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Abstract—The increasing share of wind power in power
systems requires changes in the operating procedures. Day-
ahead scheduling no longer has to fit only with slow and easily
predictable changes in load, but also with more abrupt changes in
wind power. Procedures for dealing with wind uncertainty, such
as stochastic, robust, and interval unit commitment algorithms,
typically assume a one-hour resolution. Since wind generation can
change significantly within an hour, shorter optimization intervals
might be required to adequately reflect this uncertainty.

This paper compares the stochastic, interval and robust unit
commitment formulations with resolutions of 1 hour and 15
minutes. The schedules produced by these various algorithms
are compared using a Monte Carlo simulation procedure on a
modified version of the 24-bus IEEE-RTS.

Index Terms—Unit commitment, stochastic optimization, in-
terval optimization, robust optimization, wind uncertainty.

I. INTRODUCTION

HE increasing proportion of wind generation capacity

calls for a re-examination of the unit commitment (UC)
algorithms. Since wind fluctuations are less predictable than
changes in the load [1], new UC methods have been proposed.
The most commonly advocated option for dealing with wind
uncertainty is stochastic optimization. Stochastic UC (SUC)
considers a set of wind scenarios and generates a single
commitment schedule that minimizes the expected operating
cost over all these scenarios. Detailed description of SUC
formulations can be found in Barth et al. [2] or Wang et al.
[3] among others. Approaches for alleviating the significant
computational requirements imposed by the SUC, such as
parallel progressive hedging by Ryan et al. [4], have been
proposed. At the same time, other UC formulations that require
less computational efforts have been investigated. One of these
approaches is the robust UC (RUC). The RUC formulation
minimizes the generation cost for the worst-case scenario
within the uncertainty bounds using a two-part approach and a
Benders decomposition [5]: the first one identifies the worst-
case while the second one minimizes the cost of dealing with
this situation. Another approach to solve the UC problem
with uncertain wind output is the interval UC formulation
(IUC), proposed by Sun and Fang [6]. The IUC minimizes
the dispatch cost of the most probable scenario, often referred
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to as the central forecast, while enforcing the feasibility of
the schedule for the upper and lower bounds of uncertainty.
This method thus solves a SUC considering only three wind
generation scenarios: the upper limit, the central forecast,
and the lower limit. Ramping constraints impose feasible
transitions between these three scenarios for all consecutive
time periods. Wang et al. [7] published a detailed formulation
of the IUC formulation.

All of the methods that have been proposed for dealing
with uncertainty consider the UC problem at the day-ahead
stage for the following day. However, wind forecasts are more
accurate for the near future and tend to deviate significantly
from the actual wind generation towards the end of the next
day. This problem can be mitigated using a rolling UC, such
as discussed by Tuohy et al. [8] who showed that the optimal
UC frequency is three hours.

All of the aforementioned references schedule generating
units on an hourly basis. Hourly scheduling may be appropri-
ate for slowly changing and easily predictable load. However,
changes in wind power are more abrupt and harder to predict.
Therefore, a more granulated time resolution could produce
better UC schedules. FERC Order 764 [9] recently addressed
this issue and stated “... hourly transmission scheduling pro-
tocols are no longer just and reasonable.” For this reason,
the Commission proposed the introduction of transmission
schedules based on 15-minute intervals.

The left-hand side of Figure 1 shows schematically an opti-
mal generation schedule obtained with a 15-minute resolution
UC. When 15-minute commitment decisions are aggregated
into one-hour commitment decisions, one option is to settle for
the most conservative commitment where the hourly commit-
ted capacity is equal to the highest capacity required over the
four 15-minute intervals comprising this hour. However, this
leads to a loss of optimality due to conservative commitment
status in the remaining 15-minute periods (crosshatched area
in the upper right part of Figure 1). On the other hand, if a
less conservative commitment is chosen, such as the one in the
lower right part of Figure 1, the entire load might not be served
during some sub-periods, resulting in a loss of optimality due
to a vulnerable commitment.

Another reason for using a 15-minute UC resolution is
fast peaking units. For instance, some of gas-fired units have
minimum up/down times shorter than one hour [10] and UC
models with an hourly resolution fail to capture that important
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Fig. 1. Schematic representation of committed capacity and loss of optimality
when a 15-minute UC resolution is replaced by a 1-hour resolution.

characteristic.

