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Abstract—This paper presents a new masquerade attack called
the cloaking attack and provides formal analyses for clock skew-
based Intrusion Detection Systems (IDSs) that detect masquerade
attacks in the Controller Area Network (CAN) in automobiles.
In the cloaking attack, the adversary manipulates the message
inter-transmission times of spoofed messages by adding delays so
as to emulate a desired clock skew and avoid detection. In order
to predict and characterize the impact of the cloaking attack in
terms of the attack success probability on a given CAN bus and
IDS, we develop formal models for two clock skew-based IDSs,
i.e., the state-of-the-art (SOTA) IDS and its adaptation to the
widely used Network Time Protocol (NTP), using parameters
of the attacker, the detector, and the hardware platform. To
the best of our knowledge, this is the first paper that provides
formal analyses of clock skew-based IDSs in automotive CAN.
We implement the cloaking attack on two hardware testbeds,
a prototype and a real vehicle (the University of Washington
(UW) EcoCAR), and demonstrate its effectiveness against both
the SOTA and NTP-based IDSs. By comparing each predicted
attack success probability curve against its experimental curve,
we find that the average prediction error is within 3.0% for the
SOTA IDS and 5.7% for the NTP-based IDS.

Index Terms—CPS Security, Formal Analysis, Controller Area
Network, Intrusion Detection System, Cloaking Attack

I. INTRODUCTION

Recent studies have identified security vulnerabilities in net-
worked automobiles, in which attackers have compromised in-
vehicle Electronic Control Units (ECUs), and disabled brakes
[2], remotely controlled steering [3], and disabled vehicles on
a highway [4]. Such exploits of ECUs are feasible because
in-vehicle network protocols, such as the Controller Area
Network (CAN) [5], were designed for closed systems and do
not have security mechanisms such as message authentication.
Networked automobiles, however, contain externally accessi-
ble ECUs that can be compromised by remote adversaries [2],
[6], [7]. Since the CAN bus is a broadcast medium and there
is no message authentication, a compromised ECU can be
used to inject spoofed messages with faked message IDs and
masquerade as a targeted ECU (masquerade attack) [2].

Given that CAN has a preset tight bit budget for messages
and resource-constrained ECUs have real-time requirements,
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Fig. 1: Clock skew estimated by the IDS at the receiver. (a)
An IDS tracks the clock skew of the transmitter and detects
deviations due to masquerade attacks. (b) A cloaking adversary
adds a delay ∆T0 to the message inter-transmission times to
emulate the targeted ECU’s clock skew and bypass the IDS.

it has not been a practical option to incorporate cryptographic
primitives as in [8]–[10] into CAN. As an alternative, Intrusion
Detection Systems (IDSs) have been proposed that exploit
physical properties such as message periodicity and network
entropy without modifying the CAN protocol [11]–[14].

One state-of-the-art (SOTA) IDS was proposed in USENIX
2016 [12] based on two key observations: 1) almost all CAN
messages are periodic, and 2) periodically received messages
can be used to estimate the clock skew of the transmitter, a
unique physical invariant of each ECU due to variations in
the clock’s hardware crystal. Therefore, a change in estimated
clock skew at the receiver implies an anomaly in the trans-
mitter’s clock characteristics, which indicates the presence of
a masquerade attack with high probability (Fig. 1(a)). The
novelty of the SOTA IDS is the use of the clock skew for
detecting a masquerade attack without requiring any synchro-
nization and identifying the compromised ECU that mounts
the attack.

In our preliminary work [1], we investigated IDSs that use
the clock skew for detecting masquerade attacks. Our key
observation is that an adversary, who realizes that the IDS
at the receiver ECU computes the clock skew using message
inter-arrival times, can manipulate the inter-transmission times
by adding delays to emulate the clock skew of the targeted
ECU and avoid detection. We refer to masquerade attacks of
this kind as the cloaking attack (Fig. 1(b)). We experimentally
obtained the attack success probability curves (attack success
probability as a function of the added inter-transmission delay)
and noticed that they have a consistent bell-shaped structure
across different hardware platforms, which may be captured by
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a formal model. In this paper, we provide such formal models
that accurately predict and characterize the attack success
probability curves for the SOTA IDS and its adaptation to
the Network Time Protocol (NTP), using parameters of the
attacker, the detector, and the hardware platform. Moreover,
we collect additional 16+ hours of CAN data from the UW
EcoCAR testbed for six representation messages with different
periods, message ID levels, and transmitting ECUs to validate
our formal models. To the best of our knowledge, this is the
first paper that provides formal analyses of clock skew-based
IDSs in automotive CAN. Throughout this paper, we make the
following specific contributions:
• We propose the cloaking attack, in which an adversary

adjusts message inter-transmission times and cloaks its
clock to match the targeted ECU’s clock skew and avoid
detection.

• We analyze and formally model the attack success proba-
bility of the proposed attack on both the SOTA and NTP-
based IDSs.

• We evaluate the proposed attack on hardware testbeds,
including a CAN bus prototype and a real vehicle (the
UW EcoCAR). Our results show that while the NTP-
based IDS is more effective than the SOTA IDS in detect-
ing masquerade attacks, the cloaking attack is successful
against both IDSs during all hardware trials.

• We validate our formal analyses using the data collected
from the UW EcoCAR. We define a metric called the
Area Deviation Error (ADE) to measure the modeling
accuracy, which is the ratio of the absolute difference
of the areas under the predicted and experimental attack
success probability curves to the area under the experi-
mental curve. Our results show that the average ADEs
of the proposed formal models are within 3.0% for the
SOTA IDS and 5.7% for the NTP-based IDS.

The remainder of this paper is organized as follows. Section
II reviews the related work. Sections III presents our system
and adversary models. Section IV reviews the SOTA IDS and
presents the proposed NTP-based IDS. The cloaking attack
is proposed in Section V. Section VI presents formal models
for the SOTA and NTP-based IDSs. Section VII presents the
experimental evaluation. Section VIII concludes this paper.

II. RELATED WORK

Recent experimental studies have shown that automobiles
are vulnerable to cyber attacks with potentially life-threatening
consequences such as disabling brakes or overriding steering
[2], [6], [7], [15]–[17], most of which are caused by the lack
of security protections in CAN [2], [8]. Hence, there is an
urgent need for securing CAN buses.

Security solutions for CAN can be broadly classified into
schemes that add cryptographic measures to the CAN bus [8]–
[10], [18] and anomaly-based IDSs that 1) analyze the traffic
on the CAN bus including message contents [19]–[21], tim-
ing/frequency [15], [22]–[25], entropy [26], and survival rates
[27], 2) exploit the physical characteristics of ECUs extracted
from in-vehicle sensing data [28]–[30] or measurements [11],
[13], [14], [31], [32], and 3) exploit the characteristics of

TABLE I: Frequently used notations.

Notation Description
ak,i Arrival time of i-th message in k-th batch
ηk,i Noise in arrival time of i-th message in k-th batch
µ Mean of all inter-arrival times before the attack
µ[k] Mean of inter-arrival times in k-th batch
σ Standard deviation of all inter-arrival times
ση Standard deviation of noise in arrival times
N Batch size
O (Constant) clock offset in each period T

Oavg [k] Average offset in k-th batch
Oacc[k] Accumulated offset up to k-th batch
S[k] Clock skew estimate in k-th batch
t[k] Elapsed time up to last message in k-th batch
e[k] (Unnormalized) identification error in k-th batch

µCUSUM Mean of reference identification errors
σCUSUM Standard deviation of reference identification errors
en[k] Normalized identification error in k-th batch
eref [k] Identification error used as reference in CUSUM

L+[k], L−[k] Upper and lower control limits in k-th batch
Γ CUSUM detection threshold
γ CUSUM update threshold
κ CUSUM sensitivity parameter

∆T0
Inter-transmission delay added by adversary that
exactly achieves the targeted ECU’s clock skew

∆T Difference between the total added delay and ∆T0

Ps Probability of a successful cloaking attack

τ
Rate of decrease of normalized identification error
after an attack occurs (for the SOTA IDS)

Ŝ[k], t̂[k] Expected value of S[k], t[k], Oacc[k], e[k] (for the
Ôacc[k], ê[k] NTP-based IDS)

the CAN protocol, such as the remote frame [33]. Compared
to the CAN traffic, it is more difficult for adversaries to
imitate the physical characteristics of ECUs, such as the
mean squared error of voltage measurements [11]. In [13],
Cho and Shin proposed an IDS called Viden that constructs
voltage profiles to identify the attacker. In [32], Choi et al.
proposed VoltageIDS that leverages the time and frequency
domain features of the electrical CAN signals to fingerprint
ECUs. In [34], Kneib and Huth proposed Scission that exploits
physical characteristics from analog values of CAN frames to
determines if whether was transmitted by the legitimate ECU.
However, real-time sensing/measurement and processing can
be challenging for ECUs with limited resource, which may
hinder the deployment of the existing schemes in practice. In
addition, it has been shown in [35] that the extra wires required
by voltage-based IDSs may introduce new attack surfaces for
various voltage-based attacks.

