Preface

This how-to is intended as a basic tutorial for the Opencore's PCI
Bridge project, in order to

1) simulate and test the core on a complete open environment
(Linux)

2) synthesize it on a PCI target board with a Xilinx FPGA
3) write a Linux driver for the resulting device.

The how-to is NOT intended as a replacement of the official
documentation of the core but, given the complexity of the
project, it wants to simplify the approach to its material.

It is assumed that the reader has a good knowledge of Verilog
before reading parts 1-3, as well as a good practice with Linux
operating system (I suggest the (K)Ubuntu distro, on which you can
easily find all the material required by the tutorial)

In addition, it's required to have at least a basic knowledge of
PCI and WISHBONE protocols, even if they are generally made
transparent to the user by the bridge itself and by the operating
system's API.

The WISHBONE bus

WB specification defines a protocol with which slave and master
modules, all in the same chip (--> SO0C), can communicate with each
other.

If all these modules are appropriately interconnected and they all
respect protocol's specifications, we can figure a virtual common
bus that we call Wishbone (WB) bus.

The communication between modules can be done with three types of
cycles (or transactions): single read/write, block read/write,
read-modify-write. The transaction's initiator is always a master
module, which can read/write data (tipically DWORDs) from/to a
slave module

The PCI bridge is a normal PCI device which 1is composed of two
independent macroblocks: an interface called "pci target unit",
wich allows the communication between a PCI master (initator) and
a WB slave, and an interface called "wishbone slave unit", which
allows the communication between a WB master and a PCI slave
(target):

WISHBONE
MASTER

i

re e <::l/'\ < > WISHBONE SLAVE UNIT ¥ >

PCI WB
BUS BUS

Pc(|w|b|;|‘\3TT|é:)3R <:> <::> PCI TARGET UNIT K :>

PCI BRIDGE

WISHEONE
SLAVE

i

Now, let's start from the following situation:

wB
PCI_DEV 1
(MASTER+SLAVE) <:> BLiJS <:> WB_MASTER_1
i <::> PCI BRIDGE
PCI_DEV 2 wB
(MASTER+SLAVE) <:> B;JS <:> WB_SLAVE_1

In the above figure:

a) WB SLAVE 1 is a simple RAM which can be accessed R/W through a
WB bus

b) WB MASTER 1 is a simple module which can read/write DWORDs
from/to a WB bus

c) PCI DEV 1/2 are two PCI devices which can operate both as
master, reading/writing DWORDs from/to the PCI bus, and slave
(target), including a SRAM which can be accessed R/W through a PCI
bus

Note from the above figure that PCI DEV _1/2 and PCI _BRIDGE share
the same PCI bus, while WB SLAVE 1 and WB_MASTER 1 are connected
to two independent WB buses:

WB SLAVE 1 shares WB bus 1 with PCI TARGET UNIT, while WB MASTER 1
shares WB bus 2 with WB _SLAVE UNIT.

The choice of two independent WB buses, in our example, is due to
the fact that, in this way, interconnections between modules are
very simple; let's explain why.

As said before, a WB bus consists into multiple slave and master
modules which are appropriately interconnected and respect the WB
protocol; from WISHBONE, Revision B.3 Specification (Point to
point interconnection, see pag. 96) we learn that if a WB bus has
to be shared by a single master module and a single slave module,
then the interconnection between them can be simply obtained by
short-circuiting the master's I/0s with the slave's I/0s in this
way (in addition: see the definition of SYSCON at page 25):

BYSOOH

RST T RST I
CLE T CLE_I
AR Of)- ADR_I(}
DAT I()- DAT I(}
& =
2 &
S DATo(- DAT Of}
= WE O WE I &
% SEL Of)- o SEL 10} é
= pgmo EmI
ACK T f——— arx 0
Bl I

When, on the contrary, the same WB bus has to be shared by
multiple master/slave modules, then we need some additional logic
that makes the interconnections between them.

