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Abstract

Existing eye-gaze-tracking systems typically require multiple infrared (IR)

lights and high-quality cameras to achieve good performance and robustness

against head movement. This requirement limits the systems’ potential for

broader applications. In this paper, we present a low-cost, non-intrusive,

simple-setup gaze estimation system that can estimate the gaze direction

under free head movement. In particular, the proposed system uses only a

consumer depth camera (Kinect sensor) positioned at a distance from the

subject. We develop a simple procedure to calibrate the geometric relation-

ship between the screen and the camera, and subject-specific parameters.

A parameterized iris model is then used to locate the center of the iris for

gaze feature extraction, which can handle low-quality eye images. Finally,

the gaze direction is determined based on a 3D geometric eye model, where

the head movement and deviation of the visual axis from the optical axis

are taken into consideration. Experimental results indicate that the system

can estimate gaze with an accuracy of 1.4 ∼ 2.7◦ and is robust against large
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head movements. Two real-time human-computer interaction (HCI) appli-

cations are presented to demonstrate the potential of the proposed system

for wide applications.

Keywords: gaze estimation, eye tracking, gaze direction, system

calibration, human-computer interaction

1. Introduction

Eye gaze estimation is used to determine the gaze direction of a per-

son, either the line of sight or the point of regard (PoR). Researchers are

vigorously investigating the eye-gaze-tracking technology with the ultimate

goal of providing low-cost, non-intrusive, easy-calibration/calibration-free,

highly accurate and robust systems that can be applied for general public

uses. Gaze-tracking technology is highly valuable, with abundant interac-

tive and diagnostic applications, such as HCI, virtual reality, video oculog-

raphy, eye disease diagnosis and human behavior studies. For example, a

real-time driver vigilance monitoring system is described in [12] for monitor-

ing various visual bio-behaviors. Because gaze direction reflects a person’s

intention, gaze-tracking systems represent a unique and effective tool for

disabled people [16] and also demonstrate great potential for video gaming

and gaze-contingent interactive graphic displays [29]. In addition, gaze-

tracking technology has been used for image annotation [9] and remote col-

laboration [19, 24]. Working together with 3D object retrieval technique [7],

gaze-tracking can provide comfortable interaction experience.

Despite numerous applications, existing gaze-tracking systems suffer from

great system setup complexity, inflexible system configuration, the require-

ment of expensive devices (e.g., high quality cameras and lenses), cum-

bersome calibration procedures and low tolerance toward head movement,
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which hinders them from being widely used. In particular, gaze tracking

is challenging due to the individuality of eyes, occlusion, and variation in

scale, head poses, and light conditions.

In this paper, we present a low-cost, non-intrusive, simple-setup gaze

estimation system allowing free head movement. The proposed gaze estima-

tion system uses a single consumer depth camera (Kinect), which is easy to

setup even for nonprofessional users. Based on a 3D geometric model, the

gaze estimation system allows free head movement. With robust facial fea-

ture extraction and simple system calibration, the system works in realtime

with good accuracy, which can be used for many applications. Our main

contributions are as follows:

• A simple-setup real-time gaze estimation system using only a consumer

depth camera.

• A 3D model-based gaze estimation method allowing free head move-

ment.

• A simple camera-screen calibration method that is easy to carry out

even for nonprofessional users.

• An iris center localization method that can handle relatively low-

quality eye images.

• Experimental results demonstrating that the system can estimate gaze

directions accurately (error 1.4 ∼ 2.7◦) under free head movement.

• Two real time HCI applications validating the effectiveness and effi-

ciency of the proposed technique.
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2. Related Work

Most recent work on non-intrusive gaze tracking can be broadly classified

into two categories: feature-based and appearance-based. In the following

section, we briefly review each type of methods. For a detailed review on

recent gaze-tracking techniques, we refer interested readers to [10].

2.1. Feature-Based Gaze Estimation

Feature-based gaze estimation methods typically rely on extracting lo-

cal features such as pupil/iris contours, eye corners and corneal reflections

(glints generated by IR lights), which are related to gaze. Feature-based ap-

proaches can be further divided into two distinctive groups: 2D regression-

based (mapping-based) [12, 29, 1, 18, 30, 14, 32] and 3D model-based [25,

3, 8, 31, 2, 21]. 2D regression-based approaches focus on calibrating a gaze

mapping function from the extracted 2D local eye movement features to the

eye gaze (or PoR), whereas 3D model-based approaches calculate the 3D

gaze direction by developing a 3D geometric model of the human eye.

For 2D regression-based gaze estimation methods, the most popular

2D local eye movement feature is the pupil center and corneal reflection

(PCCR). Point of regard is estimated by tracking the relative position of

PCCR, which are usually generated by dedicated IR lights. Many gaze-

tracking systems [29, 1, 18, 30] are based on the PCCR technique, most of

which require the subjects to keep their heads still. Although these sys-

tems could achieve very high accuracy (error less than 1◦), the calibrated

regression function decays as the head moves away from the original cal-

ibration position [18]. The recently developed 2D regression-based meth-

ods [29, 1, 18, 30, 31] attempt to address the problem by compensating for

the errors caused by the head movement. In [31], Zhu and Ji introduced
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a 2D regression-based method that incorporates 3D eye positions to com-

pensate for the head movement. However, their method requires additional

hardware. In [32], Zhu and Yang used the iris center and eye corner as re-

gression variables. Its accuracy is in general lower than those of the PCCR

systems, and the method is also sensitive to the head movement.

