
Preface

This how-to is intended as a basic tutorial for the Opencore's PCI 
Bridge project, in order to 

1) simulate and test the core on a complete open environment 
(Linux)

2) synthesize it on a PCI target board with a Xilinx FPGA

3) write a Linux driver for the resulting device.

The  how-to  is  NOT  intended  as  a  replacement  of  the  official 
documentation  of  the  core  but,  given  the  complexity  of  the 
project, it wants to simplify the approach to its material.

It is assumed that the reader has a good knowledge of Verilog 
before reading parts 1-3, as well as a good practice with Linux 
operating system (I suggest the (K)Ubuntu distro, on which you can 
easily find all the material required by the tutorial)
In addition, it's required to have at least a basic knowledge of 
PCI  and  WISHBONE  protocols,  even  if  they  are  generally  made 
transparent to the user by the bridge itself and by the operating 
system's API.

The WISHBONE bus

WB specification defines a protocol with which slave and master 
modules, all in the same chip (--> SOC), can communicate with each 
other.
If all these modules are appropriately interconnected and they all 
respect protocol's specifications, we can figure a virtual common 
bus that we call Wishbone (WB) bus.
The communication between modules can be done with three types of 
cycles  (or  transactions):  single  read/write,  block  read/write, 
read-modify-write. The transaction's initiator is always a master 
module, which  can  read/write data  (tipically DWORDs) from/to a 
slave module
The PCI bridge is a normal PCI device which is composed of two 
independent macroblocks: an interface called "pci target unit", 
wich allows the communication between a PCI master (initator) and 
a WB slave, and an interface called "wishbone slave unit", which 
allows  the  communication  between  a  WB  master  and  a  PCI  slave 
(target):



.
Now, let's start from the following situation:

In the above figure:

a) WB_SLAVE_1 is a simple RAM which can be accessed R/W through a 
WB bus
b)  WB_MASTER_1  is  a  simple  module  which  can  read/write  DWORDs 
from/to a WB bus
c)  PCI_DEV_1/2  are  two  PCI  devices  which  can  operate  both  as 
master,  reading/writing  DWORDs  from/to  the  PCI  bus,  and  slave 
(target), including a SRAM which can be accessed R/W through a PCI 
bus

Note from the above figure that PCI_DEV_1/2 and PCI_BRIDGE share 
the same PCI bus, while WB_SLAVE_1 and WB_MASTER_1 are connected 
to two independent WB buses:



WB_SLAVE_1 shares WB bus 1 with PCI_TARGET_UNIT, while WB_MASTER_1 
shares WB bus 2 with WB_SLAVE_UNIT.
The choice of two independent WB buses, in our example, is due to 
the fact that, in this way, interconnections between modules are 
very simple; let's explain why.
As said before, a WB bus consists into multiple slave and master 
modules which are appropriately interconnected and respect the WB 
protocol;  from   WISHBONE,  Revision  B.3  Specification (Point to 
point interconnection, see pag. 96) we learn that if a WB bus has 
to be shared by a single master module and a single slave module, 
then the interconnection between them can be simply obtained by 
short-circuiting the master's I/Os with the slave's I/Os in this 
way (in addition: see the definition of SYSCON at page 25):

When,  on  the  contrary,  the  same  WB  bus  has  to  be  shared  by 
multiple master/slave modules, then we need some additional logic 
that makes the interconnections between them.
This said, if we observe in detail PCI TARGET UNIT's architecture, 
we note that the module is interfaced to the WB bus through a WB 
master module (pci_wb_master), which can drive a WB slave module, 
while WISHBONE SLAVE UNIT is interfaced to the WB bus through a WB 
slave module (pci_wb_slave) which can be driven by a WB master 
module

http://www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf


Our first target is to create a simple testbench which performs 
the following operations:

1) PCI_DEV_1 WRITES 1 DWORD TO WB_SLAVE_1
2) PCI_DEV_1 WRITES 6 DWORDs TO WB_SLAVE_1
3) PCI_DEV_1 READS 6 DWORD FROM WB_SLAVE_1
4) WB_MASTER_1 WRITES 1 DWORD TO PCI_DEV_1
5) WB_MASTER_1 READS 1 DWORD FROM PCI_DEV_1
6) WB_MASTER_1 WRITES 6 DWORDs TO PCI_DEV_1

Therefore, in order to limit as more as possible the additional 
logic, we will implement our testbench by interconnecting the four 
WB modules on two separate WB buses

Environment installation

1) Download the pci-bridge core:

http://opencores.org/cvsget.cgi/pci

2) Untar the project and create the environment var $PCI, which 
must point to the base directory of the project. If, for example, 
the archive has been uncompressed in /home/some_user, in a debian 
based distro we can execute the following command:

paolo@paolo-laptop:~$ sudo cat PCI=”/home/some_user/pci” >> /etc/environment

http://opencores.org/cvsget.cgi/pci


3) Download from THIS CVS the testbench for the above figure. The 
associated  Verilog code is a simplification of the “official” 
pci-bridge's testbench; in addition to the figure it includes a 
pci_blue_arbiter, inherited from the  previous testbench, which is 
used  for  arbitration  on  the  PCI  bus  (see  PCI  IP  Core  Design 
Document, pg. 56); the resulting verilog code could appear still 
complex, but consider that all the PCI stuff will be removed and 
it will be replaced by a software pci initiator, after the core 
will be synthesized on a real FPGA:

4) Untar simple_testbench.tar.gz inside $PCI dir

5)  download  from  the  below  link  the  open  source  Verilog 
compiler/simulator  that  we  are  going  to  use:  Icarus  Verilog 
(IVerilog).
In  some  distros,  this  software  is  available  as  debian  or  rpm 
package,  but  some  older  version  have  bug  that  make  the 
compiler/simulator crash with the pci-bridge core. Therefore it's 
preferable to download and manually compile/install (./configure; 
make; sudo make install) Icarus Verilog's sourcecode, in its last 
version, which works correctly:

ftp://icarus.com/pub/eda/verilog/snapshots

6) Create now a file wich will be used by Iverilog in order to 
compile the bridge and the testbench:

+incdir+$(PCI)/simple_bench/verilog
+incdir+$(PCI)/rtl/verilog
+libdir-nocase+$(PCI)/simple_bench/verilog
+libdir-nocase+$(PCI)/rtl/verilog
$(PCI)/simple_bench/verilog/system.v

Save the previous file as conf_file.txt in $PCI/sim/rtl_sim/run/

7) Compile the testbench with the following command, so to produce 
an executable file (simple_testbench) wich will be used for the 
simulation (we can ignore the warning messages from the compiler):

paolo@paolo-laptop:~/pci/sim/rtl_sim/run$ iverilog -o simple_testbench -cconffile.txt

/home/paolo/pci/simple_bench/verilog/pci_behaviorial_device.v:206:  warning:  L-value 
``pci_ext_idsel'' is also an input port.
/home/paolo/pci/simple_bench/verilog/pci_behaviorial_device.v:106:  warning:  input 
pci_ext_idsel; is coerced to inout.
/home/paolo/pci/simple_bench/verilog/pci_behaviorial_device.v:206:  warning:  L-value 
``pci_ext_idsel'' is also an input port.
/home/paolo/pci/simple_bench/verilog/pci_behaviorial_device.v:106:  warning:  input 

ftp://icarus.com/pub/eda/verilog/snapshots


pci_ext_idsel; is coerced to inout.

