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Wave Packet Incident on Negative-Index Media
John Rhodes Thomas, Member, IEEE, and Akira Ishimaru, Life Fellow, IEEE

Abstract—This paper presents a study of the refraction and re-
flection of a wave packet in time and space at the plane boundary
between free space and a negative index medium (NIM). We de-
rive an analytic asymptotic expression that shows negative refrac-
tion at the angle predicted by the negative index evaluated at the
center frequency with a speed of propagation in the NIM equal
to the group velocity. Then we present numerical calculations of
exact solutions that verify the asymptotic theory. Finally we present
numerical calculations for cases with incidence beyond the crit-
ical angle. Here we find phenomena identified as backward lateral
waves and a negative Goos–Hanchen shift.

Index Terms—Beam wave, lateral wave, negative refraction, re-
flection, surface wave, transient propagation.

I. INTRODUCTION

MATERIAL with negative refractive index was first
proposed by Veselago in 1968 [1] and recently it has

attracted considerable attention through the work of Pendry,
Smith and others [2]–[4]. This medium has been called negative
index medium (NIM) [5], or left-handed medium (LHM), or
double negative medium (DNG) [6]. When a plane wave is
incident on NIM, the wave is refracted negatively according
to Snell’s law. It has also been shown that the group front of a
plane wave refracts positively, but a modulated Gaussian beam
refracts negatively. In this work we use a space-time domain
approach to clarify the refraction, causal requirements, and
dispersion that apply to a space-time beam wave packet. In
so doing we discuss the refraction of a beam packet for cases
when the incident angle is less or greater than the critical angle.
This approach leads to a study of the Goos–Hanchen effect and
to confirmation of a new wave, the “backward lateral wave,”
which we predicted in a recently submitted paper [7].

We study the propagation of a space-time wave packet (a
pulsed beam wave) that has nearly planar properties near the
middle of the beam and nearly cw properties near the mid-point
in time of the pulse. We treat here a 2-D Gaussian beam wave
modulated with a Gaussian time dependence. In free space this
wave packet has negligible change in cross section or time-do-
main envelope for distances such that where
is the wavelength at the central frequency of the pulse, is dis-
tance along the direction of propagation of the central direction
of the beam, and is the beam cross section. For example, if

, then the beam wave will retain its coherence for
several 10’s of wavelengths. We will show that this packet, inci-
dent on a planar boundary of a NIM, exhibits negative refraction
plus a skewing and distortion of the elliptical cross section of
the incident pulse. The skewing effect is due to the positive re-
fraction of what we call the wavefront normal, but which is also
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identified as the interference front normal by Smith et al. [8].
We have obtained an analytic first-order asymptotic approxima-
tion that shows the roles of the group velocity, the phase velocity
and the wave fronts of the beam. From this expression, we find
that the center of the wave packet refracts negatively according
to Snell’s law and propagates with the group velocity. However,
the wave normal, which is a vector normal to the wave front,
refracts positively and propagates with a velocity different from
the group velocity. We will use a p-polarized wave packet, but
the results apply equally to the s-polarized packet.

Wehaveimplementednumericalcalculationstoconfirmtheap-
proximations and to show smaller second-order effects. This nu-
merical calculation has also been applied to a case for which we
predicted the existence ofa backward lateral wave. The backward
lateral wave occurs in a NIM when the angle of incidence is be-
yondthecriticalangle.Withincidencefromfreespaceonalossless
NIM, existence of a critical angle [7] requires .

II. ANALYTICAL FORMULATION

We consider the interface between a half space of a NIM
and free space, with the normal direction to the boundary plane
being the direction, positive into the NIM. The incident wave
packet is taken as p-polarized, completely determined by one
component of the magnetic field, which we take to be in the
direction. The incident wave packet in free space ( , , )
is then given by with

(1)

where , ,
, , and is the full width of

the packet at of its peak amplitude in the direction. As
shown in Fig. 1, the incident packet propagates along the
coordinate, and is the transverse coordinate of the packet. The

coordinates are related to through rotation by the
angle of incidence of the beam centerline. The electric field
is obtained as . This is a collimated
wave packet applicable when and . To
obtain the analytical expression for the packet in the medium,
we first rotate the coordinate system from to and
take a double Fourier transform with respect to direction and
time at .

