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Abstract—Starting with Zenneck and Sommerfeld wave propa-
gation over a flat finitely conducting surface has been extensively
studied by Wait and many other authors. In this paper, we examine
propagation over a finitely conducting rough surface, also studied
by many people including Feinberg, Bass, Fuks, and Barrick. This
paper extends the multiple scattering theories based on Dyson and
Bethe–Salpeter equations and their smoothing approximations.
The theory developed here applies to rough surfaces with small
root-mean-square (rms) heights( 0 1 ). We limit ourselves
to the one-dimensional (1-D) rough surface with finite conduc-
tivity excited by a magnetic line source, which is equivalent to the
Sommerfeld dipole problem in two dimensions ( - plane). With
the presence of finite roughness, the total field decomposes into
the coherent field and the incoherent field. The coherent (average)
field is obtained by using Dyson’s equation, a fundamental integral
equation based on the modified perturbation method. Once the
coherent field has been obtained, we determine the Sommerfeld
pole, the effective surface impedance, and the Zenneck wave
for rough surfaces of small rms heights. The coherent field is
written in terms of the Fourier transform, which is equivalent to
the Sommerfeld integral. Numerical examples of the attenuation
function are compared to Monte Carlo simulations and are shown
to contrast the flat and rough surface cases. Next, we obtain the
general expression for the incoherent mutual coherence functions
and scattering cross section for rough conducting surfaces.

Index Terms—Electromagnetic (EM) scattering from rough sur-
faces, Sommerfeld wave, Zenneck wave.

I. INTRODUCTION

WAVE propagation over a flat conducting earth excited by
a dipole is a classic electromagnetic (EM) problem and

has been studied by Wait and many others [1], [2]. Radio wave
propagation over a rough surface was first studied by Feinberg
[3], who obtained an effective impedance at the interface. Bar-
rick conducted extensive studies on HF/VHF propagation over
rough seas [4], [5] and showed that the spherical earth residue
series model should be used for multiple frequency-very high
frequency (MF-VHF) propagation over a rough sea. This was
also shown rigorously by Wait [6]. The effective impedance
of rough surfaces has been extensively studied by Basset al.
[7]–[9] using an extension of the small perturbation theory and
the diagram method [10], [11]. Multiple scattering theories for
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rough surface scattering have also been proposed by Watson
and Keller [12], [13], Ito [14] and Ishimaruet al. [15]. Fur-
ther studies have been conducted recently for low grazing angle
(LGA) scattering [16]–[19].

This paper follows and extends the multiple scattering
theories developed by Basset al. [8], [12]–[15]. Making use
of the Feynman diagram method [10], [11], [21], the coherent
field is shown to be expressed in the form of a Sommerfeld
integral from which the Zenneck wave pole, effective surface
impedance, and attenuation function for a rough conducting
surface is obtained. The effective surface impedance is consis-
tent with those obtained by Feinberget al. in appropriate limits.
The incoherent field and the scattering crosssections are shown
to be similar to Watson–Keller [12], [13] and consistent with
Fukset al. [19] in the Neumann surface limit.

We consider a one-dimensional (1-D) finitely conducting
rough surface excited by a magnetic line source located near
the surface as shown in Fig. 1. The field at the observation point
consists of the coherent and incoherent fields. The coherent
field propagates over the flat surface with the equivalent
reflection coefficient, which includes the effects of rough
surface scattering. As the coherent field propagates over the
rough surface, the field eventually diminishes and a part of
the field is gradually converted into the incoherent (diffused)
field. The incoherent field needs to be expressed in terms of
the mutual coherence function which satisfies the fundamental
Bethe–Salpeter equation. The coherent field is expressed in
a Fourier transform which is equivalent to the Sommerfeld
integral for a flat conducting surface. The pole of the reflection
coefficient gives the propagation constant of the Zenneck wave
over the rough conducting surface.

