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Abstract—We present a framework for throughput optimiza-
tion for multipath unicast routing in wireless networks in the
presence of probabilistic jamming. The framework introduces
a statistical characterization into the maximum network flow
problem to compensate for the reduction in network flow due to
the loss of jammed packets. We map the problem of throughput
optimization under probabilistic jamming to that of optimal
investment portfolio selection, treating the network throughput
as the return on financial investments and using a common
portfolio selection framework from financial statistics. Based
on the portfolio selection framework, we present approaches
to maximize expected throughput and to minimize throughput
variance. We include both a detailed example and a simulation
study to illustrate the application of the throughput optimization
framework.

I. INTRODUCTION

One of the most effective denial-of-service (DoS) attacks

[1] on a wireless communication network is jamming. Recent

work has demonstrated that in addition to jamming attacks

targeting the physical layer [2], an intelligent jammer can

formulate an attack by targeting certain link layer and MAC

implementations [3]–[5], link layer error detection and cor-

rection protocols [6], and routing protocols [7] by taking

advantage of protocol details and cross-layer information

leakage. The availability of higher-layer information allows

a jammer to perform an efficient attack, even under the use

of physical layer anti-jamming techniques such as spread-

spectrum communication. Hence, even a resource constrained

jammer can perform such attacks. We note that jammers can

also operate effectively on underwater acoustic networks [8].

Since the primary goal in network communication is to

deliver source data to nodes throughout the network, we are

interested in the problem of maximizing network throughput

in the presence of jamming. When a jammer is present in

the network, jamming attacks which target different layers
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of the network protocol stack have a direct impact on the

performance of the routing protocol and the ability to deliver

data throughout the network. Existing techniques for routing

under jamming provide methods for reaction to jamming

by classifying each receiving node as either jammed or not

jammed. For example, the authors of [5] provide a technique

to estimate and route around the region of the network being

jammed, and the authors of [9] propose an approach to detect

jamming and perform coordinated channel-hopping.

In this work, we propose a method to build on these

approaches for reactive routing by incorporating a statistical

characterization of the jamming attack into the routing proto-

col. Based on our model, using statistical information about

the probabilistic jammer, the source node can introduce bias

into the routing decisions, leading to a preference to route data

through regions of the network that have been jammed less

frequently in the recent past. The use of the available statistics

thus lead to proactive improvement in network throughput.

Our contributions to the problem of optimizing network

throughput for multipath unicast routing in the presence of

probabilistic jamming are summarized as follows.

• We incorporate the effect of probabilistic jamming into

the network flow problem thus compensating for the

random loss of packets due to jamming.

• Based on the network flow formulation, we present

a framework for throughput optimization for multipath

routing under probabilistic jamming, making use of port-

folio theory from financial statistics [10], [11].

• We provide examples and simulation to illustrate the

optimal achievable throughput using different statistical

utility functions based on the expected throughput and

the throughput variance to capture the network dynamics

under probabilistic jamming.

The remainder of this paper is organized as follows. Sec-

tion II states assumptions about the network model and the

jamming attack. Section III formulates a new framework for

routing optimization under jamming. Section IV provides a

detailed example to illustrate the use of the optimization

framework. Section V evaluates the performance of the pro-

posed approach via simulation. In Section VI, we summarize

our results.



II. NETWORK MODEL

The wireless network consists of a set N of nodes with

pairwise communication represented by a directed graph G =
(N , E) such that a pair (i, j) is in E if and only if node j can

receive packets directly from node i. We assume that all node-

to-node communication is unicast, i.e. each packet transmitted

by a node i ∈ N is intended for a unique j ∈ N with (i, j) ∈
E . For each (i, j) ∈ E , we denote the maximum achievable

data rate, or capacity, of the link in the absence of jamming as

cij . At a given instant in time, a source node s ∈ N generates

data to be routed to a destination node d ∈ N . The decisions

used to route data from a given source s to the destination d

at a given time instant depend on the statistical model used to

characterize the active jamming attack.

In this work, we assume that the network nodes have no

information about the specific jamming attack being performed

by the adversary. We instead model the effect of jamming

by defining the probability xj ∈ [0, 1] that each receiving

node j will correctly receive a transmitted packet. Due to

the network’s uncertainty in the adversary’s actions, each

probability xj can itself be characterized as a random variable

using statistics from past network communication. We denote

the expected value and variance of each random variable xj

as µj and σ2
j , respectively.

