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ABSTRACT 
 
We have studied the polarization characteristics of light scattered from randomly distributed spherical particles using the 
4x4 Mueller matrix. The experimental system consists of a Helium-Neon laser, polarizers (vertical, horizontal, 45-degree 
linear, left-hand circular) and six analyzers (vertical, horizontal, 45-degree linear, 135-degree linear, right-hand circular, 
left-hand circular). If the six polarized states of the scattered light for a given incident polarization are measured with 
analyzers, we can calculate the Stokes vector.  By repeating this measurement for four independent incident 
polarizations, we can obtain the complete Mueller matrix. Random media consist of spherical particles of different 
concentrations suspended in water. The numerical study is based on the complete solution of the radiative transfer 
equation. Using the discrete ordinate method and matrix solver, we obtain the Stokes vector for a given incident 
polarization. By calculating Stokes vector for four independent polarizations, we can obtain a full Mueller matrix. The 
experimental results are compared with the numerical analysis. 
Keywords: Mueller matrix, radiative transfer, polarized light, circular polarization 
 

1. INTRODUCTION  
 
The intensity and the polarization state of the scattered light depend on the physical parameters of the medium and the 
input polarization state of the incident light. To describe the complete polarimetric-characteristics of the medium, the 
Mueller matrix, which relates the incident Stokes vector to the scattered Stokes vector, is commonly used2,4,5. The Stokes 
vector is a 4x1 vector. Therefore, the Mueller matrix is given by a 4x4 matrix. There are several different ways to 
measure the Mueller matrix at microwave and optical wavelengths.  If the phase of the scattered wave can be measured 
accurately, the scattered fields measured at two orthogonal polarizations for a given incident polarization are sufficient to 
provide the scattered Stokes vector2.  This approach has been used for the millimeter-wave system.  However, if the 
phase measurement is difficult such as in optical systems, one method to obtain the scattered Stokes vector is to measure 
the six different polarizations for a given incident polarization5.   
 
The polarization states of the scattered light from randomly distributed spherical particles have been analyzed using the 
Stokes vector and vector radiative transfer (RT) equation in the past1,3,4. Although the exact solution of the RT equation 
has not been obtained, the numerical solution can be obtained using different approaches including the discrete ordinate 
method1,3. This will provide the Stokes vector of the scattered intensity for a given incident polarization.  Extensive 
numerical studies have been conducted for both linearly and circularly polarized incident waves3.   Although detailed 
comparisons with experimental data have not been reported, it is believed that the RT equation will provide accurate 
results except for the backscattering direction in which the backscattering enhancement occurs.  In this paper, we will 
compare the Mueller matrix calculated from the RT equation with the experimental results.  The scattering medium 
consists of randomly distributed spherical particles suspended in water.  
 

2. NUMERICAL METHOD TO CALCULATE THE MUELLER MATRIX 
 
We will briefly describe the vector radiative transfer equation, numerical method, and Mueller matrix calculation.  
Details can be found in the references3.  Consider the vector radiative transfer equation in a plane-parallel medium over 
the optical main distance domain τ = ρσtZ, where ρ is the number of density, σt is the total scattering cross section, and 
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Z is the actual distance. The equation of transfer for spherical particles is then given in term of  (µ,φ) and (µ′,φ′) where µ 
= cos θ and µ′ = cos θ′.   
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[I] = 4x1 incoherent specific intensity, [Ii] = 4x1 incident specific intensity, dω′ = dµ′dφ′, and [S] = 4x4 scattering 
matrix. The scattering matrix is expressed in terms of the scattering amplitude f11, f12, f21 and f 22, calculated by Mie 
theory and explained in detail by Cheung3. 
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The boundary conditions at the surface τ = 0 and τ  = τo are obtained by noting that the diffuse intensity is generated 
only within the medium. Therefore, the diffuse intensity should always be pointed outward. There is no other intensity 
coming into the slab of random medium except the input intensity. Note that τo is the optical depth defined by τo = ρσtL 
where L is length of the slab of the random medium. Mathematically, the boundary conditions are given as 
 