A novel IDS that uses the clock skew to fingerprint ECUs
was proposed in [12]. As a physical invariant, the clock skew
can be estimated from the timestamps of periodically received
CAN messages and used for detecting masquerade attacks.
In this paper, we propose the cloaking attack, in which the
adversary alters the message inter-transmission times to match
the clock skew of the targeted ECU and evade detection with
a high probability. We further propose formal models that
predict the attack success probability for a given CAN bus
and IDS with high accuracy.

III. SYSTEM MODEL

In this section, we provide brief background on the CAN
protocol, review clock-related concepts as defined in NTP, and
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present our timing model for the CAN bus. A list of frequently
used notations is provided in Table I.

A. CAN Background

The CAN protocol [36], [37] is one of the most widely
used in-vehicle network standards. It allows in-vehicle ECUs
to broadcast messages, and almost all CAN messages are
periodic. In particular, CAN messages do not have transmit
timestamps and do not support encryption or authentication.

B. Clock-Related Concepts in NTP

Let CA(t) denote the time kept by clock A, and Ctrue(t) =
t be the true time. According to the NTP [38], [39], the clock
offset of clock A is given by

OA(t) = CA(t)− Ctrue(t), (1)

which is the difference between the time reported by CA and
the true time. The frequency of CA at time t, denoted C ′A(t),
is the first derivative of CA(t), while the clock skew SA(t) is
the first derivative of the clock offset OA(t). A positive clock
skew means that CA runs faster than Ctrue. The unit of clock
skew is microseconds per second (µs/s) or parts per million
(ppm). For example, if CA is faster by 2 µs every 20 ms w.r.t.
Ctrue, then its clock skew relative to Ctrue is 100 ppm.

In-vehicle ECUs typically have constant clock skews [12].
Suppose that CA has a constant clock skew SA. If ∆t is the
time duration measured by Ctrue, the amount of time that has
passed according to CA is ∆tA = (1 + SA)∆t, and ∆t =
∆tA/(1 + SA). Similarly, if there is a second non-true clock
B with a constant clock skew SB that reports a time duration
of ∆tB , we have ∆tB = (1 + SB)∆t. Then the clock skew
of CB relative to CA, denoted as SBA, is given by

SBA =
∆tB −∆tA

∆tA
=
SB − SA
1 + SA

(2)

and the relationship between SBA and SAB is given by

SAB =
−SBA

1 + SBA
. (3)

In the absence of a true clock, the relative clock offset and
relative clock skew can be defined with respect to a reference
clock. Two clocks are said to be synchronized at time t if both
the relative clock offset and relative clock skew are zero.

C. Timing Model

We now discuss our timing model in Fig. 2, in which the
receiving ECU R timestamps messages that arrive periodically.
We consider R’s clock as the reference clock and refer to the
relative offset and relative skew of the transmitter’s clock as
offset and skew, respectively.

Consider an ECU that transmits a message every T seconds
as per its local clock. If the two clocks are synchronized, the
i-th message will be transmitted at ti = iT in R’s clock.
However, due to the transmitter’s clock skew, there exists an
accumulated offset Oi between the transmitter’s clock that
reports time iT and R’s clock that reports time ti since
the transmission of message 0, which means Oi = iT − ti

TX

RX

Ideal !" = 0 !% = & !' = 2& !) = 3&
Actual !% = & −,% !' = 2& −,'	 !) = 3& −,)
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Fig. 2: Timing model of message arrivals on CAN bus.

according to Eq. (1). Therefore, the actual transmission time is
ti = iT−Oi in R’s clock. While the clock skew may be slowly
varying due to factors like temperature, it is almost constant
over short durations. Hence, we model the accumulated offset
as a random variable Oi = iO+εi, where O is the clock offset
induced in one period T given the constant clock skew, and
εi is the offset deviation due to jitters in the transmitter. We
assume that the εi’s are independent and identically distributed
zero-mean random variables. After a network delay of di
(due to message transmission, propagation, and reception), the
message arrives at R’s incoming buffer and has a timestamp

ai = iT − iO − εi + di + ni, (4)

where ni is the zero-mean noise introduced by R’s timestamp
quantization process [40].

Let ηi = −εi + di + ni and thus ai = iT − iO + ηi. Since
the data lengths of periodic CAN messages are constant over
time, it is reasonable to assume constant-mean network delays,
i.e., E[di] = d. Hence, we model the ηi’s as i.i.d. Gaussian
random variables with ηi ∼ N(d, σ2

η).
The inter-arrival time between the (i−1)-th message and the

i-th message is Trx,i = ai − ai−1 = (T − O) + (ηi − ηi−1).
Hence, the inter-arrival times have a mean µ , E[Trx,i] =
T −O, and a variance σ2 , V ar(Trx,i) = 2σ2

η .

D. Adversary Model

We consider adversaries who gain access to the CAN bus
of an automobile by compromising one or more ECUs. We
adopt the following two adversary models [12], [17]:
• Weak adversary – A weak adversary who compromises an

ECU is able to eavesdrop on all the CAN traffic and can
block outgoing messages from the compromised ECU.
The weak adversary, however, cannot send messages from
the compromised ECU.

• Strong adversary – A strong adversary who compromises
an ECU has complete control over the compromised
ECU, including eavesdropping on all messages, blocking
outgoing messages, and transmitting messages with the
timing and content of the adversary’s choosing.

We consider adversaries who attempt to mount masquerade
attacks. Fig. 3 illustrates a masquerade attack that is mounted
by a weak adversary and a strong adversary acting in coordi-
nation. The strong adversary has compromised ECU A, while
the weak adversary has compromised ECU B. The goal of
the attack is to inject false messages from ECU A, so as to
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Fig. 3: Illustration of a masquerade attack. Without a mas-
querade attack, ECU A transmits message 0xA1 every 10 ms,
and ECU B transmits message 0x10 every 20 ms. During
the masquerade attack, ECU B is weakly compromised and
its transmission of 0x10 is blocked. Meanwhile, ECU A is
strongly compromised and is used to inject the false messages
0x10 every 20 ms in addition to its original message 0xA1.

degrade the safety, performance, and/or functionality of the
vehicle. This attack enables an adversary who compromises a
low-priority1 ECU to effectively impersonate a higher-priority
ECU, thus maximizing the impact of the attack.

We observe that, if ECU B were compromised by a strong
adversary, the attack would be trivial. On the other hand, when
ECU B is compromised by a weak adversary, the adversary
cannot directly inject messages from ECU B itself. Instead,
the weak adversary blocks the targeted messages from ECU
B. The strong adversary then uses the compromised ECU A
to inject false messages that are claimed to be from ECU B.

