
Safety-Critical Control Synthesis for Unknown Sampled-Data Systems via Control
Barrier Functions

Luyao Niu, Hongchao Zhang, and Andrew Clark

Abstract— As the complexity of control systems increases,
safety becomes an increasingly important property since safety
violations can damage the plant and put the system operator in
danger. When the system dynamics are unknown, safety-critical
synthesis becomes more challenging. Additionally, modern sys-
tems are controlled digitally and hence behave as sampled-data
systems, i.e., the system dynamics evolve continuously while the
control input is applied at discrete time steps. In this paper,
we study the problem of control synthesis for safety-critical
sampled-data systems with unknown dynamics. We overcome
the challenges introduced by sampled-data implementation and
unknown dynamics by constructing a set of control barrier
function (CBF)-based constraints. By satisfying the constructed
CBF constraint at each sampling time, we guarantee the
unknown sampled-data system is safe for all time. We formulate
a non-convex program to solve for the control signal at each
sampling time. We decompose the non-convex program into
two convex sub-problems. We illustrate the proposed approach
using a numerical case study.

I. INTRODUCTION

Safety-critical cyber-physical systems (CPSs) are found
in applications such as autonomous vehicles and advanced
manufacturing. The safety property is typically formulated
as forward invariance of a given safe set. Safety violations
could lead to severe damage to the controlled plant or danger
to human operators [1]. Control synthesis for safety-critical
CPSs has been extensively studied in existing literature when
the models of the CPSs are known [2]–[4].

Several factors may cause safety violations of the plant
even when the nominal controller is designed to be safe. One
challenge is raised by the digital/discrete implementation of a
continuous-time system with continuous input. In a practical
digital implementation, the system state is only observable
at each sampling time, and the control signal is applied in a
zero-order hold (ZOH) manner during each sampling period.
That is, the system is implemented as a sampled-data system.
Another challenge is that the system models used to design
controllers are not perfect in practice, and thus there exist
uncertainties in the system model. Due to these uncertainties,
the designed controller may fail to guarantee safety even if
safety is guaranteed for the nominal plant.

These two challenges have been studied separately. Safety-
critical control synthesis has been studied for sampled-
data system with known dynamics [5]–[7]. For unmodeled
systems with continuous-time or discrete-time dynamics,
safety-critical control synthesis has been studied by assuming
the existence of a backup controller that ensures safety of

L. Niu, H. Zhang, and A. Clark are with the Department of Electrical
and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA
01609 USA. {lniu,hzhang9,aclark}@wpi.edu

the unknown system [8]–[10], or a well-calibrated model,
e.g., a model learned using a Gaussian process [11]–[13].
Although high-probability safety guarantees can be achieved
by the methods described in [11]–[13], they suffer from a
tradeoff between overly conservative learned model when
faced with large uncertainty and the potential safety violation
when failing to capture the true dynamics. To the best of our
knowledge, jointly addressing these two challenges without
prior knowledge of a safe backup controller or a well-
calibrated model has not been studied.

In this paper, we study safety-critical control synthesis for
a sampled-data system with unknown dynamics. We address
the challenges introduced due to the sampled-data system
and unknown dynamics by developing a set control barrier
function (CBF) constraints at each sampling time. A CBF
constraint is an inequality that is imposed on the control
signal, whose satisfaction implies forward invariance. We
estimate the constructed CBF constraints by bounding the
reachable set during each sampling period and calculating
an interval that contains the system dynamics, leveraging the
Lipschitz continuity assumption on the system dynamics. By
satisfying these CBF constraints at each sampling time, the
system is guaranteed to be safe for all time. To summarize,
this paper makes the following contributions.

• We construct a CBF constraint for the unknown
sampled-data system. We provide a sufficient condition
for satisfying the CBF constraint by bounding the set
of reachable states for each sampling period and calcu-
lating an interval which contains the unknown system
dynamics.

• We formulate a non-convex optimization problem sub-
ject to the constructed CBF constraints to calculate the
ZOH control signal for each sampling period. We solve
the non-convex optimization problem by proposing a
two-stage approach which only involves convex pro-
grams.

• We prove that the synthesized controller ensures the
system is safe with respect to the given safe set.

• We validate our proposed framework using a numerical
case study on a DC motor. We show that our proposed
approach ensures the safety of the DC motor.

The remainder of this paper is organized as follows.
We review the related work and preliminary background in
Section II and Section III, respectively. The system model
and problem formulation are presented in Section IV. We
give the solution approach in Section V, and illustrate the
proposed approach using a numerical case study in Section



VI. Section VII concludes this paper.

II. RELATED WORK

Multiple solution techniques have been proposed for
safety-critical control synthesis for CPSs with known dynam-
ics, including Hamilton-Jacobi-Bellman-Isaacs (HJI) equa-
tion [14], mixed-integer program [15], and control barrier
function (CBF) and control Lyapunov function (CLF) -based
methodologies [2]–[4]. The CBF-based methods formulate
a quadratic program to calculate the controller, assuming
the system state remains unchanged during the discrete time
interval.