 At [ ] 1000 ≤≤== µτ forI   

      At [ ] 0100 ≤≤−== µττ forI .       (3) 

 
The equation of transfer and its boundary conditions constitute a complete mathematical description of the problem.  
The numerical solution for the above vector RT equation has been extensively studied before, and the details are 
discussed in the references3.    The solution of Eq(1) is given  in the form of scattered Stokes vector for a given incident 
polarization.  To obtain the complete Mueller matrix of a random medium, we need to calculate Eq(1) for different 
incident polarizations.  The relationship between the scattered and incident Stokes vectors is given by 
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where σ is the Mueller matrix, [Iio] is the incident Stokes vector, and [Is] is the scattered Stokes vector. Eq(4) indicates 
that four independent [Iio]  will be required to obtain σ.  One example of the Stokes vectors of four independent incident 
polarizations is horizontal (H), vertical (V), 45-degree linear (45), and left-hand circular (LHC) polarizations. 
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Although an ideal situation is to develop a single computer program that can handle an arbitrary incident polarization, 
we separate the numerical simulations into two cases in order to reduce the computational time. 
 



2.1 Numerical solutions for a linearly polarized wave (V, H, 45) normally incident upon the medium 
The numerical solutions of the linearly polarized incident wave can be obtained using the Fourier expansion in φ and 
discrete ordinate method.  We express the incoherent specific intensity using the Fourier series expansion as: 
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Because all Fourier components are decoupled and only m=0 and m=2 are required for the normal incidence, the 
radiative transfer equations for m=0 and m=2 are given by 
 
Mode 0 (m = 0)  
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The detailed derivation and descriptions are given in the references3.  The radiative transfer equations, Eq(7) and Eq(8), 
are integro-differential equations in µ and µ´ which can be solved using the discrete ordinate method1.  All variables are 
evaluated at discrete values of µ and µ´ between +1 and -1.  The resulting form is a matrix equation that can be solved 
using the eigen-value and eigen-vector method.  Once the specific intensity of each mode is obtained, the total 
incoherent specific intensity is calculated. Because different incident polarizations result in different odd and even 
function pairs of source Fourier expansion, therefore, the incoherent specific intensity is calculated as shown in Eq.(9a) 
for vertical polarization and horizontal polarization and in Eq.(9b) for 45-degree incident polarization.  
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2.2 Circularly polarized (LHC) wave normally incident upon the medium 
The radiative transfer equation for the circularly polarized incident wave for a normal incidence does not have φ 
dependence3. In this case, there is no coupling between [I1, I2] and [U,V], and therefore, we can separate the equation of 
transfer into the following two equations 
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These two equations can be solved separately to obtain the scattered Stokes vector. The advantages of this approach 
rather than dealing with a single equation are a memory size and computational time. Compared to the linearly polarized 
case, the numerical solutions for the circularly polarized incident wave can be obtained very quickly.  The left-hand and 
right-hand circularly polarized intensity is given by 
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2.3 Transferring axis of Stokes vector   
In the preceding section, the Stokes vectors are defined in terms of the vertical (E1 = Eθ ) and the horizontal (E2 = Eφ ) 
components.  In practice, however, the receiver often accepts the polarization parallel to (Ex) or perpendicular to (Ey), the 
polarization of the incident wave.  Thus, we need to obtain the Stokes vector for Ex and Ey which  are linearly related to 
the Stokes vector for (E1) and (E2) in the following manner: 
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The specific intensity Ix and Iy may be called the co-polarized and cross-polarized incoherent specific intensity, 
respectively.  For comparison with the numerical calculation, an experiment which measures [Ix Iy Uxy Vxy] is used. 
 