This attack exploits two vulnerabilities of CAN that have
been identified in the related literature [2], [12]. First, all ECUs
have access to the same broadcast medium, allowing easily-
compromised, low-priority ECUs (ECU A in Fig. 3) to listen
to and impersonate higher-priority ECUs. Second, the lack of
integrity checks means that spoofed messages from ECU A
are not detected as long as the normal formatting and error-
correction checks of CAN messages are passed.

IV. CLOCK SKEW-BASED IDS

Clock skew-based IDSs leverage the clock skew to uniquely
fingerprint each ECU and detect masquerade attacks. Since
CAN messages do not have transmit timestamps, approaches
that require transmit timestamps for clock skew estimation
such as [40]–[42] are not applicable. Similar to [43], clock
skew-based IDSs on CAN buses instead exploit traffic period-
icity [12]. Since almost all messages are transmitted periodi-
cally, the receiving IDS can monitor the inter-arrival times of a
target message and estimate the clock skew of the transmitting
ECU accordingly. We note that this approach is only viable
for periodic message traffic. In the rest of this section, we will
review the SOTA IDS and propose an NTP-based IDS.

A. Review of SOTA IDS

The SOTA IDS in [12] consists of a clock skew estimator
and a CUSUM (Cumulative Sum [44])-based detector. The es-
timator tracks the clock skew from message inter-arrival times

1On the CAN bus, messages with smaller ID levels (i.e., higher priorities)
will be transmitted earlier in the event of collisions through a process called
arbitration. A larger ID indicates a lower priority. See [37] for more details.

and feeds identification errors to the CUSUM for detection.
We now describe the two components in more detail.

1) Clock Skew Estimator: Incoming periodic messages are
processed in batches of size N to mitigate undesired impacts
of quantization and other sources of noise in receive times-
tamps. Let ak,i be the arrival time of the i-th message in the
k-th batch. The average offset of the k-th batch is given by

Oavg[k] =
1

N − 1

N∑
i=2

[ak,i − (ak,1 + (i− 1)µ[k − 1])], (5)

where µ[k − 1] is the mean inter-arrival time of the previous
((k − 1)-th) batch.

The absolute value of Oavg[k] is added to the previous
accumulated offset to compute the updated value,

Oacc[k] = Oacc[k − 1] + |Oavg[k]|, (6)

which is modeled as Oacc[k] = S[k]t[k] + e[k], where S[k],
t[k], and e[k] denote the clock skew estimate in batch k, the
elapsed time until the last message of the k-th batch, and the
(unnormalized) identification error in batch k, respectively.

The estimated clock skew S[k] is the output of the Recursive
Least Squares (RLS) algorithm. Ideally, the identification error
would converge to zero if clock skew is correctly estimated.
Hence, a change in the identification error indicates a change
in the clock skew. Besides, the rate of convergence is governed
by a parameter λ < 1 (e.g., λ = 0.9995) that exponentially
weighs past samples. More details are available in [12].

2) CUSUM-Based Detector: The detector tracks the mean
µCUSUM and the standard deviation σCUSUM of identification
errors that are used as reference (denoted as {eref [k]}). In
batch k, e[k] is first normalized as en[k] = (e[k]−µCUSUM[k−
1])/σCUSUM[k − 1]. To mitigate the undesired impact of out-
liers, e[k] will be considered as a reference error sample for
updating µCUSUM and σCUSUM only if en[k] is less than the
preset update threshold γ (e.g., γ = 4), as noted in [12].

The detector then uses en[k] to update the upper control
limit L+ and the lower control limit L− in batch k as follows

L+[k] = max[0, L+[k − 1] + en[k]− κ], (7)
L−[k] = max[0, L−[k − 1]− en[k]− κ], (8)

where κ is a sensitivity parameter that reflects the number
of standard deviations to be detected. The detector declares
an attack if either the control limit, L+ or L−, exceeds the
preset detection threshold Γ, which implies a sudden positive
or negative shift in value, respectively. As the general rule of
thumb for CUSUM, Γ is usually set to 4 or 5 [45], and the
SOTA IDS chooses Γ = 5.

B. Proposed NTP-based IDS

We now present an adapted IDS that computes clock offset
and clock skew as per the NTP specifications, which is referred
to as the NTP-based IDS. The motivation for our NTP-based
IDS is two-fold. First, we note that the metric in Eq. (5) is not
consistent with the NTP definition in Eq. (1), since it does not
calculate the time difference between the transmitter’s clock
and the reference clock. In addition, it is assumed that Oi is a
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random variable and E[Oi−Oi−1] = 0. It implies that E[Oi] =
E[Oj ] for i 6= j, which does not hold in general since offsets
accumulate over time (if i� j, E[Oi]� E[Oj ]). Our second
motivation is the widespread use and acceptance of NTP as
a timing mechanism for real-time systems, which raises the
question of whether NTP definitions of clocks can be used for
intrusion detection as well. While both the SOTA IDS [12] and
the proposed NTP-based IDS estimate the clock skew via the
RLS and detect an attack via the CUSUM, they update average
and accumulated offsets differently, as explained below.

Let T be the message period and Ôi be the clock offset
of the i-th period observed by the receiver. According to the
NTP clock definitions (Section III-B) and the timing model
(Section III-C), Ôi is equal to

Ôi = T − (ai − ai−1) = O −∆ηi, (9)

where ∆ηi = ηi − ηi−1. In batch k, the average offset is

Oavg[k] =
1

N

N∑
i=1

Ôk,i = T − ak,N − ak,0
N

, (10)

where ak,0 = ak−1,N is the receive timestamp of the last
message in the previous ((k − 1)-th) batch. The accumulated
offset of the k-th batch is updated as follows

Oacc[k] = Oacc[k − 1] +NOavg[k]. (11)

Eq. (5) and (10) highlight the differences in how the average
offset is updated by the SOTA and NTP-based IDSs, respec-
tively. Similarly, Eq. (6) and (11) show how the SOTA and
NTP-based IDSs update the accumulated offset, respectively.
As we will show in Section VII, the NTP-based IDS is more
effective in detecting masquerade attacks than the SOTA IDS.

V. PROPOSED CLOAKING ATTACK

In this section, we propose a new masquerade attack called
the cloaking attack, in which the adversary adjusts the inter-
transmission times of the spoofed messages in order to ma-
nipulate the estimated clock skew and bypass an IDS.

Consider a message transmitted by the targeted ECU B
every T seconds in its own clock, which corresponds to every
T̂ = T/(1 +SB) seconds in the receiver R’s clock, where SB
is B’s clock skew. For the ease of discussion, we ignore offset
deviations and the noise in arrival timestamps due to network
delay and quantization. Then B’s clock skew as estimated by
R is given by Ŝ = (T − T̂ )/T̂ = SB .

In a masquerade attack, the weak adversary prevents ECU
B from transmitting the targeted message, and the strong
adversary controlling ECU A transmits the spoofed message
every T seconds as per A’s local clock CA. Hence, ECU
R receives messages every T̂ ′ = T/(1 + SA) seconds, as
measured by CR, where SA is A’s clock skew. The clock skew
measured by ECU R will then be Ŝ′ = (T − T̂ ′)/T̂ ′ = SA.
Hence, if SA 6= SB , then the IDS will detect a change in the
estimated clock skew after the adversary launches the attack.

The insight underlying our attack is that, while clock skew
is a physical invariant, clock skew estimation in an IDS is
based entirely on message inter-arrival times, which can be
easily manipulated by the transmitter (i.e., the strong adversary

controlling ECU A) adjusting the message inter-transmission
times. Effectively, the adversary cloaks the skew of its hard-
ware clock, thus motivating the term cloaking attack. Under
the cloaking attack, instead of transmitting every T seconds,
the compromised ECU A transmits every T̃ = T + ∆T0

seconds, in order to match the clock skew observed at R.
We now discuss the choice of ∆T0. Under the cloaking

attack, the inter-arrival time observed by R is

T̂ ′′ =
T̃

1 + SA
=
T + ∆T0

1 + SA

and the transmitter’s clock skew estimated by R is

Ŝ′′ =
T − T̂ ′′

T̂ ′′
=
SA · T −∆T0

T + ∆T0
. (12)

Hence, to bypass the IDS, the adversary needs to choose ∆T0

such that Ŝ′′ = Ŝ, or equivalently T̂ ′′ = T̂ , which means

∆T0 =
(SA − SB)

1 + SB
· T = SAB · T =

−SBA
1 + SBA

· T, (13)

where SAB is A’s clock skew relative to B’s clock, and the
last two equalities are due to Eq. (2) and Eq. (3), respectively.