In contrast, 3D model-based gaze estimation methods enjoy the inherent

advantage that the head movement is implicitly modeled by the 3D eye

location. A 3D geometric eye model is used to determine the gaze direction

for 3D model-based gaze-tracking systems, which is based on the anatomical

structure of the eye [20] (see Fig. 1). Most 3D model-based methods require

the calibration of the geometric relationships between the IR lights, the

screen, and the camera. However, few work has described their calibration

procedures. In [4], Francken et al. proposed a method to determine the

screen’s position and orientation using gray code reflections. The setup

consists of an LCD screen, a digital camera, and a spherical mirror. The

calibration procedure is done for two different sphere locations. In this

paper, a simple screen-camera calibration method is described, which is

easy to carry out for nonprofessional users.

In most 3D model-based gaze estimation methods, the gaze direction is

estimated from the 3D cornea center (center of curvature of the cornea) and

the pupil center. The glints generated by IR lights are usually used to derive

the 3D cornea center, and the pupil/iris boundary is extracted from an image

of the eye to find the 3D pupil/iris center. However, many 3D model-based

gaze tracking systems are faced with the dilemma of trading off the head

movement range for high-resolution eye images. Basically, a wide field of

view is required to allow free head movement, but a narrow field of view is

needed to obtain high-resolution eye images. There are generally two types
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of approaches to solve this problem, either by using multiple cameras or

using stereo and active cameras (cameras mounted on motorized pan and

tilt units or cameras together with mirrors mounted on motorized pan and

tilt units), both of which increase the complexity and cost of a gaze-tracking

system.

Recently, methods using a single camera without IR lights have been

proposed [28, 2]. In [28], Yamazoe et al. proposed to estimate gaze directions

as 3D vectors connecting both the eyeball and the iris centers. However, their

model didn’t consider the deviation of the visual axis from the optical axis,

and the distance between the eye and the camera was fixed and assumed

to be known. The method achieved an accuracy of 5◦ horizontally and 7◦

vertically. In [2], Chen and Ji used a 3D eye model to determine the gaze

direction, where the deviation angle between the visual axis and the optical

axis is modeled. In their implementation, the distance between the eyeball

center and the pupil center was fixed as the anthropomorphic average, and

the iris center was manually labeled due to low-quality of the eye image.

Their method estimated gaze with an accuracy of 2.18◦ horizontally and

2.53◦ vertically.

2.2. Appearance-Based Gaze Estimation

Unlike feature-based methods requiring the extraction of local gaze fea-

tures, appearance-based gaze estimation methods use an entire eye image as

a high-dimensional input feature and learn a mapping function from input

directly to the screen coordinates, in the hope that some latent gaze fea-

tures are implicitly modeled. These methods do not require screen-camera

1The figure is taken and modified from [20].
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Figure 1: The anatomical structure of the eye1.

calibration or gaze feature extraction. However, they usually require much

more calibration points for personal calibration.

Various methods have been proposed to learn the mapping from an in-

put eye image to screen coordinates, ranging from multilayer neural net-

works [27], Gaussian processes [26], manifold learning [23], adaptive linear

regression [15, 5] and support vector regression [17]. Most of these methods

involve a tedious personal calibration procedure to collect enough train-

ing data for each user (typically hundreds or even thousands of samples).

Recently, Williams et al. [26] proposed to use a semi-supervised Gaussian

process regression to reduce the number of labeled training samples, but

their method still requires many unlabeled samples. In [15], Feng Lu et al.

suggested using an adaptive linear regression on sparsely collected training

samples.

Although some appearance-based gaze estimation methods [26, 23, 15]

can achieve very high accuracy (error less than 1◦), none of them has re-
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ported head pose invariance because the appearance of the eye region alone

is insufficient to determine the gaze direction since the region may look the

same under different head poses. Moreover, the appearance of the eye region

is sensitive to illumination variations.

2.3. Gaze Estimation with a Consumer Depth Camera

With the emerging technology of depth sensing, methods [5, 6, 11, 17]

using consumer depth cameras (Kinect) have been proposed very recently.

Mora and Odobez [5] proposed gaze estimation from multimodal Kinect

data. In their method, a 3D face model (3D mesh) is built upon the multi-

modal Kinect data. Then the head pose and 3D mesh were used to create a

frontal pose face image. The gaze direction in the head coordinate system

was determined by Active Linear Regression on the eye appearance. Finally,

the gaze vector is corrected according to the head pose. Although their

method provides robust and accurate head pose tracking, the overall gaze

estimation accuracy is relatively low (around 10◦). Following their previous

work, Mora and Odobez proposed in [6] a person indenpendent appearance-

based gaze estimation method that used the coupling constraints between

both eyes. The method achieved a gaze estimation accuracy comparable

to [5] at lower computational cost. In [11], Jafari and Ziou used a Kinect to

acquire head pose and a PTZ camera (characterized by controllable zoom

and pointing direction) to obtain eye image. The gaze mapping function was

learnt by the variational Bayesian multinomial logistic regression using head

pose and eye features as input. The method allowed large head movement

without personal calibration procedure. But the gaze estimation accuracy

was relatively low (above 10◦). In [17], Mansanet et al. proposed to esti-

mate point of regard with a single consumer camera (HD webcam/Kinect
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sensor). They took an appearance-based approach and learned the gaze

mapping function by non-linear regression on Principal Component Analy-

sis (PCA) coefficients of normalized pixel intensities of the eye image. The

precision of the method was approximately 5◦, but robustness against head

movement was not reported.

