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Abstract—Symbolic model order reduction (SMOR) is a macro-
modeling technique that generates reduced-order models while
retaining the parameters in the original models. Such symbolic
reduced-order models can be repeatedly simulated with a greater
efficiency for varying model parameters. Although the model-
order-reduction concept has been extensively developed in liter-
ature and widely applied in a variety of problems, model order
reduction from a symbolic perspective has not been well studied.
Several methods developed in this paper include symbol isolation,
nominal projection, and first-order approximation. These methods
can be applied to models having only a few parametric elements
and to models having many symbolic elements. Of special prac-
tical interest are models that have slightly varying parameters
such as process related variations, for which efficient reduction
procedures can be developed. Each technique proposed in this
paper has been tested by circuit examples. Experiments show that
the proposed methods are efficient and effective for many circuit
problems.

Index Terms—Arnoldi algorithm, first-order approximation,
Krylov subspace, model order reduction, moment matching,
Monte Carlo simulation, nominal projection, symbol isolation,
symbolic model.

I. INTRODUCTION

THE CONCEPT of model order reduction originally devel-
oped in a control theory has been gaining popularity in the

electronic design community. After about ten years of research
in its applications to circuit-related problems, model order re-
duction is becoming a standard methodology for interconnect
modeling [1], [2], compact package modeling [3], and timing
analysis [4] and is being extended to the general area of
circuit macromodeling [5]. As an efficient means of automatic
generation of compact behavioral models for both circuit blocks
and structures, model order reduction makes the simulation of
complex systems possible and enables system-level design and
verification [6]. In particular, Krylov subspace-based model-
order-reduction techniques are receiving much more attention
because of their numerical efficiency and robustness [7], [8]. A
comprehensive review on the application of Krylov subspace
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Fig. 1. Three dimensions of model order reduction.

techniques to reduced-order modeling can be found in a recent
survey paper [9].

While model-order-reduction techniques for linear models
are reaching maturity, their extensions to nonlinear models
and to parametric models are still underdeveloped due to their
intrinsically different nature of difficulty (see the model com-
plexity diagram in Fig. 1). In many electronic design problems,
one frequently runs into linear (linearized) models involving
parameters such as process variation parameters, geometric
parameters, design parameters, and even artificially intro-
duced parameters for design optimization, etc. Such models are
typically found in the simulation of parasitics, interconnects,
and three-dimensional (3-D) electromagnetic (EM) structures,
where models are of high order and parameters are often used
for design and analysis. One frequently needs to carry out a
Monte Carlo simulation to investigate the parameter-dependent
performances or other issues related to optimization. In such
cases, reduced-order models retaining the same set of parame-
ters as those in the original models would undoubtedly yield
more efficiency than by using the full-order models directly.
We formulate such type of problems in the framework of the
symbolic model order reduction (SMOR), where parameters are
treated as symbols.

A few researchers have attempted to address the problem
of parametric model order reduction. A multivariate moment-
matching technique is used in [10], where parameters are
assumed to be linearly separable. A variational analysis ap-
proach is taken in [11] for resistor–capacitor–inductor (RCL)
interconnect modeling with statistically varying parameters.
An interpolation technique is proposed in [12] for parametric
interconnect analysis. All these methods pose specific assump-
tions on the models, and their potential for general applications
are limited. There are a few publications in the control liter-
ature that deal with parametric model order reduction, such
as [13] and the references therein. Halevi et al. [13] propose
a series expansion approach for an approximate computation
of the optimal projection matrices. The projection matrices
are assumed in the Taylor expansion form with respect to the
parameters, and the expansion coefficient matrices are solved
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recursively from a sequence of matrix equations. It is well
known that the cost of solving matrix equations is rather
high, especially for high-order models. Hence, this method
is applicable only to small-scale models and is adequate for
many control system problems. Despite all these research
works in literature, a generic solution for SMOR is still not
available.

The primary goal of this paper is to formulate the SMOR
problem and to propose a set of general-purpose solutions
for certain applications. The two basic requirements in the
SMOR framework are: 1) the computational procedure for con-
structing symbolic reduced-order models should be sufficiently
efficient so that it is worthwhile to generate such models and
2) the evaluation of the reduced-order symbolic models should
be sufficiently efficient as well. In other words, a practi-
cal SMOR methodology should be able to produce symbolic
reduced-order models without much effort, and the produced
models should be simple enough to evaluate. Other mathemati-
cal and physical properties such as accuracy, passivity, stability,
etc., are naturally required as in the ordinary model-order-
reduction methodologies. SMOR is, in general, a challenging
problem. We hope that the preliminary results developed in this
paper serve as an initial effort towards an ultimate solution for
SMOR. Some partial results of this paper have been reported
earlier in [14].

For a self-contained exposition, we first review in Section II
some basic Krylov subspace techniques widely used in tra-
ditional model-order-reduction algorithms and also in this
paper. Then, three approaches to symbolic model reduction
are developed. The first method for SMOR, introduced in
Section III, is the so-called symbol-isolation method, which
is applicable to circuit models with a few symbolic elements
so that they can be isolated by using a port formulation.
Although the Krylov subspace approach to SMOR involves
symbolic inversion of matrices, a computationally expensive
operation, this difficulty can be overcome for certain special
cases such as models with small parameter variations. For
such models, we attempt to use the nominal models from
which nominal orthonormalized Krylov subspaces are com-
puted and approximate symbolic reduced-order models are then
constructed. This technique is based on the observation that
the nominal orthonormalized Krylov subspaces have a certain
degree of robustness that warrants an approximate moment
matching even when the model parameters have been perturbed
slightly. This nominal-projection method is our second method
for SMOR and is presented in Section IV, where two specific
methods for creating robust projection matrices are discussed
in detail. Since the robustness of the nominal projections is
not able to tolerate large perturbations, we further develop
the first-order modification to the nominal-projection method
in Section V. At the price of a slightly added computation,
the first-order method is able to provide much better sym-
bolic reduced-order models while the symbolic matrix inver-
sion is avoided. The effectiveness and the efficiency of the
proposed methods are demonstrated by experiments and the
experimental results are collected in Section VI. Finally, con-
clusions and future research issues of SMOR are described in
Section VII.