Therefore, the message inter-transmission time T̃ would be

T̃ = T + ∆T0 = T − SBA
1 + SBA

T =
T

1 + SBA
,

which is the period of the message from B (weak adversary)
measured by the local clock of A (strong adversary).

To summarize, the cloaking attack is performed as follows.
After the adversary compromises two ECUs as strong and
weak adversaries, the strong adversary estimates the period
of the targeted message T̃ using its local clock. During the
cloaking attack, the strong adversary transmits spoofed mes-
sages every T̃ seconds. While the preceding analysis ignores
the noise in the system, our results in Section VII show that
the cloaking attack is effective in a realistic environment.

In practice, however, the adversary may not be able to
achieve the exact value of ∆T0 due to hardware limitations
and possible measurement inaccuracy. Let the total amount of
the actual inter-transmission delay added by the adversary be
∆T + ∆T0, where ∆T is the amount of deviation from ∆T0.
When ∆T is closer to zero, the attack will be successful with
a higher probability. Hence, the attack success probability Ps
is a function of ∆T (an attack parameter), parameters of the
detector (e.g., λ, γ, and Γ), and the hardware platform. In
order to predict and characterize the impact of the cloaking
attack on a CAN bus and IDS without having to solely rely
on extensive experiments, we aim to formally model Ps for
both the SOTA and NTP-based IDSs, as presented below.

VI. FORMAL ANALYSIS

A. Formal Analysis of SOTA IDS

In this section, we develop a formal model for the prob-
ability of a successful cloaking attack Ps as a function of
parameters including the distribution of message inter-arrival
times, the message period, the added inter-transmission delay,
and the detection parameters of the IDS. We first present our
modeling assumptions and observations. We then formulate
our formal model and derive Ps for the SOTA IDS.
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Fig. 4: Impact of the cloaking attack on the SOTA IDS. (a) Average offset as a function of batch ID. Only the first attack
batch has a large average offset. (b) The attack success rates are roughly the same for n = 10, 20, and 30 attack batches.
(c) The normalized identification error suddenly increases when the attack begins, and it then starts decreasing at an almost
constant rate. Note that the figures are generated using the data for the 20 ms message 0x185 collected from the UW EcoCAR
testbed. We set N = 20, γ = 4, Γ = 5, and κ = 8. The attack data is obtained by adding 5 ms to the inter-arrival times of the
cloaking data collected from the UW EcoCAR testbed, and the attack starts from batch 1000.

1) Assumptions for SOTA IDS: For the SOTA IDS, the
detection parameters including batch size N and CUSUM
parameters Γ (the detection threshold) and κ (the sensitivity
parameter) are known to the IDS. Since the IDS records all
message arrival timestamps, it knows the message period T
and can measure the mean µ and standard deviation σ of the
message inter-arrival times.

Our analysis takes as input a “snapshot” of the IDS right
before the attack that begins in the m-th batch. This means that
the following parameters maintained by the IDS are readily
available: the mean µCUSUM and standard deviation σCUSUM of
the reference identification errors in the CUSUM, the average
inter-arrival time µ[m−1], the accumulated offset Oacc[m−1],
the estimated skew S[m− 1], and the elapsed time t[m− 1].

2) Observations: Our modeling and analysis of the SOTA
IDS are based on the following observations. As shown in
Fig. 4(a), the first batch after the attack begins is the only
batch that has a large average offset, and all subsequent batches
have small offsets. This is because the average offset of the
current batch is computed from the mean inter-arrival time of
the previous batch (Eq. (5)). The first attack batch has a very
different mean inter-arrival time from the last normal batch due
to ∆T , whereas adjacent batches before and after the attack
have close mean inter-arrival time.

As a result, for an attack that begins in the m-th batch2, the
identification error will be larger due to the sudden change in
the mean inter-arrival time and will decrease over time due to
clock skew update. In fact, we observe that the attack is usually
either detected during the first tens of batches following the
attack, or is not detected at all (Fig. 4(b)).

If we take a closer look at the first tens of batches after the
attack begins, we observe a linear decrease in the normalized
identification error (Fig. 4(c)). These observations motivate the
following model of the normalized identification error en[k]

2We assume that the first attack message appears as the 1st message of the
m-th batch.

at batch k ≥ m

en[k] ≈ en[m]− τ(k −m), (14)

where τ > 0 is a constant slope representing the rate of
decrease of the normalized identification error.

3) Attack Success Probability: Based on the observations of
Section VI-A2, we divide our formal analysis into three stages:
1) modeling the distribution of the normalized identification
error in the first attack batch en[m], 2) estimating the rate
of decrease τ of the normalized identification error, and
3) computing the attack success probability from estimated
distributions of {en[k] : k ≥ m}. Each stage is described as
follows.

Distribution of the normalized identification error in the
first attack batch. We now examine the identification error
e[m] at the first attack batch m, which is

e[m] = Oacc[m]− S[m− 1]t[m].

The clock skew value S[m− 1] is known, but the parameters
Oacc[m] and t[m] are to be modeled. From the definitions of
accumulated offset and elapsed time, we have

e[m] = Oacc[m− 1] + |Oavg[m]|
− S[m− 1](t[m− 1] + Tm,0 + am,N − am,1), (15)

where Tm,0 is the inter-arrival time between the last message
of the previous ((m − 1)-th) batch and the first message of
the current (m-th) batch. Next, we will compute the mean and
standard deviation of e[m].

Based on our timing model (Section III-C), the average
offset under an attack with a delay of ∆T (i.e., the equivalent
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total amount of added delay is ∆T + ∆T0) is

Oavg[m] =
1

N − 1

N∑
i=2

[(i(T + ∆T −O) + ηm,i)

− ((T + ∆T −O) + ηm,1 + (i− 1)µ[m− 1])]

=
1

N − 1

N∑
i=2

[(i− 1)(µ+ ∆T − µ[m− 1])

+ (ηm,i − ηm,1)],

where µ = T − O is the mean inter-arrival time before
an attack3. Although the statistics of η after the attack may
be different from those before the attack due to different
characteristics of transmitting ECUs, such information is not
available at batch (m − 1). Therefore, we assume the same
statistics of η before and after the attack, namely, ηm,i ∼
N(d, σ2

η) for 1 ≤ i ≤ N , which yields

Oavg[m] ∼ N
(
N

2
(µ+ ∆T − µ[m− 1]),

N

N − 1
σ2
η

)
. (16)

Since σ2
η = σ2/2 (Section III-C), the variance of Oavg[m]

is also equal to N
2(N−1)σ

2, where σ is the standard deviation
of inter-arrival times. For ∆T sufficiently large, the ∆T term
will dominate (ηm,i − ηm,1), and hence we have

|Oavg[m]| ≈ 1

N − 1

N∑
i=2

[(i− 1) · |µ+ ∆T − µ[m− 1]|

+ (ηm,i − ηm,1)]. (17)

Next, we can substitute the |Oavg[m]| term in Eq. (15) with
Eq. (17) and compute the mean and standard deviation of e[m],
as described in the following lemma.

Lemma 1. Under the assumption (17), the identification error
e[m] of the first attack batch is Gaussian with mean

µe = Oacc[m− 1] +
N

2
(|µ+ ∆T − µ[m− 1]|)

− S[m− 1](t[m− 1] + Tm,0 + (N − 1)(µ+ ∆T )) (18)

and variance

σ2
e =

1

2

(
N − 2S[m− 1]

N − 1
+ 2S[m− 1]2 − 2S[m− 1]

)
σ2.