For sampled-data systems, CBF-based approaches have
shown great success [5]–[7]. The authors of [5] and [7] focus
on sampled-data systems with known dynamics. In [6], a
sampled-data system with an additive disturbance is studied.
In this work, we consider a sampled-data system with
unknown dynamics. CBF-based methods normally require
the knowledge of the system dynamics to calculate the CBF
constraint. The unknown dynamics lead to a scenario where
calculating the CBF constraints is not feasible, and thus
makes the approaches proposed in [5]–[7] not applicable.

Learning-based control algorithms have been proposed to
address systems that contain unknown uncertainties. Recent
works have demonstrated the success of CBF- and/or CLF-
based method along with learning algorithms [10], [11], [16],
[17]. This category of approaches leverages the forward in-
variance and stability properties provided by barrier functions
and Lyapunov functions, respectively. However, they assume
that there exists a well-calibrated model of the unknown
system [13] and a safe backup controller to recover from
failure [8]. Moreover, CBF-based learning approaches have
to handle the tradeoff between the overly constrained learned
model and failure to capture the true dynamics.

Reachable set learning aims at learning the set of reachable
states of the system so as to compute a controller that
gives no intersection between the reachable states and the
unsafe region [18]. The computation of reachable sets relies
on numerically solving HJI equations, which incurs high
computational complexity and poor scalability [19], [20]. A
Gaussian Process based reachability analysis is proposed in
[21] to compute the reachable set. Compared with forward
reachable set computation, region-of-attraction focuses on
computing the set of states starting from which the system is
guaranteed to be safe [13]. These learning-based approaches
focus on either continuous-time or discrete-time systems. In
this work, we study safety-critical control synthesis for the
unknown sampled-data system.

III. PRELIMINARY BACKGROUND

A. Control Barrier Function

A continuous function α : [0, a) 7→ [0,∞) belongs to class
K if it is strictly increasing and α(0) = 0. A continuous
function α : [−b, a) 7→ (−∞,∞) is said to belong to
extended class K if it is strictly increasing and α(0) = 0
for some a, b > 0.

Consider a continuous-time control-affine system

ẋt = f(xt) + g(xt)ut (1)

where xt ∈ X ⊆ Rn is the system state and ut ∈ U ⊆
Rm is input provided by the controller. Vector-valued and
matrix-valued functions f(xt) and g(xt) are of appropriate
dimensions. Let a safe set C be defined as

C = {x ∈ X : h(x) ≥ 0}, (2)

where h : X 7→ R is a continuously differentiable function.
We say system (1) is safe with respect to C if xt ∈ C for all
time t ≥ 0.

CBF-based approaches have been used to guarantee safety
of system (1) with respect to safe set C. We give the definition
of zeroing CBF as follows.

Definition 1 (Zeroing CBF (ZCBF) [2]). Consider a dy-
namical system (1) and a continuously differentiable function
h : X 7→ R. If there exists a locally Lipschitz extended class
K function α such that for all x ∈ X the following inequality
holds

sup
u∈U

{
∂h(x)

∂x
f(x) +

∂h(x)

∂x
g(x)u+ α(h(x))

}
≥ 0,

then function h is a ZCBF.

The safety guarantee provided by ZCBF is presented as
follows.

Theorem 1 ( [2]). Given a dynamical system (1) and a safe
set (2) defined by some continuously differentiable function
h : X 7→ R, if h is a ZCBF defined on X , then C is forward
invariant.

Using Theorem 1, one can solve for the controller at each
time using a quadratic program [2]

min
u

u>R(x)u+Q(x)>u (3a)

s.t.
∂h(x)

∂x
f(x) +

∂h(x)

∂x
g(x)u+ α(h(x)) ≥ 0 (3b)

u ∈ U (3c)

where R(x) ∈ Rm is a positive definite matrix and Q(x) ∈
Rm.

B. Notations

Let x be a vector and f(x) be a vector-valued function,
we use xj and fj(x) to denote their j-th component, re-
spectively. Let A be a matrix. We use Ai,j to denote its
element at i-th row and j-th column. Let xt be a vector
at time t. We use xt,j to denote the j-th component of
xt. Comparisons between vectors are implemented element-
wise. Bold symbols are used to represent intervals.

IV. PROBLEM FORMULATION

Consider a continuous-time control-affine system in the
form of (1). The system contains uncertainties and hence
f(xt) and g(xt) are unknown. We define a feedback con-
troller µ : X 7→ U to be a function that maps the system
state to a control input. Given the current system state xt at



time t and a feedback controller µ, we denote the system
state at time t′ as ϕt

′
(xt, µ). The system is given a safe set

as defined in (2).
We consider the sampled-data implementation of system

(1). That is, the system is sampled using a sampling period
∆t. Only the system states xz∆t at the sampling time are
known, where z = 0, 1, . . .. At each sampling time, a zero-
order hold (ZOH) feedback controller µ(xz∆t) is applied
to system (1). In other words, ut = µ(xz∆t) for all t ∈
[z∆t, (z + 1)∆t).