II. PRELIMINARIES

Consider a linear circuit model that can be described by the
following equations:

C
dx

dt
+ Gx =Bu (1a)

y =Fx (1b)

where u ∈ R
m is the external stimulus to the system, B ∈

R
n×m is the input matrix, x ∈ R

n is the state vector, F ∈ R
p×n

is the output matrix, and y ∈ R
p is the output of the model.

C ∈ R
n×n is the susceptance matrix and G ∈ R

n×n is the
conductance matrix.

Congruence transformation is commonly used for the reduc-
tion of circuit models with port formulation because it preserves
the passivity [8]. Let V ∈ R

n×q be the transformation matrix
with q � n. By defining

Cr = V TCV, Gr = V TGV, Br = V TB, Fr = FV (2)

where the superscript T indicates transpose of a matrix or a
vector and restricting the state x to the subspace spanned by the
columns of V , i.e., x = V z for some z ∈ R

q , the reduced-order
model of order q can be written as

Cr
dz

dt
+ Grz =Bru (3a)

ỹ =Frz (3b)

where z ∈ R
q becomes the new state vector of the reduced-

order model.
One popular method for generating the transformation ma-

trix V is by moment matching. Let X(s) = T (s)U(s) be the
Laplace transform of the state space model, where T (s) =
(Cs + G)−1B. For moment matching, we expand T (s) in
Taylor expansion at s = 0, i.e.,

T (s) = (Cs + G)−1B

=
∞∑

i=0

(−G−1C)iG−1Bsi (4)

where the coefficients of si are called the moments. Mo-
ment matching is directly connected to the Krylov subspace
formed by the pair of matrices (G−1C, G−1B) [7]. The Krylov
subspace is spanned by the column vectors in the following
collection of matrices:{

G−1B, (G−1C)G−1B, . . . , (G−1C)i
G−1B, . . .

}
(5)

where the column vectors are called the Krylov vectors. The
qth-order Krylov subspace is denoted by

Kq(G−1C,G−1B) (6)

which is spanned by the leading q linearly independent Krylov
vectors in (5).

Let V ∈ R
n×q be any matrix whose columns span the

Krylov subspace Kq(G−1C,G−1B). If the columns of V are



SHI et al.: ON SYMBOLIC MODEL ORDER REDUCTION 1259

orthonormalized and B is a column vector, it can be shown that
the following identities hold [8]:

(G−1C)i
G−1B = V

(
G−1

r Cr

)i
G−1

r Br (7)

for i = 0, 1, . . . , q − 1. These identities can be used to verify
that at least the q leading moments of the full-order and
reduced-order transfer functions are matched [15].

As a common practice, the block vectors forming the Krylov
subspace are orthonormalized by using the Arnoldi algorithm
for a numerical stability. A block Arnoldi algorithm for a multi-
column B is described in [8]. Since we shall be using the Ar-
noldi algorithm in SMOR algorithms, we describe the following
algorithm for a single-column input matrix, i.e., B = b, where
b ∈ R

n, so that the algebraic operations involved can be seen.

Arnoldi Algorithm
i) LU factorize matrix G: G = LU .

ii) Solve ṽ1 from: Gṽ1 = b.
iii) Compute h11 = ‖ṽ1‖ and v1 = ṽ1/h11.
iv) For j = 2, . . . , q:

Solve ṽj from: Gṽj = Cvj−1.
For i = 1, . . . , j − 1: hij = vT

i ṽj .
wj = ṽj −

∑j−1
i=1 vihij

hjj = ‖wj‖, vj = wj/hjj .

Note that the Arnoldi algorithm terminates when hjj = 0,
which means that the subsequent vectors belong to the sub-
space already generated. The Arnoldi algorithm is basically a
Gram–Schmidt procedure for orthonormalizing the Krylov
vectors.

There are two fundamental operations involved in the
Arnoldi algorithm that cannot be extended easily to the sym-
bolic context. One is the inversion of matrix G, which is nu-
merically implemented by the LU factorization, and the other is
the orthonormalization process. Symbolically inverting a high-
dimensional sparse matrix G is computationally not feasible for
most realistic models due to the exhaustive memory usage and
the exponential number of terms. Even if a symbolic G−1 is
available, the repeated multiplication by the symbolic matrix
(G−1C) for generating and orthonormalizing the symbolic
Krylov subspace in (5) immediately becomes unwieldy. The
methods to be developed are targeted at developing compu-
tationally tractable SMOR while avoiding highly expensive
symbolic manipulation.

III. SYMBOL-ISOLATION METHOD

In this section, we introduce the first SMOR method called
symbol isolation. This method is motivated by occasions in a
circuit simulation where a large network has to be simulated
by a sweeping analysis over a few critical elements. In this
case, the simulation efficiency would be improved greatly if the
large network excluding those critical elements is replaced by a
compact reduced-order model.

The underlying idea of symbol isolation is rather straight-
forward: Isolate those symbolic elements and treat them as
ports (see the illustration in Fig. 2), then reduce the rest of the
network by a standard model-reduction algorithm. Most model-

Fig. 2. Isolation of symbolic elements from a network.

order-reduction algorithms in the state space do not change
the input/output port structure. Hence, the isolated symbolic
elements can be incorporated again after the subnetwork is
reduced.

