PCI to WB transactions

We didn't examine in detail the architecture of PCI_DEV_1/2 modules since these devices won't be
part of the synthesized core. On the contrary, SIMPLE_WB_SILAVE is one of the possible modules
that we can add to the WB bus in order to create a single modular chip interfaced to the PCI bus
through the bridge; therefore we're going to exaplain the basic principles of its interface and its
implementation.

In our example, SIMPLE_WB_SLAVE is a simple RAM; if we choose to implement this memory
module with the following interface (which is very similar to the WB interface) and timing
diagrams, then it will work more efficiently on the WB bus, as stated by WB_b3 specifications:
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The above memory, called "FASM" by the WB_b3 specifications, can be realized with the
following simple verilog module (which you can find in the testbench). The only difference with the
above timing diagrams is that our FASM, during read cycles, synchronously presents data after the
rising edge of the clock input.

“timescale 1 ps/ 1 ps
“define MEM_SIZE 4096*2

module fasm(CLK,WE,ADR,DI,DO);
input CLK;
input WE;
input [7:0] ADR;
input [31:0] DI;
output reg [31:0] DO;
reg [7:0] ram[0:" MEM_SIZE . 1]; // memory cells
integer i;






At this point, SIMPLE_WB_SLAVE can be implemented, using the previous FASM module,
similarly to figure A-16 of the WB_b3 specification doc, in the following way:
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input WE_I;
input [2:0] CTLI;
input [1:0] BTE_I;

reg calc_ack;

reg one_wait_state;

assign ACK_O = calc_ack && STB_I && CYC_I;
assign RTY_O =0;

assign ERR_O = 0;

fasm ram_instance

(
.DO (DAT_O),
.DI (DAT_I),
.ADR  (ADR_I[7:0]),
.CLK (CLK_I),
/I.EN (1'bl), //not implemented in our test fasm
/[.RST  (1'b0), /not implemented in our test fasm
.WE (STB_I && WE_I)
)s
always @ (posedge CLK I && one_wait_state === 1'b1)
begin
if(STB_I)
calc_ack <= #1000 ~calc_ack;
end

task set_one_wait_state;

input val;
begin
calc_ack <= ~val;
one_wait_state <= val;
end
endtask
initial
begin
calc_ack <= 1;
one_wait_state <= 0;
end
endmodule

Note that some signals, inherited from the “official” testbench, have been included - but not used -
in the module.

An additional flip flop and gate has been added in the ACK_O circuit, as indicated in paragraph
A.7.3 of WB_b3 specs, since our FASM performs synchronous read cycles; this flip flop introduces
a necessary wait cycle for each read transaction (therefore, the resulting read transactions on the WB
bus are slower than write transactions)

The wait cycle can be set/unset by calling the task set_one_wait_state (look at the code: it's self-
explanatory).

Now we have to connect WB_SLAVE_UNIT to PCI_TARGET_UNIT: this can be easily obtained

using a point to point interconnection (remember that the associated WB bus is shared only by one
master and one slave module):



SIMPLE_WB_SLAVE wishbone_slave
(

.CLK_I (wb_clock),
.RST_I(reset_wb),

.ACK_O (ACK_I),
ADR_I (ADR_O),
.CYC_I (CYC_O),
.DAT_O (MDAT_JI),
.DAT _I (MDAT_O),
.ERR_O (ERR_I),
.RTY_O (RTY_ID),

SEL_I(SEL_O),
STB_I(STB_O),
\WE_I (WE_O),
.CTLI (CTL O),
BTE_I (BTE_O)

As we have just seen, it's very simple to interface a memory model to PCI_TARGET_UNIT: and
with little knowledge of the WB protocol and little verilog additional code, we have implemented a
RAM core ready to be accessed R/W through the PCI bus.

Now let's perform read/write cycles from PCI_DEV_1 to our FASM;

In order to do that, it's necessary to configure the PCI_AM_1 register, through which we can
specify how large is the region pointed by the bridge's base address 1. The FASM module has a size
of 8K if we set PCI_AM_1 to the value 32'hFFFF0000, then the region will have a size of 8K: as
reported in $PCI/doc/pci_specification.pdf (see page 30), each bit in the PCI_AM_1 register
corresponds to one address line.

The above register's address is calculated by adding an offset of 118 (hex) to the bridge's base
address 0 (see pci_constants.v); we will perform a memory write PCI transaction with the
following task, wich we won't examine in detail, since it will be replaced by a system call ( write() )
of the operating system (Linux) that has to communicate with the synthesized core through the PCI
bus; anyway, note that BE, according to PCI specification, indicates wich AD's byte lanes carry
meaningful data (for example: BE=4'b1100 indicates that meaningful data are on AD[8:15] and
AD[0:7], while BE=4'b0110 requires meaningful data on AD[24:31] and AD[0:7])

$display(" ");

$display(" Setting P_AM_1");

