
Radio Science, Volume , Number , Pages 1–11,

TE and TM Green’s Function for Coherent and
Incoherent Propagation over a Finitely
Conducting Rough Surface

Akira Ishimaru, John D. Rockway, Yasuo Kuga, and Seung-Woo Lee
Department of Electrical Engineering, University of Washington, Seattle, Washington

Abstract. This paper presents wave propagation over a finitely conducting half-space
whose surface is bounded by a rough surface of small rms height. An electric or magnetic
current source is used to excite the rough surface and the Green’s function for TE and TM
wave propagation is obtained. The appearance of roughness at the boundary produces
both a coherent (mean) and incoherent (fluctuating) field distribution, which is obtained
from Dyson’s equation and Bethe-Salpeter’s equation, respectively. The coherent Green’s
function for vertical polarization exhibits similar characteristics to the Sommerfeld dipole
problem where the Zenneck wave pole is modified by roughness. The incoherent field
generated by rough surfaces is obtained for both vertical and horizontal polarization, and
the conventional cross-section per unit length of the rough surface is modified to include
the effects of surface roughness. For angles near grazing, a low grazing angle cross-section
is obtained by evaluating the Bethe-Salpeter’s equation with the Sommerfeld solution.
Finally, the coherent and incoherent intensity for the TE rough surface Green’s function is
obtained and compared to Monte-Carlo simulations.

1. Introduction

Wave propagation over a flat conducting surface
excited by a dipole is a classic electromagnetic prob-
lem and has been studied by Wait and many oth-
ers [Wait, 1998, 1962]. In this paper, we extend
the problem to include a finitely conducting medium
bounded by a rough surface of small rms height
(kσ < 1.0). Over the years, many investigators have
considered this specific problem. Radio wave prop-
agation over a rough surface was first studied by
Feinberg [Feinberg, 1944] who obtained an effective
impedance at the interface. Barrick conducted ex-
tensive studies on HF/VHF propagation over rough
seas [Barrick, 1971a, b] and showed that the spheri-
cal earth residue series model should be used for MF
- VHF propagation over a rough sea. This was also
shown rigorously by Wait [Wait, 1971]. The effective
impedance of a rough surface has been extensively
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studied by Bass, Fuks, and others [Bryukhovetskii
et al., 1985; Bass et al., 1979; Bryukhovetskii et al.,
1985] using an extension of the small perturbation
theory and the diagram method [Tatarskii, 1967; Ry-
tov et al., 1987]. The diagram method has been ap-
plied to the rough surface scattering problem and
the basic equations have been developed and solved
for Dirichlet and Neumann surfaces and irregular
waveguides [Freilikher et al., 1970; Bass et al., 1974].
Scattering by random impedance and the backscat-
tering enhancement have been discussed using a dif-
ferent approach including the pole and the grazing
angle considerations [Freilikher et al., 1993, 1976].
Multiple scattering theories for rough surface scat-
tering have also been proposed by Watson and Keller
[Watson et al., 1983, 1984], Ito [Ito, 1985] and Ishi-
maru et al.[Ishimaru et al., 2000a]. Further stud-
ies have been conducted recently for LGA scattering
[Brown, 1998; Barrick, 1998, 1995; Fuks et al., 1999].
This paper follows and extends the multiple scatter-
ing theories developed by Bass, Fuks, Watson-Keller,
Ito and Ishimaru [Bass et al., 1979; Watson et al.,
1983, 1984; Ito, 1985; Ishimaru et al., 2000a]. We
make use of the diagram and the first order modified
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perturbation method [Tatarskii, 1967; Rytov et al.,
1987; Frisch, 1968], to obtain an expression for the
Green’s function for both vertical and horizontal po-
larizations.

To properly consider this problem, an electric or
magnetic current source excites the rough surface
and can be located very near or far away from the
rough surface. These two current sources will pro-
vide both vertical and horizontal polarization for
wave propagation over the rough surface. When the
source is located far above the surface, it is sufficient
to consider a plane-wave or beam wave incident on
the surface resulting in coherent (average) and inco-
herent (fluctuating) scattered fields radiating away
from the surface.

