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Abstract
This paper presents a theory of the radar cross section (RCS) of objects in
multiple scattering random media. The general formulation includes the fourth-
order moments including the correlation between the forward and the backward
waves. The fourth moments are reduced to the second-order moments by using
the circular complex Gaussian assumption. The stochastic Green’s functions
are expressed in parabolic approximation, and the objects are assumed to
be large in terms of wavelength; therefore, Kirchhoff approximations are
applicable. This theory includes the backscattering enhancement and the
shower curtain effects, which are not normally considered in conventional
theory. Numerical examples of a conducting object in a random medium
characterized by the Gaussian and Henyey–Greenstein phase functions are
shown to highlight the difference between the multiple scattering RCS and
the conventional RCS in terms of optical depth, medium location and angular
dependence. It shows the enhanced backscattering due to multiple scattering
and the increased RCS if a random medium is closer to the transmitter.

1. Introduction

There has been extensive research on the radar cross section of rough surfaces and the
atmosphere [1–4]. However, if an object is located within a random medium, its cross section
is affected by multiple scattering in the medium. The wave incident upon the object consists
of coherent and incoherent waves, and the scattered wave also experiences multiple scattering.
In addition, the induced current on the object has coherent and incoherent components. To
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Figure 1. The Dirichlet object is illuminated by a transmitter at r̄t through a random medium and
the scattered wave is observed at r̄ .

obtain the stochastic induced current, we need to solve the stochastic surface integral equation
for the object [5, 6]. In this paper, however, we assume that the object size and surface radius
of curvature are much greater than the wavelength, and therefore, the Kirchhoff approximation
is applicable to obtain the induced current. There are correlations between the incident and
scattered waves in the medium. To take into account the above effects, we start with general
formulations including stochastic Green’s functions. We make use of the parabolic equation
approximation for the stochastic Green’s functions, which should be applicable to many
practical problems in microwave and optical scattering in the atmosphere and the ocean, as
well as optical scattering in biological media [4].

The formulation is based on the use of the circular complex Gaussian assumption. It
includes two effects: backscattering enhancement [7, 8] and shower curtain effects [9]. Both
phenomena have been discussed recently, but have not been included in most RCS studies.
The backscattering enhancement effect is interesting as RCS can become higher than the
conventional RCS, while the shower curtain effects give different RCS depending on whether
the random medium is closer to or further from the transmitter.

2. Formulation of the problem

Let us consider a Dirichlet object in a random medium. The scattered field at r̄ is given by
[10]

ψs(r̄) = −
∫

s
G(r̄, r̄1)

∂ψ(r̄1)

∂n1
dS1, (1)

where G is the stochastic Green’s function. In general, the random surface field ∂ψ(r̄1)/∂n1

can be expressed using the random transition (scattering) operator T,

∂ψ(r̄1)

∂n1
=

∫
T (r̄1, r̄s)

∂ψin(r̄s)

∂ns
dS, (2)

where ψin(r̄s) is the incident field at r̄s as shown in figure 1.
Now, we assume that the object size and its surface radius of curvature are greater than

the wavelength and the Kirchhoff approximation is applicable. Then, we get the well-known
Kirchhoff surface field

T (r̄1, r̄s) = 2δ(r̄1 − r̄s),

∂ψ(r̄1)

∂n1
= 2

∂ψin(r̄1)

∂n1
.

(3)

The scattered field is then given by

ψs(r̄) = −2
∫

G(r̄, r̄1)
∂ψi(r̄1)

∂n1
dS1. (4)
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Figure 2. Stochastic Green’s functions G1 and G2.

The scattered power at r̄ is given by

〈|ψs(r̄)|2〉 = 4
∫ ∫

dS1 dS2

〈
G1

∂ψi1

∂n1
G∗

2
∂ψ∗

i2

∂n2

〉
, (5)

where G1 = G1(r̄, r̄1), ψi1 = ψi(r̄1),G2 = G2(r̄, r̄2), ψi2 = ψi(r̄2) as shown in figure 2.
This contains the fourth-order moment, and using the circular complex Gaussian

assumption, we can express the fourth-order moment in terms of second-order moments
[5]. (see the appendix)〈
G1

∂

∂n1
ψi1G

∗
2

∂

∂n2
ψ∗

i2

〉
= 〈G1G

∗
2〉

〈
∂

∂n1
ψi1

∂

∂n2
ψ∗

i2

〉
+

〈
G1

∂

∂n2
ψ∗

i2

〉 〈
∂

∂n1
ψi1G

∗
2

〉

−〈G1〉
〈

∂

∂n1
ψi1

〉
〈G∗

2〉
〈

∂

∂n2
ψ∗

i2

〉
. (6)