//[SIMPLE_PCI_MEM_WRITE has the following arguments: master_number, address, data, byte_en, size
SIMPLE_PCI_MEM_WRITE (1, "TARO_BASE_ADDR_0+32'h118, 32'hFFFF0000, 4'b0011, 1);

In addition:

a) we enable ERROR reporting trhough the ERR_EN bit of PCI Error Control and Status register:
P_ERR_CS (offset: 160 (hex) )

b) given that our FASM's base address is 0, in some way the bridge must “translate” to
32'h00000000 all the requests which are addressed to "TARO_BASE_ADDR_1: we can achieve that
by enabling Address translation (through AT_EN, wich is bit 2 of P_IMG_CTRLO0) and setting



TARO_TRAN_ADDR _1 register (offset 11c (h) ) to 32'h00000000

$display(" Setting ERR_EN bit of P_ERR_CS");

SIMPLE_PCI_MEM_WRITE (1, TARO_BASE_ADDR_0 + 12'h160, 32'h00000001, 4'b1110,1);
$display(" Enabling Address translation (bit 2 of P_IMG_CTRLO0)");
SIMPLE_PCI_MEM_WRITE (1, TARO_BASE_ADDR_0 + 12'h110, 32'h0000004, 4'b1110,1);
$display(" Setting TARO_TRAN_ADDR_1 to 32'h00000000");

SIMPLE_PCI_MEM_WRITE (1, TARO_BASE_ADDR_0 + 12'h11¢, 32'h00000000, 4'50000,1);

At this point, PCI_DEV_1 can write a DWORD to the address 4'h4 of the memory, which is seen on
the PCI bus as the offset 4 of "TARO_BASE ADDR _1:

do_pause(50); //Wait 50 clk cycles

//PCI_DEV_1 writes | D-WORD to WB_SLAVE

$display(" Writing 32'hOOBEEFO00 to adr 4'h4 of our FASM");

SIMPLE_PCI_MEM_WRITE (1, TARO_BASE_ADDR 1 + 3'h4, 32'h00BEEF00, 4'b1001,1);

We can verify, by examining TestbenchResult.ved with GTKWave, that the previous value
( 32'h00BEEFO00 ) is now stored in the right FASM's locations (see debug_ram_byte_5/6 signals):
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Now, we want to write 6 DWORDs starting from address 4'h8 of our FASM. If we make the region
pointed by "TARO_BASE_ADDR _ 1 prefetchable (see on PCI specs - as well on Linux Device
Drivers , third edition, page 316 - what “prefetchable” means) , by setting the PREF_EN bit of
P_IMG_CTRLO, then any BE can be used during a burst write:

//PCI_DEV_1 writes 6 DWORDs to WB_SLAVE

do_pause(50); //Wait 50 clk cycles

$display(" Setting PREF_EN (bit 1 of P_IMG_CTRLO0)");

/mote that we don't clear the previously set AT_EN

SIMPLE_PCI_MEM_WRITE (1, TARO_BASE_ADDR_0 + 9'h110, 32'h0000006, 4'b1110,1);

$display(" Writing 6 DWORDS from adr 4'h8 of our FASM");

SIMPLE_PCI_MEM_WRITE (1, TARO_BASE_ADDR 1 + 4'h8, 32’hAAAAAAAA, ({$random} % 4), 6);

N.B) while performing a burst write of N DWORD:s, the task SIMPLE_PCI_MEM_WRITE calls another task inherited
from the old testbench, which can be found in pci_behaviorial_master.v: this function starts from an initial value and
obtains theremaining n-1 values by incrementing each byte of each DWORD by 8'hl; if, for example, the starting
DWORD value is AAAAAAAA, then the following values will be ABABABAB, ACACACAC, ADADADAD, AEAEAEAE,
AFAFAFAF... (see task Update_Write_Data of pci_behaviorial_master.v)

Below is an explanation for the principal steps involved during a burst write of N DWORDs, to a
chosen address, started from a PCI initiator:

1) The PCI initiator starts a PCI write transaction, writing the DWORDs on the PCI bus
2) PCI TARGET UNIT buffers in PCIW_FIFO - a FIFO with a depth defined by "PCIW_DEPTH
(see pci_constants.v) — the previous DWORDs and, depending on the actual queue's state and the
presence/absence of errors during the operation:

2.a) ends the transaction

2.b) stops the transaction with a Target Abort or Disconnect signal (see pci specs: the target
signals a Disconnect by asserting #TRDY and #STOP togheter, and an Abort by deasserting
#DEVSEL and asserting #STOP)

2.c) retries the transaction with a retry signal (it asserts #STOP and doesn't assert #TRDY)
3) If the PCI transaction is terminated, the bridge executes N write cycles on the WB bus, by
flushing N DWORDs from the fifo, starting from the chosen address and incrementing it by one
DWORD at each ACK_O signal got from WB slave.

N.B: in order to have a linear incrementing mode for the chosen address, AD[1:0] must be equal to 2'b00 during the
address phase. During this phase, AD[1:0] indicates the order in which the master is requesting the data to be
transferred (see PCI specs, paragraph 3.2.2.2); another mode for the burst ordering is the “Cache-line Wrap mode”
(AD[1:0] == 2'b10), which is not fully supported by the bridge.