This paper compares the effect of moving from a one-
hour to a 15-minute resolution for the SUC, IUC, and RUC
formulations, both in terms of the cost and computational time.
The cost comparison is carried out not only on the basis of the
cost of the day-ahead schedule, but also using a Monte Carlo
simulation that reveals how robust the various schedules are
to the vagaries of wind generation.

II. FORMULATIONS

This section summarizes the UC formulations used in the
case study. To emphasize the differences, we discuss only
the objective functions and list the constraints. Complete
mathematical formulations of the constraints can be found in
the references.

The objective function of the SUC is:

min {Z Z (SCM “Yit t+ Z s - by (pt,i,s)> +

teT el seS

(1
+ 33 m (ENSp- VLL+WCy, - VCW)}

teT sesS

The first term of this objective function accounts for the
start-up cost, SC; ;, of generator ¢ at time period ¢. This term
is active only when the binary start-up variable y; ; is equal
to 1. This part is common for all scenarios. The second part
of (1) considers the dispatch cost of each scenario: Fj (py; s)
represents the fuel cost at time period ¢ under the scenario s
for generator ¢, whose output is p; ; s. The Energy Not Served,
ENS is penalized by the Value of Lost Load, VLL, while the
Wind Curtailment, WC, is penalized by the Value of Curtailed
Wind, VCW. The dispatch cost of each scenario s is weighed
by its probability 7. Detailed SUC models are available in
[2] and [3].

The objective function of the RUC is:

minz Z [Sct,i “Yii + (pzfzc) +

teT iel (2)
+ ENSY - VLL +WCJ - VCW]

The RUC minimizes the cost of the worst case (denoted by
“wc”), which corresponds to the most expensive realization
of wind generation. Load shedding and curtailed wind energy
are penalized in the same way as in the SUC formulation. We
implemented the RUC procedure described in [5].

The objective function of the I[UC can be written in a similar
fashion:

minz Z [SCM Y+ F; (p]ta(;) +Wepe- VCW] 3)

teT el

The TUC minimizes the start-up cost of the generators and
the dispatch cost under the base case (denoted by “bc’), which
corresponds to the central wind forecast [7]. Unlike in the SUC
formulation, load shedding is not allowed because the upper
and lower bound scenarios as well as the ramping constraints
must be satisfied. Wind curtailment is penalized by the VCW.

All formulations are subject to the following constraints:

Generator minimum up/down times;

e Generator minimum and maximum output limits;

e Generator ramping constraints;

e Power balance constraints that include generator outputs,
wind farm outputs and curtailment, loads, and line flows;

e Transmission line limits.

Reference [11] provides detailed formulations of these con-
straints.

III. CASE STUDY
A. Test System Data

The 24-bus IEEE RTS [12] provided the basis for the test
cases. We used generator characteristics and initial statuses
from [11], simulated the load for the first day of the year,
and used line capacities reduced to 60%. Three wind farms
were added to the system at buses 114, 118, and 121, as
shown in Figure 2. A set of 1000 wind and load scenarios
was generated based on BPA data [13] using an ensemble
approach, which means that the random feature selection
and bootstrap sampling methods [14] were implemented to
generate training samples for the neural network and support
vector machine scenario generators. Parameters of the model
were selected based on a cross-validation set [15]. Finally, the
fast forward scenario selection algorithm proposed by Morales
et al. [16] was used to reduce this set to 20 scenarios for each
wind farm. The central wind forecasts for one-hour and 15-
minute resolutions are provided in Figure 3.

The following generation schedules were generated at the
day-ahead stage:

e Stochastic—20 wind scenarios and the entire load must be
served;

e Stochastic (VLL)-20 wind scenarios but some load
may not be served for some scenarios at a cost of
$5,000/MWh;

e Interval (full)-bounds are sets at the minimum and max-
imum values of the 20 stochastic scenarios at each hour;

e Interval (5%)-bounds are tighter than in the previous
case, as 5% of points at each hour are greater than the
upper bound, and 5% are lower than the lower bound.
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Fig. 2. 24-bus IEEE RTS with wind farms added at buses 114, 118, and 121.