Gtotal(r, ro) = 〈G(r, ro)〉 + Gf (r, ro) (1)

where Gtotal, 〈G〉, and Gf are the total, average, and
incoherent Green’s functions and ro, r are the source
and observation points. If the surface is a flat con-
ducting surface, the incoherent field will be absent.
However, for increasing roughness, the coherent field
diminishes and the incoherent field will be generated
and become dominant. For a source and/or observa-
tion point located near the surface, it can no longer
be assumed that a real, propagating field is incident
upon the surface. Instead, complex wave propaga-
tion involving both coherent and incoherent fields
will excite the surface. The resulting scattered field
not only includes coherent and incoherent radiation
but also possibilities of complex wave propagation
along the surface. To properly consider the Green’s
function near the surface, we allow the source and
observation point to be near the surface, and con-
sider the wave propagation along the surface in a
similar manner as the Sommerfeld-Zenneck wave so-
lution [Ishimaru, 1991].

The coherent field 〈G〉 for both vertical and horizon-
tal polarization is obtained from Dyson’s equations.
The expression for the coherent Green’s function is
obtained in the spatial Fourier representation similar
to the Zenneck-Sommerfeld solution. For TM prop-
agation, the modified reflection coefficient produces
a Sommerfeld pole whose location is perturbed by
the roughness. The Zenneck wave pole, effective sur-
face impedance, and attenuation function for a rough
conducting surface are also obtained. The effective
surface impedance is consistent with those obtained

by Feinberg [Feinberg, 1944], Bass and Fuks [Bass
et al., 1979], and Barrick [Barrick, 1971a, b] in ap-
propriate limits.

To obtain the fluctuating Green’s function we must
consider the second moment of the field called the
mutual coherence function.

Γ(r, r′; ro, r
′
o) = 〈G(r, ro)G∗(r′, r′o)〉 (2)

Noting (1), the mutual coherence function is given
by

Γ = Γo + Γf (3)

where the coherent mutual coherence function is
given by

Γo = 〈G(r, ro)〉〈G∗(r′, r′o)〉 (4)

which is determined from the coherent Green’s func-
tion. The fluctuating or incoherent Green’s function
is given by

Γf = 〈Gf (r, ro)G∗
f (r′, r′o)〉 (5)

To obtain an expression for the second moment Γ,
we solve the first order Bethe-Salpeter equation un-
der the smoothing approximation [Wait, 1971]. The
incoherent Green’s function is excited by the prop-
agating coherent field and accumulates fluctuations
from all scattering points over the surface. If we eval-
uate the incoherent field in the far-field, the scatter-
ing cross sections are shown to be similar to Watson-
Keller [Watson et al., 1983, 1984] and consistent with
Fuks et al.[Fuks et al., 1999] in the Neumann sur-
face limit. Numerical Monte-Carlo simulations were
conducted to compare with the bistatic cross-section
for both vertical and horizontal polarizations. For
source and/or field points near the surface, the com-
plex wave propagation near the surface cannot be ig-
nored. To compensate for the field near the surface,
the Bethe-Salpeter’s equation is evaluated along the
surface similar to the Sommerfeld solution. A corre-
sponding cross section near the surface is obtained
and includes the Sommerfeld attenuation function
and is shown to be dependent on the source loca-
tion and incident grazing angle. The paper is di-
vided as follows. In section 2, we consider the coher-
ent Green’s function and obtain expressions for both
vertical and horizontal polarizations. The coherent
Sommerfeld-Zenneck propagation along the surface
is described for vertical polarization. In section 3,
the incoherent Green’s function is described. First,
the far-field cross-sections are obtained from Bethe-
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Salpeter’s equation. Secondly, incoherent propaga-
tion along the surface is identified and a corrected
cross-section near the surface is obtained. Finally
in section 4, numerical Monte-Carlo simulations are
conducted and compared to the total intensity of the
field.

2. Coherent Green’s Function

In the sections 2.1 and 2.2, we develop the formu-
lation for TE and TM wave propagation over finitely
conducting rough surfaces. At the surface, the field
satisfies the impedance boundary condition where
the ratio of the tangential magnetic field to the tan-
gential electric field is the surface impedance. This
effectively reduces the two-medium problem to a one-
medium problem with the impedance boundary con-
dition. Next, an equivalent boundary condition at
z = 0 is constructed by perturbing the Green’s func-
tion about the rough surface height z = h(x). For
both TE and TM, the random height contribution to
the boundary condition, which is called the random
surface potential V , is obtained. Next, by making
use of Green’s theorem, a random surface integral
equation is formulated for the rough surface Green’s
function. Finally, the coherent field is obtained from
Dyson’s equation by averaging the random surface
integral equation.