In this paper, we propose to estimate gaze with a single Kinect sensor.

Different from previous Kinect-based methods [5, 6, 11, 13, 17] that are

either 2D regression-based or appearance-based, the proposed method is

3D model-based. Previous 3D model-based methods using a single camera

without IR lights [28, 2] assume the distance between the eye and the camera

or the distance between the eyeball center and pupil/iris center are fixed and

known a priori. In the proposed method, the distance between the eye and

the camera is estimated by the Kinect and is allowed to change, and the

distance between the eyeball center and iris center is determined through

personal calibration. To the best of our knowledge, the proposed method is

the first 3D model-based gaze estimation method using Kinect sensor, and it

achieves superior performance (accuracy of 1.4 ∼ 2.7◦) among the methods

using Kinect sensor.

3. 3D Model-based Gaze Estimation

As depicted in Fig. 2, the proposed gaze estimation system consists of

three modules: gaze feature extraction, system calibration, and gaze esti-

mation. In gaze feature extraction, 3D face tracking is first conducted to

estimate the 3D location and orientation of a subject’s head. Then face

detection and eye detection are performed to obtain the local region of the

subject’s eye. Finally the iris center and the inner eye corner are located.

9



Gaze Feature Extraction

3D Face Tracking

Face & Eye Detection

Iris Center 

Location

Eye Corner 

Location

System Calibration

Screen-Camera Calibration

Personal Calibration

3D Gaze Estimation

Screen-Camera 

Parameters &

subject-specific 

Parameters
Gaze Features

Figure 2: Framework of the proposed gaze estimation system.

The gaze features include: a) the 2D iris center and the inner eye corner coor-

dinates in the image plane, and b) the head orientation and the z-coordinate

of the inner eye corner in the camera coordinate system. The system calibra-

tion module consists of the person-independent screen-camera calibration,

and the personal calibration determines the subject-specific parameters in-

cluding the angle kappa (the deviation of the visual axis from the optical

axis), the eyeball radius (the distance between the eyeball center and the

iris center), and the eyeball center location relative to the head coordinate

system.

The 3D gaze estimation module computes the 3D locations of the eyeball

center and the iris center in the camera coordinate system, and determines

the 3D gaze direction. By intersecting the 3D gaze direction with the screen,

we obtain the point of regard on the screen.
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3.1. 3D Eye Model and the Proposed Gaze Estimation Approach

In the proposed gaze estimation system, a 3D geometric eye model is

used to determine the gaze direction (i.e., the visual axis), as shown in

Fig. 3. In the 3D eye model, the eyeball is a sphere with a radius re and the

cornea is a segment of an imaginary sphere with a smaller radius. The iris

is located at the front of the eyeball, whose boundary is assumed to be a

circle. The optical axis is defined by the line passing through eyeball center

Oe (rotation center) and iris center Pi. We denote the unit vector along

the optical axis by Ne. The visual axis is the line passing through cornea

center Oc and the point on the screen Pg where the eye is actually looking

at. The unit vector along the visual axis is denoted by Ng. Notably, there is

an angle of deviation of the visual axis from the optical axis, which is known

as angle kappa. The angle kappa is subject-specific and requires personal

calibration to determine its value.

As the subject changes gaze direction, the eyeball rotates around its cen-

ter Oe. Because Oe is inside the subject’s face, we cannot directly estimate

its position. However, the position of Oe is constant relative to the coor-

dinate system of the subject’s head. Let Qh denote the origin of the head

coordinate system. Let Xh, Yh, Zh denote the coordinate axes, and let QC
h ,

XC
h , Y

C
h , Z

C
h denote the coordinates of Qh, Xh, Yh, Zh in the camera coor-

dinate system. Denote RC
h = (XC

h ,Y
C
h ,Z

C
h ). For any point P on the face,

let PH and PC denote its coordinates in the head and camera coordinate

systems, respectively. Then

PC = QC
h +RC

hP
H . (1)

Denote OC
e and OH

e as the coordinates of Oe in the camera and head coor-
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dinate systems, respectively. We have

OC
e = QC

h +RC
hO

H
e . (2)

OH
e does not change over time and can be calibrated. QC

h and RC
h are

obtained from head pose tracking. Because the head pose tracking of the

Microsoft Kinect SDK is not very accurate, we detect the inner eye corner

at a higher precision, and call it the anchor point, denoted as Pa. Then

PC
a = QC

h +RC
hP

H
a . (3)

From Equation (2–3),

OC
e −PC

a = RC
h (O

H
e −PH

a ) . (4)

Denote VC
ae = OC

e −PC
a , and VH

ae = OH
e −PH

a , we have

VC
ae = RC

hV
H
ae . (5)

To simplify notations, we will omit the superscript C for the symbols VC
ae,

RC
h , O

C
e , P

C
a , and simply use Vae, Rh ,Oe ,Pa. Furthermore, all of the

3D coordinates (represented by bold uppercase letters, such as Oe) refer

to positions in the 3D camera space (see Fig. 3), and all of the 2D coordi-

nates (represented by bold lowercase letters, such as pi) refer to positions

in the image plane or screen plane. As depicted in Fig. 3(a), the camera

space origin O is projected onto the 2D image plane at o, and pi, pa are

the projections of Pi, Pa, respectively. According to the pinhole camera

model, the mathematical relationship between a 3D point P : (x, y, z) and

its projection p onto an image plane is given by

p− o =
f

z

 x

−y

 (6)
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where o is the projection of the camera origin2 and f is focal length of the

camera in pixels. For the anchor point Pa, we have

pa − o =
f

za

 xa

−ya

 . (7)