In order to include the rough surface effects, we start with
the modified perturbation method and Dyson’s equation [8],
[12]–[15], which is a fundamental integral equation for the co-
herent field. We make use of the first-order smoothing approxi-
mation and solve Dyson’s equation. The result is represented in
the Fourier integral transform. The pole in the integral provides
the propagation constant for the Zenneck wave. The coherent
field can then be calculated using the rough surface Zenneck
wave pole. The final expression for the field over the rough sur-
face is given in terms of the “numerical distance.” We present
numerical examples of the Sommerfeld poles and the “atten-
uation function” for rough surfaces, and compare the results
with Monte Carlo simulations showing good agreement. We
also present a general formulation for the incoherent mutual co-
herence function and the scattering crosssections per unit length
of the finitely conducting rough surface.

0018–926X/00$10.00 © 2000 IEEE
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Fig. 1. Magnetic line currentI is located at(x ; z ). Conducting medium
is bounded by rough surface given by the heighth = h(x).

II. FORMULATION OF THE PROBLEM

Let us first consider the magnetic line source located at
in free-space. The conducting half-space with permit-

tivity and conductivity is bounded by the rough surface
whose height is a random function of , Fig. 1. The
magnetic field has only the-component and satisfies the wave
equation. We let

(1)

Then the Green’s function satisfies

(2)

We next consider the boundary condition for . Here, we
assume the first-order boundary condition that the ratio of the
tangential electric field to the tangential magnetic field is the
surface impedance [1]. Thus, the Green’s function satisfies
the following condition on the surface .

(3)

where free-space char-
acteristic impedance and is the normal derivative. The
surface impedance is approximated by that of the flat con-
ducting surface and is approximately given by [1]

(4)

where is the refractive index of the conducting medium. This
is an approximation as the incident field approaches grazing.
The problem is now reduced to the one medium problem (2)
with the surface boundary condition of (3). In this paper, we use
the time dependence . Now the surface is a random
function and, therefore, the field is also a random func-
tion and consists of the coherent field and the incoherent
(or diffuse) field [10], [20]

(5)

III. EQUIVALENT BOUNDARY CONDITION AT

In order to include the effects of the rough surface, we use the
modified perturbation technique [8], [15]. Compared with the
conventional perturbation technique, this modified technique
has a wider range of validity and also includes surface wave
propagation due to the presence of pole. We now consider the
boundary condition (3), which is valid at the surface . We
write an equivalent boundary condition at by expanding
the Green’s function about the surface height and include
only the first powers of . First we note that

(6)

(7)

Therefore, the equivalent boundary condition (3) for the rough
surface is now expressed at up to first-order

(8)

where the random surface potentialis given by

IV. RANDOM INTEGRAL EQUATION FOR

We now develop the integral equation for the rough surface
Green’s function at the equivalent surface . Starting with
Green’s Theorem

(9)

we let and . is the Green’s function for the flat
conducting surface satisfying the boundary equation at

(10)

Also note that in (9), is the area enclosed by the pathas
shown in Fig. 2. Equation (9) is then converted into the fol-
lowing random integral equation for

(11)

where and .
Note that is a deterministic function. However, and

are random functions.

V. DYSON’S EQUATION AND COHERENTFIELD

Once we get the integral equation, we can obtain the Dyson’s
equation for [8], [10], [21]. The detailed derivation of
Dyson’s equation using the diagram method is given in [21]
and is not repeated here. Dyson’s equation is, therefore

(12)

This is Dyson’s equation which is the fundamental equation for
the average field . The operator is called the Mass
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Fig. 2. Random integral equation (11).

operator and in the first-order smoothing approximation is given
by [21]

(13)

Note that is a function of the difference only. We now
solve the Dyson’s equation (12) using the given Mass operator
(13) using the spectral (Fourier transform) method. We express

and in Fourier transforms

(14)

(15)

(16)

The correlation function of the height is expressed as

(17)

where we assumed is a homogeneous random function and
is the power spectral density function. In this paper, we

use the Gaussian correlation function for with root-mean-
square (rms) height and correlation distance

(18)

The Gaussian spectrum is used to verify our analytical results
by comparing with numerical Monte Carlo simulations based
on the Gaussian spectrum. It should be noted, however, that our
results can be used for any spectrum which would be used to
represent an actual problem.