2.1. Equivalent Boundary Condition
for TE and TM

Let us consider a line source located at xo, zo in
free space above a finite conducting half-space with
permitivity ε and conductivity σ. This half-space is
bounded by a rough surface at z = h(x) where h(x)
is a random function of the surface height, (Figure
1). The Green’s function satisfies

 I(xo,zo)
r (x,z )

r1
r2

xc k( ε,σ,µ )

Figure 1. Magnetic or Electric line current source I is
located at (xo, zo). Conducting medium with wave num-
ber κ, dielectric constant ε, conductivity σ, and perme-
ability µ is bounded by rough surface given by the height
h = h(x).

(
∂2

∂x2
+

∂2

∂z2
+ k2

o)G(x, z) = −δ(x − xo)δ(z − zo)

(6)

at z = h(x) where ko is the free space wave number
and satisfies the impedance boundary condition

G + βo
∂

∂n
G = 0 (7)

where βo = −i Zs

koZo
for TE and

∂

∂n
G + αoG = 0 (8)

where αo = iko
Zs

Zo
for TM.

The constants Zo =
√

µ
εo

are the free space charac-

teristic impedance, ∂
∂n is the normal derivative, and

the surface impedance Zs is approximated by that of
the flat conducting surface [Wait, 1998; Bass et al.,
1979] given by

Zs =
Zo

n

√
1 − k2

x

(kon)2
= Zo∆ (9)

where n2 = ε + i σ
wεo

is the refractive index of the
conducting medium. Notice, if near low grazing
angle kx → ko, we can then approximate the sur-
face impedance as Zs ≈ Zo

n

√
1 − 1

n2 which for large
|n| >> 1 reduces to Zs ≈ Zo

n . These expressions
describe the total radiation field for a line source in
the presence of a half-space rough surface. If the line
source is an electric current Ie, then the y-component
of the electric field (TE) is given by

Ey(x, z) = iwµoIeG(x, z) (10)

and the impedance boundary condition (7) holds.
However, if the line source is a magnetic current Im,
the y-component of the magnetic field is

Hy(x, z) = iwεoImG(x, z) (11)

then the impedance boundary condition (8) holds.
The fields must satisfy the boundary conditions
(7),(8) at the rough surface z = h(x). However, we
can write an equivalent expression for the boundary
condition at z = 0 by writing the Green’s function as
a perturbation expansion about z = 0 and including
only the first-order powers of h(x). We note that,

∂

∂n
≈ −∂h

∂x

∂

∂x
+

∂

∂z
+ ...
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and
G(x, z) = G(x, o) + h(x)

∂

∂z
G + ...

Therefore, the equivalent surface impedance bound-
ary condition at z = 0 for the Green’s function is
now

G + βo
∂

∂z
G + VTEG = 0 (12)

for TE and
∂

∂z
G + αoG + VTMG = 0 (13)

for TM. Note, the surface potential V (x) is a random
function of the surface height and for TE and TM is
given by

VTE = βo(h
∂2

∂z2
− ∂h

∂x

∂

∂x
) + h

∂

∂z
(14)

VTM = h
∂2

∂z2
− ∂h

∂x

∂

∂x
+ αoh

∂

∂z
(15)

From Green’s theorem we can now derive the ran-
dom integral equation for the rough surface Green’s
function.

By making use of the surface potentials (Eq. 14 or
15), and the flat, half-space Green’s function given
in spectral domain as

Go(r, ro) =
1
2π

∫
i

2kz

(
eikz |z−zo|

+ Roe
ikz(z+zo)

)
eiκ(x−xo)dκ (16)

where the reflection coefficient for TE and TM are
given by

RTE
o (κ) =

Qo(κ) − 1
Qo(κ) + 1

where Qo = iβokz (17)

RTM
o (κ) =

1 − Qo(κ)
1 + Qo(κ)

where Qo =
α0

ikz
(18)

and satisfying the impedance boundary condition

Go + βo
∂

∂z
Go = 0 (TE) (19)

∂

∂z
Go + αoGo = 0 (TM) (20)

we can obtain the random surface integral equation
[Bass et al., 1979; Ishimaru et al., 2000a, b]

G(r, ro) = Go(r, ro) +
∫

Go(r, r1)V (r1)G(r1, ro)dx1

(21)

where r = r(x, z), ro = ro(xo, zo), and r1 =
r1(x1, z1 = 0). Go is the flat, half-space Green’s func-

tion and is a deterministic function, while the surface
potential V (r1) and the rough surface Green’s func-
tion G(r, ro) are random functions. From (21), we
can generate the higher order moments describing
the propagation such as the coherent field and inco-
herent intensity. By using the diagram method, we
can obtain Dyson’s equation for the coherent Green’s
function [Bass et al., 1979]

〈G(r, ro)〉 = Go(r, ro) +
∫

Go(r, r1)M(r1, r2)