Note: with the macros `define GUEST and `define HOST, in $PCI/rtl/
verilog/pci_user_constants.v, it is possible to choose to compile 
the bridge as HOST or as GUEST. 
The document $PCI/doc/pci_specification.pdf explains in detail all 
the  differences  between  the  two  implementations  (see  paragraph 
3.2); however, let's say briefly some considerations about that; 
the bridge has a global configuration space which is composed of 
the classic PCI configuration space: 

//    31  24 23  16 15   8 7    0
//   |  Device ID  |  Vendor ID  | 0x00
//   |   Status    |   Command   | 0x04
//   |       Class Code   | Rev  | 0x08
//   | BIST | HEAD | LTCY | CSize| 0x0C
//   |      Base Address 0       | 0x10
//   |      Base Address 1       | 0x14
//   |      Base Address 2       | 0x18
//   |      Base Address 3       | 0x1C
//   |      Base Address 4       | 0x20
//   |      Base Address 5       | 0x24
//   |      Cardbus Pointer      | 0x28
//   |  SubSys ID  |  SubVnd ID  | 0x2C
//   |   Expansion ROM Pointer   | 0x30
//   |    Reserved        | Cap  | 0x34
//   |          Reserved         | 0x38
//   | MLat | MGnt | IPin | ILine| 0x3C

...and two configuration spaces which are respectively part of the 
WISHBONE SLAVE UNIT and of the  PCI TARGET UNIT; both these areas 
form a region which is always implemented and which is pointed by 
a  base  address  that  will  be  assigned  -  during  the  bridge 
configuration  (which  we  will  examine  shortly)  –  to  the  fifth 
(0x10) register of the PCI configuration space (see figure above).
Now, if the bridge is implemented as HOST bridge, then:

a) the WHISBONE SLAVE UNIT has R/W access to the configuration 
space whereas PCI TARGET UNIT has read-only access
b) the bridge can scan the pci bus, determine all the connected 
devices and configure them

If  the  bridge  is  compiled  as  GUEST  (which  is  the  default 
implementation), then:

a) the PCI TARGET UNIT has R/W access to the configuration space 
whereas WHISBONE SLAVE UNIT has read-only access

In our test we will use the default implementation (GUEST)

8) Install the waveform viewer that we are going to use in our 



tests: GTKWave (in most distros you can find it as a .rpm or .deb 
package)

http://home.nc.rr.com/gtkwave/

9) Now, let's execute for the first time our simple_testbench; the 
execution will only inform us that a dumpfile (which we can open 
with GTKWave), called Test.vcd, has been created and nothing else, 
since all the code included in the main task (run_tests) has been 
intentionally commented out.

paolo@paolo-laptop:~/pci/sim/rtl_sim/run$ vvp simple_testbench
VCD info: dumpfile TestbenchResult.vcd opened for output.
** VVP Stop(0) **
** Current simulation time is 67584000 ticks.
** Interactive mode not supported, exiting simulation.
paolo@paolo-laptop:~/pci/sim/rtl_sim/run$

Configuration of PCI devices

In order to make a PCI device ready to use, it must be configured. 
As stated in advance, we assume that the reader knows at least the 
basic concepts of a PCI configuration task; here are some links 
which can be helpful for that purpose: 

1)PCI Local Bus Specification   Revision 3.0   
2)http://en.wikipedia.org/wiki/Peripheral_Component_Interconnect#Auto_Configurat
ion
3)http://en.wikipedia.org/wiki/PCI_Configuration_Space

Anyway, let's focus on the principal steps involved in this phase:

1) For each PCI device, at least one addresses region, which is 
used to access I/O registers of the device, must be enabled. This 
is acheived by assigning to the region a base address which has to 
be written in its respective register in the PCI configuration 
space

2) We can choose to implement the region as I/O or Memory  space: 
the last solution is generally the saner one (see  PCI Local Bus 
Specification   Revision  3.0  ,  paragraph  3.2.2,  and  Linux  Device 
Drivers  , Third Edition,   pg. 316) and we will choose it for all our 
PCI devices

3) Command Register of PCI configuration space must be configured 
in order to set the basic level of functionality of the device 
(see again  PCI  Local Bus Specification   Revision  3.0  ,  paragraph 

http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://lwn.net/Kernel/LDD3/
http://lwn.net/Kernel/LDD3/
http://lwn.net/Kernel/LDD3/
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://en.wikipedia.org/wiki/PCI_Configuration_Space
http://en.wikipedia.org/wiki/Peripheral_Component_Interconnect#Auto_Configuration
http://en.wikipedia.org/wiki/Peripheral_Component_Interconnect#Auto_Configuration
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://home.nc.rr.com/gtkwave/