VI. SOMMERFELD POLE AND ZENNECK WAVE FOR A FLAT

CONDUCTING SURFACE

First let us express the flat surface Green’s functionin the
well-known Fourier transform [1], [22].

(19)

The reflection coefficient is for the flat conducting sur-
face and is given by

(20)

Fig. 3. Somerfeld pole� in the complex plane for flat conducting surfaces.

Fig. 4. Geometry for (25) for flat surface.

Fig. 5. Case 1: Zenneck wave propagation constant� with k for increasing
surface roughness� = 0:0–0:3 m at 5, 10, 50, and 100 MHz.

where and .
The Sommerfeld pole is therefore located at

(21)

or

(22)

Note that the exact Sommerfeld pole is given by

(23)

For grazing angle and, therefore, we can approximate
(23) by (22) with [1]

(24)

It is also well known that and are in the second and first
quadrant in the complex plane for the Sommerfeld problem as
shown in Fig. 3. The propagation constant for the Zenneck wave
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is then given by satisfying (21). We can now write the com-
plete solution in the following well-known form (Fig. 4):

(25)

where

(26)

(27)

For large , we can express (27) in the following well-known
form [1], [2]:

(28)

where is the numerical distance given by the difference be-
tween the total phase for the Zenneck wave and free-space

(29)

with and evaluated at the Sommerfeld pole. Note that for
time dependence, we should take the complex conjugate of

the above formula.

VII. COHERENTFIELD, SOMMERFELD POLE AND ZENNECK

WAVE FOR CONDUCTING ROUGH SURFACES

We now consider the Sommerfeld problem for the coherent
field for the rough surface. We express the rough surface
Green’s function in spectral form and we write

(30)

(31)

where

(32)

(33)

First, we note that the coherent field behaves in exactly the
same manner as the deterministic flat surface Green’s function

. The difference is that while the surface impedanceis
given by (24) for the flat case, the surface impedance for the
rough surface is different and needs to be obtained by solving
Dyson’s equation. Once we solve Dyson’s equation, we achieve
a new reflection coefficient, a new Sommerfeld pole and finally
the new Zenneck wave. The final form of the solution is iden-
tical to that for the deterministic case, but with the difference in
appearance of the Sommerfeld pole.

Let us now go back to Dyson’s equation (12). The substitution
of (13)–(16) and (30) into (12) and performing the integration
with respect to and we get (Appendix A)

(34)

where

(35)

(36)

Fig. 6. Case 1: effective surface impedance for Zenneck wave in complex
�-plane for increasing surface roughness� = 0:0–0:3 m at 5, 10, 50, and 100
MHz.

Fig. 7. Case 2: Zenneck wave propagation constant� with k for increasing
surface roughness� = 0:0–0:2 m at 5, 10, 50, and 100 MHz.

(37)

and

(38)

(39)

Rearranging (34), we finally get the reflection coefficient
for the conducting Rough surface

(40)

where

 L
 L

(41)
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Fig. 8. Case 2: effective surface impedance for Zenneck wave in complex
�-plane for increasing surface roughness� = 0:0–0:2 meters at 1, 5, 10, and
100 MHz.

Fig. 9. Case 1: attenuation functionjF (�)j for flat and rough surface height
� = 0:3 m at 1, 5, 10, and 100 MHz.