It is important to note that equation (6) includes the correlation between the incident ψi

and the scattered field G, and this gives the backscattering enhancement to be discussed in a
later section. In contrast, it is often assumed that there is no correlation between the incident
and the scattered field and with this assumption, we get〈

G1
∂

∂n1
ψi1G

∗
2

∂

∂n2
ψ∗

i2

〉
= 〈G1G

∗
2〉

〈
∂

∂n1
ψi1

∂

∂n2
ψ∗

i2

〉
. (7)

We will show later the difference between our formulation in equation (6) and the formulation
in equation (7).

The apparent RCS of the object is then given by

RCS = 4πL2〈|ψs|2〉
|ψo|2 , (8)

where ψo is the free space incident field at the object, ψs is the scattered field at the observation
point and L is the distance between the object and the observation point.

We now examine equations (5) and (6). The incident wave ψi is the stochastic Green’s
function and we write

ψi1 = ψ(r̄1) = G1(r̄, r̄1),

ψi2 = ψ(r̄2) = G2(r̄, r̄2),
(9)

where we used the reciprocity: G1(r̄, r̄1) = G1(r̄1, r̄). Under the parabolic equation
approximation [4, 10], Green’s function is given by

G = (slowly varying function of z and ρ̄) exp(ikz). (10)

Therefore,
∂

∂n
= −ikŝ · n̂1 = −ik(ẑ · n̂1), (11)
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where ŝ ≈ ẑ is the direction of wave propagation. Using equations (9) and (11), we get

〈|ψs|2〉 = 4k2
∫ ∫

(dS1 dS2[〈G1〉2〈G∗
2〉2 + 4〈G1〉〈G∗

2〉〈Gf 1G
∗
f 2〉

+ 2〈Gf 1G
∗
f 2〉2](ẑ · n̂1)(ẑ · n̂2)), (12)

where G = 〈G〉 + Gf , 〈G〉 is the coherent component and Gf is the incoherent component.
Note that if we ignore the correlation between the incident and the scattered field as in
equation (7), we have

〈|ψs|2〉 = 4k2
∫ ∫

(dS1 dS2[〈G1〉2〈G∗
2〉2 + 2〈G1〉〈G∗

2〉〈Gf 1G
∗
f 2〉

+ 〈Gf 1G
∗
f 2〉2](ẑ · n̂1)(ẑ · n̂2)). (13)

The difference between equations (12) and (13) is that equation (12) includes the enhancement
while equation (13) does not. We now need to evaluate equation (12) to obtain the RCS.

3. Stochastic Green’s functions

Let us now evaluate equation (12). Under the parabolic approximation, we get

〈G1〉 = 1

4πL
exp

(
ikρ2

1

2z1
+ ikz1 − τo

2

)
,

〈G2〉 = 1

4πL
exp

(
ikρ2

2

2z2
+ ikz2 − τo

2

)
,

(14)

where τo is the optical depth. We assume that the transmitter is in the far field of the object,
and therefore kρ2

1

/
z1 and kρ2

2

/
z2 are negligibly small.

Next we consider the incoherent mutual coherence function

〈Gf 1G
∗
f 2〉 = �f (z1, ρ̄1; z2, ρ̄2). (15)

The mutual coherence function � due to a point source has been obtained previously including
the inhomogeneous random medium [4, 9, 11]

� = �(z1, ρ̄1; z2, ρ̄2) = 〈G(z1, ρ̄1)G
∗(z2, ρ̄2)〉

= 1

(4πX)2
exp

(
−ik

ρ̄d · ρ̄c

X
− H + ik(z1 − z2)

)
, (16)

where X = X(z) = ∫ z

0
dz′

n(z′) , H = ∫ z

0 a dz′ +
∫ z

0 b dz′ 1
2

∫ 2
0 p(s)s ds[1 − Jo(knsρ)].

The phase function p(s) is normalized so that

1

2

∫ 2

0
p(s)s ds = 1, (17)

ρ = ∣∣ρd
X(z′)
X(z)

∣∣, n(z) is the refractive index, a is the absorption coefficient, b is the scattering
coefficient and s = 2 sin(θ/2), θ = scattering angle. This is the mutual coherence function for
a random medium consisting of a random distribution of particles.