3. EXPERIMENTATION 
 
An optical system is constructed to measure the intensity and the polarization state of the scattered light using four 
polarizers for incident light and six analyzers for scattered light.  The system consists of a Helium-Neon laser as a light 
source (λ = 632.8 nm), 4-position polarizers, beam expander to obtain a 20mm uniform illumination, scattering cell, 6-
position analyzers, and a narrow FOV detector.  A large beam size is needed to simulate a plane wave that is used in the 
RT equation.  The system measures the intensity of the six independent polarization states of the scattered light for each 
of the four incident polarization states. The four incident polarization states chosen are vertical (V), horizontal (H), 45 



degree (45) and left-hand circular (LHC). In addition to these four states, right-hand circular (RHC) and 135 degree 
(135) are added to the analyzer to measure six polarization states.  The polarization of the incident laser is selected by 
using the λ/2 and λ/4 wave plates oriented at different angles.  The accuracy of the cross-polarization measurement is 
usually limited by the quality of the polarizers and analyzers.  In our system, the cross-pol isolation is approximately 20 
dB for linear polarization and 15 dB for the circular polarization.  The scattering cell, which has a dimension of 50mm 
diameter and 20mm path-length, is placed in front of the narrow FOV detector.  The detector consists of 6-polarization 
state analyzers, a focusing lens and multimode optical fiber that are connected to a photo-diode. Computer-controlled 
stepping motors control both polarizers and analyzers.  The scattering medium consists of Dow Chemical micro-particles 
suspended in water.  The particle average size is 2.02µm, the standard deviation is 0.0135µm, and the index of refraction 
is n=1.588.  The optical depth is controlled by changing the fractional volume of particles. We used six different optical 
depths τ= 0.9, 1.8, 3.6, 7.2, 14.4, and 28.8 in the experiment.   
 
3.1 Stokes vector derivation from experimental results 
The experimental system measures the relative intensity received at V, H, 45, 135, LHC and RHC polarizations for each 
of the four incident polarizations, V, H, 45 and LHC. Let Wh, Wv, W45, W135, Wlhc and Wrhc be the relative scattered 
intensities at the V, H, 45, 135, LHC and RHC polarization states.  Wi can be defined as 
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The total scattered intensity is the sum of the measured scattered intensities in the two orthogonal polarization states. 
Dividing each component by the total scattered intensity P0, we can obtain the normalized Stokes vector. Because of a 
slight difference of transmission characteristics of polarizers, the total intensity measured by two polarizers having 
different orthogonal states of polarization may not be the same. Therefore, to normalize Ixs and Iys, P0 = Wh +Wv is used; 
to normalize Uxys, P0 = W45 + W135 is used; and to normalize Vxys, P0 = Wlhc+Wrhc is used, respectively. Hence, the final 
normalized Stokes vectors are given by  
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3.2 Mueller matrix derivation from Stokes vector 
As we discussed in the previous section, the scattered Stokes vectors are related to the incident Stokes vectors by 
[Is]=σ[Iio] where[Iio] is the normalized incident Stokes vector given in Eq(5), [Is] is the scattered normalized Stokes 
vector which is being measured experimentally and σ is the normalized Mueller matrix which can be obtained from four 
independent incident polarization states as shown below. 
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Although the above process is discussed in terms of processing experimental results, the same technique is applied to 
calculate the Mueller matrix from the numerical calculation. 
 

4. RESULTS 
 
The necessary input parameters to calculate the specific intensity for a given optical depth (τ) are wavelength (632.8nm), 
particle size (average diameter=2.02� m), particle index of refraction (n=1.588+0.0001588i), and index of refraction of 
the background (water, n=1.33).  Equations (7,8,10,11) are solved using the discrete ordinate method with the Gauss-
quadrature order = 40 for a given polarization.   The incident light is normal to the surface and only two Fourier 
components (m = 0 and 2) are required in our calculation. The transmitted specific intensity is calculated for the optical 
depth of τ= 0.9, 1.8, 3.6, 7.2, 14.4 and 28.8.  Equations (7,8,10,11) are only for the diffuse intensity.  To calculate the 
total intensity, the reduced incident intensity which is given by exp (-τ), must be added in the forward direction.  
However, the reduced incident intensity is not important for off-axial experiment (θ ≠ 0) and/or for large optical depth.  
Therefore, the numerical simulation is shown only for the diffused received power that is given by incoherent intensity 
and the receiver characteristics. 
 