(2)
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Fig. 1. Wave packet incident on negative refractive index medium. Wave
packets are shown as heavy contour lines of jHj at a level of 1/e from the
peak. The incident packet is shown at time �5T and the refracted packet at
time 5T relative to time of incidence of the peak. The wave packet propagates
with the group velocity v in the direction � = �j�j. The wave front (WF)
propagates with the wavefront velocity v in the direction of the wave normal
N(� ). The phase front (PF) propagates with the phase velocity v in the
direction opposite to the group velocity.

To obtain the field in the NIM where (medium 2), we
multiply by the transmission coefficient and the prop-
agation factor , and then take the inverse Fourier
transform. We obtain

(3)

where

In the computation of and , care must be taken to
choose the square root which corresponds to attenuation of
the outgoing wave; that is a negative imaginary part for the

convention used here. Similarly the reflected wave
is obtained by multiplying by the reflection coefficient
and a propagation factor for a negative-going
wave in the free-space medium. Thus, in the time domain

(4)

Assuming that is a slowly varying function of
and , we can evaluate (3) by an approximation method that is
essentially an application of the method of steepest descent. The
approximation is asymptotic in the large parameters and .

Noting that in (2) is highly peaked near and ,
we expand and keep the first-order terms

(5)

where , , and
and are evaluated at and . With

the inner integral on is a straight-for-
ward example of completing the square in ( —linear shift
term) and finding the remaining term that is independent
of times a known definite integral that gives a factor of

. Then, the outer integral on can be done
by the same method. This second integral has many terms, and
requires considerable manipulation to reduce it to obtain this
final analytical expression for .

(6)

where the vector is defined as

and the other subsidiary quantities are

(7)

Derivation of the group refractive index in (7) has been pre-
sented by many classic authors including Brillouin [9] and Born
and Wolf [10]. From the equations following (6) until Section III
we will use short notation that and

(8)

This first-order approximation is used in the analytic asymptotic
approximation and also later in what we call the linear model.

The angle is the angle of refraction given by Snell’s law
for incidence at the central angle of the packet. The indexes

and as well as are to be evaluated at and .
The square root choice for is now well understood. It is plus
or minus for n plus or minus, respectively. More rigorously, it is
chosen so that and that and

. Also note that since is negative, the phase velocity
is negative. However, the group refractive index and the

group velocity are positive. These are consistent with Smith
et al. [8].

We note that this approximation applies when the transmitted
wave is not evanescent, that is when there is no critical angle
for total reflection or when the incident angle is not greater than
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this critical angle. We shall return to incidence at angles beyond
the critical angle in Section IV.

The equation for the reflected field can be evaluated by the
same method as described for the transmitted wave. If one
makes only the approximation that , the
resulting reflected field is the specular reflection of the incident
wave with all frequency components having this central reflec-
tion coefficient. Thus, that approximation would correspond
to a beam wave propagating coherently for distances small
compared to and then showing dispersion. However,
if the further approximation is made as to ,
then the elliptical beam cross section will just move uniformly
outwards at the specular reflection angle with speed of light .