We assume that the source node s is able to collect

information about the end-to-end routing topology, including

link capacities and statistics (e.g. mean, variance, confidence

intervals) on each of the random probabilities xj for relevant

nodes j. We thus formulate the optimal throughput routing

problem with respect to the flow allocation by the source s

using this available information.

III. NETWORK THROUGHPUT OPTIMIZATION

FRAMEWORK

In this section, we present a framework for network through-

put optimization under active jamming attacks. We first de-

velop the constraints imposed on the routing solutions and then

propose a variety of utility functions to determine optimality

of solutions.

A. Optimization Constraints

In order to define a set of constraints for the throughput

optimization problem, we must consider both the link capacity

constraints in the wireless network and the effect of the

adversarial jamming attack. Let fij denote the total flow rate

transmitted onto the link (i, j) ∈ E by node i ∈ N . Given the

fixed network topology and link capacities cij , any network

flow solution must satisfy the capacity constraints

0 ≤ fij ≤ cij for all (i, j) ∈ E . (1)

However, the total flow rate received by node j ∈ N from the

link (i, j) may not be equal to fij due to the jamming attack.

In particular, the received rate by j is reduced by the random

fraction xj . The total flow intended for each receiving node

j ∈ N is randomly reduced due to the jamming adversary,

implying that flow is not perfectly conserved throughout the

network. To incorporate the random loss of data into the

network flow model, we formulate the problem with respect to

the flow rate sent along each routing path from s to d instead

of the rate over each link (i, j).
Let P = {p1, . . . , pL} denote the collection of paths used

to route packets from s to d. Each path p` ∈ P is given by a

subset p` ⊆ E of directed links in the network and is assumed

to be loop-free. We let φ` denote the intended flow rate along

each path p` ∈ P as indicated by the source node s. The total

data rate of the source s is thus given by the summation of

φ` over ` = 1, . . . , L. Since the total flow fij on each edge

(i, j) is equal to the summation of path flows φ` for each path

p` traversing the edge, the capacity constraint in (1) can be

written as

0 ≤
∑

`:(i,j)∈p`

φ` ≤ cij for all (i, j) ∈ E . (2)

Letting φ denote the L× 1 column vector of rates φ`, we see

that this constraint is linear in the variable φ.

In traversing the link (i, j) ∈ E , the data rate r transmitted

by node i is reduced to a received rate of xjr at node j. Hence,

the achieved throughput along the path p` from s to d is equal

to φ`

∏

(i,j)∈p`
xj . For each ` = 1, . . . , L, we thus define the

fraction of intended flow along p` that successfully reaches d

as the random fraction y` given by

y` =
∏

(i,j)∈p`

xj . (3)

We denote the expected value and variance of each variable

y` as γ` and ω2
` , respectively. Due to the fact that a pair of

paths in P may visit a common receiving node j ∈ N , the path

random variables y` may be correlated even if the node random

variables xj are mutually independent. Hence, in addition to

the variance ω2
` of each random variable y`, we define the L×

L covariance matrix Ω to characterize the correlation among

paths in P .

We next provide a generalization of the link capacity

constraint in (2) to incorporate both the link capacities c

and the jamming statistics of the random variables x. This

generalization is motivated by noting that jamming effectively

reduces the data flow rate along each path p` as the distance

from the source s increases. Hence, if the data flow rate at

the source s is chosen according to (2), the actual data flow

rate fij on each edge (i, j) ∈ E may not be tightly bound by

the capacity cij . Instead, we are interested in a formulation

that proactively adjusts the sending rate along each path p`

to compensate for the data losses due to jamming at down-

stream receivers and to allocate bandwidth to flows in regard

to the statistical behavior of the residual flow rate. If a down-

stream bottleneck link exists, instead of limiting the sending

data rate to match the capacity of the bottleneck link, the data

rate can be increased so the residual flow over the bottleneck

is approximately equal to its capacity, thereby compensating

for the data rate reduction due to jamming.

