constraints.

Smoothing splines are an example of non-parametric regression—there is no preor-

dained fitting function or number of parameters; any ‘good’ description of the data will

do. Our univariate non-parametric model is

(EQ 41)

We do not impose a preset form for, but instead insist on certain constraints. If we insist

on continuity for, and continuity of first derivative for,f; continuous second and third de-

rivatives except at knots; and piecewise constant third derivative everywhere; thenf is a

cubic spline. Another way of phrasing these constraints is that the second derivative is

continuous and piecewise linear. If  is a cubic spline on the set of knots

, then equivalently it can be written in the form

(EQ 42)

The first four terms form a cubic polynomial and the last term is a sum ofkernel func-

tions centred at (internal) knots. The kernel functions are translates of

(EQ 43)

There is an alternative and (perhaps surprisingly) equivalent formulation for cubic

splines: define
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(EQ 44)

and  the set of all functions for which the integral in (EQ 44) exists. Then

the function in  which interpolates data at the knots and minimises (EQ 44)

is unique, and is anatural interpolating cubic spline (a natural cubic spline is one which

has zero second derivatives at the external knots ). The knot set is usually the en-

tire data set. When smoothing rather than interpolation is required, we drop the interpo-

lation constraint, but by adding a least-square-error component to (EQ 44), we obtain the

formulation for thenatural cubic smoothing spline:

(EQ 45)

Here the  are the predictor values for the observations and the  observed re-

sponses. The parameters of (EQ 45) are the weights, and the knot set  and are

known assmoothing parameters1. The knot set is usually the entire data set. The sparser

the knots the smoother the spline  (and the less closely it fits the data); the smaller

the weights , the smoother the spline also. Careful choice of smoothing parameters is

vital in spline smoothing, since too much smoothing produces near-linear splines with

poor fit, but too little smoothing tends to overfit the data—i.e. to fit the noise, not the

trend.  itself can be seen as a measure of smoothness for a functionf.

One common simplification is to take  where  is a common smoothing

parameter and  some estimate of the variance of.

6.4.3  Multivariate Smoothing Splines

Now extend the non-parametric model to a multivariate case:

(EQ 46)

The case whereJ = 2 is rather common, higher dimensionality less so. WhenJ = 2 the

1. An irony of the term ‘non-parametric regression modelling’ is that such models usually have more

parameters (albeit of the smoothing variety) than comparable parametric models.
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problem is to fit a smoothingsurface to the data. Recall the two derivations of univariate

smoothing splines. We can consider them as piecewise polynomial regression curves

tied by continuity constraints at the knots; or as minimisers of a compound least-square-

error/smoothness criterion. These extend to two different concept of multivariate

smoothing splines, respectivelyfinite element methods and(hyper-)surface splines. A

third concept of multivariate smoothing splines is provided by theblending function

methods andtensor product splines. These methods derive univariate splines for each

predictor  and blend them into a surface or hypersurface.

Finite element methods require reliable estimates for the partial derivatives at knots,

and will not concern us.

Surface splines for smoothing are analogues of univariate smoothing splines for the

bivariate case. Recall (EQ 42) which decomposes a univariate cubic spline into a univar-

iate cubic and a sum of kernel functions centred at knots. Note that the kernel functions

are translates of a basic function . For surface splines we seek a basic function

 which has rotational symmetry about the origin. Thus can be expressed as a

function of . Common choices are  (this is the direct analogue

of cubic splines); , which is used in thethin plate spline; and ,

the rotated Gaussian spline. The various basic functions optimise various different

smoothness measures . These ideas have natural extensions to higher dimensional

splines.

6.4.4  Kernel Estimators

Surface and hypersurface splines are examples of a broader class of non-parametric

models,multivariate kernel estimators. These methods are based around the summation

of kernel functions centred at various points, but do not necessarily obey any smoothness

criteria, like splines.

An example isnear neighbour regression, a family of kernel estimation methods

which estimate the value  as some function of the response values taken by points

in the sample data with predictor values ‘near’ to; for example, take the mean of the

response values for thek nearest neighbours to in the sample data.

6.5  Multivariate Adaptive Regression Splines and Related Models

The Multivariate Adaptive Regression Spline (MARS) [9], [10] is an ingenious non-
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parametric regression technique which combines ideas from regression tree models (re-

cursively fitting separate models to cells of a hierarchical partition) and from the method

of interaction splines. It is adaptive in the sense that its strategy adjusts according to the

local behaviour of the function to be approximated. It was designed for data sets with 50

to 1000 observations and 3 to 20 predictors though has been fruitfully applied to larger

problems [9].

6.5.1  Interaction Splines

The interaction spline is designed to model multidimensional data as a linear combi-

nation of low dimensional splines. The model is

(EQ 47)

where  are low (usually one or two) dimensional subsets of arguments from, the set

of predictors, and  are splines of appropriate dimension. The model is appropriate

when interactions between predictors are thought to be of low dimension. The criteria

for optimising the  is a global version of (EQ 45),

(EQ 48)

Choice of the predictor subsets is a crucial factor and requires prior knowledge of

which predictors interact and at what level.

6.5.2  Recursive Partitioning Recast

The basic regression tree model is

(EQ 49)

where  partition predictor space . The partition and the parameters

are estimated simultaneously using recursive hierarchical partitioning (divide and con-

quer strategy). A simple but popular choice for the is constant functions. We can re-

cast the regression function for the regression tree with piecewise constant fitting

function into a single regression function
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ĝp



Applications of Data Mining Techniques to Electric Load Profiling

Applications of Data Mining Techniques to Electric Load Profiling 40

(EQ 50)

where

(EQ 51)

If  is a step function  then thebasis functions  can be

expressed

(EQ 52)

Here the  are the  split points in thepth recursive partition, called for convenience

knots. Knot  splits the -th predictor;  carries the left/right informa-

tion about that split. Predictors may be selected for splitting several times.

6.5.3  Piecewise Linear MARS Model

(EQ 52) produces a discontinuous fitting function; the basic idea behind the MARS

model rids us of the discontinuities by replacingH, the step function, by a truncated pow-

er function

(EQ 53)

where the right hand side is defined as  if , or 0 otherwise. This

is thetwo-sided truncated power basis(compare (EQ 43)); in fact  is used, so that

the basis functions are piecewise linear.

The multivariate spline basis functions are

(EQ 54)

along with one constant term. Knots are always located at the projection of a data point

onto the axis of the relevant predictor. A problem arising with this model is that when

some attribute is selected for splitting more than once, corresponding basis functions

have power greater than one.
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However MARS adds a further generalisation to the model which rids us of this prob-

lem, and also allows us to use basis functions of arbitrarily low dimension at any stage

in the recursion. The idea is to generalise the set of basis functions (EQ 54) to include

interactions of every dimension . Lower order interaction terms are always avail-

able for selection or reselection at any stage. The same attribute can be selected many

times without incurring high order basis functions: each basis function added can only

feature that attribute once in its product. The process begins with only the constant basis

function , and after the st iteration ( ) adds two new basis func-

tions

, (EQ 55)

where  is one of the basis functions already selected,  is one of the

variablesnot already present in , and  is the knot location on that vari-

able. These three parameters are chosen so as to most improve goodness of fit of the new

model

(EQ 56)

(optimisation is with respect to the parameters ). It is not feasi-

ble (for problems of any reasonable size) to compute exactly optimal values for all these

parameters, and a number of sacrifices of optimality for speed are made by the MARS

procedure (see [11]) to achieve more reasonable computation times.

Note that the resulting model isnot a partition (it is exhaustive but not exclusive—

some regions of predictor space are relevant to several basis functions). This is best il-

lustrated by theANOVA decomposition1 of the MARS model:

(EQ 57)

The  are sums of basis functions involving exactly  predictors.

1. So called because the decomposition looks like that used in Analysis of Variance (ANOVA)
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For example,

(EQ 58)

 would be a piecewise linear spline in  formed fromM univariate basis functions of

the form of (EQ 53).

The lack-of-fit function used when deciding which basis function to add next is a

modified form of the generalised cross-validation score, GCV:

(EQ 59)

Normally, model complexity  is just equal to , the number of parameters being

fitted. The denominator is a term which is intended to counter the bias introduced by the

increased variance due to greater model complexity. GCV is comparable at any level in

the hierarchy (see [9]). In MARS it is modified by choosing

(EQ 60)

(  usually), where  is the number of non-constant basis functions being con-

sidered [10]. Larged penalises knot addition more severely, and results in fewer knots,

hence smoother fitting functions.

The MARS methodology opts for an overfitting and pruning approach to determine

a right-sized model. The user supplies a maximum number of basis functions to be dis-

covered in the forward selection algorithm; the backward pruning algorithm consequent-

ly removes some (typically about half) of them from the model. Each iteration seeks the

basis function whose removal either least degrades or most improves fit. The constant

basis function  cannot be removed (so there is never a ‘hole’ in the domain

in which no function is applicable).

The overfitting and pruning approach allows low order interaction terms to be select-

ed in the stepwise-forward part of the algorithm that will eventually be removed, but

which nevertheless serve as building blocks on the way to building higher order terms.
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6.5.4  Piecewise Cubic MARS Model

The piecewise linear MARS model with  does not have a continuous first de-

rivative, and tends to have a poor fit near to knots. Truncated cubics of a special form

can be used in place of the two-sided truncatedq=1 power basis. The positive versions

have the form

(EQ 61)

with analogous negative forms.  are functions of  chosen so that

the functions are continuous, with continuous first derivatives (second derivatives being

discontinuous only at ). This results in a final fitting function which is continuous,

with continuous partial derivatives. The positive form of the truncated cubic is illustrated

in (FIGURE 5.).

FIGURE 5.

Central knots (t) are placed at data points; side knots (, ) are placed at the mid-

points between central knots. An additional smoothing parameter limits the closeness of

consecutive knots of any one predictor: there are at least parameterL data points between

any two central knots.L=5 is typical. Note that the MARS model lack-of-fit function

(EQ 59) is always calculated according to a piecewise linear MARS model; the piece-

wise cubic basis functions are used to replace the piecewise linear basis functions only

once the model has been built.

MARS has been empirically shown not to claim a low error when presented with to-

tally random data, suggesting that MARS does not overfit (fit to noise). Also, when

asked to model data whose true underlying function has no interaction terms, research

has shown that MARS seldom produces terms with interactions.
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6.5.5  Extensions and Remarks

Semi-parametric models (regression models including some parametric terms sug-

gested by experience or theory, in addition to a non-parametric model) can be easily in-

corporated into the MARS model; the term in question can simply be calculated for each

datum, and included as an extra predictor variable. A priori restrictions on the maximal

dimension of interaction terms, as well as on the total number of terms, can be imposed.

Variables known or expected to have little or no mutual interaction can be prohibited

from appearing in the same interaction term. Model parsimony can be improved by spec-

ifying a penalty for introducing a new variable to the model, so that those variables

which have already been used for splitting are more likely to be picked again.

The total square error arising when using the piecewise cubic technique is generally

found to be a little higher than that arising when using the piecewise linear technique [9];

however, the piecewise cubic fitting functions usually entail lower square error than the

piecewise linear functions when the fitted models are tested against new data.

MARS uses a lack-of-fit criterion based on least-square-error, and is thus not locally

robust (i.e. extreme outlying records may distort the model locally). Friedman [9] rec-

ommends considering the removal of outliers before applying MARS. However, MARS

models are globally robust (altering an observation only has a significant effect on the

model near that observation).

6.6  Regression with Discrete Predictors; Mixed MARS Model

6.6.1  General Regression with Discrete Predictors

Theoretically there is no bar to using discrete variables as predictors in regression

equations. Ordered discrete attributes can be transformed to integer attributes which are

treated exactly as if they were real variables. Categorical variables takingV distinct val-

ues can be transformed intoV-1 binary attributes (taking values 0 or 1). For example a

variableA taking categorical values {cat, dog, mouse, rat} can be transformed to the

three variablesC, D, M, which take the value 1 if and only ifA takes the values cat, dog,

mouse respectively. WhenA = rat, . Such binary values can also be

treated exactly as if they were real variables. The principal problem with this approach

is that very high dimensional predictor spaces are likely to arise, and consequently very

sparse data.

C D M 0= = =
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An alternative means of dealing with discrete predictors involves partitioning the do-

main of the discrete predictors, and deriving separate regressions (using just the contin-

uous predictors) in each cell of the partition. The aim is to seek partitions for the discrete

predictors for which the resulting regressions have the best fits. If the partition is hierar-

chical, a regression tree results (see section 4.2). The principal drawback of this approach

is again data sparsity: each regression fit has only a fraction of the original cases with

which to construct a model.

6.6.2  MARS Model for Mixed Discrete & Continuous Predictors

An extension to the MARS model incorporates the use of categorical variables within

the same hierarchical partitioning procedure used for the continuous variables [10]. The

idea is that basis functions based on simple indicator functions can be defined on cate-

gorical variables, and these are allowed to compete on entirely equal terms with the con-

tinuous basis functions of (EQ 53), (EQ 54). Let be a categorical variable with domain

, and let  be non-empty subsets of categories, ,

. Then define a fitting function

(EQ 62)

 whereindicator function  is defined to be 1 if , or 0 otherwise. Coeffi-

cients  are determined by least squares. For a given the goal is to choose that set of

subsets for which (under least squares optimisation of the coefficients) the best fit is

obtained.  is a smoothing parameter, with lower producing smoother models

(smoother in the sense that they tend vary less as changes).

For a multivariate model with  categorical variables, multivariate indicator basis

functions  can be formed by taking the tensor product over all of the variables of the

univariate basis indicator functions, exactly as tensor products of spline basis functions

are used in a continuous multivariate MARS model. Thus an variate indicator basis

function takes the form

(EQ 63)

where  is some subset of values of for . When there are categorical var-

iables and  continuous variables, the model simply allows tensor products between

X

x1 … xk, ,{ } Al Al x1 … xk, ,{ }⊂

1 l L≤ ≤

f̂ X( ) al I X Al,( )
l 1=
L∑= L k≤

I X Al,( ) X Al∈

al L

al

L L

X

n

I

n

I X1 … Xn, ,( ) I Xj Alj∈( )
j 1=

n

∏=

Alj Xj 1 j n≤ ≤ n

m



Applications of Data Mining Techniques to Electric Load Profiling

Applications of Data Mining Techniques to Electric Load Profiling 46

discrete indicator functions and continuous spline basis functions. When a variable is be-

ing considered for addition into the model, if it is a continuous variable, tensor products

of the existing functions with various spline basis functions featuring that variable are

computed; if it is a categorical variable, products of existing functions with various in-

dicator basis functions featuring that variable are computed.

The ANOVA terms for a mixed continuous/categorical MARS model are similar to

those of the continuous model, but with an extra (optional) product of indicator basis

functions introduced into each of the sums in (EQ 57). Plotting of ANOVA terms with

1 or two variables (which can be generated from higher order terms by slicing) requires

that a separate plot may need to be generated for each subset occurring in the term

(which can become unmanageable where many categorical variables are present).

This scheme has a distinct advantage over the general schemes of 6.6.1 for using cat-

egorical predictors in regression models. There is no need to present more than one new

variable to the model for each categorical predictor; yet there is no need to partition the

entire domain into separate subdomains for every possible combination of categorical

variable values; instead, the domain for aparticular multivariate basis function becomes

split into two subdomains when and only when an indicator basis function of a categor-

ical variable is selected to be multiplied with that multivariate basis function. Thus only

at alocal level, where deemed appropriate, is the domain split according to the values of

a categorical variable, which helps to ensure that data sparsity does not become too much

of a problem.

Alj
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Chapter 7 —Classification Problems

7.1  Task Definition

Classification is also known as pattern recognition, discrimination, or supervised

learning. In a classification task there is one response attribute, which is discrete. The

response is seldom ordered—it is usually categorical, and may have some hierarchical

structure. The response variable is known as theclass variable, and its values as the

classes. If there are several discrete variables several separate classifications are usually

required. There may be any number of discrete and/or continuous predictors.

The objective of a classification task is to derive a rule or set of rules which deter-

mine, given a set of cases (thetest data) with known predictor values but of unknown

classes, which class each case does, or is most likely to, belong to. These rules must be

determined from another set of cases (thetraining data), whose predictor valuesand

class values are known. There are many, many data mining tasks which are classification

tasks, such as diagnosis of illness from databases of medical records, fault diagnosis

from engineering data, and classification of customers in sales databases.

As well as long established classical statistical methods for classification, there is a

plethora of more recent approaches, including the use of decision trees and rule induc-

tion; density estimation; and artificial neural networks.

The best known statistical classifier is the method of discriminants, which works

only for binary class variables (general discrete variables can be converted to binary var-

iables; see 6.6). They aim to find the (rather simple) surface or hypersurface in predictor

space which best divides the cases into the two classes. Linear and quadratic discrimina-

tion surfaces are used most frequently.

Artificial neural network approaches to classification are somewhat fashionable, but

suffer from very slow training (i.e. model calculation) times. Moreover, a trained neural

network is a ‘black box’—given an input, a neural network always returns an output, but

it is virtually impossible to determine any reasoning behind the output. Thus they tend

to add very little to the understanding of the modelling task.

Density estimation methods employ non-parametric (distribution-free) statistical

models to estimate the multivariate probability distribution functions for each class val-

ue. At any point in predictor space, the class value which has the highest probability den-

sity estimate is predicted as the true class value corresponding to that point in predictor
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space.k-nearest neighbour (kNN) classification is a very simple (but sometimes effec-

tive) example; the relative proportions for the observed class values amongst thek cases

‘closest’ in predictor space are used as the estimates for the probability densities. Eucli-

dean distance is often used as the proximity measure.

There are many decision tree classifiers available, each with their own strengths and

weaknesses. With each, the principal motive is to seek hierarchical partitions in predictor

space within whose cells as many cases as possible belong to the same class or classes.

Information theoretic measures, most commonly the information gain from branching on

the values of a predictor, are often used in deriving the partition.

ID3 [12] is an early decision tree classifier which can be seen as the forbearer of

many decision tree classifiers. We briefly describe its methodology. Suppose an attribute

 with values  is used to partition the set of cases  into

exhaustive exclusive subsets  so that ,

where  is the value of theith case in thejth variable. Let there be two classes,

denotedP (positive cases) andN (negative cases) and defineclass entropy over any sub-

set of cases  as

(EQ 64)

where  is the number of positive-class cases in, and  the number of negative-

class cases (the usual entropy formulation, restricted to a binary variable). Define theen-

tropy of partitioning on  to be

(EQ 65)

Then the information gain from partitioning on is

(EQ 66)

which is maximised by minimising  over the candidate variables .

Note that  is the mutual (or trans-)information between and the class variable.

ID3 uses a  dependence test to determine (locally) when to stop partitioning. ID3

is a very simple decision tree classifier; descendents of ID3 have been adapted to non-

binary class variables, and to deal with missing data, continuous predictors, structured
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categorical predictors, and so on. Variant methods differ significantly in tree building di-

rection, their splitting/joining criteria, the criteria for ceasing splitting/joining, and the

amount and type of tree pruning.

Rule sets governing in which class a test datum should reside can trivially be induced

from a decision tree. A few approaches to classification seek a rule set without using de-

cision trees. For example, ITrule (see [3]) seeks simple inference rules in multivariate

data using a beam-search.
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Chapter 8 —Cluster Analysis

8.1  Task Definition

As noted, classification is also known as supervised learning. Because the training

data are of known class, the task of predicting class for the test data is supervised by what

the training data have told us about the nature of the class variable. Suppose now that

there is no class variable, but that we wish to group the cases into (usually exhaustive

and exclusive) subsets, within which cases have similar attribute values. In effect we are

aiming todiscover a meaningful class variable (the class being the index of the subset to

which a case belongs); this is sometimes called unsupervised learning, and also known

as cluster analysis or clustering.

We can divide clustering problems intointrinsic clustering andextrinsic clustering

[14]. In intrinsic clustering, all variables can be regarded as both predictorsand respons-

es; cases are known as patterns. Our brief is simply to find clusters of patterns which are

similar—or alternatively to find clusters of patterns such that patterns from different

clusters aredissimilar.

In extrinsic clustering, there are distinct predictors and responses; we use pattern to

mean the values taken by theresponse variables of a case. Our aim is to find clusters of

similar patterns as before; but the rules governing which cluster a case belongs to are de-

pendent only on the values of the non-pattern (predictor) variables of that case (i.e. must

be extrinsic to the patterns).1

In either type of clustering, it is possible (but not always desirable) to reduce the pat-

tern data to an proximity matrix between Npatterns, so that only the distances be-

tween patterns, rather than their attribute values, are used to determine the clusterings.

Clustering methods can be further dichotomised into hierarchical methods and non-

hierarchical methods. In a hierarchical method a hierarchical partition is discovered

(which can be formed top-down by splitting or bottom-up, by joining; see section 4.3).

In a non-hierarchical method, a single partition is sought (rather than a tree-structurable

hierarchy of partitions). This may require an a priori and somewhat arbitrary choice for

the number of cells (clusters) in the model.

Sections 8.2 and 8.3 deal with metrics and notation for cluster analysis. Sections

1. Intermediate methodologies may use predictor variables to guidebut not dictate cluster membership.

N N×
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8.4 through 8.7 describe various intrinsic clustering algorithms, and section 8.8 describes

ways in which extrinsic variables are used to determine clusters.

8.2  Distance Measures

Given any two patterns, we require adistance or dissimilarity measure between

them. If the response (pattern) attributes are all continuous, Euclidean measures are most

common;simple Euclidean distance is

(EQ 67)

andweighted Euclidean distanceis

(EQ 68)

where  is a vector of weights for the responses. The weights may be

chosen subjectively according to an experts assessment of the relative importance of the

responses; or they can be set to be inversely proportional to the sample variance of the

kth response, though this weighting presents a problem in that it tends to maximise with-

in-cluster variance, contrary to the objectives of clustering.

Natural extensions of Euclidean distance to discrete responses can be applied where

patterns consist partly or entirely of discrete variables. There are also natural Euclidean

measures for the distance between two continuousvariables, given all the cases. The nat-

ural distance measure between discrete variables is their mutual information (section

3.3).

8.3  Notation

Recall the notation for partitions and hierarchical partitions of predictor space

(section 4.2). An intrinsic clustering is a partition on the set of all patterns,C. The nota-

tion of section 4.2 can be analogously applied to partitions and hierarchical partitions of

the set of all cases (replace all instances of with ). An extrinsic clustering can be

thought of as a partition on predictor space or a partition on the set of cases/patterns, and

the notations are interchangeable.

Call a cell of a clustering  acluster. If , we de-

fine the P centroids (or cluster centroids) of  to be new pseudo-patterns
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, each of which is somehow representative of the patterns con-

tained in  respectively. If the pattern attributes are continuous,

means are taken; if pattern attributes are discrete, modes or medians may be appropriate.

In the continuous case, define for

(EQ 69)

where  is the value of thekth attribute for centroid ,  the value of thekth

attribute for theith pattern, and  the number of patterns in .

Given a clustering and its centroids, we can decompose the amount of (Euclidean)

scatter (variability) in the pattern data into thewithin-cluster scatter and thebetween-

cluster scatter. Define thegrand or pooled centroid to be

(EQ 70)

where  is the value of the pooled centroid in thekth pattern attribute.

Then thepooled scatterS is defined

(EQ 71)

Thepth cluster scatter is defined

(EQ 72)

Thewithin-cluster scatteris defined

(EQ 73)

and thebetween cluster scatter is defined as the scatter for the centroids:

(EQ 74)

It is easily shown that  (see [13] or [14]), so that scatter is decomposed
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into between-cluster and within-cluster scatter. Thus if the distance measure employed

in a clustering algorithm is simple Euclidean, there is no difference between the two

clustering criteria ‘minimise distances to centroids within groups’ and ‘maximise dis-

tances between group centroids’. We say that  is theproportion of scatter account-

ed for by clustering .

8.4  One-Pass Clustering

A computationally very efficient but otherwise inferior clustering algorithm can be

used to generate a clustering having examined each pattern only once.

Firstly the patterns are arranged into a fixed order. This order may be arbitrary, de-

cided by application heuristics, or determined systematically (say, in order of proximity

of the patterns to the pooled centroid). Pattern number one is assigned to cluster. Pat-

tern number two is assigned to cluster also, if its ‘distance to cluster’  is less than

a certain threshold value, or otherwise assigned to. Subsequent patterns are assigned

to existing clusters if their distance to the nearest existing cluster is less than the thresh-

old, or otherwise to new clusters, until every pattern is assigned. ‘Distance to a cluster’

may be variously defined (e.g. Euclidean distance to cluster centroid; Euclidean distance

to nearest member of cluster; etc.) resulting in a variety of one pass methods. One-pass

clustering is primarily used to obtain an initial clustering for a subsequently employed

iterative clustering algorithm. The threshold can be varied to obtain a hierarchy.

8.5  Graph Theoretic Hierarchical Clustering

A variety of graph theoretic clustering algorithms are in use which only employ the

 proximity matrix  (calculated from theN patterns), and not the pattern data

themselves, to determine clusters. They may in some cases be somewhat restricted by

their inability to access the original pattern data.

Note that, assuming  and , there are

 distances to consider, which is prohibitive whenN is very large. Before

clustering, the distances are replaced by their rankings, so that the two closest patterns

in the database have rank distance 1, and the two most distant patterns rank distance

 (ties in proximity are usually assumed absent, or can be broken arbitrar-

ily).

The two best known graph theoretic algorithms for clustering aresingle link cluster-
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ing andcomplete link clustering. The algorithms may be applied in either top-down (di-

visive) or bottom-up (agglomerative) versions, with no difference to the resultant

hierarchical clusterings. Here consider the bottom-up versions, which begin with each

pattern in its own singleton cluster. A series of threshold graphs is constructed on the

nodes, where every node represents a pattern. The first threshold graph has only one

edge, which connects the two patterns with rank distance 1 (i.e. the closest two patterns).

Thekth threshold graph hask edges, connecting each pair of patterns with rank distance

less thank+1. In single link clustering, theconnected subgraphs of a threshold graph are

interpreted as the clusters. In complete link clustering, the completesubgraphs of a

threshold graph are interpreted as the clusters. The nodes in a complete subgraph are

such that every node is connected to every other node. Where two maximally complete

subgraphs overlap, the earliest one formed takes precedence. (FIGURE 6.) gives a few

threshold graphs for a hypothetical data set.

FIGURE 6.

Fork=1, (1,2) forms a single-link cluster and a complete-link cluster (since nodes 1 and

2 are connected,and form a complete subgraph). Every other node is in a singleton clus-

ter. Byk=4, (1,2,7) forms a single link cluster, but not a complete link cluster (since 2

and 7 are not connected). (1,7) is not a complete link cluster since node 1 is in (1,2) which

takes precedence. Atk=6, there are just two single link clusters, and (1,2,7) is a complete

link cluster. Byk=8, there is only one (universal) single link cluster; (1,2,7) is still the

largest complete link cluster. Byk=12, (1,2,6,7) is a complete link cluster, as is (3,4,5),

but not (5,6,7), since (1,2,6,7) takes precedence.
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Since if any pair of patterns are in the same cluster in thek-th threshold graph they

will still be so in the (k+1)-th, the sequence of clusterings is hierarchical. Single link

clustering tends to form ‘stringy’ drawn-out clusters; complete link clusters are usually

compact and near hyperelipsoidal.

Other graph theoretic methods employ a cluster criteria (on subgraphs of threshold

graphs) that is intermediate between connectedness and completeness. Hierarchical clus-

terings can be visualised in a dendrogram, a type of tree in which the height on the page

at which two nodes are joined indicates the relative distance of the nodes. A dendrogram

corresponding to the single link clustering based on the threshold graphs of (FIGURE 6.)

is shown in (FIGURE 7.).

FIGURE 7.

8.6  Non-Graph Theoretic Hierarchical Clustering

If pattern variables are discrete, it is possible to form a hierarchical partition by start-

ing with the universal cluster (which contains every pattern) and, at each stage, selecting

a pattern variable on which to partition; each node in the decision tree has one child for

each value of the variable selected for partitioning. The variable selected is that which

‘best predicts’ the other variables: choosing that variable which has least sum of mutual

informations (see section 3.3) with the other variables is one option.

If the pattern variables are continuous, the variable selected for partitioning might be

that with the greatest sum of correlations with the other variables. Another option is to

partition not on an explicit pattern variable, but on the principal components of the pat-

tern variables. The first variable selected for partitioning is the first PC, the next the sec-

ond PC and so on. Such algorithms can be termeddirect splittingalgorithms, orintrinsic

decision tree clustering.

TheFiltering Algorithm is a hierarchical version ofK-means clustering (see 8.7). An

initial binary tree forms the first clustering. Then each pattern is ‘filtered down’ the hi-
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erarchy, by assigning it to the closest of the two cluster centroids available at each binary

split. An initial binary tree might be obtained from the methods of the preceding two par-

agraphs.

TheBinary Splitting Algorithm divides a set of patterns into two clusters, and applied

recursively generates a hierarchical clustering. If the clusters are denoted ,

then the weighted averages of thekth variable over the two clusters are

(EQ 75)

and the error of a binary partition is based on the sum (overK variables) of the squared

differences between these averages,

(EQ 76)

 The weights  are usually the number of observations combined into the pattern

. Initially  is empty. The pattern which most decreases or least increases the er-

ror given in (EQ 76) is transferred to  at each step until  is empty. The best of

the  partitions thus examined is selected.

TheTwo-Way Splitting Algorithm(Hartigan, [13]) does not distinguish between pat-

terns and variables: the objective is to partition the pattern matrix  by simultane-

ously building a hierarchical partition of variables and a hierarchical partition of cases,

with the objective that the responses within any cell (cluster) have a variance less than

some predetermined thresholdT. Transposing the pattern matrix (so cases become pat-

tern variables and vice versa) does not affect the resulting two-way clustering. Initially

there is one universal cluster. At each stage, either that column or that row which has the

greatest variance is partitioned according to the binary splitting algorithm (preceding

paragraph), excluding from consideration those rows or columns whose variance is less

than the thresholdT. As well as the marginal hierarchies on variables and cases, a joint

hierarchical partition is generated on both.

Hartigan [13] also presents an analogous technique based on joining (variables/cas-

es) rather than splitting.
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8.7  Partitional Clustering

If there are only a handful of patternsN and a prefixed number of clustersP, it may

be reasonable to exhaustively calculate the within-cluster scatters for all possible clus-

terings, and select the clustering with the least within-cluster scatter. However unless

bothP andN are small, exhaustive search is computationally infeasible, and local opti-

misation of some form must be used to estimate the ‘best’P clusters. The most widely

used partitional clustering algorithm is known asK-means clustering (P-means in our

notation). Here it is presented in a form which allows the number of clustersP to vary

(slowly) from an initial preset.

1. Select initialP clusters (forming a partition) and compute cluster centroids.

2. Generate a new partition by in turn assigning every pattern to the cluster whose cen-

troid it is nearest to.

3. Recompute centroids.

4. Repeat 2 and 3 until no patterns are reassigned in 2.

5. Adjust P by splitting large clusters, and/or merging small ones, and/or removing

small outlying clusters. Repeat from 2.

Various methods can be used to compute the initial clusters (step 1), and various cri-

teria used to decide when to stop. The details of the algorithm can be varied substantially

to produce many different clustering algorithms. An important variation is to introduce

some random perturbation of the clusters after stage 3, allowing the algorithm to buck

local optima—a simulated annealing approach. These algorithms are good at finding

compact hyperelipsoidal clusters.

Mixture Decomposition (a.k.a. statistical pattern recognition) is a statistical approach

to clustering, in which patterns are assumed to have been drawn from one ofP underly-

ing populations of known distribution. Hill climbing is used to obtain a locally maximal

likelihood estimate for the memberships of patterns to populations—the principal prob-

lem is formulating the underlying model.

Density Estimation approaches to clustering operate by choosing as cluster centres

the local maxima of some density estimate in pattern space. Clusters in such a scheme

are essentially regions of high density in pattern space. Simple histograms as well as

non-parametric estimates of pattern density have been used.
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Fuzzy Clusteringdoes not impose that any pattern should belong to just one cluster,

but instead assigns degrees of membership  for each pattern to each cluster. The

objective is to iteratively recluster so as to minimise some measure of ‘fuzziness’ whilst

maximising between cluster distance.

