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Abstract—This paper presents a method of calculating the ele-
ments of the generalized matrix representation of the macroscopic
constitutive relations for a three-dimensional (3-D) array of non-
magnetic inclusions with arbitrary shape. The derivation is based
on the quasi-static Lorentz theory and the inclusions are repre-
sented by electric and magnetic dipole moments. The 6 6 consti-
tutive relation matrix is expressed in terms of the interaction ma-
trix and the polarizability matrix, which can be numerically calcu-
lated using the sum and the difference of opposing plane wave exci-
tations. Numerical examples are given for split ring resonators and
a chiral medium consisting of an array of helices to illustrate the
usefulness of the formula and to verify the consistency constraint
and reciprocity relations for a bianisotropic medium.

Index Terms—Anisotropic media, chirality, composite materials,
metamaterials, microwave materials, periodic structures, perme-
ability, permittivity.

I. INTRODUCTION

I N recent years, there has been an increasing interest in the
development of new materials with characteristics which

may not be found in nature. Examples are metamaterials [1],
[2], left-handed media [3]–[7], composite media [8], [9], and
chiral media [10]–[16]. They have a broad range of applications
including artificial dielectrics, lens, absorbers, antenna struc-
tures, optical and microwave components, frequency selective
surfaces, and composite materials. In addition, left-handed
material has a negative refractive index, its permeability and
permittivity are both negative, and was conjectured to be
capable of producing a perfect lens [4], although its limitations
have been pointed out [7], [17].

In these applications, it is important to describe the material
characteristics in terms of the physical properties of the inclu-
sions. This paper presents a generalized matrix representation of
the macroscopic constitutive relations for a three-dimensional
(3-D) periodic array of nonmagnetic inclusions based on the
quasi-static Lorentz theory. The macroscopic constitutive rela-
tions are given by

(1)

where , , , and are 3 3 matrices. Equation (1) is appli-
cable to linear medium, and is often called the- (or Tel-
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legen) representation. It is convenient as the Maxwell equations
appear symmetric and boundary conditions are generally given
in terms of and [18], [19]. Note, however, that physically

and are the fundamental fields and and are the de-
rived fields related to and through constitutive relations
[19]. Therefore, in the - (or Boys-Post) representation, we
have

(2)

Equations (1) and (2) are equivalent for linear medium and re-
lated through the following:

(3)

The medium with the constitutive relation (1) is called the

“bianisotropic medium” [11], [20], [21]. If , , , and are
scalars, this is called the “bi-isotropic” or “chiral” medium.

It has been shown [18], [22] that for the constitutive relations
of the bianisotropic medium to be compatible with Maxwell’s
equations, the following consistency constraint holds:

(4)

in the - formulation.
It has also been shown [19] that the constitutive relations for

the bianisotropic nongyrotropic medium satisfy the following
reciprocity relations.

(5)

where denotes transpose.
These relations (4) and (5) are useful to verify the accuracy

of the calculations as explained in Section VIII.
There are two important questions. First is how to obtain these

parameters , , , and for a given material. The second is
how to describe the wave characteristics in such a medium.

In this paper, we address the first question. We derive the ex-
plicit expressions of these matrix parameters for a given con-
figuration of the inclusions in a host material. The inclusions
are arranged in a 3-D array and consist of nonmagnetic mate-
rials with complex dielectric constants. The derivation is based
on the quasi-static Lorentz theory and, therefore, applicable to
inclusions whose sizes and spacings are small compared with
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Fig. 1. 3-D array of inclusions whose dielectric constant is� and conductivity
is �. Host material has a dielectric constant� .

a wavelength. For our calculations, the spacings near the reso-
nance frequency in Fig. 6 are , which is generally accepted
as the limit for quasi-static Lorentz theory [23]. Beyond the res-
onance frequency, the Lorentz theory becomes increasingly less
accurate. It should be noted that for the Lorentz theory, the in-
clusion size should also be much smaller than the spacing.

The 6 6 constitutive relation matrix is expressed in terms
of the interaction matrix and the polarizability matrix which can
be numerically calculated by using the existing electromagnetic
codes. Examples of split ring resonators and an array of helices
are shown to illustrate a negative refractive index medium and a
chiral medium. Numerical examples are also used to verify the
consistency constraint and the reciprocity relations for a bian-
isotropic medium. This paper shows a method of calculating
those constitutive relations for a given metamaterial and com-
posite medium. This is obviously a first step toward designing
and producing metamaterials with desired characteristics. In this
paper, we use the time dependence of .