We thus generalize (2) by replacing the flow fij on each link

(i, j) by a statistic Gij which characterizes the behavior of the



data flow on the link. The function Gij takes the corresponding

entries of the flow vector φ and the jamming random variables

x as parameters. The generalized capacity constraint is thus

given by

0 ≤ Gij(φ, x) ≤ cij for all (i, j) ∈ E . (4)

By inspection, we see that the original link capacity constraint

in (2) is included as a special case of this formulation.

In this paper, we define the statistic Gij as the expected

residual flow on the edge (i, j) after packet loss due to jam-

ming, capturing the average-case effect of the active jamming

attack. The average-case capacity constraint is obtained by

defining the expected residual flow Gij(φ, x) as

Gij(φ, x) =
∑

`:(i,j)∈p`

φ`E









∏

k:p` visits
k before j

xk









, (5)

where E[·] denotes expected value with respect to x. Due to

the use of averaging in this constraint, nodes in the network

must be allowed to buffer excess data, thereby introducing

delay into the data flow. We do not address the effect of such

delay, leaving it as future work.

B. Utility Functions Based on Portfolio Selection Theory

Given the constraint statistic Gij discussed in Section III-A,

the remaining part of the optimization formulation is the

choice of a utility function to be maximized. A statistical

utility function U(φ) to be maximized can be any function

of the assigned path flow rates φ and random parameters x.

Since the role of routing is to deliver data to destination nodes,

we consider utility functions related to the total data rate, or

throughput, delivered to d ∈ N as a function of the flow

assignment φ and the jamming parameters x. The throughput

T (y) as a function of the path random variables y is equal

to the vector inner product φT y. Letting γ denote the L × 1
vector of means γ` of the random variables y`, we use portfolio

selection theory to define utility functions using the expected

throughput φT γ and the throughput variance φT Ωφ.

1) Maximum Expected Throughput: As a non-deterministic

extension of the maximum flow problem, we first define the

utility function UT (φ) as the expected throughput UT (φ) =
φT γ achieved by the allocation of flow rates φ. This maxi-

mum expected throughput, or maxT, formulation yields the

following optimization problem.

Maximum Expected Throughput (maxT)

max
φ

UT (φ) = φT γ

s.t. 0 ≤ Gij(φ, x) ≤ cij for all (i, j) ∈ E ,
φ ≥ 0.

The maximum expected throughput formulation estimates

the maximum achievable throughput for a given routing topol-

ogy. However, the objective function UT (φ) does not capture

the degree of variation in the throughput, as indicated by the

variance φT Ωφ. If this variance is high, the uncertainty in the

estimated maximum achievable throughput is high. In order to

include the throughput variance in the problem formulation,

we use portfolio selection theory [10], [11] from financial

statistics, in which variance is interpreted as financial risk.

2) Minimum Throughput Variance with Bounded Mean:

A common formulation to evaluate the risk of a financial

allocation to correlated assets is to use Markowitz’s portfolio

selection theory [10], [11]. The goal is to minimize the

variance subject to a constraint on the expected value, leading

to the analogous minimum throughput variance, or minV,

formulation. In this throughput optimization formulation, the

set P of routing paths is treated as a portfolio of assets, and the

flow allocation vector φ is treated as the financial allocation

to the assets in the portfolio. The achieved throughput is

interpreted as the investment return. The utility function UV (φ)
to be maximized is thus given by the negative variance

UV (φ) = −φT Ωφ. (6)

To prevent the trivial solution φ = 0 with minimum variance

0, an additional lower bound constraint is imposed on the

expected throughput, given by

φT γ ≥ Tmin > 0. (7)

The resulting optimal throughput routing formulation is thus

given by the solution to the following optimization problem.

Minimum Throughput Variance (minV)

max
φ

UV (φ) = −φT Ωφ

s.t. φT γ ≥ Tmin,
0 ≤ Gij(φ, x) ≤ cij for all (i, j) ∈ E ,
φ ≥ 0.

As an alternate formulation, the fixed lower bound Tmin

can be replaced by a variable expected throughput that is

simultaneously optimized with the throughput variance as

follows.

