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ABSTRACT

We have studied the polarization characteristics of light scattered from randomly distributed spherical particles using the
4x4 Mueller matrix. The experimental system consists of a Helium-Neon laser, polarizers (vertical, horizontal, 45-degree
linear, left-hand circular) and six analyzers (vertical, horizontal, 45-degree linear, 135-degree linear, right-hand circular,
left-hand circular). If the six polarized states of the scattered light for a given incident polarization are measured with
analyzers, we can calculate the Stokes vector. By repeating this measurement for four independent incident
polarizations, we can obtain the complete Mueller matrix. Random media consist of spherical particles of different
concentrations suspended in water. The numerical study is based on the complete solution of the radiative transfer
equation. Using the discrete ordinate method and matrix solver, we obtain the Stokes vector for a given incident
polarization. By calculating Stokes vector for four independent polarizations, we can obtain a full Mueller matrix. The
experimental results are compared with the numerical analysis.
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1. INTRODUCTION

The intensity and the polarization state of the scattered light depend on the physical parameters of the medium and the
input polarization state of the incident light. To describe the complete polarimetric-characteristics of the medium, the
Mueller matrix, which relates the incident Stokes vector to the scattered Stokes vector, is commonly used®*®. The Stokes
vector is a 4x1 vector. Therefore, the Mueller matrix is given by a 4x4 matrix. There are several different ways to
measure the Mueller matrix at microwave and optical wavelengths. If the phase of the scattered wave can be measured
accurately, the scattered fields measured at two orthogonal polarizations for a given incident polarization are sufficient to
provide the scattered Stokes vector’. This approach has been used for the millimeter-wave system. However, if the
phase measurement is difficult such asin optical systems, one method to obtain the scattered Stokes vector isto measure
the six different polarizations for a given incident polarization®.

The polarization states of the scattered light from randomly distributed spherical particles have been analyzed using the
Stokes vector and vector radiative transfer (RT) equation in the past™*“. Although the exact solution of the RT equation
has not been obtained, the numerical solution can be obtained using different approaches including the discrete ordinate
method™®. This will provide the Stokes vector of the scattered intensity for a given incident polarization. Extensive
numerical studies have been conducted for both linearly and circularly polarized incident waves®.  Although detailed
comparisons with experimental data have not been reported, it is believed that the RT equation will provide accurate
results except for the backscattering direction in which the backscattering enhancement occurs. In this paper, we will
compare the Mueller matrix calculated from the RT equation with the experimental results. The scattering medium
consists of randomly distributed spherical particles suspended in water.

2. NUMERICAL METHOD TO CALCULATE THE MUELLER MATRIX

We will briefly describe the vector radiative transfer equation, numerical method, and Mueller matrix calculation.
Details can be found in the references®. Consider the vector radiative transfer equation in a plane-parallel medium over
the optical main distance domain 7= pgZ, where pisthe number of density, ¢ is the total scattering cross section, and
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Z isthe actual distance. The equation of transfer for spherical particlesisthen giveninterm of (1,¢@ and (1/,¢) where u
= cos fand u’= cos &-.
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[11 = 4x1 incoherent specific intensity, [Ii] = 4x1 incident specific intensity, da’ = dupde, and [§ = 4x4 scattering
matrix. The scattering matrix is expressed in terms of the scattering amplitude fy3, f1» f; and f 5, calculated by Mie
theory and explained in detail by Cheung®.
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The boundary conditions at the surface 7= 0 and 7 = 7, are obtained by noting that the diffuse intensity is generated
only within the medium. Therefore, the diffuse intensity should always be pointed outward. There is no other intensity
coming into the slab of random medium except the input intensity. Note that 1, is the optical depth defined by 7, = pgL
where L is length of the dlab of the random medium. Mathematically, the boundary conditions are given as

Atr=0 [I]=0 for Osp<1
At 7 =1, [I]=O for -1<wu<0. ©)]

The equation of transfer and its boundary conditions constitute a complete mathematical description of the problem.