II. FORMULATION OF THE PROBLEM

Let us consider a medium consisting of a 3-D periodic array
of inclusions in a host material (Fig. 1). Each inclusion may be
a wire, a ring, a helix, or a split ring proposed by Pendryet al.
[1]. The spacings along, , and directions are , , and ,
respectively. Under the influence of an applied electromagnetic
field, the inclusion produces electric and magnetic multipoles.
In this paper, to be consistent with the Lorentz theory [23], we
limit ourselves to the electric and magnetic dipoles expressed in
a quasi-static approximation.

Let us first note that in the - representation, we have in
general

(6)

where the electric polarization and the magnetic polarization
are functions of and . In the Lorentz theory, we only

consider the dipole term representing each inclusion immersed

Fig. 2. Current�J on the inclusion produced by the effective field�E . Current
�J is also produced by the effective field�B .

in the uniform effective field ( , ). The effective field ( ,
) acts on the inclusion to produce the electric and magnetic

dipoles. The effective field consists of the external applied field
( , ) and the interaction field ( , ) which are produced by
all the inclusions except the particular inclusion under consid-
eration in the infinite array.

and can then be expressed as:

(7)

where is the number of inclusions per unit volume,
and and are the electric and magnetic dipole moments of
each inclusion produced by the effective field (, ). The
dipole moments are then given by the generalized polarizability
matrix [11].

(8)

where .

Note that , , , and are all 3 1 vectors and is a
6 6 matrix.

Let us examine the polarizability matrix . The electric
dipole moment and the magnetic dipole moment are
produced by the effective field ( , ). The field produces
the current and the field produces the current on the
inclusion (Fig. 2). In matrix form, we write

(9)

(10)

Now we have the final expression for the polarizability matrix
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(11)

Note that is the current density produced by the elec-
tric field (V/m) and thus the
unit is . Similarly, has the unit of

.
Let us next consider the effective field (, ). As discussed

above, the effective field acts on the inclusion and produces the
electric and the magnetic dipoles. The effective field consists of
the external applied field (, ) and the interaction field ( ,

).

(12)

The interaction field is produced by all the dipoles except the
particular inclusion under consideration. For a 3-D array of in-
clusions consisting of the electric and magnetic dipoles, the in-
teraction field ( , ) has been obtained and is given by [23]

(13)

The interaction constant matrix is given by

(14)

where , and

, and is the relative dielectric constant
of the host material.

Substituting (8) and (13) into (12), we obtain

(15)

We then obtain

(16)

where is a 6 6 unit matrix. Finally, and are given by

(17)

Substituting (8) and (16) into (17), we get

where

(18)

and is a 3 3 unit matrix.
The constitutive relation (1) in - representation is then

given by (3). This is the final expression for the generalized con-
stitutive relations for a 3-D array of inclusions under quasi-static
approximation. This is the generalization of the Lorentz-Lorenz
formula and leads to the Maxwell-Garnett formula for randomly
distributed spherical inclusions to be discussed in Section VI
[21], [24].

III. I NTERACTION MATRIX

The interaction matrix for a 3-D array of dipoles with the
spacing , , and in the , , and directions, respectively,
(Fig. 1), has been obtained [23].

(19)

where

is the modified Bessel function, and the term with
is excluded. For a cubic lattice, and we get

. This is identical to the interaction constant
used to derive the Clausius–Mosotti equation by calculating the
internal field inside a spherical cavity surrounded by the dielec-
tric with uniform polarization [21].

IV. QUASI-STATIC CALCULATION OF AND

As can be seen from (9) and (10), the currenton the in-
clusion is produced by and the current is produced by

, and these two currents are independently produced under
quasi-static approximation.

