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Electromagnetic Waves Over Half-Space
Metamaterials of Arbitrary Permittivity and

Permeability
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Abstract—Most electromagnetic problems deal with media with
unit permeability. However, recent interest in metamaterials ne-
cessitated studies of wave characteristics in media with arbitrary
permittivity and permeability whose real parts can be positive or
negative. This paper presents analysis of wave characteristics on
semiinfinite metamaterials. Waves are excited by electric or mag-
netic line sources, and the problem is separated into the p (TM) and
the s (TE) polarization, showing symmetries. The Fourier spectra
of the reflection and transmission coefficients are examined and
the poles, branch points, and zeros are shown in the real -real
diagram. We clarify the location of poles in proper and improper
Riemann Surfaces, and the excitation of forward and backward
surface waves, forward and backward Lateral waves, and Zenneck
waves, and the relations between Brewster’s angle and Sommerfeld
poles. We include the behaviors of the backward surface waves and
the temporal backward Lateral waves.

Index Terms—Brewster’s angle, lateral waves, metamaterials,
negative index, permeability, permittivity, surface waves, Zenneck
waves.

I. INTRODUCTION

I N recent years, there has been an increasing interest in de-
velopment of new materials whose characteristics may not

be found in nature [1]–[7]. Examples are metamaterials, in par-
ticular negative index materials (NIM), chiral media, and com-
posite materials. A broad range of applications has been sug-
gested including artificial dielectrics, lenses, absorbers, antenna
structures, optical and microwave components, sensors, and fre-
quency selective surfaces.

In the development of these materials, there are several im-
portant questions. We need to know how the waves behave in
metamaterials, what characteristics may be useful for practical
applications, how to construct such metamaterials, and what
new applications can be identified to utilize new wave charac-
teristics. This paper deals with the first of the above questions.
Other questions have been considered and reported in special is-
sues and other publications [6]–[9]. In conventional electromag-
netics, the permeability is one

except magnetic materials. In metamaterials, however, the
real parts of and can range from to , though the
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Fig. 1. Medium 1 is ordinary material, and both � and� are real and positive.
Medium 2 is metamaterial with complex � and � . �; �, and n are normalized
with respect to medium 1. Line source is at x = 0 and z = h.

imaginary parts should always be negative in repre-
sentation for passive materials. This paper presents a study of
wave excitation in semiinfinite metamaterials. This problem for
ordinary materials with has been studied extensively
including the Sommerfeld poles, Zenneck waves, Brewster’s
angle, surface waves, and lateral waves. Now, since the perme-
ability is no longer limited to one, many new waves and new
phenomena emerge.

We first present a comprehensive analysis of all CW wave
types. New wave types such as backward surface waves and
backward lateral waves are discussed and the relationship be-
tween Brewster’s angle and Zenneck wave is clarified. We in-
clude some discussions on pulse and wave packet propagation
and time-dependent lateral waves. Our analysis is limited to
2-D problems with isotropic metamaterials. In general, however,
metamaterials are anisotropic and highly dispersive, requiring
further investigations [5]–[9].

II. LINE SOURCE OVER A SEMI-INFINITE METAMATERIAL

We consider an electric or a magnetic line source located over
a metamaterial as shown in Fig. 1.

For the p-polarization (TM), we have

(1)

where is the magnetic line current and we use the normal-
ization is free space wavenumber, and
are relative permeability and permittivity .
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Fig. 2. (a) Regions of S > 1 (white), 1 > S > 0 (gray), and S < 0 (dark). (b) Different regions in � -� plane.

Using the boundary condition that and
are continuous at , we get the well-known Fourier rep-
resentation of the incident , the reflected and the
transmitted fields [11].

(2)

where
is the

wave impedance. First we note that for the s-polarization (TE),
we have the same equation for with the replacement of

by . The boundary condition at
is the continuity of and . Therefore

the field for the s-polarization is identical to the field for the
p-polarization with the interchange of and in both media.

III. SURFACE WAVES AND LATERAL WAVES

As preliminary to this analysis, we need to pay close atten-
tion to the square root of various quantities. For passive media,
we require, with time dependence and

where denotes the imaginary part of. The refrac-
tive index needs to be chosen such that

(3)

From (3), it follows that the characteristic impedance
and admittance must have positive real parts, where

.
Next, needs to be chosen carefully. From the branch

points at in the complex plane, we draw the branch
cuts along . Then, in the top surface of plane,

and the wave attenuates as . Thus this
is called the proper Riemann surface. Even though the branch
cuts can be drawn in other ways, the above choice is most
common [10]. In the improper Riemann surfaces, one or both

become positive [11].

Fig. 3. Regions for =(k ) < 0 (proper) and =(k ) > 0 (improper) in the
� -� plane. � =� = (a) 10. (b) 2. (c) 1. (d) 0.5. (e) 0.1.

Let us examine the reflection coefficient

(4)

The zero and pole are given by

(5)

Solving for , we get the pole at .