Again, the relationship between the iris center and its projected position in

image plane is given by

pi − o =
f

zi

 xi

−yi

 . (8)

Considering the eyeball as a sphere with radius re, the unit vector along the

optical axis is

Ne =
Pi −Oe

re
. (9)

As mentioned previously, the visual axis deviates from the optical axis by

a fixed angle known as angle kappa. By applying the angle kappa to the

optical axis, the unit vector along the visual axis can be written as

Ng = R(α, β)Ne (10)

where α, β are the horizontal component and vertical component of angle

kappa, respectively, and R(α, β) is the corresponding rotation matrix.

As shown in Fig. 3(a), in the proposed model, the 3D point of regard

is determined by the intersection point of the visual axis and the screen.

As shown in Fig. 3(b), the screen is considered as a 2D rectangular plane

ws × hs with unit normal vector Ns and top-left corner Os. For any point

Ps on the screen, Ns ·Ps = −d (d is a parameter which can be determined

2Note that o is the origin of the image plane with the X axis from left to right and the

Y axis from top to bottom.
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from the camera-screen calibration). Because Pg is on the plane, we have

Ns ·Pg = −d. Finally, as shown in Fig. 3(a), the 3D PoR Pg can be obtained

by adding the two directed line segments as follows:

Pg = Oe + lNe + λNg (11)

where l is the distance between eyeball center Oe and cornea center Oc, and

λ is the distance between cornea center Oc and PoR Pg, that is,

λ = ∥OcPg∥2 = −(Oc −Pg) ·Ns

Ng ·Ns
= −(Oe + lNe) ·Ns + d

Ng ·Ns
. (12)

Note that l is typically very small, approximately 5.3mm [8]. In practice,

we ignore the lNe term and rewrite Equation (11–12) as

Pg = Oe + λNg (13)

λ = −Oe ·Ns + d

Ng ·Ns
. (14)

Given the unit vectors Nu and Nv along the horizontal border and the

vertical border, respectively, the relationship between 3D PoR Pg and its

projection pg : (ug, vg) on the 2D screen plane can be derived as follows: (Pg −Os) ·Nu − wsug

wr
= 0

(Pg −Os) ·Nv − hsvg
hr

= 0
(15)

where wr × hr is the resolution of the screen.

3.2. Proposed Gaze Estimation Algorithm

Based on the foregoing discussion, our approach to 3D gaze estimation

is: 1) computing the 3D positions of Oe and Pi to obtain the optical axis;

2) adding angle kappa to the optical axis to obtain the visual axis; 3) inter-

secting the visual axis with the screen to obtain the point of regard.

15



Several unknown constant parameters need to be determined before-

hand for 3D gaze estimation. These parameters are either system-specific

or subject-specific, both of which can be determined by calibration. In par-

ticular, by screen-camera calibration, we obtain the size of the screen ws×hs

in mm, top-left corner Os, and the unit normal Ns vector of the screen, unit

vector Nu along the horizontal screen border, unit vector Nv along the ver-

tical screen border, the resolution of the screen wr × hr in pixels, the focal

length f of the camera in pixels, and the projected position o of the camera

origin. Through personal calibration, the eyeball radius re, offset vector V
H
ae

and deviation angles (α, β) are determined. To estimate 3D gaze direction,

we extract several gaze features including head rotation matrix Rh, depth

value za of Pa, and 2D image positions pi and pa.

The proposed gaze estimation algorithm is summarized in Algorithm 1.

Algorithm 1 The proposed gaze estimation algorithm.

Require:

Rh,pi,pa, za, ws, hs,Os,Ns,Nu,Nv, d, wr, hr, f,o, re,V
H
ae, α, β

Ensure:

Pg,pg

1: Obtain Pa by using Equation (7);

2: Calculate Vae using Equation (5), and obtain Oe using Equation (4);

3: Solve Equation (8) together with ∥Pi − Oe∥2 = re, choose the unique

solution that satisfies zi < ze;

4: Compute Ne using Equation (9) and then Ng using Equation (10);

5: Obtain Pg in the camera space using Equation (13–14);

6: Obtain pg on the screen plane using Equation (15).
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4. Gaze Feature Extraction

In the proposed method, some gaze features are required to determine

the 3D gaze direction, including: a) head rotation matrix Rh, b) iris center

position pi on the image plane, c) anchor point position pa on the image

plane and d) depth value za of the anchor point Pa in the camera space.

The Kinect sensor that we use is quite convenient for collecting data for

gaze feature extraction. The head rotation matrix Rh is provided by the

face-tracking SDK3. We use a technique described in Section 4.2 to detect

the inner eye corner location on the RGB image, and use its depth value to

obtain its 3D position in the camera space.

At this point, we can obtain the head rotation matrix Rh and depth

value za of the anchor point Pa. We next discuss face and eye detection,

and iris center and eye corner localization to extract the remaining gaze

features.