The numerical solution for the above vector RT equation has been extensively studied before, and the details are
discussed in the references®.  The solution of Eq(1) is given in the form of scattered Stokes vector for a given incident
polarization. To obtain the complete Mueller matrix of a random medium, we need to calculate Eq(1) for different
incident polarizations. The relationship between the scattered and incident Stokes vectorsis given by
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where ogisthe Mueller matrix, [l;] isthe incident Stokes vector, and [I4] is the scattered Stokes vector. Eq(4) indicates
that four independent [1;,] will be required to obtain . One example of the Stokes vectors of four independent incident
polarizationsis horizontal (H), vertical (V), 45-degree linear (45), and left-hand circular (LHC) polarizations.
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Although an ideal situation is to develop a single computer program that can handle an arbitrary incident polarization,
we separate the numerical simulationsinto two cases in order to reduce the computational time.



2.1 Numerical solutionsfor alinearly polarized wave (V, H, 45) normally incident upon the medium
The numerical solutions of the linearly polarized incident wave can be obtained using the Fourier expansion in ¢ and
discrete ordinate method. We express the incoherent specific intensity using the Fourier series expansion as:
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Because all Fourier components are decoupled and only m=0 and m=2 are required for the normal incidence, the
radiative transfer equations for m=0 and m=2 are given by

Mode 0 (m=0)
1
i@l = @ oo+ [ILol a2 @lgdu + [Fy expt=n) )
-1
where
_| ot _[ala _1|Fn
=] b=lsk Fh=3)
Mode 2 (m =2),
1
u i ol =i @l + [ @ @)oo + [FL, o) ®
-1
where ) )
l1a %Fm
s a b 1
el e e
Vo ’ . ~Re(Fg3)
—Im(Fg3)

The detailed derivation and descriptions are given in the references’. The radiative transfer equations, Eq(7) and Eq(8),
are integro-differential equationsin p and " which can be solved using the discrete ordinate method. All variables are
evaluated at discrete values of pu and U between +1 and -1. The resulting form is a matrix equation that can be solved
using the eigen-value and eigen-vector method. Once the specific intensity of each mode is obtained, the total
incoherent specific intensity is calculated. Because different incident polarizations result in different odd and even
function pairs of source Fourier expansion, therefore, the incoherent specific intensity is calculated as shown in Eq.(9a)
for vertical polarization and horizontal polarization and in Eq.(9b) for 45-degree incident polarization.
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2.2 Circularly polarized (LHC) wave normally incident upon the medium

The radiative transfer equation for the circularly polarized incident wave for a normal incidence does not have ¢
dependence®. In this case, there is no coupling between [l4, I5] and [U,V], and therefore, we can separate the equation of
transfer into the following two equations
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These two equations can be solved separately to obtain the scattered Stokes vector. The advantages of this approach
rather than dealing with a single equation are a memory size and computational time. Compared to the linearly polarized
case, the numerical solutions for the circularly polarized incident wave can be obtained very quickly. The left-hand and
right-hand circularly polarized intensity is given by

where
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2.3 Transferring axis of Stokes vector

In the preceding section, the Stokes vectors are defined in terms of the vertical (E; = Ep) and the horizontal (E, = E,)
components. In practice, however, the receiver often accepts the polarization parallel to (E,) or perpendicular to (E)), the
polarization of the incident wave. Thus, we need to obtain the Stokes vector for E, and E, which are linearly related to
the Stokes vector for (E;) and (E,) in the following manner:
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The specific intensity |, and |, may be called the co-polarized and cross-polarized incoherent specific intensity,
respectively. For comparison with the numerical calculation, an experiment which measures[1 I, Uy, Vy] is used.