Equation (6) and the following definitions show three features
of wave propagation in the NIM due to the product of three func-
tions. (1) The phase term

shows phase progression according to Snell’s
law with . Thus, the angle of refraction and
the phase velocity are negative because the index of refraction
is negative. (2) The factor clearly shows that the peak of the
transmitted packet follows the line . That is, the
energy associated with the and fields of the packet is re-
fracted negatively. (3) The factor exhibits planar fronts given
by

(9)

The transmitted packet’s skewed oval amplitude contour results
from the product of the factors and . The vector is
in the direction of the normal to the fronts of . In connec-
tion with analysis of a modulated plane wave these fronts have
been called interference fronts by other authors [8], [11] and
also group fronts [12]. The angle between the vector and
the -axis is given by (Fig. 1)

(10)

Here, we need to choose the correct sign for the square root,
which comes from the occurrence of .
This propagation factor must have a negative imaginary part
for attenuation of the outward going wave. To have transmis-
sion into the NIM and not total reflection, we must have

. For completeness we now consider the cases of both
positive and negative index. For positive the square root must
be positive in its dominant real part, and we expect the group
velocity to be smaller than the phase velocity, so . Thus,
the numerator and denominator of the fraction in (10) are posi-
tive and is positive. For negative , and the square root
must be negative in its (dominant) real part. Since the group
index must be positive and greater than 1 for causal signal prop-
agation [9], the fraction on the right of (10) is positive and again

is positive.
Fig. 1 illustrates these asymptotic-approximation results for

a case with and . These index values
are chosen in a somewhat arbitrary way. We have chosen to
study negative indexes somewhere near 1. With the choice of

, the group index of 3.735 corresponds to that of a
Drude–Lorentz model discussed below. The angle of incidence
is chosen as 30 , well below the critical angle of approximately
48.6 . The beam wave packet of (1) is chosen to have a trans-

verse half-width and a half-length along the direc-
tion of propagation of . The width and length are
taken to the amplitude relative to the peak, and this choice
of amounts to a bandwidth to the amplitude in fre-
quency . This is a reasonably narrow band-
width and the choice of as a constant across the integral in
(4) is a reasonable approximation. Any material (metamaterial)
with negative index of refraction will have strong dispersion.
Variations with frequency may be modeled with a Drude (plas-
monic) model [13], a Drude–Lorentz model, or possibly a still
more complex model. However, a Drude–Lorentz model, also
referred to as a Lorentz model or Lorentz medium, provides
what we may call a physical model with 3 parameters for per-
mittivity. As also considered by [6], we shall use the same form
to characterize the negative permeability. In the next section we
shall consider cases that correspond to a Lorentz model, and
carry out numerical solutions of the exact integral equations (3)
and (4) for a single-resonance Drude–Lorentz behavior of both
permittivity and permeability. To show the generality of the ap-
proach, and are taken to be somewhat different.

The term Drude–Lorentz (or Lorentz) model refers to a clas-
sical model for electrons, bound with a simple-harmonic-oscil-
lator potential, interacting with a cw electromagnetic field. The
relative permittivity of such a medium has the form

(11)

where is the plasma frequency of the electrons, is the
harmonic oscillator frequency, and the collision frequency.
In the low-loss case . We also use this frequency vari-
ation with assigned parameters for the relative permeability .
For the low-loss case the real part of (11) has a negative min-
imum at a frequency slightly above given by

. This minimum is

Since and is typically of the same order as ,
it is possible to set equal to any reasonable negative value at
some frequency in the normal dispersion region slightly above
this minimum.

III. NUMERICAL SOLUTIONS: CASES WITHOUT A CRITICAL

ANGLE OR WITH ANGLE OF INCIDENCE LESS THAN

We have calculated solutions to (3) and (4) with brute-force
numerical integrations. The standard computations are based
on a grid of 2066 values of by 1811 values of . It is a
variable-step grid with finer steps near the central peak of the
Gaussian and coarser steps out toward the edge of the rectan-
gular integration area. The integration method is trapezoidal. We
note that (3) and (4) could be considered as scaling in frequency
relative to center frequency and component of wavenumber
relative to the center if

• the Gaussian widths are expressed in wavelengths, that
is and with and
the subscript denoting normalized;

• the permittivity and index of refraction are scaled as
functions of frequency relative to this normalized fre-
quency.
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This result essentially follows from the electrodynamic simili-
tude of Maxwell’s equations [14]. We carried out computations
for a specific center frequency , but we show re-
sults plotted in wavelength units for and , which would then
apply to any center frequency so long as the index of refraction
and permittivity are scaled correspondingly.