8.8  Using Variables Extrinsic to Pattern

8.8.1  Using Extrinsic Ordering

Thus far we have examined only intrinsic clustering methods. One helpful piece of

extrinsic data we might employ when clustering patterns is a non-strict ordering on the

patterns (an ordered discrete extrinsic variable). Most commonly this will be a temporal

variable measured on each case. If we restrict the form of the clustering so that each clus-

ter must represent a contiguous time interval, the number of possible clusterings is very

dramatically reduced. Fisher (see e.g. [13]) uses such a restriction to facilitate an exhaus-

tive search of partitions, practical for moderateN andP. If a hierarchical partition is

sought, Fisher gives a particularly simple and rapid algorithm which repeatedly splits the

time interval, and is practical for even very largeN, P (though does not guarantee a glo-

bally optimal partition).

8.8.2  Using Extrinsic Categories

As well as simple temporal orderings there may be categorical information which can

be used to determine cluster structure (but which is not part of the pattern). If there are

continuous variables we wish to exclude from the pattern (i.e. continuous predictors), we

can discretise them (partition them into ordered discrete variables).

Categorical predictors can be used in various ways to guide cluster formation. As-

suming all predictors are discrete, first let us compress the total number of cases (pat-

terns) into the reduced set ofatomic patternsor atoms; each atomic pattern is the

centroid of all those patterns whose categorical predictor values are identical. If

 are the initial cases, let  be the induced atomic

patterns withkth response

(EQ 77)
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where  is theith non-empty cell in the maximal partition of predictor space. Nat-

urally, atom  has associated predictor values equal to the common predictor values of

its constituents. The maximal partition of predictor space is that partition in which every

cell represents a unique combination of attribute values, .

Such a cell is empty if there is no pattern matching this specification.

We can now perform any intrinsic clustering algorithm thus far described on the

atomic patterns , rather than the original cases. Essentially we thus re-

strict our clustering technique so that it is forced to put cases with identical predictor val-

ues in the same cluster. We will call this methodologyatomic clustering.

It may be prudent to modify any atomic clustering algorithm so that theweightof (i.e.

number of initial patterns represented by) each atom is taken into account when calcu-

lating centroids, scatter measures, and so on. Moreover, information about the within-

atom spread or scatter can be retained and utilised in calculating the within-cluster scat-

ters.

Note that atomic clustering does not make any restrictions about the nature of the pre-

dictor variables represented within a cluster. A related approach, which we will callex-

trinsic decision tree clustering, allows less freedom for predictor values in a cluster. The

idea is to cluster by recursively partitioning the predictor space using one predictor at a

time, so as to locally maximise between-cluster variationof patterns (or minimise with-

in-cluster variation). At each stage, the domain of one predictor is to be partitioned; the

centroidal patterns corresponding to each predictor value can be treated as the patterns

in any intrinsic clustering algorithm. The ‘best’ predictor and ‘best’ partition of that pre-

dictor’s domain should be used at each stage.

A great advantage of this methodology is that each constituent clustering problem

has at most  patterns to cluster (in the usual notation); a disadvantage is the in-

flexibility and local greediness of the approach.

Neither of the above approaches allows the ‘splitting’ of atoms, a restriction which

may need to be addressed when an atom is built from constituent patterns which are

markedly dissimilar—i.e. when cases with identical predictor values have diverse pat-

terns.
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Chapter 9 —The Load Profiling Task

9.1  Task Selection

After consultations with the PhD project’s Sponsor organisation regarding their da-

tabases, two particularly promising data sets were identified for investigation using data

mining techniques: fault data for high voltage (HV) lines, and half-hourly electrical load

readings for customers of known and various type.

The fault database comprised several thousand abnormality reports on HV power

lines. For every interruption, attributes recorded included data and time of interruption;

method(s) of fault clearing; direct and contributory causes where known; main equip-

ment/components involved; age and manufacturer of equipment; and information con-

cerning progress of restoration (major faults are restored in several stages, and various

data recorded for each stage); and more. Further, some records had plain language en-

tries describing aspects of the incident.

The faults database was characterised by a great number of missing data (especially

regarding the cause of faults), and of subjective entries (particularly the plain language

entries). The rather non-specific objectives of the data mining task were to seek out in-

teresting generalisations about the fault data (for example, regional and seasonal trends);

and to identify any structure underlying the data which was not previously known.

The half-hourly load databases comprised the meter readings every half hour, over

some years, for various customers, together with information on each of the customers,

and hourly weather variables (temperature, wind speed, humidity, cloud cover and rain-

fall) and daily sunset times, for the period. The first such database comprised load data

for business customers on monthly billed tariffs; their tariff codes, two-digit Standard In-

dustrial Classification (SIC) codes, total consumptions, maximum demands, and load

factors were supplied. A second database of interest comprised quarterly billed business

customers, and a third comprised residential customers; customer information for these

databases derived from customer questionnaires. The data mining task was to analyse

daily load/time-of-day profiles with regard to their dependencies on the weather, day

type, month, and customer information. This type of task is known as load profiling.

The half-hourly load profiling task was selected, primarily because the data structure

is simpler (each record the same size and complexity) and the data contains less ambi-

guity (less missing data; less subjective data). There is a greater depth of literature on
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load profiling and forecasting than on analysis of line fault data.

At the Sponsors’ behest, only the monthly billed customer database was studied for

this PhD project, rather than also the quarterly billed business customer or the domestic

customer databases.

It is worth noting that line fault databases are thought to contain much hidden and

valuable information, and that data mining techniques are not necessarily less applicable

to this problem than to the load profiling task.

9.2  Importance of Load Profiling Tasks

The relationships between daily load profiles and knowable factors such as weather

conditions, temporal factors, and customer characteristics, are known to be complex,

non-linear, and have many mutual interactions. A better understanding of the behaviour

of daily load profiles is desirable since the load shape, as well as the daily peak load, are

vital factors in planning the production and pricing of electricity. In the short term, it is

essential to know with as much accuracy as possible what the total and local system de-

mand will be in the next minutes, hours, and days, so that generators with various start-

up times and start-up costs can be switched on or off or vary their output levels so as to

optimise the total efficiency of generation. This is the domain ofShort-Term Load Fore-

casting(STLF), and STLF methodologies often utilise various daily load profiles to this

end.

Medium- and long-term forecasting seeks to predict daily peak load and load shape

weeks, months, and years hence. Load shape and peak load are affected by demographic

and socioeconomic trends as well as seasonal and weather factors, and so load profiles

disaggregated according to socioeconomic/demographic factors are of particular impor-

tance in longer term planning.

Most of the research until now into the behaviour of load profiles has been for the

purposes of short/medium-term and (particularly) long-term forecasting. However, load

profiling is of particular interest at current in the United Kingdom because of the unique

competition structure which is legally imposed on the UK electricity industry. All elec-

tricity customers in England and Wales, irrespective of their location or their peak or an-

nual demand, can choose from which licensed UK supplier they purchase their

electricity.

Whilst the purchase costs of electricity to the supplier are subject to daily and sea-
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sonal fluctuation, the supplier is unable to pass on the price variation and subsequent risk

to the customer because most of these customers are not equipped with intelligent two-

way metering. In order to minimise their risks and maximise profits, suppliers need flex-

ible tariff structures tailored to the load profile of the customer being charged.

On the other hand, there is so much diversity in customer profiles that it would hardly

be viable to negotiate every customer’s tariff on the basis of their load profile history.

Rather, a manageable set of profiles intended to represent as much of that diversity as

possible can be used to design a manageable set of tariff structures.

In the case of potential rather than existing customers, the supplier has effectively no

available detailed profile data at all. In order to offer tariffs that are competitive without

incurring undue risk on the part of the supplier, the variations between load profiles from

customer to customer and from day to day must be better understood. Such is the variety

of load profiles in the population that the deliberate ‘poaching’ of customers

having unusual (but advantageous) load shape with the offer of a tailored tariff may be

viable, where such customers can be identified.

Hence there is a need for reliable models of load shape which attempt to explain the

half-hourly and the daily and seasonal variations in load as responses to the time of day,

the time of year, weather conditions and known or observable customer information.

Nor is tariff determination the only reason to study models of load shape. As well as

the well documented importance of profile models in load forecasting, concise sets of

‘standard profiles’ that nevertheless maximally capture load shape variability are desir-

able in load flow analysis.

9.3  Objectives of the Load Profiling Task

Customers of differing types and characteristics have differing daily load shapes. Not

only does load shape differ according to the weather, the day of the week, and the time

of year, but it does so in a different manner for customers of different characteristics.

Given a set of customers, their recorded attributes, and their half-hourly demands over a

period of some months, the primary objective of our load profiling task, agreed upon

with the Sponsors, is: to build models which estimate, for certain subsets of customers,

their load shapesand confidence estimates for those load shapes, for different weather

conditions, times of year, and days of the week. The generation of sets of ‘standard pro-

files’, which are not too large but still capture most of the variability in the database, is
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part of that task. This will be formally formulated in Chapter 10.

Secondary objectives include producing models and visualisations which help to pro-

mote understanding of whatever underlying structures there may be in the load data; and

identification of the relative importance of, and interactions between, the various predic-

tor variables (such as weather, temporal variables and customer attributes).

To give some idea of the huge variety of load shapes existing in the business custom-

er databases to be studied, some 3 dimensional overviews of seasonal variation in load

shape are presented in (COLOUR FIGURE 1.) to (COLOUR FIGURE 4.), which are

drawn from a 1994/5 database of business customers’ loads. The y-axis shows time of

day, the x-axis shows time of year, and the z-axis (which is represented on a smoothly

changing scale of colour) shows the corresponding half-hourly load. A full explanation

of this type of colour load diagram is given in section 12.5. These diagrams demonstrate

that not only from customer to customer but from day to day, load shape can vary in

many different ways; they go some way towards showing what a difficult task load shape

modelling can be, and why data mining methods which can adapt to such extreme vari-

ation are of importance in load profiling problems.

9.4  A Review of Literature on Short-Term Load Forecasting

9.4.1  Overview

Short-Term Load Forecasting is a field of study with certain relevance to load profil-

ing (although load profiling does not aim to predict hourly or half hourly total system

load in the immediate future—the aim of STLF. The principal common ground between

these fields of study is that practitioners from either domain must find ways of account-

ing for effects of weather, day-of-week, time of year, and daylight saving clock changes

in their models. The identification and modelling of special days and periods (bank hol-

idays, Christmas and Easter vacations, school holidays, periods of industrial action, and

so on) is also of interest to either practitioner. However in STLF considerable attention

is paid to modelling the hour-to-hour variations in load, and accounting for hour-to-hour

errors in the forecast, using time series analysis. In load profiling, modelling detailed

hour-to-hour variation in load as a time series is not the intention; rather we aim to ac-

curately model the variation indaily load shape due to customer and temporal variables.

There is somewhat more literature regarding STLF than load profiling; [15] provides a

good overview and thorough bibliography. A review of some salient examples of load
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forecasting procedures (next) precedes a review of load profiling literature (9.5).

9.4.2  United Kingdom Short-Term Load Forecasting Methodology

The UK STLF regime is described in the report [16]. An adaptive regression tech-

nique with many levels is employed, and human judgement is required at certain stages.

Separate models are derived for GMT and BST1, since the effect of daylight saving on

load is quite dramatic; and for weekdays, Saturdays and Sundays, as load shape varies

substantially between these day types—six models in all.

A number ofcardinal points of the daily load shape are selected, usually at maxima,

minima and inflections of the load shape. Using historical data, loads at each cardinal

point are regression modelled by a low order polynomial in three weather statistics: ef-

fective temperatureTE— an exponentially weighted average of recent temperatures; ef-

fective illuminationEI; and the cooling power of the windCP. These are derived from

basic weather data. A slowly changing quartic polynomial inn, the day number, accounts

for seasonal changes.

From these cardinal point models, historical data is reconstructed intobasic demand

(hypothetical loads at the cardinal points affected by neither weather nor day of the

week) by subtracting the weather/day-type models from total demand. To produce target

day load forecasts (usually just one day ahead) basic demand is reconstructed into pre-

dicted demand by reintroducing the weather/day-type model using the target day’s

weather forecast.

The final stage is to construct a continuous profile for the target day from the cardinal

point forecasts. This is done by selecting a profile from the historical database which is

likely to be similar to the profile for the day to be forecast, and stretching and compress-

ing it so as to force it to interpolate the forecasts at the cardinal points. It is important that

the historical profile selected is from the same time of year (and ideally day of week) as

the target day, possibly from a previous year, so as to capture seasonal variation in load

shape. Bank holidays are treated as either Saturdays or Sundays (according to experi-

ence) in the model building phase; days adjacent to bank holidays (window days, which

are known to have perturbed load shapes) are treated normally in the model building

phase. However in the interpolation phase, the historical profile selected is usually taken

1. Greenwich Mean Time; British Summer Time.
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to be that from the same holiday/window-day from the previous year.

The UK forecasting method nicely illustrates many of the complicating factors in

load profiling tasks, and some common ways to deal with them. Of particular interest is

the manner in which the effect of weather on historical loads is modelled using multiple

regression, and then the modelled effects ‘filtered out’ to recover hypothetical ‘weather-

free’ loads. We shall refer to this asdeweathering, and to the subsequent reintroduction

of weather effects given certain weather conditions,reweathering.

9.4.3  Load Forecasting by Identification of Similar Previous Days

Moghram & Rahman [17] describe a Knowledge Based Expert Systems (KBES) ap-

proach to forecasting. Based on a large historical database of daily profiles, the KBES

selects a past reference day expected to be similar in profile to the target day. This is an

automation of a task performed using human judgement in the method of section 9.4.2.

The KBES also has rules which reshape the profile of the reference day based on weather

and any other factors expected to cause variation.

Another KBES is described by Jabbour et al. [18]. A historical database of profiles

and weather conditions is searched to find the eight days whose weather conditions are

the eight nearest neighbours to the weather forecast for the target day (nearest by weight-

ed Euclidean distance). The eight corresponding load profiles are averaged to produce

the basic forecast, which is modified by various means.

Rahman & Bhatnagar [19] also describe a system which averages profiles from days

with weather similar to that forecast for the target day. They advocate the use of four sep-

arate models for the different seasons, but note that load behaviour changes more rapidly

at the boundaries between the seasons; at seasonal boundaries, both the appropriate mod-

els are implemented and monitored for accuracy.

In a related approach, Dehdashti et al. [20] perform an initial hierarchical clustering

of weather patterns. Variation within each cluster is assumed inevitable and due to un-

known factors, and consequently it is the mostrecent days in the appropriate cluster

(rather than the most similar) which are used as reference days. The data library used is

different for different times of the year, the transitional periods between seasons having

more data since these are the most unpredictable periods. Different weather variables

were used for each time-of-year period and each time-of-day period.
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9.4.4  Forecasting Procedures Using Spectral Analyses

Lijesen & Rosing [21] propose some unusual ideas to model weather effects when

the weather is changing rapidly.Nominal weather conditions are averaged from either

the seasonal historical weather, or the recent past weather. They then calculate the devi-

ation between the weather forecast for the target day and the nominal weather, and use

this to calculate thetotal amount of energy which should be added or subtracted from a

weather-independent profile forecast for the target day. How this energy should be dis-

tributed over the target day is determined from aspectral analysis of the weather depend-

ent load over the recent past.

Many STLF techniques involve spectral analysis of recent or historical loads. Spec-

tral analysis is a form of linear regression analysis for multiple responses problems, in

which the fitting functions are selected especially so as to represent certain features

known or postulated to affect the multiple responses additively.

The idea is to identify a small set of functions of time which account for the majority

of the variation in the profiles under consideration. If the load profiles

 each takeT values (T=48 for half-hourly profiles), we seek a

set ofM fitting functions  (whereM is much less thanT)with

the objective that least-square-error regressions

(EQ 78)

for each of the  over theT time values yield low square errors.

TheM functions  may consist of preordained functions selected by an expert; the

principal components of the profiles (see section 5.2); sinusoids (whose frequencies can

be determined from Fourier theory). Preordained choices for the fitting functions might

include certain load profiles to which the are suspected to bear resemblance.

Once a set of fitting functions has been identified and the regressions of (EQ 78) been

performed, the values of the coefficients  can be seen as a reduced set of data which

represent the profile . This invites a hierarchical regression (section 6.3) of the on

the other predictors.

Another example of spectral analysis in STLF is from Christiaanse [22]. The fitting

functions used are sinusoids of periods 168hrs, 24hrs, and 12hrs, as well as the second,

third, fourth, fifth, sixth and eighth harmonics (84hrs, 56hrs, 42hrs etc.).These periods

Y1 t( ) …YN t( ) 1 t T≤ ≤( );,

φ1 t( ) … φM t( ) 1 t T≤ ≤( );, ,

Yi t( ) βimφm t( )
m 1=

M

∑ εi t( )+=

Y1 … YN, ,

φm

Yi

βim

Yi βim
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correspond to spikes on the autocorrelation function of the load time series. The regres-

sion uses weighted least-square-error with weights

where j is the age in hours of the load measurement under consideration, to produce a

constantly moving exponentially smoothed spectral decomposition of load as a function

of time.

9.5  A Review of Literature on Load Profiling

9.5.1  Overview

A selection of techniques which model daily load shape as a function of predictor

variables including weather conditions, temporal factors, customer characteristics and

end use types and appliances, are presented. Such models are sometimes referred to as

load shape models.

Note that end use types (e.g. cooking, lighting, air conditioning) and actual end use

appliances (e.g. televisions, cookers) are not recorded in the Sponsors’ database being

studied. Therefore the techniques modelling the effects of weather, temporal predictors,

and customer characteristics are of greatest interest to our study.

9.5.2  Thermodynamic End Use Models

A number of methods build thermodynamic models for load shape contributed by

certain end uses— particularly air conditioning and storage heating. Predictors include

weather variables, thermal characteristics of buildings, thermostat settings, and tariff in-

formation (in particular the time of the onset of cheap-rate tariff, where storage heating

loads peak [23]).

Such physical models for load shape (see e.g. [23], [24], [25]) rely heavily on factors

not recorded in the Sponsor’s data, such as thermal properties of buildings, though other

methods have obtained end use profiles empirically, without using a physical model.

9.5.3  Mixed and Non-Thermodynamic Models for End Use Load Shape

Gellings & Taylor [26] disaggregate load shape into around 160 components. Loads

are decomposed into a weather-dependent and a basic (weather independent) component

using the notion ofno-weather days. A no-weather day is one in which weather-depend-

ent loads are assumed absent (say, when Fahrenheit temperature is between 55 and 70,

α j
j; 0 1 2 … 0 α 1≤ ≤( );, , ,=
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and humidity is less than 60%). No-weather days provide base curves, which are sub-

tracted from total curves to obtain weather-dependent curves for those days where

weather-dependent loads are considered present.

Storage heating and storage air conditioning have complex thermodynamic models;

other weather sensitive loads (e.g. refrigeration) have piece-wise models as functions of

temperature, including seasonal and weekly response factors.

Domestic loads are broken down into thirty-five end uses (e.g. washing machine),

and industrial and commercial loads disaggregated by tariff code (SIC codes were tried

initially put proved somewhat inconclusive). In order to disaggregate load into end uses,

data must be present for each customer regarding ownership of appliances. The method

requires much data absent from the Sponsor’s databases.

Broehl [27] also disaggregates load shape according to end use. For residential cus-

tomers, experimental data concerning the use patterns of various end use appliances was

available (a matrix with dimensions 24 hours by 4 day types by 12 months) which was

used in conjunction with socioeconomic and demographic factors such as appliance sat-

uration (what percentage of households have a certain appliance), and experimentally

obtained appliance wattages. Weather dependent appliances have a partitioned temper-

ature variable in place of month. Industrial customers are disaggregated by SIC code,

and commercial loads divided into heating, air conditioning, and other. Again, the meth-

od requires data unavailable in the Sponsor’s databases.

The papers [28] and [29] consider the estimation of residential end use load shapes

from whole-house metered data. The study comprises a longitudinal study (modelling

the behaviour of load over time) and a cross-sectional study (modelling load behaviour

in terms of household characteristics) combined in a hierarchical regression.

Weather dependency is first removed—the weather-dependent component is mod-

elled as a non-linear thermodynamic system. The longitudinal analysis uses a spectral

analysis (decomposition into sinusoids and other simple functions). This compresses

longitudinal load data for each household into a few parameters. In the cross-sectional

analysis, the coefficients of the fitting functions are regressed on household characteris-

tics.

Appliance end use load shapes are generated by aggregating all household level pro-

files for those householdswith an appliance and subtracting the aggregate profile for

householdswithout the appliance. Willis & Brooks [30] attempt to reconstruct approxi-

mate 87601 hour load profiles for various end uses, from a number of data sources. They
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note that most utilities have total system loads hourly, billing-class loads monthly, loads

on various feeders and substations etc. hourly, and unreliable data on the relative break-

down of end use categories of load and appliance saturation. The idea is to fill in as many

as possible of the gaps to reconstruct yearly end use profiles, utilising the facts that some

feeders and substations supply a single class of customer; that all hourly loads must sum

to the total system load; and that all hourly loads must integrate to the appropriate month-

ly billing total. The recovered 8760 hour profiles are approximated using either 77 or just

48 numbers.

9.5.4  Load Profiling Using Cluster Analysis

Papers [31] through [33] use cluster analysis (chapter 8) to obtain groupings of sim-

ilar load profiles.

Müller [31] performs extrinsic clustering using various sets of predictors; the pat-

terns to be clustered are daily total system profiles for a number of years. The daily pro-

files are first normalised by dividing through by the daily mean.

In a weather based clustering, nine weather variables recorded for each day (temper-

ature at various times; minimum and maximum temperature; previous days average tem-

perature; illumination means for various periods) are used as disaggregating predictors.

In a seasonal clustering, a seasonal index, plus day of the week (including a ‘bank holi-

day’ day type) were the predictors. A special days clustering used a summer/winter var-

iable and a day type variable (with values such as workday, Sunday, holiday, pre-holiday

day, etc.) predicted the clusters.K-means clustering and a top-down decision tree clus-

tering were investigated.

In [32], a hierarchical clustering of daily profiles is used as the basis of a method for

load forecasting. In [33], a rapid iterative statistical clustering technique for clustering

profiles within a spreadsheet is described. Extrinsic (i.e. non-profile) data is not used in

papers [32] or [33].

1. Number of hours in a year.
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Chapter 10 — Task Formulation for the Monthly Billed
Business Customer Database

10.1 Data For the Monthly Billed Business Customer Database

Unfortunately, the data provided by the Sponsor is incomplete, inconsistent, and in-

accurate in various ways. This is not an unusual state of affairs (in data mining nor in the

electricity supply industry). The data was delivered in flat file format, which had been

cobbled together from various sources, this being the only data that was available.

The half-hourly load profile data hails from three load databases (1994/5, 1995/6,

1996/7), covering different time periods (with some slight overlap) but not forming a

continuous record. Certain days, and entire months, of data are missing for various cus-

tomers, and it is not the same days and months which are missing for each customer. An

overview of the extent of the missing data in the 1995/6 and 1996/7 databases is given

by the visualisation in (COLOUR FIGURE 9.) (though a handful of missing dates illus-

trated in that diagram were deliberately removed because they were bank holidays or

holiday periods). Colour figures are to be found in the Appendix to this Thesis. The

1994/5 database covers October 1994 through April 1995 inclusive (and is complete);

the 1995/6 and 1996/7 databases each cover April through March inclusive (and have

omissions).

 The customer information data covers 500 customers; these match perfectly with the

customers present in the 1994/5 load database, but the 1995/6 and 1996/7 load databases

contain many customers not among those 500, and do not contain data for all the 500

customers for which customer information is recorded. The customer information com-

prises the customers’ two-digit SIC codes (12.4% of which are missing, and a few of

which are not valid SIC codes); their tariff codes; their maximum demands; their load

factors; and their maximum measurement errors. Not only are some SIC codes missing

or invalid, but it is suspected by the Sponsor that some of the recorded SIC codes may

be inaccurate. Load factor (the ratio of average load to maximum demand, expressed as

a percentage) is a measure of the extent to which the peak demand is maintained through-

out the year. The tariff codes each correspond to a different tariff schedule used by cus-

tomers, i.e. a different way of pricing their electricity through the day. SIC (Standard

Industrial Classification) codes carry information about the type of business a customer

carries out; some two digit codes represent rather broad business descriptions (e.g. the
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retail and repair industries are, with few exceptions, represented within the same two

digit SIC code).

There are certain questionable data within all three of these loads databases. Partic-

ularly, there are instances where load increases by a very conspicuous amount for just

one half hour reading, and then drops back to about the same level as before; while it is

not possible to be certain that these data are actually erroneous, it seems rather likely in

many cases that they are. There are also conspicuous cases where the reverse happens

(i.e. a dramatic but short-lived fall in load). These are much more common, and are likely

on the whole to be genuine artifacts, caused by total or near-total loss of power, resulting

from an electrical fault of some type, or a power outage. Even so, these must be classed

as noise since there is no discernable pattern to the instances and no variable capable of

explaining them in any model. This type of data feature will be called asolecism.

The weather data for the study period comprises the following variables, recorded

hourly: ambient temperature, windspeed, humidity, cloud cover (inOktas, i.e. eighths,

convertible to a percentage), and hourly rainfall; but the hourly rainfall only covers up

until the end of March 1995 (i.e. six out of seven months of the 1994/5 loads database)

and is unavailable thereafter. Additionally the daily sunset times were supplied (for one

year only, though they differ very little from year to year; and not for the exact region

where the customers are actually situated).

A serious problem in the data is that where the 1994/5 loads overlap the 1995/6 loads,

there are discrepancies between the two databases. The discrepancies take one of two

forms: in the first form, profiles of a given customer in the second database are translated

by a small fixed constant  from the corresponding profile in the first database; in the

second form, profiles of a given customer in the second database are scaled by a scalar

 from the corresponding profile in the first database. Whilst for any particular custom-

er,  or  was fixed,  ranged from 0.46 up to 1.28. The full predictor variable set in-

cluding these two derived variables is described in (TABLE 1.)-(TABLE 3.).

TABLE 1.

Predictors (Supplied, Non-Weather)

Notation Description Type Domain

time of day ordered [00.00h, 00.30h,..., 23.30h],

equivalently, [1, 2,..., 48]

day index ordered [Oct 1 1994,..., Mar 31 1997],

equivalently, [1, 2,..., 913]

β

α

β α α

X1 or t

X2 or d∗
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A variety of derived weather variables are of interest also; these will be introduced

in section 10.5.3. The maximum measurement errors are of possible interest in determin-

ing model goodness-of-fit, but are of no use as predictors, and hence were not consid-

ered.

10.2  Normalisation of Load Profiles

Consider the load data for two customers .1 Suppose the total energies con-

sumed (in the study period) by the two customers are denoted  respectively. Total

SIC code categorical various two figure integers

tariff code categorical various alphanumerical codes

maximum demand continuous non-negative real numbers

load factor continuous positive real numbers

TABLE 2.

Predictors (Derived, Non-Weather)

Notation Description Type Domain

day type categorical [Mon, Tue, Wed,..., Sun],

equivalently, [1, 2,..., 7]

month index ordered [Jan, Feb,..., Dec],

equivalently, [1, 2,..., 12]

TABLE 3.

Predictors (Supplied, Weather)

Notation Description Type Domain

temperature continuous real numbers

windspeed continuous non-negative real numbers

humidity continuous non-negative real numbers

cloud cover continuous [0, 100]

rainfall continuous non-negative real numbers

daily sunset
time

continuous positive real numbers

TABLE 1.

Predictors (Supplied, Non-Weather)

Notation Description Type Domain

X5

X6

X7

X8

X3 or d

X4 or m

X9 or θ

X10 or ww

X11 or wh

X12 or wc

X13 or wc

X14 or ws

c1 c2,

E1 E2,
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energy consumed is perhaps the best measure of the customers’ sizes (although maxi-

mum demand  is a viable alternative). The database contains customers of significant-

ly different sizes, and thus load profiles from the same day for two different customers

are not directly comparable; in order to compare the load profiles it is necessary to nor-

malise them (convert them to comparable scales), and there are many candidate normal-

isations available. At one extreme, (coarsenormalisation) we normalise each customer

's load readings by dividing each reading by the customer’s total energy consumption

; at the other extreme (fine normalisation), we divide customer 's load readings for

a particular day by the total energy consumedon that day only. Intermediate normalisa-

tion schemes might divide daily load readings by the monthly energy total, the seasonal

total energy, the total energy for all days of the sameday type over the seven months, the

total energy corresponding to a certain monthand day type, and so on. There is a danger

associated with too fine a normalisation, in that two customers whose annual load shapes

vary from each other significantly might appear to have similar annual load shapes after

normalisation, and so distinction between dissimilar customers may be blurred. On the

other hand, the fact that two load profiles from different two customers have the same

basicshape, but different daily energytotals, can sometimes be lost when a coarse nor-

malisation is used.

 Now consider the effects of normalisation whenaggregating (rather than compar-

ing) load profiles (for example when computing centroids for clustering algorithms;

when aggregating profiles in the same partition cell in a regression tree; and so on). If

load profiles have been normalised (according, say, to annual energy consumption) then

all customers have the same weight in the aggregated profile. It is important to decide

whether or not this is desirable. There is an obvious case that ‘larger’ customers should

make a greater contribution in aggregate profiles (as occurs when no normalisation of

the above type is in place)—since their contribution to total system load is greater. How-

ever there is an argument for aggregating normalised profiles; viz that data is often

sparse in certain regions of attribute space, and we cannot afford the loss of information

contained in the profiles of smaller customers incurred by down-weighting them (by fail-

ing to normalise).

In all that follows, it should be assumed that all the raw data for each customer has

1. Recall that  denotes theith case in the database, not the same as, thelth customer.Ci cl

X7

cl

El cl
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been normalised by dividing through by the total estimated energy for each particular

customer. Thus if  is a raw load datum for customerl (estimated total energy con-

sumption over the study period ), then

(EQ 79)

The reason  is only an estimate of total energy consumption is that customers have

load data missing on some dates; was calculated by assuming the energy consumed

on any day missing from a customer’s data was equal to the mean daily energy observed

for that customer on non-missing days.

10.3  Uniresponse Model and Multi-response Model for Monthly Billed
Business Customers

For notational convenience, define  to be a hypothetical set of un-

known (and unknowable) predictors which affect load but whose nature and values are

unattainable, and imagine that the union of the recorded predictors with the unknowable

predictors is a variable set capable of accounting for 100% of variance in the load.

The response can be thought of in two ways: either as a single response variableload,

denoted ; or a multivariate response (or response vector),load profile, denoted

; time of dayt can be dispensed of as a variable in the latter

model. Thus we can describe two general models for the load data, theUniresponse

Model (UM), and theMulti-response Model(MM).

The most general uniresponse model we can propose for the data is

(EQ 80)

where the  are the additive errors due to measurement error in the data (note and

 can be derived from ). , the total number of data points (i.e. cases), is given by

the product of the number of half-hours in a day (48), the number of days in the study

 (maximum 913 in our study), and the number of customers  (maximum 500

in our study,  being the maximum  for our study).

is a hypothetical ‘true’ model which could recover the exact load for a given customer.

When we exclude the unknown attributes , we can recast this as

(EQ 81)

Yi
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The errors  are errors due to absence of unknown attributes ; the

errors  are errors due to limited sample size and missing data. As in (EQ 2), we as-

sume that the errors cannot be separated, and combine them into. Finally we ac-

knowledge that any practical model (involving regression, classification and so on) we

may build will be far from perfect, thus introducing modelling errors :

(EQ 82 : UM)

The multi-response model MM is a model for load profiles, rather than loads. is a

48 dimensional vector of half-hourly load responses (time of day is no longer a predictor)

and the multi-response model corresponding to (EQ 82 : UM) is

(EQ 83 : MM)

where the error terms are now vectors of 48 half-hourly errors. In (EQ 83 : MM), the

number of data points (i.e. cases)  is limited to only , though

each data point has 48 associated responses. Note that we can obtain local estimates for

 (or ) independent of the modelling errors  (or ), and so do

not always combine them into a single error term.