A proof can be found in Appendix A.
The distribution of the normalized identification error in the

first attack batch is Gaussian and satisfies

en[m] =
e[m]− µCUSUM

σCUSUM
∼ N

(
µe − µCUSUM

σCUSUM
,

σ2
e

σ2
CUSUM

)
.

After obtaining the distribution of the normalized identifica-
tion error in the first attack batch, our next task is to model the
rate of decrease τ of the normalized identification error en[k]
in Eq. (14), which will give us an approximation of en[k] for
k ≥ m+ 1.

3Strictly speaking, the resulting offset due to the added delay of ∆T is
O′ = (T + ∆T )/T ·O. However, ∆T is usually much smaller than T , and
thus we can approximate O′ as O.

Rate of decrease of the normalized identification error.
According to Eq. (15), the identification error e[k + 1] after
an attack begins (i.e., k ≥ m) is given by

e[k + 1] = Oacc[k + 1]− S[k]t[k + 1],

= Oacc[k] + |Oavg[k + 1]|
− S[k](t[k] + Tk+1,0 + (ak+1,N − ak+1,1)),

where Tk+1,0 ≈ µ+ ∆T is the inter-arrival time between the
last message in the k-th batch and the first message of the
(k + 1)-th batch during the attack.

Since skew updating is slow in the first tens of batches due
to the slow convergence of the RLS algorithm, we may assume
that S[k] = S is a constant. Then we have

e[k + 1] = Oacc[k] + |Oavg[k + 1]| − St[k]

− S((µ+ ∆T ) + (ak+1,N − ak+1,1))

= e[k] + |Oavg[k + 1]|
− S(N(µ+ ∆T ) + (ηk+1,N − ηk+1,1)).

According to Eq. (16), the average offset Oavg[k+1] is Gaus-
sian with mean N

2 (µ + ∆T − µ[k]) and variance N
2(N−1)σ

2.
Although the value of µ[k] for k ≥ m is not available at batch
(m−1), we have E(µ[k]) = µ+∆T , which means Oavg[k+1]
can be approximated as zero.

Therefore, we can derive a linear approximation to e[k] by
taking the expectation of (e[k+1]−e[k]). Since |Oavg[k+1]|
is the absolute value of a Gaussian random variable with mean
zero and variance N

2(N−1)σ
2, we have

E(|Oavg[k + 1]|) =

√
N

2(N − 1)
σ2 ·

√
2

π
= σ

√
N

π(N − 1)
.

Since the normalized identification error is computed as
en[k] = (e[k] − µCUSUM)/σCUSUM, the rate of decrease τ of
en[k] can be approximated as

τ ≈ |E(en[k + 1]− en[k])| =
∣∣∣∣E(e[k + 1]− e[k]

σCUSUM

)∣∣∣∣
=

∣∣∣∣∣ 1

σCUSUM

(
σ

√
N

π(N − 1)
− S(N(µ+ ∆T ))

)∣∣∣∣∣ .
Note that the fixed σCUSUM is used, since en[k] is usually larger
than γ and thus σCUSUM will not be updated.

Now that we have distributions of normalized identification
errors {en[k] : k ≥ m}, we can compute the distribution of
the maximum value of control limits L+ and L−, and derive
the attack success probability.

Computation of the attack success probability. In order to
derive the attack success probability, let us take a closer look at
how the control limits are updated. Without loss of generality,
we consider positive ∆T and assume that the upper control
limit L+ is zero before the attack. From Eq. (7), we can see
that if en[m] ≥ κ+Γ, the attack will be detected immediately
in the first batch; if en[m] ≤ κ, it will not be detected at all.
If en[m] lies in (κ, κ+ Γ) and L+[k] =

∑
k≥m(en[l]− κ) is

greater than Γ for some k, the attack will still be detected after
several batches. Hence, we can first compute the maximum
value of L+, which depends on en[m] and τ , and then
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Fig. 5: Experimental versus estimated (a) accumulated offset and elapsed time, (b) clock skew, and (c) normalized identification
error. The estimated values match closely with the experimental values. Note that figures are generated using data for the 20ms
message 0x185 collected from our testbed with N = 20, γ = 4, Γ = 5, κ = 8, and ∆T = 5 µs.

relate the attack success probability Pr(L+
max ≤ Γ) to the

distribution of en[m], as shown in the following theorem.

Theorem 1. The attack success probability satisfies

Ps = Pr

(
τ −
√
τ2 + 8τΓ

2
− κ ≤ en[m]

≤ −τ +
√
τ2 + 8τΓ

2
+ κ

)
. (19)

The proof can be found in Appendix B.
By Theorem 1, we can see that the attack success probability

can be computed by evaluating the cumulative density function
of a Gaussian random variable.

B. Formal Analysis of NTP-Based IDS

We then formally analyze the probability of a successful
cloaking attack for the NTP-based IDS, given the system
parameters immediately before the attack.

1) Assumptions for NTP-Based IDS: For the NTP-based
IDS, the batch size N and CUSUM parameters including
γ (the update threshold), Γ (the detection threshold), κ (the
sensitivity parameter) and λ (the parameter in the RLS),
are known to the IDS. Since the IDS records the receive
timestamps of the target message, it knows the period T and
can also measure the mean µ and standard deviation σ of
inter-arrival times.

As mentioned in Section IV, the NTP-based IDS tracks the
accumulated offset Oacc[k] and elapsed time t[k] in each batch
k, and maintains the reference identification errors. Hence, it
is reasonable to assume that the values of {Oacc[k] : k < m},
{t[k] : k < m}, and {eref [k] : k < m} are known to the
NTP-based IDS prior to the attack.

2) Observations: Our modeling and analysis of the NTP-
based IDS are based on the following observations. First, if
the attack with an added delay of ∆T starts in the k-th batch,
the resulting Oacc[k], t[k], and e[k] can be estimated from µ,
T , S[k−1], and ∆T . Second, although the IDS keeps track of
the slowly changing clock skew via the RLS based on newly
obtained t[k] and Oacc[k], the output of the RLS converges

to that of a non-RLS estimator that minimizes the weighted
mean squared error. Third, with the estimated value of e[k],
the IDS can further estimate the CUSUM statistics following
its updating rule, as well as the mean value and distribution
of normalized errors.

3) Attack Success Probability: Based on the observations
in Section VI-B2, we divide our formal analysis into four
stages: 1) estimating the accumulated offset Oacc[k] and the
elapsed time t[k] after the attack begins at batch m, 2)
approximating the clock skew S[k] estimated by the RLS, 3)
modeling the distributions of normalized identification errors
{en[k] : k ≥ m}, and 4) computing the probability of control
limits exceeding Γ to obtain the attack success probability.

Accumulated offset and elapsed time. For the NTP-based
IDS, the accumulated offset before the attack is

Oacc[k] =

k∑
i=1

NOavg[i] =

k∑
i=1

N

(
T − ai,N − ai−1,N

N

)
= kNO − (ηk,N − η0,N ), (20)

where a0,N is the arrival timestamp of the last message in the
initialization batch, and O = T − µ is the average offset in
each period T . The elapsed time is

t[k] = ak,N − a0,N = kN(T −O) + ηk,N − η0,N . (21)

We assume that the attack starts from the first message of
batch m, and the inter-arrival time between the last normal
message and the first attack message is roughly equal to µ+
∆T . Then for k ≥ m, we have

t[k] = kN(T −O) + (k −m+ 1)N∆T + ηk,N − η0,N

= t[m− 1] + (k −m+ 1)N(T −O + ∆T )

+ ηk,N − ηm−1,N . (22)

Since Oacc[k] = kNT − t[k], we also have

Oacc[k] = Oacc[m− 1]− (k −m+ 1)N(−O + ∆T )

− (ηk,N − ηm−1,N ). (23)

Note that in the above equations, the amount of network delay
and noise as captured by ηm−1,N is given at batch (m − 1),
and thus ηk,N is the only random variable.
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With more attack batches arriving, the estimated clock skew
will gradually change over time. Hence, it is important to
model the process of clock skew updating, which is our next
step of modeling.