We consistently computed cases with and
as in Fig. 1. With these fairly rapid Gaussian

cutoffs, we found that we could obtain good results with a grid
where extends from 14 to 16 and
where extends from 13 to 13. These choices
make the Gaussian factors become ,

, and
on the outer edges along the center lines of the other variable,
respectively. We found these limits and the grid fineness by
trial and error where we required that the main parts of the
transmitted and reflected fields change by less than 1 part in

as we went to a next test with larger limits or finer grids.

We limited our computations to times such that ,
where is the time when the incident pulse is centered at the
origin, per (1). Hence, the maximum values of and where
the pulse is of interest in the cases we examined is limited to
about . Finer grids would be required for larger values of

and . Also, a finer grid is required for some small-amplitude
fields considered in the last section on backward lateral waves.

We present a selection of cases to illustrate the following fea-
tures of reflection from and refraction in a NIM.

• The asymptotic approximation gives a very accurate
description of the motion of the peak of the transmitted
wave. The peak follows the line at the Snell’s law angle
of the center frequency, and it moves with the speed of
the group velocity of the center frequency. The peak
amplitudes are fairly close to the approximate predic-
tion.

• The elliptical amplitude distribution is skewed and ro-
tated in coarse agreement with the asymptotic approx-
imation. The size of the contour at 1/e of the peak is
quite close to that predicted by the asymptotic approx-
imation.

• As expected, the reflected wave is well predicted by
specular reflection of the pulse with the reflection co-
efficient of the center frequency.

• The curved variation of index of refraction in a Lorentz
model provides some asymmetry to the transmitted
pulse, but still leads to a pulse that reasonably follows
the asymptotic approximation.

Figs. 2 and 3 show comparisons of numerical solutions to
the exact Fourier integral equations (3) and (4) for cases corre-
sponding to the asymptotic solution shown in Fig. 1. Because the
reflection and transmission coefficients and depend on
as well as , it is necessary to specify this additional quantity
at the band center as well as functions to determined their varia-
tion across the frequency band of integration. We chose a band-
center value . Then, the band-center value
of relative permeability is

. To specify the variation of and across the band
we consider two cases. They are: (a) a single-resonance Lorentz

Fig. 2. Contour plots of jHj for Lorentz model with n = �0:75� 0:001j
at time = 5T for transmitted and reflected fields. The incident contour is at
time = �5T . From exact theory numerical field calculations, the transmitted
contours are at levels of 0.9, 0.6, 1/e, 0:4 � 1=e, and 0:1 � 1=e relative to the
peak of 0.8855 and reflected contours at 0.9, 0.6, and 1/e relative to this peak
of 0.1085. For the analytic asymptotic approximation only the 1/e contours of
the incident and transmitted wave are shown (in black). (Incident peak = 1:0,
transmitted peak = 0:9358.)

Fig. 3. Close comparison of transmitted (refracted) pulses. Comparison is of
Lorentz model variation of n and � versus a model with linear variation of
n and � with matching n and e at central frequency. Contour levels are
0.9, 0.6, 1/e, 0:4 � 1=e, 0:1 � 1=e relative to the respective peaks.

model for and and (b) a linear model for and . We
include just one linear model calculation. It shows that the trans-
mitted pulse in the NIM is relatively insensitive to details of the
variation of and about the center frequency if the relatively
wide-band condition applies.



THOMAS AND ISHIMARU: WAVE PACKET INCIDENT ON NEGATIVE-INDEX MEDIA 1595

We have chosen a single-resonance Lorentz model for several
reasons. It has only 3 parameters for the permittivity and an-
other 3 for the permeability. Also, the Lorentz model has been
considered as a simple physical example by several other re-
searchers in the study of NIM, e.g., [6], [8]. Two of the three
conditions to determine these parameters are set by the choice
of real and imaginary parts of and (which determine

). The third condition we shall take arbitrarily is a moder-
ately wide-band condition.