10.4  Atomic Model for Monthly Billed Business Customers

At this point it is convenient to temporarily drop maximum demand () from con-

sideration as it was not eventually used as a predictor, and to discretise load factor ()

into a categorical variable , with a handful of values. A maximum entropy partition

(i.e. one which retains the most information about the variable partitioned) has cells

which are as nearly as possible equal in size (see end of section 3.2). Hence, though re-

placing continuous load factors with discrete categories (such as low, medium, and high)

does result in some loss of information, we lose the least information when there are ap-

proximately equal numbers of customers in each category. In practice, seven categories

were always used (denoted ).

This move allows us to treat load factor in the same manner in which we treat SIC

codes and tariff codes, which is more convenient because load factor is, like SIC and tar-

iff codes, a customer property (rather than temporal or meteorological).

With this simplification, the multi-response model becomes
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(EQ 84)

Note that any two cases which have identical values for  are indis-

tinguishable in this model1. We can aggregate the profiles of indistinguishable cases by

simply averaging them, thereby reducing the number of cases. In this way we obtain the

atomic profiles or atomic casesor atoms  for the load data. This is identical with the

notion of an atomic pattern (section 8.8.2). With  the domain of

the discrete predictors and  theith non-empty cell in its maximal partition, (EQ 77)

defines the atoms (it is repeated as (EQ 85) for convenience).

(EQ 85)

 are the 48 response values for theith atom,i the index for the at-

oms, and  the index for the original (non-aggregated) profiles. Let be the 48 dimen-

sional vector of responses for atom. Denote by  the value taken by predictor

for atomi.

 We can modify (EQ 84) to the Multi-response Atomic Model (MAM)

(EQ 86 : MAM)

 is the vector of discrete predictors , and  is the vector of supplied

weather variables . N is the number of distinct values for, i.e. the

number of non-empty cells in a maximal partition of . The upper

bound forN is , butN is far less since there are many, many com-

binations of SIC, tariff code and load factor group for which there are no matching cus-

tomers.

This is easily recast as a Uniresponse Atomic Model (UAM):

(EQ 87 : UAM)

Note that there is a loss of information involved in aggregating each set of profiles

with identical discrete predictors into one atomic (centroidal) profile; we retain informa-

tion (viz the mean) about the central tendency of loads at each half hour, but lose infor-

1. Since if they have identical day index  then they have identical weather data .
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mation about the spread of loads at each half hour. However, by extending the notion of

a profile from ‘a vector of half-hourly loads’ to ‘a vector of half-hourly loadsand a vec-

tor of half-hourlysquared loads’, and extend the notion of adding two profiles so that

the sum profile records the sums of the 48 constituentsquared loads as well as the sums

of the 48 constituent loads, important information about the spread of loads at each half

hour is retained (since this is enough data to reconstruct the initial half-hourly standard

deviations).

10.5   A General Model for Weather-Dependent Loads

10.5.1  The Effects of Weather on Load

The six weather variables  available (alternatively

, respectively temperature, windspeed, humidity, cloud cover,

rainfall, and sunset time, collectively designated) are an adequate variable set to ex-

plain all effects of weather on load. However, thespotweather variables (the values of

the supplied weather variables for a particular day and time of day) are not necessarily

an adequate set of predictors for weather dependent loads observed at that time of day

on that day. This is because the values of weather variables prior to that time point also

have a lag effect on load. The discourse of this section would be applicable to residential

customers as well as business customers (although the load-weather relationships of

business and residential customers may vary substantially). Further reading concerning

the ideas discussed in this section can be found in [15], [17], [21], [23], [24].

The most influential weather factor on load is temperature. Suppose we are interested

in the load-weather relationship at a particular half-hourly time point . Call T the

current time (or ‘now’). Thermostatic heating (/cooling) devices like water heaters,

space heaters (/space air conditioners, refrigerators) etc. are more likely to be drawing

power when the currentindoor temperature  is low (/high). When load at timeT is

averaged over several days or customers, the particular on/off statuses of the various de-

vices will be ‘blurred’ (smoothed), so that the mean load is expected to vary quite

smoothly with . Non-thermostatic heating or cooling devices (which are switched

on or off by time switches or by hand) have aggregate loads expected to follow

somewhat less closely, but nevertheless to follow it.

However the indoor temperature half an hour ago, an hour ago, or several hours ago,

also have effects on the loads of heating and cooling devices: thermostatic devices may

X9 … X14, ,
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take some time before reaching cut-off point (i.e. before they have heated or cooled to

such a degree that their thermostat switches them off); they may take half an hour or

longer before they switch back on again (this period is known as the dead band). Loads

for non-thermostatic heating or cooling devices may be dependent on even older temper-

ature readings (for example, a time-switched heating device generally changes its con-

sumption pattern only when its on/off times are manually reset, which might be only

once every few days or weeks; the sudden onset of a cold snap may well not manifest

itself for a day or two).

However this is only half the story, since the indoor temperature (which is dif-

ferent for every customer) is not known: it is a function not only of the status of the var-

ious heating and cooling devices present, but of the currentambient (outdoor)

temperature, and of the ambient temperature over the recent past.It is ambient tempera-

ture ( ) which is recorded in the databases. The thermal properties of buildings (which

vary from customer to customer and are not known) are such that the changes in ambient

temperature take some while to manifest themselves indoors. Thus the short-termlag

temperatures (the ambient temperatures from half an hour ago to several hours ago) are

important factors affecting load. Longer term lag temperatures may also have an effect:

the temperatures a few feet under the ground, and the temperature of large bodies of wa-

ter, are dependent on the ambient temperatures several days (even weeks) ago. Thus heat

losses and gains through the floor may depend on the ambient temperature some time

ago; water-heating devices draw cold water through underground pipes from reservoirs,

and the temperature of the cold water can lag the ambient temperature by days or weeks.

The importance of these factors requires us to introduce lag temperature variables

(which can be derived) with various lag periods, and/or exponential smooths of the am-

bient temperature with various exponents. An exponential smooth of has the form

(EQ 88)

 is fixed between 0 and 1. When is closer to 0, the exponentially smoothed temper-

ature is ‘forgetful’ and represents average temperature over the recent past; when is

closer to 1, the smoothed temperature is more affected by older temperatures. Longer

term exponential smooths could use daily average temperatures or daily peak tempera-

tures instead of half-hourly temperatures.

Other weather variables affect loads more subtly. Humidity is a factor in predicting
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air conditioning and cooling fan loads. High indoor temperatures may be unpleasant, but

are considerably more so when indoor humidity is high. Indoor humidity may lag ambi-

ent humidity slightly, and lag or smoothed humidities could be employed. A derived var-

iable combining temperature and humidity is also of possible interest. Whilst air

conditioning is only a small part of UK domestic load, is can be a significant factor in

UK commercial and business loads.

Windspeed may have a minor effect on air conditioning/cooling fan loads (opening

a window on a breezy day is cheaper, if less effective, than air conditioning). However

its principal load-weather effect is on heating loads. Firstly, cold draughts may affect in-

door temperatures on cold, windy days. Secondly, the effect of wind on the exterior walls

of buildings is to cool the walls (particularly so if the walls are wet). A derived variable

combining temperature and windspeed could be of interest. Load is unlikely to lag wind-

speed by very much; a slightly lagged windspeed variable could be of use.

Cloud cover has an effect on lighting loads. In fact, the amount of natural illumina-

tion would be a more useful predictor of lighting loads, but was unfortunately unavaila-

ble in the data supplied. Natural illumination is principally a function of the time of day,

the time of year, rainfall, the opacity of cloud cover, and the percentage cloud cover (of

which only cloud opacity was unavailable in our data; rainfall is largely missing from

the data supplied, but has only slight effect on natural illumination). A derived variable

combining time of day, time of year and cloud cover, might be of interest in predicting

lighting loads. Since people frequently leave light switches on when they ought not,

some lag effect may be present.

Rainfall, as well as its (minor) effect on illumination, has (as noted above) an inter-

action effect with windspeed: wind cools wetter buildings more. The effect of rainfall on

illumination is instantaneous, but the effect of rainfall on the wetness of building walls

may last several hours, prompting the introduction of lag or smoothed rainfall variables.

Rainfall can affect domestic electric clothes drying loads, unlikely to be a factor for busi-

nesses.

10.5.2  Temporal asymmetry of the Load-Weather Relationship

The effects of temperature on load are different when the temperature is rising than

when the temperature is falling. For example: a rapid fall in ambient temperature from

C to C is likely to place a large strain on (especially thermostatic) heating loads.13° 10°
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However a rapid rise in ambient temperature fromC to C can result in a some-

what smaller relaxation on heating loads (see [23], [24]). If is the change in load for

some profile over a small time period of, and  the change in ambient temperature

over that period, we can term

(EQ 89)

thetemporal symmetry assumption, a statement that the change in load resulting from a

rise in the temperature is equal in magnitude (opposite in sign) to the change in load re-

sulting from an equal temperature drop.

A static load-weather model (one which models current temperature in terms of only

instantaneous weather variables) cannot account for temporal asymmetry effects. (FIG-

URE 8.(a)) illustrates a particularly simple static load-weather model (in which load is a

function of  only).

FIGURE 8.

A heating/cooling curve load-weather model derives a different model for when the

temperature is rising (heating model) than when the temperature is falling (cooling mod-

el)—see (FIGURE 8.(b)). Such a model requires a categorical derived weather variable

which decides which sub model is appropriate depending upon whether temperature is

rising or falling.

A continuous derived variable which we might consider introducing is, the

change in temperature between the current timet and time . We might consider var-

ious values for , since temperatures from various times in the past might have effects

on load. Such variables enable a weather model to model temporal asymmetry (although

the lag temperature variables suggested in section 10.5.1 are already capable of convey-

ing this information indirectly).
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10.5.3  Derived Weather Variables

Due to the various lag times of lag and weather variables, and the various expo-

nents which can be used in exponentially smoothed weather variables, there are practi-

cally limitless numbers of weather variables (derived from the spot weather variables)

available for a load-weather model. Many of these are highly correlated, and it is usually

necessary to select a parsimonious subset of weather variables (one which tries to avoid

redundancy of variables). This might be performed using principal components analysis

or related techniques; by heuristic choices; by trial and error; by use of an adaptive mod-

elling technique which automatically tends to produce parsimonious models; or by some

combination of these methods. (TABLE 4.) summarises some of the derived weather

variables which are candidates for inclusion in a load-weather model.

, the square of the time difference between sunset and 18:00hrs GMT, was sug-

gested as a useful predictor of load by a researcher at the project’s sponsoring organisa-

tion. It can be thought of as a measure of the extremeness of season (as it peaks

midsummer and midwinter), and is dubbed ‘seasonality’.

TABLE 4.

Predictors (Derived, Weather)

Notation Description Comment

lag ambient temperature, lag half-hours short, medium and long lags

exponentially smoothed temperature,

exponent

short, medium and long term
smooths

delta-temperature (temperature change), lag short, medium and long term
lags

yesterday’s peak temperature

yesterday’s mean temperature

yesterday’s minimum temperature

lag windspeed, smoothed windspeed short term

lag humidity, smoothed humidity short term

lag cloud cover, smoothed cloud cover short term

smoothed rainfall medium term smooth; estimate
of building/ground wetness

squared minutes from 18:00hrs GMT to sunset peaks at midsummer and at
midwinter; seasonality
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Compound variables suggested in section 10.5.1 (combinations of temperature and

windspeed; temperature, rainfall and windspeed; temperature and humidity; cloud cover,

time of day, day of year) representing particular concepts (respectively presence of

draughts; wind chill; discomfort; natural illumination) might be simple low order poly-

nomials in the constituent variables or non-linear terms suggested by theory. However,

a non-parametric method like MARS (section 6.5) would have the advantage that such

concepts can be modelled automatically (though not necessarily explicitly), since inter-

actions terms between any number of predictors are considered for inclusion in the mod-

el.

10.5.4  Derived Temporal Variables

Reconsider the task specification: to analyse load profiles with regard to their de-

pendencies on weather, day type, month, and known customer details. The weather data

is recorded at hourly intervals: it is a simple task to recover reasonable interpolations

so that estimated weather variables are available for each half-hour (see section 11.2.1).

Since the combined weather variables vary from hour to hour and day to day in a chaotic

(i.e. dynamic non-linear) fashion, and have no weekly period, it is not viable to replace

, the day index, with , the day type and month index, in any part of the model

which predicts the effect of weather on load. If day index were removed from the model,

then daily weather statistics would have to be aggregated (for example, all January Mon-

days clumped together), despite the fact that weather has no weekly periodicity. A day-

of-year variable (which records how many days have passed since January 1st, rather

than from the start of the study period like) may be a more suitable variable for the

weather model (see 11.3.2).

On the other hand, the non-weather dependent component of load is highly depend

ent on the day of the week, but tends to change only slowly from week to week. Thus it

is highly appropriate to scrap  in favour of  for a weather-free load model.

This suggests a compound model comprising one model for weather-dependent load and

another for weather-independent load.

There is also a case for considering the inclusion of other derived temporal variables

in the weather model. For example, a sinusoid with period 24 hours peaking at noon

(with its trough at midnight), and a sinusoid with period 1 year peaking on midsummer’s

day (with its trough at midwinter’s day), are derivable from (respectively) and , but

d∗ d m,( )

d∗

d∗ d m,( )

t d∗
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provide the time-of-day/time-of-year information in a way which may be more useful to

a particular regression model. Note that sunset time and seasonality  can be

viewed as derived temporal variables themselves, since they are determinable accurately

from the time of day, time of year, and the latitude/longitude (which are fixed in this

model).

10.5.5  Weather Decomposition

To derive a compound weather/non-weather model, it is desirable to find some initial

means of decomposing load intoweather-dependent andweather-independent compo-

nents. Once the weather-dependent loads have been modelled, we can recoverdeweath-

ered load profiles (hypotheticalweather-free load profiles) by subtracting (or otherwise

removing) the loads predicted by the weather model from the original data. Deweathered

profiles can be thought of as our expectation of what the profiles would have looked like

did weather not exist. Depending on the deweathering methodology, weather ‘not exist-

ing’ can be interpreted as weather being always exactly ‘typical’ (and static), or weather

being always such that no weather-dependent electrical loads are present. The latter is

rather idealistic, since loads such as lighting, water heating (other than for central heat-

ing) and refrigeration are present every day of the year, but are mildly weather dependent

(not just seasonally dependent).

The initial decomposition of loads into weather-dependent and -independent compo-

nents can be performed variously. These components are somewhat nominal since no

perfect separation of these two components is possible. Two basic approaches to weather

composition have been seen in chapter 9:

1. Identification of No-Weather Days. Load profiles for days on which weather has

very little effect on load are aggregated to obtain estimates for weather-independent

loads. Subtraction of the estimated weather-independent load from the total load pro-

duces an estimate for the weather-dependent load (see section 9.5.3).

2. Smoothing and Averaging. Profiles are smoothed or averaged over a variety of

weather conditions. The smoothed or averaged loads are assumed weather-independ-

ent; again, these are subtracted from total load to obtain a weather-dependent load.

Many researchers have additionally sought atrend component (prior to deweathering),

which models daily peak load or daily total energy as a smooth function of month index,

ws ws
∗
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week index, or day index. This is to distinguish changes due to annual weather periodic-

ity (and long term load growth), from changes due to hourly and daily weather fluctua-

tion.

Note that whilst the weather-independent load is assumed to have no dependency on

the weather variables, the weather-dependent load is certainlynot assumed to have no

dependency onnon-weather variables. Thus once a weather-dependent component has

been modelled, theresidualsfrom that model are assumed dependent on the non-weather

variables; the weather model residuals are combined with the weather-independent com-

ponent to estimate the weather-free (deweathered) load; it is this weather-free load (and

not the weather-independent load component) which is subsequently modelled using the

non-weather variables.

10.5.6  Atomic Weather Model

Introduce the derived predictord (day type), in addition to (rather than in place of)

the day index . Although weather does not have a weekly period, we may anticipate

that theeffect of weather on daily load has some dependency on the day of the week, and

that day type may be relevant to any model for weather-dependent load. Suppose that

 are the weather dependent components of the  loads, produced by one

of the decomposition techniques in section 10.5.5. Further, suppose that the data have

been aggregated into atoms as described in section 10.4. Note that the atoms arising from

discrete predictor space  do not differ from those arising

from discrete predictor space , since the value of  dictates

the value of .

Incorporating some appropriate subset of (i) the spot weather variables and (ii ) the

various lag, delta and smoothed weather variables and lag-load variables introduced in

section 10.5.3, into a weather vector; incorporating the day typed into ; and de-

noting weather-dependent loads , we can adapt the uniresponse

atomic model of (EQ 87 : UAM) into an Atomic Weather Model (EQ 90 : AWM)

(EQ 90 : AWM)

Here  (the number of profiles presented to the weather model) is the number of days

in the study times the number of atoms arising from predictors .

A point arises concerning the proper separation of the load-weather model AWM and
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the subsequent model for deweathered data (which will be described in section 11.1). We

would prefer that the load-weather model models precisely just that, and does not model

the effects of the non-weather variables . The presence of the day index in the

load-weather model need not particularly worry us provided that model terms including

 vary only slowly with , since this just facilitates the computation of gradual trends.

However, the presence of  facilitate the modelling of non-weather effects

on load which are better left to the weather-free model. The reason why we might wish

to retain  in the weather model is that theway in which weather affects load

is liable to be different for different day-types, SIC code classes, and tariff code classes,

and may be different for customers with significantly different load factors. The weather

modelling function  should be determined in a manner which circumvents this dan-

ger (see further discussion in 11.2.4).

10.6  A General Model for Weather-Free Loads

Now suppose that , an estimated function

for weather-dependent load in terms of time of day, weather variables and derived

weather variables, and discrete predictors, has been obtained. Call it for brevity. Re-

call that an initial estimate ofweather-independent load, obtained by smoothing/averag-

ing, was required to build this model. If  are the initial loads (the raw data),

are the weather-dependent loads, and  are the weather independent loads, then

, the weather residuals, are added to the weather-independent loads to obtain

the weather free loads

(EQ 91)

Section 10.5.4 suggests that in modelling weather-free loads it is appropriate to re-

place  by  and  (i.e. day index with day type and month). Since we can now drop

the weather variables , we can adapt the multi-response atomic model of (EQ 86 :

MAM) to the Atomic weather-Free Model (AFM):

(EQ 92 : AFM)

Now , and  is no more than 7 (day types) times 12 (months)

times  (and is much less, since most SIC/tariff/load factor combina-

tions are empty).
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Chapter 11 — Weather Model for Monthly Billed Customer
Database

11.1  Weather Decomposition

The no-weather day approach to weather decomposition (section 10.5.5) was not

deemed particularly appropriate for UK business loads; it would be hard to determine

conditions under which UK businesses are unlikely to be drawing any weather depend-

ent load, and there appears no major advantage of a no-weather day approach over a

smoothing/aggregation approach.

A simple aggregation approach was selected. The weather models were calculated on

the 1995/6 and 1996/7 databases, i.e. 24 months of data (with occasional days missing).

For a given model, some non-empty subset of the categorical predictors

is selected. Denote it , the set of categorical predictors used to deter-

mine the weather-independent loads. Certainly, the atoms arising from the predictor sub-

space  (i.e. the centroidal profiles for a given set of values for day of

the week, SIC code, tariff code and load factor group, theweather-independent atoms)

are reasonably weather-independent, since they cover all types of weather (24 months).

They are only weather dependent in so far as the 24 months in question may have been

atypical meteorologically, but we can do no better with the data available. This is equally

true if we only use some smaller subset of the categorical predictors . If

we discount special day types, so that day-type can take only seven values, then each

atom is guaranteed to represent at least around 100 constituent profiles, so we might

hope that the 48 load values in an atomic profile are reasonable estimates of the under-

lying ‘true’ weather-independent loads.

Denoting these weather-independent atoms, or recast as a single response,

, theweather-dependent loads are recovered from the equation

(EQ 93)

where  is the weather-independent atom appropriate to theith cell in a maximal

partition of the domain of  (see atomic weather model, section 10.5.6).  are the

atoms for the raw data, using the same partition.

Note that the weather dependent loads take both positive and negative values. Where

weather has a locally above-average effect on consumption, will be positive; be-
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low-average effects on consumption give negative .

11.2  MARS for Load/Weather Modelling

11.2.1  Calculating Derived Weather Variables and Interpolating Weather Data on
Half Hours

Note that the weather data provided (section 10.1) is recorded hourly, but the load

profile data is recorded half-hourly. It would be possible to throw away every second re-

corded load, retaining only those recorded on the hour, so that there is a set of weather

predictors available for every load recorded. However, it is possible to interpolate for the

missing half-hour weather data, in order not to waste half of the recorded load data. It

was decided to use cubic interpolations for the half-hour weather data, interpolating at

the two closest recorded data points on either side, as in (FIGURE 9.).

FIGURE 9.

It is easily determined by solution of simultaneous equations that the unique cubic pol-

ynomial which interpolates known responses  at ordinates

 respectively, takes a value  at

 (t measures half hours either side of the missing value, e.g. 7:30 in (FIGURE 9.)).

At the beginning and end of the time period under study, where one or more of

 fell outside the recorded data they were replaced by the nearest recorded

values. The interpolations are performed with each of  replacing

 in the above. Where, on occasion, the weather statistic produced by this interpolation

falls outside of the meaningful range (say, more than 8 oktas of cloud cover, or less than

0% humidity) it is automatically replaced by the nearest meaningful value.

The implementation of the selected weather model also calculates exponential

smooths, and lag and delta variables (with various exponents and lags supplied by the
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user), as described in section 10.5.3, using the above interpolations at the half hour ordi-

nates. Again, where weather data are required which fall before the beginning of the

study, they are replaced with the first value in the study period, which is only a poor es-

timate when the lags are very long or the smooths very long term.

11.2.2  Continuous Part of the Weather-Dependent Model

Prior to any analysis, it is assumed that profiles have first been normalised so that

each customer has the same total energy consumption over the study period, as per sec-

tion 10.2.

Recall the atomic weather model of (EQ 90 : AWM) again:

(EQ 94 : AWM)

The predictorst and  are ordered discrete variables, but will be treated as continuous

predictors. Except for the presence of , all predictors are (considered as)

continuous, as is the response . Thus we have a regular multivariate regression task

with four additional discrete predictors.

Temporarily ignoring these discrete predictors, the task is to model the response in

terms of  and , the latter comprising several, possibly dozens of, weather, derived

weather, and derived temporal variables. Most load studies have greatly simplified the

task, by only using a handful of the candidate predictors, and by assuming a simple re-

gression function, usually linear in most predictors, sometimes with a few higher order

polynomial terms, and sometimes with some cross-terms (such as ). How-

ever the best models of load-weather dependence may not be low-order polynomial

models, and such models may miss features in the data; moreover, derived variables of

the types in section 10.5.3 are known to be important, but because there are so many can-

didates, and so many mutual correlations between them, inclusion of more than a few of

them can lead to sparse data (due to the high dimensionality of predictor space) and ill-

conditioned regression equations (due to correlated predictors), hence poor fit.

It was decided to perform a multidimensional non-parametric regression of load on

a large number of weather variables using Friedman’s Multivariate Adaptive Regres-

sion Spline (MARS) data mining regression algorithm (outlined in section 6.5, see

[9],[10]). The MARS model has many advantages both over parametric models and over

non-adaptive non-parametric models in this regression task.
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Parametric models require a preordained form for the fitting function; in order to cap-

ture all aspects of load-weather relationship, such a form would be highly complex, and

require some protocol for its design. Furthermore the high dimensionality of the predic-

tor space  inevitably dictates that data will be sparse. Non-adaptive non-par-

ametric models (for instance, a -variate smoothing or product spline model)

suffer from the same problem of data sparsity, and also from the problem of correlated

predictors.

An interaction spline model (see section 6.5.1) could avoid the problem of data spar-

sity and partly avoid the problem of correlated attributes: each additive component of the

model can be limited in dimension (say, allow components of dimension one, two, three

and perhaps four); and strongly correlated predictors can be prohibited from appearing

in the same additive term. We need only include terms involving more than one predictor

(interaction terms) where the two or more predictors are known or suspected to interac-

tively affect response.

The chief obstacle to using interaction splines is the initial choice of additive terms—

the problem of selecting the sets of interacting predictors. One might simply propose in-

cluding a term for every set of two, three or four predictors suspected to interactively af-

fect response. However, there are vary many such sets, many of which will be redundant

in the presence of the others. Consequently such a scheme is liable to overfit the data (fit

noise not trend); also, the presence of similar additive terms could lead to ill conditioning

of the regression equations.

The MARS model has most of the advantages of the interaction spline model: no pre-

ordained fitting function is required; and (referring to the ANOVA decomposition of the

model (EQ 57)), additive terms with a certain number of predictors can be prohibited

from appearing in the model. Moreover, the total number of additive terms appearing in

the final model can also be limited, and smoothness parameters varied, so that the danger

of fitting noise rather than trend can be kept at bay.

The crucial advantage of MARS over interaction splines is that the selection of inter-

action terms is performed automatically in MARS models. Certain predictors can be ex-

cluded a priori from appearing in the same interaction term (usually those which are

known to be correlated), but otherwise any set of predictors can appear in the same in-

teraction term (subject to the specified maximum number of interacting predictors).

Moreover the pruning part of the MARS algorithm removes from the model those dis-

covered terms which contribute least to goodness of model fit, so that interaction terms
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in the final model are liable to represent real interactions rather than noise.

The interpretability of MARS models is good. Firstly, constraints on the dimension-

ality of interactions and final number of model terms check the model complexity. Sec-

ondly, many terms in the final model have only one or two predictors, admitting curve

and surface plots for those components. Thirdly, higher level interactions can easily be

sliced to admit curve and surface plots. Slicing an interaction term involves fixing the

values of all but one or two predictors (often so as to take their mean or median value),

and plotting a curve/surface using the remaining one/two predictor(s) (and the response).

The MARS code (in Fortran) is freely available and includes routines to perform slicing.

Note that the data (EQ 94 : AWM) are in atomic form; thus each data point presented

to MARS has a response which is aggregated from several underlying profiles. Accord-

ingly it is necessary to normalise and weight each datum. Each response is divided

by the number of profiles summed thereat before presentation to MARS. In this way, if

one tariff code matches twice as many customers as another tariff code, for instance, it

will not result in twice as high a response being presented to the MARS model for ob-

servations matching that tariff code. However, each datum is alsoweighted by the

number of profiles aggregated into that datum. MARS allows weights for each data point

in its lack-of-fit function; with such weights , the GCV equation of (EQ 59) is modi-

fied to

(EQ 95)

 Thus atom/day combinations with fewer representatives in the database are accorded

proportionately less importance.

11.2.3  Discrete Part of the Weather-Dependent Model

Now consider how best to employ the categorical predictors into the load-weather

model. Since the weather dependent loads  are obtained from the raw data by sub-

tracting the average profiles (over the whole study period) for each distinct combination

of values of , we can assume that the principal effects of these predic-

tors on the weather dependent loads has already been removed. Thus the danger that the
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load-weather model might attempt to model the effects of non-weather variables on load

(rather than theinteraction effects of weatherand non-weather variables on load) is

averted.

To derive a separate MARS model for each weather-dependent atom of

 is not a viable option: not only are an unwieldy number of separate

load-weather models produced, but each would be built using only a fraction of the data.

Constructing separate models for work-day (Monday to Friday), Saturday, and Sunday

loads would, however, be viable.

Otherwise, the binarising of categorical variables, subsequently treated as continuous

variables (see section 6.6), is an option, though it introduces many more variables. In or-

der to limit the number of new binary predictors in the model, tariff codes (or SIC codes)

deemed sufficiently similar could be lumped together into compound tariff (or SIC)

codes prior to binarisation. This could be achieved by prior clustering, as in Chapter 13.

However, as noted in section 6.6.2, MARS includes its own mechanism for the in-

clusion of categorical variables, in which they are treated analogously to and simultane-

ously with the continuous variables, yet avoiding (to an extent) the problems of these

other schemes, and this was the method used.

Finally, a database of ‘weather-free’ loads is constructed, by subtracting the profiles

arising from the weather model from the original profiles (see section 11.2.5). Note that

the weighting scheme described in 11.2.2 ensures that where a tariff code or an SIC code

has fewer representatives in the database, it is down-weighted proportionally in the

MARS model. As before, it is simply necessary to weight each datum presented to the

MARS model proportionally to the number of profiles aggregated into that datum.

11.2.4  Limitations on MARS Categorical Variables

It was decided to limit the categorical variables that are allowed categorical predic-

tors in the MARS model in two ways. Firstly, only categorical variables in (the var-

iable set used to determine the weather independent atoms, see section 11.1) are

acceptable as categorical predictors. Thus if the weather independent profiles are deter-

mined by summing profiles with identical values for and  (only), for instance, then

neither  nor  are acceptable as categorical predictors in the weather model. The jus-

tification for this is that (as noted in 10.5.6) the weather dependent model is intended to

model only the effects of weather, not customer attributes/day of the week; the categor-
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ical variables (customer attributes and day of the week) are included as predictors be-

cause load may have a different dependency on weather for different values of these

categorical variables. However, if we allow only those variables in as predictors in

MARS, then their combined effect on load has already been removed from the loads pre-

sented to MARS (since the weather dependent loads were created by subtracting the rel-

evant atomic profiles arising from all variables in from the original loads, and are

statistically independent of any variable or product of variables in). The effect of

these variables’interactions with the continuous (weather) variables, however, are not

removed by the weather separation process, and so we allow MARS to attempt to model

such interaction terms.

The second restriction on categorical variables allowed in MARS is practical rather

than theoretical, namely that possibly, and at most one other variable from, are

used as predictors in any one model. Whilst allowing (day of the week) into the model

does not increase the total number of observations (data points) presented to the MARS

model (since there are already 48 half-hourly data points for every day in the model

whether we include  or not), for each variable  we allow into the

model we significantly increase the number of data points; for each day and half hour in

the model, we need a separate observation for each combination of values of and

 occurring in the data. In the final implementation, both computation times and mem-

ory requirements proved impractical when this restriction was not made.

11.2.5  Deweathering Whole Load Using a Computed Mars Model

For each original (normalised) profile in the loads database, we wish to construct a

‘weather-free’ profile, to arrive at a set of profiles which (as far as possible) has had the

effects of weather removed. This can be achieved by subtracting, from the original pro-

file, the profile predicted by the weather model (EQ 91). More exactly, for each day in-

dex  and customer , look up or calculate the values for the weather variables and

derived weather variables, and the temporal variables and derived temporal variables, for

that day, and look up the non-weather variables . Feed these into the comput-

ed weather model  (  is the index of the weather-dependent atom

that the original profile  belongs to) for each of 48 values of to determine the half-

hourly profile of the effects of weather on load . Then by subtracting this profile

from the original, we obtain a weather-free profile
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(EQ 96)

Note that due to the way in which the weather-dependent profiles are normalised pri-

or to being presented to the MARS model (see end of section 11.2.2), the weather model

profile  is on the same scale as the original profile.

The piecewise cubic version of the MARS model is subtracted in the deweathering

scheme, rather than the piecewise linear model; the piecewise cubic model is obviously

smoother, and generally has lower cross-validation errors.

11.3  Results and Interpretation of the MARS Load/Weather Models

11.3.1  Data Selection and Cleansing

Firstly, recall that rainfall  was recorded only for October 1994 through March

1995 in the available weather data, none of which covers the 1995/6 and 1996/7 profiles

databases on which the principal weather study was performed. However, a number of

exploratory weather models were built using the 1994/5 load data, for which (excepting

April) rainfall data was supplied. In all these exploratory studies, neither rainfall nor any

lag/delta/smoothed variables derived from rainfall were ever selected for inclusion by

the MARS modelling algorithm. It is therefore reasonable to conclude that the availabil-

ity of rainfall data in the 1995/6/7 study period would probably not have made a signif-

icant impact on the resulting weather models, and rainfall is not considered in the results.

In fact, due to the discrepancies where the 1994/5 data and 1995/6 data overlap, it

was decided to omit the 1994/5 data from consideration completely in the weather mod-

elling, since it would appear that customers in the former database have undergone a dif-

ferent normalisation procedure from those in the latter two. Note that including the six

months of non-overlapping data from the 1994/5 database would have introduced a pro-

winter bias into the weather-independent profiles (which, recall, are supposed to be av-

eraged over all types of weather) which would have to have been countered by some sys-

tem of weighting.

