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Abstract—Large-scale integration of wind farms causes volatile
bus net injections. Although these fluctuations are anticipated,
their timing, magnitude and duration cannot be predicted ac-
curately. In order to maintain the operational reliability of the
system, this uncertainty must be adequately addressed at the
day-ahead generation scheduling stage. The ad-hoc reserve rules
incorporated in deterministic unit commitment formulations
do not adequately account for this uncertainty. Scenario-based
stochastic unit commitment formulations model this uncertainty
more precisely, but require computationally demanding simula-
tions. Interval and robust optimization techniques require less
computing resources, but produce overly conservative and thus
expensive generation schedules. This paper proposes a transmis-
sion-constrained unit commitment formulation that improves the
performance of the interval unit commitment. The uncertainty is
modeled using upper and lower bounds, as in the interval formu-
lation, but inter-hour ramp requirements are based on net load
scenarios. This improved interval formulation has been tested
using the IEEE RTS-96 and compared with existing stochastic,
interval and robust unit commitment techniques in terms of
solution robustness and cost. These results show that the proposed
method outperforms the existing interval technique both in terms
of cost and computing time.

Index Terms—Interval optimization, stochastic optimization,
uncertainty, unit commitment.

I. INTRODUCTION

A. Background

A S electricity generation from renewable resources, such
as solar and wind generation increases, power system op-

erators (SO) must increase reserve margins to account for the
larger uncertainty on the net load [1], [2]. Although the accu-
racy of forecasting tools has improved [3], ex-post analyses of
wind forecast errors reveal that they increase non-linearly for
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lead times of over 6 h [4]. These forecasting errors require sig-
nificantly larger reserve margins [5], which increase the overall
operating cost [6]. Furthermore, existing power systems have
not been designed to effectively withstand these levels of un-
certainty and may therefore require sizable investments to make
their generation fleet more flexible [7]. In order to maintain the
operational reliability of the system and simultaneously avoid
high generation costs, a computationally effective approach is
needed to select the most cost-effective combination of control-
lable generators that can effectively respond to the fluctuations
of the intermittent power producers.
The day-ahead reliability unit commitment (UC) is an opti-

mization problem that produces physical generator commitment
decisions that minimize the cost of serving forecasted net load
subject to operational constraints on generation resources and
transmission lines [8]. In this paper, the term net load is defined
as the difference between the load and the output of renewable
generation.
In the deterministic UC (DUC) formulation, the net load is

modeled by a single forecast and the associated uncertainty
is handled using ad-hoc reserve rules [1], [9]–[12]. Such an
approach to the provision of reserve does not involve an en-
dogenous cost/benefit or probabilistic analysis of the reserve
requirements as advocated in [13]–[15]. This leads to sub-op-
timal commitment decisions when actual conditions deviate
significantly from the assumptions made when the reserve
requirements policy is set [16], [17]. The authors of [18] and
[19] show that accounting for multiple forecasts (or scenarios)
in the UC reduces the operating cost. Efficient Stochastic UC
(SUC) formulations [21]–[25] have been developed on the
basis of sophisticated wind scenario generation techniques
[20]. These formulations minimize the expected operating
cost over all scenarios, weighing the cost of each scenario in
proportion to its likelihood. Typically, the SUC is formulated
as a two-stage optimization problem [26]. First, here-and-now
decisions are made on the binary status of generators. These
decisions are common to all scenarios. Wait-and-see decisions
on the dispatch of each generator committed at the first stage
are then made separately for each scenario.
However, the solution of the SUC is computationally de-

manding when the problem involves a large power system or
a moderate number of scenarios. This issue can be somewhat
mitigated if the set of scenarios is reduced using a scenario re-
duction technique [27]–[30]. However, an insufficient number
of scenarios reduces the accuracy of the solution and increases
its cost [27], [31], [32]. The relationship between the number of
scenarios and the SUC solution is studied in [27]. Reference [32]
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studies the impact of different scenario reduction techniques on
the SUCmodel and compares its performance to the IUCmodel.
The two-stage structure of the SUC can be exploited to improve
its computational performance using Benders' decomposition
[23], [24] or progressive hedging [33].
In the robust UC (RUC) formulations, upper and lower

bounds on the net load at each optimization interval define the
range of uncertainty. This definition thus ignores the proba-
bility of a particular realization of uncertainty within the given
range. The RUC enforces the feasibility of its schedule over
a given uncertainty set and minimizes the dispatch cost under
the worst-case realization [34]. The worst-case realization is
determined endogenously and thus simultaneously accounts
for both unfavorable magnitudes and high ramp rates within
the range of net loads. Like the SUC, the RUC also has a
two-stage structure and therefore can be implemented using the
Benders decomposition [34]–[37] or the column-and-constraint
generation method [38], [39]. The latter method improves the
computational performance of the RUC model and reduces the
number of iterations required to obtain the optimal solution,
while ensuring the same cost performance as the Benders
decomposition [38]. Unlike the SUC, the RUC is tractable for a
large interconnection [34] and its computational burden mainly
results from solving an inner max-min problem that seeks the
worst-case realization of uncertainty. The conservatism of the
RUC can be adjusted using the budget of uncertainty. In [34],
the budget of uncertainty is defined as the number of buses that
are allowed to deviate from a given central wind forecast in the
worst-case scenario. The value for the budget of uncertainty
must be specified before solving the RUC model. Until the
RUC is solved, it is unknown which buses will be chosen by
the RUC model to deviate from the central wind forecast.
The Interval UC (IUC) [47], [48] produces a schedule that

