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Abstract—This paper presents a general formulation of a 

theory of imaging through random obscuring layers.  Previously 
we presented a theory for the temporal behavior of a short pulse 
scattered from a random medium and from a point target.  In 
this paper, we generalize our study to include the imaging of 
objects of finite size and the actual imaging pattern at the 
receiver.  This involves the study of two-frequency fourth order 
moments.  Numerical examples are given to illustrate several 
important features, including the optical depth, backscattering 
enhancement, shower curtain effects, aperture size, bandwidth 
and target size. 
 

Index Terms— imaging, random media, pulse, focused beam 
 

I. INTRODUCTION 
MAGING through random layers has attracted considerable 

attention in recent years [1,2].  In particular, OCT (Optical 
Coherence Tomography) makes use of space-time focusing to 
obtain images through intervening scattering tissues [3]-[5].  
Also, the detectiion of IED (Improvised Explosive Devices) 
often requires the study of imaging through obscuring layers 
[2]. 

Previously, we conducted a theoretical study of space-time 
imaging of objects which consists of the scattering from the 
random medium and from a point target [2].  In this paper, we 
extend our previous study to include a target of finite size and 
the space-time imaging pattern observed at the receiver. 

The pulse incident on the object consists of the coherent 
and the incoherent components.  The coherent component 
diminishes with the optical depth (OD) while the incoherent 
component tends to increase with OD.  The back scattering 
from the random medium increases with OD and saturates at 
large OD.  Therefore, the image from the target tends to 
decrease with OD, while the image from the medium tends to 
increase with OD.  At small OD, the target image dominates 
while the medium image is dominant at large OD.  This paper 
gives a quantitative comparison of the target and the medium 
image in terms of OD, aperture size, object size, bandwidth, 
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the focusing, and the medium location. 
We start with the general formulations and continue with 

the discussion of two-frequency fourth order moments and 
two-frequency mutual coherence functions.  The scattering 
from the medium and the scattering from the object are shown 
with numerical examples.  This paper is dedicated to Professor 
Leo Felsen who made great contributions in many areas 
including waves in random media, and whom many of us 
considered our kind and warm mentor and friend.  

II. GENERAL FORMULATION 
We consider an imaging system shown in Fig. 1.  The 

imaging system may be an array of transmitters emitting short 
pulses and receivers, and the output is processed to obtain the 
image in space and time.  The transmitter and receiver have 
variable focusing capability, and the received image can be 
displayed both in space and time.  An equivalent imaging 
system can be a focusing lens and the output image may be 
viewed both in time and space.  In this paper, we use the lens 
system to explain the basic idea. 
 

Let us consider the lens imaging system shown in Fig. 2.  
At 0z = , we have a focusing imaging aperture.  A short pulse 

( )f t  with its Fourier transform ( )F ω  is emitted at S and 
propagates to p  in the aperture.  For example, a Gaussian 
modulated pulse is given by 

 
( )

2

2

2

2

( ) exp

2( ) exp

o o

o
o

tf t A i t
T

F A

ω

ω ωπω
ω ω

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
⎛ ⎞−
⎜ ⎟= −
⎜ ⎟Δ Δ⎝ ⎠

 (1) 

Imaging of a Target Through Random Media 
Using a Short-pulse Focused Beam 

Akira Ishimaru, Life Fellow, IEEE, Sermsak Jaruwatanadilok, Member, IEEE, and Yasuo Kuga, 
Fellow, IEEE  

I  
 
Fig. 1:  Imaging system may be an array of short-pulse transmitters and 
receivers.  The received signal is processed to create the image in space and 
time.  It can be a focusing lens system.  The object can be inside or behind 
the random medium.
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where 2 oTωΔ =  is the bandwidth and oω  is the carrier 
frequency.  The source point S  is located at the focal distance 

of  from the lens, and thus the field at p  is given by 
( ) ( )o oG p U p  where ( )oG p  is the free space Green’s function 

and ( )oU p  is the focusing function.  Here we start with a 
single frequency, and later the two-frequency mutual 
coherence functions will be used, and the results will be 
Fourier-transformed to obtain the complete space-time 
solution.  In parabolic approximation, we have 
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This will create a constant phase at the aperture 0z = .  