Approximation of the estimated clock skew. While the
RLS is an online algorithm that recursively updates the clock
skew estimate with non-linear equations, it has been shown in
[46] that the clock skew estimated via the RLS would converge
to the value S that minimizes the following quadratic function,

Jk(S) =

k∑
i=1

λk−i(Oacc[i]− S · t[i])2, (24)

where λ < 1 is the parameter in the RLS, and the optimal
value is given by

Ŝ[k] = arg min
S
Jk(S) =

∑k
i=1 λ

k−iOacc[i] · t[i]∑k
i=1 λ

k−it2[i]
. (25)

Let the mean of t[k] in Eq. (22) and Oacc[k] in Eq. (23) be
t̂[k] and Ôacc[k], respectively. Given t̂[k] and Ôacc[k], we can
estimate the output of RLS as Ŝ[k] based on Eq. (25).

As shown in Fig. 5(a) and Fig. 5(b), the estimated values of
accumulated offset, elapsed time, and clock skew are closely
matched with the experimental values.

Distribution of the normalized identification errors. With
the estimated clock skew values {Ŝ[k]}, the identification error
e[k] is given as

e[k] = Oacc[k]− Ŝ[k − 1]t[k]

= (Ôacc[k]− ηk,N )− Ŝ[k − 1](t̂[k] + ηk,N )

= ê[k]− (1 + Ŝ[k − 1])ηk,N ,

where ê[k] = Ôacc[k]− Ŝ[k− 1]t̂[k]. Since ηk,N is Gaussian,
the identification error e[k] is also Gaussian with mean ê[k]
and variance (1 + Ŝ[k − 1])2σ2

η .
In order to estimate the distribution of en[k], we need to

model the updating process of CUSUM statistics, i.e., µ̂CUSUM
and σ̂CUSUM. Hence, given {ê[k]}, we can compute ên[k] =
(ê[k]− µ̂CUSUM[k− 1])/σ̂CUSUM[k− 1]. If |ên[k]| ≤ γ, we add
ê[k] to {eref [k]} and re-compute µ̂CUSUM[k] and σ̂CUSUM[k]
from {eref [k]}. Then we increment k by 1 and repeat the
above steps.

Since en[k] = (e[k] − µ̂CUSUM[k − 1])/σ̂CUSUM[k − 1], it
implies

en[k] ∼ N

(
ê[k]− µ̂CUSUM[k − 1]

σ̂CUSUM[k − 1]
,

(1 + Ŝ[k − 1])2σ2
η

σ̂CUSUM[k − 1]2

)
.

As shown in Fig. 5(c), the estimated mean values of en[k]
match closely with the experimental values. Based on the
distributions of {en[k] : k ≥ m} derived above, we can now
compute the attack success probability.

CUSUM analysis. Let the probability density function of
en[k] be fk, and the number of attack batches used for
detection be n. We assume that κ ≥ Γ, which is consistent with
the NTP-based IDS and our simulations. A detection takes
place in the k-th attack batch if L+[k] > Γ or L−[k] > Γ.
Let α = min {k : max {L+[k], L−[k]} > Γ}, which is the
attack batch ID when control limits first exceed the detection

threshold. In other words, if α > n, it means that the attack
is not detected within n batches. Hence, the attack success
probability is equal to Pr(α > n), and the following lemma
shows how to compute

gn,k(z+, z−) , Pr(α > n|L+[k] = z+, L−[k] = z−).

Lemma 2. The probability of a successful cloaking attack for
the CUSUM-based detector satisfies

gn,k(z+, z−) =

∫ z−−κ

z−−κ−Γ

gn,k+1(0, z− − r − κ)fk(r) dr

+ gn,k+1(0, 0)Pr(en[k] ∈ [z− − κ, κ− z+])

+

∫ κ−z++Γ

κ−z+
gn,k+1(z+ + r − κ, 0)fk(r) dr.

From Lemma 2, we can take a discrete approximation of
gn,k(z+, z−) as

gn,k

(
iΓ

m
,
jΓ

m

)
≈ Γ

m

m∑
l=0

gn,k+1

(
0,
lΓ

m

)
fk

(
(j − l)Γ
m

− κ
)

+ gn,k+1(0, 0)Pr(en[k] ∈ [z− − κ, κ− z+])

+
Γ

m

m∑
l=0

gn,k+1

(
lΓ

m
, 0

)
fk

(
(l − i)Γ
m

+ κ

)
.

A proof can be found in Appendix C.
Therefore, the value of gn,k, that is, the probability of a

successful cloaking attack within n attack batches predicted
at the k-th attack batch (k ≤ n), can be computed as a linear
function of the values of gn,k+1. The attack success probability
is equal to gn,0(0, 0).

VII. EVALUATION

In this section, we evaluate the proposed cloaking attack on
two CAN bus testbeds and demonstrate that the cloaking attack
is able to bypass both the SOTA and NTP-based IDSs. We then
validate our formal analysis through extensive experiments.

A. Testbeds

We build two CAN bus testbeds: a CAN bus prototype and
a CAN testbed on a real vehicle (the UW EcoCAR, a 2016
Chevrolet Camaro [47]). Compared with the prototype that
consists of three ECUs, the UW EcoCAR hosts 8 stock ECUs
and two experimental ECUs. A total of 2500+ messages with
89 different IDs are being exchanged every second.

1) CAN Bus Prototype: As shown in Fig. 6(a), each ECU
on the CAN bus prototype consists of an Arduino UNO
board and a Sparkfun CAN bus shield that uses a Microchip
MCP2515 CAN controller with a MCP2551 CAN transceiver.
The bus speed is set to 500 Kbps as in typical CAN buses.

2) UW EcoCAR testbed: The CAN bus prototype is con-
nected to the CAN bus of the UW EcoCAR via the On-Board
Diagnostics (OBD-II) port to build the UW EcoCar testbed
(Fig. 6(b)). During our experiments, the UW EcoCAR was
in the park mode in an isolated and controlled environment
for safety purposes, but all ECUs were functional and actively
exchange CAN messages. We noticed that ECUs in the park
mode had very close clock skews as in the drive mode.
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ECU	1

ECU	2

ECU	3

(a) CAN bus prototype

ECU	R
(IDS)

LaptopConnection to OBD-II port in the back

Connection to OBD-II 
port in the front

CAN bus prototype

(b) UW EcoCAR testbed

Fig. 6: Setup of CAN bus testbeds. (a) The CAN bus prototype
consists of three testbed ECUs, each of which consists of an
Arduino board and a Sparkfun CAN bus shield. (b) The CAN
bus prototype and Raspberry Pi-based ECUs are connected to
the CAN bus of the UW EcoCAR via the OBD-II ports to
build the UW EcoCAR testbed.

Due to the large CAN traffic and limited computing capabil-
ity, Arduino-based ECUs are not able to log all CAN messages
on the bus or transmit high frequency messages. Therefore,
we build additional ECUs that consist of a Raspberry Pi 3
and a PiCAN 2 board and used SocketCAN [48] to enable the
interaction between the added ECUs and the UW EcoCAR.

B. Evaluation of Cloaking Attack

We first demonstrate and evaluate the cloaking attack on
both the CAN bus prototype and the UW EcoCAR testbed.

1) Setup: On the CAN bus prototype, ECU 1 acts as the
IDS that logs all messages, ECU 2 is the targeted ECU that
transmits message 0x11 every 100 ms (10 Hz), and ECU 3
is the strong adversary that impersonates ECU 2. On the UW
EcoCAR testbed, a stock ECU that transmits message 0x184
every 100 ms is treated as the targeted ECU and the same ECU
3 acts as the strong adversary that injects spoofed messages.