We have a data set of system (1) as side information. Let
K ∈ N and K ≥ 1. We denote a finite set of K samples
of state-input pairs as RK = {(xtk , utk , xtk+1

)}Kk=1 where
xtk+1

= ϕtk+1(xtk , µ). Here µ represents a zero-order hold
(ZOH) input ut = utk for all time t ∈ [tk, tk+1). We assume
that h(xtk) ≥ 0 for all k = 1, . . . ,K.

In the following, we formally state our assumptions.

Assumption 1. We assume that functions fj(x) and gj,s(x)
are Lipschitz continuous with Lipschitz constants Lfj and
Lgj,s , respectively, for all j = 1, . . . , n and s = 1, . . . ,m.
The Lipschitz constants are known.

Assumption 2. We assume that the safe set C and control
input set U are compact. Additionally, control input set U is
convex.

The problem studied in this work is as follows.

Problem 1. Given a finite set of samples RK =
{(xtk , utk)}Kk=1 for some K ∈ N generated by implementing
a given control input utk for all time t ∈ [tk, tk+1) to system
(1) whose dynamics are unknown, synthesize a ZOH feedback
controller µ such that system (1) is safe with respect to set
C = {x : h(x) ≥ 0}.

V. SOLUTION APPROACH

Our solution approach leverages Theorem 1 to guarantee
safety of the system. We first construct a CBF constraint
for the unknown sampled-data system to ensure the safety.
Then we calculate a bound for the unknown system dynamics
to evaluate the constructed CBF constraint. Finally, we
formulate an optimization problem to solve for the control
signal at each sample time.

A. Construction of CBF Constraints for Unknown Systems

When the system model is known and the system state
is observable for all time t ≥ 0, safety-critical synthesis
can be achieved efficiently using quadratic program (3). We
consider the sampled-data system with unknown dynamics,
which makes it difficult to evaluate the constraint given
in (3b). In this subsection, we construct a CBF constraint
that can be evaluated at each sampling time for unknown
sampled-data system to guarantee that (3b) holds for all time
t ∈ [z∆t, (z + 1)∆t) for each sampling period z = 0, 1, . . .,
and hence guarantee system safety.

Inspired by [6], for any t ∈ [z∆t, (z + 1)∆t), we define

e(xt, xz∆t, uz∆t) =
∂h(xz∆t)

∂x
[f(xz∆t) + g(xz∆t)uz∆t]

+α(h(xz∆t))−
∂h(xt)

∂x
[f(xt)−g(xt), uz∆t]−α(h(xt)).

(4)

The definition given in (4) models the difference between the
CBF constraints evaluated at states xz∆t and xt when control
input uz∆t is applied. Given (4), we have the following
relation:

∂h(xt)

∂x
f(xt) +

∂h(xt)

∂x
g(xt)ut + α(h(xt))

=
∂h(xz∆t)

∂x
f(xz∆t) +

∂h(xz∆t)

∂x
g(xz∆t)uz∆t

+ α(h(xz∆t))− e(xt, xz∆t, uz∆t) (5a)

≥∂h(xz∆t)

∂x
f(xz∆t) +

∂h(xz∆t)

∂x
g(xz∆t)uz∆t

+ α(h(xz∆t))− max
xt,xz∆t,uz∆t

|e(xt, xz∆t, uz∆t)| (5b)

If we can guarantee that the right-hand side of (5) is non-
negative, then safety of system (1) holds by Theorem 1. We
define the following quantities:

θ(u) =

√√√√ n∑
j=1

(
Lfj +

m∑
s=1

Lgj,s |us|

)2

, Θ = max
u∈U

θ(u).

(6)
The existence of Θ is guaranteed by Assumption 2. In
the following, we bound maxxt,xz∆t,uz∆t |e(xt, xz∆t, uz∆t)|
from above to calculate a lower bound for (5).

Lemma 1. Let Lα and Lh be the Lipschitz constants of
functions α and h, respectively. Let Θ be defined as in (6).
Then for any given xz∆t, xt, and uz∆t, we have

|e(xt, xz∆t, uz∆t)| ≤ (LhΘ + Lα)‖xz∆t − xt‖2
+ 2Lh‖f(xz∆t) + g(xz∆t)uz∆t‖2. (7)

Proof. We bound |e(xt, xz∆t, uz∆t)| via

|e(xt, xz∆t, uz∆t)|

=
∣∣∣∂h(xz∆t)

∂x
[f(xz∆t) + g(xz∆t)uz∆t] + α(h(xz∆t))

− ∂h(xt)

∂x
[f(xt)− g(xt)uz∆t]− α(h(xt))

∣∣∣ (8a)

=
∣∣∣∂h(xz∆t)

∂x
[f(xz∆t) + g(xz∆t)uz∆t]

− ∂h(xt)

∂x
[f(xz∆t) + g(xz∆t)uz∆t] +

∂h(xt)

∂x
[f(xz∆t)

+ g(xz∆t)uz∆t]−
∂h(xt)

∂x
[f(xt) + g(xt)uz∆t]

+ α(h(xz∆t))− α(h(xt))
∣∣∣ (8b)

≤
∣∣∣ (∂h(xz∆t)

∂x
− ∂h(xt)

∂x

)
[f(xz∆t) + g(xz∆t)uz∆t]

∣∣∣
+
∣∣∣∂h(xt)

∂x
[f(xz∆t) + g(xz∆t)uz∆t − f(xt)− g(xt)uz∆t]

∣∣∣
+ |α(h(xz∆t))− α(h(xt))| (8c)



where (8a) holds by definition given in (4), (8b) holds by
adding and subtracting ∂h(xt)

∂x [f(xz∆t) + g(xz∆t)uz∆t], and
(8c) holds by triangle inequality.