This said, if we observe in detail PCI TARGET UNIT's architecture,
we note that the module is interfaced to the WB bus through a WB
master module (pci wb master), which can drive a WB slave module,
while WISHBONE SLAVE UNIT is interfaced to the WB bus through a WB
slave module (pci wb slave) which can be driven by a WB master
module

http://www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf

WB

BUS
1

pci_wb_slave WB_MASTER,_1

it

J

WISHBONE SLAVE UNIT

WB_SLAVE 1

pci_wb_master
WEB
BUS

PCI TARGET UNIT ’

i

PCI BRIDGE

OQur first target is to create a simple testbench which performs
the following operations:

1) PCI DEV 1 WRITES 1 DWORD TO WB SLAVE 1
2) PCI DEV 1 WRITES 6 DWORDs TO WB SLAVE 1
3) PCI DEV 1 READS 6 DWORD FROM WB SLAVE 1
4) WB_MASTER 1 WRITES 1 DWORD TO PCI DEV 1
5) WB_MASTER 1 READS 1 DWORD FROM PCI DEV 1
6) WB_MASTER 1 WRITES 6 DWORDs TO PCI DEV 1

Therefore, in order to limit as more as possible the additional
logic, we will implement our testbench by interconnecting the four
WB modules on two separate WB buses

Environment installation

1) Download the pci-bridge core:

http://opencores.org/cvsget.cgi/pci

2) Untar the project and create the environment var $PCI, which
must point to the base directory of the project. If, for example,
the archive has been uncompressed in /home/some user, in a debian
based distro we can execute the following command:

paolo@paolo-laptop:~$ sudo cat PCI="/home/some_user/pci” >> /etc/environment

http://opencores.org/cvsget.cgi/pci

3) Download from THIS CVS the testbench for the above figure. The
associated Verilog code is a simplification of the “official”
pci-bridge's testbench; in addition to the figure it includes a
pci blue arbiter, inherited from the previous testbench, which is
used for arbitration on the PCI bus (see PCI IP Core Design
Document, pg. 56); the resulting verilog code could appear still
complex, but consider that all the PCI stuff will be removed and
it will be replaced by a software pci initiator, after the core
will be synthesized on a real FPGA:

4) Untar simple testbench.tar.gz inside $PCI dir

5) download from the below 1link the open source Verilog
compiler/simulator that we are going to wuse: Icarus Verilog
(IVerilog).

In some distros, this software 1is available as debian or rpm
package, but some older version have bug that make the
compiler/simulator crash with the pci-bridge core. Therefore it's
preferable to download and manually compile/install (./configure;
make; sudo make install) Icarus Verilog's sourcecode, in its last
version, which works correctly:

ftp://icarus.com/pub/eda/verilog/snapshots

6) Create now a file wich will be used by Iverilog in order to
compile the bridge and the testbench:

+incdir+$(PCI)/simple bench/verilog
+incdir+$(PCI)/rtl/verilog
+libdir-nocase+$(PCI)/simple bench/verilog
+libdir-nocase+$(PCI)/rtl/verilog
$(PCI)/simple bench/verilog/system.v

Save the previous file as conf file.txt in $PCI/sim/rtl sim/run/
7) Compile the testbench with the following command, so to produce

an executable file (simple testbench) wich will be used for the
simulation (we can ignore the warning messages from the compiler):

paolo@paolo-laptop:~/pci/sim/rtl_sim/run$ iverilog -o simple_testbench -cconffile.txt

/home/paolo/pci/simple_bench/verilog/pci_behaviorial device.v:206: warning: L-value
““pci_ext_idsel'' is also an input port.
/home/paolo/pci/simple_bench/verilog/pci_behaviorial_device.v:106: warning: input
pci_ext_idsel; is coerced to inout.

/home/paolo/pci/simple_bench/verilog/pci_behaviorial device.v:206: warning: L-value

““pci_ext_idsel'' is also an input port.
/home/paolo/pci/simple_bench/verilog/pci_behaviorial_device.v:106: warning: input

ftp://icarus.com/pub/eda/verilog/snapshots

pci_ext_idsel; is coerced to inout.

Note: with the macros “define GUEST and “define HOST, in $PCI/rtl/
verilog/pci_user constants.v, it 1is possible to choose to compile
the bridge as HOST or as GUEST.