In order to calculate , we apply a uniform magnetic field
on the inclusion and calculate the current. For example, for the
magnetic field , we need to have the incident field
which is uniform throughout the space and the elec-
tric field is zero. Since we have electromagnetic codes which
can calculate the current on the inclusion with a plane wave in-
cidence, it is convenient to make use of these existing codes.
However, a plane wave does not give a uniform magnetic field.
To obtain a uniform magnetic field, we use the incident plane
waves from several symmetric directions as shown in Fig. 3. The
electric field at or near the inclusion is cancelled out and nearly
zero, and the magnetic field is close to uniform. The current
is then numerically calculated. We found that the incident fields
from four directions give a nearly uniform magnetic field for a
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Fig. 3. Incident plane waves from several symmetric directions produce an
almost uniform magnetic field on the inclusion.

ring type structure shown in Fig. 3, and the fields from eight di-
rections appear to offer little advantage over the four incident
fields. However, the number of the incident plane waves for a
different structure must be carefully chosen.

In general, in order to calculate all 66 elements of the po-
larizability matrix in (11), we need to have , , , ,

, and which are uniform throughout the space .
One scheme is to have three incident plane waves along the,
, and axes as shown in Fig. 4. By taking the sum and the dif-

ference, we can generate uniform, , , , , and .
Note that by using the scheme in Fig. 4(a) and (b), four plane
waves are combined to give a nearly uniform field for each of six
components. For example, to get uniform, we take the sum of
two plane waves along theaxis propagating in opposite direc-
tions in Fig. 4(a) and take the sum of two plane waves along the

axis propagating in opposite directions in Fig. 4(b). Note that
for plane wave, and are simply related by . The
schemes shown in Figs. 3 and 4 are convenient because we can
make use of existing electromagnetic codes of plane wave inci-
dence. However, its limitations are that the effective field used
to calculate the polarizability matrix is nearly uniform only over
small inclusions of size less than . To improve the accuracy
of our quasi-static calculations, a more complete quasi-static
analysis such as given in [25] is necessary. It should also be
pointed out that the magnetic polarizability (10) is given by the
volume integral of the form

(20)

Even though this is independent of the choice of origin for the
magnetostatic case where , in general, this integral
depends on the choice of origin. Therefore, the origin should
be chosen at the center of gravity of the geometric shape of the
inclusion.

(a)

(b)

Fig. 4. (a) A pair of two plane waves along+z and�z directions produces
uniform E when summed, and uniformH when differences are taken.
Similarly, E � H along+x and�x directions give uniformE andH ,
andE � H along+y and�y directions give uniformE andH . (b)
Similarly, the waves shown here give additional plane waves which, together
with (a), produce nearly uniform effective fields.

V. CURRENT AND

If the inclusion has a complex relative dielectric constant,
and the host material has a relative dielectric constant, then
the current is given by

(21)

We can express the dielectric constant by

(22)
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And then, we have

(23)

In the quasi-static approximation, the displacement current is
often negligible, and we have approximately

(24)

It is also clear that if the inclusion is a wire, we use

(25)

where is the current on the wire.

VI. SPHERICAL INCLUSIONS AND MAXWELL -GARNETT

FORMULA

Even though our interest is in obtaining the constitutive rela-
tions for inclusions of complex shape, it may be instructive to
verify that the general formula (18) reduces to the conventional
Maxwell–Garnett formula for a spherical case. If the inclusions
are axially symmetric such as a prolate spheroid with major axis
in the direction, then the coupling terms and disap-
pear and and become diagonal. Therefore, the consti-
tutive relations are reduced to and . For an
ellipsoidal inclusion, is well known [21] and we get

(26)

In particular, for a spherical inclusion with radiusin a cubic
lattice, the interaction constant is 1/3, and we get

(27)

With (27), (26) becomes scalar and reduces to the Maxwell-
Garnett formula.

Similarly, we can get the Maxwell-Garnett formula for the
permeability. For a spherical inclusion, the lowest order electric
field inside the sphere in the uniform effective field is given
by [25]

(28)

using the cylindrical system .
The current is, therefore

(29)

Substituting this in (11) and performing integration, we get

(30)

Fig. 5. Split ring resonator (SRR) and definitions of distances [1].

We then get

(31)

which is the Maxwell–Garnett formula for permeability for the
medium with spherical inclusions. Note that is propor-
tional to and becomes small for low frequencies. A
more complete analysis for magnetoquasi-static solutions for a
prolate spheroid has been given recently [25].