Thus, we take as given by (11). The analogous Lorentz
form of the permeability is taken as

(12)

We have chosen a wide-band condition
. The larger the choice of this ratio, the wider the band of the

resonance. The limit of this ratio approaching infinity leads to a
pure Drude (plasma) model.

The group index at frequency is given by

(13)
where the term in square brackets is evaluated at . We define
the group relative permittivity by analogy as
and similarly for permeability. In the linear model, the group
index matches the slope of at . For our case of

, , and the
wide-band condition as stated, then .
The linear model also requires the value of the linear fit to
at given by , which from (11) and (13) is

(14)
The Lorentz model gives a positive imaginary part for
and . This is evident from classic Lorentz model dis-
persion curves-in the normal dispersion region above the
resonant frequency, the magnitude of the imaginary part
of is decreasing. However, this result will not vi-
olate the outgoing radiation condition within our band
of approximation. In this band is given by (8) and

. If
and where is a small positive quantity,
then where is a positive quantity of the order of

and

(15)

within our band of integration. In other words, (15) shows that
even though the is positive, is negative. The
same reasoning applies to .

Fig. 2 shows the numerically calculated contours of the mag-
nitude of the transmitted field and reflected field at a time

as in Fig. 1. Fig. 2 also shows black contours at 1/e of the
peak for the incident wave at time and for the asymp-
totic approximation for the transmitted wave at . The third
numerical contour at 1/e of the transmitted peak is very close
to the black 1/e contour from the analytic approximation. This
illustrates that the asymptotic approximation works well for the

Lorentz model with incidence not beyond the critical angle. We
want to emphasize this point since the asymptotic approxima-
tion utilizes only the linear variation as given by (13) and is
given analytically by (6) and (7).

There are several significant points concerning these calcula-
tions.

• The peak of the numerical integral calculation
for the transmitted wave follows very closely
along the Snell’s angle line at the group velocity.
The “x” in Fig. 2 at the location of the trans-
mitted peak has coordinates and

. The asymptotic approximation has
its peak at
and . With an
incident peak normalized to 1, the amplitude of the
peak from numerical integration is 0.831, as compared
to the asymptotic approximation value of 0.936. In
general, we find the magnitude of the transmitted
asymptotic peak to agree only within about 10% of the
result found by numerical integration. The numerical
integration depends on the value and variation of
the relative permittivity , whereas the asymptotic
approximation does not.

• The time duration of the pulse (as measured by the
length of the 1/e contour along the direction of propa-
gation, the line at angle ) is very close to that of the
asymptotic approximation. However, the width (minor
axis) of the numerically integrated peak is somewhat
greater than that of the asymptotic approximation.
Also, the contours are slightly egg-shaped with a little
more width farther from the origin than closer relative
to a symmetric shape. But the slope of the major and
minor axes of the contours, predicted by the interac-
tion of the factors and in (6), appears to be in
good agreement.

• The reflected pulse, as expected, is very close to sym-
metric with the incident pulse. The reflected peak is
at and as compared
to specular values and

. The magnitude of the reflected
peak computed from inverse transform is 0.1057 com-
pared to the asymptotic approximation of 0.1069. In
summary for this case, the asymptotic approximation
gives a qualitatively and heuristically satisfactory ex-
planation of the refracted and reflected waves.

Figs. 1 and 2 show that the wave in the Lorentz model
medium, with , is moving much more slowly than
the wave in free space because the transmitted contours are
visibly much closer to the origin and the length to the 1/e
contour is much smaller. In addition, the reflected peak shows
better agreement between the asymptotic specular reflection
and the numerical integration. In Fig. 2 the peaks as found
from numerical integration (on a grid of by ) are
plotted as an “x” in the center of the contours.

