Acoustic Modem FPGA
Overview



Daughter Board Front End

= Some brief information...

= Rx and Tx side of
daughterboard

= Anti-alisaing filter cutoff
frequency is 19.4 Mhz

= Rx sampling frequency,
Fs =40 Mhz

= See the doc/memec
folder for more in depth
Information

Figure 2 - P160 Analog Module Block Diagram



FPGA Block Diagram

FPGA

dsp_chain_1
pci_bridge

NOT CURRENTLY IMPLEMENTED

The main idea for this will be to write baseband samples

to the FPGA which will then be upconverted and sent out
on the DACs.
gt
32-bit PCI bus
kJ
Acoustic Front End pci devic driver
dsp_chaind
adc_interface D rx_chain_0 rx_fifo 0
fs = 40eb
16 bit
Samples /

12 - Bit ADC Samples

—_—

Quick Overview:

RX Side —
The adc_interface 0 module instance takes the 12-bit ADC samples and zero pads them to 16-bits. It also has a running average dc offset

cormrector to remove temperture fluctuation induced dc offsets. The 16-bit samples coming from the adc_interface 0 module instance are
then passed onto the rx_chain_0 module instance which contains the four stage CIC filter which decimates by 128 followed by the halfband
filter which lastly decimates by 2 to give a decimation factor M=256. Since the sampling frequency of the ADCs are set to 40 MHz to avoid
any aliasing (anti-aliasing filter has cutoff of 19.4 MHz) we end up with a bandwidth of 40e6/256 = 156250 —> 156.25 kHz. The frequency
response of these filters can be seen in the cic-octave folder. The decimated samples are then sent to the rx_fifo_0 module instance where
they are written to a FIFO. This FIFO is then read from by the Host computer via the device driver.

TX Side —
To be implemented...



DDC Filter Transfer Fucntion

= DDC filter transfer function,
CIC+Halfband filter total
decimation: 256 (CIC: 128,
HBF: 2)




DDC Filter Transfer Function

= DDC filter transfer function,
CIC+Halfband filter total
decimation: 256 (CIC: 128,
HBF: 2)

= These plots were created
with an Octave script
which iIs located in the doc/
cic-octave/cic-octave-
acoustic folder.




Open Source Cores

= All modules used In this project are open source including
the ones that were written in house for the project.

= The two main open source projects that are being used In
this project are the pci project from opencores and the cic
and halfband filter cores from the GNU Radio project. You
can download and get more information about these
projects from http://www.opencores.org and
http://gnuradio.org/trac, respectively.



http://www.opencores.org/
http://gnuradio.org/trac

Testbench

For simulation purposes, a testbench was created which
used several different testbenches that came with the
opencores pci project. These testbenches were modified
so that we could test our particular design. This testbench
can be found in the bench folder.

For the Rx side of the design, we created a task that writes
random numbers to the ADC register. These random
numbers act as samples from the ADC which are then
passed through the rx pipeline.

Open source tools such as gtkwave and icarus verilog
were used in the simulation. Simulation scripts and
Information can be found in the sim folder.

The Rx side testbench has been fully implemented and our
design has been verified.



PCI Device Driver

= Fortunately, the majority of the work for the pci device
driver is already done. The opencores pci project comes
with a driver for a VGA monitor controller that they were
Implementing which used the pci bridge. However, this
driver is only implemented for versions 2.2 and 2.4 of the
Linux kernel. We need a device driver that is compatable
with the major OS changes that were introduced in version
2.6.

= Another hacker took the above mentioned device driver
and ported it for kernel version 2.6. We are using this
device driver and will be making any needed modifications
If needed. This driver and its related documentation can
be found in doc/pci_bridge driver_1 1 folder.



Current Status...

= The majority of the work for the Rx side of the acoustic
modem is completed. Simulation has verified that the
design works. Current work is on getting the device driver
to work properly.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