minimizes the cost of serving the most probable (central) net
load forecast while guaranteeing that any realization of uncer-
tainty within a given range around this central forecast will not
require changes in the commitment. As in the RUC, this range
is delimited by its upper and lower bounds. As compared to the
RUC, which endogenously determines the worst-case realiza-
tion, the IUC formulation enforces transitions from the upper
to the lower bound between any two consecutive optimization
intervals by means of deterministic constraints [48]. Unlike the
RUC, which optimizes the cost of its decisions for the worst-
case scenario, the IUC minimizes the operating cost of the cen-
tral forecast. If the IUC and RUC are solved for the same range
of uncertainty, their commitment and dispatch decisions may
vary unless the worst-case scenario in the RUC matches the
central forecast in the IUC. Since the commitment and dispatch
decisions of the IUC and RUC are different, these two formu-
lations will also exhibit different sensitivities to real-time ad-
justments. In line with the SUC and RUC, the IUC can also
be implemented using the Benders' decomposition [31], [48].
The IUC produces more conservative schedules than the SUC,
but requires less computing resources [31]. As compared to the
RUC, the IUC model avoids solving an inner max-min opti-
mization and, thus, its second stage can be formulated as an
LP problem, if the first stage binary decisions are fixed. The
common thread of the SUC and IUC models is that the genera-

Fig. 1. IUC scenarios (black) with transition constraints (grey).

tion-load balance is enforced for a limited number of scenarios.
On the other hand, the RUC model ensures that this balance is
maintained for any realization within a pre-defined uncertainty
set. Therefore, the RUC model offers a more methodologically
rigorous approach to ensuring adequate reserve margins.
A unified stochastic and robust UC formulation has been pro-

posed in [40] to reduce the conservatism of the RUC. However,
this approach employs heuristics to balance the SUC and RUC
solutions, which may result in a suboptimal solution. This issue
is overcome in the hybrid stochastic/interval UC model [41].
This approach enforces the SUC for operating hours at the be-
ginning of the optimization horizon and then switches to the in-
terval formulation for the remaining hours. The switching time
is optimized to achieve the optimal trade-off between the cost of
unhedged uncertainty from the SUC and the security premium
of the IUC.
Zheng et al. [42] present a detailed literature review on sto-

chastic and robust formulations of UC problems, including a
number of solution techniques that reduce the computing times.
However, these techniques may also introduce some ambiguity
in the settlement process and pricing, and cause numerical in-
stability [43] and convergence issues [44]. These challenges are
currently being investigated by SOs [42], [45], [46].

B. Proposed Method and Contributions

The IUC formulation is computationally more efficient than
the SUC because the generation uncertainty of each wind farm
is represented by only three non-probabilistic scenarios (black
lines in Fig. 1): the central forecast (white circles) and the lower
bound and the upper bounds (black circles). On the other hand,
IUC solutions are more conservative because of the constraints
that it imposes on the feasibility of transitions from lower to
upper bound, and vice versa, between any two consecutive time
periods, as illustrated by the grey lines in Fig. 1. Such extreme
transitions have a very low probability and can be replaced
by less severe ramp constraints. Since scenarios are designed
to accurately capture the characteristics of the expected wind
output, we argue that the required rampable capacity should be
no more than the maximum up and down ramps observed over
all stochastic scenarios. However, if ramping constraints would
be completely relaxed, the day-ahead solution would be very
vulnerable to wind volatility and the overall cost of running a
system would be high.
Fig. 2 illustrates the difference between modeling of wind