 
Next, we consider the pulse propagation from p  to or  on 

the object and back to q .  We assume that the object has 
Dirichlet surface and the radius of curvature of the surface is 
large and the Kirchhoff approximation is valid [6].  Thus, we 
get the field at q given by  

 ( ) ( )2 12 , , ( ) ( ) ( ) o o o o oG q r G r p G p u p F dS
n

ω∂
−

∂∫  (3) 

where 1G  and 2G are the stochastic Green’s function from p  
to or  and from or  to q , respectively.  We also note that 
within the parabolic approximation, 1G  is traveling mostly in 
the z  direction, and therefore, we have approximately 

 ˆˆikz n
n

∂
= ⋅

∂
 (4) 

Thus, the field at q  is given by 

 ( ) ( )2 12 , , ( ) ( ) ( ) 
o

o o o o oS
i k G q r G r p G p u p F dω ρ∫  (5) 

where ( , )o o o or r z ρ=  and oS  is the object surface. 
Next, we consider the pulse propagation from p  to a 

medium point ( , )m m mr z ρ  to q .  We have the field at  q  due 
to a particle located at mr  where particles are randomly 
distributed 
  ( ) ( ) ( ) ( )2 1, 4 , ( )m m m m m o oG q r f G r p G p u p Fψ π ω=  (6) 

where f is the scattering amplitude of the particle.  Here 2mG  
and 1mG  are the stochastic Green’s functions. 

Let us next consider the focusing function which focuses 
the field on ( , )f f fr z ρ  with Gaussian amplitude distribution 

( )2 2exp p a− at 0z = where a  is the aperture size.  The 

Green’s function 1G  is then modified by the focusing function 

1u  
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Furthermore, the wave received at q is also modified by the 
focusing function 2u  
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The field at q  then propagates with free space Green’s 
function 3G  with focusing function 3u  and reaches the 

imaging point ( ),i i ir z ρ  
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Summarizing the above, we get the field at image point ir  
due to the scattering by the object  
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The field due to a particle in the medium is given by 
(4 )m fψ π  where 

 3 3 2 2 1 1 ( )m m m o odp dq G u G u G u G u Fψ ω= ∫∫  (11) 

We now consider the temporal behavior of the wave at the 
imaging point.  We have 

 ( ) ( ) ( )1, exp
2i ir t d r i tψ ωψ ω
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= −∫  (12) 
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Fig. 2: Imaging system.  Focusing aperture is located at 0z = .  The point 
source at S emits a short pulse which propagates to p  on the aperture plane, 
propagates through the random medium reaching the object, and scattered 
through the random medium reaching q .  The focusing imaging aperture 
focuses the pulse on fr . This is then focused and forms the image at 

( , )i i ir z ρ .  ( , )o o or z ρ is the point on the object, ( , )m m mr z ρ  is a point in the 

random medium, and ( , )i i ir z ρ is the image point.  The pulse from p

propagates into the medium at mr  and is scattered back to q . 
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Where oψ  is given in (10) and mψ  is given in (11).  The 
summation over m  is the contributions from all particles. 

We now consider the temporal intensity at ir . 
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The two-frequency mutual coherence function Γ  is then the 
sum of the object scattering oΓ  and the medium scattering 

mΓ . 
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where ( ) ( )*
d f fσ ω ω′=  is the two-frequency differential 

cross section of a single particle, nρ  is the number density, V  
is the volume of the random medium, and oS  is the surface of 
the object. 

Equation (14), together with (15) constitute the final 
expression of the intensity as a function of time and the image 
point ir .  In deriving this, we made several assumptions.  We 
assumed the wave propagation is represented by the parabolic 
approximation, the object surface is smooth so that the 
Kirchhoff approximation is valid, the scattering from the 
object and the scattering from the random medium are 
uncorrelated, and the random medium is represented by a 
random distribution of particles.  If the random medium is a 
random continuum, such as turbulence, we can use the above 
formulation by using the turbulence spectrum in place of the 
phase function of particles. 

III. IMAGE DUE TO SCATTERING FROM THE OBJECT AND FROM 
THE MEDIUM 

Let us first consider the temporal intensity of the scattered 
wave from the object at the image point ir  given in (14) and 
(15). 
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In order to calculate oΓ  in (15), we need to evaluate 

( ) ( )*
o oψ ω ψ ω′  given in (10). 

Let us write 
 ( ) ( )2 1( )  ( )o dp dq M G Gψ ω ω ω ω= ∫∫  (17) 

where 3 3 2 1( ) o oM G u u u G u Fω =  is deterministic and 2G  and 

1G  are the stochastic Green’s function.  We then get 
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Here, we need to evaluate the fourth order moment.  This can 
be expressed in terms of the second moments using the 
circular complex Gaussian assumption.  We get 
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The coherent field in (19) is given by 
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where oτ is the optical depth, k cω= and k cω′ ′= , and the 

point on the object is ( ),o o or z ρ  and ( ),o o or z ρ′ ′ ′  shown in Fig. 
3. 