The 1995/6 and 1996/7 provide two years of data, which is not really enough data on

which to build a definitive weather model (since two years’ worth of data might not con-

tain all possible types of weather and weather changes for the geographical area mod-

elled; and even so may not contain enough profiles, for any given set of prevailing

weather conditions, to be representative of those conditions); but it is certainly enough
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data with which to build an interesting and informative weather model, and with which

to test and fine tune the presented methodology.

Accordingly, a loads database for 1995/6/7 (running 24 months from April 1995)

was built from the raw data supplied, having first excluded from consideration various

special days and holidays. These were determined by visual inspection of coloured 3 di-

mensional plots of the 1995/6 and 1996/7 databases, as described in section 12.5 (see

(COLOUR FIGURE 10.), (COLOUR FIGURE 11.)). In fact, all bank holidays and ex-

tended holidays had already been removed from the former database, but not from the

1996/7 database. All UK bank holidays were removed, and also the whole of the Easter

long weekend (Good Friday through Easter Monday) and Christmas/New Year period.

When to start and end the Christmas/New Year period is a matter of judgement (as it de-

pends on whereabouts weekends fall), which is why the visual inspection of the coloured

plots is helpful. In fact, December 18th 1995 to January 1st 1996 inclusive, and Decem-

ber 22nd 1995 to January 3rd 1996 inclusive, were excluded (the corresponding 1994/5

figures being December 24th 1994 to January 2nd 1995 inclusive).

There were a total of 431 customers present in this data, and a total of 248 614 load

profiles (11 933 472 weather-dependent load readings).

A mechanism for the automatic removal ofsolecisms (suspicious spikes in the data

sustained for only one half-hourly reading, see section 10.1) was built into the code

which builds the binary databases from the raw (flat-file) load data. Whilst the mecha-

nism used is rather crude, and may in some cases class genuine data as erroneous (or

wrongly class a short term dip in load as an outage or blown circuit), it was deemed nec-

essary to remove at least some solecisms in order to reduce noise (and also to calculate

accurate load factors), and it seems likely that most of the spikes removed were indeed

genuinely erroneous data (and most of the dips genuinely due to special circumstances).

A datum  was classified as apeak solecism if the raw load reading immediately pre-

ceding it  and the raw load reading immediately following it were such that

(EQ 97)

and , whilst it was considered atrough solecism if the data immediately preced-

ing and following it were such that
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(EQ 98)

and . These various thresholds were chosen intuitively after inspection of the

raw data, with the aim of discriminating best between spikes which were genuine and

spikes which were likely not to be genuine, or due to brief loss of power. The thresholds

 and  are intended to account for the fact that the ratios in (EQ 97) and

(EQ 98) are more likely to occur as genuine artifacts when load levels are low. In the

event that either type of solecism was detected, was replaced by .

The final stage in creating the database was to normalise each customer so as to make

their average half-hourly load equal to 100 units (see section 10.2). In what follows,

‘original database’ means one with special days removed, solecisms smoothed over, and

then normalised, as above, not the original flat file data.

11.3.2  Exploratory Runs and Conclusions Drawn Therefrom

During the software’s development, a vast number of runs of the MARS algorithm,

and of the routines necessary to present data to and extract data from it, were performed,

usually on small subsets of the data; while results from these debugging and exploratory

runs are not recorded here, various observations were made which informed the format

of the experiments which are presented.

As has been noted, rainfall was excluded from further consideration (though there is

hardly any rainfall data recorded for the 1995/6/7 database in any case). It was noted that

cross-validation runs, to determine the MARS smoothing parameter (section 6.5.3)

(using the inbuilt MARS cross-validation scheme, see section 11.3.8) took far too long

for many to be performed often, except when the problem size is greatly reduced. The

total complexity can be reduced primarily by restricting the number of predictor varia-

bles, particularly categorical customer variables (see section 11.2.4). (Of course, the

complexity is also reduced by presenting less data, i.e. less dates and less customers, but

it was decided to perform all the final runs here presented on the full 1995/6/7 date and

customer sets, to allow for fair comparisons.) Another way to lower complexity is to lim-

it the number of initial basis functions selected prior to pruning (section 6.5.3), though

this often results in candidate variables being excluded from the model which are found

to be of importance when the initial number of basis functions is increased.

Even when cross-validation is not used, runs can still take prohibitively long, and it
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is necessary to restrict the number of candidate predictor variables (and be prudent with

the number of pre-pruning basis functions) as above. MARS also provides a ‘speed’ pa-

rameter. Larger values progressively sacrifice optimization thoroughness in the selection

of basis functions, to gain computational speed [11]. This usually results in a marked de-

crease in computing time with little or no effect on the resulting approximation’s accu-

racy. All the presented results use the highest (fastest) value for this parameter, due to

the high size of the problem (many observations, many variables).

Upon observing the long computation times on exploratory runs, it was also decided

to restrict the types of interactions allowable between predictor variables, which consid-

erably reduces complexity in some cases. The scheme chosen was based partially on the

exploratory runs, and partially on heuristic choices informed by the known interaction

effects of weather variables on load. The following types of interaction were allowed/

prohibited (and these apply to all lag/delta/smoothed versions of the variables referred

to, not only the spot variables):

• cloud can only interact with “insolation”, rainfall and temporal variables1

• “insolation” can only interact with cloud, rainfall and temporal variables

• “darkness” can only interact with rainfall and temporal variables

• windspeed can only interact with temperature-based variables2, humidity, rainfall,

“discomfort” and temporal variables

• “discomfort” can interact with rainfall, windspeed and temporal variables

• “chill” can interact with rainfall and temporal variables

The variables insolation, darkness, chill and discomfort are derived variables intro-

duced in sections 11.3.3 and 11.3.10.

Additionally, MARS was prohibited from considering interactions involving any

lags, deltas and smooths of the same basic (spot) variable (with each other, or with the

spot variable).

Note that a day-of-year variable (days since January 1st), was used rather than day

index  (days since beginning of study period). This is because day index allows the

1. The temporal variables are time of day, sunset time, seasonality (see 10.5.3), and the derived variables

summer, spring, noon and evening (see 11.3.4).

2. The temperature based variables are  (temperature now, peak yesterday, mean yes-

terday and trough yesterday).
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weather model to differentiate between a particular time of year in one year and the same

time of year in another year, regardless of whether the weather differs between the two

days in question, and so is not as relevant to a weather model as day-of-year.

A pure random noise variable (with a uniform distribution on [0, 1]) was also includ-

ed in all the experiments that follow; this was used as a safeguard against overfitting: if

at any stage in the MARS algorithm pure noise is selected in preference to the meaning-

ful variables, it is a very strong indication that the model is being overfitted. Whilst in

some exploratory runs where smaller customer and date sets were used and where few

meaningful variables were available for selection the noise variable was indeed selected,

in the full size trials presented here noise was never selected.

Any other MARS parameters were left at their default values (see [9],[10]), the

MARS algorithm being deemed too expensive to determine their optimal values by var-

ious series of cross-validation runs.

11.3.3  Derived Variables Describing Illumination

An important observation made during the exploratory runs is that day-of-year was

found to be a very important variable, more so than had been anticipated. Since day-of-

year is not a weather variable, its chief justification for inclusion in the weather model is

that the amount of natural illumination at any moment is dependent on the time of year.

Of course, the time of year affects load very strongly, because the time of year affects

the weather so strongly, but since we have the principal weather variables recorded in

their own right, that does not in itself justify the inclusion of time-of-year variables in a

weather model. By including time of year in the weather model, any effects that the time

of year has on load shapethat are unrelated to weather are also liable to be modelled,

whereas this ideally ought be left to the weather-free (clustering) model.

If time-of-year variables were to be excluded, it would be especially desirable to in-

clude a natural illumination variable (which, as discussed, was not available in the

weather data). In fact, the amount of natural illumination availableabove the atmosphere

at any moment and any place, can be calculated from the date, the time of day, and the

(fixed for our model) latitude and longitude. The SOLPOS library of functions, freely

available from the (United States) National Renewable Energy Laboratory (NREL) [34],

were used to calculate this quantity, known asextraterrestrial insolation. However, it is

the surface insolation (i.e. below the clouds) which we would really like to know, and
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this is affected by such factors as atmospheric pressure, pollutants, cloud cover and cloud

density. A very crude estimate for this quantity was calculated based on the only one of

these factors available, cloud cover. The simplifying model assumes that all of the extra-

terrestrial insolation will reach the surface, except for that which hits a cloud; and that a

fixed fraction (thecloud transparency) of the latter will penetrate to the surface regard-

less. Thus our estimate for surface insolation is

(EQ 99)

where  is the extraterrestrial insolation,  is the fraction of the sky covered

by cloud and  is the cloud transparency parameter. In fact, the parameter used

was nameddarkness , where

(EQ 100)

and  is the greatest value that can be taken by. This is an estimate of effective

darkness, which avoids confusion with extraterrestrial insolation, which we will just

call insolation.

The SOLPOS library was also used to calculate daily sunset times; these calculated

sunset times differ (though only very slightly) from true sunset times for a particular lo-

cation, as they do not take elevation, refraction, and other complicating factors into ac-

count; however the true sunset times for the geographical location in question were not

available.

11.3.4  More Derived Temporal Variables

Four derived temporal variables were also thought to be worth adding to the model

after some experimentation. These are sinusoids with various phases and periods (and

with amplitudes arbitrarily equal to 1). The variablessummerand springhave period 1

year (reckoned as 365.25 days), and peak respectively on midsummer’s day and on the

vernal equinox. The variablesnoon andevening have period 24 hours and peak respec-

tively at 12:00 hours GMT and at 18:00 hours GMT. They represent closeness to sum-

mer, spring, noon and evening respectively.

As noted in section 10.5.4, such variables represent a different way of presenting

time of day and time of year information to MARS which may be more helpful than the

current hour or day of year. They also allow the periodicity of days and year to be rep-
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resented in the model (whereas time of day and day of year each have a discontinuity that

does not correspond to a similar discontinuity in nature). Note that linear combinations

of spring andsummer will be sinusoids with period 1 year, but with various phases. Thus

MARS is able to indirectly model closeness to any particular time of year by using these

variables in separate additive terms. An analogous point holds fornoon andevening and

times of day.

11.3.5  Notes on MARS Output

Recall that lack-of-fit function used by mars is GCV, defined in (EQ 59) (or modified

by weights, (EQ 95)). MARS produces a measure of relative variable importance for

each variable based on GCV; it is calculated for each variable in turn by removing all

terms in the MARS model involving that variable, and recording by how much the lack-

of-fit score GCV increases as a result.   These figures are normalised into percentage fig-

ures (by dividing by the greatest calculated GCV increase, taking square the root, and

multiplying by 100%; square roots are taken since GCV is measured in squared units).

Thus the variable whose removal most increases lack of fit is awarded 100% relative im-

portance, variables which do not appear in the model at all are adjudged 0% important,

and a variable whose removal increases lack of fit only 1/4 as much as the 100%-impor-

tant variable is awarded 50% relative importance.

Whilst these figures may be a useful guide to relative variable importance, the figures

should not be taken as any definitive ranking of variable importance. Particularly, it

should be noted that the amount of GCV added by removing all model terms featuring a

particular variable  may be wildly different from the GCV that would be added by re-

moving  from the original list of candidate variables and building the model afresh.

This is especially the case where there are two or more related variables. For example, a

temperature smooth with a half-life of 8 hours might feature heavily in a model, yet a

temperature smooth with half-life of 7 hours feature much more lightly or be overlooked

completely. However, were the former variable removed and the model built again, we

would expect the latter variable to gain significantly in importance, and the overall mod-

el fit to remain largely unchanged.

Unfortunately it is not practical to judge the importance of each variable by rebuild-

ing the model without the variable, whereas the relative importance figures produced by

MARS are cheaply calculated.

v

v
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11.3.6  Experiment 1: Preliminary Run, No Cross-Validation

A very large MARS model was run using a very wide selection of variables. The

maximum number of predictor variables in any interaction term was restricted to 3 (as

was the case in all following experiments unless noted otherwise), the number of basis

functions selected (prior to pruning) was set at 90, and 55 variables were made available

for selection, as follows:

• 26 temperature-based variables: , plus temperature lags of 2, 4, 8

and 48 half-hours, delta temperatures for 2, 4, 24, 48 and 336 half-hours and expo-

nentially smoothed temperatures with half-lives of 1, 2, 4, 6, 12, 48, 96, 336 and

1344 half-hours1.

• 6 humidity-based variables:  (current humidity), plus lags of 2 and 4 half-hours

and smooths of 1, 2 and 4 half-hours.

• 4 windspeed-based variables:  (current windspeed), plus a lag of 2 half-hours and

smooths of 1 and 3 half-hours.

• 4 cloud cover-based variables:  (cloud cover), plus, again, a lag of 2 half-hours

and smooths of 1 and 3 half-hours.

• 8 temporal variables: time of day, day of year, summer, spring, noon, evening, plus

sunset  and seasonality .

• 10 illumination-based variables: (extraterrestrial) insolation, plus lags of 1 and 2

half-hours and smooths of 2 and 4 half-hours; plus (estimated)darkness, with the

same lags and smooths. In this instance, darkness was calculated using a cloud trans-

parency parameter, somewhat arbitrarily, of  (see 11.3.3).

• 1 noise variable (see 11.3.2).

The MARS smoothing parameter of (EQ 60) was set at 3.0, this being the recom-

mended typical optimal value [9]. Parameter was kept at 3.0 in all the following ex-

1. In the results, exponentially smoothed variables are denoted by their half-lives (in half-hours), rather

than their smoothing exponent (EQ 88), for ease of comparison with lag and delta variables. The

half-life of an exponentially smoothed series is the time it will take for the current value’s contribu-

tion to the series to decay to half that level. Half-life and exponent  are related by the formula

.
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periments, except where otherwise noted.

Weather dependent loads were calculated from the (normalised, special days-re-

moved) 1995/6/7 database using a weather separation as described in section 11.1, using

only day of the week () as a separating variable (i.e. , so there are just seven

weather independent profiles). Except where otherwise noted, all the weather separa-

tions for the results presented were generated thus. This separation results in a total of

32112 observations being presented to MARS (= , 48 half-hours and 669 dates,

after 62 special days out of a possible 731 days have been excluded).

The intention of this run was to narrow somewhat the large pool of candidate varia-

bles, and particularly to identify some suitable values for the time period of various lag,

delta and smoothed variables. Even this broad set of variables needed to be picked judi-

ciously (based on the experiences of many exploratory runs) to keep computation times

acceptable.

The GCV score for the unmodelled data is defined as that arising from a constant

MARS model (one with a single constant term, denoted in (EQ 57)); this is a measure

of the total variation in the data. The unmodelled GCV for the data is 63.14. The model

generated for the above described experiment resulted in 38 ANOVA functions (see sec-

tion 6.5.3) after the pruning phase, and the resulting piecewise-linear MARS model has

a GCV score of 14.09. This yields a percentage of variation (as measured by root per-

centage of GCV) accounted for by MARS of 88.14% (= %).

The square root takes into account that GCV is measured in squared units.

The relative variable importances determined by MARS appear in (TABLE 5.)1,

which also features the correlation coefficients of each variable with the response (in the

1. Tables presented in this chapter are partially automatically generated by the data mining software, and

feature abbreviations of some variable names as used in the software. Most are just a four letter abbre-

viation of the variable’s full name, and are easily deciphered. The only obscure abbreviations are

‘avey’ for average temperature yesterday, ‘maxy’ and ‘miny’ for peak and trough temperatures yester-

day, and dofy for day of year. Asterices are used for ‘not applicable’. ‘RESP’ is the response variable,

which, of course, is not actually used as a predictor variable.

d X
I

d{ }=

48 669×

a0

63.14 14.09–( )
63.14

--------------------------------------- 100×
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Y-Correlation column). The first column shows the variable number, and the second,

TABLE 5.

No Type Subtype 1/2-
hrs

Y-Corre-
lation

Importance:
Experiment 1

Importance:
Experiment 2

Importance:
Experiment 3

1 RESP * * 1 * * *

2 avey * * -0.4606 9.453 41.93 16.99

3 clou smooth 1 0.1177 *

4 clou smooth 3 0.1192 14.26 * 19.19

5 clou lag -2 0.1129 *

6 clou * * 0.1159 *

7 dark smooth 2 0.2613 *

8 dark smooth 4 0.332 *

9 dark lag -1 0.2179 *

10 dark lag -2 0.2434 *

11 dark * * 0.1913 7.870 * 6.811

12 dofy * * -0.1248 44.85 * 44.97

13 even * * -0.02852 100.0 * 100.0

14 humi smooth 1 0.3127 12.25 * 17.47

15 humi smooth 2 0.324 *

16 humi smooth 4 0.3361 11.98 * 12.51

17 humi lag -2 0.3159 *

18 humi lag -4 0.3206 *

19 humi * * 0.3019 *

20 inso smooth 2 -0.2584 17.58 * 11.50

21 inso smooth 4 -0.3293 23.34 * 19.66

22 inso lag -1 -0.2163 30.73 * 29.25

23 inso lag -2 -0.2419 *

24 inso * * -0.19 31.77 * 35.06

25 maxy * * -0.4594 13.35 100.0 16.94

26 miny * * -0.4413 52.77 12.41

27 nois * * 0.01252

28 noon * * 0.007577 36.87 * 45.04

29 seas * * 0.09116 22.21 * 26.56

30 spri * * 0.1871 26.90 * 35.96

31 summ * * -0.4968 9.751 * 27.97

32 suns * * -0.4757 15.56 * 20.77

33 temp smooth 1 -0.4851

34 temp smooth 2 -0.4893

35 temp smooth 4 -0.4916 18.03

36 temp smooth 6 -0.4896

37 temp smooth 12 -0.4827 17.03 38.08 23.46
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 third and fourth give the abbreviated basic variable name, and where applicable the type

of derivation used to generate the variable (lag, exponential smooth, delta) and the time

period (in half hours) used in that derivation. Blank cells represent zero importance (var-

iables not used).

Firstly, it should be noted that almost all of the variable types included are represent-

ed in some form in the model; temporal variables (both daily and yearly, as well as sun-

set-derived variables), derivatives of temperature, cloud cover, humidity, windspeed,

and derived illumination variables (insolation and darkness) all feature. Maximum and

mean temperatures from the previous day (but not the minimum temperature) are fea-

tured; only noise (as we would expect) plays no part at all.

Next to be noted is the great importance of the temporal variables, as reckoned by

MARS. Particularly, closeness-to-18:00 GMT (i.e.evening), and also closeness-to-noon

and the day of the year, are ranked as very important; hour of day (time), closeness-to-

spring, and seasonality also figure highly, whilst closeness-to-summer and sunset time

figure as less important (at least partially because the two variables share the same bur-

den, being strongly correlated and representing the same essential concept).

Extraterrestrial insolation, and variables derived from it, are temporal variables

38 temp smooth 48 -0.4811 13.60 33.04 16.86

39 temp smooth 96 -0.4855 31.96 43.11 16.01

40 temp smooth 336 -0.4804 34.59 14.61

41 temp smooth 1344 -0.3759 25.11 42.77 33.29

42 temp delta -2 0.06831 13.04

43 temp delta -4 0.05303 12.45

44 temp delta -24 -0.1334 52.93

45 temp delta -48 -0.0249 43.86

46 temp delta -336 -0.01002

47 temp lag -2 -0.4883

48 temp lag -4 -0.4914

49 temp lag -8 -0.4848 20.44

50 temp lag -48 -0.473 33.68

51 temp * * -0.4804 34.64 32.37 42.19

52 time * * -0.01999 14.77 * 18.38

53 wind smooth 1 0.07475 *

54 wind smooth 3 0.07743 7.514 * 7.617

55 wind lag -2 0.06949 *

56 wind * * 0.07604 *

TABLE 5.
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strictly speaking (though our estimated darkness variable must be regarded as a weather

variable, since it depends on cloud cover). Spot insolation and 1/2-hour lagged insolation

both appear to be influential variables, and short-term smooths of insolation also fea-

tured. (Spot) estimated darkness featured in the model, though not heavily.

Spot temperature and smoothed temperature variables appear to be easily the most

important of the non-temporal variables; particularly the spot temperature and some me-

dium and long term smooths (notably those with half-lives of 2 days and 28 days, i.e. 96

and 1344 half-hours); shorter term smooths (half-lives 12 and 48 half-hours) also play

their part.

The delta temperature variables were not selected at all by the model; various explor-

atory runs had found delta temperature variables to be of use, however. At least in this

experiment, lag variables were also found to be of very little importance (only one vari-

able - the half hour lagged insolation - being utilised), though again this had not always

been the case in prior exploratory runs. These observations prompted Experiment 2 (sec-

tion 11.3.7).

Of the remaining weather variables, humidity and cloud cover, and to a lesser extent

windspeed, all influenced the model, all in the form of short-term smooths.

Of the 38 ANOVA functions, 7 were functions of one predictor, 10 were functions

of two predictors, and the remainder (21) were functions of three predictors (recall the

maximum interaction level is set at three). There is no need to detail them all for this pre-

liminary experiment, but it is worth noting that no humidity variables interacted with

temperature (or any other weather) variables, that windspeed interacted with a medium-

term (half-life two days) temperature smooth, and that cloud cover-based variables only

appeared in interaction with insolation-based variables. Every interaction term included

at least one temporal variable - there were no weather-only interaction terms (unless in-

solation is counted as a weather variable).

11.3.7  Experiment 2: Temperature-Based Variables Only

The same data and parameters were used as in experiment 1, but only temperature-

based variables (plus a noise variable) were available for selection (23 variables). As

would be expected, much less GCV was accounted for by the resulting model. The piece-

wise linear version of the model has a GCV score of 26.68 (28.86 for the piecewise cubic

version), compared to 14.09 for the piecewise linear model of experiment 1. Thus the
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(piecewise linear) model accounts for a root percentage of GCV of 75.99% (compared

to 88.14% in experiment 1).

There is no surprise that a model which is unaware of time-of-day variables can ac-

count for much less of the variation in weather dependent load (never mind the absence

of the other variables), since the effect of weather on load is strongly time-of-day de-

pendent. However it is interesting to note the changes brought about in the relative im-

portance of the temperature-based variables, shown in (TABLE 5.). Perhaps the most

important change is that delta temperature variables now play a role, and a reasonably

important one; the temperature change from 12 and from 24 hours ago appear particu-

larly influential. Lag temperature variables now also play a part, though are still of lesser

influence than exponentially smoothed temperatures. The previous day’s statistics (peak,

mean, trough), especially the previous day’s peak, assume a greater significance than

most of the other variables, whereas in experiment one they were less important than oth-

er temperature variables.

It is only to be expected that when a large selection of variables known to be useful

in load/weather modelling are removed, the importance of some remaining variables will

increase. Exactly why the previous day’s statistics, and the delta temperature change

from 24 hours ago, are rated as so important in the absence of the non-temperature-based

variables is unclear. In the case of the delta temperature with lag 8 half-hours, it is pos-

sible that it is rated as important partly because the variable conveys indirect time-of-day

information, in that the temperature tends to rise during the morning and fall through the

evening (no matter what the season); however the results of experiment 2 indicate that

delta variables are at least worth considering as candidate variables in load/weather mod-

els.

11.3.8  Experiment 3: Cross-Validation Results

-fold cross-validation is a common technique for assessing the accuracy of predic-

tive mathematical models such as MARS. Whilst a goodness of fit statistic is generally

easy to calculate for a model, it only measures the goodness of the fit of the built model

to the actual data presented, not its goodness of fit to data of that type per se. However

since we generally assume that our data are drawn from a much larger, usually infinite

population, it is necessary to perform some kind of cross-validation in order to verify to

what extent a model’s claim of good fit applies to the population at large. This is espe-

n
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cially relevant when the data is noisy, since an overfitted model may claim an excellent

goodness of fit when it is in fact fitting to the noise; when that model is applied to fresh

data (which has different noise) the goodness of fit may be far lower.

-fold cross-validation errors are calculated by subdividing the sample population

into  sub-populations, as equal in size as possible, in a completely random manner.

different models are then built, each using  of the sub-populations (combined) as

training data (on which the model is fitted) and the remaining sub-population as test data.

The cross-validation error for each model is the lack of fit of the fitted surface to thetest

data. The  cross-validation errors are then usually averaged to obtain a single cross-val-

idation error figure.

The main smoothness parameter in MARS, degrees-of-freedom charged per basis

function added (EQ 60) is intended as a parameter with which to guard against overfit-

ting in MARS. Each basis function added adds a knot to the fitting function, and fewer

knots result in a smoother fitted surface. Addition of too many knots to the fitted surface

increases the likelihood of overfitting the model, so it is necessary to use a cross-validat-

ed lack of fit measure to determine a suitable value for. MARS has a built-in routine

to estimate the optimal value for based on -fold cross-validation errors.

Using this routine, based on a ten-fold cross-validation scheme, experiment 1 was re-

peated. Tenfold cross-validation greatly increases the algorithm’s computational com-

plexity (by a factor of around 10); furthermore, the number of basis functions (pre-

pruning) was increased from 90 to 120, imposing even greater complexity. It was not

feasible to compute cross-validation on very many of the experiments presented here be-

cause of the complexity, but the results in this instance are enlightening.

 (TABLE 6.) shows a snippet of the output for the tenfold cross-validation run. The

TABLE 6.

Number of basis
functions

Corresponding Cross-Validation Errors (CV)

120 -1.95 12.82

119 -1.88 12.82

118 -1.78 12.82

117 -1.70 12.82

116 -1.59 12.82

115 -1.30 12.81

114 -.80 12.81

113 -.42 12.82

112 -.02 12.82

n

n n

n 1–

n

d

d

d n

d
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cross-validation errors (CV) are almost constant for any final (post-pruning) number of

basis functions from 105 to 120 (and in fact, are little changed for as few as 90 basis func-

tions). Though Friedman recommends values between 2.0 and 4.0 for [9], it would ap-

pear that for the problem presented here, a much wider range of values for can be used

with minimal effect on goodness of cross-validated model fit.

The cross-validation routine determined the optimal parameter at 0.98, corre-

sponding to 110 basis functions, with a predictive square error (averaged over 10 cross-

validation models) of 12.81. Running with=0.98 and 120 candidate basis functions,

the MARS model achieves an actual GCV score of 12.98 (for the piecewise linear ver-

sion; 14.86 for the piecewise cubic version), meaning it accounts for a root percentage

89.13% of GCV.

Comparing the relative importances in variables between experiments 1 and 3 (TA-

BLE 5.) there is very little difference to speak of, suggesting that although seeking 120

(rather than 90) candidate basis functions does not noticeably degrade cross-validated

goodness of fit (i.e. does not overfit), it does little to radically alter the final model.

Since the estimated optimal value for smoothness parameter was shown to result

in very similar cross-validated goodness of fit for such a wide range of values, it was not

deemed necessary to alter its value from the suggested default value of 3.0 (see [9]) in

any of the subsequent experiments, though the suggested value (approximately) was

used in the final model () of section 11.3.12.

It must be noted that a cross-validation scheme which selected random sub-popu-

lations ofcustomers with which to build/test separate models, rather than of observa-

tions, might actually be more appropriate for our purposes; under the MARS cross-

validation scheme described, every sub-population is certain to contain observations

111 .29 12.81

110 .98 12.81

109 1.64 12.82

108 1.97 12.82

107 3.14 12.82

106 4.11 12.82

105 4.95 12.83

... ... ...

91 21.03 12.91

90 22.19 12.92

... ... ...

TABLE 6.

d

d

d

d

d

α

n
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from every customer, and so customers with extremely unusual weather dependent loads

are unlikely to contribute quite as much lack-of-fit when appearing in test data as they

would under a cross-validation based on customer sub-populations. Unfortunately the

cross-validation scheme is programmed into the MARS code in a way which would be

very difficult to change, and time did not permit for this type of cross-validation to be

implemented. However, there are enough customers in the database that any difference

between these cross-validation schemes would most likely be slight.

11.3.9  Experiment 4: Illumination Variables

The variables available governing the amount of natural illumination present, and

hence affecting lighting loads, are principally cloud cover, (extraterrestrial) insolation,

(estimated) darkness and sunset time (and, excluding sunset, their lagged and smoothed

versions). Other temporal variables also influence the amount of natural illumination,

most notably time of day and closeness to summer; however they are not considered

here, since extraterrestrial insolation is of more direct relevance to lighting loads than

any of the time of day-based variables, and because sunset time is presumably at least as

relevant to lighting loads as any of the time of year-based variables.

The principal problem in trying to determine the importance of the above variables

on lighting loads is that most of them, directly or indirectly, strongly influence other

loads, especially heating and cooling loads. Sunset time is strongly correlated with tem-

perature variables, as is insolation (and inversely, darkness), and even cloud cover is co-

dependent with other weather variables (having a positive correlation with relative hu-

midity and a negative correlation with temperature). Thus it cannot be supposed that a

model featuring only the above variables will model mostly lighting loads rather than

other loads. Even if the actual recorded natural illumination figures were available to us,

there would be no way to isolate its effects on lighting loads from its indirect effects on

other loads, natural illumination having such strong correlations with other meteorolog-

ical and temporal variables.

The purpose of the experiments in this section was only to try and determine whether

our estimated darkness variable is of much utility relative to cloud cover and insolation,

and to try and determine a suitable value for the cloud transparency parameter of

(EQ 99).

To this avail, models were built using the same model parameters as experiment 1,

CT
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except that the number of basis functions to be determined was only 50. The candidate

variables consisted of 2 temperature smooths (with half-lives of 4 hours and of one

week); yesterday’s mean temperature; closeness-to-evening (18:00 GMT) and close-

ness-to-noon; sunset time; plus a small selection of lagged and smoothed versions (and

a spot version) of (a) cloud cover, (b) extraterrestrial insolation and (c-g) estimated dark-

ness with a variety of cloud transparency parameters. The temperature variables were in-

cluded so that when variables deriving from cloud cover, insolation or darkness were

selected it was not merely due to their correlations with temperature (temperature being

the most influential non-temporal variable); the temporal variables for similar reasons

(since insolation/darkness have strong correlations with temporal variables). The results

appear in (TABLE 7.).

The GCV scores for experiment 4a (using cloud cover) and experiment 4d (using

extraterrestrial insolation) are quite similar (although which model is judged better de-

pends on whether the piecewise linear or piecewise cubic version is used). Note that the

a. c/i/d means cloud cover in experiment 4a, insolation in experiment 4b, and darkness in experi-
ments 4c-4g.

TABLE 7.

                Experiment Number: 4a 4b 4c 4d 4e 4f 4g

       Illumination Variable Type: clou inso dark

Cloud Transparency Parameter:* * 0.20 0.40 0.60 0.70 0.80

No Type Subtype 1/2-
hrs

                            Relative Variable Importance

1 RESP * *

2 avey * * 27.10 70.95 73.91 48.02 59.93 60.00 57.11

8 even * * 100.0 100.0 100.0 100.0 100.0 100.0 100.0

9 nois * *

10 noon * * 37.53 41.63 31.04 31.86 35.36 43.78 33.44

11 suns * * 67.67 51.11 68.19 62.92 53.45 47.93 42.46

12 temp smooth 4 31.76 36.61 30.86 38.41 40.15 42.21 28.97

13 temp smooth 336 22.08 23.87 28.43 25.67 24.84 21.67 24.86

3 c/i/da smooth 2 28.16 36.69 24.66 34.93 33.07 18.29

4 c/i/d smooth 4 9.542 32.69 34.86 17.15 6.332 6.793 10.36

5 c/i/d lag -1 13.78

6 c/i/d lag -2

7 c/i/d * * 12.56 7.535 10.10 11.91

GCV score (piecewise linear): 17.79 17.85 18.37 17.73 17.59 17.38 17.84

GCV score (piecewise cubic): 18.53 18.32 19.24 18.71 18.50 17.84 18.31

Correlation between observed
and (piecewise cubic) fitted:

0.8394 0.8409 0.8329 0.8381 0.8391 0.8457 0.8420
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cloud variables are not rated as particularly important in experiment 4a.

In experiments 4c-4g, using estimated darkness, cloud transparency parameters of

 = 0.2, 0.4, 0.6 and 0.8 were used, and subsequently, a cloud transparency parameter

of 0.7 was also tried. For the lower values of , fit was worse than, or barely better

than, either cloud alone or insolation alone. However for values of 0.7 and 0.8, fit

was better than in experiments 4a and 4b, particularly so for .