3. EXPERIMENTATION

An optical system is constructed to measure the intensity and the polarization state of the scattered light using four
polarizers for incident light and six analyzers for scattered light. The system consists of a Helium-Neon laser as a light
source (A = 632.8 nm), 4-position polarizers, beam expander to obtain a 20mm uniform illumination, scattering cell, 6-
position analyzers, and a narrow FOV detector. A large beam size is needed to ssimulate a plane wave that is used in the
RT equation. The system measures the intensity of the six independent polarization states of the scattered light for each
of the four incident polarization states. The four incident polarization states chosen are vertical (V), horizontal (H), 45



degree (45) and left-hand circular (LHC). In addition to these four states, right-hand circular (RHC) and 135 degree
(135) are added to the analyzer to measure six polarization states. The polarization of the incident laser is selected by
using the A/2 and A/4 wave plates oriented at different angles. The accuracy of the cross-polarization measurement is
usually limited by the quality of the polarizers and analyzers. In our system, the cross-pol isolation is approximately 20
dB for linear polarization and 15 dB for the circular polarization. The scattering cell, which has a dimension of 50mm
diameter and 20mm path-length, is placed in front of the narrow FOV detector. The detector consists of 6-polarization
state analyzers, a focusing lens and multimode optical fiber that are connected to a photo-diode. Computer-controlled
stepping motors control both polarizers and analyzers. The scattering medium consists of Dow Chemical micro-particles
suspended in water. The particle average size is 2.02um, the standard deviation is 0.0135um, and the index of refraction
isn=1.588. The optical depth is controlled by changing the fractional volume of particles. We used six different optical
depths 1= 0.9, 1.8, 3.6, 7.2, 14.4, and 28.8 in the experiment.

3.1 Stokes vector derivation from experimental results

The experimental system measures the relative intensity received at V, H, 45, 135, LHC and RHC polarizations for each
of the four incident polarizations, V, H, 45 and LHC. Let W, W, W5 W35 Wi, and Wy, be the relative scattered
intensities at the V, H, 45, 135, LHC and RHC polarization states. W; can be defined as
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The total scattered intensity is the sum of the measured scattered intensities in the two orthogonal polarization states.
Dividing each component by the total scattered intensity P,, we can obtain the normalized Stokes vector. Because of a
dight difference of transmission characteristics of polarizers, the total intensity measured by two polarizers having
different orthogonal states of polarization may not be the same. Therefore, to normalize I,s and lys, Po = Wy, +W, is used;
to normalize Uys, Py = Wys + W35 is used; and to normalize Viys, Po = Winc+Wiic is used, respectively. Hence, the final
normalized Stokes vectors are given by
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3.2 Mueller matrix derivation from Stokes vector

As we discussed in the previous section, the scattered Stokes vectors are related to the incident Stokes vectors by
[1d=0][lis] where[l;] is the normalized incident Stokes vector given in Eq(5), [14] is the scattered normalized Stokes
vector which is being measured experimentally and o is the normalized Mueller matrix which can be obtained from four
independent incident polarization states as shown below.
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Although the above process is discussed in terms of processing experimental results, the same technique is applied to
calculate the Mueller matrix from the numerical calculation.

4. RESULTS

The necessary input parameters to calculate the specific intensity for a given optical depth (1) are wavelength (632.8nm),
particle size (average diameter=2.02um), particle index of refraction (n=1.588+0.0001588i), and index of refraction of
the background (water, n=1.33). Equations (7,8,10,11) are solved using the discrete ordinate method with the Gauss-
quadrature order = 40 for a given polarization. The incident light is normal to the surface and only two Fourier
components (m = 0 and 2) are required in our calculation. The transmitted specific intensity is calculated for the optical
depth of = 0.9, 1.8, 3.6, 7.2, 14.4 and 28.8. Equations (7,8,10,11) are only for the diffuse intensity. To calculate the
total intensity, the reduced incident intensity which is given by exp (-t), must be added in the forward direction.
However, the reduced incident intensity is not important for off-axial experiment (6# 0) and/or for large optical depth.
Therefore, the numerical simulation is shown only for the diffused received power that is given by incoherent intensity
and the receiver characteristics.

Rotal = (”9d2)| d (25)
whereg, is the detector’ s half-angle field of view (FOV) in radian.