3) Optimal Trade-off of Throughput Mean and Variance:

Simultaneous maximization of the expected throughput and

minimization of the throughput variance can be achieved by

the following alternate formulation of the Markowitz portfolio

selection problem. Instead of forcing the expected throughput

to be lower-bounded by Tmin, we trade the utility obtained by

maximizing the expected throughput with that of minimizing

the throughput variance using a trade-off parameter η. The

utility function Uη(φ) which realizes this mean-variance trade-

off is given by

Uη(φ) = ηφT γ − φT Ωφ. (8)

By adjusting the trade-off parameter η, the weight on each

of the expected throughput and throughput variance can be

changed. This mean-variance throughput trade-off, or MV-

trade, formulation for a given parameter η is thus given by

the following optimization problem.

Mean-Variance Throughput Trade-off (MVtrade)

max
φ

Uη(φ) = ηφT γ − φT Ωφ

s.t. 0 ≤ Gij(φ, x) ≤ cij for all (i, j) ∈ E ,
φ ≥ 0.
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Fig. 1. The example network is illustrated. The source node is labeled
with identifier s, and each receiving node j ∈ N is labeled j : (µj , σ2

j ),

where µj and σ2

j are the mean and variance of the beta random variable xj

characterizing the jamming statistics of node j.

For the constraint statistic Gij given by (5) for each link

(i, j) ∈ E , each of the maximum expected throughput,

minimum throughput variance, and mean-variance throughput

trade-off problems can be solved in polynomial time using

interior-point methods for linear and quadratic programming

[11]. In general, the solutions can be found in polynomial time

as long as Gij is linear in the optimization variable φ.

IV. EXAMPLE

In this section, we provide an example to illustrate the ap-

plication of the throughput optimization framework presented

in Section III.

The example network is given in Fig. 1, with the label on

each link (i, j) indicating the link capacity cij . The source

node is labeled with identifier s, and each receiving node is

labeled with an identifier j ∈ N and the mean µj and variance

σ2
j of the jamming parameter xj . In this example, we assume

that each jamming parameter xj is distributed according to

an independent beta random variable [12] with parameters

(αj , βj) related to µj and σ2
j as

µj =
αj

αj + βj

(9)

σ2
j =

αjβj

(αj + βj + 1)(αj + βj)2
. (10)

For example, node 1 with µ1 = 0.9 and σ2
1 = 0.002 has

corresponding parameters α1 = 39.6 and β1 = 4.4.

In this example, we consider the set P of L = 4 paths. For

each path p` ∈ P , we associate the random variable y` given

by (3) as the product of corresponding beta random variables

xj . Assuming the variables xj for j ∈ N are independent, we

compute the corresponding means γ` and variances ω2
` of y`.

The paths in P and the corresponding γ` and ω2
` values are

as follows.

Path Nodes Included γ` ω2

`

p1 s, 2, 4, d 0.4590 0.0017
p2 s, 1, 5, d 0.6075 0.0028
p3 s, 2, 3, 5, d 0.3240 0.0011
p4 s, 1, 3, 4, d 0.5508 0.0031

Each off-diagonal covariance in Ω can be computed from

means µj and variances σ2
j based on the common nodes in

the two corresponding paths. For example, paths p1 and p3

have nodes 2 and d in common and nodes 3, 4, and 5 not in

common, so the covariance ω13 = E[y1y3] − E[y1]E[y3] is

given by ω13 = µ3µ4µ5(σ
2
2 + µ2

2)(σ
2
d + µ2

d) − γ1γ3.

By inspection of the network topology in Fig. 1, we see that

in the absence of jamming, a total network flow of φ1 + φ2 +
φ3 + φ4 = 2 units can be achieved by choosing φ1 + φ3 =
φ2 + φ4 = 1 with φ1 ≤ 0.6 and φ2 ≤ 0.6. This baseline

flow allocation is thus compared to that resulting from each

optimization formulation using the average-case function G
given by (5). We compare the resulting flow allocations for

the maximum expected throughput (maxT) formulation, the

minimum throughput variance (minV) formulation, and the

mean-variance throughput trade-off (MVtrade) formulation.

For each of the three optimization problems, we determine

the optimal flow allocation vector φ and compute the expected

throughput E[T (x)] and the throughput variance V [T (x)].
The following results illustrate the maxT results, three minV

results for Tmin = 0.6, 0.8, 1.0, and three MVtrade results for

η = 10−4, 10−3, 10−2.