In any of the following experiments in which estimated darkness appears, a cloud

transparency figure of  has been adopted. It should not be inferred, however,

that the actual average transparency figure for clouds above the geographical area under

study is necessarily very near this figure.

11.3.10  Experiments 5, 6 & 7: Humidity and Windspeed; Discomfort and Wind
Chill Factors

There are a variety of measures used by meteorologists which attempt to describe the

combined effect of temperature and (relative) humidity on the level of comfort felt by

humans experiencing high temperatures. Air conditioning loads would be expected to in-

crease as human discomfort increases, and might be expected to follow a discomfort in-

dex more closely than either temperature or humidity individually, prompting the

introduction of a discomfort index to the weather model.

The most common of these measures is theHeat Index (also known as Apparent

Temperature, also known as Temperature-Humidity Index) [35]. Another measure of the

discomfort arising from high temperature and high humidity is theSummer Simmer In-

dex [36]. Both measures combine temperature and humidity into a figure reckoned to

represent how hot it actually feels when it is both hot and humid (rather than hot and dry),

measured in degrees Fahrenheit. The figures do not differ too greatly from one another

for most of the temperature/humidity range for which they are valid; however both for-

mulas become completely meaningless for low temperatures. There being little reason

to prefer one to the other, the Summer Simmer Index was deemed more useful for our

purposes because it is easier to extend the formula to be meaningful for lower tempera-

tures; there is a single temperature, 58 degrees Fahrenheit, at which the index is constant

whatever the relative humidity, a temperature at which there is deemed to be no discom-

fort due to heat. Therefore by using a modified form of the Summer Simmer Index

(which we will just calldiscomfort) which remains constant at or below 58 degrees Fahr-

enheit, an index meaningful for all (reasonable) temperatures is recovered (there is no

CT
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such cutoff point inherent in the Heat Index formula). The modified Summer Simmer In-

dex, then, is defined for Fahrenheit temperatures as

(EQ 101)

 where  is the Fahrenheit temperature, and the relative humidity (a percentage

figure), and by converting to and from degrees Fahrenheit and Celsius, a version is ob-

tained which can be used in our MARS model. Lagged and smoothed version of this spot

variable are also allowed as candidate variables; in fact, it could be the case that a differ-

ent lag/half-life is appropriate for temperature than for relative humidity in the calculated

discomfort index, but allowing such flexibility would lead to an explosion in the number

of candidate variables and was deemed counter-productive.

Whilst windspeed may also have an effect on air-conditioning loads (see 10.5.1) it is

more closely associated by modellers of the load/weather relationship with its effect on

heating loads, due to the cooling effects of the wind (again, see 10.5.1). Like discomfort

due to heat and humidity, the combined effect of wind and temperature are often com-

bined into one statistic. The most common of these is the Wind Chill Factor, which mod-

els the cooling power of the wind on skin, usually in watts per meter squared. This figure

is actually intended to model the apparent coldness for a human outdoors, rather than in-

doors, where except as draughts and through opened doors, the effect of wind will not

usually be felt directly. Since heating loads obviously depend chiefly on the indoor con-

ditions, Wind Chill Factor might not be an entirely appropriate candidate variable for a

load/weather model. However, since windspeed was demonstrated in experiment 1 to be

a non-trivial factor in the load/weather relationship, presumably mostly due to its inter-

action with the cold, it was felt that some measure of the combined effect of coldness and

windspeed might be useful, and Wind Chill Factor is the most obvious candidate.

Various versions of Wind Chill Factor are in use; the version that was used derives

from the Meteorological Service of Canada [37], and we will call it justchill:

(EQ 102)

Here,  is the temperature (degrees Celsius) and  is the windspeed in miles per

hour; conversion of windspeed from knots to miles per hour was necessary before cal-

culating chill.
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Three experiments were conducted to evaluate the effectiveness of the derived vari-

ables discomfort and chill. Firstly, in experiment 5 a moderate selection of variables,

which did not include windspeed, humidity, chill or discomfort, were presented to

MARS (with the same model parameters as in experiment 1). Secondly, in experiment 6

these variables were used once more, together with windspeed and humidity (and some

lagged and smoothed variables derived from windspeed and humidity). Finally, in ex-

periment 7 the original variable set was used in conjunction with chill and discomfort

variables (again with some lags and smooths), without windspeed and humidity. The re-

sults are presented in (TABLE 8.).

TABLE 8.

Experi-
ment 5

Experi-
ment 6

Experi-
ment 7

No Type Subtype 1/2
hours

Y-Correlation Impor-
tance

Impor-
tance

Impor-
tance

1 RESP * * 1 * * *

2 dofy * * -0.1248 22.89 25.02 16.15

3 even * * -0.02852 100.0 100.0 100.0

10 nois * * 0.01252

11 noon * * 0.007577 43.48 38.70 43.41

12 spri * * 0.1871 44.46 31.14 34.45

13 summ * * -0.4968 91.21 69.48 70.33

14 temp smooth 1 -0.4851

15 temp smooth 2 -0.4893 25.84 16.80 12.99

16 temp smooth 4 -0.4916 13.92 6.421

17 temp smooth 6 -0.4896

18 temp smooth 12 -0.4827 30.26 22.69 15.05

19 temp smooth 48 -0.4811 32.84 28.25 20.83

20 temp smooth 96 -0.4855 40.03 32.96 29.62

21 temp smooth 336 -0.4804 12.52

22 temp smooth 1344 -0.3759 32.66 23.66 15.44

23 temp lag -2 -0.4883 10.93

24 temp lag -4 -0.4914

25 temp * * -0.4804 21.24 6.479 10.93

26 time * * -0.01999 23.80 13.04 15.21

humi disc

4 humi/disca smooth 1 0.3127 -0.2336 *

5 humi/disc smooth 2 0.324 -0.2396 *

6 humi/disc smooth 4 0.3361 -0.2391 * 7.191

7 humi/disc lag -2 0.3159 -0.2402 *

8 humi/disc lag -4 0.3206 -0.2467 *

9 humi/disc * * 0.3019 -0.226 * 20.79
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In each case the GCV score for the unmodelled data is (again) 63.14. The GCV

scores for the piecewise linear versions of the constructed MARS models are respective-

ly, 15.18, 14.39 (humidity and windspeed included) and 14.93 (discomfort and chill in-

cluded).

The first thing to note is that humidity is preferred by MARS to our discomfort meas-

ure: indeed discomfort and its derivatives are not selected at all, whereas plain relative

humidity (spot humidity and humidity smoothed with a half-life of 4 half-hours) is se-

lected. This is perhaps surprising, but less surprising in light of the fact that response is,

in fact, inversely correlated with discomfort in the data (see TABLE 8.). This is perhaps

counter-intuitive, since discomfort is constant when temperatures are low (i.e. less than

58 degrees Fahrenheit, or 14.5 degrees Celsius). It may well be the case that the cutoff

point used in the summer simmer index is much too low for our load/weather model (at

least for UK business loads), hence the negative load/discomfort correlation. It would

appear that even as discomfort (as measured by (EQ 101)) increases, the loads of the

Sponsor’s customers are still being relaxed, possibly due to lower water heating costs,

and possibly due to lower summer lighting costs. There might be some mileage in re-

placing the discomfort measure of (EQ 101) with some other measure, one with a higher

cutoff point. However, there are four interaction terms involving humidity in the ANO-

VA decomposition of experiment 6. One involves spot humidity and closeness-to-sum-

mer; two involve spot humidity and temperature smoothed with a half-life of 28 days

(once with closeness-to summer, once with the day of the year); and the last involves

smoothed humidity (2 hour half-life), smoothed temperature (2 day half-life) and

smoothed windspeed (2 hour half-life). Thus it would appear MARS is capable of con-

structing terms which take account of the effect of humidity on human discomfort, and

even of windspeed on human discomfort, without needing the assistance of an explicit

a. Humidity in experiment 6, discomfort in experiment 7.

b. Windspeed in experiment 6, chill in experiment 7.

wind chil

27 wind/ chilb smooth 1 0.07475 0.4739 * 5.612

28 wind/ chil smooth 2 0.07501 0.4781 * 1.262

29 wind/ chil smooth 4 0.08147 0.4797 * 17.45 8.565

30 wind/ chil lag -2 0.06949  0.4736 *

31 wind/ chil lag -4 0.0672  0.4755 *

32 wind/ chil * * 0.07604 0.4681 *

TABLE 8.
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discomfort variable.

The wind chill variable of (EQ 102), in contrast, is selected by MARS in various

forms, though it does not appear to assume markedly more importance than windspeed.

Smoothed windspeed (2 hours half-life) appears in ANOVA interaction terms with me-

dium-term temperature smooths, and closeness to summer (as well as with humidity/

temperature as above) in experiment 6, suggesting that wind chill can be modelled im-

plicitly by MARS just as well as by including an explicit Wind Chill Factor.

Indeed, in another experiment on the same data (TABLE 9.) featuring windspeed,

humidity, chilland discomfort, discomfort again went unselected, whilst chill and wind-

speed were both selected; however windspeed appeared to have greater importance than

chill. No temporal variables were present in this model, in order to better highlight the

effect of weather variables (compare with experiment 2, which featured only tempera-

ture-based variables).

TABLE 9.

No Type Subtype
1/2-
hrs

impor
tance No Type Subtype

1/2-
hrs

impor
tance

1 RESP * * * 26 temp smooth 2

2 avey * * 100.0 27 temp smooth 4

3 chil smooth 1 28 temp smooth 6 37.71

4 chil smooth 2 29 temp smooth 12 65.77

5 chil smooth 4 30 temp smooth 48 39.32

6 chil smooth 6 16.41 31 temp smooth 96 35.59

7 chil * * 32 temp smooth 336 35.20

8 clou smooth 1 33 temp smooth 672 66.07

9 clou smooth 3 34 temp smooth 1344 69.74

10 clou smooth 5 35 temp smooth 2688 63.64

11 clou * * 36 temp delta -2

12 disc smooth 1 37 temp delta -4

13 disc smooth 2 38 temp delta -24 31.05

14 disc smooth 4 39 temp delta -48 17.63

15 disc smooth 6 40 temp delta -336 20.52

16 disc * * 41 temp lag -2

17 humi smooth 1 42 temp lag -4

18 humi smooth 2 21.06 43 temp lag -8 47.52

19 humi smooth 4 94.08 44 temp lag -48 51.88

20 humi smooth 6 47.08 45 temp * *

21 humi * * 33.62 46 wind smooth 1

22 maxy * * 24.31 47 wind smooth 3 16.45

23 miny * * 40.58 48 wind smooth 5 39.26
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Aside from the observations about the relative merits of chill and discomfort com-

pared to windspeed and humidity, it is interesting to note the huge relative importance

attributed by MARS to humidity (and its lags and smooths); indeed it appears to be at-

tributed around as much importance as temperature and its lags and smooths, though not

as much as the previous day’s mean temperature. Since humidity is not found to have an

influence comparable with that of temperature in the presence of temporal variables, it

is possible that the way in which MARS estimates variable importance is giving undue

importance to humidity here, especially as (relative) humidity has a fairly strong (nega-

tive) correlation with temperature (humidity smoothed with a half life of 2 hours has a

correlation coefficient of -0.4569 with a temperature smooth having the same half-life,

and a correlation coefficient of -0.4700 with closeness-to-summer). It is possible there-

fore that humidity is taking some of the role that would otherwise be taken by closeness-

to-summer, or that could be modelled by temperature variables, in its absence.

Another explanation for the high relative importance of humidity is that cold weather

heating loads may be elevated when humidity is high. This could arise because cold tem-

peratures are experienced as more unpleasant when the air is damp than when the air is

dry.

For whatever reason, there seems little doubt that humidity is a useful predictor in the

load/weather models presented, and of more importance than windspeed.

The ANOVA decomposition again features terms in which humidity variables inter-

act with one or more of: temperature variables; closeness-to-summer; and windspeed

variables. Humidity smoothed with half-life 4 half-hours also appears in interaction

terms with delta temperature variables (with 24, 48 and 336 half-hour lags).

11.3.11  Experiments with Mixed Categorical and Continuous Variables

Using the mixed MARS model of section 6.6.2 (as detailed in sections 11.2.3 and

11.2.4), models were built featuring a moderate selection of temporal and weather vari-

ables together with various categorical variables from (day of the week,

SIC code, tariff code and load factor category). Seven (maximum entropy) load factor

24 nois * * 49 wind * *

25 temp smooth 1

TABLE 9.

No Type Subtype
1/2-
hrs

impor
tance No Type Subtype

1/2-
hrs

impor
tance

1 RESP * * * 26 temp smooth 2

d X5 X6 XL, , ,{ }
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categories were employed, based on recalculated 1-percentile load factors (see section

13.5.2 for an explanation of percentile load factors). There are 7 tariff codes and 41 SIC

codes represented in the data.

In the previous experiments, weather decomposition was performed by subtracting

one of just 7 weather independent profiles (corresponding to the day of the week), see

section 10.5.5 for details. In the following experiments, a full weather decomposition us-

ing all four categorical variables (day-of-the-week, load factor category, tariff code and

SIC code) was performed to arrive at the weather-dependent loads used for the mars

models. There were in fact 1491 weather-independent atoms; these were generated using

recalculated 1-percentile load factors and 7 load factor categories, and featured 7 distinct

tariff codes and 41 distinct SIC codes. Thus of the  possible

combinations of day of the week/load factor category/SIC/tariff code, only 10.6% have

any actual representatives in the 1995/6/7 database.

The experiments performed involved (i) no categorical variables, (ii) day of the week

only, (iii) load factor category only, (iv) day of the week and load factor category, (v)

tariff code only, (vi) day of the week and tariff code and finally (vii) SIC code only. For

(i) to (vi), 90 basis functions were sought. However, due to the massive size of the prob-

lem when SIC code is used as a categorical variable, it was not possible to seek as many

as 90 basis functions, and the number had to be limited to 40 in order to fit into machine

memory; even with this restriction, the program required over 1600 megabytes of ma-

chine memory. Thus the results of (vii) are thus somewhat compromised, and this should

be borne in mind when comparing with (i)-(vi).

It is important to note that the data presented is not the same in all these experiments;

even the number of observations varies (see TABLE 10.) because of the way in which

the response values are calculated when categorical customer variables are employed

(see sections 11.2.3 and 11.2.4). Whilst (i) and (ii) have the same data (since introducing

day of the week does not require each date’s data to be split into categories), experiment

(iii) has seven times as much data (since on any date we need separate weather-depend-

ent load readings for each load factor category). Experiment (iv) uses the same data as

experiment (iii) since only day of the week is added. Experiments (v) and (vi) use nearly

seven times as much data as experiment (i) (not exactly 7, because one or more tariff

code must represent customers all of whom have data missing on a certain date or dates).

Similarly, experiment (vii) uses not far off 41 times as much data as experiment 1, hence

the excessive computational demands when using SIC codes as a categorical predictor.

7 7 7 41××× 14063=
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Relative variable importances from the experiment, and some other model statistics,

are shown in (TABLE 10.). The results of (i) do not show any major departures from a

previous similar experiment (experiment 1), and are given for comparison purposes.

TABLE 10.

                     Experiment: (i) (ii) (iii) (iv) (v) (vi) (vii)

Type Subtype 1/2-
hrs

                            Relative Variable Importance

Categ’l Variables Used: none day ld fac day &
ld fac

tariff day &
tariff

SIC

avey * * 28.13 13.43

chil smooth 1

chil smooth 2

chil smooth 4 15.85

chil smooth 6 22.22 20.70 28.80 42.06

dark smooth 2 13.45 29.76 31.66 19.51 19.54 50.05 20.92

dark smooth 4 43.73 35.93 53.68 54.07 41.40 42.80 23.93

disc smooth 1

disc smooth 4

disc * *

dofy * * 30.87 39.34 29.71 28.36 36.44 34.76

even * * 100.0 100.0 100.0 100.0 100.0 100.0 57.51

humi smooth 1 9.701 24.94

humi smooth 4 9.075

humi * * 12.22 15.45 11.92 21.78

maxy * *

miny * * 10.16 7.448

nois * *

noon * * 31.17 32.85 42.31 36.28 41.74 33.93 17.55

spri * * 43.08 34.73 43.71 41.02 37.86 32.91 15.88

summ * * 46.99 38.48 44.23 32.43 48.46 39.77 22.18

temp smooth 1

temp smooth 2

temp smooth 4

temp smooth 8 19.54 23.61 31.74 28.08 23.19 23.35

temp smooth 12 9.122

temp smooth 48 16.79 17.30 17.92 32.72 11.74 11.48

temp smooth 96 47.40 42.23 47.99 43.44 31.88 43.88 100.0

temp smooth 336 9.608

temp smooth 1344 30.97 14.07 43.80 41.22 30.89 15.53

temp delta -2

temp delta -4

temp lag -2
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The introduction of day of the week in experiment (ii) yields a notably better model

fit (comparing to (i)). Recall that MARS adds basis functions in pairs. The first appear-

ance of the categorical variable in the procedure is as the 27th and 28th basis functions

are selected (out of 90 non-constant basis functions in total), and unsurprisingly the cat-

egorical basis functions represent {Mon, Tue, Wed, Thu, Fri} and {Sat, Sun}, i.e. week-

day and weekend. The next selection of is upon the addition of the 35th and 36th basis

functions. More surprisingly, those basis functions represent {Mon, Tue, Wed} and

{Thu, Fri, Sat, Sun}. The next four times is selected, the split is again into weekday

and weekend, and the next (and final) selection of is for the 81st and 82nd basis func-

tions, the split (knot) being between {Thu, Fri} and the other days.

The grouping of {Thu, Fri, Sat, Sun} at the 35th/36th selection does not infer that

Thursday and Friday load/weather behaviour is more like Saturday and Sunday load/

weather behaviour than Monday to Wednesday behaviour: since the {Sat, Sun} basis

function is already part of the model, the new {Mon, Tue, Wed} term could be seen as

differentiating between {Thu, Fri} and {Mon, Tue, Wed, Thu, Fri}. However, there is

no obvious reason why Thursday and Friday are grouped together. Friday load shape is

a. ‘Other categorical variable’: load factor in (iii) and (iv), tariff in (v) and (vi), SIC in (vii).

temp lag -4

temp lag -48

temp * * 16.26 18.54

time * * 15.97 43.98 17.57 37.13 17.89 14.07

wind smooth 2 10.10

wind smooth 4 8.725 14.18

day of
wk.

* * * 35.27 * 40.73 * 46.02 *

other

categ.a
* * * * 95.76 91.33 67.96 67.32 90.95

none day ld fac day &
ld fac

tariff day &
tariff

SIC

Number of observations: 32 112 224 784 223 344 1 223 808

GCV in unmodelled data: 62.52 99.76 100.1 222.4

GCV score (piecewise lin-
ear):

14.50 13.24 42.54 41.26 46.52 45.69 153.3

GCV score (piecewise
cubic):

15.64 14.54 43.29 42.87 47.37 47.26 154.1

Root percentage GCV
accounted for (piecewise
linear model):

87.64 88.78 75.73 76.58 73.16 73.73 55.74

TABLE 10.

d

d

d

d
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known to be slightly different from Tuesday to Thursday load shape (as is Monday load

shape) as a result of proximity to the weekend, but Thursday holds no such distinction

(except in the rare case when Friday is a bank holiday). In fact, it was eventually discov-

ered that there is some highly questionable data in the original whole loads database for

one particular month (January 1997), in which Thursday and Friday (and probably Sat-

urday and Sunday) loads are almost certainly misrecorded. This is discussed in 13.5.1,

and entirely accounts for the unusual grouping of Thursday and Friday.

Variables which appear in interaction terms together with (all of order 3) are close-

ness to evening and smoothed temperature (48 hour half-life); day of year and smoothed

darkness (1 hour half-life); time of day and smoothed darkness (half-life 2 hours); close-

ness to evening and smoothed darkness (half-life 1 hour); and day of year and humidity

(smoothed with half-life 1 hour).

In (iii) and (iv) there is (understandably) more variation per observation (GCV),

since each observation in (i) is now replaced by several generally differing observations.

The modelling task is accordingly harder, and it would not be expected that the models

built on this data could account for as much variation as the models of (i) and (ii). Indeed,

model (iii) (featuring load-factor as a categorical variable) accounts for 75.73% root-per-

centage of GCV in the piecewise-linear model, as compared to 87.64% in (i) and 88.78%

in (ii). When day-of-the-week is also admitted in (iv), the figure rises to 76.58%. How-

ever, while we cannot fairly compare the importance of load factor to the importance of

day-of-the-week, i.e. models (ii) and (iii), using GCV scores, it should be noted that load

factor was featured in a basis function more often, and at an earlier stage, in (iii) than

day-of-the-week was in (ii). In fact it was picked 8 times (rather than 7) and was first

used in the 9th and 10th basis functions. The first time load factor is used, it is load factor

category 1 that is separated from categories 2 to 7 (category 1 comprising those custom-

ers with the lowest load factors). The second time, it is categories 5, 6 and 7 that are sep-

arated from the others.

Much later, some rather more unusual splits occur: the 75th and 76th basis functions

introduce a split between categories {2, 3, 7} and {1, 4, 5, 6}. We would expect load fac-

tor categories nearby each other to exhibit similar load/weather behaviours, given

enough data, since load factor is a continuous quantity. Since various basis functions fea-

turing splits separating only contingent categories are already in the model, terms which

group together non-contiguous categories could in fact represent a valid modification to

the earlier terms. However, terms grouping non-contiguous categories could also arise

d
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due to some coincidental similarities between the customers in non-contiguous load fac-

tor categories, indicating possible overfitting.

When day-of-the-week and load factor are allowed to compete in the same model, in

(iv), load factor is selected 8 times (again) and day-of-the-week 4 times. Day-of-the-

week is selected rather later than load factor, and groups together Saturday and Sunday

3 times, and Thursday and Friday once. Load factor shows even less tendency to group

together non-contingent categories than in (iii). Load factor is rated by MARS’s relative

variable importance criterion as more important than day-of-the-week, across experi-

ments (ii)-(iv).

In (v) and (vi), using tariff code as a categorical predictor, there is only slightly more

GCV in the unmodelled data than in (iii) and (iv), but the variation in this data would

appear to be rather harder to model (allowing the use of tariff code) than that of (iii) and

(iv) (allowing the use of load factor), given that the root percentage of GCV accounted

for by these models is rather lower than that accounted for by the corresponding load fac-

tor models. Also, tariff code is rated by MARS as having lower relative variable impor-

tance than when compared to load factor category (though that comparison is across

different models). However, tariff code is actually selected for inclusion in new basis

functions more frequently than was load factor category. In (v), tariff code was selected

12 times, 5 of these occurring quite early in the forward selection algorithm (between the

selection of the 15th/16th and 31st/32nd basis functions, inclusive). These basis func-

tions split the tariff codes into a wide variety of binary partitions. In (vi), tariff code was

selected 8 times, and day-of-the-week was selected 5 times, for inclusion in new basis

functions. Day-of-the-week is split along weekday/weekend lines in four of these in-

stances, and into {Thu, Fri} and {Mon, Tue, Wed, Sat, Sun} in the other instance (on the

addition of the 77th and 78th basis functions). Day-of-the-week is first selected for the

addition of the 33rd and 34th basis functions, at which stage tariff code has already been

selected for inclusion on five occasions.

Tariff code is rated by MARS’s relative variable importance criterion as more impor-

tant than day-of-the-week. However, comparing across experiments, tariff is rated as

less important than load factor; day-of-the-week is rated as more important when used

in conjunction with tariff code data than in any of the other categorical variable experi-

ments, indicating that there is some interaction between tariff code and day type in their

effect on the weather.

Because computational complexity considerations constrained experiment (vii) to
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only 40 candidate basis functions, what we can say about it’s effectiveness as a categor-

ical predictor in load/weather models is limited. Since the data presented to the model

featured (understandably) much greater variation (GCV) than that presented to the other

models, we could not fairly compare the amount of GCV accounted for with GCV ac-

counted for in the other models even if as many as 90 basis functions had been selected.

However it would appear that SIC code is quite a useful predictor in the load/weather

model presented; it is rated as having high relative importance by MARS, and is selected

for inclusion in basis functions 10 times even though only 20 pairs of non-constant basis

functions were generated. It appears in the ANOVA decomposition in three terms, inter-

acting with darkness (smoothed with a one hour half-life), with temperature (smoothed

with a 48-hour half-life), and again with that temperature smooth in an order 3 interac-

tion with closeness-to-noon. At least one basis function from each pair of basis functions

featuring SIC survived pruning, and varied greatly in which SIC codes were grouped to-

gether, as can be seen in (TABLE 11.). Here, the 41-character strings feature a zero in

the th position wherever theth SIC category was in one half of the partition, and a 1

where it was in the other half, for the ten different partitions used. It appears that there is

a complex relationship between SIC code, the weather and temporal variables, and

weather-dependent load.

Due to computational complexity considerations, no MARS model was built featur-

ing SIC code and day-of-the-week as categorical predictors together. Whilst it appears

that SIC code might be a very powerful predictor in load/weather models, in order to per-

form more thorough experiments (with more candidate basis functions), a server with

more random access memory and/or swap space, and ideally with a faster processor,

TABLE 11.

00001100110011001001011100100100101110010

00001100010011100001011100100100101010010

00000000000010000000000000000000000010000

11110011001100110010100100110110110010000

00001100010010000001001000000000001010010

00000010101011000101011000011001000011101

10010001011110111011111111100100100110010

10111000100111100110101111101111101011001

01100101001001100000001100100110111010000

11111111010110110111111011011011010011111

n n



Applications of Data Mining Techniques to Electric Load Profiling

Applications of Data Mining Techniques to Electric Load Profiling 122

would be required than was available. Another approach might be to use a decision tree

clustering technique as outlined in 13.3 and 13.4 on weather-dependent profiles, using

SIC code as the only extrinsic variable; this would cluster together SIC codes for which

the weather dependent profiles are similar. If, say, a dozen or so clusters of SIC codes

were used in place of the original 41 SIC codes, the computational complexity and mem-

ory requirements would become more manageable, though it can only be speculated as

to how useful a predictor such a clustered SIC variable could be.

It should be noted that in the 1995/6/7 data (and, indeed, the 1994/5 data) some SIC

codes only feature one customer, or very few customers. Whilst the weighting scheme

described in sections 11.2.2 and 11.2.3 ensures that such SIC codes do not assume undue

importance in the model, the predictive power of a weather model using SIC as a predic-

tor may be relatively poor when the previously unseen customer has an SIC code for

which there was little data in the original (training) database.

Comparing relative variable importances of the continuous weather and temporal

variables across all of experiments (i)-(vi) (comparisons with experiment (vii) are not re-

ally valid because of the smaller number of basis functions), there are few patterns to be

noted. Generally, it would seem that yesterday’s statistics, and that humidity and wind-

speed (though not wind chill), assume somewhat less importance as more categorical

variables are introduced.

There are some weather variables that seem to assume more importance in the pres-

ence of one particular categorical customer variable; notably, wind chill gains in impor-

tance when tariff code is present as a predictor; and spot temperature is only included in

the model when load factor is present as a predictor. There are no obvious explanations

for these two observations.

11.3.12  Final Models Used for Deweathering Data

Based on insights drawn from the results of the experiments in sections 11.3.6 to

11.3.11, three final load/weather models were built; all were built using data weather-

separated according to all four categorical variables (day-of-the-week, load factor cate-

gory, tariff code and SIC code), as in section 11.3.11; two were used to create nominally

weather-free databases (with and without the use of categorical variables), whilst one

model (without categorical variables) was restricted to use interaction terms of order no

higher than two, for the purposes of generating 3 dimensional surface plots of various
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ANOVA terms. (MARS provides a slicing option to generate lower dimensional terms

from higher dimensional terms by fixing one or more variables - see section 11.2.2 - to

enable plotting of high dimensional interaction terms. The plots so produced were not

found to be particularly revealing, and it was felt that restricting the maximum interac-

tion order produced a set of plots with better interpretive power.)

The first model,model , uses 49 weather and temporal variables, generally those

which had been rated as most important in the previous experiments. One exception to

this is that time-of-day and day-of-year were excluded from the final models, despite

usually being rated as fairly important in earlier experiments. The reasoning behind this

was that time-of-day and day-of-year are suspected of being more prone to overfitting

the data than the sinusoidal temporal variables (closeness-to-noon, -evening, -spring and

-summer); this is because time-of-day is capable of singling out one particular half-hour,

and day-of-year is capable of singling out one particular day, whereas a particular value

of one of the sinusoidal variables corresponds very closely to two non-consecutive half-

hours or days (except at its peak or trough). Thus the sinusoidal variables are less likely

to overfit to an outlying load value on a particular day and half-hour. Also, sunset time

was omitted from the final models, as it is so strongly correlated with closeness-to-sum-

mer as to serve no real additional value (their correlation coefficient is 0.9952).

No discomfort variable was used, though wind chill was included, as were relative

humidity and windspeed, each with a small selection of short-term smoothed versions.

Illumination-related variables consisted of cloud and estimated darkness (transparency

parameter =0.75), with short-term smooths. Finally a wide range of temperature-

based variables (including yesterdays mean/minimum/maximum, and various lags,

smooths and deltas that had proved of use in other experiments), and as always a noise

variable, were included. These are all detailed in (TABLE 12.). Parameters to the MARS

model were changed only slightly from experiment 1; the smoothness parameter was

set to  (in close accordance with the value determined by cross-validation in

experiment 3) and the number of candidate basis functions was increased from 90 to 120

(as in experiment 3). It was not thought necessary to perform a new cross-validation ex-

periment for this model, the set of candidate variables being very close to that of cross-

α

CT

d

d 1.00=
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validation experiment 3.

TABLE 12.

                                                            Model Version:

                                     Maximum Interaction Order:3 3 2

No. Type Subtype 1/2-
hrs

Y-Corre-
lation

Relative Variable Importance

2 avey * * -0.4663 19.94 10.41

3 chil smooth 1 0.4808

4 chil smooth 2 0.4846

5 chil smooth 4 0.4857

6 chil smooth 6 0.484 19.27 19.43

7 chil * * 0.4753

8 clou smooth 1 0.1168

9 clou smooth 3 0.1187

10 clou smooth 5 0.1213 7.414

11 clou * * 0.1149

12 dark smooth 2 0.2718 8.377 31.19 24.11

13 dark smooth 4 0.3404 23.48 50.81 29.14

14 dark * * 0.2044 22.96 5.463

15 even * * -0.02271 100.0 100.0 100.0

16 humi smooth 1 0.3152 33.99

17 humi smooth 2 0.3257

18 humi smooth 4 0.3366 23.85

19 humi smooth 6 0.3392 8.998

20 humi * * 0.3051 6.715 17.45

21 maxy * * -0.4648 12.12 16.93

22 miny * * -0.4469 12.07

23 nois * * 0.01321

24 noon * * 0.003568 44.81 47.31 39.19

25 seas * * 0.09136 23.27 28.95 12.02

26 spri * * 0.1899 49.89 63.91 49.99

27 summ * * -0.5024 49.59 44.97 31.55

28 temp smooth 1 -0.4917

29 temp smooth 2 -0.4954

30 temp smooth 4 -0.4968 17.45

31 temp smooth 6 -0.4945 28.90

32 temp smooth 12 -0.4876 27.87 24.00

33 temp smooth 48 -0.4867 20.81 19.80 17.46

34 temp smooth 96 -0.4914 38.10 50.42 26.19

35 temp smooth 336 -0.4864 11.52 9.117

36 temp smooth 672 -0.4584 19.75

37 temp smooth 1344 -0.3805 30.96 29.64

38 temp smooth 2688 -0.2534 29.55 48.05 21.47

α β γ
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It would have been viable to increase the maximum interaction order from 3 for the

final model , but this was decided against. Whilst MARS weather models which allow

unrestricted interaction orders were tested (not presented), and did sometimes select in-

teraction terms of order 4 and even 5, there is no compelling evidence that terms of order

greater than 3 play any particularly significant role in the load/weather relationship. Al-

lowing a model additional freedom when there is not a compelling reason to do so in-

creases the chances that the model will overfit the data, thus the maximum interaction

order was left at 3.

