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Optical Imaging Through Clouds and Fog

Sermsak Jaruwatanadilok, Akira Ishimakife Fellow, IEEE and Yasuo KugaSenior Member, IEEE

Abstract—maging and detection of objects at optical wave- terms of the optical depth, the aperture size, and whether the
lengths offers better resolution than at microwave or millimeter |ocation of the fog is close to the object or close to the imaging
wavelengths. However, the imaging is severely affected by scat-gystem. |n this connection, we also discuss an important phe-

tering from fog and clouds. This paper presents a study of optical . .
imaging through clouds by using the point-source vector radiative nomenon callesshower curtain effectThe shower curtain ef-

transfer theory. The point-spread function including complete fect has been recognized in the applications of imaging through
polarization characteristics is presented with numerical examples random media for several years. It states that, in addition to the

at 1 pm wavelength showing the effects of aperture size and properties of the random medium, the location of the random
optical depth on the shower curtain effects. medium also affects the image qualities. In a situation where the
Index Terms—Optical imaging, optical propagation in random  properties of the random medium, i.e., concentration of the scat-
media, optical scattering, point source, point spread function, ra- tering particles and the actual length of the medium, are fixed,
diative transfer. the image qualities when the random medium is close to the ob-
ject are better than the image qualities when the random medium
|. INTRODUCTION is close to the observer. In an everyday situation, we will see a

. . erson behind the shower curtain better than that person sees us,
HE IMAGING and detection of objects through the atmoﬁhiCh is the source of the nanseower curtain effect

phere is an important problem of current interest. Optica There are several studies related to the shower curtain ef-

imaging offers much better resolution than microwave or mi}— ct. Belov and Borisov [1] discussd@dEffectand shower cur-

limeter wave. However, the optical propagation is severely afg'n effect. They showed that the image qualities decrease non-

fected by fog and clouds in the atmosphere. This paper presen{osnotonically as a function of the distance from the object to

the imaging of objects through clouds and fog at a wavelenqrﬁl

. . : e random medium. However, they concluded that this char-
of 1 um. The total distance between the object and the 'Magifieristic depends not only on the properties of the scatterin
system is 20 km, and the fog or cloud thickness is 1 km. P y brop g

If the ontical deoth is much smaller than one. the sin Ie_scarln_edium and the location of the medium but also on the spatial
P P ! 9 s&ructure of the radiation properties of the object. In our calcu-

tering approximation can be used. However, light suffers C(.)p:ftions, we apply the concept of the point spread function. The

siderable scattering at large optical depth, thus, the d|1nfUS'?mnages are the result of the convolution of the object intensity

approximation is often used. In many practical situations, the

. . ) ’ . With the point spread function of the optical system including
OF’“C‘?" depth valug IS somewhgre n between,.ther.efore, ne'ﬂt]ﬁerz effect of the random medium. The counterpart of the point
the single-scattering nor the diffusion approximations may l%aﬁ?gread function is the modulation transfer function concept. Ba-

appropriate. In this paper, we employ the complete vector cally, they are a Fourier transform pair in spatial domain. The

. > . . |
diative transfe_r th_eory which is applicable to any optical dep%odulation transfer function (MTF) of layered inhomogeneous
and any polarization state.

; . . ._..random media was calculated [2], [3]. Several experiments were
For the imaging problem, we need to consider the radiative : .
X : . . erformed to verify the shower curtain effect [2], [4]. Most of

transfer equation with a point-source. However, this Greerns . . ; .
his shower curtain effect is studied under the circumstances of

function problem has not been solved yet. We presentan apprgf(ﬁwospheric imaging. However, the shower curtain effect has

imate solution to this problem, making use of the plane-wave Sr(t)a'cently been considered in the context of optical coherence to-

lution to the radiative transfer equation. Note that we derive theography, which applies to biomedical imaging [5], [6].

full vector rad|at|ye tran_sfe_r equation in this paper even thOU(‘:EP'We present the vector radiative transfer equation for the point-
we only use the intensity information in our calculations. Our

derivations are intended to be in a general form for use in tRe . function in Section 1. We explain the approximation
L gene made from the plane-wave radiative transfer equation and the
future because polarization information is very useful and c

. . . . fithitations of this modified equation. Section lll shows the anal-
be exploited to improve the quality of the images.

%]js of the imaging system. The point spread functions are cal-

The solution to the point-source radiative transfer is then uséulated for various optical depths and aperture sizes. The shower

in the optical system to derive the point spread function. The . : : . )
. ; . : . CUrtain effect is presented in terms of point spread function
image at the imaging plane and the resolution are studied,in ; . . .
broadening and the imaging of a cross pattern. Our conclusions
are in Section IV.
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in the point-source case. With some reasonable assumptions ,
are able to apply the method used in solving the vector radiati s

problem to this point-source problem.

a
1
1
|
transfer equation with plane-wave incidence in a plane-paral e -’ |
1
|
1
i

A. Vector Radiative Transfer Equation

The vector radiative transfer equation in the general form

given by

S(3,8)I(r, §)dSY + I(r, 3)

§-VI(r,8) = —pod(r, 5) + /
1)

4

wherel is the modified Stokes vector given by

I=[L, I, U V]". 2)
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p is the number density, ang is the total scattering cross secFig. 1. Plane-parallel geometry.
tion. The matrixS is the Mueller matrix. The scattering char-

acteristics of the random medium are captured in the Mueller\/\/e assume that the 0n|y source of radiation is the incident

matrix S defined by

'S S

s 3 Sﬂ @3)
_ _|f11|2 |f12|2:|

SU=1 il [l (32)
C[RUnfh) —S(afh)

52 = | R(fr 12) —%(fﬂf;z)} (30)
C[2R(afh) 2R(fiafs)

53 = 29 (fu f) 2%(f12f§2)} (30)

S :_2%(.f11f§2+f12f§1) _2%<(.f11f;2_f12f;1) (3d)

P 2S(fufat fefn) 2R(fufh - fiefi)

wave; therefore, the boundary conditions in this problem can be
written as

I(r = 0) =0,
I(r =7,) =0,

foro<u<1
for—1<pu<O.

(7
The source vector is given by
27 pl
3w d) = [ [ Sl 9 Ltral $)d'dd (®)
0 —1
For the plane-wave case, the reduced Stokes vector is

Li(r,p',¢") =L, exp(—7)6(p' — 1)8(¢). 9

where fi1, fia, fo1, and fas are the scattering amplitudes Ca|_H0.wever, for a point-source or trans_mitter with_direct.ional
culated using Mie scattering explained in Appendix A [7]. wigain, represented by (5), the formulation shown in (6) is not

define the submatrice®;, So, S3, andS, for the derivation in
the next subsectiond.is the source vector which is given by

I(r,8) = / S(3, ) Ls(r, ) dSY
47

wherel,; is the reduced intensity Stokes vector given by

(4)

L(r,88)= (5)

wherel, is the Stokes vector of the sourcejs the distance
through which light has travelled in the scattering medidfn;
is the direction of the source incidence; anid the direction of
observation. The directional gain function of the sourcg §5).

In the isotropic point-source casgs') = 1. In other types of
transmitters (e.g., directional antennag)s’) depends on the

I, . I
ﬁy(S') exp(—poyr)§(s — ')

easily solved. Previously, we reported on the plane-wave
radiative transfer equation in the plane-parallel problem [8].
With some assumptions and approximations, we find that we
can modify the previous procedures to solve for the vector
radiative transfer equation in (6). In the next section, we discuss
these assumptions and approximations.

B. Approximation to the Point-Source Radiative Transfer
Equation

In contrast to the plane-wave incidence where the reduced
Stoke vector of the source propagates in only one direction, the
reduced Stokes vector for the point-source case propagates in
different directions. All the reduced Stokes vectors from those
directions contribute to the final results of the radiative transfer
equation. Furthermore, the reduced intensity is not a simple

direction of propagation. We concentrate on the plane-paralfghction of ~ and ., but rather a function of spherical coordi-

geometry shown in Fig. 1. Equation (1) becomes

a 27 1
- T _ S 'y
(u87+1>1( TR /0 ./_1 (TRONTNCS

'1(7—7 ll/l7 gbl) dﬂ'/ dgb, + J(T7 12 ¢)>
foro<r <7,

(6)

wherep = cosf, 7 = poz is theoptical distanceandr,
po+L is theoptical depth

natesr, 4, andy [9]. Therefore, the exact and complete formu-
lation of the point-source case has to be in spherical coordinates,
and the variation of the reduced Stokes vector in the source term
has to be considered.

We approach the point-source radiative transfer equation
from the plane-wave solution with the following assumptions
and approximations. Fig. 2 shows the geometry explaining the
approximation of point-source incidence from the plane-wave
incidence.



1836 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 8, AUGUST 2003

10 w
_______________ ‘.._._..__.._.. ~‘~ ' ' ' " -- R4
(Y'o) Soo R15
L/cosd; 51 . —_— PW
-
A )
source observation A\
0; 0o 0 Lo, ATY 1
Ro L -5r [y -
@) L "
To '
° D10 . ]
. . . ) -15¢
Fig. 2. Point-source consideration geometry.
-20-
=t
Ro = 15km = o5l
Source @ (> Observation
_3 . . . . ) . .
00 10 20 30 40 50 60 70 80
angle (degrees)
L=1km (B)
Ro = 4km —ﬁ f" 10 , ; ; : . ‘ :
-- R4
Source Ob: tion  _| R15
urce @ I;’ O> servation 5l —pw H
Lo = 20km Sse.
or ~
‘.
‘\
Fig. 3. Geometry of point-source problem. -5h AR g

1) The thickness of the slab of a random medium is sme® 10
compared to the total distance K L,).

2) The off-axis incident Stokes vector is approximated ti
be normally incident on the slab of random medium an _,,l
propagates through the random medium with a distant

longer thanL. This distance increases by a factoi ¢f:;, -25¢ ~
wherepu; = cos6; , andd; is the incident angle.

3) The result of the point-source radiative transfer at th -39; 10 20 30 40 50 8 70 s
angled, is the result of the plane-wave radiative transfe angle (degrees)
equation at the anglé, from the incident anglé;. The
relationship between these angles is given by Fig.4. Comparison of angular spectrum between point-source and plane-wave

incidences when (A) optical depth is 10 and (B) optical depth is 20.
(R, + L)tan; =[L, — (R, + L)] tan¥, (10)

0s =0, + 0;. (11)
. TABLE |
4) Ther dependence from the reduced Stokes vector is em- PARTICLE SiZE DISTRIBUTION OF FOG
bedded inz dependence and can be written as
I Diameter of Particle (um) Number of particles
L =———59(n) exp(—7)8(n" — 1)8(¢') 04 3
[(Ro+z)] 0.6 10
g I 0.7 40
= . 59(1) exp(=7)é(u" — 1)8(¢’). 14 50
(70) [1+(%’:)] 2.0 7
(12) 3.6 1
5.4 9
This approximation is valid when the first assumption 8.0 2
holds. However, (12) cannot be incorporated directly into
the equation because ofdependence. We make an ap-
proximation of thisz dependence in the fraction form to wherea is given by solving (13) with equality ah =
the exponential form by L/R,
1 1

[1 + (_;>]2 A+ap” xp(~ad) (13) a=2 (%) log, [1 + Ri} . (14)

R, o
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-86f
Thus, (12) becomes -88r
I g 90t .
i / /
I,=—2_ exp |— 1+ 7|6 —1)6 . ool ]
e (1) - o). e
H -941 8
(15)
5) We find the solution of the point-source vector radiative -9
transfer for anglé, at the observation point by solving QB e e e e e e e e e
the approximate plane-wave normally incident to the U dholelinielslulsluisissieislelsluistuisialsluisisiisislsisisiislssiels
plane-parallel medium with a slant path/ cos(6;) %5 0 0.5
(equivalent to optical depth af!). The reduced Stokes Si (milliradians)

vector in (15) is used in this case.

ig. 7. One-dimensional cut from 2-D point spread function for large distance
Now, We. L.Jse (15) as the re(_juc_:ed Stokes vector for (8) .ageléometry. (a) Optical depth: 10. (b) Optical depth= 25.
then plug it into the vector radiative transfer (6). The solutio

procedure is explained in the following section. Note that it is

the same as for the plane-wave incident case [8]. Different cases of incident polarization (linear or circular) can
be considered separately. In this paper, we consider only circular
C. Solution to the Vector Radiative Transfer Equation polarization wherd, = [1/2 1/2 0 1] .Inthis case, the

To solve (6), we first expand the azimuthal dependence usionIy nonzero mode is mode zero. Note that this is true only when

the Fourier series. Thus, the Stokes vector becomes fie approximation n a;sump'uon 2 in the previous subsecupn
holds. In nonnormal incident case, the Fourier series expansion

(r 1, ) = 1O (7, 1) gives more terms resulting in more caICl_JIati_on time. However,
R ' except for the first few terms, the contribution of the Fourier
+ Z [If{i)@ 1) cos(ng) + Iflz)<T7 1) sin(n</>)] . (16) expansionsis expected to be small. Equation (6) can be reduced
oyt to two uncoupled equations, which gives a faster solution time.
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The two uncoupled equations are thé, equation and th& V' 40 A)
equation. The; I, equation is given by ' ‘ ' ' ’ — R4
-= Ri5
9 0 ! 0 0 -45- | PW |
(e +1) 10 = [ 0 )
+F§?)12 (u)exp(—ar), foro <7 <7, (17) ~Sor |
where -55f ]
(0)( ) S
17 (T, p,
I(O) , — |: 1 s 1y :| 18 -60
(T 1) 190 1,) (18)
glp A -65[
Fg(ll)l2 (H) _ ( ) . [ |A u(u)l } (19)
o\ L1Arr (1)l
2Ot
—70} i

e e v o o o o o o U o i o e o o v e )|

27
LO (4, ') = /0 Sy (il ¢ — $)d(¢ — 4).  (20)

_7 . . . . . .
-%.2 -0.15 -0.1  -0.05 0 0.05 0.1 0.15 0.2

TheUV equation is expressed as Si (r?gians)
0 ' - | ' ' ' ' ' - Ra
(n 2+ 1)1 = [ 100 R ) =
4 J-ro e PW
+Fg]€,(,u) exp(—ar), for0 <7 <7, (21) —_’//’L
where _70k |
(0) _ [0 n)
IUV (T7 /’l’) - |:V(0) (T, ll/) (22) %
(0) ) {—%[Au(u)A:T(u)]}
Fovw) =—F——= . 23
ov (k) e ()7 L A T @) ,
t\
27
L () = | Sulip ¢/ = 9)d(¢' = ). (24)

J0

The functionsA;; and A,.,.. are defined in Appendix A. 8 . . . . . .
We solve this integrodifferential equation using the discre 02 =015 -01 =005 (ragians) 005 01 015 02

ordinates method. It is based on applying the Gauss quadrature

formula [11] of orderV in 1 dependence to (18) and (22). The

i i i i iraig. 8. One-dimensional cut from 2-D point spread function for small distance
|ntegr0(_j|fferen_t|al equgtloq of (18) and (22) becomes a flrsgeometry. (a) Optical deptér 10. (b) Optical depthe 25.
order differential equation in the form

0

—I+ AI = Bexp(—ar) (25) D. Comparison Between Point-Source and Plane-Wave
T Incidences
where
T We perform numerical calculations of plane-wave and point-
I=[rp-n) - X7 pn)] (26)  source incidences on a slab of random medium as shown in
AL :i _ L(pj, o) 27) Fig. 2. The random medium is fog in an air background. We use
7 g a wavelength of Jum. Fog particles have the size distribution
F(u;) expressed in Table I. The path lengtl) f the random medium
Bjk = i (28) is 1 km. For the comparison, we calculate the case where the ob-

ject is close to the slab of random mediu,(= 4 km) with
In the case of thé, I, equationI represent§l; I ]T; Lrep- atotal length [,) of 20 km, and the case where the object is
resentsl;; andF represent® [, ;o. On the other hand, in the far from the slab of random mediunk{ = 15 km) with the
case of thdJV equation]I represent$U V]T, L represents same total length as shown in Fig. 3. The calculation is made
L4, andF represent® . With the application of the boundarywith optical depths4,) of 10 and 20. The angular spectrums
conditions given in (7), we can find the complete solution. Thef the copolarized component are compared with those of the
solution is in the discrete anglg, and the accuracy of the solu-plane-wave case, and are shown in Fig. 4. Note that the decibels
tion depends on the number of anglésHowever, the required scale is the logarithm of the intensity calculated at the observa-
computational resource increases as a functiav because we tion point. The results show the shower curtain effect. In the case
have to solve the matrix eigen system of ordéby N. when the objectis close to the random medidty & 4 km), the
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angular spectrum is sharper than the case where the object istied cases of imaging conditions. First, we consider a large dis-
atively far from the random mediun®(, = 15 km). The results tance and small angle imaging. The geometry of this imaging
also show that as the distané® gets larger, the point-sourceproblem is shown in Fig. 6(a). The aperture sizg (s 3cm and
incidence angular distribution approaches the plane-wave inttie focal distanced) is 50 cm. The viewing angle is in millira-
dence. It is consistent with our assumption, and it is one of thdéan range. This geometry corresponds to the telescopic viewing
signs that our approximation is valid. of an object at a long distance. Second, we discuss the small
distance and large angle imaging geometry shown in Fig. 6(b).
lll. 1 MAGING SYSTEM AND THE SHOWER CURTAIN EFFECT The aperture size in this case is 3 mm with a focal distance of

As the results from the previous section suggest, the shov&%? cm. The \?evr\]nng anglt;a IS m;he raf1d|an Ira}[ngtle. This g%qm:[
curtain effect is evident from the calculation of the point-sour fy represents human observation of a relalively near object.

radiative transfer equation. Therefore, we consider an imagi ! calculate tr;edpoug spr7ead(;l:3n<:|:t!on7usr|]ng (g’tﬁ)’ anq tthe re-d
system shown in Fig. 5 to investigate the imaging of an objer? are presentedin Fgs. 7and o. g. /£Shows In€ point sprea

through a random medium. We calculate the point spread fu ch;tlondqf thi Iarg? ((jj|st§1ncetgeomet\r/)\// n ;he ct?]herepttdoml-d
tion according to the imaging system parameters. We investig gt and inconérent dominant cases. We show the point sprea

animage of a cross through the random medium in several Caéc{%ctlon in the decibels scale where 0 dB represents the level of

and show the shower curtain effect on these cross images. coherent component if there is no random medium. In the case
of optical depth of ten, we can see that the peak of the point

A. Point Spread Function spread function is at abowt43 dB, which corresponds to the
xip(—l()) reduction factor. The point spread function consists

. . . . . (§
We consider an imaging system with an aperture d|ameteroq the airy pattern and angularly flat incoherent component be-

D. (radiusa = D/2) and a focal d_|stanc_e of; as _ShOV_V” n having like a noise. Based on (31), the coherent part of the point
Fig. 5. In the plane-wave case, the intensity at the imaging plane . - .
L2 . spread function explicitly depends on the distarge In our
is given by our previous work [10] as

calculations, the level of the coherent component in the case of

I(5) = k? (ma?)? small R, is higher than the case of larde,. It is because the
ST (2md;)? intensity incidence on the random medium in the case of small
B 2 2 R, is larger. However, the plot shows that their amplitudes are
exp(—75) [% + 1 <é> Tine(5;) equal. Itis because we normalized the intensity with the distance
( P) T \a to illustrate the effect of distance on the diffuse component.
E2 At a large optical depth, the incoherent component domi-
= 2rd)e {exp(—7,)Ai(k5:)+(maX)*Linc(5;)} (29) nates. Therefore, the Airy pattern is submerged and the point

T B R o _ spread function is flat. In contrast, Fig. 8 shows the point spread
wheres; = z;/d; andz; = &pcos ¢ + §psin ¢. Notice that the function of the small distance geometry. Because the viewing
first term is the coherent component. The teda{ks;) is also  angle is large, the point spread function is a combination of the

called theAiry patterngiven by Airy pattern, which is approximately a single peak, and the in-
Ty (ksa) 2 coherent component which exhibits a dome shape. Again, at a
Ai(ks;) = ((waz) [lks—a‘D (30) large optical depth, the incoherent component is predominant.
(%5%) The angular sharpness is obvious in this case and leads to the

The coherent component is derived from the diffraction limighower curtain effect.
and the resolution is on the order kb, which is very small. ~ The results suggest that we can consider the imaging in two
The second term involves the incoherent (diffuse) component@ﬂnditiOﬂSZ coherent dominated and incoherent dominated. In
introduces blurring in the image because its resolution deperitie coherent dominated regime, the point spread function ap-
on the angular spectrum &f,., which is very coarse, especiallyproaches the diffraction limit and the scattering produces the
when compared with the coherent component. diffuse component, which acts like a noise. The contrast of the
The point spread function is the total intensity at the imagirignage is impaired by this diffuse component where the images
plane when a point-source is imaged. The two-dimensional till retains its resolution. Therefore, the resolution of the image

gular point spread function is given by depends heavily on the size of the aperture and the wavelength
2 because the resolution in diffraction limit is proportiontoD.
I;(5) = FRY (ma?)? In the incoherent dominated regime, the resolution of the image
(2md;) reduced drastically. The angular spectrum of the diffuse compo-
exp(—7,) | Ji(ks;a) 2 1 /A\2 - nent governs the image quality. In this case, the scattering char-
L2 (kq_Za) p < ) Linc(5i) p - (31)  acteristics of the medium have strong effects on the resolution

of the image. Therefore, in the discrete particles environment

Notice that the coherent component is normalized/Bybe- that we consider, the particle size is the important factor in de-
cause the spherical characteristic of the point-source wave. T&gnining the resolution.

aperture size parameter has an effect on the Airy pattern and the ,

amount of incoherent component that incorporates in the pofft Shower Curtain Effect on Cross Images

spread function. Also, we will show that the total viewing angle We perform numerical simulations to illustrate the effect of
has an effect on the image. Therefore we consider the followittge random medium. Cross patterns shown in Fig. 9 are imaged
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Fig. 9. Cross images for (A) large distance geometry and (B) small distance . ) . .
geometry. Fig. 10. Cross image through a random medium of optical depth 10 in the

large distance geometry. (&), = 15 km. (b) R, = 4 km.

through a random medium with different geometries explainetistance geometry, the cross image corresponds to the size of
in the previous section. We base our calculations on convolutifr8 mat the object plane and 6.3 mm at the image plane assuming
of point spread function calculated by (31) with the cross pahe focal lengthd;) is 1.6 cm. For large distance geometry, we
tern. The results are the intensity at the imaging plane under theress the results in Fig. 10 and in the case of optical depth
assumption that the detectors are infinitely small. These simaf-10. For small distance geometry, the results are exhibited in
lations assume that the dynamic range is not limited and thétigs. 11 and 12 for the cases of optical depth of 10 and 25,
is no noise. As the point spread function results shown in thespectively.
Figs. 7 and 8, the dynamic range needed for the case of opticaln the large distance geometry shown in Fig. 10, we observe
depth of 10 is about 30 dB. These assumptions of infinitely smalhly a small viewing angle. Within this angle, we only see the
detector, no noise, and unlimited dynamic range facilitate us\ariation due to the Airy pattern. The incoherent component in
concentrate on the effect of random media alone. When the dew calculation is a constant. Therefore, the image is formed
tector size is involved, the received power at each detectordismostly the coherent component with a background from the
considered instead of the intensity. All the cross pattern imagasoherent component. When the optical depth is small, the co-
are normalized to their respective maximum values. They drerent component contributes more to the images. Thus, the res-
scaled to the same range of zero to 100 for a fair comparisahytion of the image is on the order of the Airy pattern, which
where 100 represents the white color. is very small. The incoherent component can be considered as
For the large distance geometry, the cross image correspoadsackground noise at very small resolution. As a result, the
to the size of 20 m at the object plane and 0.5 mm at the imag®ss image still shows a good cross pattern with the contrast
plane assuming the focal lengtt;) is 50 cm. For the small depending on the level of background noise. For a large optical
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Fig. 11. Cross image through a random medium of optical depth 10 in thgy 12. Cross image through a random medium of optical depth 25 in the
small distance geometry. (&, = 1.5 m. (b) R, = 0.4 m. small distance geometry. (&, = 1.5 m. (b) R, = 0.4 m.

depth, we have calculate the Cross Images for an optlce}l deﬂg}\t (optical depth is large), the case of small distance between
of 25. We found that the cross images disappear in all dista e object and the random medium (snaj)) provides a better

cases. Itis because the flat point spread function resulting fr?mage than the case of large distance between the object and the
domination of the incoherent component. Thus, we do not Sh?%dom medium (large,)

th('e:crclis |magesf|n th"lc‘l ‘;‘?‘Ste- ¢ iew the | From the result, we can conclude that the shower curtain ef-
orthe case of smatt distance geometry, We VIew the 1argey o strong in the incoherent dominating region , i.e., optical

angle. The_pomt_ spread function behaves asa two-dlmen5|08 th is large. Also, large viewing angles are desired to demon-
delta fL_mctlon with a background from the incoherent CompQy a6 the shower curtain effect since we base our calculations
nent W'th. a flatter background n the case of largdr For a on the radiative transfer equation which provides very little in-
small optical depth as shownin Fig. 11, the coherent Compon?&lmation for the small angles close to optical axis. However
is dominant. Therefqre, Fhe cross image still has g'ood resolutiwe believe that the images would show the shower curtain e]é-
.On the .other handz in Fig. 12 when the large o'ptlcal depth “&%tin small viewing angles too. In other words, the point spread
is considered, the incoherent component dominates. Theref% ction for the case of small distance between the source and

the resolution of the image depends on the angular resolutior}}? dium would be sharper than the case of large distance be-
the diffuse intensity at the imaging plane from the solution Aveen the source and medium

the radiative transfer. The cross image in the case of |Rrge
almost invisible. However, in the small, case, we can still see
some trace of the cross image because the angular spectrum of
it is sharper. This sharpness at smiJl is the evidence of the  We derive the point-source vector radiative transfer equation
shower curtain effect. This shows that when scattering is donmi-plane parallel geometry using the formulation of plane-wave

IV. CONCLUSION



1842

incidence with some assumptions. Using the discrete ordinateg]
method, we are able to transform an integrodifferential form
of the radiative transfer equation into a first-order differential 3,
equation, which is solved by imposing the boundary conditions.
Then, we compare the angular spectrum of the plane-wave case
to the point-source case with different distances between thé4]
object and the slab of the random medium. Furthermore, we
study the point spread function of an imaging system. We show
that there are two cases under consideration, which are the c&?’]
herent dominant and incoherent dominant. Cross patterns are
imaged through the random medium, and the results show thalfl
the shower curtain effect is evident in the case of large optical

depth when the incoherent component is dominant. 7

8]
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by
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