The document $PCI/doc/pci specification.pdf explains in detail all
the differences between the two implementations (see paragraph
3.2); however, let's say briefly some considerations about that;
the bridge has a global configuration space which is composed of
the classic PCI configuration space:

// 31 2423 16 15 8 7 0

// | Device ID | Vendor ID | 0x00
// | Status | Command | 0x04
// | Class Code | Rev | 0x08
// | BIST | HEAD | LTCY | CSize| 0xOC
// | Base Address 0 | 0x10
// | Base Address 1 | 0x14
// | Base Address 2 | 0x18
// | Base Address 3 | 0x1C
// | Base Address 4 | 0x20
// | Base Address 5 | 0x24
/7| Cardbus Pointer | 0x28
// | SubSys ID | SubVnd ID | 0x2C
// | Expansion ROM Pointer | 0x30
// | Reserved | Cap | 0x34
/7| Reserved | 0x38
// | MLat | MGnt | IPin | ILine| 0x3C

...and two configuration spaces which are respectively part of the
WISHBONE SLAVE UNIT and of the PCI TARGET UNIT; both these areas
form a region which is always implemented and which is pointed by
a base address that will be assigned - during the bridge
configuration (which we will examine shortly) — to the fifth
(0x10) register of the PCI configuration space (see figure above).

Now, if the bridge is implemented as HOST bridge, then:

a) the WHISBONE SLAVE UNIT has R/W access to the configuration
space whereas PCI TARGET UNIT has read-only access

b) the bridge can scan the pci bus, determine all the connected
devices and configure them

If the bridge 1is <compiled as GUEST (which 1is the default
implementation), then:

a) the PCI TARGET UNIT has R/W access to the configuration space
whereas WHISBONE SLAVE UNIT has read-only access

In our test we will use the default implementation (GUEST)

8) Install the waveform viewer that we are going to use in our

tests: GTKWave (in most distros you can find it as a .rpm or .deb
package)

http://home.nc.rr.com/gtkwave/

9) Now, let's execute for the first time our simple_ testbench; the
execution will only inform us that a dumpfile (which we can open
with GTKWave), called Test.vcd, has been created and nothing else,
since all the code included in the main task (run tests) has been
intentionally commented out.

paolo@paolo-laptop:~/pci/sim/rtl_sim/run$ vvp simple_ testbench
VCD info: dumpfile TestbenchResult.vcd opened for output.

** VP Stop(0) **

** Current simulation time is 67584000 ticks.

** Interactive mode not supported, exiting simulation.
paolo@paolo-laptop:~/pci/sim/rtl_sim/run$

Configuration of PCI devices

In order to make a PCI device ready to use, it must be configured.
As stated in advance, we assume that the reader knows at least the
basic concepts of a PCI configuration task; here are some 1links
which can be helpful for that purpose:

1)PCI Local Bus Specification Revision 3.0
2)http://en.wikipedia.org/wiki/Peripheral Component Interconnect#Auto Configurat
ion

3)http://en.wikipedia.org/wiki/PCI Confiquration Space

Anyway, let's focus on the principal steps involved in this phase:

1) For each PCI device, at least one addresses region, which is
used to access I/0 registers of the device, must be enabled. This
is acheived by assigning to the region a base address which has to
be written in its respective register in the PCI configuration
space

2) We can choose to implement the region as I/0 or Memory space:
the last solution is generally the saner one (see PCI Local Bus

Specification Revision 3.0, paragraph 3.2.2, and Linux Device

Drivers, Third Edition, pg. 316) and we will choose it for all our
PCI devices

3) Command Register of PCI configuration space must be configured
in order to set the basic level of functionality of the device
(see again PCI Local Bus Specification Revision 3.0, paragraph

http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://lwn.net/Kernel/LDD3/
http://lwn.net/Kernel/LDD3/
http://lwn.net/Kernel/LDD3/
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://en.wikipedia.org/wiki/PCI_Configuration_Space
http://en.wikipedia.org/wiki/Peripheral_Component_Interconnect#Auto_Configuration
http://en.wikipedia.org/wiki/Peripheral_Component_Interconnect#Auto_Configuration
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://home.nc.rr.com/gtkwave/

6.2.2)