( ) ddtotal IP 2πθ=                    (25) 

whereθd is the detector’s half-angle field of view (FOV) in radian. 
 
The measured FOV is 0.0035 radian, which is close to the expected FOV (0.0031 radian) based on the lens focal length 
and the diameter of the optical fiber. The results of transmitted power as a function of optical depth for numerical study 
and experiment are shown in Figure 2. As we discussed in the previous section, because of the limited isolation of 
polarizers and analyzers, the maximum difference between the measured co- and cross-polarization is approximately 18 
dB.  The large difference, which is expected from the numerical simulations for small � , cannot be measured with our 
current experimental system.  The noise floor of the detector is approximately -97dB which is at least 10 dB less than the 
lowest measured intensity.  Therefore, the measured cross-pol data for large τ, which is approximately –5 to –10 dB less 
than the co-pol, should be an accurate measurement. 

 
Figures 2-a to 2-e show both measured and calculated power as a function of τ at different scattering angles.  The 
numerical calculation is performed at 40 angular positions between θ=0 and 180 degrees.  Rather than using the 
interpolation technique, the closest to the experimental angle is shown in each Figure. The reduced coherent intensity is 
not included in the numerical simulations shown in Figure 2-a.  At large τ, we expected the agreement between 
numerical simulations and experiments should be reasonably good.  However, we observed that the numerical results are 
almost 10 dB higher than that of experimental data in all cases.   This can be explained if the FOV of the detector is 1/3 
of what we measured (see Eq. 25). Another possibility is the accuracy of the plane wave illumination.  The laser beam is 



expanded to a 10mm diameter to simulate the plane wave.  Although we carefully adjusted the lens position, the small 
angular spread is difficult to control.  We are still investigating the source of a 10 dB discrepancy.   As reported 
previously, the different between co-pol and cross-pol of circular polarization cases is larger than that of the linear 
polarization cases in numerical simulations when τ is greater than 5.  Although we can confirm a similar trend in our 
experimental results, the difference is much smaller than the numerical simulations.  In most cases, the cross-pol of 
circular polarization incidence is not much different from that of linear polarization incidence.  This may be the 
limitation of our polarizers and analyzers, but the difference is much smaller than the isolation of these devices.  The 
experiment is conducted using micro-spheres suspended in water, and the detector is located outside the scattering cell 
(in free space).  On the other hand, the numerical simulations assume that the background, which includes the 
observation point, is water and there is no boundary.  Obviously, the polarization state of the scattered light changes as it 
transmits through water-glass-air boundaries.  Our numerical simulation does not include these boundaries. 

 
For the Mueller matrix, there is the same problem of equipment limitation to differentiate between the co- and cross- 
polarization at 18 dB or higher. Refer to Figure 3, the experimental result for the forward direction θ = 8.51 degrees and 
small optical depth τ = 0.9, the cross polarization, row =1 and column =1 of Mueller matrix, is 0.0193 when the true 
value should be close to 0.0002 as expected from the numerical study at the forward direction θ = 8.329 degrees. For 
higher optical depth, the cross-polarization is higher; therefore, the ratio between co-polarization, row = 2,column = 1 of 
Mueller matrix, to the cross polarization, row =1 and column =1 of Mueller matrix, is less. This is true for both the 
numerical study and experiment.  The Mueller matrix from the experiment becomes closer to the numerical at higher 
optical depth as the result shows that at τ = 28.8 the ratio is almost the same.  
 