Since 20 scenarios are used, the lowest and highest values
are neglected. This case is thus less conservative than the
“Interval (full)” case;

e Robust (full)-bounds are set in the same fashion as for

the “Interval (full)” case;

e Robust (5%)-bounds are set in the same fashion as for

the “Interval (5%)” case.

All the simulations were performed using CPLEX 12.1
running under the GAMS 23.7 environment on an Intel i7 1.8
GHz processor with 4 GB of RAM memory. The optimality
gap was set at 0.5%.

B. Day-Ahead Results

The day-ahead cost and computation times for all the
methods are shown in Table I. The day-ahead costs between
the different formulations are not directly comparable be-
cause each formulation has a different objective function. The
Stochastic (V L L) formulation results in lower day-ahead costs
than the Stochastic formulation. The Interval (5% bound) has
lower day-ahead costs than its full counterpart, because it is
less conservative. The same observation holds for the two
robust formulations. The stochastic formulations are the most

15-min periods
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Fig. 3. Central wind output forecasts for 1-hour and 15-minute time periods
(WF - wind farm).

computationally demanding, while the Interval formulations
are the fastest. After 24 hours of simulation, the Stochastic
(VLL) formulation with a 15-minute resolution had not yet
produced an acceptable schedule.

Table II summarizes the main characteristics of these day-
ahead schedules. The number of commitments is defined as
the sum of the numbers of units committed over the 96 15-min
intervals of the day. Therefore, one unit committed over a one-
hour period is counted as four 15-minute commitments. The
stochastic formulation that allows energy not served results
in the lowest number of commitments throughout the day.
However, the average committed capacity is practically the
same as in the stochastic unit commitment that is obliged
to serve all the load at all times in all scenarios. This is
because the Stochastic (V LL) formulation uses more base-
load units, as shown in Table III. The Robust (5% bound)
formulation commits less units than the Interval (5% bound)
formulation, but since it commits more high capacity units,
the average committed capacity is higher than with the Interval
(5% bound) formulation. The full interval and robust schedules
are more conservative than their respective 5% bound versions.
The Robust (full) formulation schedules the most units and
results in the highest average committed capacity. As can be
seen in Table III, the Robust (full) formulation commits a
large number of flexible units (12 and 20 MW capacity) in
order to satisfy the worst-case scenario ramping constraints.
The 15-minute schedules commit more units than the 1-hour

TABLE I
DAY-AHEAD COST (IN -103$) AND COMPUTATION TIME (SEC)

Approach Day-Ahead Cost Computation Time
1 hour 15 minute 1 hour 15 minute
Stochastic 419.7  446.5 38min:31s 8h:25min:27s
Stochastic (VLL) | 418.8 - 2h:4min:33s -
Interval (5% bound)| 415.5  443.1 32s 1min:8s
Interval (full) 418.8  443.1 31s 1min:38s
Robust (5% bound) | 471.2  506.7 1min:12s 2min:5s
Robust (full) 499.8  529.7 1min:18s 2min:11s




TABLE II
KEY STATISTICS OF THE DAY-AHEAD SCHEDULES

Approach Commitments | Av. com. cap, MW
1-h  15-min | 1-h 15-min
Stochastic 1048 1221 | 1711 2171
Stochastic (VLL) | 1004 - 1711 -

Interval (5% bound) | 1020 1219 | 1725 2169
Interval (full) 1060 1227 | 1751 2191
Robust (5% bound) | 1016 1233 | 1749 2174
Robust (full) 1084 1300 | 1808 2201

schedules, because they account for a higher variability of
wind, as illustrated in Figure 1. For the same reason, the 15-
minute schedules commit more base-load units, as can be seen
in Table III.

C. Results of Monte Carlo Trials

Since the day-ahead scenarios are by nature uncertain,
the schedules produced by these various formulations were
tested using Monte Carlo simulations. In each Monte Carlo
simulation, the day-ahead schedule is used to meet a par-
ticular realization of wind and load uncertainty. Real time
commitments of additional generators are allowed as long as
minimum down time constraints are not violated. Realizations
of wind and load uncertainty are randomly generated with the
normal [17] and skew-Laplace distribution [18]. The objective
function of each Monte Carlo trial includes the cost of both
day-ahead and real-time commitments, the fuel cost of the
generators, and the penalties for load shedding monetized
using a Value of Lost Load of $5,000/MWh. The value of
the objective function at each Monte Carlo trial represents the
Actual Operating Cost (AOC) under a particular realization
of uncertainty. To evaluate the expected value of the actual
operating cost with the 95% confidence level and 0.1% error,
the required number of Monte Carlo samples is set to max
[1000, Nyc], where Ny is calculated as explained in [19].