Although the partition idea used in symbol isolation is rather
straightforward, we would like to formalize it to see that what
the symbol-isolation method does is actually equivalent to a
block congruence transform.

We consider only a network with a single resistor (R), a
single inductor (L), and a single capacitor (C) isolated for a
symbolic analysis (see Fig. 2). Each two-terminal element is
treated as a port connected to the main network indicated by
the rectangular block. Extending the following formulation to
multiple symbolic RCL elements should be straightforward.

To facilitate the modified nodal analysis (MNA) formulation
[16], we introduce some notations for the network model as
shown in Fig. 2. Let x be the state of the network inside the
block, including the nodal voltages and the necessary currents
inside the block. Augmented with the variables for the isolated
symbolic elements, the full state vector becomes

xT
f = [xT, îC , v̂C , îL, îR]

T
(8)

where îR, îL, and îC are currents through the isolated elements
R, L, and C, respectively, and v̂C is the voltage across the
isolated capacitor C. For easy identification, we use the vari-
ables marked by hat to indicate the symbolic elements and the
state variables associated with them. The model equations now
become




C
0

Ĉ
L̂

0




d

dt




x
îC

v̂C

îL
îR




= −




G EC 0 EL ER

−ET
C 0 1 0 0

0 −1 0 0 0
−ET

L 0 0 0 0
−ET

R 0 0 0 R̂




×




x
îC

v̂C

îL
îR


 +




B
0
0
0
0


u (9a)

y = [F 0 | 0 0 0]xf (9b)



1260 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

where R̂, L̂, Ĉ are the resistance, inductance, and capacitance
of the symbolic elements. In (9), ER, EL, and EC are, respec-
tively, three column vectors containing all zeros but 1 and −1
at the two locations corresponding to the port node indices with
respect to the isolated R, L, and C. Here, we assume that the
variables with hat are not part of the output. In model (9),
the symbolic elements in the coefficient matrices have been
isolated to the trailing part of the state model by ordering the
state variables appropriately. Note that, although îC is a state
variable associated with the symbolic Ĉ, it is grouped with the
nonsymbolic state variables of the model.

We rewrite the model of (9) in the block form as
[
C̄

D̂

]
d

dt

[
x̄
x̂

]
= −

[
Ḡ E

−ET Ĵ

] [
x̄
x̂

]
+

[
B̄
0

]
u (10a)

y = [ F̄ 0 ]
[
x̄
x̂

]
(10b)

where

x̄ =
[

x
îC

]
, x̂ =


 v̂C

îL
îR




and the submatrices can be identified easily. After the partition,
the isolated symbols only appear in the equations for dx̂/dt,
which is of order 3. The nonsymbolic part of the model is
extracted as

C̄
dx̄

dt
= − Ḡx̄ + B̃ũ (11a)

y = F̄ x̄ (11b)

where

B̃ = [−E B̄ ], ũ =
[
x̂
u

]

are the augmented input matrix and input vector, respectively.
The model in (11) is still a large network but without sym-

bols. The input dimension of this model has been augmented
by the symbolic state variable x̂. This model can be reduced
by the standard reduction methods using the block Arnoldi
algorithm or the block Lanczos algorithm such as that used
for Pade-via-Lanczos (PVL) and passive reduced-order inter-
connect macromodeling algorithm (PRIMA) [7], [8]. Suppose
that we have obtained a projection matrix V ∈ R

n1×q using the
matrix triple (C̄, Ḡ, B̃), where n1 is the model order of (11) and
q is the reduced model order. Let x̄ = V z and premultiply the
first equation in (11) by V T. We obtain the following reduced-
order model from (11):

C̄r
dz

dt
= − Ḡrz + B̃rū (12a)

y = F̄rz (12b)

where

C̄r = V TC̄V, Ḡr = V TḠV, B̃r = V TB̃, F̄r = F̄ V.
(13)

Note that after the reduction, the network inside the block in
Fig. 2 is replaced by a smaller sized model while the port

structure is unaltered. As a result, we obtain a reduced-order
model of the original network while retaining the isolated
symbolic elements.

It is interesting to note that given the block structure of model
(9), the reduction procedure described above is in fact equiva-
lent to a block transformation. Using the notation introduced
above, the reduced symbolic model is
[
V TC̄V

D̂

]
d

dt

[
z
x̂

]
= −

[
V TḠV V TE
−ETV Ĵ

] [
z
x̂

]

+
[
V TB̄

0

]
u (14a)

y = [F̄ V 0]
[
z
x̂

]
. (14b)

This means that this reduced-order model is actually obtained
from the block model (10) by applying the block congruence

transformation

[
V

I3

]
.

Although extending the symbol-isolation procedure above to
models involving multiple symbolic RCL elements is straight-
forward, as the number of ports increases, the column dimen-
sion of the input matrix in model (11) increases as well. Recall
that the Krylov subspace has a dimension of at least the number
of columns of B (assumed column full rank). If the column
dimension of B is large, then not only the model cannot be
reduced to a very low order using the conventional Krylov
subspace approach, but also the computational cost becomes
high. For this reason, the symbol-isolation method is useful
only for a few symbols, regardless of the element type.

The computational cost for generating a reduced-order sym-
bolic model using the symbol-isolation method is mainly due
to the reduction of the nonsymbolic block with an increased
number of input ports. Suppose that the original model has
m inputs, and we consider ns symbolic elements connected
as extra ports. Then, according to the formulation above, we
have to reduce a nonsymbolic model of order n− ns with
m + ns inputs, where n is the full model order. Using the
block Arnoldi or Lanczos algorithm is the most efficient and
numerically stable way for reducing nonsymbolic linear mod-
els. Its computational cost consists of one LU factorization and
a sequence of matrix-vector multiplications, for which there are
finely tuned dedicated packages taking the full advantage of a
matrix sparsity [7]. The computational procedure can be further
optimized for the case of multiple ports [17].