scenarios and bounds for each wind farm in SUC, IUC and this
Improved Interval UC (IIUC). Fig. 2(a) shows the scenarios
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used by the SUC. Bounds for both IUC and IIUC are created
based on the minimum and maximum values of these scenarios
at each hour. For instance, scenario s1 sets the lower bound in
hours 1–4 and 6, while the lower bound in hour 5 is set by sce-
nario s2. Fig. 2(b) shows the IUC bounds, as well as the up and
down ramp requirements. The central forecast and its ramp con-
straints are omitted for clarity. Fig. 2(c) shows artificial IIUC
scenarios, which correspond to ramp requirements between con-
secutive hours. Each of these ramps ends at one of the bounds,
while the location of its tail at the hour before is determined
based on the highest slope over all stochastic scenarios. This
way each dotted segment in Fig. 2(c) defines up ramp require-
ment and upper bound, while each dashed segment defines down
ramp requirement and lower bound. For example, the up ramp
requirement between hours 1 and 2 is 10 MW/h because the
highest ramp of the three stochastic scenarios in Fig. 2(a) is 10
MW/h (s2 and s3). Since the upper bound at hour 2 is 50 MW,
the first dotted segment starts at 40 MW in hour 1 and ends at 50
MW in hour 2. Similarly, up ramp requirement between hours
2 and 3 is 20 MW/h (set by scenario s2) and it ends at the upper
bound (60 MW). The remaining up ramp requirements are 30
MW/h between hours 3 and 4 (set by s3), 10 MW/h between
hours 4 and 5 (set by s1), and again 10 MW/h between hours 5
and 6 (set by s2). The corresponding upper bounds are 80 MW,
80 MW, and 70 MW, respectively. On the other hand, the first
four down ramp requirements are equal to zero because this is
the largest down ramp observed over all three stochastic sce-
narios during these 5 hours. The down ramp requirement be-
tween hours 5 and 6 is 10 MW/h, as determined by scenarios
s1 and s3. All dashed lines end on lower bounds determined by
the stochastic scenarios from Fig. 2(a). To obtain ramp require-
ments and bounds for each wind farm in a given power system,
the methodology explained in Fig. 2 is applied to each wind
farm individually.
A single scenario1 cannot be used for all up ramp limits as

this would result in two operating points at each time period
(one at the upper bound, which is the end point of the ramp
requirement between the previous and the current hour, and one
below it, which is the tail point of the ramp limit between the
current and the following hour). For this reason, the IIUC is
formulated using five scenarios: —the central forecast, whose
cost is minimized in the objective function; —up ramp limits
between odd and even hours; —up ramp limits between even
and odd hours; —down ramp limits between odd and even
hours; —down ramp limits between even and odd hours.
Because the ramp constraints are less demanding, the IIUC

produces less conservative generator schedules than the IUC.
This paper makes the following contributions:
1) It proposes a new IIUC formulation that aims to improve

the day-ahead reliability unit commitment procedures and
combines aspects of SUC and IUC. This model takes ad-
vantage of the cost-efficient SUC model and the computa-
tional simplicity of the IUC model.

2) It demonstrates the effectiveness of the IIUC based on ex-
tensive tests with various wind penetration levels, wind
profiles and controllable generator characteristics.

3) It also provides a systematic and rigorous comparative as-
sessment of the cost and reliability performance of the

Fig. 2. Illustrative example of uncertainty modeling: (a) scenarios used in
SUC; (b) bounds (lines), up ramp requirements (dotted lines) and down ramp
requirements (dashed lines) used in IUC; (c) central forecast (green line),
bounds (thick grey lines), up ramp requirements (dotted lines) and down ramp
requirements (dashed lines) used in IIUC.

IIUC, IUC, RUC, and SUC formulations. As to the best
of the authors' knowledge, such a comparison has not been
performed for these UC approaches on the same set of data.

II. FORMULATION

To ensure a fair comparison between the IIUC, IUC, RUC,
and SUC in terms of both cost and computing time, all con-
straints have been implemented in the same way except where
these formulations differ. The formulation of the IIUC is pre-
sented first. The other techniques are then defined in terms of
how they differ from the IIUC.

A. Notation
1) Sets:

Set of piecewise linear segments of each
generating unit's cost curve, indexed by .
Set of generating units, indexed by .
Set of generating units' start-up costs, indexed
by .
Set of transmission lines, indexed by .

1The term scenarios should be used with reservations, as scenarios in IIUC
are used for modeling purposes only, and they do not consider probability.
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Set of uncertainty for the RUC, indexed by .
Set of buses, indexed by .
Set of hours, indexed by .
Set of scenarios, indexed by .
Set of feasible dispatch solutions for fixed
commitment decisions , such that ,

.
Set of wind farms, indexed by .

2) Binary Variables:

Generator start-up cost identification matrix (1 if
generator is started up during hour after being
off for to hours, 0 otherwise).
Generator on/off status (1 if generator is on
during hour , 0 otherwise).
Generator start-up status (1 if generator is started
up during hour , 0 otherwise).
Generator shut down status (1 if generator is
shut down during hour , 0 otherwise).

3) Continuous non-Negative Variables:

Power curtailment of wind farm under scenario
during hour (MW).

Power output of generator under scenario
during hour (MW).
Power output on segment of generator under
scenario during hour (MW).
Start-up cost of generator during hour ($).

4) Continuous Variables:

Voltage angle at bus under scenario during
hour (rad).

5) Parameters:

No-load cost of generator ($).
Admittance of line connecting nodes and (S).
Load at bus during hour (MW).
Generator minimum down time (h).
Maximum power output of generator (MW).
Minimum power output of generator (MW).
Slope of the th segment of the cost curve of
generator ($/MW).
Minimum up time of generator (h).
Minimum down time of generator (h).
Capacity of the line connecting nodes and
(MW).
Ramp down limit of generator (MW/h).
Ramp up limit of generator (MW/h).
Cost of segment of the stepwise start-up cost
curve of generator ($).
Upper limit of segment of the stepwise start-up
cost curve of generator (h).
Lower limit of segment of the stepwise start-up
cost of generator curve (h).
Generator minimum up time (h).