Model  does not select cloud cover or wind chill in any form. Estimated darkness,

relative humidity and windspeed all assume moderate importance, as do the previous

day’s temperature statistics. Whilst seasonality’s role is modest, the other temporal var-

iables, especially closeness-to-evening, are all rated as highly important.

A one-day lagging temperature variable played only a tiny role, and the only delta

variable selected, with a lag of one week, played almost as small a role. It appears that

(at least in the presence of temporal variables) temperature lags and deltas are of little to

no importance, as compared with exponentially smoothed temperatures. As previously,

a wide range of temperature smooths were found to be important, as well as the spot tem-

39 temp delta -2 0.05979

40 temp delta -8 0.001169

41 temp delta -24 -0.1372

42 temp delta -48 -0.02625

43 temp delta -336 -0.009455 8.745

44 temp lag -8 -0.4882

45 temp lag -48 -0.4796 5.920

46 temp * * -0.4875 20.87 14.85

47 wind smooth 1 0.07613

48 wind smooth 3 0.08026 9.967

49 wind smooth 5 0.08996 23.65

50 wind * * 0.07682

51 day of week * * * * 37.20 *

52 load factor * * * * 97.73 *

Number of observations: 32 112 224 784 32 112

GCV in unmodelled data: 62.52 99.76 62.52

GCV score (piecewise linear): 12.72 39.80 13.75

GCV score (piecewise cubic): 14.37 41.45 15.17

Root percentage GCV accounted for (piecewise lin-
ear model):

89.25 77.53 88.32

TABLE 12.

α

α
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perature.

Of 53 ANOVA functions in the final model , 8 were functions of one variable, 18

were interactions of order two, and the remaining 27 were interactions of order 3. There

are many interactions between the various temporal variables and the various tempera-

ture variables; humidity appears in order 3 interactions with windspeed and a long term

temperature smooth (half-life two weeks); with windspeed and a short term temperature

smooth (half-life three hours); with closeness-to-evening and a long term temperature

smooth (half-life 1 week); and interestingly, with seasonality and a long-term tempera-

ture smooth. Since seasonality peaks at both midwinter and midsummer, this may be in-

dicative of humidity having an effect on winter heating loads as well as summer cooling

loads. Aside from interactions with humidity already mentioned, wind speed occurs in

only one other interaction term (of order 2, with a short term temperature smooth). Esti-

mated darkness appears in several interactions, always with only temporal variables. The

previous day’s temperature statistics appear in interactions with a variety of temporal

variables and with temperature (spot temperature, and short, medium and long term tem-

perature smooths).

In model , the same candidate variables were used, plus two categorical variables

(load factor category and day-of-the-week). The parameters were unchanged, except for

MARS smoothness parameter, which was determined by a new cross-validation ex-

periment. Because of the higher computational cost of the weather model in the presence

of categorical customer variables, tenfold cross-validation (as in experiment 3) was re-

jected in favour of single-fold validation, which is less accurate but much faster. This in-

volved partitioning the population randomly into two sets (a training subset and a test

subset), with  of the data in the training subset and of the data in the test subset. Part

of the output from this cross-validation run appears in (TABLE 13.).

TABLE 13.

Number of basis
functions

Corresponding Cross-Validation
Errors
(CV)

120 -1.70 39.26

... ... ...

102 -1.68 39.26

101 -1.66 39.26

100 -1.36 39.26

99 -0.73 39.26

98 -0.31 39.26

α

β

d

4
5
--- 1

5
---

d
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As in experiment 3, the cross validation errors are very insensitive to changes in the

number of basis functions retained in the final (pruned) model over quite a wide range.

The optimal number of basis functions was determined by MARS to be 101, with a cor-

responding smoothness parameter , representing only a tiny penalty for the

addition of new basis functions in the lack-of-fit function (EQ 59), (EQ 60). Using this

value for , the model  (rebuilt on the full dataset, not just the training data) is de-

scribed in (TABLE 12.). Any differences from the results of experiment (iv) of section

11.3.11 (which used a similar variable set) are very slight.

Finally a model (model ) was built with the same variables and parameters as in

model , except that the maximum interaction level was restricted to 2, for easier visual

interpretation. There are some differences in relative variable importances when the

maximum interaction level is set at two (compared to model), and the overall model

fit is somewhat poorer, but the simplified model is basically similar and allows much

more comprehensible visualisation by avoiding the need to slice order 3 terms. (COL-

OUR FIGURE 5.) to (COLOUR FIGURE 6.) show various surface plots for ANOVA

terms from the simplified order 2 model. The x- and y-axes are always scaled so that the

minimum value of a predictor is 0.0 and the maximum value is 1.0. The z-axis is scaled

by adding or subtracting a constant so that the smallest value of the fitted surface is 0.0;

however the highest value shown on the z-axis is indicative of the actual magnitude of

the illustrated ANOVA function in the final model. To make interpretation easier, points

are plotted in a colour with varies smoothly with the fitting function (i.e. z-axis). The

same colour gradient is used as in (COLOUR FIGURE 1.) and similar figures, with deep

purple being used for the minimum of the fitted function, through to bright red for the

maximum of the fitted function. Regions of the x-y plane in which no data points occur

do not have a valid fitting function in a MARS model, and so remain blank.

It must be pointed out that in the presence of so many correlated predictors, no single

ANOVA term for any two predictors can be properly interpreted in isolation from all the

97 0.79 39.27

96 2.17 39.27

95 5.36 39.27

... ... ...

80 62.36 39.37

... ... ...

50 513.36 41.36

TABLE 13.

d 1.66–=

d β

γ

α

α



Applications of Data Mining Techniques to Electric Load Profiling

Applications of Data Mining Techniques to Electric Load Profiling 128

other ANOVA terms featuring related predictors. Nevertheless the presented plots are

instructive.

(COLOUR FIGURE 5.) shows an ANOVA term featuring a 48 hour half-life tem-

perature smooth with closeness to evening. Notice that the term increases for both low

temperatures and high temperatures, more so near evening. (COLOUR FIGURE 6.) fea-

tures the same temperature smooth together with closeness to summer. The two main

peaks occur where there are high temperatures in summer (top of diagram), and where

there are low temperatures distant from summer (centre right of diagram).

(COLOUR FIGURE 7.) features an interaction term involving estimated darkness

(smoothed with half-life 2 hours) and closeness to evening. The fitted surface peaks

when it is very dark near evening, and smoothly falls as the darkness level or the close-

ness to evening falls.

(COLOUR FIGURE 8.) features wind chill and closeness to summer. It is interesting

that as well as a peak associated with high wind chill factors, which is higher near winter,

there is a lesser peak associated with low wind chill factors, but only near to summer.

Since in summer a low wind chill factor is associated with warm, still, days this is evi-

dence that the model accounts for the increased air conditioning loads on hot days that

result from stiller air (since opening a window will provide little relief from discomfort

when the air is still).
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Chapter 12 —Visualisation of Load Profiles

12.1  Introduction

Discrete predictors collectively have complex interactional effects on loads. By av-

eraging only those atomic profiles for which a specified predictor takes some specified

value, we obtain a marginal profile (for example the Sunday profile). By subtracting the

average profile from a marginal profile (and scaling) we obtain an effect profile, which

indicates how a marginal profile differs from the typical profile. These ideas are extend-

ed to conditional profiles (for example, the January-Thursday profile, and the effect pro-

file of Thursdays on the January profile), which indicate interactional effects of discrete

predictors.

These objects are useful as explanatory devices; plots of these profiles provide a

handy visualisation of the local or global nature of the relationship between load shape

and discrete predictors.

A simple means for the visualisation of half-hourly load profile over several months

at one glance is suggested.

12.2  Basic Marginal, Effect and Difference Profiles

During this chapter one can assume that weather modelling has already been per-

formed, producing weather-free loads  (and corresponding profiles ), though all

the concepts could be applied equally to whole (i.e. not deweathered) loads. Recall the

weather-free atomic model AFM, here repeated:

(EQ 103 : AFM)

whose atoms derive from a maximal partition on .

Themarginal profiles for a predictor  are simply the centroids of the atoms

for which  (for each ). If C is the set of all indexes for atomic profiles

( ), let  be the partition onC arising from splitting on ,

which has cells . Denote the number of elements in thelth cell of this

partition . Note that

(EQ 104)
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Denote themarginal profile for by , where

(EQ 105)

A simple way to isolate the effect of one of the predictors in  on profile shape

is to compute theeffect profiles for that variable. Denote theeffect profile for by

, where

(EQ 106)

 being the grand centroid of all the atomic load profiles,

(EQ 107)

Note that loads in effect profiles can take both positive and negative values. The var-

ious effect profiles for a predictor  sum to  (the zero profile),

(EQ 108)

We can also plotdifference profiles for any two profiles ; like an effect profile,

a difference profile can take positive or negative values, and requires that both profiles

are first normalised (by each dividing through by the number of raw profiles thereat);

thus a difference profile for  is given by

(EQ 109)

Where  and  are the respective number of underlying raw profiles making up a

particular profile. Thus we can plot the difference profile between a customer’s weekend

profiles and their weekday profiles, or between a group of customers’ December to

March profile and their April to November profile, for instance, for comparison purpos-

es.

Plots of effect profiles give at-a-glance indications of the effect of a particular at-

tribute taking a particular value, on load. For example the , i.e.  effect

profile represents the effect on load of the day-type being a Sunday. We would obviously

expect this effect profile to take mostly negative values, since Sunday loads are lower

xjl Y xjl

Y xjl

Yi

i C̃j l( )∈
∑

njl
--------------------=

Xj XF

xjl

E xjl( )

E xjl( ) njl Y xjl( ) Y–( )=

Y

Y
nj1Y xj1 … nj X

˜ j
Y xj X

˜ j
+ +

N
----------------------------------------------------------------=

Xj 0

E xj1( ) … E xj X
˜ j

( )+ + 0=

P1 P2,

P1 P2,

di ff P1 P2,( )
P1

P1
---------

P2

P2
---------–=

P1 P2

E x3 7( ) E Sun( )



Applications of Data Mining Techniques to Electric Load Profiling

Applications of Data Mining Techniques to Electric Load Profiling 131

than average.

12.3  Conditional Marginal and Effect Profiles

As thus far described, the marginal and effect profiles convey the influence of par-

ticular predictor values on total (deweathered) load for the database. However, the dis-

crete predictors  have interactions; for instance the effect of (say) month index on

(say) Monday profiles is not necessarily the same as the effect of month on (say) Satur-

day profiles, nor the same as the effect of month on the all-days profile. The concepts of

section 12.2 are extensible in a natural manner toconditional marginal profiles/ effect

profiles. Suppose  is first used to partition the set of atomic profiles (indicesC), and

subsequently  ( ) is used to subpartition a cell  of . We need only apply

the definitions of section 12.2 with  in place of  to obtain the conditional ver-

sions. If  is the th cell in the subpartition of , define themarginal pro-

file for conditional on , denoted , by

(EQ 110)

where  is the number of constituent atomic profiles, . Similarly, the

effect profile for conditional on is given by

(EQ 111)

The conditional effect profiles again contain both positive and negative values. They

give indications of the effect of some attribute taking a certain value, conditional on

some other attribute taking a certain value. For example we might wish to compare

, the effect that the day being Sunday has on January profiles, with

, the Monday-effect on January profiles, or with , the Sunday-

effect on October profiles.

Note that in marginal conditional profiles, the order in which variables are selected

for splitting is irrelevant:

(EQ 112)

for in-range choices of  and , . However, the order of variables does affect con-
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ditional effect profiles: in fact

(EQ 113)

12.4   Multivalue Marginal and Effect Profiles

A final extension to the ideas and notations of 12.4 and 12.5 allows marginal and ef-

fect profiles (conditional or otherwise) to be calculated for disjunctions of predictor val-

ues. For example, we might want to know the effect profile of weekend day-types on the

profiles of customers whose two-digit SIC codes start with a ‘5’. This might be written

. The formal definitions for such profiles are

obvious extensions of the definitions in sections 12.2 and 12.2; for instance, replace par-

tition  with partition

 in order to construct a marginal profile for

‘weekend’ rather than separate marginal profiles for ‘Sat’ and ‘Sun’, and so on. An al-

ternative notation for marginal and effect profiles of this type uses disjunctions of pre-

dictor values rather than set memberships (where no confusion will arise), so that the

above cited example of a multivalue effect profile is written

.

12.5  Visualisation of Seasonally Varying Daily Load Shape

12.5.1  Time-of-Day/Time-of-Year Visualisation

A two dimensional plot of load against hour of day visualises load shape for a single

day. However, by using colour to represent an extra dimension, the daily load shape can

be visualised at a glance over a period of many months. Let the horizontal axis of a Car-

tesian graph measure the day index over the period for which a visualisation is required,

whilst the vertical axis measures time of day (from  to ). For a specified

set  of atomic, marginal or effect profiles indexed by day in-

dex over the range of days 1, let ,  be the half hourly

loads. Linearly scale these loads so that the lower bound for load has value 0.0 and the

1. As described in sections 12.2 to 12.4,d* is not a disaggregating variable for marginal or effect pro-

files, but the concepts of marginal and effect profiles are equally applicable whend* is included as a

predictor. Month indexm would be a viable alternative tod*.
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upper bound for load has value 1.0. Let  be a function of a real number which

associates a colour with real values in , and also two ‘out of bounds’ colours

for values less than 0.0 or greater than 1.0. The function must be designed so that the hue

changes smoothly with the argument between 0.0 and 1.0. In the scheme that was select-

ed, the colour varies from deep purple (for low loads), through blue to cyan (the centre

point, 0.5), to green to yellow to orange to bright red. There are two out-of-bounds col-

ours; transparent (i.e. white) for loads below a lower bound, and wheat for loads above

an upper bound. By plotting small non-overlapping rectangles of the colour associated

with the scaled load at each of the ( )  coordinates, a larger multi-col-

oured rectangle is produced.

   Such a plot simultaneously conveys load/time-of-day behaviour and load/day-of-

month-or-year behaviour. Naturally, conventional 3 dimensional surface plots of load

against time of year against time of day could also be used to present this behaviour,

though problems arise because many features are frequently hidden from view in a sur-

face plot since load can vary so rapidly from day to day and hour to hour; load does not

always vary smoothly with time-of-day or day of year, though surface plots are some-

what better than the coloured type of plot at presenting responses which vary only grad-

ually.

Various such plots are illustrated in the Appendix (Colour Figures). A key is provid-

ed with all such plots to indicate what percentage of average half-hourly load is repre-

sented by the different colours. Such plots can be calculated for many customers’

profiles averaged together as in (COLOUR FIGURE 10.) or for individual customers, as

in (COLOUR FIGURE 1.) to (COLOUR FIGURE 4.).

12.5.2  Customer/Time-of-Year Visualisation

A variant of this visualisation technique was also implemented which allows a whole

database to be visualised in such a way that differences between customers are apparent.

Instead of using time-of-day on the vertical axis, a customer index is used (running from

1 up to the number of customers in the database). Instead of half-hourly loads being plot-

ted as small coloured rectangles, daily load averages (for a given customer and given day

index) are plotted as appropriately coloured small rectangles). Customer index is not a

(meaningful) continuous variable, and customers plotted side by side in such a diagram

may have nothing in common, but such a diagram is still useful as an at-a-glance guide

colour( )

0.0 1.0,[ ]

d∗
max d∗

min– 48×
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to the extent of variability in daily load between customers and seasonally; such a dia-

gram is also useful for visualising the extent to which load profiles are missing in a da-

tabase, and for which days.

All of the 1995/6/7 whole (i.e. not deweathered) load profiles database is displayed

in such a plot in (COLOUR FIGURE 9.). Here, transparent (white) represents missing

load profiles, and wheat represents a daily load total that is 200% or greater of the cus-

tomers average daily load total, with cyan representing average daily load total (i.e.

100%).



Applications of Data Mining Techniques to Electric Load Profiling

Applications of Data Mining Techniques to Electric Load Profiling 135

Chapter 13 —Model for Deweathered Loads

13.1  Discussion

Recall the atomic weather-free model AFM of section 10.6, repeated here:

(EQ 114 : AFM)

whose atoms derive from the maximal partition of , the day

type, month, SIC code, tariff code and load factor category. Since the load data for this

model are the centroidal load profiles1 for the  atoms , and the predictors for the

model are exactly those predictors used to construct the partition defining the atoms, triv-

ially the lowest error option for  is that which returns the untreated weather free mod-

el data (the training data):

(EQ 115)

Substituting this into (EQ 114 : AFM), we get

(EQ 116)

Note that the modelling-error term  completely disappears; the only errors in es-

timating the ‘true’ atomic profiles with the observed atomic profiles arise from measure-

ment error, unknowable factors, and errors due to sampling. Essentially, there areN

distinct, exhaustive and exclusive identity fitting functions. The measurement compo-

nentof the error is assumed very small. We have estimates for the variance of the errors

due to sampling and unknown factors in each atom, namely the sample variances of the

atomic training data. Many of these are likely to be large, since there are relatively few

profiles represented in each atom. Moreover, for atoms which represent only a few con-

stituent profiles, the variance estimates are unreliable.

There are two major (and closely related) drawbacks to the trivial atomic weather-

free model (EQ 115), (EQ 116):

1. Though the form of the fitting function is simple, the model scores very low on inter-

1. These profiles comprise aggregate square-loads as well as aggregate loads, enabling the construction

of the 48 standard deviations over the constituent loads.
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pretability, since there are just too many (N) distinct fitting functions within . The

data needs to be distilled into a more compact (lower resolution) model from which a

planner can more easily glean the nature of the load’s relationship to the discrete pre-

dictors.

2. Whilst the modelling errors  disappear, the errors due to unknown factors and

due to sampling are high. This means that when test data (distinct from the training

data) are presented to the model, fit is likely to be poor. If we merge atoms so that

their underlying partition cells contain more data, these errors may be reduced (pro-

vided that the atomic profiles merged have similar distributions). Again, what is

required is a lower resolution model.

Opting for a lower resolution model reintroduces modelling errors  but is in-

tended to reduce errors due to sampling, and hence . Ideally, the errors we aim to

minimise are thecross-validation errors; these are the total errors arising when a model

built using training data is fed unseen test data. If the fitting function is built from

training data, then the cross validation errors  are given by

(EQ 117)

with  the test data (predictors, responses).

A slightly different way of looking at the trivial model and its drawbacks is in infor-

mation theoretic terms. To represent the fitting function inside a computer, theN

profiles need be stored. This is the maximum entropy representation (because it is at the

highest resolution allowable), but is also very bulky. By merging certain atoms so that

 profiles are stored we reduce the bulk of the data (by a factor), but also lose

information (entropy). We wish to minimise bulk whilst maximising the information re-

tained. Recalling that information in some data can be thought of as the size (in bits) of

the theoretical smallest equivalent coding (reversible data compression), we can cast this

problem as maximising theoretically optimal storage size (i.e. information) for the model

whilst reducing the actual storage size (bulk). Since high signal-to-noise representa-

tions carry more theoretical information than low signal-to-noise representations, errors

 are implicitly kept low by this criterion (cross-validation errors could

also be computed, their minimisation being an auxiliary criterion to any bulk-to-infor-

mation criterion).
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Whatever the precise criterion we use to guide the choice of partition underlying,

this is an atomic cluster analysis task (see section 8.8.2). Extrinsic decision tree cluster-

ing (also 8.8.2), a subspecies of atomic clustering, is a viable option. The patterns to be

clustered are the atoms : they have predictor values  and response

values . We can think in terms of partitioning the patterns (nota-

tion of chapter 8), or of partitioning predictor space (notation of chapter 4) inter-

changeably, but it will be somewhat more natural for us to use the latter notation.

Note that the centroids for the various clusters which can arise in an atomic clustering

of profiles are unnormalised versions of the marginal and conditional marginal profiles

introduced in Chapter 12.

13.2  Atomic Clustering for Weather-Free Profiles

Recall from 8.8.2 that atomic clustering is simply a clustering of the centroids of the

sets of patterns indistinguishable by their predictors; any clustering algorithm can be

used to obtain the atomic clustering. Due to the large size ofN (number of atoms) in the

monthly billed business customer database, it is very computationally demanding to per-

form a graph theoretic clustering (which requires the  distances between at-

oms to be calculated in advance). This task could be made much smaller by first applying

a conservative one-pass clustering (see section 8.4) to the atoms (that is, one which

leaves quite a large number of clusters). The clusters discovered thus could then be used

as the patterns to be clustered in a graph theoretic method.

The most flexible type of clustering algorithm we can apply to the atoms is probably

K-means clustering, in any of its varieties. The computational complexity for this set of

algorithms is rather dependent on the particular algorithm used: a simpleK-means clus-

tering, seeded by a simple one-pass clustering, is not so demanding computationally as

a graph theoretic approach.

Having applied any clustering algorithm to the atomic data, we are left with

cluster centroids  in place of the original data as the output of

;  simply returns the cluster centroid which has been incorporated into.

Thus the atomic clustering has reduced the initially vast number of load profiles in the

database toP representative profiles;P can be directly or indirectly adjusted to be as

small as desired. However, the partition of the atoms (whether simple or hierarchical) is

not based on the actual predictor values , which are used only in determining the
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atoms.

13.3  Extrinsic Decision Tree Clustering for Weather-Free Profiles

13.3.1  Top-Down Variable-By-Variable Clustering

 Now suppose that the clustering is based on a hierarchical partition of the predictor

space , in which at every splitting stage, the partition or sub-

partition is based on the values of one of the predictor variables in. If the selected var-

iable takesv distinct values within the current cell to be split, this definesv cells in the

subpartition, whose centroids are treated as thev patterns to be clustered. As mentioned

in section 8.8.2, the problem is to select at each step (i) the ‘best’ attribute on which to

partition; and (ii ) to select the ‘best’ partition based on that attribute’s values.

One might choose to seek the attribute and the partition simultaneously by checking

all partitions (of a certain type) of all variables for the ‘best’, where this approach is com-

putationally feasible (call thistop-down general extrinsic decision tree clustering). Oth-

erwise it is necessary to define a criterion for ‘goodness of partitioning variable’. Note

that the partitioning variables  are discrete (and categorical except for which is

ordered, and  which is ordered and periodic), whilst the proximity metric is between

patterns of continuous responses, so a simple information theoretical as is often used in

decision tree classification is not an option; information theoretical measures for load

profiles may need to be approximated (see 14.4.2).

Having selected a variable  for partitioning, a ‘good’ partition is sought; this de-

pends crucially on the resolution of the partition which is desired. If each variable is al-

lowed to be selected more than once for partitioning, the resolution can be very coarse—

a binary partition (into just two cells) is always acceptable, since either cell can be split

again at a later level in the hierarchical partitioning process. Supposing that takesv

distinct values within the current cell to be split. Then there are  binary parti-

tions possible . It is thus only possible to exhaustively search all binary parti-

tions (seeking that which maximises between cluster scatter) ifv is small (though note

that each time a variable is reselected for splittingv becomes smaller).The binary split-

ting algorithm described in section 8.6 provides a non-exhaustive (generally sub-opti-

mal) search for a binary partition onv cases. This involves searching just

binary partitions.

Another sub-optimal search algorithm is thejoin-two algorithm, a bottom up cluster-
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ing algorithm which hierarchically partitions thev patterns. Initially thev patterns are

searched to find that pair of patterns which are closest by our distance metric. They are

replaced by their centroidal pattern, and at the next stage the remaining patterns

are searched to find the closest pair, and so on. When patterns remain, the algorithm

terminates,p being preset by the user (  finds binary partitions). This has complex-

ity of order , which limits thev for which it is applicable, but is less greedy than the

binary splitting algorithm.

Where each variable is prohibited from being used for partitioning more than once,

the user can supply appropriate numbers of clusters per variable in advance (binary par-

titions are unlikely to be fine enough)—this is a much less flexible approach.

 If we do not cluster at all, so that there arev cells in the partition (one for every var-

iable value) and continue to do so until all variables have been used, we arrive at the

maximal partition (the highest resolution partition possible, where every atom is in its

own leaf). This is one possible starting point for a bottom-up clustering method; the or-

der of variable selection would strongly influence such a bottom-up (or tree-pruning) al-

gorithm.

13.3.2  Top-Down General Clustering

Rather than choosing the ‘best’ variable on whose values to partition, and then the

‘best’ partition, now suppose we seek the ‘best’ partition regardless of which variable

whose values it partitions. There areJ-fold more partitions to be considered in general

(J the number of predictors,J=5 for predictors ). To achieve similar computational

complexities compared to the variable-by-variable clustering algorithms, it would be

necessary to examine fewer candidate partitions for each predictor (i.e. use a greedier al-

gorithm; for example, the computationally more demanding join-two algorithm might be

dropped in favour of the binary-splitting algorithm).

13.3.3  Termination Criteria for T op-Down Clustering

In sections 13.3.1 and 13.3.2 it was not suggested how one should determine when

to stop partitioning, and accept the current set of leaf clusters as our model. Whilst local-

ly we aim to minimise within-cluster scatter (maximise between cluster scatter), this

does not help us decide when to terminate the procedure, since the within-cluster scatter

is minimised globally only when we reach the maximal partition (in which every cluster
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is an atom), returning the trivial model of section 13.1.

 Local criteria as well as global criteria may be applied to determine when to termi-

nate top-down clustering procedures. The most obvious global criteria are (i) to set in

advance a maximum number  of clusters and terminate just before this is exceeded

or (ii ) to set in advance a certain proportion of scatter  which must be accounted

for by the clustering, and terminate when this is reached (proportion of scatter accounted

for: see end of section 8.3).

Local criteria, which dictate when a particular cell should not be subpartitioned, but

not when all hierarchical partitioning should terminate, could also be specified. The local

scatter (the value of  for a particular subpartition) could be used to terminate par-

titioning locally when it goes above a certain preordained threshold. Note that this is sen-

sible only when the numberP of cells in the local subpartition is fixed (e.g. in binary

partitioning).

Another crucial factor in determining when to cease partitioning is whether or not

one intends to overgrow the decision tree, and subsequently prune it back by joining sib-

ling clusters. If pruning is to occur, the splitting termination criterion will generally be

less important than the pruning termination criterion, and must allow for overgrowing.

One option is to not cease splitting until the maximal partition is reached (with atomic

profiles at leaves) and to prune back from there.

13.3.4  Bottom-Up Decision Tree Clustering and Tree-Pruning Algorithms

Rather than splitting partition cells we can start with the maximal partition (whose

cells comprise one atom each) and successively join cells together (in other words, com-

bine profiles). The final partition in such a scheme is the universal cluster (which con-

tains all the atoms). An alternative to starting with the maximal partition is to apply

joining procedures to the leaf cells (leaf profiles) of a top-down decision tree clustering

(this is tree pruning, see chapter 4).

Many joining algorithms for decision tree clustering are functionally equivalent to

corresponding splitting algorithms, and we will not describe them. Using joining proce-

dures for pruning decision trees may be of much value (see, e.g. [9]) however.

The simplest pruning procedures simply cut off the decision tree below a certain lev-

el. However the real power of tree pruning can sometimes lie in its local nature — prun-

ing back overfitted or uninformative structure where it exists whilst retaining valid
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structures elsewhere.

Now if the pruning criterion is identical with the splitting criterion, we are simply re-

versing the original top-down procedure. Thus we require a different criterion: for in-

stance, a splitting procedure is selected which aims to minimise within cluster scatter but

pays scant regard to tree size or complexity; whilst a pruning procedure is chosen which

optimises tree size or complexity and within cluster scattersimultaneously.

13.4  An Adaptive Decision Tree Clustering Technique for Load
Profiles

13.4.1  General Approach

Various clustering algorithms were incorporated within a single adaptive, top-down,

binary decision tree clustering framework. Note that when the same variable is selected

for splitting more than once in a decision tree procedure, the number of locally observed

distinct valuesv decreases each time. Consequently, it is appropriate to apply greedier

searches for good partitions nearer the root of the tree, and more exhaustive searches

nearer the leaves.

The relaxation on computational complexity brought about by such adaptivity (using

less expensive algorithms where the problem is locally harder) in fact makes general top-

down (rather than variable-by-variable top-down) procedures viable, at least for the data

sets studied.

The most expensive algorithm employed is exhaustive search (in which all possible

binary partitions on a particular variable’s domain are computed and compared). The

cheapest algorithm employed is the Binary Splitting Algorithm (see 8.6). An algorithm

of intermediate complexity, theJoin-Two algorithm, is also employed (details follow in

section 13.4.2).

 Note that when partitioning on month index and load factor (ordered rather than cat-

egorical variables), the assumption than any cluster contains only contiguous categories

would enable faster searches (see section 8.8.1). These were not implemented, in the end,

because exhaustive search was computationally feasible for load factor (with 7 load

factor categories), and because month has periodicity and special features, which

means that the best clusters might not always feature contiguous months. In particular,

December has special properties due to the holiday period. More generally, a spring

month may be more similar to an autumn month than to a summer month.
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13.4.2  Sub-Algorithms Employed in the Decision Tree Clustering Framework

Suppose  cases are to be clustered (i.e. that the variable being considered as a can-

didate for splitting on has  categories present at the current level in the tree).

1. Exhaustive Binary Search. For every possible binary clustering

, the distance  is computed. That clustering with

the greatest computed distance wins. Complexity is .

2. Binary Splitting Algorithm. This algorithm only finds binary clusterings (exactly two

clusters,  and ). Initially  contains all the profiles, and  is empty.

At each step, one of the profiles in  is transferred to . The profile selected

for transfer is the profile in  which most increases (or least decreases) the dis-

tance between the clusters, . That distance is recorded, and the transfer

process is repeated until  is empty. That pairing of  and  which pro-

duced the greatest recorded between-cluster distance is the eventual winning binary

partition. By recursive application, an arbitrary number of clusters can be generated.

Complexity is no greater than  (see [13]).

3. Iterative Join-Two Algorithm. Initially there are N clusters, one singleton cluster for

every profile. At each stage, the distance between each pair of clusters  is

calculated. That pair of clusters whose distance  is the least are

merged into a new cluster , then  and  are discarded.

Distances are recalculated (where necessary) between the  result-

ing clusters, and again the closest pair are merged. This continues until only clus-

ters remain. Complexity is no greater than , thus less than

when a binary partition is sought.
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In fact, the Iterative Join Two algorithm is employed as a hybrid with Exhaustive

Search; once the number of clusters falls to a threshold value, an exhaustive

search of all possible combinations of the remaining clusters into two superclus-

ters is performed (complexity ).

For any given decision tree clustering, the same distance measure is used in all three

sub-algorithms. This is either unweighted Euclidean distance between cluster centroids,

or a modified Euclidean distance measure

(EQ 118)

where  is regular Euclidean distance .

 and  are the cluster centroids (i.e. each is the mean of all profiles in the cluster)

as usual,  is the number of original profiles that are combined into  (where

), and

(EQ 119)

Here,  is a term which is introduced to bias against the selection

of unevenly sized clusters (size being judged by the number of profiles combined in a

cluster rather than the number of categorical predictor values). Call thebias coeffi-

cient. Note that when either  (i.e. the clusters each combine equal num-

bers of the original profiles) or , the bias term equals unity, and (EQ 118) reduces

to regular Euclidean distance. However when , the more  differs

from 1 (i.e. the more uneven the numbers of profiles in the two clusters), the less the bias

term (EQ 119) becomes. Hence the distance between and  is adjudged to be

smaller, and so in turn is adjudged to be a worse binary clustering. Note the

bias term is symmetric in and , and unaffected if  and  are each multi-

plied by the same scalar.

It is important that the same bias coefficient is used globally during the decision

tree building, regardless of which sub-algorithm is being used locally. This is because

different sub-algorithms may be used for clustering on different variables at a particular

node in the tree, so the goodness of clustering measure should be the same in order
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to judge equitably which variable should be selected for splitting.

13.4.3  Building the Adaptive Decision Tree Clustering

Prior to any analysis, it is assumed that profiles have first been normalised so that

each customer has the same total energy consumption over the study period, as per sec-

tion 10.2. The clustering tree may either be built using these normalised profiles or, in

the full methodology, be built using deweathered (or ‘weather-free’) profiles constructed

by subtracting the correctly rescaled profiles from a MARS regression weather model

from the original data (as per section 11.2.5).