When launching the cloaking attack, the impersonating
ECU 3 transmits every 100040 µs (∆T0 = 40 µs) to spoof
message 0x11 on the CAN bus prototype and every 99971 µs
(∆T0 = −29 µs4) to spoof message 0x184 on the UW
EcoCAR testbed. During our experiments, we collected a total
of 8.5 hours of attack data from the CAN bus prototype and
the UW EcoCAR testbed separately.

We set batch size N = 20 for both the SOTA and the NTP-
based IDSs. For the SOTA IDS, the update threshold γ is 3
and the detection threshold Γ is 5, which is consistent with
[12]. For the NTP-based IDS, we use γ = 4 and Γ = 5. For
the data collected from the CAN bus prototype, the sensitivity
parameter κ is set to 5 for both IDSs, while it is set to 8 for
the UW EcoCAR data to avoid false alarms.

To simulate the cloaking attack, the IDS is fed with 1000
batches of normal data, followed by n batches of attack data
in each experiment5. An attack is successful if it is undetected
by the IDS and fails otherwise. A total of 100 independent

4While Arduino’s time resolution is 4 µs , we set ∆T0 to −28 µs and
changed it to −32 µs every five messages so that ∆T0 ≈ −29 µs on average.

5We assume perfect timing for the cloaking attack, that is, the first attack
message is received at the next expected time instant of the targeted message.
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Fig. 7: Attack success probability on the SOTA IDS and
the NTP-based IDS on the CAN bus prototype and the UW
EcoCAR testbed with message period 100 ms. For the ∆T0

values achieved in our hardware experiments (red dashed line),
the cloaking attack was successful in all test cases.

experiments are performed to compute the attack success
probability Ps.

2) Results: For the ∆T0 values achieved in our evaluation,
Ps is 1 against both the SOTA and NTP-based IDSs (Fig.
7, dashed line). In order to gain additional insight into the
performance of each IDS under cloaking attack, we generate
additional datasets by adding different values of ∆T0 to the
message inter-arrival times and then analyze both IDSs using
the new datasets.

In order to quantify the effectiveness of an IDS against the
masquerade (cloaking) attack, we define a metric called ε-
Maximum Slackness Index (MSI), which measures the interval
of ∆T0 that an adversary can introduce while remaining
undetected with a probability of (1− ε). We first let Ps(∆T0)
be the attack success probability when the added delay is ∆T0.
We define the upper and lower limits of ∆T0 for a successful
attack as (∆T0)max(ε) = max{∆T0 : Ps(∆T0) > 1 − ε}
and (∆T0)min(ε) = min{∆T0 : Ps(∆T0) > 1 − ε}, respec-
tively. We then define ε-MSI = (∆T0)max(ε)− (∆T0)min(ε).
Intuitively, a smaller value of ε-MSI signifies a more effective
detector and less freedom for the adversary, since the adver-
sary’s clock skew must closely match with that of the targeted
ECU in order to remain undetected.

On the CAN bus prototype, with n = 20 and ε = 0.05,
the ε-MSI value for the SOTA IDS is 22.5 µs (Fig. 7(a)), but
only 11.5 µs for the NTP-based IDS (Fig. 7(c)). Hence, it
is much easier for the cloaking attack to bypass the SOTA
IDS than the NTP-based IDS. We also found that increasing
n has little impact on ε-MSI for the SOTA IDS, which is
20.5 µs for n = 40 or 60, but significantly impacts ε-MSI
of the NTP-based IDS, which varies from 11.5 µs to 2.5 µs
as n is increased from 20 to 60. This result suggests that the
performance of the NTP-based IDS improves over the attack
duration. Another interesting observation is that the Ps curves
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TABLE II: Selected subset of representative messages from
Electronic Brake Control Module (EBCM), Electronic Power
Steering (EPS), Electronic Parking Brake (EPB), and Body
Control Module (BCM).

Message ID Period (ms) Transmitter Data Size (hours)
0x0D1 10 EBCM 0.53 hours
0x185 20 EBCM 1.01 hours
0x1FC 50 EBCM 2.01 hours
0x184 100 EPS 4.44 hours
0x22A 100 EPB 3.84 hours
0x3C9 100 BCM 4.48 hours

are skewed instead of symmetric. This is because when the
Arduino-based ECU starts operating, its clock skew slowly
decreases due to the temperature change in hardware. As a
result, the IDS tends to overestimate the clock skew, and is
more sensitive to a larger positive delay (that would further
decrease the clock skew).
ε-MSI for the SOTA IDS increases significantly for a real

vehicle, as shown in Fig. 7(b), due to the significantly heavier
CAN traffic compared to the prototype, which reduces the
effectiveness of the detection. As an example, a cloaking
attack with ∆T0 between −1029 µs and 1021 µs can bypass
the SOTA IDS with 100% probability regardless of n. For
the NTP-based IDS with ε = 0.01, ε-MSI is 10.5 µs for
n = 20 and 3 µs for n = 60. Hence, in the real vehicle, as
in the CAN prototype, the NTP-based IDS is more effective
in detecting masquerade attacks than the SOTA IDS. The
proposed cloaking attack, however, is still able to thwart both
detection schemes when ∆T0 is chosen to be within the
interval [(∆T0)min(ε), (∆T0)max(ε)].

C. Evaluation of Formal Analysis

We now validate the proposed formal models using the data
collected from the UW EcoCAR testbed.

Data Collection. Since it is both labor and time intensive
to collect data for all periodic messages, we select a subset of
6 representative messages with different periods, message ID
levels, and transmitting ECUs, which are listed in Table II.

When collecting the cloaking attack data for a targeted
message of period T , the strong adversary (a Raspberry Pi-
based ECU A that is connected to the OBD-II port) transmits
messages every T seconds, using a non-conflicting message
ID to avoid any undesirable impact on the vehicle. The IDS at
ECU R records the timestamps of all received messages. The
targeted and spoofed messages will be filtered and later used
as the normal and attack data, respectively.

In order to determine a suitable amount of added delay
for the cloaking attack, we first set ∆T0 to be the difference
between the average inter-arrival time of the targeted message
observed by ECU A and the nominal period T (Section V). We
then experimentally tune ∆T0 so that the observed clock skews
at the IDS residing in ECU R become the same. Hence, the
collected data corresponds to the cloaking attack with ∆T = 0,
where ∆T is the difference between the actual delay and the
ideal delay ∆T0 (Section V).

Post-processing. Due to the limited capability of the re-
ceiver to capture all messages in the vehicle, some messages

are missed sporadically. To maintain message periodicity,
missing messages are inserted during post-processing.

Setup. To obtain the predicted attack success probability
curve, we feed 1000 batches of normal data to the IDS and
computed the attack success probability Ps for different ∆T
using equations in Sections VI-A and VI-B. For consistency,
we set N = 20, γ = 4, Γ = 5, and κ = 8 for the IDS in all
experiments, and there are no false alarms.

To obtain the experimental attack success probability curve,
the same normal data is fed to the IDS, followed by n batches
of attack data in each experiment. A total of 100 independent
experiments are performed, and the ratio of experiments where
the attack is successful (undetected) is computed as Ps for
∆T = 0.

Since collecting data for each ∆T value would be pro-
hibitively time-consuming, we generate attack data for other
∆T values by adding a fixed offset equal to ∆T to the inter-
arrival times of the collected data, as in Section VII-B. By
repeating the previous process, we obtain the experimental
attack success probability curve.

Metric for quantifying the prediction error. In order to
quantify the prediction error of the proposed models, we define
a metric called Area Deviation Error (ADE) as

ADE =

∫∞
−∞ |Ps,pred.(∆T )− Ps,exp.(∆T )|d∆T∫∞

−∞ Ps,exp.(∆T )d∆T
× 100%,

(26)
where Ps,pred.(∆T ) and Ps,exp.(∆T ) are the predicted and
experimental attack success probabilities, respectively. In other
words, ADE is the ratio of the absolute difference of the
areas under the predicted and experimental attack success
probability curves to the area under the experimental curve.
Hence, a smaller ADE value implies a smaller deviation from
the experimental curve (the ground truth) and better prediction
accuracy. Note that the ADE can be larger than 100%, when
the area under the experimental curve is small.