Available wind power at wind farm under
scenario during hour (MW).
Probability of scenario (used only in the SUC).

B. Formulation of the IIUC
The objective function of the IIUC aims to minimize the op-

erating cost of the central forecast scenario and includes the
no-load cost, the start-up cost and the running cost of all the
generators:

(1)

The choice of this objective function is motivated by the IUC
model [23]. Since objective function (1) minimizes the oper-
ating cost of the central forecast, the actual materialization of
uncertainty, which is expected to differ from the central forecast,
will require real-time re-dispatch, which may cause additional
expenses as compared to the central forecast [31]. However, the
case study in [31] performed on the 118-bus IEEE RTS shows
that these expenses are of the same order as those resulting from
the application of a SUC optimization.
This optimization is subject to the following constraints:
1) Binary Variables Logic:

(2)
(3)

Constraint (2) determines if generator is started up or shut
down at time based on the change of its 0/1 status between
hours and . Constraint (3) ensures that generator cannot
be started up and shut down during the same time period.
2) Minimum Up and Down Times:

(4)

(5)

(6)

Constraint (4) sets the on/off status for the first hours
based on the initial status of the generators. For example, if a
generator must stay on for three hours, will be 3, and will
be 0. If no minimum up or down time constraints are active at
the beginning of the scheduling horizon, both and will be
0. Constraints (5) and (6) enforce minimum up and down time
for the remaining time intervals as explained in [49].
3) Stepwise Generator Start-Up Cost:

(7)

(8)
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(9)

The start-up cost of each generator depends on the number of
hours it has been off. Constraint (7) identifies the appropriate
segment of the start-up cost curve to be used based on the
number of hours the generator has been off. Constraint (8)
ensures that exactly one element of is assigned the value
1 if . The actual start-up cost is set by constraint (9).
4) Generator Constraints:

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Equation (10) defines the power output of each generator as the
sum of the output on each segment of its cost curve. Constraint
(11) enforces the minimum and maximum generator output
limits. Constraint (12) enforces the up and down ramp limits
for the central forecast scenario . Constraint (13) enforces
the up ramp limits for scenario , i.e., only between odd and
even hours, while constraint (14) enforces these up ramp limits
for scenario , i.e., only between even and odd hours. This is
implemented using the modulo function, which returns 0 for
even time periods (remainder when dividing an even number
by 2 is 0), and 1 for odd time periods (remainder when dividing
an odd number by 2 is 1). Similarly, constraints (15) and (16)
enforce the down ramp limits for scenarios (between odd
and even hours) and (between even and odd hours).
5) Transmission Constraints:

(17)
(18)

(19)
(20)
(21)

Equation (17) enforces the nodal power balance. Equation (18)
limits the amount of wind spillage at each wind farm. If the

line flow limits imposed by (19) cannot be met for a given
value of the available wind power at wind farm , the available
wind power will be curtailed by . Equation (20) limits the
voltage angles while (21) sets the voltage angle to zero at the ref-
erence bus. To ensure the feasibility of the IIUCmodel, equation
(17) can be relaxed over all scenarios, but the central forecast
scenario. The slack variables should then be penalized in the ob-
jective function based on [41], which complies with practices of
system operators [34],[50]. Furthermore, if these slack variables
turn out to be non-zero, these cases should be carefully exam-
ined to avoid load shedding in real-time.

C. Formulation of the IUC
The IUC is modeled using three scenarios: is the central

forecast (as in the IIUC), is the upper bound, and is the
lower bound. Additional constraints are used to enforce the fea-
sibility of the transitions between bounds (grey lines in Fig. 1).
The objective function and all the constraints are modeled

as in the IIUC formulation, except for the ramp constraints
(12)–(16) which are replaced by the following constraints, as
in [48]:

(22)
(23)
(24)
(25)
(26)

Constraint (22) enforces both the up and down ramp limits
on the central forecast scenario . Constraints (23) and (24)
enforce the transitions from the central forecast scenario to the
lower and upper bound scenarios, respectively. Tran-
sition requirements between the upper and lower bounds are
enforced by constraints (25) and (26). Therefore, inequalities
(22)–(26) model all possible transitions in a given uncertainty
range, as illustrated in Fig. 1. However, constraints (23) and (24)
can be removed from the original IUC model in [48], since they
hold automatically because of constraints (25) and (26).