IV. NOMINAL-PROJECTION METHOD

Parametric models frequently appear in very large scale
integrated (VLSI) circuit design and simulation. For example,
RC(L) models for interconnect analysis can have R, C, or
L as parameters because of the uncertainty in the process.
Geometric parameters used as design parameters can also be
introduced in the models. For many parametric models, directly
treating parametric elements as symbolic ones as we did in the
symbol-isolation method would not be efficient, because many
elements could depend on only a few parameters and the large
number of ports arising from symbol isolation is a problem.
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If one would like to use the projection method for SMOR,
one might have to construct symbolic Krylov subspaces. How-
ever, due to the computational complexity involved, direct
construction of symbolic Krylov subspace may not be viable.
However, we note that very often in practice the model parame-
ters do not change drastically; hence, the parameter variations
can be treated as small perturbations. With this observation,
we propose the second method for SMOR called nominal-
projection method. The basic idea is to compute a sufficiently
robust nominal Krylov subspace so that the same subspace
can be used for models with slightly perturbed parameters.
Meanwhile, we shall investigate issues on the computation of
robust Krylov subspaces and the effectiveness by using nominal
projections. The efficiency should be obvious because of the
reuse of the nominal projections.

Formally, parametric linear time-invariant models can be
described by

C(p)
dx

dt
+ G(p)x =B(p)u (15a)

y =F (p)x (15b)

where C(p), G(p), B(p), and F (p) are model matrices de-
pending on parameter vector p, which may contain a number
of parameters. With the projection matrix V (p0) computed
from a set of nominal parameters p0 (e.g., using the Arnoldi
algorithm), the reduced parametric matrices are written as

Cr(p) =V (p0)TC(p)V (p0)

Gr(p) =V (p0)TG(p)V (p0)

Br(p) =V (p0)TB(p)

Fr(p) =F (p)V (p0). (16)

In the following, we discuss two methods for computing
the nominal-projection matrix V (p0), which are believed to be
more robust but computationally efficient.

We assume that all the model parameters only perturb around
some nominal values in a certain design task. The ranges of
parameter perturbation are problem dependent. Since parameter
perturbation can be viewed as a model uncertainty, reduction
to a lower dimensional state space generally suppresses such
uncertainty, which is a well-known fact in statistical analysis
literature [18].

We call the model with all parameters fixed to their nominal
values the nominal model, from which nominal projections are
computed. A nominal-projection matrix is required to be robust
enough to tolerate the model perturbation. Two computational
methods are introduced below for robust nominal-projection
construction.

A. Mixed Moment Matching

The first method for nominal-projection computation is to
combine the moments from both the zero and the infinity
frequency points. More specifically, we consider the nominal
model as in (15) with p = p0. Let

C0 = C(p0), G0 = G(p0), B0 = B(p0).

The Krylov subspace for the moment matching at s = 0 (DC),
i.e., expanding the transfer function T (s) in terms of si, is

Kq

(
G−1

0 C0, G
−1
0 B0

)
. (17)

Similarly, the Krylov subspace for the moment matching at
s = ∞, i.e., expanding the transfer function T (s) in terms of
1/si, is

Kp

(
C−1

0 G0, C
−1
0 B0

)
. (18)

Here, we assume that matrices C0 and G0 are both nonsingular.
The nominal-projection matrix V (p0) is then constructed

from the Krylov vectors partially from (17) and (18). More
specifically, we choose the leading q1 Krylov vectors from
(17) and the leading q2 vectors from (18) to form q = q1 + q2
vectors for a nominal projection. Since the Krylov subspace
formed by the low- and high-frequency moments captures both
the steady-state and the transient behaviors of the time-domain
response, better robustness is expected than a Krylov subspace
formed solely by either low- or high-frequency components. We
shall demonstrate the better robustness of the mixed-moment-
matching method by an example in Section VI.

B. Real Rational Krylov Subspace

Since model-order-reduction has been widely used in in-
terconnect design and analysis, a few comments on moment
matching are worthwhile. As the operating frequency is now
entering the gigahertz scale, the conventional RC models for
interconnect is becoming inadequate and the inductance effect
of interconnect must be addressed explicitly [19]. Since an RC
circuit does not have resonance, moment matching at the a
low frequency can sufficiently capture the frequency response,
meaning that very compact reduced-order models can be ob-
tained by moment matching. However, for RCL models with
a low loss, capturing the resonance behavior (multiple peaks
in the frequency response) at the high-frequency band usually
requires a high-dimensional Krylov subspace. Although the
moment-matching technique proposed above by matching both
the low- and high-frequency bands can possibly produce a
compact model, we found in our experiment that this method
could not help improve the frequency-response accuracy in
the band of resonance. Moreover, the Krylov subspace formed
at s = 0 often resulted in unstable or singular reduced-order
models for highly inductive circuits.

To solve this problem, we propose the second method for
nominal-projection computation, where we use real rational
Krylov subspace. A real rational Krylov subspace originates
from the expansion of the transfer function T (s) = (Cs +
G)−1B at a real point σ, i.e.,

T (s) = (Cs + G)−1B

= [C(s− σ) + (Cσ + G)]−1 B

=
∞∑

i=0

[−(Cσ + G)−1C
]i (Cσ + G)−1B(s− σ)i. (19)
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Similar to the expansion at s = 0, if we would like to have a
reduced-order model that matches the leading q moments in this
expansion, i.e., the coefficients of the terms (s− σ)i for i =
0, . . . , q − 1, we use the Krylov subspace

Kq

(
(Cσ + G)−1C, (Cσ + G)−1B

)
. (20)

By taking σ = 0, this Krylov subspace (20) reduces to the one
in (17). Here, we assume that a real σ has been chosen so that
(Cσ + G)−1 exists.

