A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell

University of Washington, Seattle

Feb. 8, 2017

Very Crowded RF Spectrum

Full-Duplex (FD) Communication

FD communication potentially improves spectral efficiency up to 2X.

© 2017 IEEE International Solid-State Circuits Conference

Assumed SI Cancellation Distribution

International Solid-State Circuits Conference

over 42MHz Bandwidth

Outline

- Wideband SI Cancellation Challenges
- Proposed Dual-path Canceler
- A Prototype 40nm CMOS FD Radio
- Measurement Results
- Conclusion

Self-Interference Cancellation (SIC) in FD Radio

Ideal SI Canceler

- Cancel @ RX input
- Wide cancellation BW
- Minimal noise, power, area
- High linearity
- Large In/Out impedance

Leakage Path Channel Response

Time Delay Versions of Leakage Signal

Circulator Phase Response

© 2017 IEEE

Circulator Impulse Response

Leakage Path Channel Response

Wideband SIC Prior-Art

RF Frequency Domain Equalization

High Speed Current DAC Synthesizes Inverse TX

Challenging to design a single path broadband, high SI canceler

- Two cancellation paths, at RF and Baseband
- Enhance the SI cancellation depth and BW

© 2017 IEEE International Solid-State Circuits Conference

RF Canceler Top Level Diagram

Canceler Noise - BW Tradeoffs

Linearity of the RF Canceler

RF Canceler Linearity vs C1

C₁ provides attenuation to improve canceler IIP₃

RF Canceler Linearity vs Ztx

Low Z_{tx} reduces input voltage swing of the SI canceler

Large Z_{in} / Z_{out} relax loading for PA/LNA matching network

© 2017 IEEE International Solid-State Circuits Conference

BB Canceller Top Level Diagram

- Canceller path includes down-conversion mixer
- Design methodology similar to RF canceller

© 2017 IEEE International Solid-State Circuits Conference

Baseband Path Delay Compensation

Delay Match between RX & BB Cancellation Path for TX Carrier

© 2017 IEEE International Solid-State Circuits Conference

TX SI Phase Noise Cancellation

Cancellation of TX leakage reciprocal mixing with LO PN in RX

© 2017 IEEE International Solid-State Circuits Conference

Outline

- Wideband SI Cancellation Challenges
- Proposed Dual-path Canceller
- → A 40nm CMOS Prototype Chip
 - Measurement Results
 - Conclusion

A 40nm CMOS Implementation of Proposed FD System

International Solid-State Circuits Conference

International Solid-State Circuits Conference

over 42MHz Bandwidth

BB Analog FIR-Based Canceller

Power Amplifier Topology

- First Stage uses noise-cancelling topology to reduce output noise floor
- Main Stage uses G_m linearization technique to improve linearity

TSMC 40nm Prototype Chip Die Photo

Process Details

- TSMC 40nm
- 6 Metal Stack
- 1 UTM Layer
- Total Area: 1.75mm×2mm

Outline

- Wideband SI Cancellation Challenges
- Proposed Dual-path Canceller
- A 40nm CMOS Prototype Chip
- Measurement Results
 - Conclusion

Measurement Setup

Measured PA Power, EFF and EVM

PA Output Power & Efficiency @ 1.96GHz

40Mbp/s 20dBm 16QAM Signal @ 1.96GHz

P_{-1dB} = 25.1dBm, P_{sat} = 26.5dBm, Max PAE = 32%

© 2017 IEEE International Solid-State Circuits Conference

Measured Suppression w/ 40MHz 16 QAM Signal

Cancellation = -28.43- (-79.28) = 50.85dB

RX NF w/ and w/o Cancellation

© 2017 IEEE International Solid-State Circuits Conference

over 42MHz Bandwidth

TX SI PN Cancellation

Power consumption of the PA is not included.

© 2017 IEEE International Solid-State Circuits Conference

Comparison Table

		J. Zhou ISSCC' 2015	Van Dan Broek ISSCC' 2015	D. Yang JSSC' 2015	J. Zhou ISSCC' 2016	This Work
Architecture		FD Equalization	VM- Downmixer	Duplexing LNA	Circulator+ BB SIC	Dual-path + Adaptive Filter
Technology		65nm	65nm	65nm	65nm	40nm
RX Frequency (GHz)		0.8-1.4	0.15-3.5	0.1-1.5	0.6-0.8	1.7-2.2
TX _{out} -to-RX _{in} Iso. (dB)		30-50	N/A	N/A	N/A	30-35
Integrated PA		No	Yes	Yes	No	Yes
Integrated PLL		No	No	No	No	Yes
SI Max Suppress. (dB)		N/A	27	33	N/A	55
Cancel. BW	Cancel. (dB)	20	27	33	42	50
	BW (MHz)	15 / 25	16.25	0.3	12	42
Canceller Power (mW)		44-91	N/A	N/A	30	3.5 (RF) +8 (BB)
SIC NF Degradation (dB)		0.9-1.2	4-6	N/A	5.9	1.05 (RF)+0.5(BB)
RF Canceller Area (µm ²)		N/A	N/A	N/A	N/A	203 ×124
BB Canceller Area (µm ²)		N/A	N/A	N/A	N/A	925 ×350
Canceller IIP3 (dBm)		N/A	N/A	N/A	N/A	36 (RF) / 34.5 (BB)
Canceller P-1dB (dBm)		N/A	N/A	N/A	N/A	27 (RF) / 26.5 (BB)
TX SI PN Suppress. (dB)		N/A	N/A	N/A	N/A	10
Active Area (mm ²)		4.8	2	1.5	1.4	3.5

© 2017 IEEE International Solid-State Circuits Conference

Conclusion

- Dual-path SI cancelling architecture is proposed for full-duplex radios.
- This SI canceller performance achieves:
 - Wideband SIC (50dB >42MHz BW)
 - Low power (11.5mW)
 - Modest noise figure degradation (1.55dB)
 - High Linearity (36dBm/34.5dBm IIP₃)
- Feasibility of a highly integrated CMOS fullduplex transceiver operating at 1.7-2.2 GHz has been demonstrated.

Acknowledgements

- National Science Foundation (1408575)
- CDADIC
- Google Incorporated
- Marvell for chip fabrication
- Advice of Visvesh Sathe and Li Lin