D. Formulation of the SUC
The objective function of the SUC weighs the cost of each

scenario in proportion to its likelihood:

(27)

The constraints, with the exception of the ramp constraints,
are the same as in the IIUC formulation. However, the set of
SUC scenarios contains actual scenarios, instead of the central
scenario and artificial scenarios, such as IIUC and IUC. Ramp
constraints (12)–(16) are replaced by constraint (28), which en-
forces ramp limits for each scenario individually:

(28)
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E. Formulation of the RUC

The objective function of the RUC is formulated as in [34]:

(29)

The first two terms of this objective function represent the
start-up cost and the no-load cost of committed generators. The
third term represents the worst-case dispatch cost. Next, refer-
ence [34] recasts the worst-case dispatch term in (29) to make
it solvable by existing numerical algorithms:

(30)

The worst-case dispatch term in (30) can be interpreted as
the minimum economic dispatch cost for a fixed commitment
of all generators maximized over the uncertainty set [34].
Constraints on the start-up cost and binary logic decisions are
modeled as in (2)–(9), and constraints on the generation dis-
patch and transmission limits are modeled as in (10)–(21) with
one scenario, representing the worst case for a given . The
RUC model is solved using the decomposition approach pro-
posed in [34] and uses the same upper and lower bounds as
the IUC and IIUC formulations. To control the conservatism of
the RUC model, the budget of uncertainty is defined as

, where is the number of wind farms
that are allowed to deviate from their central forecast.
means that no wind farm deviates from its central forecast, i.e.,
in this case the RUC model reduces to the deterministic UC
model that considers only the central forecast. On the other
hand, stands for the most conservative case,
where all wind farms can attain any value within the given un-
certainty range. In this work the uncertainty set is modeled as
described in [34]; however, a concept called “dynamic uncer-
tainty sets” can be used to model temporal and spatial correla-
tions of wind power generation more accurately [51].

III. TEST RESULTS

A. Description of the Test Cases

All four UC formulations were tested using the IEEE RTS-96
[52] modified to accommodate 19 wind farms. To create addi-
tional congestion, the original line flow limits were reduced by
20%. Fig. 3 shows the first day of the annual load data and two
wind profiles that aggregate wind generation at all wind farms.
These wind profiles are calculated as the sum of the central fore-
casts of all wind farms; therefore, the shape of the central fore-
cast at a particular wind farm may deviate from this aggregated
profile. The first aggregated wind profile in Fig. 3 roughly co-
incides with the load profile and is thus favorable, while the

Fig. 3. Aggregated load and wind profiles used for the test cases.

second peaks during a period of low load and is thus unfavor-
able. Wind energy penetration levels ranging from 10 to 50% in
10% increments were considered. All the data used for these test
cases, as well as the GAMS codes for the IIUC, IUC, RUC, and
SUC formulations are available at [53]. Since there is no sys-
tematic approach to choose the best for the RUC model, sub-
section III-C assumes that , i.e., the optimal so-
lution is hedged against the whole range of uncertainty at every
wind farm in set . Subsection III-D compares the proposed
IIUC model and the RUC model with different values of .
Two sets of generator data were used to study the influence

of generation characteristics. The first set of generator data is
described in [54] and is denoted G1 in the remainder of this
paper. The second set, denoted G2, uses minimum output limits,
minimum up/down times and ramp limits from [55]. Gener-
ator dataset G1 has higher ramping capabilities than G2, but
also higher minimum generator outputs and longer minimum
up/down times. Generator types, capacities and locations are the
same for both generator datasets. The total nameplate capacity
of all conventional generators in G1 and G2 datasets is 10 215
MW, while the peak load during the day is 7540 MW.

B. Wind Data

An approach combining multiple statistical methods [56]
was used to obtain an ensemble of 1000 wind generation
scenarios for each wind farm. Note the ensemble of scenarios
obtained from different scenario generation algorithms leads to
lower forecasting errors than using a single scenario generation
algorithm [57]. Each of the following statistical algorithms was
used to produce 250 scenarios: regularized linear regression
[58], support vector regression [59], multi-layer perceptron
[60], and random forest [61]. These algorithms use historical
wind power and speed data to generate wind power scenarios
in a non-parametric manner, which avoids making any as-
sumption that wind forecast errors follow a known distribution
(e.g., Normal, Cauchy, skew-Laplace, etc.). These algorithms
also ensure better fitting of the historical data to nonlinear
wind turbine power curves [62]. Information regarding the
geographical location of the wind farms is used to characterize
the spatial correlations between them. The central forecast,

, for each wind farm is then calculated as the average of
the 1000 scenarios in the ensemble. Since the central forecast
for each wind farm is generated using same statistical algo-
rithms and the same estimation parameters, it naturally reflects
the temporal correlations. Thus, no Gaussian copula is needed.
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This approach to model wind generation scenarios and the
central forecast is based on processing empirical (historical)
observations and, thus, avoids making any assumption on the
distribution of wind generation. Since the tractability of the
SUC deteriorates as the number of scenarios increases [32],
the original ensemble of 1000 scenarios for each wind farm
was reduced to 10 scenarios using the fast forward selection
algorithm [3]. As shown in [31],[32],and [41], the choice of
10 scenarios for each wind farm represents a suitable trade-off
between the computational complexity of the SUC and its cost
performance. The choice of the fast forward selection algorithm
is justified by its better cost and computational performance as
compared to other scenario reduction techniques [32]. Instead
of modeling a set of scenarios for each wind farm, the IIUC,
IUC, and RUC formulations enforce the range of uncertainty
for each wind farm, which hedges the optimal solution against
deviations within a predetermined region covered by these
scenarios. The lower and upper bounds of this range for the
IIUC, IUC, and RUC models were set for each time step at the
5th and 95th percentile of the empirical probability distribution
of the original ensemble of 1000 scenarios. Reference [32]
proves via Monte Carlo simulations that using the original
ensemble of 1000 scenarios for deriving these bounds instead
of the reduced 10 scenario set enforced in the SUC results in
a more cost-effective schedule.
The NREL Western Wind dataset [63] provided the wind

data. Wind farm locations were mapped to the IEEE-RTS 96
respecting the lengths of the lines.