〈G(r2, ro)〉dx1dx2 (22)

where the Mass operator under the first-order
smoothing approximation [Frisch, 1968] is given by
M(r1, r2) = 〈V (r1)Go(r1, r2)V (r2)〉 = M(r1 − r2).
We note that the correlation function of the random
surface potential V (x) is related to the correlation
function of the rough surface height h(x). We can
express the height correlation as

〈h(x1)h(x2)〉 =
∫

W (κ)eiκ(x1−x2)dκ (23)

where we assumed h(x) is a homogeneous random
function and W (κ) is the power spectral density func-
tion. In this paper, we use the Gaussian correlation
function for h(x) with rms height ho and correlation
distance l.

〈h(x1)h(x2)〉 = h2
oe

− (x1−x2)2

l2 (24)

W (κ) =
h2

ol

2
√

π
e−

κ2l2
4

The Gaussian spectrum is used to verify our ana-
lytical results by comparing with numerical Monte-
Carlo simulations based on the Gaussian spectrum.
It should be noted, however, that our results can be
used for any spectrum which would be used to rep-
resent an actual problem.

2.2. Coherent Field, Sommerfeld Pole and Zenneck
Wave for Conducting Rough Surfaces

In this section, we solve Dyson’s equation [Ishi-
maru et al., 2000b] to obtain the coherent Green’s
function 〈G〉. For TM propagation there exists a pole
contribution which is used to calculate the Zenneck
wave. However, for TE there is no pole. To solve
Dyson’s equation, we write the coherent Green’s
function in the spectral domain as

〈G(r, ro)〉 =
1
2π

∫
i

2kz

(
eikz |z−zo|

+ R(κ)eikz(z+zo)
)

eiκ(x−xo)dκ (25)
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By making use of the flat surface Green’s function
(16), the coherent Green’s function (25), and the
height correlation (23), we can obtain from Dyson’s
Eq. (22) the TE reflection coefficient

RTE(κ) =
Q(κ) − 1
Q(κ) + 1

(TE) (26)

where

Q(κ) =
Qo(κ) + ikz

∫
L(κ′, κ)W (κ − κ′)dκ′

1 − ikz

∫
L(κ′, κ)W (κ − κ′)βoM(κ, κ′)dκ′

(27)

L(κ, κ′) =
[βo(κκ′ − k2)Qo(κ′) − ik′

z]
1 + Qo(κ′)

M(κ, κ′) =
i

kz
(κκ′ − k2)

and the TM reflection coefficient,

RTM (κ) =
1 − Q(κ)
1 + Q(κ)

(TM) (28)

where

Q(κ) =
Qo(κ) − ∫

L1(κ′, κ)W (κ − κ′)M2(κ, κ′)dκ′

1 +
∫

L1(κ′, κ)W (κ − κ′)αodκ′

(29)

L1(κ′, κ) =
M1(κ′, κ) + αoQo(κ′)

1 + Qo(κ′)

M1(κ′, κ) =
i

k′
z

[κκ′ − k2
o ]

M2(κ, κ′) =
i

kz
[κκ′ − k2

o ]

The effective surface impedance obtained from Q in
(26)-(29) are special cases of the more general cases
discussed in [Bass et al., 1979]. The first thing to
note, is that the coherent field 〈G〉 behaves in ex-
actly the same manner as the deterministic flat sur-
face Green’s function Go. The difference lies in the
description of the reflection coefficient. In fact, the
coherent Green’s function can reduce to the flat sur-
face Green’s function by allowing the surface height
to go to zero z → 0 causing Q(κ) → Qo which re-
duces to the flat surface. Secondly, the impedance
boundary condition reduces to Dirichlet’s condition
by allowing βo → 0, Qo = 0 and RTE

o = −1

RDir(κ) =
Q(κ) − 1
Q(κ) + 1

,

Q(κ) = kz

∫
k′

zW (κ − κ′)dκ′ (30)

and Neumanns condition by allowing αo → 0, Qo = 0
and RTM

o = 1.

RNeu(κ) =
1 − Q(κ)
1 + Q(κ)

,

Q(κ) =
∫

M1(κ′, κ)M2(κ, κ′)W (κ − κ′)dκ′ (31)

These two cases have also been obtained by Watson
and Keller [Watson et al., 1983, 1984]. For the TM
case, we can calculate the effective surface impedance
for the coherent field

∆(κ) =
kz

ko
Q(κ) (32)

Noting that ∆ = kz

ko
Qo(κ), and in the limit as

αo → 0,

∆(κ) = ∆ − kz

ko

∫
M(κ′, κ)W (κ − κ′)M(κ, κ′)dκ′

which agrees with Barrick [Barrick, 1971a, Eq. (24)]
when converted to the one-dimensional surface and
evaluated at κ = ko.