4.1. Face and eye detection

Before locating the iris center and eye corner in the image plane, face and

eye detection are first performed to find the eye region. In the proposed gaze

estimation system, visual context boosting [22] is used for eye detection. As

proposed in [22], the eye is modeled by its surrounding visual context using

a visual context pattern (VCP), which describes the relation between the

region of the eye and its region of reference both in space and appearance.

The context feature (encoded VCP) is integrated with Haar-like features,

3Microsoft Kinect SDK, http:/www.microsoft.com/en-us/kinectforwindows/

develop/, 2013.
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Figure 4: Iris template for iris detection.

followed by semi-supervised boosting to construct a classifier for precise eye

detection.

4.2. Iris center and eye corner location

Iris center position on the image plane is a very important gaze feature

for the proposed gaze estimation method. The most popular iris center

localization method fits an eclipse to the extracted iris contour. However,

because the eye image captured by the Kinect sensor is of low contrast and

low resolution, edge-based iris center location methods tend to work quite

poorly.

To address this problem, we present an iris-fitting algorithm based on

a parameterized iris model. Although the iris contour may be blurry, the

intensity of the iris region is lower than that of the rest of eye, and it is

thereby natural to consider the local contrast between the pixels inside and

outside the iris region. In particular, the proposed iris model assumes the

iris is a circular area that is darker than its surrounding area. Alternatively,

one could use an ellipse instead of a circle to fit the iris region. We found

in our experiments that fitting an ellipse is not as robust as fitting a circle
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when there are occlusions.

As depicted in Fig. 4, we scan the detected eye region with a square

window of iris template and find the iris center and radius that minimizes

the discrepancies between the image and the iris model, which is given by

(i∗, j∗, r∗) = argmin
i,j,r

∑
m∈[i−s,i+s],n∈[j−s,j+s]

fc(i, j, r,m, n, I) (16)

where s is a constant determining the size of the sliding window, (i, j, r) is

the hypothesized iris center and radius, and fc is the cost of individual pixels

in the sliding window. Intuitively, the iris template is based on two observa-

tions: the iris pixels form a circular region, and the iris pixels (foreground

pixels) are darker than other pixels (background pixels) in the eye region.

Then the cost function for a pixel inside the sliding window is defined by

fc(i, j, r,m, n, I) =

 max(Imn − If , 0), (m− i)2 + (n− j)2 ≤ r2

max(Ib − Imn, 0), (m− i)2 + (n− j)2 > r2
(17)

where If , Ib are the intensity threshold for the foreground pixels (inside

the iris circle) and that for the background pixels (outside the iris circle),

respectively, and Imn is the intensity value of pixel (m,n) of the image

I. Particularly, the cost function favors pixels inside the hypothesized iris

region with lower intensity than If , and outside pixels with higher intensity

than Ib. In our implementation, If is set using the first peak location of the

intensity histogram of the eye image, and Ib = If+35, and s = 18. As shown

in Fig. 5, the iris location algorithm operates quite well on low-resolution,

low-contrast eye images.

Given the region of the eye obtained by eye detection, we locate the

eye corner by template filtering, as proposed in [32]. Specifically, a 2D

convolution is performed on the potential area of the eye corner with a
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Figure 5: Examples of iris center location.

pre-set corner filter, and the eye corner is then determined to be the pixel

location with the maximum filter response.

5. System Calibration

For the proposed gaze estimation system, system calibration determines

the geometric relationship between the screen and the camera, and the

subject-specific parameters. It can be generally divided into two steps:

screen-camera calibration and personal calibration.

5.1. Screen-camera calibration

Screen-camera calibration mainly determines the size, location and ori-

entation of the screen in the camera space. We assume that the intrinsic

camera parameters (focal lengths of the depth camera and the RGB camera

of the Kinect sensor, the transformation matrix from depth camera space

to RGB camera space, projected position of the camera origin on the image

plane, and the size of the image plane) are known. These parameters can

be easily retrieved from Kinect’s face-tracking SDK.
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A stick (approximately 1800mm in length and 10mm in radius) is used

to point to the screen corner. The end of the stick that is close to the screen

cannot be seen by the camera, but the far end of the stick is visible. We

then fit a 3D line to the 3D point cloud of the stick.

By keeping the stick pointed at the screen corner and changing its direc-

tion, a different 3D line going through the screen corner can be determined.

By repeating the process several times, many 3D lines that intersect with

the screen corner can be generated. The 3D position of the screen corner

is the intersection point (point with the smallest square sum of distances to

all of the lines) of those 3D lines. In this way, we can determine all of the

four screen corners. From the four screen corners, we obtain the following

parameters: a) the size of the screen ws × hs in the camera space, b) the

top-left corner Os, and unit normal vector Ns of the screen and c) the unit

vector Nu along the direction from the top-left corner of the screen to the

top-right corner and the unit vector Nv along the direction from top-left

corner to the bottom-left corner. The overall algorithm is summarized in

Algorithm 2.

Although the depth information obtain from the Kinect sensor is not

very accurate, the proposed screen-camera calibration works quite well with

an accuracy comparable to the results in [4]. In fact, for a screen measuring

376 × 301mm, the calibrated dimensions are 371.3 × 295.7mm, suggesting

an accuracy of up to a few millimeters. Moreover, the entire screen-camera

calibration procedure takes only a few minutes (usually 5 ∼ 8 minutes), and

all of the manual interventions are easy to carry out and do not require

special skill or knowledge. Thus, the nonprofessional users can perform the

screen-camera calibration easily.
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Algorithm 2 Screen-camera calibration algorithm.