The decision tree clustering procedure is a divide and conquer algorithm which can

be summarised as follows:

1. Call the clustering we are building. Initially  has one element , the universal

cluster (which contains all the profiles).

2. The cluster  in  that has the greatest within-cluster scatter (EQ 73) is selected for

splitting (initially this must be the universal cluster).

3. For each predictor  that allows further splitting in , a locally determined

clustering algorithm is selected (see note below) and used to generate a binary parti-

tion of  into subclusters  and  using  as splitting variable.

4. Of the binary partitions calculated in 3, that with the greatest modified Euclidean

distance  (EQ 118) between the two partition centroids is the winner. Clus-

ter  is removed from  and replaced by the two clusters and  corresponding

to the winning partition.

5. Repeat from 2, until a predetermined total number of clusters is reached.

Experiments were performed to determine a suitable policy for choosing which local

clustering algorithm to employ in stage 3. For the data sets under study, it was not

deemed necessary to use the Binary Splitting Algorithm at all for the extrinsic decision

tree clusterings presented in the results section 13.5, since the slower but more thorough

Join Two Algorithm was fast enough to be practical. The predictor with the greatest

number of categories ( , SIC code) has 41 categories (which includes a ‘missing’ cat-

egory which is assigned to any customer for which SIC was not recorded in the data, and
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an ‘invalid’ category for customers whose recorded codes were not valid), yet even near

the root of the decision tree the Join Two Algorithm can be applied with SIC code as the

splitting variable in under a minute. However the Binary Splitting Algorithm is retained

as part of the methodology as an alternative to the Join Two Algorithm, so that fast ex-

ploratory clusterings are possible, and so that in the event that larger data sets are studied

by the project Sponsors (with more profiles and/or more SIC codes) a faster algorithm is

available. The criteria decided upon for using exhaustive search rather than the faster al-

gorithms is that the predictor variable being used for splitting took seven or fewer values

amongst the customers whose profiles were being clustered (entailing an exhaustive

search of  binary clusterings). The threshold value at which the Join-

Two algorithm switches to exhaustive search (see section 13.4.2) is also seven.

Note that only month  and SIC code  (and potentially, load factor category )

have more than 7 possible values (SIC has 41, month has 12, tariff and day of the week

each have 7, and load factor category was also chosen to have seven categories for

the studies presented, though is allowed to have more), and hence cause the Join-Two

algorithm to be invoked rather than exhaustive search. As the global clustering proce-

dure is carried out and the decision tree built, the number of profiles at the start of a local

clustering sub-algorithm tends to get less, since attributes have already been used for

splitting (for example, if the very first split chosen at stage 4 is on day of the week, and

results in dividing the database/decision tree into Monday-to-Friday profiles and Satur-

day/Sunday profiles, then all further candidate sub-clusterings using day of the week will

have at most 5 initial profiles to cluster). Thus the local clustering sub-algorithms be-

come much quicker as the tree grows, and Join-Two clustering becomes less used (as the

number of SIC codes/months represented at leaf nodes in the tree falls to 7 or below).

13.5  Results of Extrinsic Decision Tree Clustering

13.5.1  Data Used in the Extrinsic Decision Tree Clustering

Three versions of the 1995/6/7 load profiles database were used to build the models

of this section. Firstly, the original whole loads database (cleaned and with special days

removed, as per 11.3.1) was used,dataset 1; secondly, a loads database deweathered us-

ing the final weather model  (see sections 11.2.5, 11.3.12) was used,dataset 2; and

thirdly a loads database deweathered using the final model was used,dataset 3.

A problem arises with the deweathered data of datasets 2 and 3. Because of the way
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they are generated (by subtracting profiles drawn from a weather model from the original

whole profiles), there are occasional negative data in the deweathered datasets. Whilst it

would be possible to leave the negative data in the datasets and still build viable cluster-

ing models, negative entries cause two problems: (i) interpretation; how should negative

entries be plotted, or indeed interpreted, when a negative load is meaningless?; (ii) com-

putation; as a precaution against error, the clustering code checks (in many places) that

all profile entries are non-negative, and removal of such fail-safe mechanisms in very

large complicated programs is dangerous.

It was decided to remove negative entries, by the simple mechanism of replacing

each negative datum with 0. As shown in (TABLE 14.), where negative entries do occur

(which is in less than 1% of load values in either dataset), they are on average very small

(-4.74 and -7.51 in datasets 2 and 3 respectively - recall were normalised so that the av-

erage half-hourly load reading of any customer is 100.00). Whilst there were exceptional

deweathered readings that were much more negative than this, these were truly rare; and

since exceptionally low load readings are in any case of much less interest to utilities

than exceptionally high load readings (since higher than expected demands can be very

expensive to supply), removing such readings is not thought to be significant.

Following the removal of negative entries, the deweathered databases were normal-

ised again on a per-customer basis (just as in 10.2) so that each customers mean half-

hourly load reading is 100.00 (to which they were all already very close), in order to ac-

count for the removal of negative entries, and the fact that the mean value of MARS

model was not always exactly 0.00 for all customers.

Upon examination of the datasets using examples of the visualisation described in

12.5.1, four of which are illustrated in (COLOUR FIGURE 10.) to (COLOUR FIGURE

13.)1, it was apparent that there were certain whole months of dubious data in the 1995/

6 loads database, namely April, July and August of 1995, as well as one month of dubi-

ous data in the 1996/7 loads database, namely January 1997. The data for April 1995 is

TABLE 14.

dataset
weather
model

number of
negative entries
(before removal)

smallest entry
(before removal)

mean negative entry
(before removal)

2 91027      (0.76%) -26.90 -4.74

3 108990    (0.91%) -50.36 -7.51
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clearly misrecorded. Recall that the 1994/5 raw data and the 1995/6 raw data overlapped

and, for many customers, disagreed; profiles for a given customer in the latter database

were scaled by the addition of, or the multiplication by, a fixed scalar (different fixed

scalars for different customers). Evidently, for the month of April 95, a normalisation

scheme was applied to the raw data that is inconsistent (for some customers) with what-

ever normalisation scheme was used for the rest of the 1995/6 and 1996/7 raw data.

Whether or not the loads are deweathered before plotting, April 1995 loads are on aver-

age far higher than those for any other month, so much so that the data could not possibly

be correct.

The Sponsor was unable to give any definitive answers on how reliable various pe-

riods of the raw data files might be, or how the figures may have been normalised. How-

ever, by looking at which profiles are missing from the 1995/6 data - see (COLOUR

FIGURE 9.), it becomes apparent that the raw data files have the same customers miss-

ing throughout a given calendar month; it must be assumed that different months’ data

raw were in some cases drawn from different sources, and could be normalised in differ-

ent ways. Therefore all the April 1995 loads were removed from the data presented to all

of the clustering models discussed.

Whilst the April 95 data is without question mismeasured, the unusually high

(whole) loads for July and August 1995 (COLOUR FIGURE 10.) do not look impossibly

high; it is feasible that they could be due to cooling loads (and the summer of 1995 was

an unusually warm summer in the UK). However, these loads still appear to be unusually

high even in the deweathered data plotted in (COLOUR FIGURE 12.). There is no ob-

vious reason why the weather models ( ) described in 11.3.12 would not be able to

account for increased loads resulting from high summer temperatures. Particularly, by

comparing the visualisations of datasets 1 and 2, it is apparent that loads for the cold win-

ter months have been very effectively normalised to levels comparable to other months

by the deweathering process; yet only July and August 1995 (aside from the misrecorded

April 1995 loads) appear immune to the deweathering process. Furthermore, plots of

certain ANOVA terms of various MARS weather models reveal a definite positive rela-

tionship between load and very high summer temperatures, for example (COLOUR FIG-

URE 5.).

1. Any differences in the visualisations of datasets 2 and 3 (deweathered according to models

respectively) are barely discernable, so the visualisation for dataset 3 is not provided.
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If the weather models  genuinely failed to account for higher cooling loads in

July and August of 1995, it is perhaps due to the amount of missing data in August 1995,

and particularly, July 1995; recall that each datum presented to MARS was weighted ac-

cording to the number of profiles which were summed therein, and so the July 1995 data

would have had very little weight in the weather models. However it seems more likely

that the data for those months is in fact misrecorded. In either case, it was decided to also

omit the data for July and August 1995 from all the clustering models that are presented

here.

Finally, there is some very strange profile behaviour apparent in the January 1997

loads, which can be seen more clearly in (COLOUR FIGURE 14.). The Thursday and

Friday mean profiles are markedly different from the Monday to Wednesday Profiles,

and rather similar to the Saturday and Sunday profiles. The Saturday and Sunday profiles

also look suspiciously high. It does not seem at all likely that the January 1997 data is

correct (at least, not for all customers), though how it might have come to be misrecorded

in such a way is not known. Accordingly, this whole month’s data was also excluded

from all clustering models presented here.

It must be noted that the failure to remove April 1995, January 1997, and possibly

July and August 1995, from the data prior to weather modelling must have introduced

some slight bias into the models; in particular, the January 1997 data is almost certainly

responsible for the curious grouping together of Thursday and Friday in some basis func-

tions involving day-of-the-week. The dubious nature of the April, July and August 1995

and January 1997 data did not become apparent until all of the weather experiments had

been performed, and time did not allow for their repetition. It is in any case not unusual

that the data analysed by data mining techniques is not wholly reliable, that being the na-

ture of real world databases, and the weather models presented cover too short a time pe-

riod to be definitive, even if all the data were reliable.

Finally, note that as well as making the profiles much more uniform in level over the

course of the study period, the deweathering process has also lessened the starkness of

the impact on load shape of daylight saving clock changes. In (COLOUR FIGURE 10.)

and (COLOUR FIGURE 11.) there are obvious changes in daily load shape following

clock changes near the end of March and end of October (though in fact a clock change

at the end of March 1996 is obscured because it falls between the two diagrams; it can

be seen in (COLOUR FIGURE 15.)). These clock changes are still visible in diagrams

of deweathered load (COLOUR FIGURE 12.) and (COLOUR FIGURE 13.), but con-

α β,
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siderably less so. Note that all loads, and all weather variables, used in the MARS models

were recorded in hours Greenwich Mean Time, and no explicit variable carrying GMT/

BST information was used. Thus the weather models have partially accounted for day-

light saving through the use of the time-of-year variables available to them.

13.5.2  Use of Percentile Load Factors

Load factor (100% mean load/maximum load over some specified period) is of-

ten used in the electricity supply industry as a measure of the extent to which a custom-

ers’ loads maintain their peak level throughout the year (or some other period). A

customer with a high load factor has a peak load close to its average load; a customer

with a low load factor over a certain period has at least one instance of a much higher

than average load measurement. Customers with high load factors generally have pro-

files that are quite flat; those with low load factors tend to have profiles that are more

bumpy or ‘peaky’. There are three important drawbacks to the use of load factor as a pre-

dictor of load shape:

• First, a customers’ load factor, measured over a certain time period , may

be rather different from its load factor as measured over another time period

. Therefore a customers’ load factor as stored in a customer database may

not match its load factor as measured in any particular set of its profiles.

• Second, where the maximum load in a set of profiles used to calculate load factor is

mismeasured, the load factor will be strongly affected. As noted in 11.3.1, there are

instances in the data of solecisms - abnormally high or low readings that are sus-

pected to be inaccurately recorded, which where undetected might lead to inaccurate

calculation of load factor.

• Third, load factor is by definition heavily influenced by an outlying data point,

namely the maximum load. Where this maximum load is a particularly atypical load

for a given customer, a single outlying datum can significantly affect any model that

uses load factor as a predictor. Thus models relying on load factor may not be partic-

ularly robust.

Load factors as recorded in the customer database were compared to load factors as

calculated on the original whole loads database (over all of 1995/6/7), and there were

many severe discrepancies between recorded and calculated figures, indicating that the

first and/or the second points above come into play for some customers. Therefore it was

×

T0 T1,[ ]

T2 T3,[ ]
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decided to ignore the load factors supplied with the customer database and instead rely

on recalculated 1995/6/7 load factors in all studies. However, to minimise the problems

associated with the second and third points above, it was decided that recalculatedper-

centile load factors would be used for the weather and the clustering models presented

in this thesis. A -percentile load factor is defined to be equal to

(EQ 120)

measured over some given period, where is the mean load for the period and  is

the upper -percentile load for the period (the load reading which as close as possible to

% of loads are greater than or equal to). Initially, 1-percentile load factors were used,

and later other values for were tried. Clearly this measure is more robust to outlying

data (including mismeasured outlying data) than a regular load factor calculation.

One reason that load factor is widely used in load profiling problems is that it is more

easily measured and recorded by a conventional analogue meter than other measures of

profile flatness/uniformity - just one value need be recorded, i.e. the peak power drawn

over the period between meter readings. However, with half-hourly digital metering be-

coming much more prevalent, alternative measures of profile flatness, which may be of

greater value in load profiling, are becoming viable.

13.5.3  Effects of Bias Coefficient on Decision Tree Clusterings

To examine the effects of the bias coefficient, a clustering was performed using

the variables  (day-of-the-week),  (SIC code),  (tariff code) and  (1-percentile

load factor category with seven categories), using dataset 2 (model-deweathered

loads), repeated several times with varying coefficient. In each case, the predeter-

mined number of splits to be performed was set at 11 (resulting in 12 leaf profiles).

The results with  (i.e. no bias against uneven binary clusters) are shown in ().

Some notes on the interpretation of the decision trees presented here are necessary. Each

node is marked with a numeral to its side; these numerals describe the order in which the

nodes were added to the tree. Thus nodes 5 and 6 are always the nodes added by the third

split, for instance. Directly below each node (except node 0, the root) is printed the

number of profiles represented at that node; directly beneath that, in parentheses, is print-

ed the within-cluster scatter found at that node, expressed as a percentage of the total

p

L

L
p%

--------- 100%×

L L
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scatter in the data (i.e. as a percentage of the within-cluster scatter at the root node).

Above the root node, a description of all the variable values of the model predictors that

are present in the data is given (though when SIC code is used, this description may be

too large to fit on the page). These variable values are expressed as three letter abbrevi-

ations (for month or for day-of-the-week values); or as a two figure number (for SIC

code category); or as an upper-case L followed by a number from 1 to 7 (for load factor

category); or as an upper case A, G or L followed by a two-figure number (for tariff

code). Finally, each branch is marked with the predictor values which were clustered to-

gether into the corresponding child node at the bottom of the branch.

SIC code categories are numbered sequentially from 1 to 41 in such plots, and do not

correspond to the actual two-figure SIC codes which they represent.

After each split in the decision tree building process, the total within cluster scatter

(the sum of the scatters for the current leaf profiles) is calculated. The amount of total

scatter accounted for by the clustering model after theth split, , is given by subtract-

ing the  cluster scatters of the leaf clusters in the current model from the pooled (total)

scatter

. (EQ 121)

(where  is given in (EQ 72)) and theroot-percentage of scatter accounted for after

the th split, , is given by

, (EQ 122)

with the square root accounting for the fact that scatter is a squared quantity.

n Sn
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FIGURE 10.

Bias coefficient b = 0.0 (no bias). The decision tree is very deep, and so takes a second output page

to display the subtree below node 15. Without bias, many very small clusters are chosen.

Note that scatter accounted for is a measure of how much variation in theoriginal

(First output page)

(Second output page)
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data is accounted for by the clusters, but it is not the only viable measure of model good-

ness, and in fact, is not what the model attempts to maximise at each split. The model

tries to maximise (biased) distance between cluster centres over the range of allowed bi-

nary splits; even when the distance measure is unbiased Euclidean distance, this is equiv-

alent to attempting to minimise the scatter of theatomic profiles within each cluster,

which is not the same as trying to minimise the scatter of theoriginal profiles within each

cluster, the type of scatter accounted for that measures. Either type of scatter is valid

as a measure of model goodness, although time did not allow for the inclusion of an op-

tion to use original-profile scatter accounted for as a distance metric.

In addition to calculating the total scatter accounted for after each split, after every

split in the decision tree building process the amount of total scatter accounted for by that

particular binary split, , is added to ascatter-by-variable sum , where  is

the variable whose values were used to determine the split. Before any splitting has taken

place, the scatter-by-variable sums  are all zero. If at the first split,

day-of-the-week is the splitting variable selected, and the first split accounts for scatter

, then  is added to , and so on. Following the final split, the scatter-

by-variable sums serve as a guide to the relative variable importance of the various mod-

el predictor variables. Relative variable importance for variable, , is given by

(EQ 123)

Again, the square root takes account of the fact that scatters are measured in squared

units. This is only one viable measure of variable importance, and (like GCV in MARS

modelling) cannot be taken as the definitive guide to relative variable importance for any

given model.

The root-percentage of scatter accounted for after theth split (for the zero-bias

model of (FIGURE 10.)) is graphed against in (FIGURE 11.(a)).
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FIGURE 11.

 against  for models with bias coefficient 0.0, 1.5. Note that the scales for the y axes differ.

The same clustering was repeated with biases coefficients of  and

2.0. The final root-percentage scatter accounted for (after 11 splits in each case) as well

as the relative variable importances are given in (TABLE 15.) - an empty cell indicates

that a variable was never selected for splitting in a given experiment. Looking at the final

root-percentage scatters accounted for by these 5 models, it is immediately clear that at

least some bias against small clusters is beneficial in terms of model goodness of fit;

(FIGURE 11.) in particular shows how much more quickly scatter is accounted for with

a reasonable degree of bias against small clusters - (FIGURE 11.(b)) shows scatters ac-

counted for with .

The decision tree for the = 1.5 model is shown in (FIGURE 12.). Considerably

more scatter is accounted for in this model than when there is no bias (FIGURE 10.).

Without bias the model tends, for most of the eleven splits determined, to pick off just

one (or occasionally two) SIC codes into one very small cluster, which does not get split

again (or at least, not by the eleven splits calculated). In all of these splits, only one or

TABLE 15.

bias coefficient

relative variable importances:
final root-%
scatter
accounted for

day-of-the-
week load factor SIC tariff

0.0 32.2753 29.2146 18.1208 47.1546

0.5 33.2348 33.4844 22.1930 52.1375

1.0 33.2348 37.0760 16.7887 12.4196 53.9934

1.5 33.2348 39.777 12.5758 14.0232 55.1503

2.0 33.2348 39.5162 15.7292 8.82469 54.6934

(a)b = 0.0                                                  (b)b = 1.5

RPSn n

b 0.5 1.0 1.5, ,=

b

b 1.5=

b
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two customers belong to the SIC code categories that make up the small cluster; whilst

that customer’s centroidal profile over the relevant dates has a very great Euclidean dis-

tance from the centroidal profile of the remainder of the customers begin considered, be-

cause just one or two customers end up in the small cluster the amount of scatter

accounted for is generally small.

When bias is introduced against the small clusters, not only is the total amount of

scatter accounted for increased, but the informativeness of the model (informally speak-

ing) is much better. (FIGURE 12.) tells us more about the nature of load shape variation

in relation to load factor category and tariff code than does (FIGURE 10.); but arguably

it tells us more useful information about the effect of SIC code on load shape than does

(FIGURE 10.), even though SIC code is used much more as a splitting variable when

bias is absent. Split number 3 (into nodes 5 and 6), tells us that the customers belonging

to the 16 SIC codes represented at node 6, with load factors in categories L1, L2 or L3,

have relatively similar load shapes (at least on weekdays); all the third (say) split in the

bias-free model tells us is that one particular SIC code category has load shape relatively

unlike that of other categories - and since only one customer in the data has that SIC

code, this might not generally be the case in the population at large anyway.

Looking at (TABLE 15.) we see that day-of-the-week is rated as the most important

variable when  = 0.0, ahead of load factor category and SIC code. Only in this model

was day-of-the-week not selected at the first split; the  models all split day-of-the-

week into weekday and weekend first of all. Load factor is rated slightly more highly

than day-of-the-week for , and more so for the higher biases. Tariff code is not

selected at all when  or 0.5; however with higher biases, SIC code-based clus-

terings with very uneven sized clusters are more heavily penalised, and tariff code gains

in relative importance (though tariff code falls slightly in importance when bias increas-

es to 2.0).

A bias coefficient figure of  = 1.5 was selected for all the clustering models that

follow, not only because this coefficient accounts for a relatively high amount of within

cluster scatter after 11 splits in the models of this section, but because a bias coefficient

of 1.5 has been found to produce trees which carry (informally) interesting information

about load shape and about the available predictor variables in several experimental var-

iations on these models (including when month is also included in the set of predictor

variables).

b

b 0>

b 0.5=

b 0.0=

b
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FIGURE 12.

Bias coefficient b = 1.5. The tree is shallower (fitting on one output page), and SIC code is selected

for splitting much less frequently.

13.5.4  Comparison of Clustering Models on Datasets 1, 2 and 3

With the bias coefficient  fixed at 1.5, models were built on all 3 datasets described

in 13.5.1. The variables used were day-of-the-week, load factor category, month and tar-

iff code, and the number of splits was slightly increased from the models in 13.5.3, to 13

(generating 14 leaf profiles). Results from the three models appear in (TABLE 16.),

whilst their respective decision trees appear in (FIGURE 13.) to (FIGURE 15.).

TABLE 16.

dataset

relative variable importances:
final root-%
scatter
accounted for

day-of-the-
week load factor month tariff

1 (whole loads) 33.0211 39.4169 7.25369 14.6994 53.9701

2 (deweathered

using model )

33.2347 40.0555 3.75736 14.3839 54.1295

3 (deweathered

using model )

33.222 39.9864 2.8251 14.5316 54.0533

b

α

β
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FIGURE 13.

Dataset 1 (whole loads),b = 1.5, clustering with day-of-the-week, month, load factor, SIC code.

From (TABLE 16.) it is immediately clear that the principal effect of deweathering

the loads database is that month becomes far less important as a splitting variable in the

clustering methodology. This was expected, since weather’s effect on load shape varies

much more from month to month than it does from tariff code to tariff code, from load

factor category to load factor category, and so on, because the weather itself is different

from month to month. In the model built on dataset 1 (whole loads), month is first select-

ed as the splitting variable for the fifth split, and for a second and final time for the elev-

enth split. In the model built on dataset 2 (deweathered without using categorical

variables in the weather model), month is not selected until the eight split, and then once

more for the final (13th) split; in the model built on dataset 3 (deweathered using day-

of-week and load factor in the weather model), month is not selected until the ninth split,

and is selected also on the final (13th) split.
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FIGURE 14.

Dataset 2 (loads deweathered with weather model), b = 1.5; variables as in (FIGURE 13.).α
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FIGURE 15.

Dataset 3 (loads deweathered with weather model), b = 1.5; variables as in (FIGURE 13.). A sec-

ond output page is required to display the subtree below node 23.

It appears that the weather modelling removes most, though not all, of the time-of-

year dependence in the deweathered loads databases; and that it can do so even more ef-

fectively when certain categorical variables (day-of-the-week and load factor category)

are used as predictors in the weather model. In fact, for the models presented here, month

(First output page)

(Second output page)

β
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is only selected as a splitting variable in the deweathered datasets in a part of the model

which applies only to the lowest load factor category and to two tariff codes; for the

whole loads dataset, month is selected in parts of the dataset that apply to the lowest two

load factor categories (but various tariff codes). All three models account for a very sim-

ilar root percentage of scatter  after 13 splits, though the model built for dataset 3

accounts for scatter slightly the fastest - after 6 splits only, the respective scores

for datasets 1, 2 and 3 are 51.2045%, 51.4895% and 51.6171%. Whilst there is a large

change between whole and deweathered data inwhere in the clustering tree month is se-

lected, month is used in similar ways in all the models, i.e. to divide colder/darker

months from warmer/lighter months. In the whole loads clustering, note that the daylight

saving clock changes occur at the end of March and towards the end of October, and so

rather close to the month splits that occur in the whole loads model (FIGURE 13.). For

dataset 2 the warmer/lighter months (as determined by the clustering) begin with April

and end with November, though November is subsequently separated from April to Oc-

tober. For dataset 3 the warmer/lighter months (as determined by the clustering) do not

appear to be closely related to daylight saving clock changes. Note that whatever dataset

is used, the lower load factor categories tend to be much more intensively modelled (i.e.

much more splitting occurs in the parts of the model with lower load factors), because

disproportionately more scatter exists in those parts of the model (since customers with

high load factors tend to have much flatter profiles, and accordingly less scatter amongst

their profiles).

Two further experiments were performed to try and determine the effect of deweath-

ering loads on clustering, when month is not present as a predictor variable in the clus-

tering model. The same parameters ( = 1.5, number of splits = 11) are used as were

used in the clustering of (FIGURE 12.), so direct comparison is possible, but the datasets

used were 1 and 3 (not dataset 2, which was used in generating (FIGURE 12.)). Results

for the three clusterings are displayed in (TABLE 15.), and graphs for the decision trees

TABLE 17.

dataset

relative variable importances:
final root-%
scatter
accounted for

day-of-the-
week load factor SIC tariff

1 (whole loads) 33.0212 38.9320 14.0695 13.3177 54.6023

RPSn

RPS6

b



Applications of Data Mining Techniques to Electric Load Profiling

Applications of Data Mining Techniques to Electric Load Profiling 161

in (FIGURE 16.) for dataset 1 and (FIGURE 17.) for dataset 3, as well as (FIGURE 12.)

for dataset 2.

FIGURE 16.

Dataset 1 (whole loads);= 1.5.

The results of (TABLE 15.) suggest that deweathering a dataset before performing a

decision tree clustering affects the resulting clustering somewhat even when time-of-

year information (i.e. month) is absent from the model. The percentage scatter accounted

for is somewhat better for the deweathered datasets; and whilst the relative variable im-

portances remain similar for all three models, there are substantial differences between

the clustering decision trees for whole and deweathered loads; this is further evidence

that weather has rather different effects on the load shape of customers who differ in their

2 (deweathered

using model )

33.2348 39.777 12.5758 14.0232 55.1503

3 (deweathered

using model )

33.222 39.9645 13.1577 12.6813 55.089

TABLE 17.

dataset

relative variable importances:
final root-%
scatter
accounted for

day-of-the-
week load factor SIC tariff

α

β

b
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customer attributes (SIC, tariff, load factor), which was already clear from experiments

in section 11.3.11. The trees for datasets 2 and 3 (deweathered with weather models

and  respectively) also differ, though rather more subtly.

FIGURE 17.

Dataset 1 (loads deweathered with weather model);  = 1.5.

13.5.5  Comparison of Clusterings Using Different Percentile Load-Factor
Variables

As discussed in 13.5.2, rather than calculating load factors as a ratio of average load

to maximum load, they may be calculated as a ratio of average load to the top-percen-

tile load. The clustering models so far (and, in fact, the weather models where they have

used load factor) have used 1-percentile load factors. This was motivated more by the

danger of misrecorded peak loads biasing the calculated load factor1 than by the more

general problems of using (conventional) load factor as a predictor. The more general

problems are that a few (correctly recorded) peak loads can heavily affect a final model

when load factor is a predictor, and that a customer’s load factor can change considera-

1. Indeed, the 1-percentile load factors vary little from the true (or 0%, i.e. conventional) load factors, in

general.

α

β
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bly depending on the time period over which it is recorded.

The atomic profiles for the clustering model were recalculated from dataset 2 using

various -percentile load factors;  values of 0.0% (conventional load factor), 1.0%,

10.0%, 20% and 33% were tried. Using these differing sets of atomic profiles 4 new

models were built using day-of-the-week,-percentile load factor category, tariff code

and SIC code as predictors, setting the number of splits to 11 and the bias coefficient

to 1.5 (note that the 1-percentile version has already been built with this dataset and these

parameters - see (FIGURE 12.)). Results appear in (TABLE 15.).

Using conventional load factor ( ), less scatter is accounted for (after 11

splits) than in the previously built model (with ); load factor loses importance,

at the expense of SIC code. SIC code is selected for splitting four times, load factor just

3 times (FIGURE 18.); whereas when using 1-percentile load factors (FIGURE 12.) load

factor was selected 5 times (SIC just twice). Thus ignoring as little as the top 1% of a

customers’ loads when calculating its maximum load is enough to make load factor a

more useful splitting variable.

The gains in scatter accounted for when increasing to 10% and 20% are even more

impressive; load factor attains its greatest importance, as measured by (EQ 123),

when  - the decision tree for that model is given later in (FIGURE 21.)). The

greatest amount of total scatter accounted for (after 11 splits) occurs when ,

where the presence of 20-percentile load factor as a predictor allows day-of-the-week to

take on more than its usual importance. We can see in (FIGURE 19.) that with

, load factor is actually selected for the first split, ahead of day-of-the-week.

The usual weekend/weekday split does occur lower in the tree: immediately afterwards

for the lower 3 load factor categories, and on the tenth split for some customers with load

factors in the 4th and 5th load factor categories (though not at all, for some customers).

This arrangement actually allows day-of-the-week to take on a greater importance (as

TABLE 18.

percentile point

relative variable importances:
final root-%
scatter
accounted for

day-of-the-
week load factor SIC tariff

0.0% 33.2348 33.7846 22.0294 11.8534 53.5886

1.0% 33.2348 39.777 12.5758 14.0232 55.1503

10.0% 33.2347 44.6534 12.9444 10.2584 58.0626

20.0% 41.7316 39.8381 15.4424 6.8826 60.1202

33.0% 33.2348 23.2382 15.0157 26.4896 50.7123

p p

p

b

p

p 0.0%=

p 1.0%=

p

impXL

p 10%=
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measured by ) than in the other models where it is picked first.

FIGURE 18.

Use of conventional load factors (=0.0%). SIC is used for splitting 4 times, load factor just 3

times; with =1.0% (FIGURE 12.), load factor was selected 5 times (SIC just twice).

FIGURE 19.

With =20.0%, load factor is actually picked ahead of day-of-the-week.
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When increasing the percentile point to 33.0%, the gains made in terms of scatter

accounted for disappear, and the model accounts for less scatter than when conventional

load factor is used.

We can examine some problems associated with setting too high by looking at the

(whole) profiles of a particular customer (call them customer A), who has a very low

load factor as calculated conventionally. Customer A’s centroidal profile, over the study

period, is shown in (FIGURE 20.). The y-axis is scaled between 0% and 600% of aver-

age half hourly load - the customers daily peak average load is nearly six times its aver-

age load; the x-axis shows time of day. Customer A’s SIC code is missing from the

customer database, but the customer is listed as ‘Tennis Courts’ in the Sponsor’s full cus-

tomer database.

FIGURE 20.

Centroidal profile over study period of customer A.

In fact, customer A has the lowest conventional (0-percentile) load factor of all the cus-

tomers in the 1995/6 database, with a peak half hourly load 12.77 times its mean half

hourly load. However, as shown in (TABLE 19.), customer A’s 20-percentile and 33-

percentile load factors are extremely high; in fact customer A has the highest 20-percen-

tile load factor in the database, and the highest 30-percentile load factor in the database.

TABLE 19.

percentage point : 0.0% 10% 20% 33%

-percentile load factor

for customer A

7.83% 22.71% 256.31% 1468.61%

p

p

p

p
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Whilst percentile load factors are intended to be a more ‘forgiving’ measure of profile

flatness than conventional load factor, in that the highest of loads for a given cus-

tomer have no influence on percentile load factor, it would seem that using too high a

percentage point  can be much too forgiving; in the case of customer A, well over half

of its loads are very small in comparison to its mean load. Most of A’s power is used

when load levels are greater than the denominator of percentile load factor (EQ 120)

when  = 20% or 30%, and so A is rated (by percentile load factor) as having a very flat,

uniform profile, whereas the opposite is true.

Thus some caution should be exercised if-percentile load factor is to replace con-

ventional load-factor as a measure of profile flatness, that is not set too high.

13.5.6  Marginal, Difference & Effect Profiles in a Decision Tree Clustering

The model of the previous section using 10-percentile load factor, bias coefficient

, predictor variables  and 11 splits, is illustrated in (FIGURE

21.).

FIGURE 21.
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Decision tree with =10%, =1.5%; described fully in section 13.5.5.