The coherent Green’s function for vertical polar-
ization in the far-field maybe evaluated using the
saddle-point asymptotic technique and is given by

〈G(r, ro)〉 =kR→∞−→ Gp(R1) + RTM (θs, θi)Gp(R2),

θs = θi, R2 = r1 + r2

However, of interest is when the source and observa-
tion points near the surface for vertical polarization.
If we consider complex propagation along the surface,
and evaluate the coherent Green’s function using the
modified saddle-point technique which takes into ac-
count the Zenneck pole, we arrive at

〈G(r, ro)〉 = Gp(R1) + Gp(R2) − 2〈P 〉 (33)

where

Gp(R) =
i

4
H(1)

o (koR) ≈ 1
4
(

2
πkoR

)1/2eikR+iπ4 (34)

represents the direct and image source and

〈P 〉 = Gp(R2)[−i
√

πp e−perfc(−i
√

p )] (35)

represents scattering from along the surface. Now
the numerical distance p is the difference between
the total phase for the Zenneck wave and free space

p = ikR2 − i[κ(x − xo) + kz(z + zo)] (36)

where the propagation constant for the Zenneck wave
must be determined from the pole.

1 + Q(κ) = 0 (37)
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Figure 2. Attenuation function Fa as a function of dis-
tance xc along the surface for given heights zo of source
above the surface. Also included within the insert is the
complex λ- plane showing the trend of the Zenneck pole
and surface impedance for increasing rms heights. Dis-
tances are in unit of wavelength, and the ground dielectric
constant is 10 + 5i.

By solving Dyson’s equation for the rough surface
field, we achieve a new reflection coefficient, a new
Sommerfeld pole and finally the new Zenneck wave
different from the flat surface. The final form of the
solution is identical to that for the deterministic case,
but the Sommerfeld pole has been re-positioned due
to roughness. In order to calculate the propagation
constant for the Zenneck wave, we first calculate kz

from (29) and (37), which we can express as the fol-
lowing

kz =
−ko∆

1 − ∫
L1(κ′, κ)W (κ − κ′)[M2(κ, κ′) − αo]dκ′

(38)

0r

0
r'

r'

r

fΓ

cx1

1θ' 2θ'

2θ1θ

1r 2
r

2r'1r'
κ

1
κ

2

Figure 3. Incoherent intensity and scattering cross sec-
tion.

Notice, for the flat surface case, kz = −ko∆. There-
fore, the integral in (38) represents the rough surface
effects. The propagation constant for the Zenneck
wave is then obtained by

κ =
√

k2
o − k2

z (39)

For source and field points located near the surface
zo ≈ z ≈ 0.0, the rough surface Green’s function
reduces to

〈G(r, ro)〉 = 2Gp(R)F (p) (40)

where F (p) is the attenuation function of the field
along the surface and is given by

F (p) = 1 + i
√

πp e−perfc(−i
√

p ) (41)

In Figure 2, we plot the attenuation function for
varying heights of the source above the rough sur-
face with rms height (σ = .1λ). The insert in the
figure shows the behavior of the pole, and the effec-
tive impedance in the complex λ-plane as the rms
height increases. In general, the behavior of the pole
is to became more attenuative.

3. Incoherent Intensity

Let us now consider the second moment of the field
or the incoherent intensity. For small surface rough-
ness, the coherent field will dominate. However, as
the roughness increases, or at larger distances from
the surface, the coherent field diminishes and the in-
coherent intensity becomes dominant. The incoher-
ent intensity is obtained from the first-order Bethe-
Salpeter equation which describes the Mutual Coher-
ence function or the correlation of fields at r and r′

due to the sources located at ro and r′o (Figure 3).
The MCF may be written as the sum of coherent and
incoherent intensity

Γ(r, r′; ro, r
′
o) = 〈G(r, ro)G∗(r′, r′o)〉 = Γo + Γf(42)

where the coherent intensity was determined from
section 2.2

Γo = 〈G(r, ro)〉〈G∗(r′, r′o)〉 (43)

and the fluctuating intensity is given by the first it-
eration of the Bethe-Salpeter’s equation.

Γf =
∫
〈G(r, r1)〉〈G∗(r′, r′1)〉〈V (r1)V (r′1)〉
〈G(r1, ro)〉〈G∗(r′1, r

′
o)〉dr1dr′1 (44)

Since the coherent Green’s function 〈G〉 has been
determined (25), we can then evaluate the Bethe-
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Salpeter equation in the far field [Ishimaru et al.,
2000a] to determine the incoherent intensity.