 
 The two-frequency mutual coherence function in (19) can 
be expressed as follows: [2][7] 
 ( )* * expi j oi oj ijG G G G H= −  (21) 

where ijH is given by 
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oiG and ojG are the free space Green’s functions for iG  and 

jG , ba  is the absorption coefficient, b is the scattering 

coefficient, a ba dzτ = ∫  is the absorption depth, ( )p s is the 

phase function, ( )2sin / 2s θ= , θ  is the scattering angle, and 
g is the two-frequency factor given by 
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( )1 2 2ck k k= +  is the center frequency, ( ) 2l o oz z z′= +  is 
the average distance to the object.  The factor ijP  is given by 
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Fig. 3: Calculation of the two-frequency fourth order moments. 
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Generalized two-frequency mutual coherence function is 
summarized in Appendix A.  Using (21) and (22), we write 
(19):  
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The image due to the scattering from the medium requires 
evaluation of *( ) ( )m mψ ω ψ ω′ in (15).  This is given by the 

same expression as (18), except that o o mr r r′= = , and thus 

o o mρ ρ ρ′= = . 
 
We now summarize the final expression of the intensity 

( , )iI r t  
At the image point ir  at time t . 
 ( , ) ( , ) ( , )i o i m iI r t I r t I r t= +  (26) 
where oI  is the contribution from the object and mI  is the 
contribution from the medium.  We have 
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where 1oG , 2oG  are the free space Green’s functions. 
 
The medium contribution is given by 
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where  
  with ijo ij o oH H ρ ρ′= =     (29) 
 
Equation (26) with (27), (28) and (29) are the final expression 
for the intensity in space and time at the image point. 

IV. EVALUTION OF TWO-FREQUENCY MUTUAL COHERENCE 
FUNCTION FOR GAUSSIAN PHASE FUNCTION 

Even though (27) and (28) give the complete solution for our 
problem, they involve multiple integrals which need to be 
evaluated.  If we assume Gaussian phase function, we can 
simplify (27) and (28) and analytically perform the integration 
with respect to dpdp dqdq′ ′ . 

First we note that ijH in (22) can be expressed with the 
Gaussian phase function:  
 ( )2( ) 4 expp pp s sα α= −  (30) 

We get 
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be further approximated and we get [2] 
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where ( ) 1
1 pB A α

−
= − , ( )1 exp  sF dz bB= − −∫ . ijP  is given 

in (24).  We now get 
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Here the three terms with 12X and 21X  represent the coherent 
backscattering.  Substituting (33) into (27), we can 
analytically perform the integration with respect to 
dpdp dqdq′ ′ , with the repeated use of the formula. 
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Similar calculations can be made for the medium scattering 
(28), with o oρ ρ ′= .  The backscattering coefficient d nσ ρ  can 
be expressed as ( )2bp s = .  ( )2sin / 2 2s θ= =  at θ π= .  

Here ( )2p s = using (30) gives a poor approximation for 
backscattering.  We should use a more realistic value using 
Henyey-Greenstein phase function.  We get 
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g
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where ag = anisotropy factor. 
For a given anisotropy factor ag , pα in (30) is determined 

by equating the same half-power beamwidth for Henyey-
Greenstein and the Gaussian phase function.  We have 
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For 0.85ag = , we get 44.6pα = . 
 Equation (16) gives a complete space-time solution 
applicable to narrow as well as wide band cases.  However, if 
the bandwidth is small, we can approximate (16) 

 
( )

( ) ( ) ( ) ( )( )

( ) ( )

2

2

2

1 , exp
2

1 1 exp exp
2 2

d
d d d

d d F F i t

d i t

ω ω ω ω ω ω ω ω
π

ωπ ω ω ω
π ω ω

′ ′ ′ ′Γ − −

⎛ ⎞
≈ − Γ −⎜ ⎟Δ Δ⎝ ⎠

∫ ∫

∫
(37) 

V. NUMERICAL EXAMPLES 
As an example, we consider the imaging of objects shown in 
Fig. 4.  We used 50oz λ= , 5iz λ= , 5a λ= , 1 25d λ= , 

2 25d λ= , 44.58pα = , 0.9oW = (albedo), the object size is 
5cm 5cm× , 3λ = cm, scanning image area at 

2cm 2cmiz = × , and number of frequency points is 10.  This 
is used as the reference case.  The time is evaluated at 

( )2 o of z c+ .  We choose the imaging plane at i oz f= .  Also 
we put the object at the focal plane o fz z= , and the focal 
point on axis 0fρ = .  This is a special example.  Our 
formula, however, is applicable to more general case shown in 
Fig. 2.  Note that image size is ideally 5mm 5mm× square in 
the third quadrant because of the ratio / 0.1i oz z = .  This will 
be blurred due to the finite aperture size and the random 
medium. 
 