VII. SPLIT RING RESONATOR

As an example, we consider a 3-D array of split ring res-
onators (SRRs) (Fig. 5). Using the scheme shown in Fig. 3, the
uniform effective magnetic field is excited andand are cal-
culated at different frequencies with the formulation described
in Section II, which are shown in Fig. 6(a). Similarly, taking the
difference between two opposing plane waves, we calculate
and , which are shown in Fig. 6(b).

In this example, and . There-

fore, writing , , , and with
and , we calculated

(32)

It is interesting to note the resonance behaviors discussed by
Pendry, Smith and others. Also noted are the negative perme-
ability and permittivity near resonance frequency, which have
strong dispersive characteristics as already discussed by several
workers [1]–[3], [5]. The SRR used here has the same dimen-
sions as that in [2], and its resonance frequency in Fig. 6 is close
to that of [2] with selected spacings. Note that the resonance fre-
quency is dependent on the spacings as well as the size [1], and
according to our calculation, if is increased by 10%, then the
resonance frequency is increased by about 3%. In Fig. 6(b), it
can be found that shows an analogous resonance curve to
that of whereas is almost constant, which agrees with
the theoretical analysis by Marquéset al. [6].

If a plane wave with and is propagating in the di-
rection in this medium, the refractive index is given by

(33)
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(a)

(b)

(c)

Fig. 6. Plot of�, �, andn of a SRR medium.r = 1.5 mm,w = 0.8 mm,
d = 0.2 mm,a = b = 8 mm, andc = 3.9 mm. The conductivity of the ring is
5.8�10 [S/m]. The thickness of the ring is much greater than the skin depth.

This is shown in Fig. 6(c). Note that becomes negative in the
frequency range above the resonance, and the phase velocity

Fig. 7. 3-Dl array of helices.r = 1.5 mm,w = 0.8 mm,l = 3 mm.a = b =

c = 8 mm.

is negative, where is the velocity of light. How-
ever, the group velocity given by

(34)

is positive representing the signal velocity, except in the region
very close to the resonance, where the group velocity becomes
negative. This is the anomalous dispersion region, and the
group velocity does not represent the signal velocity. The phase
velocity, the group velocity (34) and the signal velocity in the
anomalous dispersion region have been extensively discussed
by Brillouin [26].

VIII. C HIRAL MEDIUM CONSISTING OF ANARRAY OF HELICES

We consider a 3-D array of helices [11], [12], [14]–[16]
(Fig. 7). We calculated all 6 6 matrix elements. Note that the

dimensions of and are both , and
therefore we normalized all elements ofand by . and

are normalized with and , respectively.
Our calculations show at 8 GHz

(35)
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From that, we get

(36)

which satisfy (4) with less than 5% difference. The elements
designated by 0 are negligibly small. Since the polarizability
matrices , , , and are independently calculated
from six components of ( , ), (36) provides an independent
check on the accuracy of the numerical calculation.

The elements (35) are for right-handed helices shown in
Fig. 7. We also calculated all 36 elements for left-handed
helices as follows:

(37)

and

(38)

We note that the reciprocity relations (5) are satisfied for (35)
and (37). Also we note that for the right-handed and the left-
handed medium, the diagonal elements ofand are the same,
while the off-diagonal elements have opposite sign, and the di-

agonal elements of and have opposite sign, while the off-di-
agonal elements are the same. These observations are useful to
check the accuracy of the calculations.

IX. CONCLUSION

In this paper, we derived the generalized constitutive relations
(18) for metamaterials consisting of a 3-D array of inclusions
of arbitrary shape. This formula is derived under quasi-static
approximation based on the Lorentz theory and is applicable to
the spacing between the inclusions, which are small compared
with a wavelength. Calculations of all elements of the matrix
(18) can be made using the interaction matrix (19) for given
spacings and the polarizability matrix (11) which is calculated
using three incident plane waves along the, , and axes as
shown in the scheme in Fig. 4. Some numerical examples using
an array of split ring resonators and a chiral array of helices
are shown to illustrate the usefulness of the formulation and to
verify the consistency constraint (4) and reciprocity relations
(5). It should be noted that if the inclusion size and spacing
increase, the multipole moments and the propagating constant

need to be included, requiring a complete full wave analysis
[23].
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