If = 4ko

∫
dxc|Go(r, r1)|2|Go(r1, ro)|2σo(κ, κ1)

(45)

where σo is the scattering cross-section per unit
length of the finitely conducting rough surface. κ
and κ1 are the wave numbers corresponding to the
vectors r − r1 and r1 − ro respectively. The cross
section for the TM case is given by

σo =
2π

ko

4 |κsκ1 − κ2
1z − iκ1zαoQ(κ1)|2

|1 + Q(κ)|2|1 + Q(κ1)|2 · W (46)

and for TE

σo =
2π

ko

4 |βo(−k2
z1 + κsκ1)Q(κ1) − ikz1|2

|1 + Q(κ)|2|1 + Q(κ1)|2 |kz |2 · W
(47)

where W = W (κ− κ1) is the power spectral density
function and κs = κ−κ1. For the Neumann surface,
αo = 0 the cross-section reduces to a similar expres-
sion of Fuks et al. [Fuks et al., 1999].

Of particular interest is the ratio of crosssections
HH/VV in the back-direction, as the angle of in-
cidence approaches grazing angle. We first consider
the perfecly conducting rough surface and Dirchlet’s
(HH) and Neumann’s (VV) boundary condition. It
should be noted that for the first order small pertur-
bative method (SPM), the ratio of HH/VV predicts
very little backscattering.

SPM ∼ HH/V V =
|kzi|4

|κ2
i + k2

o |2
which as the grazing angle approaches zero θg → 0,
kz → 0 and therefore

SPM ∼ HH/V V ≈ Ø

Also, of note, the ratio HH/VV for SPM is indepen-
dent of any rough surface parameters (i.e. rms height
σ and correlation length cl) and is only dependent on
the incident angle. If we now consider the ratio of
HH/VV given in Eq. 46 and 47, for Dirchlet’s and
Neumann’s condition (βo = 0, αo = 0), the corre-
sponding ratio becomes

Ishimaru′s ∼ HH/V V =
|kzi|4

|κ2
i + k2

o |2
· |1 + QV (κi)|2
|1 + QH(κi)|2

|1 + QV (−κi)|2
|1 + QH(−κi)|2 (48)
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Figure 4. Ratio of HH/VV for Backscattering Cross-
section σHH/σvv as a function of grazing angle from
0.5o ∼ 10o for a perfectly conducting rough surface.
Comparison of SPM and (48) for several different rms
heights and correlation length cl = 2.24/ko.

where the reflection coefficients are given by (30)
with

QH(κ) = kz

∫
k′

zW (κ − κ′)dκ′

and

QV (κ) =
1
kz

∫
(k2

o − κκ′)2

k′
z

W (κ − κ′)dκ′

Due to the surface spectrum W (κ − κ′), the ratio of
HH/VV will have some rough surface dependence.
In Figure 4, we plot the ratio of HH/VV in the back-
direction for a perfectly conducting surface and com-
pare SPM to Eq. 48, for grazing angles ranging from
.001o ∼ 10o. Shown in the figure, the SPM result is
independent of rough surface parameters, and goes
to zero as grazing angle approaches zero. However,
our results predict a finite intensity that is dependent
on the rms height of the rough surface. The results
are all based upon the first order scattering theory.

We now consider the impedance boundary condition
or finite ground. If we evaluate the ratio of HH/VV
in the back-direction near grazing angles for SPM
[Ishimaru, 1997], then SPM predicts a finite return
due to the presence of the finite ground. Also, if we
go ahead and calculate the ratio of HH/VV given by
Eq. 46 and 47, near grazing angle, in a straightfor-
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ward manner we get

HH/V V =
|βo(κ2

i + k2
o)Q(κi) + ikzi|2k2

zi

|κ2
i + k2

o + iκizαoQ(κi)|2

· |1 + QV (κi)|2
|1 + QH(κi)|2

|1 + QV (−κi)|2
|1 + QH(−κi)|2 (49)