Formulation E[T (x)] V [T (x)]
maxT 1.048 5.82 × 10−3

minV, Tmin = 0.6 0.600 1.85 × 10−3

minV, Tmin = 0.8 0.800 3.29 × 10−3

minV, Tmin = 1.0 1.000 5.25 × 10−3

MVtrade, η = 10−4 0.019 1.94 × 10−6

MVtrade, η = 10−3 0.194 1.94 × 10−4

MVtrade, η = 10−2 1.048 5.82 × 10−3

From the given results, we make the following observations.

The maxT formulation provides an upper bound on the

achievable expected throughput under jamming. The minV

formulation yields expected throughput equal to the lower

bound Tmin but with a significant reduction in throughput

variance compared to the maxT formulation. As the bound

Tmin increases toward the optimal maxT result, the variance

increases correspondingly. The MVtrade formulation balances

the trade-off between throughput mean and variance as a

function of the bias parameter η. For small values of η,

the MVtrade formulation primarily minimizes the variance,

leading to low mean throughput. As η increases, the utility is

weighted more heavily on the mean, so the result approaches

that of the maxT formulation.

V. PERFORMANCE EVALUATION

In this section, we perform a simulation study to evaluate the

performance of the optimal throughput routing formulations

proposed in Section III. In this simulation study, we fix the

network topology with |N | = 25 nodes as given in Fig. 2. In

the figure, the network topology is illustrated by including a

dotted line to represent each edge (i, j) ∈ E , and all edges

have the same capacity of 0.1 units. The set P consists of

L = 10 paths chosen as a subset of the possible paths joining

the source node s and destination node d.

For each of the optimization problems presented in Sec-

tion III, we simulate 500 trials, each corresponding to a

different set of jamming statistics at each node j ∈ N . As

in Section IV, we model the jamming parameter xj for each
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Fig. 2. The simulation study uses the given network of |N | = 25 nodes
with L = 10 paths. The simulation results reflect variation in the jamming
statistics at each node to reflect the achievable throughput profile of the fixed
network.
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Fig. 3. The maxT formulation is evaluated by comparing the expected
throughput and throughput variance for the network in Fig. 2. Each data point
represents a different set of jamming statistics xj for j ∈ N .

node j as a beta random variable with mean µj and variance

σ2
j . The jamming parameter y` for each path p` ∈ P is

modeled as the corresponding random variable as described

in Section IV. The capacity constraints in our simulation use

the statistic Gij given by (5). The performance of the maxT

formulation is illustrated in Fig. 3, comparing the achievable

throughput means and variances. We see that the variance

tends to increase with the mean, clearly illustrating the trade-

off between throughput mean and variance. We next evaluated

the performance of the minV formulation using the additional

lower bound Tmin on the expected throughput. The result of

this problem formulation is that the lower bound is achieved

with equality and the throughput variance is driven nearly to

0, similar to the results in Section IV. Due to page limitations,

supporting figures are not included.

We evaluate the performance of the MVtrade formulation

for several trade-off parameters η to vary the balance be-

tween maximum mean throughput and minimum throughput

variance. From the figure, we see that the optimal solution

for each set of jamming statistics falls on a line with slope

inversely proportional to η. This result illustrates the trade-off

between the expected throughput and the throughput variance

and shows that the trade-offs are easily quantifiable for this

problem formulation.

0 1 2 3 4 5
x 10−5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Throughput Variance

Ex
pe

ct
ed

 T
hr

ou
gh

pu
t

Mean−Variance Throughput Trade−off

η = 0.0004
η = 0.0006
η = 0.0008
η = 0.0010

Fig. 4. The MVtrade formulation is evaluated by comparing the expected
throughput and throughput variance for the network in Fig. 2. Each curve
reflects a different value of η as indicated.

VI. CONCLUSION

In this work, we proposed a framework for throughput

optimization in multipath unicast routing in the presence of

an adaptive jammer. We incorporated a statistical characteri-

zation of the jamming attack into the maximum network flow

problem to compensate for expected losses. This work allows

for proactive routing under jamming by incorporating the

statistics of the past jamming events into route selection. We

made use of portfolio selection theory from financial statistics,

treating the network throughput as the return on a financial

investment portfolio and derived utility functions based on the

throughput mean and variance. Our future work will extend

the formulation to a more general network routing model.
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