Since function h is continuously differentiable, we have
that ‖∂h(x)

∂x ‖ ≤ Lh, where Lh is the Lipschitz constant of h.
Hence∣∣∣ (∂h(xz∆t)

∂x
− ∂h(xt)

∂x

)
[f(xz∆t) + g(xz∆t)uz∆t]

∣∣∣
≤ 2Lh‖f(xz∆t) + g(xz∆t)uz∆t‖2. (9)

By the boundedness of ∂h(x)
∂x and Proposition 3 in the

Appendix, we have that∣∣∣∂h(xt)

∂x
[f(xz∆t) + g(xz∆t)uz∆t − f(xt)− g(xt)uz∆t]

∣∣∣
≤ LhΘ‖xz∆t − xt‖2. (10)

Due to Lipschitz continuity of α(·), we have that

|α(h(xz∆t))− α(h(xt))| ≤ Lα‖xz∆t − xt‖2. (11)

Substituting (9) - (11) into (8c) yields the lemma.

Using Lemma 1, we can construct a CBF constraint as

∂h(xz∆t)

∂x
f(xz∆t) +

∂h(xz∆t)

∂x
g(xz∆t)uz∆t

+ α(h(xz∆t))− (LhΘ + Lα)‖xz∆t − xt‖2
− 2Lh‖f(xz∆t) + g(xz∆t)uz∆t‖2 ≥ 0. (12)

Using (5), we have that if (12) holds, then Theorem 1
holds for all t ∈ [z∆t, (z + 1)∆t). However, since the
system is unknown, we cannot compute xt and ‖f(xz∆t) +
g(xz∆t)uz∆t‖2, and thus we cannot calculate constraint (12).
In the subsequent subsection, we address this challenge.

B. Sufficient Condition for Satisfying CBF Constraint (12)

Since we consider sampled-data systems, only system
states at time z∆t with z = 0, 1, . . . are observable. Hence,
xt in (12) is not known. Moreover, the term ‖f(xz∆t) +
g(xz∆t)uz∆t‖2 is not known since the system is unknown.
In this subsection, we present how to estimate xt and
‖f(xz∆t)+g(xz∆t)uz∆t‖2 to calculate the constructed CBF
constraint given in (12).

1) Estimate System State xt During Sampling Period:
Although it is impractical to forward integrate the unknown
dynamics to calculate xt, we can bound ‖xz∆t−xt‖2. Using
such bound and the observed system state xz∆t, we can
bound xt during each sampling period. We define

β = sup
x∈C,u∈U

(‖f(x) + g(x)u‖). (13)

The existence of β is guaranteed by Assumption 2. We can
now bound ‖xz∆t − xt‖2 using the following proposition.

Proposition 1. Let xt ∈ X and µ be a controller that
specifies the control signal ut applied to system (1) for each
time t ∈ [T, T + ∆t]. We have that∥∥ϕt(xt, µ)− ϕT (xt, µ)

∥∥
2
≤ ‖β‖2

Θ
(eΘ∆t − 1), (14)

where Θ is given in (6), and β is given in (13).

Proof. By definition of ϕt(x, µ), we have that∥∥ϕt(xt, µ)− ϕT (xt, µ)
∥∥

2

=
∥∥∥ ∫ t

T

(f(xτ ) + g(xτ )uτ ) dτ
∥∥∥

2
(15a)

≤
∥∥∥ ∫ t

T

{f(xτ ) + g(xτ )uτ − f(xT )− g(xT )uτ} dτ
∥∥∥

2

+

∥∥∥∥∫ t

T

(f(xT ) + g(xT )uτ ) dτ
∥∥∥∥

2

(15b)

≤
∫ t

T

θ(uτ )‖xτ − xT ‖2 dτ + ‖β‖2(t− T ). (15c)

where (15a) holds by definition of ϕt(xt, µ), (15b) holds by
triangle inequality, and (15c) holds by Proposition 3 in the
Appendix and (13).

Applying Grönwall’s inequality [22] to (15) yields that∥∥ϕt(xt, µ)− ϕT (xt, µ)
∥∥

2

≤
∫ t

T

θ(uτ )‖xτ − xT ‖2 dτ + ‖β‖2(t− T ) (16a)

≤‖β‖2(t− T )

+

∫ t

T

‖β‖2(t− T )θ(uτ ) exp

(∫ t

τ

θ(ul) dl
)

dτ (16b)

≤‖β‖2(t− T ) + ‖β‖2Θ

∫ t

T

(τ − T )eΘ(t−τ) dτ (16c)

≤‖β‖2
Θ

(eΘ∆t − 1) (16d)

where (16a) holds by (15), (16b) holds by Grönwall’s in-
equality [22], (16c) holds by (6) and calculating the inner
integration, and (16d) holds by integration by parts and
t ∈ [T, T + ∆t].