C. Cost and Reliability Performance

The day-ahead schedules produced by each formulation were
tested using Monte Carlo simulations against realizations of
wind uncertainty. These realizations are different from the en-
semble of scenarios used for day-ahead decision-making to ac-
count for the imperfection of wind prediction tools and were
generated for each wind farm as the sum of its central fore-
cast, calculated as explained in subsection III-B, and the histor-
ical error of the central forecast for this location. Therefore, the
simulated realization of wind uncertainty, , can be for-
mally defined as , where is
the central forecast and its historical error. In line with [6]
and [64], was sampled from a multivariate normal distribu-
tion, , where is the vector of historical
forecasting error means for each operating hour and is the
covariance matrix, obtained from historical data as explained
in [6]. Note that other distributions can be used to sample the
error of the wind power central forecast (e.g., the Cauchy dis-
tribution [65] and the Skew-Laplace distribution [66]). In this
work, the selection of the normal distribution is based on the
Kolmogorov-Smirnov goodness-of-fit test, which indicates that
the normal distribution may fit this forecast error better than
other distributions, if ramp rates are taken into account [5]. The
number of realizations required for each day-ahead schedule
is calculated using the variance reduction method to achieve
an error lower than 1% with a confidence of 95% [67]. This
method assumes that the minimum number of realizations will

vary for each day-ahead schedule depending on its cost distri-
bution. In this work, the minimum number of realizations for
each day-ahead schedule ranges from 1877 to 2188 trials.
Since the main goal of the paper is to address the wind un-

certainty, the load was considered deterministic. Also, the load
uncertainty is much lower than the wind uncertainty [68].
To assess the realistic performance of day-ahead schedules

against the simulated realizations of uncertainty, a Monte Carlo
simulation is performed for each realization of uncertainty. To
meet each of these realizations, the re-dispatch and re-commit-
ment decisions are modeled to reflect the intra-day actions of
system operators. The re-dispatch decisions allow changes to
the power output of committed generators, if constraints on the
minimum and maximum generation output, up and down ramp
rates, and power flow limits are met. The re-commitment de-
cisions assume that adjustments to the day-ahead binary deci-
sions can be performed on the day, if the inter-temporal con-
straints (2)–(6) are not violated. Since this paper focuses on the
reliability UC process in the context of a vertically integrated
utility, the real-time re-dispatch and re-commitment decisions
are priced at the marginal start up and fuel cost of generators.
However, if the re-dispatch and re-commitment decisions are
insufficient, avoiding infeasibility may require load shedding,
which is penalized in the objective function at $10/kWh. We
refer interested readers to [41] for further reading on the im-
pacts of the value of the load shedding penalty on the day-ahead
schedule.
Fig. 4 shows the cumulative probability distribution functions

(CDF) of the expected operating cost as calculated using Monte
Carlo simulations for the various test cases and the four UC for-
mulations. In all the cases, regardless of the generator character-
istics and the wind penetration, the SUC formulation is the most
cost-effective. IIUC is second best, followed by RUC, while
IUC is the least cost-effective. The IIUC has a more significant
advantage over the RUC for the unfavorable wind profile, as can
be seen in parts (B) and (D) of Fig. 4. The poor performance of
the IUC is more notable for the favorable wind profiles in parts
(A) and (C).
Table I compares the cost performance of the SUC, IIUC,

RUC, and IUC models in terms of the expected cost (EC) and
the standard deviation (SD) of the cost distribution obtained
using the Monte Carlo simulations. The expected cost (EC) is
the mean value of the CDF shown in Fig. 4, while the standard
deviation (SD) presents the expected deviation from this value
in percentages. For each case, the SD is also calculated in per-
centage of its corresponding EC.
The EC of each UC model decreases as wind penetration in-

creases. Test system G2 consistently results in a lower value
of the EC due to its less stringent minimum up and down time
constraints on generators than in test system G1. This difference
increases with the wind penetration level. Fig. 5 compares the
cost of the IIUC, IUC, and RUC models with the cost of the
SUC model. For the 10% wind penetration case, the IIUC so-
lution costs less than 0.5% more than the SUC. On the other
hand, the RUC and IUC cost up to 0.8% and 2.0% more. For a
20% wind penetration, the expected cost with the IIUC, RUC
and IUC are up to 0.8%, 1.2% and 5.0% higher. These differ-
ences in cost grow further as the wind penetration increases.
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Fig. 4. Comparison of expected operating costs of the day-ahead schedules obtained with the SUC, IIUC, IUC, and RUC for different wind
penetration levels–(A) generator dataset G1, favorable wind profile; (B) generator dataset G1, unfavorable wind profile; (C) generator dataset G2, favorable wind
profile; (D) generator dataset G2, unfavorable wind profile.