Require:

Intrinsic parameters of the Kinect sensor

Ensure:

ws, hs,Os,Ns,Nu,Nv, d

1: Collect depth map of a stick pointed at the screen corner, obtain the 3D

point cloud of the stick and fit a 3D line to the cloud points;

2: Transform the 3D line from the depth camera space to the camera (RGB

camera) space;

3: Change the direction of the stick and repeat 1–2 several times;

4: Compute the position of the screen corner by finding the optimal inter-

section point of the set of 3D lines;

5: Repeat 1–4 until all screen corners are located in the camera space;

6: Fit a rectangle to the 3D points of the screen corners, and obtain

ws, hs,Os,Ns,Nu,Nv, d.

5.2. Personal calibration

In personal calibration, the subject is asked to look at N calibration

points on the screen one at a time, and each calibration point is looked at

with M different head poses. Personal calibration is essential for the pro-

posed gaze estimation system to determine the subject-specific parameters,

including a) eyeball radius re, b) offset vector V
H
ae from anchor point Pa to

eyeball center Oe in the frontal face, and c) deviation angle (α, β) of the

visual axis from the optical axis. These subject-specific parameters cannot

be estimated directly. Instead, by examining the geometric relationship of

the eye and the scene in the 3D model, the subject-specific parameters can

be determined by solving a linear system of equations.
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During personal calibration, the subject looks at a target point (cali-

bration point) on the screen. Because the 2D position of the target point

pt : (ut, vt) on the screen plane is known, the corresponding 3D position Pt

can be recovered by the following expression:

Pt = Os +
utws

wr
Nu +

vths
hr

Nv . (18)

The 3D iris center Pi is obtained by Equation (8), where the depth value zi

is estimated by using the Kinect SDK. Then, the ground truth unit vector

Ng in the direction of the visual axis is calculated by

Ng =
Pg −Pi

∥Pg −Pi∥2
(19)

where Pg is estimated using Equation (18) with ground truth position pt.

Assuming that the deviation angle (α, β) is known, the unit vector along

optical axis can be obtained by

Ne = R(−α,−β)Ng . (20)

We can split the rotation matrix into three row vectors asRh =

[
RT

x ;R
T
y ;R

T
z

]
.

Finally, we obtain two linear equations using the mathematic relationship

(see Equation (6)) between the 3D iris center and its projection on the image

plane, which are expressed as follows: f · (xa +Rx ·VH
ae + reNe ·Vx) + (u0 − ui)(za +Rz ·VH

ae + reNe ·Vz) = 0

f · (ya +Ry ·VH
ae + reNe ·Vy) + (vi − v0)(za +Rz ·VH

ae + reNe ·Vz) = 0

(21)

where Vx = (1, 0, 0)T , Vy = (0, 1, 0)T , Vz = (0, 0, 1)T and Pa : (xa, ya, za)

is the 3D position of the anchor point.

For N calibration points, we have 2MN equations with 6 unknown

subject-specific parameters
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+

Optical axis

Visual axis

Figure 6: Direction of optical axis and visual axis in camera space.

re, V
H
ae, α, β as follows:

f ·
(
xa (n) +Rx (n) ·VH

ae + re (R (−α,−β)Ng (n)) ·Vx

)
+

(u0 − ui (n))
(
za (n) +Rz (n) ·VH

ae + re (R (−α,−β)Ng (n)) ·Vz

)
= 0

f ·
(
ya (n) +Ry (n) ·VH

ae + re (R (−α,−β)Ng (n)) ·Vy

)
+

(vi (n)− v0)
(
za (n) +Rz (n) ·VH

ae + re (R (−α,−β)Ng (n)) ·Vz

)
= 0

(22)

where xa(n), ya(n), ya(n), Rx(n), Ry(n), Rz(n), Ng(n) vary across the MN

observations. In our implementation, we set M = N = 5.

To solve Equation (22), we use the iterative algorithm summarized in

Table 3. Note that when (α, β) are known and fixed, Equation (22) becomes

a system of 2MN linear equations, which can be solved easily to obtain re,

VH
ae. When re, V

H
ae are known and fixed, Ne(n) can be readily computed,

and (α, β) can then be obtained using Ne(n) and Ng(n).

As shown in Fig. 6, the direction of the optical axis can be divided into

two components: a horizontal angle θ and a vertical angle ϕ. The direction of

the visual axis can also be represented by a horizontal angle θ+α and a verti-

cal angle ϕ+β. As in [8], the mathematical relationship between these angles
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and directions can be expressed byNe = [cosϕ sin θ, sinϕ,− cosϕ cos θ]T and

Ng = [cos(ϕ+ β) sin(θ + α), sin(ϕ+ β),− cos(ϕ+ β) cos(θ + α)]T . Then,

(α, β) can be obtained from Ne and Ng by
α = arccos

xng√
1−y2ng

− arccos xne√
1−y2ne

β = arcsin yng − arcsin yne

. (23)

Algorithm 3 Personal calibration algorithm.

Require:

MN observations of xa(n), ya(n), za(n), Rx(n), Ry(n),Rz(n), Ng(n)

Ensure:

re, V
H
ae, α, β

1: Initialize α = 0, β = 0;

2: Compute R(−α,−β), and solve Equation (22) for re, V
H
ae;

3: Compute Ne(n) using Equation (4–5,7–9);

4: Obtain deviation angle (α′, β′) using Equation (23);

5: Set α = α′, β = β′, and repeat 2–4 to convergence;

6: return re, V
H
ae, α, β.