The first split is into weekday and weekend clusters. The amount of scatter in the

weekend cluster (node 2) is much smaller, and consequently much less recursive split-

ting goes on beneath node 2 than node 1 (the weekdays node). The difference profile (see

section 12.2) for nodes 1 and 2 (weekday/weekend) is given in (FIGURE 22.(a)). This

shows that weekday profiles are somewhat higher between 05:00 and 22:00 GMT, and

much higher between 08:00 and 16:00 GMT, but almost the same from 22:00 to 5:00

GMT. A seasonal overview of the profiles in node 1 (weekday profiles averaged for all

customers) is given in (COLOUR FIGURE 16.). Note that due to deweathering there is

little seasonal variation among the profiles; white (i.e. paper coloured) areas indicate

missing/omitted days and Saturdays and Sundays.

FIGURE 22.

Difference/Effect Profiles for the clustering of (FIGURE 21.)

The next two splits are subdivisions according to (10-percentile) load factor catego-

p b

(a) (b)

(c) (d)
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ry, and it is the three lowest load factor categories (at node 3) which carry the bulk of

remaining scatter, and which are recursively split the most times subsequently, particu-

larly load factor category 1 (node 5) which is split another 4 times, according to tariff

category (twice) and SIC code (twice). A difference profile for nodes 3 and 4 (weekday

low load factor (L1, L2, L3) profiles and weekday high load factor profiles is given in

(FIGURE 22.(b)). Between about 06:30 and 18:00 GMT, the lower load factor profiles

are typically much higher than the higher load factor customers, and this trend is re-

versed for the remainder of the day. The difference is most marked between 09:00 and

15:00 GMT. The seasonal plots for nodes 3 and 4 are given in (COLOUR FIGURE 17.)

and (COLOUR FIGURE 18.) respectively. Notice that while there is little seasonal var-

iation in node 4, there remains rather more seasonal variation unaccounted for by the

weather model in node 3.

As we move further down the tree, the difference profiles between sibling nodes, and

effect profiles (differences between daughter and parent profiles) tend to become less

smooth, and also more interesting. For example, the effect profile of node 7 (representing

one particular tariff code amongst customers in load factor category 1, on weekdays) on

node 5 (load factor category 1, all tariffs, on weekdays) is given in (FIGURE 22.(c)). It

demonstrates that customers with this tariff code tend to have higher loads towards the

middle of the day (07:00 to 16:00) than other customers in the same load factor category,

much lower loads during early morning and early evening, but similar loads at night. The

seasonal diagram for node 7 is given in (COLOUR FIGURE 19.). The difference profile

between node 15 and 16 (differing groups of SIC codes for customers in load factor cat-

egories two and three, weekdays) given in (FIGURE 22.(d)) shows how subtle the dif-

ferences between the clusters can become lower down in the decision tree.

13.6  Subatomic Clustering at Leaves of the Extrinsic Decision Tree
Clustering

A clustering algorithm which seeks clusters of profiles of any form, rather than a de-

cision tree approach which always partitions using values of a particular variable, allows

for more flexible clusterings. Whilst we might expect such a clustering to be very much

slower, without extrinsic variables to guide the search for clusters, we might also expect

the final clusters to better satisfy goodness-of-clustering criteria (when the number of

clusters is the same in either model) as a result of the freer form of its clusters.
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However, this increased flexibility is arguably very much a disadvantage, since the end

model is vastly less interpretable than a decision tree. Each leaf in a decision tree has a

single path to the root, marked with simple conditions on attributes. Thus the exact

meaning of any cluster (whether a leaf cluster or a coarser higher level cluster) is instant-

ly interpretable. Furthermore, effect curves allow for comparison of the effects of pre-

dictors between the various clusters at various levels, and the decision tree itself is a

highly interpretable at-a-glance visualisation of both global and local data structure.

However, the leaves of a decision tree clustering like those presented in section 13.5

often contain a significant amount of scatter unaccounted for; it seems more than likely

that there are patterns of variation at the leaves that are hidden by the atomic structure of

the data used in extrinsic decision tree clustering. Customers represented within the same

leaf may have very different load shapes, but be indistinguishable because they have the

same values for each of the predictor variables under consideration. There may be cus-

tomers in the same leaf cluster with very different load shapes, but that would require

several more splits using extrinsic variables to end up in different leaves - whereas a sin-

gle split that was ‘free’ rather than dictated by extrinsic variable values might immedi-

ately separate them.

Since the number of profiles in any leaf of a decision tree tends to be much smaller

than the number of initial profiles, afree-form(or subatomic, i.e. intrinsic, not guided by

extrinsic temporal and customer variables) clustering on the profiles at a given leaf may

be viable, provided the clustering algorithm is a very rapid one; however the subatomic

clustering of profiles at a leaf can be made very much faster still by imposing that all the

daily profiles of any given customer end up in the same cluster; then if distinct cus-

tomers are found at a particular leaf, there are just patterns (the customers’ centroidal

profiles for the dates represented at the leaf) to be clustered.

A faster algorithm is required than the join-two algorithm, since may still be rather

large, so thebinary splitting algorithmof section 8.6 is employed to generate binary

clusterings at the leaves of a decision tree. The framework within which this happens is

the same as for the extrinsic decision tree clustering we have already seen: the leaf clus-

ter with the greatest within-cluster scatter is selected for sub-atomic binary clustering

with the binary splitting algorithm; the two clusters so generated replace the old leaf

cluster in the decision tree; and these new leaves are made available as candidates for

further subatomic splitting, should either of their within-cluster scatters become the

greatest remaining within-leaf scatter. In fact, the same biased distance measure is used

m

m

m
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by the binary splitting algorithm when performing sub-atomic clustering. Thus the sub-

atomic clusters can be viewed on the same decision tree as the preceding extrinsic atomic

clustering - though the branches are merely marked with the number of customers rep-

resented at the node below the branch.

13.7  Subatomic Clustering Results

Subatomic clustering as described in 13.6 was applied at the leaves of an atomic de-

cision tree clustering. The atomic decision tree clustering used 11 splits using the varia-

bles , bias coefficient  = 1.5, 10-percentile load factors and the

deweathered data of dataset 2 (this is the clustering illustrated in 13.5.6). An additional

10 subatomic splits were generated on the leaves of the original atomic decision tree, still

using a bias coefficient of 1.5.

A graph of root-percentage scatter accounted for after splits  is given in

(FIGURE 24.). The dashed line marks the boundary between the 11th (final) atomic split

and the first subatomic split. Note that the rate of increase of  accounted for is fall-

ing sharply before the beginning of the subatomic splitting algorithm. However as soon

as the subatomic splits begin to be generated, the rate in increase of rises sharply,

until after the first five subatomic splits the rate of increase of  slows down again.

(TABLE 15.) shows a comparison of the performance of the subatomic clustering

model in comparison to a model with the same parameters, and also using 21 splits, but

using only extrinsically guided atomic splits. All scatter accounted for by subatomic

splits have been added and converted to a root percentage to give a relative ‘variable’

importance for subatomic splits, though of course no extrinsic variable guides these

splits. As would be expected, more scatter is accounted for by the mixed atomic/suba-

tomic model. The subatomic splits are awarded a combined importance similar to day of

the week but less than load factor (though of course it is not a very fair comparison, as

on the one hand these splits take place after the other splits, when much of the scatter is

TABLE 20.

Model

#
Atomic
splits

#
Subatomic
splits

relative variable importances:
final root-
% scatter
accounted

day-of-
the-week

load
factor SIC tariff

sub-
atomic

atomic 21 0 33.500 45.186 17.889 11.899 n/a 60.2133

mixed 11 10 33.235 44.653 12.944 10.258 33.586 67.0765

d X5 X6 and XL, , b

n RPSn

RPSn

RPSn

RPSn
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already accounted for; and on the other hand, these splits are much freer in the profiles

that they are allowed to put into different clusters).

The decision tree for the mixed atomic/subatomic model is given in (FIGURE 24.).

Since the tree is very large, the weekday model (descending from node 1) and the week-

end model (descending from node 2) are given separately. Note that on some occasions

FIGURE 23.

 against number of splits for a mixed atomic/subatomic clustering.

nodes that were generated by subatomic splitting are selected again for subatomic split-

ting.

It is hoped that the subatomic clusters that can be generated using this method may

be a useful tool in identifying niche markets for particular tariffs. By identifying small

clusters of customers who have similar profiles to each other, but dissimilar to those of

other customers with similar attributes (load factor, tariff group, SIC code), it may be

possible for a utility to identify a load shape for which it can price electricity competi-

tively, and to attempt to court similar customers from competing utilities.

However, the subatomic part of the model is of little use in predicting a new or po-

tential customer’s load shape given their attributes alone, because there is no extrinsic

variable to suggest which half of a binary subatomic clustering the customer should be-

long to.

RPSn n
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FIGURE 24.

Weekday/weekend halves of a mixed atomic/subatomic decision tree clustering.

(Weekday Model)

(Weekend Model)
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Chapter 14 —Possible Directions For Further Research

There are a number of suggested possible refinements of and extensions to the meth-

ods presented in this thesis for data collection and cleansing; for weather modelling of

half-hourly load data using weather, temporal and customer variables; for deweathering

of whole load using such a weather model; and for clustering whole or deweathered pro-

files using a variety of customer and temporal variables (and also without using extrinsic

variables). A number of minor possible enhancements to the methodologies have already

been suggested in Chapters 11 and 13, and these are, in general, not repeated here. How-

ever most of the extensions and alternative approaches suggested in this chapter would

be quite substantial research undertakings in their own right.

14.1  Improvements in Data Quality

One obvious way to improve the quality of results would be to procure more and bet-

ter data; data for more customers over more dates, data which contains fewer missing

dates and months, customer data without missing SIC codes, customer survey data con-

cerning end uses (such as presence of storage heating, air conditioning, etc.), and perhaps

foremost, data which is known to be consistently collected and normalised across all

dates and all customers, and free of erroneous measurements.

Unfortunately it is not always possible, in the real world, to get clean reliable data

such as this. Where improvements such as those above are impossible, there may be

more sophisticated ways of trying to detect erroneous or inconsistently recorded data

than have been described in this thesis - for example, automated methods to find out

which customers have dubious records in a certain month, rather than rejecting all the

data for a month which appears to have some dubious entries.

A more general way of removing (or severely down-weighting) outlying data points

than the somewhat crude solecism detection of section 11.3.1 would also be desirable.

One way to remove all variety of extreme outliers would be to build a preliminary model

for whole load (composed from the weather-dependent model and the weather-free clus-

tering model, or by just applying the decision tree clustering technique to whole loads),

and then identify outlying data in the original dataset as those that the constructed model

predicts very poorly. Single half-hourly data points, or whole profiles, or whole atoms,

or whole customers/dates, could be removed or down-weighted automatically if their
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Euclidean distance (say) from their predicted values in the preliminary model was too

great. Examining which data were removed by such a process may be revealing in itself,

and would also allow a secondary model to be constructed from the cleaned/weighted

data which was less distorted by outliers.

14.2  Enhancements to Weather Model

One problem with the weather modelling methodology presented in Chapter 11 is

that it relies on an estimate of available natural illumination that is by no means accurate,

together with cloud coverage figures and time of day/year information, to assist the mod-

elling of lighting loads. If actual figures for illumination could be collected, the model

might improve, and we might also be able to do without time-of-year variables, relying

more on meteorological variables to model seasonal variations in load.

However the greatest problem with the presented model is that it can take extremely

long times and vast amounts of memory to calculate; this is especially the case when one

or more categorical customer variables are used as predictors, since then the number of

data points increases-fold when there are  distinct combinations of customer variable

values present. This made it impractical to use SIC code in large models, or to use two

customer variables at once.

Since it would be desirable to build weather models over longer periods, and for more

customers, than were present in the databases provided, ways to reduce the memory and

CPU-time requirements of the presented weather methodology might need to be found.

A prior clustering of the customers’ whole or weather dependent profiles, using custom-

er variables as extrinsic variables in a mixed atomic/subatomic clustering, could be used

to generate a new customer variable,weather dependence category, whose value was de-

termined by which leaf cluster a customer belonged to in this model. Provided that the

number of clusters (hence the number of values of the weather dependence category)

was reasonable, then load factor category, tariff code and SIC code could be replaced by

a one categorical customer variable, perhaps allowing for improved weather models

without too much additional computational complexity.

Another area of research would be to establish how much goodness of model fit is

sacrificed when various variables are excluded from the weather model. It may be pos-

sible to achieve a similar goodness of fit using a smaller variable set, thus reducing the

computational burden of the method.

n n
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If the amount of data to be modelled was so great that there was no way to maintain

computational feasibility within MARS, a less complex method (such as interaction

splines - section 6.5.1 - featuring just the variable interactions most frequently chosen by

the MARS models in this thesis) might need to be adopted. Categorical variables could

be employed in such a scheme by building separate models for each ‘weather dependen-

cy category’ (see above) of customers.

14.3  Enhancements to Deweathering

A problem with the presented methodology of modelling weather dependent loads

and then deweathering whole load by subtracting the weather model is that every cus-

tomer with the same or with sufficiently similar customer categorical variables will be

assigned the same weather model; in fact, if customer categorical variables are not used

as predictors to MARS, thenall customers are assumed to have the same weather model.

Thus the deweathered loads for a given customer, which consist of subtracting the

weather model from the customer’s initial whole loads, may in fact overcompensate for

the effects of weather. In particular, some customers may have very little weather de-

pendency in their loads relative to the majority of customers, and hence have their winter

loads and/or their summer loads artificially lowered in the deweathered data for no good

reason.

Whilst this fact is largely disguised in the presented clusterings of deweathered loads

(because each customers profiles are composed into atoms with other customers, so that

the extent of an individual customer’s weather dependency becomes blurred), it could be

an important source of bias where an individual customer’s loads are important, such as

in the subatomic clustering phase of a mixed atomic/subatomic clustering model.

The use of a ‘weather dependence category’ variable determined by clustering

weather dependent customer profiles (as discussed in section 14.2) might help to reduce

this problem. However it might also be possible to do something about it at the deweath-

ering stage; a customers’ deweathered loads could be generated from its whole loads by

subtracting ascaled version of the weather model, using a different scalar for each

customer ; customers with less weather dependence would employ smaller scalars. If

a customer’s  deweathered load readings  are calculated from their original

whole loads  using modelled weather dependent loads  using

λ j
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(EQ 124)

for , then we can determine an appropriate for each customer  so that the

deweathered loads  appear as uniform throughout the year as possible; an obvious

criterion for maximising the degree of uniformity of’s deweathered profiles through-

out the year (with respect to ) is to minimise

(EQ 125)

where  is their average deweathered load, which since the weather model is very

nearly zero sum, can be replaced with their average whole load. It would be fairly

straightforward to minimise this criterion with respect to the single coefficient.

14.4  Improvements to Decision Tree Clustering Model

14.4.1  More Alternatives to Load Factor

We have already seen how replacing load factor with a percentile load factor can im-

prove overall scatter accounted for by the model, and that percentile load factor is gen-

erally a more useful predictor in the presented extrinsic decision tree clustering

technique than conventional load factor.

There might be some mileage in considering other measures of a customer’s profile

flatness/uniformity other than load factor or percentile load factor. One problem with

these measures is that they do not differentiate between, on the one hand, customers

whose daily load total varies greatly from day to day, and on the other hand, customers

whose daily load total does not vary much but whose typical peak load each day is much

greater than their mean load each day. Thus we might desire two measures of profile uni-

formity, one describing typical daily profile uniformity, the other describing typical an-

nual uniformity of daily load.

One statistical measure that is of possible interest is theskewof a customers loads

(either the skew of their mean profile or the skew of their individual half hourly loads

over the period of study). Whereas a mean describes a typical value and a standard de-

viation describes how much values typically stray from the mean (theamount of varia-

tion), skew describes the amount of asymmetry in that variation. High load factor

customers generally have a more negative skew than lower load factor customers.
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14.4.2  Alternative Metrics in the Decision Tree Clustering Algorithm

There are three principal criteria which dictate the final form of the extrinsic decision

tree clustering models presented in this thesis. Firstly, there is the ‘next node’ criterion

deciding which node should be split next; secondly there is the distance criterion be-

tween the centroidal profiles in the clustering algorithms used to split that node; and fi-

nally there is the tree size determination criterion.

In the methodology presented, total Euclidean scatter amongst all the constituent pro-

files at a node was used to determine which node to split; a biased Euclidean distance,

which discriminated against clusters with uneven numbers of constituent profiles was

used as a distance metric in the clustering algorithms; and the tree was grown only until

it reached a predetermined size.

There is a great deal of research which could be done on comparing these criteria

with a several alternative criteria. The Euclidean scatter amongst the underlying original

profiles at a node might be replaced by Euclidean scatter amongst the underlying atomic

profiles at a node, in the node selection criterion. Euclidean scatter is not robust to out-

liers, and a distance metric less punitive to outlying data could also be considered.

More ambitious would be a scheme which found the best binary clustering it could,

not at just one node, but at many. Then whichever of the binary clusterings at each of

those nodes was judged best would be the node that was split. This would require rather

more calculation, however, than the current scheme.

The distance criterion used (modified Euclidean) is also very sensitive to outliers,

and less punitive measures could be tried.

In the current scheme, when one binary clustering has been determined for each can-

didate variable, the ‘best’ variable is chosen to be that whose distance between the binary

clusters is greatest; however, depending on the goodness of model fit criterion applied,

this might not always be the split which most reduces lack of fit globally; looking at var-

ious criteria for overall model goodness-of-fit (rather than always choosing the binary

clustering which satisfies a local goodness of fit criterion) is another possible area of re-

search.

Rather than stopping at a fixed sized tree, an overgrowing and pruning approach may

yield better results. A more complex system involving repeatedly overgrowing, then

over-pruning, then overgrowing again and pruning again, repeatedly until no model im-

provements occur, may also be worth investigating.
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An advantage of growing a tree according to one criteria and pruning according to

another is that the local greediness of the growing criteria may be corrected by a globally

determined goodness of fit criterion applied in the pruning phase.

A major extension to the work in this thesis would be to perform thorough cross-val-

idation experiments to determine the best size tree, and to determine the best values for

various parameters, including the bias coefficient. -fold cross validation would in-

volve randomly dividing the customers into sub-populations, as described for the

MARS cross-validation scheme, and testing models, each built using  of the da-

ta, against the remainingth of the data. The lack of fit arising when comparing what

each test profile should look like according to the model to what it actually looks like,

would be the criterion by which the model size and various model parameters would be

determined. Note, however, that other criteria than minimising cross-validation errors

are also important; an engineer, for example, may require a fixed number of profiles for

a certain task, in which case the final model size is not flexible; and various ratios be-

tween the number of splits and the number of subatomic splits may be desirable depend-

ing on to what extent the final clusters need to be dictated by known customer attributes.

Another major area of research which could be investigated with a view to extending

or adapting the clustering methodology would be information theoretical measures for

load profiles. Due to the stochastic nature of load profiles (the load at timet in a profile

is certainly not statistically independent of the loads at other times, particularly when

 is small) choosing meaningful estimators for quantities such as (i) the self-infor-

mation of a profile (ii) the transinformation between profiles, and (iii) information

gained by splitting a profile according to the values of that variable, are very difficult to

determine.

In section 3.6 the concept of band limitation was used as a simplifying assumption

about stochastic ensembles in order to derive meaningful information theoretic measures

for them. Other simplifying assumptions included time limitation, and independent iden-

tically distributed Gaussian additive noises. How appropriate is the assumption of band

limitation when applied to 48 half-hour load profiles? And since the highest frequency

we can investigate is limited very much by the sampling frequency for the load profiles

(i.e. half-hourly), would the concept of band limitation be useless anyway?

Since entropy is defined as the smallest theoretical storage space (in bits) for a signal

under a reversible coding (which is another way of saying a reversible compression tech-

nique), information theoretical measures for load profiles might be possible which are
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based on the number of points which are necessary to reconstruct the profiles (to within

a certain tolerance), just as the sampling theorem for band limited continuous signals de-

scribes the number of points necessary to reconstruct a band-limited signal in the formu-

lation of Shannon’s theorem for the transinformation of band-limited signals (EQ 20).

The number of knots required by a given cubic spline fitting technique to model a load

profile to within a certain accuracy might be used in entropy-like or transinformation-

like measures for load profiles.

How to best use these pseudo-information theoretic measures in a decision tree clus-

tering procedure would require investigation, though there are many well known infor-

mation theoretical decision-tree classification/clustering techniques (forcategorical

responses) on which to model such a procedure.

14.5  Application of Methods to Other Databases

Of the three profiles databases discussed with the Sponsor (see section 9.1), the one

studied has the least complexity (the fewest number of predictors). The techniques pre-

sented would be applicable to more complex databases which include questionnaire data

(and/or other variables) without major modification: the non-weather predictors could be

employed in the weather-free (cluster analysis) model in exactly the same ways. More

discrete predictors would entail more atoms, which could present complexity problems,

though these problems might be overcome by using cheaper algorithms (say, the Binary

Splitting Algorithm in place of the Join-Two algorithm) towards the top of the decision

tree.

The weather modelling part of the methodology might be put under particular strain

if applied to databases for which there were many more categorical predictors (such as

domestic customer databases accompanied by questionnaire data on end uses and family

make-up), and it seems certain that the number of categorical variables would need to be

reduced (probably by extrinsic clustering of weather dependent loads, as discussed in

14.2) before the categorical information could usefully be incorporated.

14.6  Discovered Predictors

One of the most important predictors of winter load shape after day type is the pres-

ence or absence of a storage heating load for a given customer. No variable recording the

presence or absence of storage heating loads for each customer is recorded in our month-
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ly billed business customer database, but it would probably not be too difficult to con-

struct such a predictor by examining loads at and shortly after the onset of night time

cheap-rate supply. If a customer has cheap-rate loads which are significantly higher dur-

ing spells of cold weather, this is almost certainly due to a storage heating load. A dis-

covered discrete variable recording whether or not a customer has storage heating would

be particularly useful in the weather dependent model, and of possible use in the weath-

er-free model; it might even be feasible to discover a continuous storage heating variable

which estimates the percentage of annual load due to storage heating devices for each

customer, for use as a continuous regressor in the weather dependent model.

Similarly it might not be difficult to discover the presence or absence of air condi-

tioning and/or storage air conditioning loads for each customer; where a customer’s day-

time loads have a significant positive correlation with temperature and/or humidity,

space conditioning is almost certainly used by that customer. Where night-time cheap

rate loads are significantly correlated with daytime temperature/humidity, storage space

conditioning is almost certainly installed. Such discovered variables could be incorpo-

rated into customer databases, and might have uses other than in load profiling tasks.
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Chapter 15 —Summary and Conclusions

The load profiling task described in this thesis covers a large number of customer,

temporal and meteorological variables, both supplied and derived. Because there are

many variables of potential importance to the task, particularly in the case of weather

variables where there are many derived candidate variables, the task is very large. High

dimensional modelling tasks present computational difficulties, and are also much hard-

er to interpret than low dimensional problems. Partly to keep the dimension of the prob-

lem in check, partly to allow for improved interpretability, and partly because different

types of model are better suited to modelling different relationships, a scheme was de-

vised which separates a weather-dependent component of load from a weather-inde-

pendent component.

The chief difficulties of the load profiling task, aside from the high dimension of the

problem, arise from the extreme heterogeneity of response in the data. Different custom-

ers may have dramatically different load shapes on a given day, and a customer’s load

shape may vary dramatically from day to day, from season to season, and with differing

weather conditions. This problem is exacerbated by the fact that even customers with the

same tariff code category, and/or the same SIC code, and of similar load factors, cannot

be expected to always have the same load shape characteristics or weather dependencies.

Another major problem with the particular load profiling task studied here arises from

the poor state of the loads database. Although some measures were employed to auto-

matically remove probable erroneous data, and visual inspection employed to detect

contiguous dates of questionable data, better results would be expected from cleaner da-

tabases.

A non-parametric and highly adaptive data mining regression algorithm (MARS)

was employed to model the effects of weather on load, separately from the principal ef-

fects of the other variables on weather independent load; the residuals from this model

are assumed to be due to non-weather variables, so are recombined with the weather in-

dependent loads prior to the second phase model, the model for the weather-insensitive

portion of load. A variety of different combinations of supplied and derived weather and

temporal variables were made available to the model, and various parameters varied, in

order to obtain good model fit, whilst guarding against overfitting the data.

The biggest drawbacks of the use of MARS for the load/weather analysis are its high

computation times and high memory demands when categorical customer variables are
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used. This is a peculiarity of the task rather than a general problem with using categorical

variables in MARS; because every customer is considered as experiencing the same

weather conditions at any given time, the number of data points in the model can be

hugely reduced by aggregating the loads for all customers; but when a variable which

disaggregates the customers is supplied, the number of data points grows, and does so

nearly exponentially as more such variables are supplied.

However, the weather modelling methodology presented proved itself capable of ac-

counting for a great deal of the variation in weather dependent load, with or without cat-

egorical customer variables. In particular, the order 2 and order 3 interaction terms

generated by MARS frequently corresponded to known phenomena in the load/weather

relationship (such as the combined effects of humidity with temperature, of cloud with

time of day and year, of windspeed and temperature, and the order three interaction of

windspeed, humidity and temperature); indeed, MARS appeared to be as good at mod-

elling such effects as summer discomfort and wind chill by itself (synthesising high or-

der terms as necessary) as when variables representing these concepts were explicitly

provided.

Exponentially smoothed versions of the weather variables, particularly medium and

long term smooths of temperature, proved to be important in the generated models. In

fact, medium and long term temperature smooths were generally rated as more important

than the current or very recent temperature. Lagged versions of the weather variables

generally proved much less useful than smoothed versions (though the maximum, min-

imum and mean temperatures from the previous day often proved to be of much value),

and delta temperatures were only of much use when temporal variables were excluded;

there was no evidence that delta variables were necessary to model temporal asymmetry

in the model.

It is only the highly adaptive nature of a model like MARS that allows so many in-

teractions of so many variables to be considered at the same time; since new variables

and new interaction terms are only introduced on a local basis where they are shown to

reduce lack of fit, it is possible to consider many more multiplicative combinations of

variables than could reasonably be considered in a non-adaptive regression scheme.

The introduction of categorical variables into the weather model, though limited in

its scope due to the computational difficulties mentioned above, appeared to be very suc-

cessful. All of the categorical customer variables introduced were found to be useful pre-

dictors of load/weather behaviour; load factor (which was only tested in a 1-percentile
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version) looked to be a little more effective as a predictor than tariff code, but SIC code

(which could not be tested in a model of comparable size) was picked more frequently

than any of the other categorical variables in a smaller experimental trial, and might be

the categorical variable with the most predictive power in the weather model.

More investigation is necessary in order to determine a way to present more categor-

ical customer information to the load/weather model without generating computational-

ly impractical models; a prior clustering of weather dependent loads to obtain categories

of customers with similar load weather relationships has been suggested as a major ex-

tension to the weather modelling methodology.

An adaptive decision tree clustering technique which recursively subdivides the do-

main using locally appropriate binary clustering algorithms, and which models the data

at higher resolutions where the data is locally most heterogeneous, was devised especial-

ly for the task of modelling the (nominally) weather-free loads generated using the

weather model. A biased distance measure was found to be required in order to discour-

age uneven clusters (which generally account for less scatter and are less informative)

occurring early on in the tree building process, and this resulted in great improvements

in the resulting models, in terms of interpretive power as well as scatter accounted for.

Alternatives to conventionally computed load factor were tested as predictor variables,

and significant improvements in the amount of scatter accounted for, and the speed with

which scatter was accounted for, were observed.

A scheme which attempts to seek interesting patterns existing at the leaf clusters of

the extrinsic decision tree clustering was implemented and tested. The principal motiva-

tion behind this is the observation that customers that, because of their load factors, tariff

codes and SIC codes, will often end up in the same leaf of an extrinsic atomic decision

tree clustering, will sometimes have very different load shapes. By freeing the clustering

sub-algorithms employed in the later stages of a decision tree clustering from the need

to keep profiles from the same atom together, clusters are generated that account for sig-

nificantly more scatter that when the same sized tree is built using only atomic cluster-

ing.

The much improved fit resulting from employing subatomic clustering in the latter

part of modelling indicates that there are ‘hidden’ patterns in the Sponsor’s business cus-

tomers’ load profiles that cannot be isolated using the recorded customer attributes

alone. It is anticipated that close investigation of the customers found in the subatomic

leaf clusters would expose certain types of customers with unusual load shapes that it
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might be of special benefit for the Sponsor to try and court.

The modelling procedure described satisfies the principal stated aims of the load pro-

filing task: to build models which estimate, for certain subsets of customers, their load

shapes (and confidence estimates for those load shapes), for different weather condi-

tions, times of year, and days of the week. The leaf profiles in an atomic or a mixed atom-

ic/subatomic decision tree clustering serve as a set of standard profiles, which can be

used as a tool in determining tariff policies and identifying patterns in load shape. Addi-

tionally, the structure in the variation in load shape can be visualised using the decision

tree, and the relative variable importance determined.

The load weather model can be applied on top of the weather-free clustering model

(by simply adding the relevant profiles from either part of the model) to determine a pre-

dictive model for load shape given a particular customer type and a particular set of

weather conditions. This could be of use in predicting the probable demand surplus/def-

icit arising from unusually cold or mild weather conditions, and of predicting the overall

demand profile at any given time of year, given hypothetical changes in the proportions

of differing types of business customers supplied.



Applications of Data Mining Techniques to Electric Load Profiling

Applications of Data Mining Techniques to Electric Load Profiling 185

Appendix —Colour Figures

COLOUR FIGURE 1.

October 1994-April 1995 whole load profiles. The customer’s two figure SIC code is 55, listed as

“Hotel & Restaurant”. The z-axis (i.e.colour) runs from 0% to 250% of mean half-hourly load.

COLOUR FIGURE 2.

Profiles for the same period for a customer with SIC code 80, which is listed as “Education”.
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COLOUR FIGURE 3.

This customer’s SIC code is 74, which is listed as “Legal & Marketing”. There is very little discern-

able pattern to the load shape.

COLOUR FIGURE 4.

This customer’s SIC code is 52, listed as “Retail & Repair”. Note that the z-axis (represented by

colour) is on a different scale (0% to 500% of mean half-hourly load) as the customer’s load factor

is very low. Much of the time the customers load is recorded as 0.
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COLOUR FIGURE 5.

MARS ANOVA plot for 48 hour half-life smoothed temperature and closeness to evening.

COLOUR FIGURE 6.

MARS ANOVA plot for 48 hour half-life smoothed temperature and closeness to summer.



Applications of Data Mining Techniques to Electric Load Profiling

Applications of Data Mining Techniques to Electric Load Profiling 188

COLOUR FIGURE 7.

MARS ANOVA plot for closeness to evening and 2 hour half-life smoothed estimated darkness.

COLOUR FIGURE 8.

MARS ANOVA plot for 3 hour half-life smoothed wind chill and closeness to summer.
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COLOUR FIGURE 9.

Overview of the entire database (whole loads), customer by customer. A customer’s daily total load

(represented by colour) is calculated as a percentage of that customer’s average daily total load. A

key between colour and percentage is provided. White represents missing profiles.
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COLOUR FIGURE 10.

Overview of dataset 1 (April 1995-March 1996), i.e. whole (not deweathered) load. The data for

April, July and August, have apparently been measured on different scales from the rest of the data.

see 12.5.1 for notes on interpretation.

COLOUR FIGURE 11.

Overview of dataset 1 (April 1996-March 1997).
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COLOUR FIGURE 12.

Overview of dataset 2 (April 1995-March 1996), which was deweathered using weather model.

Note the questionable data for all of April, July and August, which are even more apparent in the

deweathered data than in dataset 1 (COLOUR FIGURE 10.).

COLOUR FIGURE 13.

Overview of dataset 2 (April 1996-March 1997).

α
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COLOUR FIGURE 14.

Whole loads (dataset 1), December 1996 to February 1997 - greater detail than (COLOUR FIG-

URE 11.). Thursday to Saturday profiles look highly suspicious during January 1997.

COLOUR FIGURE 15.

Whole loads (dataset 1), March to April 1996. The effect on loads of a daylight saving clock change

in the early hours of March 31 is apparent.
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COLOUR FIGURE 16.

Seasonal profile overview for node 1 of (FIGURE 21.).

COLOUR FIGURE 17.

Seasonal profile overview for node 3 of (FIGURE 21.).
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COLOUR FIGURE 18.

Seasonal profile overview for node 4 of (FIGURE 21.).

COLOUR FIGURE 19.

Seasonal profile overview for node 7 of (FIGURE 21.).
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