(6)
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Fig. 4. (a) Forward surface waves SW and backward surface waves SW . (b) Forward lateral waves L and backward lateral waves L waves. NIM is in
the third quadrant.

To verify whether the pole is in the proper Riemann surface, we
first obtain

(7)

The square root is taken such that .
We then calculate using (5)

(8)

If , the pole is in the proper Riemann surface (I),
and if , the pole is in an improper Riemann surface
(II). See [11].

Note that in (6) corresponds to both zero and pole in (4).
Brewster’s angle is when the reflection coefficient is zero and,
therefore, the classification as pole or zero is based on (5). We
will discuss this further later.

Let us now examine the location of the pole in the -plane.
For real and is pure real or pure imaginary so the pole

lies on the real or imaginary axis in the -plane.
Fig. 2 then shows the regions in the - plane where different
wave types can exist.

If , forward or backward surface waves can exist. If
, there may be Zenneck waves, and if , the

poles are in the imaginary axis and the wave may be exponen-
tially decaying along the surface.

However, this is not sufficient to describe the wave types. We
also need to examine whether these poles are in the proper or
improper Riemann surfaces by examining whether is
negative or positive with . However, this depends
greatly upon the ratio of the imaginary parts of and . We
write

(9)

We show in Fig. 3, five cases where the ratio
.

In Fig. 2, there are four regions where and surface
waves can exist. However, as shown in Fig. 3, the two regions
(a and D) with on the right side of Fig. 2
are in the improper Riemann surface. Hence, the surface wave
can exist only in the region where the poles are in the
proper Riemann surface. In fact, we will show that the forward

Fig. 5. Zenneck wave pole at o and Brewster’s zero at x. Riemann surface I:
=(k ) < 0;=(k ) < 0. II: =(k ) > 0;=(k ) < 0. III: =(k ) <
0;=(k ) > 0. IV: =(k ) > 0;=(k ) > 0.

Fig. 6. Propagation constant k at (a) Brewster’s zero. (b) Zenneck wave
pole.

and backward surface waves exist in the two regions shown in
Fig. 4(a).We also note the forward and the backward
lateral waves can exist in region and ,
respectively, [see Fig. 4(b)].

IV. BREWSTER’S ANGLE AND ZENNECK WAVE

It has been known that Brewster’s angle and Zenneck wave
are closely related. However their relationship is often not
clearly explained. We first note that at Brewster’s angle, the
reflection coefficient is zero while at the Zenneck wave pole
(sometimes called the Sommerfeld pole), the reflection coeffi-
cient is infinite. Brewster’s angle is normally defined for plane
wave incidence on lossless dielectric material, but here, we
generalized it to include a lossy medium and complex angle,
and call it Brewster’s zero. This terminology was included in
(5).
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Fig. 7. Complex S-plane (S = k =k ) plots of pole and branch cut to n
for (a) case F : " = 2:4 � 0:1j; � = 2 � 0:01j;=(")==(�) = 10. (b)
case F : " = 2:4 � 0:01j; � = 2 � 0:1j;=(")==(�) = 0:1. (c) case
f : " = �2:2� 0:1j; � = �2� 0:01j;=(")==(�) = 10. (d) case f : " =
�2:2� 0:01j; � = �2� 0:1j;=(")==(�) = 0:1.

Now at the Zenneck wave pole, we have

(10)

Fig. 8. Complex S-plane (S = k =k ) plots of pole and branch cut to n for
(�; �) cases in A, C, A , B of Fig. 2(b) with illustration of resulting asymptotic
wave types. Exponentially decaying horizontal lines represent the surface wave
coupled from source to observation point.

on Riemann surface I. At Brewster’s zero, we have

(11)

on Riemann surface II.
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Fig. 9. Complex S-plane (S = k =k ) plots of pole and branch cut to n for
(�; �) cases in c, d, a , b of Fig. 2(b) with illustration of resulting asymptotic
wave types. Exponentially decaying horizontal lines represent the surface wave
coupled from source to observation point.

In the or plane , both pole and zero are
at the same point, but these two are on two different Riemann

Fig. 10. Backward surface wave.

Fig. 11. Conventional forward lateral wave.

surfaces as shown in Fig. 5. Physically, the spectral factors asso-
ciated with the reflected wave in (2) have the same propagation
constant along the surface at Brewster’s zero and Zenneck pole,
but the phase front and the attenuation directions are different
[11]. The exponent of the spectrum can be written as

(12)

where and represent the phase front propagation and the
attenuation direction, respectively, as shown in Fig. 6.

The pole and the zero in Fig. 5 are for a typical Sommerfeld
problem of wave propagation over a conducting earth. For meta-
materials, we need to reexamine Fig. 5.