6. Experimental Evaluation and Application

6.1. Experimental setup

The proposed gaze estimation system consists of a Kinect senor located

in front of the bottom border of a computer screen, as shown in Fig. 7.

The RGB image resolution is 1280 × 960 pixels, with the eye region of

approximately 70 pixels in width. The resolution of the eye image is very

low compared to those used by many existing gaze estimation systems [31],

where the width of eye region is typically greater than 150 pixels.
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Figure 7: System setup of the proposed 3D gaze estimation system.

To evaluate the performance of the proposed system, we conduct ex-

periments on 8 subjects. The gaze estimation accuracy is represented by

gaze estimation error (the angle between the estimated gaze direction and

the ground truth gaze direction). The ground truth gaze direction is gath-

ered by computing the line through the 3D iris center and the calibration

point on the screen. During personal calibration and testing, the sub-

ject moves his/her head purposely within a space volume of approximately

300 × 300 × 200mm (width × height × depth) at about 550mm from the

Kinect sensor.

6.2. Experimental result and analysis

We report the gaze estimation accuracy and calibrated subject-specific

parameters for the 8 subjects in Table 1. As shown in Table 1, the mean

gaze estimation error ranges from 1.77◦ to 2.71◦. Generally, the calibrated
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Table 1: Mean gaze estimation error for 8 subjects.

Subject
Mean error (degree) Eyeball

3D Horizontal Vertical radius re

1 1.9550 1.0423 1.4832 11.5

2 2.3306 1.2915 1.7116 10.1

3 2.7053 1.4740 1.9776 8.9

4 1.8105 0.9771 1.2289 10.8

5 1.7701 1.0471 1.1999 11.6

6 2.0713 1.0601 1.6062 11.8

7 2.1671 1.1666 1.5874 9.77

8 2.4676 1.6309 1.5903 9.3

eyeball radius closer to the real value indicates higher gaze estimation ac-

curacy. Note that the human eyeball radius is approximately 11 ∼ 13mm,

the calibrated subject-specific parameters of Subject 1,4,5,6 are closer to the

true values, thus yielding more accurate gaze estimates. It is worth men-

tioning that the evaluation is performed under free head movement, for each

target point, the subject looks at it with 5 different head poses. Moreover,

each estimate is the result of averaging over multiple frames, as the depth

and head pose information obtained from the Kinect sensor are relatively

jittery.

To investigate the effect of different setup configurations on the gaze es-

timation accuracy, we test on Subject 1 with different system setups. We

have considered two factors of the system setup: a) the size of the screen and

b) the elevation angle of the Kinect sensor. As shown in Table 2, there is

no significant change in the gaze estimation accuracy among different screen

sizes. However, with a smaller elevation angle of the Kinect sensor, the sys-
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Table 2: Gaze estimation accuracy for Subject 1 under different system setups.

Setup
Mean error (degree)

Setup features
3D Horizontal Vertical

1 1.9550 1.0423 1.4832 Elevation angle ∼ 19◦, 19” screen

2 2.1210 1.1774 1.5951 Elevation angle ∼ 19◦, 22” screen

3 1.3817 0.9508 0.8235 Elevation angle ∼ 9◦, 19” screen

tem is able to achieve a gaze estimation accuracy of up to 1.38◦. Generally,

a small elevation angle of the Kinect sensor is preferred. However, an exces-

sively small evaluation angle will lead to a small visible iris area due to the

occlusion of eyelids, which will create difficulties in gaze feature extraction

(e.g., iris center location) and degrade the gaze estimation performance.

To evaluate the robustness of the proposed gaze estimation system against

head movements, we examine the performance under different head poses.

Two kinds of head movements have been considered: head translation and

head rotation. For head translation, the position of the subject’s head is

first set at (0, 0, 0.53) (in meters) in the 3D camera space. Then, with a

fixed head orientation subject’s head moves along the X axis of the cam-

era space and gaze estimation accuracy is evaluated at five different po-

sitions: x = −0.1,−0.05, 0, 0.05, 0.1. Similar procedures are repeated for

head translations along the Y/Z axis of the camera space. For head ro-

tation, we evaluate the performance under different head orientations with

fixed head position at (0, 0, 0.53). Note that when the subject normally

looks at the screen with frontal face, the head rotation angles are about

(pitch, yaw, roll) = (10, 0, 0) (in degrees), as the Kinect sensor has an angle

of elevation.
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Figure 8: Gaze estimation error under different head poses.
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As depicted in Fig. 8, the proposed system exhibits robustness against

head movement, especially for head translation and head roll. Specifically,

when the subject’s head moves along the X/Y axis, the gaze estimation

accuracy does not change much (generally within 0.3◦). Better performance

is observed when the head is near the central position (0, 0, 0.53), which is

mainly because the iris is less likely to be occluded by the eye lids when the

subject looks at the screen in such condition. As the subject’s head moves

away from the camera along the Z axis, the gaze estimation error gradu-

ally increases because the captured eye images become smaller. However,

the performance degrades dramatically when the head rotation angles of

pitch/yaw go away from the frontal face position. This is due to that head

pitch/yaw usually changes the appearance of the eye a lot, and the eye fea-

ture extraction is affected in turn. In general, the proposed gaze estimation

system works well under natural head movements.