We can now obtain the effective surface impedance for
the coherent field

(42)

Noting that , we write

 L

 L
(43)

where

and . In the limit of , we get

which agrees with Barrick [4, eq. (24)] when converted to the
1-D surface and evaluated at .
We now consider the Sommerfeld pole given by

(44)

With this new Sommerfeld pole, the coherent field is given
by the same form as that of the flat surface. For large

(45)

where is the numerical distance for the rough conducting sur-
face given by (29) with the new Sommerfeld pole given by (44).
In order to find the propagation constant for the Zenneck wave,
we first calculate . From (41) and (44), we can expressas
the following:

 L
(46)

For the flat surface case, . Therefore, the integral
in (46) represents the rough surface effects. Numerical calcula-
tions of can be done from (46) using iterations. The propa-
gation constant for the Zenneck wave is then obtained by

(47)

We are mainly concerned with the propagation along the sur-
face and the amount of attenuation of the field owing to surface
roughness. When both the transmitter and the receiver are on the
surface , the rough surface Green’s function reduces to

(48)

where is the attenuation function of the field along the
surface and is given by

(49)

Once the Sommerfeld pole for the rough surface effects has been
calculated, the attenuation of the field (49) maybe calculated
from the numerical distance (29). In the next section, we cal-
culate the Zenneck pole, the surface impedance, and the atten-
uation function along the rough surface and compare to a flat
surface.

VIII. N UMERICAL EXAMPLES

We now consider two examples of conducting media. Case
1: dielectric constant , which is rep-
resentive of land. Case 2: , which represent
a sea media. The media cases are chosen to compare the an-
alytical rough surface results with the flat surface model. The
surface spectrum used was Gaussian. Actual propagation over
land and sea require more realistic spectra and other considera-
tion as spherical earth models. For this discussion, we restricted
the correlation distance to 1.24 m and allowed the rms height to
range from to m. Thus, the effective range for this
theory is between 1–100 MHz. Below these frequencies there is
very little surface disturbance and above these frequencies the
theory does not apply. We expect the largest deviation to occur at
100 MHz, where the rough surface contributions become appre-
ciable. Other frequency ranges maybe considered by modifying
the rough surface height. We are concerned with the effects of
rough surface upon the attenuation function as a function
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Fig. 10. Case 1: Phase for attenuation functionF (�) for flat and rough surface
height� = 0:3 m at 1, 5, 10, and 100 MHz.

Fig. 11. Case 2: attenuation functionjF (�)j for flat and rough surface height
� = 0:2 m at 1, 5, 10, and 100 MHz.

of the real distance. Therefore, we must calculate the Zenneck
pole from (46) and (47) to obtain the propagation constant

(50)

This is done through an iterative search from (46). In Fig. 5,
the Zenneck wave propagation constants are shown in the com-
plex plane for the frequencies 5, 10, 50, and 100 MHz for land.
The figures indicates the deviation of the pole away from the
flat surface as the rough surface heightincreases from 0.0
to 0.3 m; also included is the free-space wavenumber. Note, that
the attenuation (imaginary part) increases with roughness, while
the real part remains unaffected. In Fig. 6. we plot the surface
impedance for case 1 with increasing roughness from the flat
surface. Note that the real part is not changing much, but the

Fig. 12. Case 2: Phase for attenuation functionF (�) for flat and rough surface
height� = 0:3 m at 1, 5, 10, and 100 MHz.

imaginary part, which is negative (inductive) increases in mag-
nitude showing more reactive stored energy due to the rough-
ness. In Figs. 7 and 8, the Zenneck wave propagation constant
and the surface impedance for case 2 are shown for increasing
surface roughness. We now consider the attenuation function
(49). In Figs. 9 and 10, the magnitude and phase of the propaga-
tion factor (attenuation function) for case 1 as a function of the
real distance is given to contrast the effects of surface roughness
( m) against the flat surface ( m). In Figs. 11
and 12, the propagation factor (attenuation function) for case 2
is shown with the effects of surface roughness ( m). As
we can see at the lower frequencies, where there is very little
surface disturbance, there is almost no difference between the
flat and rough surfaces. However, at 100 MHz, the rough sur-
face contributions are significant, and the coherent field atten-
uates faster than the flat surface case. Finally, a Monte Carlo
simulation was conducted using FDTD to simulate the Zenneck
wave propagation over the rough surface. In Figs. 13 and 14,
a comparison for the normalized attenuation function between
the numerical simulation and the theory is given for both case 1
and 2.