Evaluation of SOTA IDS analysis. As shown in Fig. 8, we
can see a close match between the predicted and experimental
curves. For a given ∆T , the proposed model provides the
same attack success probability for different n. This is because
our analysis focuses on modeling the normalized identification
error in the first attack batch and its rate of decrease using the
system parameters, which are independent of n. In fact, the
closeness of the curves agrees with the observation that the
SOTA IDS is insensitive to n.

In addition, for messages like 0x0D1 and 0x184, we observe
small discrepancies at the corners of the curves, which may
caused by outliers in collected data. In the meanwhile, the
assumption of linearly decreasing normalized identification
error may also cause the proposed model to overestimate the
attack success probability. We observe that for some messages
with less noise in timestamps, the normalized identification
error of the SOTA IDS may not strictly decrease. In this case,
the error lasts for a longer duration and causes the attack
to be detected at a later time, which could explain why the
experimental attack success probability is smaller than the
predicted value. Improving our formal model for the SOTA
IDS for messages with less noise is left as future work.
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Fig. 8: Experimental versus predicted attack success probabil-
ity curves for the SOTA IDS with different numbers of attack
batches n for different messages. The predicted curves are
closely matched with the experimental curves for all messages.
Note that the proposed model for the SOTA IDS is insensitive
to n, thus providing the same prediction for different n values.

TABLE III: ADE (%) between the predicted and experimental
attack success probability curves for the SOTA and NTP-based
IDSs with different numbers of attack batches.

Msg
ID

SOTA IDS NTP-based IDS
20 40 60 20 40 60

0x0D1 1.5 2.3 3.1 6.1 7.7 6.9
0x185 2.1 2.2 2.2 3.3 4.0 3.8
0x1FC 3.2 3.1 3.1 3.4 3.6 2.8
0x184 2.9 3.8 4.5 5.3 9.3 11.9
0x22A 2.9 2.9 2.9 3.7 3.9 3.9
0x3C9 2.4 2.4 2.4 5.6 5.2 5.1
Mean 2.5 2.8 3.0 4.6 5.6 5.7

Evaluation of NTP-based IDS analysis. As shown in
Fig. 9, we can also see a close agreement in shape between the
predicted and experimental attack success probability curves.
The fact that the attack success probability decreases as n
increases for the NTP-based IDS can also be captured by
the proposed model. Although there are discrepancies due
to outliers, the gap between the predicted and experimental
curves becomes smaller when n is increased from 20 to 60.

Prediction accuracy. As shown in Table III, the prediction
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Fig. 9: Experimental versus predicted attack success proba-
bility curves for the NTP-based IDS with n = 20 and 60
batches of attack data for different messages. The predicted
curves match well in general with the experimental curves for
all messages and have a closer agreement for larger n.

error in terms of ADE is message-dependent for both IDSs.
For the SOTA IDS, the average ADE is within 3.0% for the
SOTA IDS, and it is within 5.7% for the NTP-based IDS. We
also note that there is no explicit relationship between ADE
and n for both IDSs.

VIII. CONCLUSIONS

In this paper, we proposed the cloaking attack and provided
formal analyses of the attack for two clock skew-based IDSs,
i.e., the SOTA IDS and the NTP-based IDS. We incorporated
parameters of the attacker, the detector, and the hardware plat-
form and derived attack success probabilities for both IDSs.
We demonstrated the cloaking attack on hardware testbeds and
validated the proposed models through extensive experiments
using the data collected from the UW EcoCAR testbed. Our
results illustrate the feasibility of developing formal analysis
and models for other variants of CAN used in vehicles and
applications such as computer-integrated manufacturing.
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APPENDIX

A. Proof of Lemma 1

Proof. To compute the mean of e[m], the normalized identifi-
cation error in the first attack batch (Eq. (15)), we first consider
the mean of |Oavg[m]|, the distribution of the absolute value
of the average offset in the m-th batch. Under the assumption
in Eq. (17), we have

E(|Oavg[m]|) =
1

N − 1

N∑
i=2

E[(i− 1)(|µ+ ∆T − µ[m− 1]|)

+ (ηm,i − ηm,1)]

=
N

2
(|µ+ ∆T − µ[m− 1]|). (27)

Now we compute the mean of the third term in Eq. (15). Since
E[am,N ] = E[am,1] + (N − 1)(µ+ ∆T ), we have

E[S[m− 1](t[m− 1] + Tm,0 + am,N − am,1)]

= S[m− 1](t[m− 1] + Tm,0 + (N − 1)(µ+ ∆T ). (28)

Combining Eq. (27) and (28) with Eq. (15) yields (18).
The variance of e[m] from Eq. (15) is

σ2
e = Var

(
1

N − 1

N∑
i=2

(ηm,i − ηm,1)− S[m− 1](ηm,N − ηm,1)

)

=
1

2

(
N − 2S[m− 1]

N − 1
+ 2S2[m− 1]− 2S[m− 1]

)
σ2,

which completes our proof.

B. Proof of Theorem 1

Proof. Let en[k] be the normalized identification error in the
k-th batch when the attack begins in the m-th batch, where
k ≥ m. Let τ be the decreasing rate of en[k]. Then we have
en[k] ≈ en[m] − τ(k −m). For the upper control limit L+,
its maximum is reached at the l-th batch, where l = max{k :
en[k] ≥ κ, k ≥ m} = d(en[m] − κ)/τe + (m − 1). We then
have

L+
max =

l∑
k=m

(en[k]− κ) = (l −m+ 1) · en[m]

− (l −m+ 1)(l −m)

2
τ − (l −m+ 1) · κ.

Simplifying the above equation yields

L+
max =

(en[m]− κ)2

2τ
+
en[m]− κ

2
. (29)

In order for the attack to be undetected, the condition that
L+

max ≤ Γ needs to be met, or equivalently,

(en[m]− κ)2 + τ(en[m]− κ)− 2τ · Γ ≤ 0. (30)

Since en[m] ∼ N
(
µe−µCUSUM
σCUSUM

,
σ2
e

σ2
CUSUM

)
, the probability of

L+
max ≤ Γ is Pr(en[m] ≤ −τ+

√
τ2+8τΓ
2 + κ).

Similarly, for the lower control limit L−, the probability of
L+

min ≤ Γ is Pr(en[m] ≥ −−τ+
√
τ2+8τΓ
2 − κ). Combining

these results yields (19).

C. Proof of Lemma 2

Proof. The law of total probability implies

Pr(α > n|L+[k] = z+, L−[k] = z−)

=

∫ ∞
−∞

Pr(α > n|L+[k] = z+, L−[k] = z−, en[k] = r)fk(r) dr,

and we have

L+[k + 1] =

{
0, r < κ− z+

z+ + r − κ, r ≥ κ− z+ ,

L−[k + 1] =

{
z− − r − κ, r < z− − κ
0, r ≥ z− − κ .

Now, first, suppose that κ−z+ < z−−κ. Then z++z− > 2κ,
and hence by assumption z+ + z− ≥ 2Γ. Thus either z+ ≥ Γ
or z− ≥ Γ, implying that τ = 0 < n.

We can therefore write

gn,k(z+, z−)

=

∫ z−−κ

−∞
Pr(α > n|L+[k] = z+, L−[k] = z−, en[k] = r)fk(r) dr

+

∫ κ−z+

z−−κ
Pr(α > n|L+[k] = z+, L−[k] = z−, en[k] = r)fk(r) dr

+

∫ ∞
κ−z+

Pr(α > n|L+[k] = z+, L−[k] = z−, en[k] = r)fk(r) dr

=

∫ z−−κ

z−−κ−Γ
gn,k+1(0, z− − r − κ)fk(r) dr

+ gn,k+1(0, 0)Pr(en[k] ∈ [z− − κ, κ− z+])

+

∫ κ−z++Γ

κ−z+
gn,k+1(z+ + r − κ, 0)fk(r) dr.

This completes the proof.
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