In our testbench we are going to simulate the above operations; a
single base address will be assigned to PCI _DEV 1/2, while two
base address will be assigned to the pci bridge (as stated above,
bridge's configuration space is pointed by base address 0)

We don't need to go into detail of the tasks involved in this
phase, since they will be replaced by the functions of a Linux
device driver that we are going to write after executing the
complete testbench; anyway, let's observe at least the principal
steps involved during the configuration phase of a PCI device.
Firstly, wuncomment the following lines inside run_tests task:

R AR A AR KKK KK file: system.v KA KK KKK KK

/!
// CONFIGURATION
/7

//CONFIGURE PCI DEV 1

//configuration cycle write task has the following arguments: bus number, device number, //function
number, register number, type of configuration cycle, byte enables, data

@(posedge pci clock) ;

$display(" PCI DEV 1 - write PCI DEV1 base addresses");

configuration cycle write(0, 1, 0, 4, 0, 4'hF, "BEH TAR1 MEM START) ;

$display(" PCI DEV_1- enable target's response, master and parity errors, disable system error");
configuration cycle write(0, 1, 0, 1, 0, 4'h3, 32'h00000047) ;

//CONFIGURE PCI DEV 2

@(posedge pci clock) ;

$display(" PCI DEV 2 - write PCI DEV2 base addresses");

configuration cycle write(0, 2, 0, 4, 0, 4'hF, "BEH TAR2 MEM START) ;

$display(" PCI DEV 2- enable target's response, master and parity errors, disable system error");
configuration cycle write(0, 2, 0, 1, 0, 4'h3, 32'h00000047) ;

//CONFIGURE pci bridge

@(posedge pci clock) ;

$display(" pci bridge - Enabling master and target operation!");
configuration cycle write(0, 0, 0, 1, 0, 4'hF, 32'h00000007) ;

$display(" bridge target - Setting base address P_BAO to 32'h1000 0000");
configuration cycle write(0, 0, 0, 4, 0, 4'hF, TARO BASE ADDR 0) ;
$display(" bridge target - Setting base address P_BAl to 32'h2000 0000");
configuration cycle write(0, 0, 0, 5, 0, 4'hF, 'TARO BASE ADDR 1) ;

The above code is totally self-explanatory; let's compile now our
testbench and start the simulation (iverilog -o simple_testbench
-cconffile.txt; vvp simple_testbench). After the simulation is done, open
Test.vcd file with GTKWave and examine the following signals,
during the first configuration operation (PCI DEV 1 - write

PCI DEV1 base addresses)

Time A
poi_clock=0 L | | | l—%)) 3) | | | J 1 [|

FRAME=1 | I
AD[31:0]=ZZEZZ2ET — [i0%+ ANOORNID JERR (10001010 [RNEH cnnﬂuuu | EEEE (N CEITEET T (R (T IE
ceE[3:0] -2 — O O {:1 R F
IRDY-1 / [\ []]

TRDY=1 ;" 5[‘ 1 T

idzel_now=i i | |_| [

v

1)

As you can see, according to PCI Local Bus Specification Revision

3.0, paragraph 3.1.1:

1) In the address phase, IDSEL of PCI DEV 1 is asserted

2) AD[1:0] == 2'b0O

3) AD[7:2] == base address 0's offset in PCI configuration space.
Note also that AD[7:0] == 8'h1l0 == 8'b0001OOEO --> AD[7:2] ==
6'b000100; this last value corresponds to offset 4 (fourth DWORD)
of the configuration space

4) in the address phase, C/BE[3:0] == 4'hB (configuration write
command)

5) In the data phase AD stores the value that must be written in
the configuration register (BEH TAR1 MEM START = c0000000)

In addition you can note in the verilog code that two base
registers (0 and 1) have been configured on the bridge.

The first one allows us to access r/w the bridge's configuration
area: all the registers in this area are memory mapped and they
will be necessary later to enable/disable/configure some bridge's
features

The second one is the base address from which the pci wb master
can read/write data from/on the WB bus

http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf
http://people.na.infn.it/~garufi/didattica/CorsoAcq/PCI.Local.Bus.Specification.Revision.3.0.pdf