Proposition 1 is closely related to [23, Thm 3.4]. In [23,
Thm 3.4], an upper bound of the distance between two non-
linear systems is established for each time, while Proposition
1 presents an upper bound of the distance between reachable
states during a sampling period for the sampled-data system.

By Proposition 1, we have that ‖xz∆t − xt‖2 ≤
‖β‖2

Θ (eΘ∆t − 1). For a sampled-data system, state xz∆t can
be observed. Therefore, we can calculate a bound for xt for
all t ∈ [z∆t, (z + 1)∆t) for all non-negative integer z.

2) Estimate the Unknown System Dynamics: In the fol-
lowing, we calculate a bound of ‖f(xz∆t) + g(xz∆t)uz∆t‖2
for the unknown system. We define

γ(u, u′) = ‖g(xz∆t)‖‖u− u′‖2, (17)

for all u, u′ ∈ U , and develop the following preliminary
result.

Proposition 2. Let xz∆t ∈ X , Θ be given in (6), and β be
given in (13). We have the following relation:

‖f(xz∆t) + g(xz∆t)uz∆t − f(x)− g(x)u‖2
≤ θ(u)‖xz∆t − x‖2 + γ(uz∆t, u), (18)



where γ(uz∆t, u) is defined in (17).

Proof. We have that

‖f(xz∆t) + g(xz∆t)uz∆t − f(x)− g(x)u‖2
=‖f(xz∆t) + g(xz∆t)u− f(x)− g(x)u

− g(xz∆t)u+ g(xz∆t)uz∆t‖2 (19a)
≤θ(u)‖xz∆t − x‖2 + ‖g(xz∆t)(uz∆t − utk)‖2 (19b)
≤θ(u)‖xz∆t − x‖2 + γ(uz∆t, u) (19c)

where (19a) holds by adding and subtracting term
g(xz∆t)utk , (19b) holds by triangle inequality and Propo-
sition 3 in the Appendix, and (19c) holds by the fact that
γ(uz∆t, utk) ≥ ‖g(xz∆t)(uz∆t − utk)‖2.

Proposition 2 implies that once the value of f(x) + g(x)u
is known for some x ∈ X and u ∈ U , we are able
to calculate the range of f(xz∆t) + g(xz∆t)uz∆t. In the
following, we show how to construct f(x) + g(x)u so as
to bound f(xz∆t) + g(xz∆t)uz∆t.

Lemma 2. Let xtk , xtk+1
∈ RK be two sample data points.

We can construct a vector ẋ entry-wise as

ẋj
.
= fj(x) + (g(x)utk)j =

xtk+1,j − xtk,j
tk+1 − tk

. (20)

Then the system dynamics f(xz∆t) + g(xz∆t)uz∆t satisfies

f(xz∆t) + g(xz∆t)uz∆t ∈ ẋ

+
(
θ(utk)‖xz∆t−xtk‖2+

θ(utk)
√
n‖β‖2

Θ

(
eΘ(tk+1−tk) − 1

)
+ γ(uz∆t, utk)

)
[−1, 1]n, (21)

where ẋ = [ẋ, ẋ] is a thin interval.

Proof. By the mean value theorem, we have that there must
exist a set of states {xτj ∈ Rn : j = 1, . . . , n} such that
τj ∈ (tk, tk+1) for all j and the j-th entry of xτj , denoted as
xτj ,j , satisfies xτj ,j =

xtk+1,j
−xtk,j

tk+1−tk . Given the set of states
{xτj ∈ Rn : j = 1, . . . , n}, we can construct ẋ entry-wise as
ẋ = [ẋ1, . . . , ẋn]>, where ẋj = xτj ,j for each j = 1, . . . , n.

Let ẋ be constructed as (20). We define ẋ = [ẋ, ẋ]. Given
ẋ, we then show that (21) holds as follows.

f(xz∆t) + g(xz∆t)uz∆t

∈ẋ + (θ(utk)‖xz∆t − x‖2 + γ(uz∆t, utk))[−1, 1]n (22a)
=ẋ + (θ(utk)‖xz∆t + xtk − xtk − x‖2

+ γ(uz∆t, utk))[−1, 1]n (22b)
⊆ẋ + (θ(utk)‖xz∆t − xtk‖2 + θ(utk)‖xtk − x‖2

+ γ(uz∆t, utk))[−1, 1]n, (22c)

where (22a) holds by Proposition 2 and the fact that the
sample data is generated using ZOH control input ut = utk
for all t ∈ [tk, tk+1), (22b) holds by adding and subtracting
term xtk , and (22c) holds by triangle inequality.

We prove (21) using the following relation

|xtk,j − xj | = |xtk,j − xτj ,j |

≤ ‖β‖2
Θ

(
eΘ(tk+1−tk) − 1

)
,

where the equality holds by (20) and the inequality holds by
Proposition 1. Therefore, we can bound ‖xtk − x‖2 as

‖xtk − x‖2 ≤
√
n‖β‖2
Θ

(
eΘ(tk+1−tk) − 1

)
. (23)

Combining (23) with (22) yields the lemma.

Proposition 1 and Lemma 2 provides us the methods
to estimate the CBF constraint given in (12). In the next
subsection, we present an optimization problem subject to
the CBF constraint for safety-critical synthesis.

C. Safety-Critical Synthesis

In this subsection, we first use Proposition 1 and Lemma
2 to evaluate the CBF constraint given in (12). We show
that the safety-critical synthesis using the evaluated CBF
constraint is formulated as a non-convex program. We
decompose the non-convex program to two convex sub-
problems, and present an efficient safety-critical synthesis.

We define

w(uz∆t, utk) = θ(utk)‖xz∆t − xtk‖2

+

√
nθ(utk)‖β‖2

Θ

(
eΘ(tk+1−tk) − 1

)
+ γ(uz∆t, utk).

Using Proposition 1 and Lemma 2, we have the following
upper bound for e(xt, xz∆t, uz∆t) defined in (4).

Theorem 2. Let ẋ ∈ Rn be constructed as (20), 1 =
[1, . . . , 1]> ∈ Rn, and

E(∆t, uz∆t) =
LhΘ‖β‖2 + Lα

Θ
(eΘ∆t − 1)

+2Lh max{‖ẋ+w(uz∆t, utk)1‖2, ‖ẋ−w(uz∆t, utk)1‖2}.
(24)

Then |e(xt, xz∆t, uz∆t)| ≤ E(∆t, uz∆t) for all uz∆t ∈ U .

Proof. The theorem follows from Lemma 1, Proposition 1,
and Lemma 2.

Using Theorem 2, we have the following result.

Lemma 3. Let ẋ ∈ Rn be constructed as (20) and 1 =
[1, . . . , 1]> ∈ Rn. If a control signal u ∈ U satisfies the
following set of relations

∂h(xz∆t)

∂x
(ẋ+ w(uz∆t, utk)1) + α(h(xz∆t))

− E(∆t, uz∆t) ≥ 0 (25a)
∂h(xz∆t)

∂x
(ẋ− w(uz∆t, utk)1) + α(h(xz∆t))

− E(∆t, uz∆t) ≥ 0 (25b)

then control signal u satisfies

∂h(xz∆t)

∂x
(f(xz∆t) + g(xz∆t)u) + α(h(xz∆t)) ≥ 0.



Proof. By Theorem 2, we have |e(xt, xz∆t, uz∆t)| ≤
E(∆t, uz∆t). Therefore, if (25) holds, then

∂h(xz∆t)

∂x
(ẋ+ w(u, utk)1) + α(h(xz∆t))

− |e(xt, xz∆t, u)| ≥ 0 (26a)
∂h(xz∆t)

∂x
(ẋ− w(u, utk)1) + α(h(xz∆t))

− |e(xt, xz∆t, u)| ≥ 0 (26b)

Using Lemma 2, we have that

∂h(xz∆t)

∂x
(f(xz∆t) + g(xz∆t)u)

∈ ∂h(xz∆t)

∂x
[ẋ− w(u, utk)), ẋ+ w(u, utk))]. (27)

Hence, (26) implies that

∂h(xz∆t)

∂x
(f(xz∆t) + g(xz∆t)u) + α(h(xz∆t))

− |e(xt, xz∆t, u)| ≥ 0

Note that |e(xt, xz∆t, u)| ≥ 0. Therefore, the lemma holds.

Motivated by Lemma 3, we can formulate the following
optimization problem at each sampling time z∆t for all z =
0, 1, . . ..

min
u

u>R(xz∆t)u (28a)

s.t.
∂h(xz∆t)

∂x
(ẋ+ w(u, utk)1) + α(h(xz∆t))

− E(∆t, u) ≥ 0 (28b)
∂h(xz∆t)

∂x
(ẋ− w(u, utk)1) + α(h(xz∆t))

− E(∆t, u) ≥ 0 (28c)
u ∈ U (28d)

where R(xz∆t) ∈ Rm is a positive definite matrix. Accord-
ing to (5) and Lemma 3, we have that if a control signal
u ∈ U satisfying (28) at sampling time z∆t is implemented
during sampling period [z∆t, (z + 1)∆t), then

∂h(xt)

∂x
(f(xt) + g(xt)u) + α(h(xt)) ≥ 0

holds for all time t ∈ [z∆t, (z+ 1)∆t). Hence, we have the
following safety guarantee.

Theorem 3. Let u∗z∆t be the control signal that solves (28),
then system (1) is safe for all time t ∈ [z∆t, (z + 1)∆t)
by applying control signal u∗z∆t during sampling period t ∈
[z∆t, (z + 1)∆t).

Proof. Since u∗z∆t solves optimization problem (28), con-
straints (28b) and (28c) hold. By Theorem 2, we have that
|e(xt, xz∆t, uz∆t)| ≤ E(∆t, uz∆t) for all uz∆t ∈ U . Thus,
constraints (28b) and (28c) imply that

∂h(xt)

∂x
(f(xt) + g(xt)u

∗
z∆t) + α(h(xt))

− |e(xt, xz∆t, u∗z∆t)| ≥ 0.

Furthermore, by the definition of e(xt, xz∆t, uz∆t) given in
(4) and relation given in (5), we have that constraints

∂h(xt)

∂x
(f(xt) + g(xt)u

∗
z∆t) + α(h(xt))

− |e(xt, xz∆t, u∗z∆t)| ≥ 0

holds for all t ∈ [z∆t, (z+1)∆t). Finally, applying Theorem
1 yields the desired result.

By Theorem 3, safety-critical synthesis reduces to solving
the optimization problem given in (28). We observe that
the objective function (28a) is quadratic with respect to u.
However, the constraints (28b) and (28c) are not convex with
respect to u. Therefore, solving problem given in (28) is
nontrivial. In the following, we present a two-stage approach
to solve for control input uz∆t at each sampling time z∆t
for all z = 0, 1, . . ..

We define a slack variable p = w(u, utk). By Assumption
2, we have p ∈ [0, p̄(utk)], where p̄(utk) = maxu∈U ‖u −
utk‖2. Then constraints (28b) and (28c) are rewritten as

2Lh‖ẋ+ p1‖2 −
∂h(xz∆t)

∂x
p1 ≤ ∂h(xz∆t)

∂x
ẋ

+ α(h(xz∆t))−
LhΘ‖β‖2 + Lα

Θ
(eΘ∆t − 1) (29a)

2Lh‖ẋ− p1‖2 −
∂h(xz∆t)

∂x
p1 ≤ ∂h(xz∆t)

∂x
ẋ

+ α(h(xz∆t))−
LhΘ‖β‖2 + Lα

Θ
(eΘ∆t − 1) (29b)

2Lh‖ẋ+ p1‖2 +
∂h(xz∆t)

∂x
p1 ≤ ∂h(xz∆t)

∂x
ẋ

+ α(h(xz∆t))−
LhΘ‖β‖2 + Lα

Θ
(eΘ∆t − 1) (29c)

2Lh‖ẋ− p1‖2 +
∂h(xz∆t)

∂x
p1 ≤ ∂h(xz∆t)

∂x
ẋ

+ α(h(xz∆t))−
LhΘ‖β‖2 + Lα

Θ
(eΘ∆t − 1) (29d)

Here ẋ is constructed using (20). Since ‖ẋ− p1‖2 is convex
with respect to p and ∂h(xz∆t)

∂x p1 is linear with respect to p,
the set of constraints given by (29) is convex with respect to
p. Thus, we can use the following convex program to solve
for p at each sampling time z∆t

min
p

1 (30a)

s.t. p ∈ [0, p̄(utk)] (30b)
constraints given by (29) (30c)

Denote the solution to convex program (30) as p∗. Next,
we solve for uz∆t using p∗. We can pick uz∆t ∈ U that
satisfies p∗−w(uz∆t, utk) = 0. We characterize this solution
procedure using the following lemma.

Lemma 4. If a control signal u∗ is feasible to (28), then
p∗ = w(u∗, utk) solves (30). If there exists some p∗ solves
(30) and there exists some u∗ ∈ U that satisfies w(u∗, utk) =
p∗, then u∗ is a feasible solution to (28).

Proof. We first prove that if a control signal u∗ is feasible
to (28), then there exists some p∗ = w(u∗, utk) such that p∗



solves (30). Since u∗ is a feasible solution to (28), constraints
(28b) and (28c) hold. By the definition of E(∆t, u∗), we
observe that p∗ = w(u∗, utk) satisfies constraints in (29).
Moreover, constraint (30b) is met since u∗ is feasible to (28)
and thus u∗ ∈ U .

Next, we prove that if there exists some p∗ solves (30)
and there exists some u∗ ∈ U that satisfies w(u∗, utk) = p∗,
then u∗ is a feasible solution to (28). Using the definition
of E(∆t, u∗) and p∗ = w(u∗, utk), we have that constraints
in (29) hold implies that (28b) and (28c) hold. Additionally,
we have u∗ ∈ U . Therefore, u∗ is a feasible solution to (28).

Combining the arguments above yields the lemma.

By Theorem 3 and Lemma 4, we can compute a control
signal with safety guarantee at each sampling time efficiently.

We conclude this section by discussing how the sampled-
data implementation and unknown dynamics are incorpo-
rated in the proposed approach. To ensure that (28) is
feasible, we need

LhΘ‖β‖2 + Lα
Θ

(eΘ∆t − 1)− α(h(xz∆t))

≤∂h(xz∆t)

∂x
(ẋ+ w(u, utk)1)− 2Lh

·max{‖ẋ+ w(u, utk)1‖2, ‖ẋ− w(u, utk)1‖2} (31a)
LhΘ‖β‖2 + Lα

Θ
(eΘ∆t − 1)− α(h(xz∆t))

≤∂h(xz∆t)

∂x
(ẋ− w(u, utk)1)− 2Lh

·max{‖ẋ+ w(u, utk)1‖2, ‖ẋ− w(u, utk)1‖2} (31b)

The sampled-data implementation is captured by the term
LhΘ‖β‖2+Lα

Θ (eΘ∆t − 1) in (31). This term decreases when
reducing the sampling period. When the sampling period
approaches zero, we have LhΘ‖β‖2+Lα

Θ (eΘ∆t − 1) → 0
since the sampled-data system approximates a continuous-
time system controlled by continuous-time control signals.
Additionally, reducing the sampling period ∆t is helpful
when h(xz∆t)→ 0. The reason is that as ∆t→ 0, the left-
hand side of (31) approaches zero, and thus convex program
(30) has largest feasible region.