All the previous steps are explained in detail in $PCI/doc/pci_specification.pdf (paragraph 3.4.3);
anyway, let's examine closer what happens during some cases of a PCI to WB write cycle:

A)l,2.a,3
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B) 1, 2.c : this case is very simple to reproduce and is left as exercise. Try to follow the previous
write transaction with another burst write, without waiting that the first sequence of DWORDs has
been flushed from the FIFO; then verify with gtkWave the retry signal on #STOP and #TRDY lanes

Now we want that PCI_DEV __1 reads back the written DWORDs; a burst read from a PCI initiator
on a chosen address follows, sequentially, the below steps:

1) the value of the "Cache Line Size" register in the PCI configuration space must be set to the
number of DWORD:s to be read.
2) the PCI initiator starts a read transaction of N DWORDs
2.a) wich with Command Type = Memory Read (4'b0110) and setting to 1 PREF_EN
2.b) with Command Type = Memory Read Line (4'b1110) regardless of the value of
PREF_EN
3) the bridge terminates the transaction with a retry signal, wich tells the initiator to repeat the
transaction shortly after
4) the bridge performs a sequence of N reads cycles on the WB bus, through
WB_MASTER_MODULE, starting from the chosen address and incrementing it by one DWORD
at each ACK_O signal received from WB slave. In addition, WB_MASTER_MODULE retries or
stops the sequence of reads in correspondence of RTY_O ed ERR_O signals received from WB
slave (in our testbench we will not examine these last two cases; anyway they are very simple to
reproduce, as exercise)
The read values sequentially fill a FIFO: PCIR_FIFO, wich has a depth defined by "PCIR_DEPTH
(see pci_constants.v).

5) when N DWORDs are stored in the FIFO, or the FIFO is full, or the WB transaction has been
retried or stopped, the PCI initiator can perform another read transaction (which doesn't terminate
with a retry signal) during which the bridge flushes the FIFO putting N DWORDs on the PCI bus; if
the queue has become empty before N DWORDs are put on the bus (when, for example, it contained
a number of DWORDs smaller than N ) then the bridge terminates the transaction with a Target
Disconnect signal
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/****************************** fﬂe'SYSTEh4V ********************/

//PCI_DEV_1 reads 6 DWORDs from WB_SLAVE

do_pause(50); //Wait 50 clk cycles

$display(" Setting the Cache Line Size register to %d word(s)", 8'h8);

configuration_cycle_write(0, 0, 0, 3, 0, 4'hF, {24'h0000_00, 8'h8}) ;

$display(" Setting one wait state for each read cycle (our FASM is synchronous read type)");

wishbone_slave.set_one_wait_state(1);

//[SIMPLE_PCI_MEM_READ task has the following arguments: master_number, address, C, byte_en, size, target termination

//C = 0110 --> memory read

//C = 1100 --> memory read multiple

//C = 1110 --> memory read line

$display(" Reading 6 DWORDS from adr 4'h8 of our FASM");

$display(" Step 1: do a PCI read transaction and get a retry signal");

SIMPLE_PCI_MEM_READ (1, "TARO_BASE_ADDR_1 + 4'h8, 4'b0110, ($random % 14), 1'h1, *Test_Target_Start_Delayed_Read);
do_pause(20); //Wait 20 clk cycles

$display(" Step 2: retry the previous transaction");

SIMPLE_PCI_MEM_READ (1, TARO_BASE_ADDR_1 + 4'h8, 4'b0110, ($random % 14), 3'h6, Test_Target_Normal_Completion);
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N.B: if the Cache Line Size configuration register is not set, the PCI initiator can always read N
DWORD:s - where N == "PCIR_DEPTH - with Command Type (C) == Memory Read Multiple
(4'D1100)

WB to PCI transactions

In a WB to PCI read/write transaction, a wishbone module has to perform bus mastering directly on
the WB bus and indirectly (through the bridge) on the PCI bus; in this situation too we have two
FIFOs on the bridge that buffer written/read DWORDs from/to the WB master, while translating a
WB cycle into a PCI one; FIFOs' depths are defined in pci_constants.v (WBW_DEPTH,
WBR_DEPTH). The way of proceeding, in these transaction, is very similar to the PCI to WB ones;
at this point, the reader already has all the basic knowledge to quickly understand these cycles and
therefore we won't examine them in detail. The tesbench's verilog code is now totally self-
explanatory; anyway, consider the following two notes:

1) The WB_MASTER module has been taken from another open hardware project: WB dma
(look at www.opencores.org), in order to replace the equivalent module in the official
bridge's testbench (which was much more complex); inside the module's code you will find
four basic tasks, which are self-explanatory: wb_wrl, wb_wr4, wb_rd1, wb_rd4

2) WB_MASTER is linked to the WB bus with a point to point interconnection with the
bridge's pci_wb_slave



http://www.opencores.org/