6.2.2)

In our testbench we are going to simulate the above operations; a 
single base address will be assigned to PCI_DEV_1/2, while two 
base address will be assigned to the pci bridge (as stated above, 
bridge's configuration space is pointed by base address 0)

We don't need to go into detail of the tasks involved in this 
phase, since they will be replaced by the functions of a Linux 
device driver that we are going to write after executing the 
complete testbench; anyway, let's observe at least the principal 
steps involved during the configuration phase of a PCI device.
Firstly,  uncomment the following lines inside run_tests task: 

/******************************   file: system.v   ********************/
.
.
.
//
// CONFIGURATION
//

//CONFIGURE PCI_DEV_1
//configuration_cycle_write task has the following arguments: bus number, device number, //function 
number, register number, type of configuration cycle, byte enables, data
@(posedge pci_clock) ;
$display(" PCI_DEV_1 - write PCI_DEV1 base addresses");
configuration_cycle_write(0, 1, 0, 4, 0, 4'hF, `BEH_TAR1_MEM_START ) ;
$display(" PCI_DEV_1- enable target's response, master and parity errors, disable system error");
configuration_cycle_write(0, 1, 0, 1, 0, 4'h3, 32'h00000047) ;

//CONFIGURE PCI_DEV_2
@(posedge pci_clock) ;
$display(" PCI_DEV_2 - write PCI_DEV2 base addresses");
configuration_cycle_write(0, 2, 0, 4, 0, 4'hF, `BEH_TAR2_MEM_START ) ;
$display(" PCI_DEV_2- enable target's response, master and parity errors, disable system error");
configuration_cycle_write(0, 2, 0, 1, 0, 4'h3, 32'h00000047) ;

//CONFIGURE pci bridge 
@(posedge pci_clock) ;
$display(" pci bridge - Enabling master and target operation!");
configuration_cycle_write(0, 0, 0, 1, 0, 4'hF, 32'h00000007) ;
$display(" bridge target - Setting base address P_BA0 to 32'h1000_0000");
configuration_cycle_write(0, 0, 0, 4, 0, 4'hF, `TAR0_BASE_ADDR_0) ;
$display(" bridge target - Setting base address P_BA1 to 32'h2000_0000");
configuration_cycle_write(0, 0, 0, 5, 0, 4'hF, `TAR0_BASE_ADDR_1) ;

The above code is totally self-explanatory; let's compile now our 
testbench and start the simulation (iverilog -o simple_testbench 
-cconffile.txt; vvp simple_testbench). After the simulation is done, open 
Test.vcd file with GTKWave and examine the following signals, 
during the first configuration operation (PCI_DEV_1 - write 
PCI_DEV1 base addresses )



As you can see, according to PCI Local Bus Specification   Revision   
3.0, paragraph 3.1.1:

1) In the address phase, IDSEL of PCI_DEV_1 is asserted
2) AD[1:0] == 2'b0  
3) AD[7:2] == base address 0's offset in PCI configuration space. 
Note also that AD[7:0] == 8'h10 == 8'b00010000 --> AD[7:2] == 
6'b000100; this last value corresponds to offset 4 (fourth DWORD) 
of the configuration space
4) in the address phase, C/BE[3:0] == 4'hB (configuration write 
command)
5) In the data phase AD stores the value that must be written in 
the configuration register (`BEH_TAR1_MEM_START = c0000000)

In addition you can note in the verilog code that two base 
registers (0 and 1) have been configured on the bridge.
The first one allows us to access r/w the bridge's configuration 
area: all the registers in this area are memory mapped and they 
will be necessary later to enable/disable/configure some bridge's 
features
The second one is the base address from which the  pci_wb_master 
can read/write data from/on the WB bus

http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf

