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Abstract—This paper presents a method of calculating the ele- legen) representation. It is convenient as the Maxwell equations
ments of the generalized matrix representation of the macroscopic appear symmetric and boundary conditions are generally given

constitutive relations for a three-dimensional (3-D) array of non- in terms of & and i [18], [19]. Note, however, that physically
magnetic inclusions with arbitrary shape. The derivation is based £ andB the fund ’ i .I f Id’ ol d’FI the d
on the quasi-static Lorentz theory and the inclusions are repre- Gl are the iunaamentat fieias and an aretne ae-

sented by electric and magnetic d|p0|e moments. The g 6 consti- r|Ved fle|dS related (o'} and B through constitutive rela“ons
tutive relation matrix is expressed in terms of the interaction ma- [19]. Therefore, in the”-B (or Boys-Post) representation, we
trix and the polarizability matrix, which can be numerically calcu-  have

lated using the sum and the difference of opposing plane wave exci-

tations. Numerical examples are given for split ring resonators and D ?p (:yp E
a chiral medium consisting of an array of helices to illustrate the gl =1z =71 Bl 2
usefulness of the formula and to verify the consistency constraint ﬂp Hy

and reciprocity relations for a bianisotropic medium. . . . .
procity P Equations (1) and (2) are equivalent for linear medium and re-

Index Terms—Anisotropic media, chirality, composite materials, lated through the following:

metamaterials, microwave materials, periodic structures, perme-
ability, permittivity. - - == = =
=€, _O‘p'upﬁ]n L =

-~

€ L
I. INTRODUCTION € =a, iy, C=—mpB,. (3)

N recent years, there has been an increasing interest in thghe medium with the constitutive relation (1) is called the
development of new materials with characteristics whic v =

. , ianisotropic medium” [11], [20], [21]. Ife, &, ¢, and/ are
may not be found in nature. Examples are metamaterials [ P [11}, 20, [21]. Ife, . ¢

o1, left-handed media. [31-171. composite media. I8]. 191, an alars, this is called the “bi-isotropic” or “chiral” medium.
[2], [31-{71, p [81. [9], It has been shown [18], [22] that for the constitutive relations

chiral media [10]-[16]. They have a broad range of applicatioreﬁ the bianisotropic medium to be compatible with Maxwell's
including artificial dielectrics, lens, absorbers, antenna stru&

) , %uations, the following consistency constraint holds:
tures, optical and microwave components, frequency selectiv
surfaces, and composite materials. In addition, left-handed pRY =1

: Pe e ; - Trace( [£][#] 7"+ [1]7'[¢]) =0
material has a negative refractive index, its permeability and

permittivity are both negative, and was conjectured to g the E-H formulation.

capable of producing a perfect lens [4], although its limitations |t has also been shown [19] that the constitutive relations for

have been pointed out [7], [17]. the bianisotropic nongyrotropic medium satisfy the following
In these applications, it is important to describe the materi@ciprocity relations.

characteristics in terms of the physical properties of the inclu- B
sions. This paper presents a generalized matrix representation of et =[e], [M]=[M

the macroscopic constitutive relations for a three-dimensional = =

(3-D) periodic array of nhonmagnetic inclusions based on the 3 —[d] ©)
quasi-static Lorentz theory. The macroscopic constitutive reldnares denotes transpose.

tions are given by

(4)

—

—

These relations (4) and (5) are useful to verify the accuracy
> of the calculations as explained in Section VIII.
{ - ] (1) There are two important questions. Firstis how to obtain these

parameters, ¢, ¢, and/ for a given material. The second is
_ = = - how to describe the wave characteristics in such a medium.
wheree, &, ¢, and are 3x 3 matrices. Equation (1) is appli- | this paper, we address the first question. We derive the ex-
cable to linear medium, and is often called thefl (or Tel-  pjicit expressions of these matrix parameters for a given con-
figuration of the inclusions in a host material. The inclusions
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Fig. 1. 3-Darray of inclusions whose dielectric constaatiand conductivity Jum s also produced by the effective field, .

is 0. Host material has a dielectric constant
in the uniform effective field £,, B,). The effective field ,,

a wavelength. For our calculations, the spacings near the re&s) acts on the inclusion to produce the electric and magnetic
nance frequency in Fig. 6 afel\, which is generally accepted dipoles. The effective field consists of the external applied field
as the limit for quasi-static Lorentz theory [23]. Beyond the re§£: B) and the interaction fieldk;, B;) which are produced by
onance frequency, the Lorentz theory becomes increasingly |88ghe inclusions except the particular inclusion under consid-
accurate. It should be noted that for the Lorentz theory, the fration in the infinite array.
clusion size should also be much smaller than the spacing.  ” @ndM can then be expressed as:

The 6x 6 constitutive relation matrix is expressed in terms P=Np
of the interaction matrix and the polarizability matrix which can - =P
be numerically calculated by using the existing electromagnetic M =Nm (7
codes. Examples of split ring resonators and an array of helice,
are shown to illustrate a negative refractive index medium an _ A . o

dp andm are the electric and magnetic dipole moments of

chiral medium. Numerical examples are also used to verify t ) ) ) T
: u umerl xamp u verify ach inclusion produced by the effective fieltl,( B,). The

consistency constraint and the reciprocity relations for a bia  ole moments are then aiven by the generalized polarizabilit
isotropic medium. This paper shows a method of calculati P 9 ytheg P y

those constitutive relations for a given metamaterial and coﬁﬂﬁmx [o] [12].
posite medium. This is obviously a first step toward designing

and producing metamaterials with desired characteristics. In this [
paper, we use the time dependencesqf(jwt).

ereN = (abc)~! is the number of inclusions per unit volume,

Al

p
m

where[a] = | Qee  Lem |
Il. FORMULATION OF THE PROBLEM [ [ame amm]
Note thatp, m, E,, andB, are all 3x 1 vectors anda] is a

Let us consider a medium consisting of a 3-D periodic arra

of inclusions in a host material (Fig. 1). Each inclusion may b%
a wire, a ring, a helix, or a split ring proposed by Peneliral.
[1]. The spacings along, v, andz directions arez, b, andc,

x 6 matrix. a
Let us examine the polarizability matrix]. The electric
dipole momentp and the magnetic dipole moment are

respectively. Under the influence of an applied electromagnefjfoduced by the effective field, B;). The field £, produces

field, the inclusion produces electric and magnetic multipole¥1€ current/. and the fieldB, produces the current,, on the
In this paper, to be consistent with the Lorentz theory [23], wBclusion (Fig. 2). In matrix form, we write

limit ourselves to the electric and magnetic dipoles expressed in 1 o o
a quasi-static approximation. [ﬁ] :j—w/d” ([Je] [EZ] + [Jm] [Bl]) ©)
Let us first note that in thé’-B representation, we have in 1 o o
general ] =5 [ dorx ([L)[E] + [1][B]). @0
D =e¢yF + P(E, B) Now we have the final expression for the polarizability matrix
7 =LB-ME B ©
Ho — -
o o @:F% &my
where the electric polarizatioR and the magnetic polarization QUme  Cmm
M are functions off and B. In the Lorentz theory, we only = 1 -
consider the dipole term representing each inclusion immersed Cee :j_w /dv [JE]
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Cone _1 / dv 7 x [J.] and[U] is a 3x 3 unit matrix.
' The constitutive relation (1) iF-H representation is then
> :i [ ] given by (3). This is the final expression for the generalized con-

stitutive relations for a 3-D array of inclusions under quasi-static
_ dv 7 x j (11) approximation. This is the generalization of the Lorentz-Lorenz
Gmm = vr formula and leads to the Maxwell-Garnett formula for randomly

- . distributed spherical inclusions to be discussed in Section VI
Note that.J. is the current density produced by the ele 21], [24]

tric field E,, = En = Ei = 1(V/IMm and thus the
unit is (A/m?)/(V/m). Similarly, J,, has the unit of
(A/m?)/T(tesla). _

Let us next consider the effective fielf{, B,). As discussed  The interaction matriXC] for a 3-D array of dipoles with the
above, the effective field acts on the inclusion and produces t$@acinga, b, andc in the z, y, and z directions, respectively,
electric and the magnetic dipoles. The effective field consists @fig. 1), has been obtained [23].

the external applied fieldX, B) and the interaction field;,

s o =1 (3o5)= (1) D[ -5 (2]

IIl. | NTERACTION MATRIX

Eg _ E Et _ c a
) - La)+ 5] @ =i(G)
The interaction field is produced by all the dipoles exceptthe C, =f (9, 9) (29)
c C

particular inclusion under consideration. For a 3-D array of in-
clusions consisting of the electric and magnetic dipoles, the ighere
teraction field {;, B;) has been obtained and is given by [23]

[gl} _ N[E] [p} . (13) (=) = Z k=%, Re{z} >1 (Riemann Zeta function),
i m k=1
= b ¢ 1 S
. . - bey_ 1 )2
The interaction constant matrjg’] is given by S <a7 a) - Z Z 2—1( mm)
— 1 C 0 N=—00 §=—00 M=
€] = [ ] (14) : 2]
0 1o C Ko | 2mm [(@) + (f)
i C. 0 0 ¢ ¢
whereC = 3 x 3 diagonal matrix = [ 0 C, 0 |,and

0 0 C K, is the modified Bessel function, and the term with- s = 0

0 = 3 x 3 null matrix, ande, is the relative dielectric constant!S €xcluded. For a cubic lattice, = b = ¢ and we ge(C,
of the host material. C, = C, = 1/3. This is identical to the interaction constant

Substituting (8) and (13) into (12), we obtain used to derive the Clausius—Mosotti equation by calculating the
P P B internal field inside a spherical cavity surrounded by the dielec-
el | 2 allal | 2 tric with uniform polarization [21].
5] - (5] -x@m [ e
We then obtain IV. QUASI-STATIC CALCULATION OF J, AND J,,
lz?/ [U N[ ] [ ” -1 li? (16) As can be seen from (9) and (10), the currénton the in-
By B clusion is produced by, and the current,, is produced by

- ) S _ _ ) By, and these two currents are independently produced under
where[U] is a 6x 6 unit matrix. Finally,D andf are given by qyasi-static approximation.

D =coes E + Np In order to_calculateTm, we apply a uniform magnetic field

B 1 _ on the inclusion and calculate the current. For example, for the
H :u_oB — Nm. (17)  magnetic fieldB, = Bz, we need to have the incident fiel},

o . which is uniform throughout the spaaex b x ¢ and the elec-
Substituting (8) and (16) into (17), we get tric field is zero. Since we have electromagnetic codes which
D ?p a, B can calcu_la_te the current on the inclusion with a pla_m(_e wave in-
[H} = ? =-1 [B] cidence, it is convenient to make use of these existing codes.
By Hyp However, a plane wave does not give a uniform magnetic field.

where To obtain a uniform magnetic field, we use the incident plane
waves from several symmetric directions as shownin Fig. 3. The
electric field at or near the inclusion is cancelled out and nearly
zero, and the magpnetic field is close to uniform. The curdent

N {U 0 } 3] [U N[ I ]] -1 (18) is then numerically calculated. We found that the incident fields
0 -U from four directions give a nearly uniform magnetic field for a
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Fig. 3. Incident plane waves from several symmetric directions produce an
almost uniform magnetic field on the inclusion.

ring type structure shown in Fig. 3, and the fields from eight di-
rections appear to offer little advantage over the four incident
fields. However, the number of the incident plane waves for a
different structure must be carefully chosen.
In general, in order to calculate all66 elements of the po-

larizability matrix[a] in (11), we need to have,., E,, E., H,,
H,, andH. which are uniform throughout the spacex b x c.
One scheme is to have three incident plane waves along, the
y, andz axes as shown in Fig. 4. By taking the sum and the dif-
ference, we can generate unifofiy, £, E., H,, H,, andH..
Note that by using the scheme in Fig. 4(a) and (b), four plane
waves are combined to give a nearly uniform field for each of six k
components. For example, to get unifofp, we take the sum of |

I

|

two plane waves along theaxis propagating in opposite direc-
tions in Fig. 4(a) and take the sum of two plane waves along the
1y axis propagating in opposite directions in Fig. 4(b). Note that (b)
for plane wave B and H are simply related by3 = joH. The Fig. 4. (a) A pair of two plane waves along: and—= directions produces
schemes shown in Figs. 3 and 4 are convenient because weuéprm £. when summed, and unifornf, when differences are taken.
make use of existing electromagnetic codes of plane wave ing‘n%"gly;(%;aﬁ;gafggam fgd(;r’éctﬂ;gics“g&seg&ﬁ?fgrrgginfﬁda}?j%i
dence. However, its limitations are that the effective field useginilarly, the waves shown here give additional plane waves which, together
to calculate the polarizability matrix is nearly uniform only ovewvith (a), produce nearly uniform effective fields.
small inclusions of size less thanl \. To improve the accuracy
of our_quasi—static _calcu_lations,_ a more complete quasi-static V. CURRENT.J. AND .J,,
analysis such as given in [25] is necessary. It should also be
pointed out that the magnetic polarizability (10) is given by the If the inclusion has a complex relative dielectric constant
volume integral of the form and the host material has a relative dielectric constgrthen

the current is given by

/ dvrx T, (20) T = jweo(e — ) E. (21)

Even thOUgh this is independfznt of the choice of Origin for thﬁ/e can express the dielectric constant by
magnetostatic case wheke- J = 0, in general, this integral

depends on the choice of origin. Therefore, the origin should € =€, — jei

be chosen at the center of gravity of the geometric shape of the o

. : =€, — j—. 22
inclusion. o T e (22)
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And then, we have

J = jweg(e, — &) E + oF. (23)

In the quasi-static approximation, the displacement current
often negligible, and we have approximately

J=o0k. (24)
It is also clear that if the inclusion is a wire, we use
/dvj:/dll (25)

wherel is the current on the wire.

VI. SPHERICAL INCLUSIONS AND MAXWELL -GARNETT
FoOrRMULA

Even though our interest is in obtaining the constitutive relgg a1 to (koao)?

tions for inclusions of complex shape, it may be instructive
verify that the general formula (18) reduces to the conventio
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Fig. 5. Split ring resonator (SRR) and definitions of distances [1].

We then get

-1
} (31)
which is the Maxwell-Garnett formula for permeability for the

medium with spherical inclusions. Note that,,, is propor-
and becomes small for low frequencies. A

/J’:N0+Namm |:1_ o>
310

ore complete analysis for magnetoquasi-static solutions for a
rE}Jolate spheroid has been given recently [25].

Maxwell-Garnett formula for a spherical case. If the inclusions

are axially symmetric such as a prolate spheroid with major axis

in the z direction, then the coupling ternas.,,, anda,,. disap-

pear andy.. anda,,,, become dlagonal Therefore, the consti-

tutive relations are reduced @ = ¢E andB = pH. For an
ellipsoidal inclusiong,. is well known [21] and we get

:| —1
In particular, for a spherical inclusion with radiugin a cubic
lattice, the interaction constant is 1/3, and we get

I_J - Egee
€0€Ep

€ = ey U+ Nee [ (26)

€

3(5 -1
€ +2

€p

drad
T

3 - EOEF)Vv V= (27)

ee

VII.

As an example, we consider a 3-D array of split ring res-
onators (SRRs) (Fig. 5). Using the scheme shown in Fig. 3, the
uniform effective magnetic field is excited apfandy’” are cal-
culated at different frequencies with the formulation described
in Section Il, which are shown in Fig. 6(a). Similarly, taking the
difference between two opposing plane waves, we calcdlate
and¢”, which are shown in Fig. 6(b).

In this example3; = By. 2 andE/

fore, writing € = [e;;], f [&i5], ¢ =
1andj = z,y, z, we calculated

SPLIT RING RESONATOR

Eiz@ + Eeyy. There-
[, andu = [ps7] with

yy =Cyy —

Hozz :ll’lzz - j/lalzlz' (32)

With (27), (26) becomes scalar and reduces to the Maxwell-

Garnett formula.
Similarly, we can get the Maxwell-Garnett formula for th

field inside the sphere in the uniform effective fidiy 2 is given
by [25]

E = (—jwuoHo)gqg (28)
using the cylindrical systertp, ¢, z).
The current/,, is, therefore
T = jweo(e — Gb)(_.jWMOHO)gﬁg- (29)

Substituting this in (11) and performing integration, we get

OUmm = Mo(koao)2(6 - Gb) (30)

10°

It is interesting to note the resonance behaviors discussed by

%endry, Smith and others. Also noted are the negative perme-
permeability. For a spherical inclusion, the lowest order eIectré ¥, g P

%llity and permittivity near resonance frequency, which have
strong dispersive characteristics as already discussed by several
workers [1]-[3], [5]- The SRR used here has the same dimen-
sions as that in [2], and its resonance frequency in Fig. 6 is close
to that of [2] with selected spacings. Note that the resonance fre-
guency is dependent on the spacings as well as the size [1], and
according to our calculation, ifis increased by 10%, then the
resonance frequency is increased by about 3%. In Fig. 6(b), it
can be found that,, shows an analogous resonance curve to
that of 4., whereas,, is almost constant, which agrees with
the theoretical analysis by Marquésal. [6].

If a plane wave with¥, and H is propagating in the di-
rection in this medium, the refractive index is given by

(33)

1/2 ! -1
n = (eyypzz)/? =n' — jn".
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Fig. 6. Plot ofy, €, andn of a SRR mediumr = 1.5 mm,w = 0.8 mm,
d =0.2mm,a = b = 8 mm, and: = 3.9 mm. The conductivity of the ring is
5.8x107 [S/m]. The thickness of the ring is much greater than the skin depth. ﬁ

This is shown in Fig. 6(c). Note that becomes negative in the

Fig. 7. 3-Dlarray of helices: = 1.5 mm,w = 0.8 mm,l =3 mm.a = b =
¢ =8 mm.

v, = co/n is negative, where is the velocity of light. How-
ever, the group velocity given by

% [a(“’”/)]_l (34)

Co ow

is positive representing the signal velocity, except in the region
very close to the resonance, where the group velocity becomes
negative. This is the anomalous dispersion region, and the
group velocity does not represent the signal velocity. The phase
velocity, the group velocity (34) and the signal velocity in the
anomalous dispersion region have been extensively discussed
by Brillouin [26].

VIII. CHIRAL MEDIUM CONSISTING OF ANARRAY OF HELICES

We consider a 3-D array of helices [11], [12], [14]-[16]
(Fig. 7). We calculated all & 6 matrix elements. Note that the
dimensions of¢ and ( are bothyug = /uoep = co‘l, and
therefore we normalized all elementséo@nd( by c;*. € and

1t are normalized withyg and g, respectively.
Our calculations show at 8 GHz

@ [r20-jo01 0 0
== 0 0.77 — j0.08 0.47 + 50.10
| 0 0474 j0.10 0.48 — j0.15
@ _ | ’ o
== =10 -0.01+40.05 0.10 - ;j0.37
THO 10 0.02-50.05 —0.13 + j0.54 |
| ’ 0
== =10 0.01-;0.05 —0.02+ j0.06
THO 10 —0.10+j0.40  0.14 — 50.56 |
[1.00 — j0.00 0 0
= = 0 0.99—50.00 0.06+ j0.01
po | 0 0.06+30.01 0.50 — j0.13

frequency range above the resonance, and the phase velocity (35)
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From that, we get need to be included, requiring a complete full wave analysis
[23].

Trace( [€][H]™!) =(—0.57 + 71.04 ) x ~
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