5.   CONCLUSIONS 
 
This paper presents a method to obtain the Stokes vector from an experiment and compare the result to solution of the 
radiative transfer equation in a numerical study. Unlike the numerical simulations in which an ideal condition can be 
used, the experiments must be conducted with available equipment with many limitations.  The major limitation in this 
experiment is a limited isolation of polarizers and analyzers.  The comparison can be performed only when the 
difference between co- and cross-pol  powers becomes less than 10 dB, which occurs at τ greater than 15 in most cases.  
With this given condition, the different between co-pol and cross-pol of circular polarization cases is larger than that of 
the linear polarization cases in numerical simulations, but this result is not seen clearly in the experiment. Although the 
trends of the measured and numerical results are similar, we have not identified the source of a 10 dB difference in total 
power. We also need to point out that the validity of the radiative transfer equation has not been fully verified 
experimentally.   
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Figure 1: Setup Diagram 
 

 
Figure 2-a: Experiment: θs=0 degrees, numerical θs=1.176 degrees. 



 
Figure 2-b: Experiment: θs=8.51 degrees, numerical θs=8.33 degrees. 

 
Figure 2-c: Experiment: θs=17.12 degrees, numerical θs=17.33 degrees. 

 
Figure 2-d: Experiment: θs=25.82 degrees, numerical θs=26.27 degrees. 



 
Figure 2-e: Experiment: θs=34.84 degrees, numerical θs=35.22 degrees. 

 
Normalized Mueller matrix from experiment 

Deg = 8.51 
Normalized Mueller matrix from numerical 

Deg = 8.3926 
tau =  0.9000 deg = 8.51 
    0.0193    0.9880   -0.0536    0.0456 
    1.0000    0.0313    0.0536   -0.0456 
    0.0249    0.1636   -1.0574   -0.0661 
    0.1051   -0.0205    0.0146    0.9254 

tau =  0.9000 theta = 8.3926 
    0.0002    1.0382    0.0000    0.0000 
    1.0000    0.0002   -0.0000    0.0000 
         0         0           -1.0186    0.0183 
         0         0             0.0183    1.0184 

tau = 1.8000 deg = 8.51 
    0.0196    0.9878   -0.0456    0.0421 
    1.0000    0.0318    0.0456   -0.0421 
    0.0330    0.1646   -1.0597   -0.0735 
    0.1256   -0.0428    0.0101    0.9241 

tau = 1.8000 theta = 8.3926 
    0.0005    1.0333    0.0000         0 
    1.0000    0.0005   -0.0000         0 
         0         0           -1.0158    0.0143 
         0         0            0.0143    1.0156 

tau = 3.6000  deg = 8.51 
    0.0200    0.9869   -0.0479    0.0359 
    1.0000    0.0331    0.0479   -0.0359 
    0.0329    0.1671   -1.0610   -0.0117 
    0.1055   -0.0328    0.0319    0.9277 

tau = 3.6000 theta = 8.3926 
    0.0027    1.0234    0.0000    0.0000 
    1.0000    0.0027   -0.0000         0 
         0         0           -1.0088    0.0078 
         0         0            0.0078    1.0099 

tau = 7.2000 deg = 8.51 
    0.0312    0.9855   -0.0411    0.0542 
    1.0000    0.0457    0.0411   -0.0542 
    0.0309    0.1648   -1.0470   -0.0551 
    0.1195   -0.0435    0.0030    0.9149 

tau = 7.2000 theta = 8.3926 
    0.0240    1.0087    0.0000    0.0000 
    1.0000    0.0240   -0.0000         0 
         0         0           -0.9803    0.0012 
         0         0            0.0012    1.0030 

tau = 14.4000 deg = 8.51 
    0.1269    0.9811   -0.0325   -0.0071 
    1.0000    0.1458    0.0325    0.0071 
    0.0449    0.1444   -0.9556   -0.0775 
    0.0928    0.0136   -0.0095    0.8443 

tau = 14.4000 theta = 8.3926 
    0.1779    1.0011         0         0 
    1.0000    0.1779         0         0 
         0         0           -0.8226    0.0004 
         0         0           -0.0005    1.0144 

tau = 28.8000 deg = 8.51 
    0.5925    0.9687    0.0068    0.0218 
    1.0000    0.6238   -0.0068   -0.0218 
    0.0413    0.0685   -0.4568   -0.0191 
    0.0723    0.0264   -0.0599    0.5497 

tau = 28.8000 theta = 8.3926 
    0.5855    1.0001         0         0 
    1.0000    0.5856         0         0 
         0         0           -0.4145    0.0002 
         0         0           -0.0003    0.9361 