TABLE I
COMPARISON OF THE COST PERFORMANCE (EC—EXPECTED COST; SD—STANDARD DEVIATION)

—RUC is solved with

Using IUC may result in up to 39% higher operating cost as
compared to SUC. At 4.8% and 8.3%, respectively, the worst
IIUC and RUC cost increases are much lower. This comparison
of the cost-performance of various UC models supports the use-
fulness of the proposed IIUC model, which reduces the unnec-
essary conservatism of the RUC and IUC models by modeling
realistic ramping scenarios.

As discussed in [41], the SD can be used to characterize the
adaptability of the day-ahead schedule to the true realization
of uncertainty. Thus, if the SD is high, the day-ahead schedule
may require expensive corrective actions for some realizations
of wind. On the other hand, the absolute and relative values
of the SD tend to increase with wind penetration, which indi-
cates that all UC models considered become more sensitive to
deviations from the central forecast under high wind penetra-
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TABLE II
COMPARISON OF ENERGY IMBALANCES (EWS—EXPECTED WIND SPILLAGE; EENS—EXPECTED ENERGY NOT SERVED)

—RUC is solved with

Fig. 5. Increase in the expected costs of the schedules produced by the IIUC,
RUC and IUC as compared to the SUC for different wind
penetration levels.

tion levels. The SD also depends on the temporal correlation
between wind generation and load. If this correlation is favor-
able, all UC models under any wind penetration level have a
lower SD than under the unfavorable correlation. As shown in
Table I, the day-ahead schedule obtained using the SUC model
results in the largest SD among all UCmodels for any wind pro-
file, wind penetration level, and test system. On the other hand,
the IUC approach systematically results in the lowest SD among
all UC models considered. We conclude that the conservative
formulations (IUC and RUC) are more adaptive to the extreme
realizations of uncertainty than the IIUC and IUC models.
Table II shows the expected wind spillage (EWS) and ex-

pected energy not served (EENS) observed at each simulation.
These outcomes are also quantified by the frequency of their oc-
currence. This frequency, denoted as freq. in Table II, is defined
as the number of samples in Monte Carlo simulations where
load is shed during at least one operating hour.
EWS is much lower for the favorable wind scenario as com-

pared to the unfavorable one. For the favorable wind profile
there is no wind spillage observed for all UC techniques for up
to 30% wind energy penetration. Starting at the 40% wind en-
ergy penetration, some wind energy is spilled with almost all

techniques. The proposed IIUC model results in the least EWS
among all UC models for the favorable wind profile under 40%
and 50% wind penetration levels. This outcome indicates the
proposed IIUC model outperforms other UC models in terms
the total usage of available wind generation and, thus, facil-
itates cost-effective scheduling and dispatch under high wind
penetration levels. On the other hand, the day-ahead schedule
obtained using the IUC model leads to unnecessarily high EWS
of 3294 MWh for the G1 generator dataset at 50% wind pene-
tration and for the favorable wind profile. This excessive wind
spillage is mainly caused by the day-ahead IUC schedule being
very much protected against load shedding. In this case, the IUC
model commits a large number of generators to be able to serve
all loads under a low production of wind farms, so that wind
spillage is necessary to meet their minimum output constraints
enforced by (11). Comparing the wind spillage occurred under
the day-ahead IUC and IIUC models, it can be seen that the
approach to model ramping scenarios as proposed in the IIUC
paper is more realistic than overly conservative ramp require-
ments in the IUC model. For the unfavorable wind profile, the
SUC model consistently results in the lowest EWS observed,
while wind spillage under the day-ahead IIUC schedule almost
always results in the second least wind spillage, especially for
higher wind penetrations. The RUC and IUC models result in a
substantially larger wind spillage as compared to the SUC and
IIUC models. This observation illustrates the claim that con-
servatism of UC approaches modeling the range of uncertainty
must be controlled by modeling realistic ramp requirements, as
proposed in this paper.
Since the IUC and RUC with models are

conservative, they result in no load shedding (EENS MWh)
regardless of the chosen test case parameters, wind penetration,
and wind profile (Table II). On the other hand, the SUC solution
is drawn from the set of 10 scenarios, which may not protect
it against some extreme outcomes, and thus may lead to some
load shedding under almost all wind penetration levels. As can
be observed in Table II, the EENS of the SUC model decreases
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Fig. 6. Difference in the expected costs of the schedules produced by the IIUC and RUC with different budgets of uncertainty —(A) generator dataset G1,
favorable wind profile; (B) generator dataset G1, unfavorable wind profile; (C) generator dataset G2, favorable wind profile; (D) generator dataset G2, unfavorable
wind profile.

as the wind penetration increases. For higher wind penetrations,
more fast-starting generators remain uncommitted on the day
ahead and thus can be synchronized in real time to avoid shed-
ding load. Furthermore, load shedding under the SUC solution
for the favorable wind profile and wind penetration up to 20%
case tends to be larger than for the unfavorable wind profile.
We also observe that there is no systematic relation between the
magnitude of the EENS and the frequency of load shedding, i.e.,
EENS can be higher for a lower frequency and vice-versa. Addi-
tionally, it avoids load shedding for high wind penetrations and
the favorable wind profile. However, in these cases load shed-
ding is also dependent on the flexibility of the generation mix.
Test system G1 incurs less load shedding than test system G2.
Although in some simulations the IIUC model results in load
shedding, the EENS in these cases is lower than for the SUC
schedule. The load shedding statistics for the IIUC and SUC
shows that modeling of ramping scenarios in the IIUC model
tends to reduce the EENS and its frequency as compared to the
SUC. Comparing the results in Tables I and II, it can be seen that
UC models with higher EC and lower SD tend to result in lower
EENS. This observation is consistent with [41], which explains
the sensitivity of UC models to the load shedding penalty.

D. Comparison of the IIUC Model and the RUC Model With
Different Values of

While the budget of uncertainty can be used to regulate the
conservatism of the RUCmodel, there is no systematic approach
to choose the most cost-effective before solving the optimiza-
tion problem. Fig. 6 compares the difference between the ex-
pected cost of the IIUC and RUCwith different values of . This
difference is calculated as

, where is the expected cost of the RUC model
for a given budget of uncertainty and is the expected
cost of the IIUC model. decreases as increases and
reaches its minimum for . Increasing beyond 8 results

in more conservative schedules and increases. As com-
pared to the IIUC, the RUCmodel consistently results in a more
expensive solution, except for cases with 30% and 50% wind
penetration in test system G2 with favorable wind profile. It can
also be seen in Fig. 6 that , i.e., the cost savings achieved with
the proposed IIUC model, increases with wind penetration for
each case considered.
Table III summarizes the cost and reliability performance of

the least-cost RUC schedule . The least-cost RUC
model tends to trade-off the EC, SD, EWS, and EENS per-
formance of the IIUC model and the RUC model with
. In most of the cases the least-cost RUC model remains

more expensive and conservative than the IIUC model. On the
other hand, there are two cases, also shown in Fig. 3, where the
least-cost RUC model outperforms the IIUC model in terms of
the EC (these cases are shown in bold in Table III). However,
a lower EC as compared to the IIUC also leads to a larger SD,
which indicates that reducing the value of the budget of uncer-
tainty also decreases the ability of the RUC model to deal with
uncertainty. Furthermore, in case of the generator dataset G2,
favorable wind profile and 30% wind penetration, the least-cost
RUC solution results in larger and more frequent load shedding
than the IIUC model. These observations suggest that the value
of the budget of uncertainty should be carefully tuned to ensure
that a potential reduction in the EC does not worsen the relia-
bility performance of the RUC model.

E. Computation Efficiency

All the simulations were carried out using CPLEX 12.1 run
under the GAMS 23.7 environment on an Intel i7 1.8-GHz pro-
cessor with 4 GB of memory. To improve numerical stability
and avoid convergence issues [43]–[46], as well as their effect
on the cost performance of different UC formulations, this paper
does not implement advanced solution techniques, such as those
discussed in [42]. Therefore, the results of this case study should
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Fig. 7. Wall-clock times in seconds required to reach 1% optimality gap for different wind penetration levels.

TABLE III
COST AND RELIABILITY PERFORMANCE OF THE RUC MODEL FOR

. (EC—EXPECTED COST; SD—STANDARD DEVIATION
OF THE COST; EWS—EXPECTED WIND SPILLAGE; EENS—

EXPECTED ENERGY NOT SERVED)

Bold denotes the cases when the RUC model with outperforms the
IIUC model in terms of the expected cost.

be interpreted as providing an upper bound on the computing
performance. Fig. 7 shows the wall-clock times in seconds re-
quired to reach a 1% optimality gap. Overall, RUC is by far the
most efficient method. For the G1 generator dataset, the IIUC
and IUC perform similarly, while for the G2 dataset, the IIUC
outperforms IUC in 80% of the cases. SUC is the most compu-
tationally demanding method, except for 30%–50% wind pene-
tration levels applied to G1 dataset and favorable wind.

IV. CONCLUSIONS

The numerical results presented in this paper show that the
SUC is still the most cost-effective way of dealing with wind un-
certainty. However, despite the small number of scenarios (10)
considered, its computational burden is generally very high. The
proposed IIUC is the second best option in terms of cost-effec-
tiveness (the average operating cost is increased by 2.0%) and
a much better option in terms of computing time (the average
computing time is reduced by 53%). The operating cost of RUC
schedules is on average 3.5% higher than the one of SUC sched-
ules, but the computing times are reduced by 93% in average.
The IUC is the least attractive method because the average ex-
pected operating cost is 11.8% higher than the SUC, and com-
puting time is reduced only by 41% as compared to the SUC.
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