Fig. 3 shows details of the comparison of the Lorentz model
results of Fig. 2 with a numerical integration of the case of con-
stant and constant
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Fig. 4. Progression of the backward lateral wave in time for a Lorentz model
with n = �0:75� 0:001j. The reflected contours are at 0.9, 0.65, 1/e, 0:1 �
1=e, 0:02 � 1=e, and 0:01 � 1=e of reflected peak. The transmitted contours
are at 0.9, 0.65, 1/e, and 0:2 � 1=e of peak at x in the NIM. The subplots show
contours of jHj (a) at time = 3T , (b) at time = 6T and (c) at time = 9T
for reflected and transmitted waves. Heavy contours denote the 1/e levels. The
incident wave (heavy contour only) is shown at time equal to the negative of
that labeled on each plot. Note that the plot scale increases with time.

, which we call a linear model. Fig. 3 presents an
enlargement of the fourth quadrant region of Fig. 2, but with

Fig. 5. Angle of the backward lateral wave. The small transmitted peak travels
down the X axis and radiates at each point at the angle � relative to the surface
normal.

TABLE I1

PROGRESSION OF PEAKS IN TIME

comparison of two numerical integration solutions. There is at
least as much difference between these two numerical solu-
tions as between the asymptotic approximation and the Lorentz
model solution. The Lorentz model solution has a higher peak,
by about 6%, and has more asymmetry than the linear model,
but qualitatively the solutions are similar.

We have calculated reflected and transmitted waves for the
case of a medium with and with various
positive values of and we find similar results. The asymptotic
solution provides a good qualitative understanding and predic-
tion of the velocity of the transmitted peak and the approximate
size and orientation of the 1/e contour. If , there is no
critical angle, and the asymptotic approximation given by (6) is
valid for all angles of incidence.

IV. INCIDENCE BEYOND THE CRITICAL ANGLE: THE

BACKWARD LATERAL WAVE AND GOOS–HANCHEN EFFECT

For two positive-index dielectric materials with a planar
boundary, with incidence from a medium of larger positive
index onto one of smaller index, there is a critical angle for total
internal reflection. At angles slightly larger than this critical

1The first three rows refer to the transmitted peak, the next three refer to the
reflected peak, and the last row is the approximate BWLW amplitute.
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Fig. 6. Goos Hanchen shift of reflected peaks. The shift is toward the negative x direction by slightly less than a wavelength. The calculated peaks lag behind
the P.O. peaks by about 5 wavelengths.

angle, there are two known, yet somewhat point of incidence
of the center of the pulse.unusual, phenomena known as the
lateral wave and the Goos–Hanchen shift [15]. We consider
here a backward lateral wave and find numerical solutions
that demonstrate this behavior for the case of incidence from
free space to NIM of index between 1 and 0, specifically for

as considered in the previous section.
There is a critical angle .
We present here results for . In
this solution the small transmitted-wave peak moves backward
along the surface (compared to the usual positive index case)
and causes a small amplitude lateral wave on this backward
side of the main reflected pulse. We call this the backward
lateral wave (BWLW).

The lateral wave is separated from the radiated-wave term
in an asymptotic expansion as the part of the complex integral
contributed by the path around a branch point. When incidence
is not beyond the critical angle, the branch point lies in a part
of the complex plane of integration that does not come close to
the steepest-descent curve and thus does not make a significant
contribution. The standard theory of these asymptoticexpansions
is done in terms of single frequency (cw) waves. From a study
of continuous waves at the interface of a normal dielectric
and a NIM, we predicted the existence of backward lateral
waves and other asymptotic phenomena [7]. The numerical
case presented here shows the features of a backward lateral
wave examined in a region fairly close to the origin, that
is, the (2-D)

Fig. 4 shows contour plots of the reflected and transmitted
waves (the transverse component ) at times ,
and , respectively, after the peak of the incident pulse (same
width and duration as in previous section) arrives at the origin.
To illustrate the scale, the incident 1/e contour is shown at

. Recall that , so that at the

reflected peak is about from the origin, and the reflected
wave has taken its elliptic shape quite accurately within 1/e
of its peak. However, the outer contours are still forming in
Fig. 4(a).