The proper choice of σ has been addressed in many papers.
Grimme [15] extensively studied the rational Krylov subspace
approach to model order reduction. Chiprout and Nakhla [20]
used a complex σ for localized moment matching in the fre-
quency domain. Shi and Shi further provided a new interpreta-
tion of the real σ from the waveform matching perspective [12]
and the dominant subspace computation perspective [21]. The
latter new developments have provided us substantial evidence
to use the real rational Krylov subspaces for robust nominal
subspace computation.

An example used in the experimental section will demon-
strate that the real Krylov subspace has sufficient robustness
for reducing inductive circuit models. We have observed that as
the parameters are perturbed, the reduced-order model obtained
by using the nominal projection computed from real rational
Krylov subspace is able to capture the perturbed resonance
modes very well.

In practice, the use of the nominal-projection method in-
volves storing the original full-order model and the projec-
tion matrix constructed from the original full model. When
the parameters in the full-order model are changed, the new
reduced-order model can be constructed by using an efficient
matrix-vector multiplication to compute the reduced coefficient
matrices in (16). If the parameter perturbation is too far away
from the nominal value, then the new nominal projection should
be recomputed.

V. FIRST-ORDER-APPROXIMATION METHOD

In this section, we propose the third method for SMOR called
the first-order approximation. The basic idea is to update the
first-order terms of the Krylov vectors when the model data are
perturbed. The Krylov subspace created this way is partially
symbolic.

As seen from the Arnoldi algorithm, the main algebraic
operations involved in the Krylov subspace computation are
matrix inversion and matrix-vector multiplication. Since direct
inversion of a symbolic matrix is computationally costly, we
take a partial symbolic approach to symbolic matrix inversion
under the condition that parameter variations are small.

Let the matrices G and C be perturbed as follows:

G′ = G0 + ∆G, C ′ = C0 + ∆C (21)

where G0 and C0 are the matrices with the nominal values.
Under the assumption that ∆G is small in a certain matrix

Fig. 3. Test circuit for symbol isolation.

norm, the inverse of G′ can be approximated by the first-order
expression

(G0 + ∆G)−1 ≈ G−1
0 −G−1

0 (∆G)G−1
0 . (22)

Since the nominal matrix G0 is numeric and remains constant
for small perturbations, its inverse has to be computed only
once in advance. The parameter variations are symbolically
characterized by the variation matrix ∆G. Clearly, the symbolic
inversion in the form of (22) is greatly simplified.

Given the perturbation matrices ∆G and ∆C, the exact basis
vectors of the Krylov subspace are computed from

[
(G0 + ∆G)−1(C0 + ∆C)

]k (G0 + ∆G)−1B (23)

for k = 0, 1, . . . , q − 1. Here we assume that the B matrix is
not perturbed. Again, for reducing the computational complex-
ity, each expression in (23) can be approximated by keeping the
terms up to the first order of ∆G and ∆C. It can be verified by
induction that by the first-order approximation

[
(G0 + ∆G)−1(C0 + ∆C)

]k

≈ (A0)k −
k−1∑
i=1

(A0)i(G−1∆G)(A0)k−i

+
k∑

j=0

(A0)j(G−1∆C)(A0)k−j (24)

where A0 = G−1
0 C0. Furthermore

[
(G0 + ∆G)−1(C0 + ∆C)

]k (G0 + ∆G)−1B

≈

Ak

0−
k−1∑
i=1

Ai
0

(
G−1

0 ∆G
)
Ak−i

0 +
k∑

j=0

Aj
0

(
G−1

0 ∆C
)
Ak−j

0




× {
G−1

0 −G−1
0 (∆G)G−1

0

}
B

≈ Ak
0G

−1
0 B −


Ak

0G
−1
0 (∆G) −

k−1∑
i=1

Ai
0

(
G−1

0 ∆G
)
Ak−i

0

+
k∑

j=0

Aj
0

(
G−1

0 ∆C
)
Ak−j

0


G−1

0 B. (25)

Note that in the last expression the term Ak
0G

−1
0 B is the matrix

used for nominal Krylov vectors, while the rest three terms
involving ∆G and ∆C are the symbolic first-order correc-
tion terms. Since the symbols only appear in the perturbation
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Fig. 4. Transient responses with a symbolic element between nodes 11 and 12. (a) Resistor R. (b) Capacitor C. (c) Inductor L.

Fig. 5. RC ladder circuit.

matrices ∆G and ∆C, all other numeric matrices can be
computed a priori. Without performing direct symbolic matrix
inversion, it is now possible to obtain an approximate symbolic
representation of the Krylov basis vectors.

Note that, although the symbolic procedure outlined above
is feasible for a set of symbolic Krylov basis vectors, the
orthonormalization of these vectors is nontrivial because, un-

like the numeric case, the memory required for symbolic
orthonormalization is high. To reduce the computational com-
plexity, the symbolic basis vectors are not orthonormal-
ized in our implementation. However, one should be aware
that nonorthonormalized projection matrices may yield sin-
gular reduced-order models due to potentially bad numerical
conditioning.
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Fig. 6. Comparison of the reduction effect in the frequency domain. (a) By moment matching at s = 0. (b) By mixed moment matching at both low and high
frequencies (note the two curves overlap).

The memory required for storing the reduced symbolic
matrices

Cr = V T(C0 + ∆C)V, Gr = V T(G0 + ∆G)V (26)

is roughly estimated as follows. First, it is worth noting that the
parameters in the original problem have been recombined in the
model and represented by the entries in the two perturbation
matrices ∆G and ∆C. Because of the linear approximation,
each entry of the symbolic Krylov vectors in (25) is a linear
combination of the entries of ∆G and ∆C, plus a constant term.
The matrices G and C are sparse in most applications. Hence,
we assume that there is a total number of Ns symbols from ∆G
and ∆C, where Ns � n2. This means that each entry of the
projection matrix V has the form of

vij = ρij +
Ns∑
�=1

ρ
(�)
ij Π� (27)

where ρij’s and ρ
(�)
ij ’s are constants and Π�’s are the symbols.

Consequently, the memory required for storing Cr and Gr in
(26) is approximately O(N3

s q
2), where Ns is the total number

of symbols and q is the order of the reduced model. For small
Ns and q, the memory requirement is low.

The computational cost for generating a symbolic reduced-
order model using the first-order model is mostly for computing
the first-order symbolic Krylov vectors, that is, for computing
all the coefficients ρ

(�)
ij in (27) for the symbolic projection

matrix V . This part of the time complexity depends on Ns.
Assuming that the cost for computing each coefficient takes a
constant time, the time complexity for computing V is about
O(Nsqn), where Ns is the number of symbols in ∆G and ∆C;
q is the number of Krylov vectors, i.e., the reduced model order;
and n is the original model order.

VI. EXPERIMENTAL RESULTS

We have described three methods for SMOR in the preceding
sections: the symbol isolation, the nominal projection, and the
first-order approximation. Collected in this section are exper-
imental results for testing these methods. At the end of this
section, we comment on the comparison of these three methods,
their advantages, applicable cases, efficiencies, etc.

A. Symbol Isolation

The RC ladder circuit shown in Fig. 3 is used to test the
symbol-isolation method. The circuit has 100 stages with the
element (either R, C, or L) between the nodes 11 and 12 used
as a symbolic element. The full-order model is reduced to a
model of the 12th order. We simulated three cases by changing
the value R, C, or L separately. The transient responses to a
two-level input voltage stimulus for the nominal value R0 =
1.7 kΩ and a new value R1 = 10R0 are shown in Fig. 4(a).
The dashed curve indicates the nominal response of the full-
order model, while the dotted solid curves (overlapped) are the
responses of the full-order and the reduced-order models for
the new resistance value R1. Other transient responses with the
symbolic element replaced by C or L are shown in Fig. 4(b) and
(c), respectively, where C is changed from the nominal value
of C0 = 5 µF to a new value C1 = 10C0 and L is changed
from the nominal value of L0 = 400 kH to L1 = 2L0. As
expected, the symbol-isolation method can generate models
with a reliable time-domain response.

The symbol-isolation method is very useful for the sweeping
analysis of a few critical circuit elements. Here, we use the
same circuit in Fig. 3 to demonstrate the efficiency achievable
by reducing the nonsymbolic part of the model. For a full-
order model of size 103, the total sweeping time for analyzing
300 values of the resistance R between the nodes 11 and 12
took 54 s by simulating the full-order model directly, with each
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Fig. 7. Normal projection by mixed moment matching. (a) Bode plots of the full nominal and full perturbed models with perturbation up to 60%. (b) Bode plots
of the full perturbed model and its reduced-order model reduced by the nominal projection. (c) Step responses of the full perturbed model and its reduced-order
model (solid: full order; dashed: reduced order).

sweeping point meaning a transient simulation from 0 to 40 s.
After reducing the nonsymbolic block to the 17th order, it took
only 8 s to finish the same set of sweeping analysis.

B. Nominal Projection

The RC ladder circuit in Fig. 5 is used for testing the
nominal-projection method. Vs is the input voltage and V1 is
the output voltage. For a demonstration purpose, we choose all
Ri = 20 Ω, all Ci = Cgi = 1 pF, and gs = 1/50 S for nominal
values. These values are perturbed up to certain level to test the
robustness of the nominal projection.

In this experiment, the full-order model is of the 200th order
and will be reduced to the 10th order. There are many ways to
generate a 200 × 10 nominal-projection matrix V . According

to our discussion earlier, we prefer to use mixed moment
matching. But before we proceed, we first demonstrate that
using the Krylov vectors for matching the ten leading moments
at s = 0 is not as good as using the Krylov vectors for mixed
moment matching, i.e., matching five leading moments at s = 0
and another five leading moments at s = ∞.

For the RC ladder example that we have, we run two
nominal reductions by using two different projection matrices
mentioned above without considering the perturbation for now.
The Bode plots shown in Fig. 6 clearly indicate that the mixed
moment-matching method [Fig. 6(b)] gives the better frequency
response matching at all frequencies of interest, while the result
from moment matching only at s = 0 does not guarantee a
good matching at the high-frequency part. We will be using the
nominal-projection method later on for measuring the signal
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Fig. 8. Monte Carlo test of the RC ladder circuit reduction using the mixed moment matching. (a) Delay distribution of 300 cases with Gaussian perturbation up
to 50%. (b) Histogram of the measured delay error percentage.

Fig. 9. Monte Carlo test of the RC ladder circuit reduction using the moment matching at s = 0. (a) Delay distribution of 300 cases with Gaussian perturbation
up to 50%. (b) Histogram of the measured delay error percentage.

Fig. 10. RCL ladder circuit.
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Fig. 11. Nominal model reduced by nominal projection.

Fig. 12. Reduction of a perturbed model by nominal reduction.
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delay time. We believe that matching at the high-frequency
band is important because this part controls the signal rising
behavior.

Then, we examine whether the robustness of mixed moment
matching is good. For this purpose, we use a projection matrix
generated by mixed moment matching from the nominal model
and use it for the reduction of a perturbed model. The results
are reported in Fig. 7. Fig. 7(a) shows the deviation of the
perturbed model from the nominal model in the frequency
responses after the circuit parameters have been perturbed up
to 60% at random. Despite the deviation, the model reduced
from the perturbed model by using the nominal projection still
generates an accurate approximation of the full-order perturbed
model, as seen from Fig. 7(b). Furthermore, the time-domain
step response is shown in Fig. 7(c); again, we see a very close
approximation.

The reliability of the nominal-projection method is further
demonstrated by Monte Carlo tests. Shown in Fig. 8 are
the Monte Carlo test results for the RC ladder circuit with
300 runs. The nominal parameters are perturbed individually
by a Gaussian distribution up to 50%. We use the rise time up
to 0.8 of a step response for the delay measurement. Fig. 8(a)
shows the distribution of the measured delays out of 300 runs
by using a nominal-projection matrix computed by the mixed-
moment-matching method, with the x-axis for the delay of the
full-order model and the y-axis for the delay of the reduced-
order model. The diagonal line marked “+” is the equal-
delay line for reference. The plot shows the clustering of the
delay measurements surrounding the reference line. Noticing
the small axes scale (10−9) used in this plot, we conclude that
the delays measured from the reduced-order models are mostly
quite accurate. Fig. 8(b) shows a histogram of the relative-
delay-error percentage computed from 300 runs. The relative
delay error is defined by the formula

Delay of reduced model − Delay of full model
Delay of full model

. (28)

The relative-delay-error percentage mostly falls within 2%,
meaning that the nominal projection has an adequate robust-
ness given the fact that the parameters have been perturbed
up to 50%.

To compare whether mixed moment matching has a better
performance for delay measuring, we ran another Monte Carlo
test with 300 runs but using the tenth-order Krylov subspace
at s = 0 (i.e., DC moment matching). The test results are
shown in Fig. 9. The histogram in Fig. 9(b) indicates a wider
deviation of the relative delay error with a lower count at the
center, comparing to that in Fig. 8(b). Evidently, the nominal
projection computed from mixed moment matching has a better
robustness. We note that, among the 300 runs, both methods did
not encounter an unstable reduced-order model, which indicates
that the nominal projection is quite reliable for RC network
reduction.

The second method for nominal-projection computation is
to use the real rational Krylov subspace. The robustness of
such a nominal projection is tested by the inductive ladder
circuit shown in Fig. 10. In this example, the nodal voltages

Fig. 13. Sinusoidal response at f = 1 GHz.

and the currents passing the inductors are the state variables.
We chose a model with the 320th order and reduced it to one
of order 50 with a real rational Krylov subspace computed at
σ = 5 × 109. Uniform nominal RCL values were chosen with
R = 0.2 Ω, L = 1.0 nH, and C = 0.5 pF. Fig. 11 shows the
frequency responses of both the full-order and reduced-order
models together with the error plot. The real rational Krylov
subspace has achieved a good approximation at the resonance
frequency band.

To test whether the nominal projection still works for per-
turbed models, we add random perturbations to each RCL
value up to ±50% and then perform the reduction by using the
nominal projection computed already. Shown in Fig. 12 is the
frequency response result and the error plot. The frequency re-
sponse of the nominal full-order model is also plotted (the dot-
dashed curve) for reference. Clearly, the frequency response of
the reduced-order model still captures the full-order frequency
response quite well. Although the error becomes larger, it is still
at an acceptable level.

The transient response is shown in Fig. 13, which dis-
plays the output of the perturbed full-order and reduced-order
models in response to a sinusoidal input at the frequency of
1 GHz. Except for some slight distortions at the transient, the
two waveforms match quite well. The reduction results for
another set of perturbed parameters at random are shown in
Figs. 14 and 15.

To demonstrate the efficiency achievable by using the
nominal-projection method, we use the RC ladder circuit in
Fig. 5 again and reduce a sequence of models with sizes 100,
200, 300, 400, and 500. For each model, we first compute the
nominal-projection matrix V of dimension n× q, where n is
the full model size and q is the reduced model size. For each full
model, we reduce it to q = 10, 12, 14, 16, 18, respectively. With
each nominal-projection matrix V , we obtain a reduced-order
symbolic model according to (16). Then, for each model size,
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Fig. 14. Reduction of another perturbed model by nominal reduction.

Fig. 15. Another sinusoidal response at f = 1 GHz.

we compare the time used for running a transient from 0 to 1 µs
between the full-order parametric model and the reduced-order
parametric model for 20 sets of randomly generated parameter
values. To have a fair comparison, the time used for generating a
nominal-projection matrix was also counted with the time used
for the transient analysis of the reduced-order model. We used

TABLE I
SPEEDUP VERSUS MODEL SIZE: NOMINAL PROJECTION

the MATLAB step response function for this simulation and
the transient times are averaged over the 20 runs. In addition
to the statistics for speedup, we also monitored the quality of the
reduced-order models, for which we used the absolute values
of the relative delay error defined in (28) also averaged over the
20 runs for each model size. The data are collected in Table I,
where the average speedups are significant for the large-size
models. Fig. 16 shows a visualization of the speedup data. We
mention that for this set of statistical run, we did not encounter
any unstable reduced-order models. We also comment that
the speedup measured from the MATLAB experiment is very
rough. If the algorithms are implemented in the C language and
the modern sparse matrix technology is used, we believe the
speedup would be more significant.

C. First-Order Approximation

The first-order-approximation method is an improvement
over the nominal-projection method for better accuracy at the
price of higher algebraic operation complexity. The RC circuit
in Fig. 5 is used again to test the first-order-approximation
method using an approximate symbolic Krylov subspace. The
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Fig. 16. Simulation speedup using nominal projection.

circuit consists of 100 stages of RC blocks and the model is of
the 100th order. The nodal voltages are the state variables.

For demonstration purposes, we used the mathematical soft-
ware Maple [22] to do symbolic algebra. The circuit is divided
into three sections: nodes 1–30 for section 1, nodes 31–60 for
section 2, and the rest for section 3. Four parameters are intro-
duced as the symbols, including the two parameters represent-
ing the perturbations added to the capacitors and the resistors
in the first section and the other two parameters representing
the perturbations added to the capacitors and the resistors in
the second section, respectively. The resistors and capacitors
in the third section are not perturbed. The model is reduced
from the 100th order to the fourth order. The effectiveness
of the first-order-approximation method is tested by running
a Monte Carlo test with the four parameters perturbed up to
30% according to the normal distribution. We simulated the
unit step responses of both the full-order and reduced-order
models and compared the 50% rise times. The statistical test
results are shown in Fig. 17, with the delays measured shown
in Fig. 17(a) and a histogram in Fig. 17(b). From these plots,
we see that the first-order-approximation method was able to
produce very accurate reduced-order models measured by the
rise times, more accurate than the nominal-projection method.
The extra prices are more complicated reduced-order models to
be stored symbolically and more model evaluation time.

In addition to the accuracy achievable, we also demonstrate
the efficiency of using a symbolic reduced-order model ob-
tained from the first-order-approximation method. Again, we
use the RC ladder circuit in Fig. 5 with model sizes of 100,
200, 300, and 400, all reduced to order 4. The n× 4 projection
matrices V were constructed symbolically by Maple using the
first-order-approximation formula in (25).

Maple took 0.156 s to reduce the 100th order model to
the fourth order. The symbolic reduced-order model was then
evaluated in MATLAB. We ran 800 repeated transient analyses

for different sets of the four parameter values; each transient
spans the time interval from 0 to 12 s. It took 360 s to complete
the whole batch of simulations using the full-order model while
it only took 75 s for the same amount of simulation using the
reduced-order symbolic model, in which 54 s was used for the
transient simulation and 21 s for updating the symbolic model.

Similar to what we did in the nominal-projection case, we
collected the speedup data in a transient analysis from 0 to 12 s
for the four different sizes of models. The data are collected in
Table II, and the speedup is also shown in Fig. 18. In Table II,
we also show the time and the memory used by Maple for
generating the symbolic reduced-order models. The speedups
here were measured from simulating the full-order and reduced-
order models for the given time period of transient analysis
averaged over 800 runs.

D. Efficiency of the Three Methods

We briefly summarize the advantages and weaknesses
of the three SMOR methods based on our experiences in
experimentation.

There is no assumption of small parameter variation in the
symbol-isolation method. Hence, if we are interested in study-
ing the effect of a few elements in a large network, reducing
the nonsymbolic part of network is highly recommended. In
addition to its usefulness for sweeping analysis, this technique
can be used for behavioral modeling of a large network with a
few tuning elements.

The other two methods, the nominal projection and the
first-order approximation, both assume small parameter varia-
tions. Although parameter variations are common phenomenon,
drawing a line between the small and the large variations is not
easy. We believe that uncontrollable statistical variations such
as that caused by the uncertainty in the process technology can
be treated as a small variation. However, there could be cases
that small variations result in a large deviation of the circuit
behavior. Then, the two methods are probably not applicable
for such highly singular circuits.

While the nominal projection is computationally efficient, its
accuracy is relatively weak. Hence, it is recommended for a
rough statistical analysis rather than for an accurate nanoscale
timing analysis. On the other hand, although the first-order-
approximation method has a better accuracy owing to symbolic
correction to the nominal Krylov vectors, its complexity is
relatively higher. Also, because the symbolic Krylov vectors
are not orthonormalized, it may not be reliable to generate
symbolic reduced-order models with a higher order. Since
most RC networks can be safely approximated by very-low-
order models, the first-order-approximation method is highly
recommended for the symbolic reduction of such networks.

VII. CONCLUSION AND FUTURE WORK

Motivated by the practical needs for behavioral modeling in
a parametric form, we have explored the possibility and the
potential of SMOR in this paper. Three methods are proposed
and tested, namely, symbol isolation, nominal projection, and
first-order approximation, and each is applicable for certain
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Fig. 17. Monte Carlo test of the symbolic first-order-approximation method. (a) Delay distribution of 800 cases with normal perturbation up to 30%.
(b) Histogram of the measured delay error.

TABLE II
SPEEDUP VERSUS MODEL SIZE: FIRST-ORDER METHOD

circuit models with typical features. The potential effectiveness
of these methods has been demonstrated by experiments on
some typical circuits that are representative of interconnect
models.

Although numerous model-order-reduction algorithms are
available in literature for nonsymbolic linear model order re-
duction, their extension to SMOR is nontrivial in general. The
experimental study conducted in this paper reveals that certain
parametric modeling problems can be addressed by SMOR and
solved by using the proposed methods. Future research includes
efficient model-order-reduction methods for uncertain models,
error bounds for using the nominal projection, nonsubspace-
based approaches, and applications of other identification-
based approaches to SMOR.

We note that a research area closely related to SMOR is
the symbolic circuit analysis [23]–[25]. The symbolic circuit
analysis finds symbolic expressions of circuit transfer functions
by various enumeration techniques such as topological tree
enumeration [23] and determinant expansion [26]. Very often,
simplified expressions that approximate the exact circuit trans-
fer functions are sought. In this sense, the approximate sym-
bolic circuit analysis shares the same objective as the SMOR,
namely, finding simplified but equivalent models at the circuit
ports. However, they differ in their underlying principles; the
approximate symbolic circuit analysis finds the principal terms

Fig. 18. Simulation speedup using the first-order SMOR models.

from a system matrix determinant [26], [27], while the model
order reduction finds the principal eigenvalues or the dominant
state space of a linear system. It will be interesting to study
the connection between the subspace-based SMOR and the
approximate symbolic circuit analysis in the frequency domain.
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