We label different regions shown in Fig. 2(a) as in Fig. 2(b).
Then, from Fig. 2(a), we note that in Region C, F,
c, f. However, we will see in the next section that the Zenneck
wave occurs only in regions F and f. The boundaries of the re-
gions shown in Fig. 2(b) represent the limits for and

. In computations for a large sample of cases covering
Fig. 2(b), we have observed that for small imaginary parts these
boundaries depend primarily on the ratio .

The wave type in F and f depends on the ratio . In Fig. 7,
we show that Zenneck wave poles exist for
and , but not for and

. In Figs. 7–9, to reduce crowded lines, we do
not show the branch cut from to to ,
which is the same cut from shown in Fig. 5. We have used the
notation in Figs. 7–9. In the legend, the symbol
o or x denotes a pole or zero of , respectively. The diamond
represents the branch point at . The symmetric branch
cuts and branch points in the upper half of the plane are not
shown.

V. WAVE TYPES IN - DIAGRAM—EXAMPLES

We have computed proper pole positions and branch cuts that
determine the listed wave types for a large number of cases of

. We have explored the variation with real parts as shown
by regions in the - diagram, and we have explored variations
with small negative imaginary parts. Our first calculations con-
sidered imaginary parts and we expanded to about 0.1.
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Fig. 12. (a) Backward lateral wave and (b) wave packet.

We noted that the boundary between regions of different wave
type could change (e.g., region d expands with increasing to
include a small part of region e where is less than ). We
conclude that in the limit and , the boundaries
are as shown in Fig. 2(b), and the wave types by region are as
follows:

forward surface wave ;
evanescent wave (E);

D and improper mode (Im)
Zenneck wave or improper mode;
backward lateral wave , forward surface
wave ;
backward lateral wave ;
improper mode (Im);
backward lateral wave ;
backward surface wave ;
improper mode;
improper mode or Zenneck wave;
forward lateral wave .

We now show examples of various wave types for selected
parts (not F nor f) of the - diagram [Fig. 2(b)]. These exam-
ples, shown in Figs. 8 and 9, are for the case of and

. We use these rather large values for small quantities
so that the branch cut curves and poles lie far enough away from
the axes to be readily visible. The choice of as larger than
is partly motivated by our determination that is the control-
ling loss for our p-polarization (TM) case. However, the same
wave type by region was found for other values that explored the
range and beyond. In each of these figures,
we also show schematically the behaviors of the primary waves

, reflected waves , surface waves , and lateral waves
in their asymptotic forms at large distance.

The usual dielectric range that produces Zenneck waves in
Region F was illustrated in Fig. 7(a). The well-known surface
wave (plasmon) for Region A is illustrated in Fig. 8 case A.
The forward lateral wave that occurs in conventional electro-
magnetics with propagation from a medium of higher refractive
index to one of lower index is illustrated in Fig. 8 case A , Fig. 9
case a and Fig. 9 case b .

VI. BACKWARD SURFACE WAVES

We have found a slow-wave pole (pole with )
occurs in region d of Fig. 2(b) [also in Fig. 4(a)]. An ex-
ample of the pole and branch cut configuration is shown in Fig. 9
case d. For lossless cases, the phase velocity is in the negative

direction. However the Poynting vector in the medium 2 and

medium 1 are pointed in and direction, respectively, and
the total power is pointed in direction. The Poynting vector
in the direction is given by

(13)

Since is real and positive, and in
medium 2, in medium 1 and in medium 2.
Furthermore, the total power in direction is given by

(14)

which becomes positive as expected as shown in Fig. 10.

VII. BACKWARD LATERAL WAVE AND TEMPORAL WAVE

PACKET

In Figs. 2(b), 8, and 9 the backward lateral wave is shown as
occurring in NIM regions A , B , and c. A conventional forward
lateral wave is pictured in Fig. 11.

The forward lateral wave is given by

(15)

and is the critical angle . The backward
lateral wave is given by the same expression, but

, and . This is pictured in Fig. 12(a).
It should, however, be noted that NIM is highly dispersive

and, therefore, the wave in NIM over propagates with group
velocity rather than phase velocity. If a wave packet is incident
on NIM, the wave packet propagates as shown in Fig. 12(b).
In this figure, the backward lateral wave emerges from a source
point that travels along the axis at group velocity as shown.
The lateral wave radiates into medium 1 (shown as freespace) at
the critical angle . Then, represents the angle between the
front of the lateral wave packet and the axis.

The group refractive index is given by

(16)
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The law of sines applied to the triangle in Fig. 12(b) then gives
[8]

(17)

Exact numerical calculation of the space-time wave packet con-
firms this behavior of the backward lateral wave [8].

VIII. CONCLUSION

Conventional electromagnetics deals with media whose per-
meability is one, except magnetic materials. If the permeability
can take any arbitrary value, this greatly expands the scope of
electromagnetics resulting in a variety of complex new wave
phenomena. This paper considers a line source excitation over
a semiinfinite metamaterial. Careful attention is paid to poles
and zeros in different Riemann surfaces, and new wave types in-
cluding backward surface wave and backward lateral wave are
discussed including the effects of dispersion.
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