The unknown system dynamics are captured by the terms
ẋ + w(u, utk)1 and ẋ − w(u, utk)1 in (31). Reducing the
sampling period will not make these terms vanish. However,
we can make w(u, utk) approach zero as the data set
RK asymptotically covers the safe set C. In this case, the
interval derived in Lemma 2 approaches a thin interval that
only contains the system dynamics. Additionally, the data-
driven methods may also help to reduce the conservativeness
introduced by unknown dynamics, which is subject to our
future work.

VI. NUMERICAL CASE STUDY

In this section, we present a numerical case study on the
control synthesis for a DC motor. The system follows a
control affine dynamics as follows [24]

ẋ =

[
−39.3153x1 + 19.1083
−1.6599x2 − 3.3333

]
+

[
−32.2293x2

22.9478x1

]
u,
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Fig. 1: The trajectory induced by the proposed approach.

where x1 is the rotor current, x2 is the angular velocity,
u ∈ U = [−4, 4] is the stator current. The parameters
in the system dynamics are unknown, and are normally
obtained empirically in practice. The initial state is set as
x0 = [0.5, 0.75]>. The safe set of the motor is defined as
C = {x : 1−x2

1 ≥ 0}. We generate data set RK by randomly
generating 200 trajectories over 1000 sampling periods, with
the sampling period ∆t = 0.01s.

We compare our proposed approach with a baseline sce-
nario. In the baseline scenario, the system dynamics is
known. The control signal applied at each sampling time
is calculated by solving the following quadratic program at
each sampling time z∆t for all z = 0, 1, . . . ,.

min
uz∆t

u2
z∆t (32a)

s.t.
∂h(x)

∂x
f(x) +

∂h(x)

∂x
g(x)uz∆t + α(h(x)) ≥ 0 (32b)

In Fig. 1, we present the trajectory generated using the pro-
posed approach and the baseline. The trajectory generated us-
ing the proposed approach and the baseline are plotted using
the blue solid line and the red dash-dotted line, respectively.
We observe that both the proposed approach and the baseline
guarantee safety of the system. However, the trajectories
are not identical. There are two major reasons causing the
trajectories to be different from each other. First, the system
dynamics are not known when implementing the proposed
approach, and thus the CBF constraints given in (29) are
used, while the baseline implements the CBF constraint given
in (32b). Second, the baseline aims at minimizing the energy
used by the controller, i.e., solving quadratic program in (32)
at each sampling time, while the unknown system dynamics
lead to a non-convex program presented in (28), which is
solved by first solving the convex program in (30) and then
searching for control signal u that satisfies Lemma 4. We
finally observe that the proposed approach provides some
robustness compared with the baseline. That is, the trajectory
generated using the proposed approach tends to stay further
away from both boundaries of the safe set, compared with
the baseline.



VII. CONCLUSION

In this paper, we studied the problem of safety-critical
control synthesis for sampled-data systems with unknown
dynamics. We constructed a CBF constraint to guarantee the
safety during each sampling period. We evaluated the CBF
constraint at each sampling time by bounding the reachable
state and the unknown system dynamics. We formulated
a non-convex program subject to the CBF constraint to
calculate the safe control input. We decomposed the non-
convex program into two sub-problems with only convex
programs involved. We proved the synthesized controller
guarantees the safety of the unknown sampled-data system.
Our proposed solution was evaluated using a numerical case
study. For future work, we will incorporate a data-driven
method to improve the bound of the CBF constraint by
learning the nonlinear system dynamics.
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APPENDIX

Proposition 3. Suppose Assumption 1 holds. Let x, x′ ∈ X
and u ∈ U . We have ‖f(x) + g(x)u − f(x′) − g(x′)u‖2 ≤
θ(u)‖x− x′‖2.

Proof. We analyze ‖f(x) + g(x)u − f(x′) − g(x′)u‖2
element-wise. Consider the j-th component of f(x) + g(x)u
and f(x′) + g(x′)u. We have that

|fj(x) + (g(x)u)j − fj(x′)− (g(x′)u)j |

≤|fj(x)− fj(x′)|+ |
m∑
s=1

(gj,s(x)− gj,s(x′))us| (33a)

≤

(
Lfj +

m∑
s=1

Lgj,s |us|

)
‖x− x′‖2, (33b)

where (33a) holds by triangle inequality and matrix multipli-
cation, and (33b) holds by Assumption 1. Given (33) holds
for all j = 1, . . . , n, we have that the proposition holds.