We now consider several cases. 
(a) Object size:  
Fig. 5 (a) shows the image pattern at OD = 1, which consists 
of the target image and the medium image.  Note that the 
target image is located in the image box, but the medium 
image is centered at the origin as expected.  The relative peak 
values of the target and the medium image are shown in Fig. 5 
(b).  This also shows a 5cm 5cm× target (reference) and 
10cm 10cm×  target.  Note that the medium image is the same, 
but the target image is about 6 dB higher for the 
10cm 10cm× target than the 5cm 5cm× target.  This shows that 

the wave at the target is mostly incoherent, and therefore, the 
target image is in proportion to the area. 
Figures 5 (c) and (d) show the image pattern for a 5cm 5cm×  
object and 10cm 10cm× object at OD=8.  As seen from Fig. 5 
(b), the target image is higher for a 10cm 10cm× object than 
for a 5cm 5cm× object. 

 
 
Fig. 4: Example of imaging through a random medium. 

 
Fig. 5(a): Image pattern, target image and medium at OD = 1. 

 
Fig. 5(b): Relative peak values of the target and medium images.

 
Fig. 5(c): Image pattern, target image and medium at OD = 8 for a 5cm 5cm×
object. 
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(b) Aperture size: 
Fig. 6 shows the peak values of the target image and the 
medium image showing increased target and medium 
contributions for a larger aperture size. 

 
(c) Location of the random medium (shower curtain effect) 
Fig. 7 shows the effects of the location of the random 
medium, commonly called the “shower curtain effect”.  Note 
that when the medium is close to the object 1 25d λ= , both 
target and medium contributions are larger than where the 
medium is away from the object ( 1 12d λ= ). 

 
(d) Bandwidth 

Reduction of the bandwidth broadens the pulse width.  Fig. 9 
shows that the pulse return from the target as a function of 
time is broader for BW=0.001 than for BW=0.1.  Note that for 
BW=0.01, it is impossible to distinguish target and medium 
scattering, but for BW=0.1, it is clearly possible to distinguish 
them. 

VI. CONCLUSIONS 
We have presented a theory of imaging of objects through a 
random medium.  A short focused pulse is emitted at the 
aperture and the received signal is then displayed as a spatial 
image at different times.  Our formulation and computer code 
are general, including the object located at an arbitrary point, 
and the focal point can be at any point.  The imaging system 
includes the imaging point at any point at an arbitrary time, 
even though our numerical examples are for the image plane 
at the same source point and for time given by the exact time 
of travel from the source to the object and back to the image 
plane.  The focal point can be varied or scanned.  The imaging 
system should be useful as a device to probe an object hidden 
behind random obscuring layers.  The theory presented in this 
paper includes the study of the two-frequency fourth order 
moments, which have received little attention in the past, but 
may be useful in other applications for space-time propagation 
and scattering in random media. 

APPENDIX A: GENERALIZED TWO-FREQUENCY MUTUAL 
COHERENCE FUNCTION 

A general case involves two separate correlated sources as 
shown in Fig. A-1.   
We assume that 1 2 ez z L− << , 10 20 ez z L− << , where eL is 
the equivalent average distance 
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We get the two-frequency mutual coherence function 
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Fig. 6: Aperture size 5a λ= and 10a λ= . 

 
Fig. 5(d): Image pattern, target image and medium at OD = 8 for
a 10cm 10cm×  object. 

 
Fig. 7: Shower curtain effects. 

 
 
Fig. 9: Effects of different bandwidths. 
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( , )n zκΦ is the spectrum of the random continuum.  For 
particles, we use the phase function ( )p s . 

42 ( ) ( ),   
4n
bk p s ksπ κ κ
π

Φ = = . 

We have under parabolic approximation 
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Fig. A-1: Two-frequency MCF at ( )1 1 1,r z ρ and ( )2 2 2,r z ρ duet to two-

frequency MCF at ( )10 10 10,r z ρ and ( )20 20 20,r z ρ . 