 
 



Normalized Mueller matrix from experiment 
Deg = 25.82 

Normalized Mueller matrix from numerical 
Deg = 26.2775 

tau = 0.9000 deg = 25.82 
    0.0916    0.9416   -0.0621    0.0220 
    1.0000    0.1500    0.0621   -0.0220 
    0.0179    0.1475   -0.9201   -0.0454 
    0.1105   -0.0207    0.0067    0.7735 

tau = 0.9000 theta = 26.2755 
    0.0023    1.1312    0.0000         0 
    1.0000    0.0022   -0.0000   -0.0000 
         0         0           -1.0591    0.0237 
         0         0            0.0238    1.0603 

tau = 1.8000 deg = 25.82 
    0.0741    0.9418   -0.0595    0.0178 
    1.0000    0.1323    0.0595   -0.0178 
    0.0245    0.1506   -0.9565   -0.0411 
    0.0897   -0.0066    0.0081    0.7930 

tau = 1.8000 theta = 26.2755 
    0.0051    1.0895    0.0000    0.0000 
    1.0000    0.0050   -0.0000         0 
         0         0           -1.0370    0.0075 
         0         0            0.0076    1.0408 

tau = 3.6000 deg = 25.82 
    0.0690    0.9502   -0.0669    0.0036 
    1.0000    0.1188    0.0669   -0.0036 
    0.0354    0.1546   -0.9726   -0.0072 
    0.0962    0.0042   -0.0059    0.8160 

tau = 3.6000 theta = 26.2755 
    0.0145    1.0537    0.0000   -0.0000 
    1.0000    0.0143   -0.0000         0 
         0         0           -1.0111    0.0035 
         0         0           -0.0033    1.0250 

tau = 7.2000 deg = 25.82 
    0.1953    0.9230   -0.0189    0.0350 
    1.0000    0.2723    0.0189   -0.0350 
    0.0426    0.1089   -0.7614   -0.0413 
    0.0884   -0.0100   -0.0157    0.6869 

tau =  7.2000  theta = 26.2755 
    0.0559    1.0263    0.0000   -0.0000 
    1.0000    0.0554   -0.0000         0 
         0         0           -0.9570    0.0062 
         0         0           -0.0063    1.0200 

tau = 14.4000 deg = 25.82 
    0.2846    0.9510   -0.0146    0.0075 
    1.0000    0.3336    0.0146   -0.0075 
    0.0583    0.1160   -0.7353   -0.0822 
    0.0667    0.0042   -0.0188    0.6967 

tau = 14.4000  theta = 26.2755 
    0.2263    1.0068    0.0000         0 
    1.0000    0.2264         0             0 
         0         0           -0.7769    0.0039 
         0         0           -0.0054    1.0323 

tau = 28.8000 deg = 25.82 
    0.6964    0.9572   -0.0064    0.0125 
    1.0000    0.7392    0.0064   -0.0125 
    0.0405    0.0444   -0.3292   -0.0342 
    0.0465    0.0333   -0.0346    0.4431 

tau = 28.8000  theta = 26.2755 
    0.6175    1.0004    0.0000    0.0000 
    1.0000    0.6186         0         0 
         0         0          -0.3821    0.0017 
         0         0          -0.0028    0.9362 

 
Figure 3: Comparison of Mueller matrix between numerical calculation and experiments for different τ and scattering angle. 

 

 
 
 