TABLE III
COMPARISON OF FLEXIBLE (UP TO 20 MW CAPACITY) AND BASE (50
MW AND ABOVE CAPACITY) UNIT COMMITMENTS

1 hour resolution

CDF
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Fig. 4. Cumulative probability distributions of the actual operating cost for
different UC formulations with a 1-hour resolution.

15 minute resolution
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Fig. 5. Cumulative probability distribution of the actual operating cost for
different UC approaches with the 15-minute resolution.

Figures 4 and 5 show the cumulative probability distribution
of the AOC obtained using Monte Carlo simulations for
schedules with one-hour and 15-minute resolutions. Table IV
gives the expected cost of the AOC, E(AOC), and its standard
deviation, 0(AOC) for the various formulations. Regardless
of the UC approach used, the expected actual operating cost
for the 15-minute resolution is lower than for the one-hour
resolution. However, the schedules with a 15-minute resolution
result in larger standard deviations than those with a one-hour
resolution. This indicates that the one-hour schedules are more
robust to the worst realizations of uncertainty. On the other
hand, this robustness increases the operating cost.

The schedules obtained with the SUC achieve the least
expensive solutions and, therefore, are the most attractive.
However, the computation time of the SUC is impractical for
the 15-minute resolution. The TUC formulation produces its
day-ahead schedule two orders of magnitude faster than the
SUC but its expected actual operating cost is 0.8% larger.
When comparing 15-minute schedules, in 40% of the cases

Approach 1-hour 15-min
bp Flexible Base |Flexible Base
. 332 716 261 960
Stochastic

Stochastic (V' LL)

Interval (5% bound)

Interval (full)

Robust (5% bound)

Robust (full)

(31.7%) (68.3%)
286 718
(28.5%) (71.5%)
202 728
(28.6%) (71.4%)
372 688
(35.1%) (64.9%)
284 732
(28.0%) (72.0%)
408 676
(37.6%) (62.4%)

(21.4%) (78.6%)

262 965
(21.4%) (78.6%)
259 960
(21.2%) (78.8%)

269 1031
(20.7%) (79.3%)
263 970

(21.3%) (78.7%)

TABLE IV

ACTUAL OPERATING COST (IN -103$)

Approach E (AOC) o (AOC)

1 hour 15 minute|1 hour 15 minute
Stochastic 4512 4433 7.4 8.2
Stochastic (V. LL) | 451.2 4433 7.4 8.2
Interval (5% bound)| 457.1  444.1 7.4 4.3
Interval (full) 456.9 4441 7.5 43
Robust (5% bound) | 464.0  461.3 1.5 3.1
Robust (full) 469.7  467.2 1.2 3.0




the TUC produces an overall operating cost lower than the
SUC. The RUC is also computationally tractable, albeit it is
not as computationally efficient as the IUC. However, RUC
results in the highest expected operating cost.

IV. CONCLUSION

This paper compares the stochastic, interval, and robust
UC formulations with 15-minute and one-hour resolutions.
The results demonstrate that the 15-minute schedules achieve
substantial savings through more efficient commitment and
dispatch decisions. In general, schedules based on a 15-minute
resolution are more conservative at the day-ahead stage, but
are less vulnerable to wind forecast errors. In addition, they
require the commitment of fewer generating units in real time.

Implementing a 15-minute scheduling interval would in-
crease the computation time required for day-ahead schedul-
ing. This could make the SUC impractical because the least
expensive solution that it produces may not be obtainable
within a reasonable amount of time unless methods such as
progressive hedging are properly implemented. On the other
hand, the RUC results in highly conservative and inefficient
schedules. Our test cases show that the IUC formulation
achieves a good balance between inexpensive schedules and
computational tractability.
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