First, we note that the term kρ̄d · ρ̄c/X in the exponent is negligible when the transmitter
is in the far field of the object. We then write the coherent �c and incoherent �i parts of � as

� = �c + �i,

�c = 1

(4πX)2
exp(−τo + ik(z1 − z2)),

�i = 1

(4πX)2
[exp(−H) − exp(−τo)] exp(ik(z1 − z2)),

(18)
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where H is given in equation (16) and H(ρ → ∞) = τo = ∫ d2

0 (a + b) dz′ = optical depth
and d2 is the thickness of the random medium.

Let us use the Henyey–Greenstein (HG) phase function for the scattering medium. We
have

p(s) = (1 − g)

(1 + g2 − 2g cos θ)3/2
, g = anisotropy factor, (19)

which satisfies the normalization

1

4π

∫
4π

p(s) d	 = 1. (20)

It is more convenient to use s = 2 sin(θ/2). Then, we write

p(s) = (1 + g)

(1 − g)2

1[
1 +

(
s
so

)2
]3/2 , so = (1 − g)2

g
,

1

2

∫ 2

0
p(s)s ds = 1.

(21)

Even though this is the HG phase function used for 0 < s < 2 (or 0 < θ < π ), it can be
approximated by

p(s) = 2

so

1[
1 +

(
s
so

)2
]3/2

1

2

∫ ∞

0
p(s)s ds = 1,

(22)

when g is close to one. Making use of this, and using

1

2

∫ ∞

0
p(s)Jo(knsρ)s ds = exp(−knsoρ) (23)

we get

H(ρ) =
∫ z

0
a dz′ +

∫ z

0
b dz′[1 − exp(−knsoρ)]. (24)

For large optical depth, the incoherent mutual coherence function �i in equation (18) is
well approximated by expanding H(ρ) in equation (24) about ρ = 0 and keeping the first
term

�i = 1

(4πX)2
exp

[
−

∫ z

0
a dz′ −

∫ z

0
b knsoρ dz′

]
. (25)

A better approximation which reduces to the proper limit as the optical scattering depth τs → 0
and τs → ∞, and as ρ → 0 and ρ → ∞ is given by [11]

�i = 1

(4πX)2
exp(−τa)[1 − exp(−τs)] exp

(
−|ρd|

|ρo| + ik(z1 − z2)

)
, (26)

where

1

ρo
=

∫ z

0
b(z′)kn(z′)so

X(z′)
X(z)

dz′[1 − exp(−τs)]
−1,
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τa = ∫ d2

0 a dz′ is the optical absorption depth and τs = ∫ d2

0 b dz′ is the optical scattering depth.
The coherence length ρo at the object is important to characterize RCS. If the uniform random
medium with n(z) = 1 is located from d1 to d1 + d2, we get

1

ρo
= kso

2

[
(d1 + d2)

2 − d2
1

]
Ld2

τs[1 − exp(−τs)]
−1. (27)

If the phase function is given by the Gaussian function:

p(s) = 4αp exp(−αps2) (28)

with normalization 1
2

∫ ∞
0 p(s)s ds = 1, the incoherent mutual coherence function �i is given

by

�i = 1

X2
exp(−τa)[1 − exp(−τs)] exp

(
−ρ2

d

ρ2
o

+ ik(z1 − z2)

)
. (29)

If the medium is uniform from d1 to d1 + d2, we get

1

ρ2
o

= τsk
2
[
(d1 + d2)

3 − d3
1

]
12αpL2d2[1 − exp(−τs)]

. (30)

4. RCS of a large Dirichlet object

Making use of the stochastic Green’s functions and the mutual coherence functions, we can
now evaluate the apparent RCS given in equation (8). Noting equation (12), RCS is given by

RCS = 4πL2〈|ψs|2〉
|ψo|2 = I1 + I2 + I3, (31)

where I1, I2, I3 are the three terms in equation (12). We note that in equation (12), we have∫
dS1(ẑ · n̂1) =

∫
dρ̂1,

∫
dS2(ẑ · n̂2) =

∫
dρ̂2. (32)

Therefore, we have

I1 = 4π

λ2
exp(−2τo)F1,

I2 = 4π

λ2
(4 exp(−τo))[exp(−τa)(1 − exp(−τs))]F2,

I3 = 4π

λ2
2[exp(−τa)(1 − exp(−τs))]

2F3,

(33)

where

F1 =
∫ ∫

dρ̂1 dρ̂2 exp(i2k(z1 − z2)),

F2 =
∫ ∫

dρ̂1dρ̂2 exp

(
i2k(z1 − z2) − |ρd |

|ρo|
)

for HG medium,

=
∫ ∫

dρ̂1 dρ̂2 exp

(
i2k(z1 − z2) − ρ2

d

ρ2
o

)
for Gaussian medium,

F3 =
∫ ∫

dρ̂1 dρ̂2 exp

(
i2k(z1 − z2) − 2|ρd |

|ρo|
)

for HG medium,

=
∫ ∫

dρ̂1 dρ̂2 exp

(
i2k(z1 − z2) − 2ρ2

d

ρ2
o

)
for Gaussian medium,
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Figure 4. Inclined square conducting plate illuminated by the source. The random medium with
thickness d2 is located between the transmitter and the object. The plate size is 2a × 2a, and
ρ̄1 = x1x̂ + y1ŷ and ρ̄2 = x2x̂ + y2ŷ.

z
z

Illuminated

Shadow
(x,y)

Figure 5. Spherical object.

and ρ̄d = ρ̄1 − ρ̄2, ρ̄1 = x1x̂ + y1ŷ, ρ̄2 = x2x̂ + y2ŷ. The illuminated surface of the object is
given by z = z1(ρ̂1) and z2 = z2(ρ̂2) as shown in figure 3. The coherence length ρo is given
by equation (27) for a HG medium and by equation (30) for Gaussian medium.

For a large conducting plate shown in figure 4, we have z(ρ) = x tan θ ,

∫ ∫
dρ̄1 dρ̄2 =

∫ a cos θ

−a cos θ

dx1

∫ a

−a

dy1

∫ a cos θ

−a cos θ

dx2

∫ a

−a

dy2, (34)

and z1 − z2 = (x1 − x2) tan θ, ρd =
√

(x1 − x2)2 + (y1 − y2)2. The integral in (34) can be
calculated numerically.

For a sphere with radius a shown in figure 5, we use

∫ ∫
dρ̄1 dρ̄2 =

∫ a

0
ρ1 dρ1

∫ 2π

0
dφ1

∫ a

0
ρ2 dρ2

∫ 2π

0
dφ2, (35)

and z1 = a −
√

a2 − x2
1 − y2

1 , z2 = a −
√

a2 − x2
2 − y2

2 , |ρ̄| =
√

(x1 − x2)2 + (y1 − y2)2,

x1 = ρ1 cos φ1, y1 = ρ1 sin φ1, x2 = ρ2 cos φ2, y2 = ρ2 sin φ2.
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Figure 6. Geometry of RCS calculations.
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Figure 7. Coherence length for (A) Henyey–Greenstein phase function with albedo (Wo) = 0.9
and g = 0.85 and (B) Gaussian phase function with Wo = 0.9 and αp which gives the same
half-power beamwidth.

5. Coherence length and shower curtain effects

Equations (27) and (30) give general expressions of coherence length ρo for HG and Gaussian
media. It is seen that ρo in terms of the wavelength depends on the optical scattering depth
τs, the medium characteristics (so and αp) and the ratio of the distances (d1/L and d2/L). In
figures 6 and 7, we show the geometry and the coherence length in wavelength for case A and
case B. Note that if the medium is close to the transmitter (case A), the coherence length is
greater than case B, showing the shower curtain effect. For a HG medium, we use Wo = 0.9
and g = 0.85 where Wo is the albedo defined by Wo = b

a+b
. For a Gaussian medium, we use

Wo = 0.9 and αp which gives the same half-power beamwidth as HG with g = 0.85.

6. RCS of a square plate

Let us examine the RCS of the square plate shown in figure 4. The plate size 2a is 3λ. In
figure 8, we show I1, I2, I3 and Icom = I1+I2+I3 at θ = 0. Note that I1 is the conventional RCS
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Figure 8. Components of RCS. Phase function is Henyey–Greenstein with albedo (Wo) = 0.9
and g = 0.85 in all case. (A) Case A geometry, (B) case B geometry. fs denotes free space. Ifs
denotes the free space RCS.
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Figure 9. Effect of asymmetry factor g.

in a scattering medium and Icom is increasingly larger than I1 as the optical depth increases.
This indicates that the multiple scattering contributes significantly to the total RCS. The effects
of asymmetry factor g and the albedo Wo are shown in figures 9 and 10, respectively. It shows
that as g increases, the scattering pattern becomes more peaked in the forward direction and
as Wo increases, the scattering increases, resulting in increased RCS.