IX. I NCOHERENTFIELD

Let us now consider the incoherent field. We first note that the
total field consists of the coherent field and the incoherent
field (or diffuse) .

(51)

In the last section, we considered the coherent field or the first
moment of the field. If the surface roughness is small, then the
coherent field is dominant. However, as the roughness increases
or, at a larger distance from the source, the coherent field di-
minishes and the incoherent field becomes dominant. In this
section, we describe the first-order solution for the incoherent
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Fig. 13. Comparison between normalized attenuation function for Monte
Carlo simulations and theory for Case 1 at 100 Mhz for flat and rough surface
height� = 0:3 m.

Fig. 14. Comparison between normalized attenuation function for Monte
Carlo simulations and theory for Case 2 at 100 MHz for flat and rough surface
height� = 0:2 m.

field. This requires the evaluation of the second moment or
the mutual coherence function. We begin with the fundamental
Bethe–Salpeter’s equation. This equation describes the correla-
tion of fields at and due to the sources located at and

. The correlation of fields is also called the mutual coherence
function (MCF), which we describe as (Fig. 15)

(52)

Fig. 15. Incoherent intensity and scattering cross section.

The Bethe–Salpeter’s equation describing the propagation of
the correlation of fields is then given by

(53)

under the first-order smoothing approximation. The first itera-
tion of this equation is then given by approximationin the
integrand by the coherent terms. We then rewrite the mutual co-
herence function into the sum of a coherent and an inco-
herent mutual coherence function

(54)

The coherent mutual coherence function is given by

(55)

which was determined from earlier sections. The fluctuating
or incoherent mutual coherence function under the first-order
smoothing approximation is given by

(56)

where is given in (8). Substituting the coherent Green’s
function (30) with (40) and (41), we arrive at the spatial Fourier
transform representation of the incoherent mutual coherence
function

(57)

where the elements in the integral are

(58)
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As a special case, we let the source points , and the
observation points ; this given the incoherent intensity at

due to the point source at . We then get

(59)

where the scattering cross section per unit length of the finitely
conducting rough surface is given by (Fig. 15)

(60)

where .
For Neumann surface, and this is reduced to

(61)

This agrees with Fukset al. [19].

X. CONCLUSION

In this paper, we discussed the effects of surface roughness on
the Sommerfeld propagation problem for a conducting surface.
With a rough surface, the field consists of the coherent and the
incoherent field. The technique is based on the modified pertur-
bation method and Dyson’s equation. The expressions for the
new Sommerfeld pole, Zenneck wave, numerical distance, and
propagation factors are obtained and numerical examples are
conducted, and the analytical results are compared with Monte
Carlo simulations. These cases are given to compare the effects
of the rough surface to the flat surface case. It is shown that the
attenuation of the Zenneck wave increases with roughness and
that the surface reactance is inductive and also increasing with
roughness. The theory presented here applies to small rough sur-
face heights of less then . Therefore, for a given rms height,
the effects of rough surface diminishes at the lower frequencies,
while at the higher frequencies, the theory is not applicable. In
the intermediate frequencies when the rms height is of the order
of , the rough surface effects are significant with increasing
attenuation. We then considered the incoherent mutual coherent
function and gave a general expression. We also obtained the
expression for the scattering cross section per unit length of the
rough conducting surface.

APPENDIX A

Derivation of (34) from (12). Let us consider the second term
of (12)

(A.1)

Expressing in Fourier transform, we write

(A.2)

(A.3)

(A.4)

(A.5)

Now, we examine

(A.6)

Noting (A.6), we recognize the following identities:

However, we note that while

we get

Thus, for , we need to have instead of .
Similarly, for we get

Also, we need to have for the term with .
Finally, we get for (A.1), expressed in Fourier transforms

(A.7)

where

and

(A.8)
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(A.9)

Now we integrate (A.7) with respect to and and note that

Similiary, we integrate with respect to and and note

We then get

(A.10)

This can be rewritten as (34).
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