However, let us re-consider the evaluation of the ver-
tical cross-section (46), as the angle of incidence ap-
proaches grazing angle and the source and observa-
tion points near the surface. Normally, we would
try to evaluate the vertical cross section for graz-
ing angles, by restricting kx → ko as θi → π/2.
However, after careful analysis of (46) and the gen-
erating incoherent MCF (44), two noticeable con-
flicts can be seen as we approach field points near
the surface. First, the evaluation of the cross sec-
tion from (44) was conducted through a far-field ap-
proximation. This approximation can only be valid
for moderate angles of incidence and becomes inap-
propriate as θ → π/2. Secondly, in the evaluation
of the coherent Green’s function, we restricted the
scattering to real propagating modes. However, from
the analysis of the coherent Green’s function in sec-
tion 2.2, we see that complex wave propagation be-
comes unavoidable as we near the surface. Thus to
overcome these obstacles, we evaluate the coherent
Green’s function for vertical polarization in (44), in
a similar manner to the surface wave propagation
where 〈G〉 = Gp(R1) + Gp(R2) − 2〈P 〉. In doing so,
we restrict our source and receiver to being near the
surface (Figure 1) and thus the modified incoherent
Green’s function for low grazing angle becomes

If = 4ko

∫
dxc|Go(r, ro)|2σo

LGA(κ, κ1)|Go(r1, ro)|2

(50)

where

σo
LGA =

2π

ko
4 |κsκ1 − κ2

1z − iκ1zαoQ(κ1)|2

|Fa(R1)Fa(R2)|2W (κ − κ1) (51)

and Fa is the attenuation function for the TM case
(41). Noticeably, the only difference in the cross-
section expressions lies in the difference between
1 + Q(κ) in the far field and F (R) near the sur-
face. However, closer examination of (51) reveals
the position dependence of the source and scatter-
ing center xc of the rough surface. The scattering
center is the location at which the incoherent scat-
tering is localized. By varying it, we can vary the
amount of attenuation of the field along the surface.

0 1 2 3 4 5 6 7 8 9 10

-70

-60

-50

-40

-30

-20

-10

σvv

SPM
FARIsh
z

o
 = .01 λ

z
o
 = .05 λ

z
o
 = .1 λ

z
o
 = .5 λ

Grazing Angle (θg)

Figure 5. Cross-section σvv as a function of grazing
angle from 0.5o ∼ 10o for a finite conducting rough sur-
face ( ε = 10 + 5i) with correlation length cl = 2.24/ko .
Compares results from SPM, Ishimaru et al.’s Far-Field
cross-section (46) [Ishimaru et al., 2000b] and the LGA
cross-section (51). The LGA cross-section includes sev-
eral different possible source heights.

Thus, the relationship between the low grazing angle
θg(= π/2− θi), the source height, and the scattering
center xc is given by

tan(θg) =
zo

xc

In Figure 5, the low-grazing angle backscattering
cross-section for vertical polarization is calculated
from the attenuation function of Figure 2, for vary-
ing source heights as a function of grazing angle
from θg = .5o − 10o. As the source point and ob-
servation points near the surface, the grazing an-
gle goes to zero, and the corresponding LGA cross
section increases. The LGA cross-section is shown
for three different source heights above the surface
(zo = .1λ, .25λ and .5λ). Included within the figure,
are the far-field vertical cross section (46) and the
SPM cross section. Beyond a certain source height
(zo ≈ .75λ), the LGA cross section is invalid, and the
far-field cross-section (46) should be used instead. In
Figure 6, we plot the ratio of HH/VV in the back-
direction for SPM compared to our far-field cross-
section approximation (49). As can be seen, the
SPM produces a finite intensity and once again is
independent of the rough surface parameters. Our
results show much more deviation due to the rough
surface height dependence. In Figure 7, we compare
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Figure 6. Ratio of HH/VV for Backscattering Cross-
section σHH/σvv as a function of grazing angle from
0.5o ∼ 10o for the finite conducting case with correla-
tion length cl = 2.24/ko.

the SPM results to the far field cross-section (49) and
the ratio of HH/VV which makes use of the vertical
near field LGA cross-section (51) for two rough sur-
face heights σ = .5/ko and σ = 1./ko. The source
height for the LGA cross-section are chosen to be
zo = .1λ, .25λ and .5λ. The arrows point from the
LGA cross-section to the far-field cross-section of si-
miliar rough surface height cases.