We also compare the RCS from the geometry of case A and case B, which are shown in
figure 11. Note that if the medium is close to the transmitter (case A), the RCS is higher than
that of case B where the random medium is away from the transmitter. This result illustrates
the shower curtain effect. Figure 12 shows the shower curtain effects as the random medium
moves from d1 = 0 to d1 = L/2.

Figure 13 compares RCS, which includes backscattering enhancement from equation (12)
with RCS without enhancement from equation (13). Note that the enhancement approaches
3 dB for large optical depth. Figure 14 shows the angular dependence of RCS at an optical
depth of 1 and 5. It is shown that RCS, as a function of angle, is very much affected by
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Figure 11. The shower curtain effect with Henyey–Greenstein phase function for geometry in
case A and case B geometry. Ifs denotes the free space RCS.
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Figure 12. The shower curtain effect as a function of d1/L.

the multiple scattering. This is more pronounced for large optical depth where RCS is quite
different from the conventional RCS (I1).
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Figure 13. RCS comparison for the cases with and without backscattering enhancement. WE
denotes without enhancement. Ifs denotes the free space RCS.

0 10 20 30 40 50 60
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10
(A−1)

R
C

S
(d

B
)

Angles (degrees)

I
1
I
2
I
3
I
com

0 10 20 30 40 50 60
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10
(B−1)

Angles (degrees)

R
C

S
(d

B
)

I
1
I
2
I
3
I
com

0 10 20 30 40 50 60
−140

−120

−100

−80

−60

−40

−20
(A−2)

R
C

S
(d

B
)

Angles (degrees)

I
1
I
2
I
3
I
com

0 10 20 30 40 50 60
−140

−120

−100

−80

−60

−40

−20
(B−2)

Angles (degrees)

R
C

S
(d

B
)

I
1
I
2
I
3
I
com

Figure 14. Angular dependence of RCS with Henyey–Greenstein phase function. (A-1) Case A
with an optical depth (OD) of 1, (A-2) case A with an optical depth (OD) of 5, (B-1) case B with
an optical depth (OD) of 1, and (B-2) case B with an optical depth (OD) of 5.
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7. Conclusions

A theory of RCS in a multiple scattering environment is given by equations (8) and (12). This
is applied to a flat conducting plate. The conventional RCS is given by I1 and the multiple
scattering RCS is given by I1 + I2 + I3 in equation (33). The shower curtain effect, the
backscattering enhancement and the angular dependence are shown to highlight the difference
between the conventional RCS and the multiple scattering RCS.
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Appendix. Circular complex Gaussian random variable [12, 13, 5]

Consider a complex random function u and its fluctuation v

u = 〈u〉 + v. (A.1)

Two circular complex Gaussian random variables u1 and u2 satisfy the following conditions:

〈v1v2〉 = 0, but 〈v1v
∗
2〉 	= 0 (A.2)

and the odd moments of v are zero. Thus, the following relations hold

〈v1v2v
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3v

∗
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∗
3〉〈v2v

∗
4〉 + 〈v1v

∗
4〉〈v2v

∗
3〉

〈u1u2u
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3u

∗
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3〉〈u2u

∗
4〉 + 〈u1u

∗
4〉〈u2u

∗
3〉 − 〈u1〉〈u2〉〈u∗

3〉〈u∗
4〉

= 〈u1〉〈u∗
3〉〈u2〉〈u∗

4〉 + 〈u1〉〈u∗
3〉〈v2v

∗
4〉 + 〈u2〉〈u∗

4〉〈v1v
∗
3〉

+ 〈v1v
∗
3〉〈v2v

∗
4〉 + 〈u1〉〈u∗

4〉〈v2v
∗
3〉 + 〈u2〉〈u∗

3〉〈v1v
∗
4〉 + 〈v1v

∗
4〉〈v2v

∗
3〉〈

u2
1u

∗2
2

〉 = 2〈u1u
∗
2〉2 − 〈u1〉2〈u∗

2〉2

= 〈u1〉2〈u∗
2〉2 + 4〈u1〉〈u∗

2〉〈v1v
∗
2〉 + 2〈v1v

∗
2〉2

〈u1u2〉 = 〈u1〉〈u2〉 + 〈v1v2〉 = 〈u1〉〈u2〉.
We have applied this assumption to the wave propagation in a random medium. We

found that the results reduce to the correct limits in the weak fluctuation as well as the strong
fluctuation, and that the phenomena such as the backscattering enhancement result from the
use of this assumption. Note that the circular complex Gaussian variables are similar to but
different from the real Gaussian random variables [13].
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