The asymptotic theory has a heuristic interpretation for this
low-amplitude transmitted wave propagating near the surface as
the source of the backward lateral wave, which shows up as the
asymmetric tails in Fig. 4. The surface source point moves in the
backward direction at approximately the group velocity for the
dispersive NIM. Asymptotically, the BWLW radiates outwards
from the surface source point at an angle to the normal equal
to the critical angle. Thus, the similar triangles shown in Fig. 5
lead to the result [7] that the asymptotic BWLW will create a
wave front emerging at an angle . The law of sines applied to
this triangle gives, for our Lorentz case with and

This provides an approximate explanation of the angle of the
asymmetric tails in Fig. 4, as one may read off these true-angle
plots.

We compile in Table I a summary concerning the peaks in
Fig. 4. The peak locations ( and ) are given in wavelength
units (taken as in our computations), the time is given
in terms of the 1/e time duration of the Gaussian pulse

and the amplitudes are all normalized to the unit in-
cident . The BWLW contour is taken from a judg-
ment of the appearance of the plots as the
contour level. It is qualitatively the highest contour where the
extended tail appears.

Least-mean-square linear fits to the three transmitted peak
points give constant and components of velocity
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and that fit the
data very closely. The resulting index

is satisfactorily close to 3.7352 with allowance for the
second-order dispersion effects.

In Fig. 6 we plot the location of the points ( , ) compared
to the straight line of the ideal physical optics reflection of
the center of the incident pulse. The points where the physical
optics peak would be at times , and are denoted
by an x on the straight line, and the calculated points are shown
by a small circle. The vertical displacement for large t between
these two positions is interpreted as the Goos–Hanchen shift
of the NIM, with the shift being in the negative direction
[17], [18]. The delay involved in the shift accounts for the
calculated pulse lagging behind the instantaneous physical
optics points.

V. CONCLUSION

We have demonstrated that an asymptotic analytic first-order
approximation to the calculation of transmission and reflection
at a plane boundary between free space and a NIM gives a good
estimate of the negative refraction that occurs. We have provided
an exact calculation of the negative refraction phenomenon for a
pulse in time and 2-D space. We have also calculated a case that
demonstrates the phenomenon of a backward lateral wave (as
predicted on general theoretical grounds [7]) and also a small
negative displacement of the peak of the reflected wave that we
interpret as a Goos–Hanchen shift.

The criterion for validity of the asymptotic approximation
may be stated as: and must not change greatly over the
band of integration. The assumed choice of a Lorentz model
with met this criterion for our particular choice
of a time pulse with 20 cycles from maximum sinusoidal peak
to the sinusoidal peak with amplitude 1/e of the maximum.
However,whenwelookatwhatmetamaterialdesignersmayhave
achieved so far, we find considerably narrower bandwidths. For
example, if we try to characterize roughly the resonances found
by [16], we find that the resonances would have .
Then, the asymptotic approximation would not work at all for
our pulse. On the other hand, a more monochromatic pulse
with at least 300 cycles from maximum sinusoid to the 1/e
amplitude sinusoid would satisfy the condition for validity
of the asymptotic approximation. This narrower-band pulse
would again exhibit negative refraction with propagation at
the speed given by the group index. The calculational method
should go through as in our simpler case, but the number of
intervals would increase and consequently the computation
time, too.

An important related conclusion is that we need to find
methods to make wider-band metamaterials for practical use
with pulses that are not extremely narrow band. In other words
we need to find a way to increase the plasma frequency rela-
tive to the resonant frequency (for both electric and magnetic
Lorentz models). That statement does not have an obvious
practical solution, but it has some interpretation in that the
plasma frequency of a natural material is related to its electron
density, whereas the resonant frequency is typically an atomic
or molecular property.
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