4. Rough Surface Green’s Function

In this section, we add together both coherent and
fluctuating fields to construct a picture of the scat-
tering process occuring when a line source excites
the rough surface. The rough surface Green’s func-
tion must be constructed in a second-order sense, due
to the second-order nature of the incoherent Green’s
function. If we consider the intensity, then the rough
surface Green’s function is given by

〈|G(r, ro)|2〉 = |〈G(r, ro)〉|2 + 〈|Gf (r, ro)|2〉 (52)

where the coherent Green’s function intensity was
given in section 2, and the fluctuating Green’s func-
tion from section 3. Having noticed the complex
propagation near the surface and the real propagat-
ing modes away from the surface, the Green’s func-
tion must be constructed in such a manner that the

Comparison of HH/VV 

SPM
FAR ∼ σ = 1/ko
LGA ∼ σ = 1/ko, zo = .1 λ
LGA ∼ σ = 1/ko, zo = .25 λ
LGA ∼ σ = 1/ko, zo = .5 λ
FAR ∼ σ = .5/ko

LGA ∼ σ = .5/ko, zo = .1 λ
LGA ∼ σ = .5/ko, zo = .25 λ
LGA ∼ σ = .5/ko, zo = .5 λ

1 2 3 4 5 6 7 8 9 10
-45
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)
Figure 7. Ratio of HH/VV for Backscattering Cross-
section σHH/σvv as a function of grazing angle from
0.5o ∼ 10o. Comparison of SPM, Far-Field approxima-
tion (49) and LGA cross-section (51). The arrows point
from the LGA case to the Far-Field case of similiar rms
height.

approximation must be determined best suited for a
region of interest. For instance, if the source and ob-
servation points are near the surface, then the sur-
face wave and LGA cross-section must be used for
the coherent and incoherent fields, respectively. If
the observation and field points are away from the
source, then we can simply consider the far-field ap-
proximations for both coherent and incoherent fields.
Finally, if the mixed propagation occurs, where the
source is near and the observation point is far, what
is the scattering process. Since the incident source is
near the surface, the surface wave Green’s function
must be used to excite the surface. The correspond-
ing cross-section, however is a mixture of complex
wave and real propagation. From the earlier analy-
sis, the cross-section was modified by the attenuation
function Fa for field points near the surface, and the
factor 1 + Q(κ) in the far field. Therefore, since the
incident field is near the surface and the scattered
field away from the surface, the corresponding cross-
section makes use of a |Fa(R1)| for the incident wave
and a 1 + Q(κ) for the scattered wave. Therefore,
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Figure 8. TE Propagation: Total rough surface Green’s
function intensity (Eq.52) vs. numerical simulation. The
source is located at (xo, zo) = (0.0λ, 3λ) and observation
point at x = 10λ. The vertical position of the source
ranges from 1 ∼ 20λ above the surface (as shown in
insert) and 20 − 80λ (in main plot). The correlation
length is cl = 2.24/ko and three different rms heights
σ = .25/ko, .5/ko and .75/ko are shown.

this mixed propagation crosssection can be given as

σo
LGA =

2π

ko
4 |κsκ1 − κ2

1z − iκ1zαoQ(κ)|2

|Fa(R1)|2
|1 + Q(κ1)|2 W (κ − κ1) (53)

. In a similar manner for the other propagation path,
where the source is far from the surface, and the ob-
servation near the surface, the corresponding cross-
section can be computed. In Figure 8 and Figure
9, we construct the intensity of the Green’s function
and compare to Monte-Carlo simulations for the TE
propagation case. The source and observation points
were chosen as xo = 0.0λ, zo = 3λ, x = 10λ, and
the observation points z were allowed to vary from
0.0−50λ. The rough surface heights chosen were for
rms height σ = .25/ko, .5/ko, and .75/ko with cor-
relation length 2.24/ko. Notice, as the rms height
increases, the incoherent Green’s function begins to
increase. Thus for a given source and observation po-
sition, the rough surface Green’s function for small
rms heights maybe constructed and compares well
with the Monte-Carlo simulations. Note that be-
cause of a limited number of realizations, the sim-
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Figure 9. TE Propagation: Incoherent Green’s function
intensity vs. numerical simulation for the cases shown in
Fig.8.

ulations have variations, which should diminish as
the number of realizations are increased.

5. Conclusions

In this paper, we discussed the effects of surface
roughness on the Sommerfeld propagation problem
for a conducting surface. With a rough surface, the
field consists of the coherent and the incoherent field.
The technique is based on the modified perturbation
method and Dyson’s equation. The expressions for
the new Sommerfeld pole, Zenneck wave, numerical
distance, and propagation factors are obtained; nu-
merical examples are conducted; and the analytical
results are compared with Monte-Carlo simulations.
We then considered the incoherent mutual coherent
function and gave a general expression. We also ob-
tained the expression for the scattering cross-section
per unit length of the rough conducting surface. For
large grazing angles , we use the far-field cross-section
(46) and (47). However, as we approach LGA, we
make use of the low grazing angle cross-section (51)
for vertical polarization, in which we can incorporate
source position and grazing angle.
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