We compare the proposed gaze estimation system with several recently

developed gaze estimation systems, including ones using Kinect sensor [5,

6, 11, 17] and ones using single camera without IR lights [2, 28]. Table

3 summarizes the performance of our proposed and the related gaze esti-

mation systems, concerning gaze estimation accuracy, setup, running speed

and robustness against head movements. Note that there was no clear re-

port in [2, 28] on the robustness against head movements, and in [28] the

distance between the eye and the camera is fixed and known. Moreover,

all existing gaze estimation systems using Kinect sensor [5, 6, 11, 13, 17]

took an appearance-based approach. Unlike them, the proposed gaze esti-

mation system is 3D model-based. In general, the proposed gaze estima-

tion system achieves superior gaze estimation accuracy with simple setup,

real-time running speed and robustness against head movements among the

30



Table 3: Comparison with other gaze estimation systems.

Methods Average accuracy (degree) Features

ours 1.38 ∼ 2.71 1 Kinect sensor, 12fps, robust against

head translation and roll

Chen2008[2] Horizontal 2.18, vertical 2.53 single camera

Yamazoe2008[28] Horizontal 5.3, vertical 7.7 single camera, 10fps

Mora2012[5] 7.6 ∼ 12.6 1 Kinect sensor, robust against head

rotation

Mora2013[6] 7.6 ∼ 14.5 1 Kinect sensor, robust against head

rotation, person independent

Jafari2012[11] above 10 1 Kinect sensor and 1 PTZ camera,

robust against head translation

Mansanet2013[17] about 5 1 Kinect sensor

gaze estimation systems using Kinect sensor or single camera without IR

lights. Although there exist many other gaze estimation systems that can

operate with very high accuracy (less than 1◦), they either require complex

and expensive setups (e.g., stereo systems, zoomable lenses, high-resolution

cameras, IR lights, mirrors and pan-tilt units) or need to constrain the al-

lowable head movement to be very small, which dramatically limits their

applications.

6.3. Example applications for HCI

To investigate the feasibility of using the proposed gaze estimation sys-

tem for HCI applications, we have developed a real-time 3D chess game and

a screen keyboard using the estimated gaze to drive the cursor. Because

gaze usually reflects a person’s intention, it is quite natural to use gaze as
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Figure 9: A snapshot of the 3D chess game and Eye Keyboard based on gaze estima-

tion. Demo videos are available at http://youtu.be/rj8HkUThrm4 and http://youtu.

be/Tq-Pj-5xcyU.

an HCI interface. In the 3D chess game application, the cursor is driven by

the estimated gaze, and all the moves of the chess figures and chessboard are

conducted by directing the gaze along the desired direction. The pick-up and

put-down of the chess pieces are triggered by hitting the space bar. Fig. 9

shows a snapshot of the 3D chess game. In the screen keyboard application,

we use the gaze to drive the cursor and use eye blinks to trigger mouse click

events. It is completely hand free. The central 3× 3 block is a face on a 3D

cube, which can be rotated to show other faces with different keys. In this

way, nearly all the common characters and symbols can be input through

this interface. Please refer to the supplemental video clips for more details.

This application provides a feasible way for a disabled person to enter text.

In the 3D chess game application each cell of the chessboard is a square

of side length approximately 35mm, corresponding to a visual angle of about

3.3◦. In both HCI applications, we average over 8 frames to yield stable es-

timates, as the Kinect data is relatively jittery. However, this will lead to

noticeable latency during the undergoing of eye movements and head move-
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ments. The proposed gaze estimation system and the two HCI applications

are implemented on a PC with 4GB memory, an Intel Core2 Quad CPU

Q9550 2.83GHz and a GT310 graphic adapter. The computational costs

of gaze feature extraction and gaze estimation are 29.51ms and 0.64ms re-

spectively. We can see that nearly all the computational time is spent on

feature extraction. Specifically, the gaze estimation is running at 12fps in

both HCI applications, which is limited by the fact that the Kinect data

stream arrives at 12fps. Considering the accuracy, the running speed, the

ease of calibration procedures, the robustness against head movements and

the widespread of Kinect sensors, we believe that the proposed technique

can find many applications.

7. Conclusion

In this paper, we present a novel low-cost, non-intrusive, simple-setup

gaze estimation system operating under natural head movements. Instead

of IR lights and high-quality cameras, a consumer depth camera (Kinect

sensor) is used. Based on a 3D model of the eye, the gaze direction is deter-

mined by computing the 3D position of the eyeball center and iris center.

To extract gaze features from low quality eye images, a new parameterized

iris model is used to locate the iris center. Before using the system, a simple

and effective screen-camera calibration procedure is conducted to determine

the geometric relationship between the screen and the camera, and personal

calibration is performed to determine the subject-specific parameters. Ex-

perimental results show that the proposed system can operate with fairly

high accuracy (error 1.4 ∼ 2.7◦) under natural head movements. We have

developed two real time application systems. One uses the eye gaze tracking
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to play chess, and the other uses the eye gaze tracking to enter text. These

working prototypes validate the robustness our proposed gaze tracking algo-

rithm, and demonstrate the feasibility of eye gaze tracking with commodity

cameras.

In the future, we will build a gaze estimation system based on a single

web camera without depth sensor. We are planning on developing additional

applications that leverage the 3D eye gaze tracking.
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