The measured FOV is 0.0035 radian, which is close to the expected FOV (0.0031 radian) based on the lens focal length
and the diameter of the optical fiber. The results of transmitted power as a function of optical depth for numerical study
and experiment are shown in Figure 2. As we discussed in the previous section, because of the limited isolation of
polarizers and analyzers, the maximum difference between the measured co- and cross-polarization is approximately 18
dB. The large difference, which is expected from the numerical simulations for small T, cannot be measured with our
current experimental system. The noise floor of the detector is approximately -97dB which is at least 10 dB less than the
lowest measured intensity. Therefore, the measured cross-pol data for large T, which is approximately -5 to —10 dB less
than the co-pol, should be an accurate measurement.

Figures 2-a to 2-e show both measured and calculated power as a function of 1 at different scattering angles. The
numerical calculation is performed at 40 angular positions between 6=0 and 180 degrees. Rather than using the
interpolation technique, the closest to the experimental angle is shown in each Figure. The reduced coherent intensity is
not included in the numerical simulations shown in Figure 2-a. At large 1, we expected the agreement between
numerical simulations and experiments should be reasonably good. However, we observed that the numerical results are
almost 10 dB higher than that of experimental datain all cases. This can be explained if the FOV of the detector is 1/3
of what we measured (see Eq. 25). Another possibility is the accuracy of the plane wave illumination. The laser beamis



expanded to a 10mm diameter to simulate the plane wave. Although we carefully adjusted the lens position, the small
angular spread is difficult to control. We are still investigating the source of a 10 dB discrepancy. As reported
previoudly, the different between co-pol and cross-pol of circular polarization cases is larger than that of the linear
polarization cases in humerical simulations when T is greater than 5. Although we can confirm a similar trend in our
experimental results, the difference is much smaller than the numerical smulations. In most cases, the cross-pol of
circular polarization incidence is not much different from that of linear polarization incidence. This may be the
limitation of our polarizers and analyzers, but the difference is much smaller than the isolation of these devices. The
experiment is conducted using micro-spheres suspended in water, and the detector is located outside the scattering cell
(in free space). On the other hand, the numerical simulations assume that the background, which includes the
observation point, is water and there is no boundary. Obviously, the polarization state of the scattered light changes as it
transmits through water-glass-air boundaries. Our numerical simulation does not include these boundaries.

For the Mueller matrix, there is the same problem of equipment limitation to differentiate between the co- and cross-
polarization at 18 dB or higher. Refer to Figure 3, the experimental result for the forward direction 6= 8.51 degrees and
small optical depth T = 0.9, the cross polarization, row =1 and column =1 of Mueller matrix, is 0.0193 when the true
value should be close to 0.0002 as expected from the numerical study at the forward direction &= 8.329 degrees. For
higher optical depth, the cross-polarization is higher; therefore, the ratio between co-polarization, row = 2,column = 1 of
Mueller matrix, to the cross polarization, row =1 and column =1 of Mueller matrix, is less. This is true for both the
numerical study and experiment. The Mueller matrix from the experiment becomes closer to the numerical at higher
optical depth asthe result shows that at T = 28.8 the ratio is amost the same.

5. CONCLUSIONS

This paper presents a method to obtain the Stokes vector from an experiment and compare the result to solution of the
radiative transfer equation in a numerical study. Unlike the numerical ssimulations in which an ideal condition can be
used, the experiments must be conducted with available equipment with many limitations. The mgjor limitation in this
experiment is a limited isolation of polarizers and analyzers. The comparison can be performed only when the
difference between co- and cross-pol powers becomes less than 10 dB, which occurs at T greater than 15 in most cases.
With this given condition, the different between co-pol and cross-pol of circular polarization cases is larger than that of
the linear polarization cases in numerical simulations, but this result is not seen clearly in the experiment. Although the
trends of the measured and numerical results are similar, we have not identified the source of a 10 dB difference in total
power. We aso need to point out that the validity of the radiative transfer equation has not been fully verified
experimentally.
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Figure 1: Setup Diagram
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Figure 2-a: Experiment: 6.=0 degrees, numerical 6,~1.176 degrees.
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Experiment: Total specific intensity in the forward direction at 34.85 deg vs. Tau Mumerical: Total specific intensity in the farward direction at 35.2180 deg vs. Tau
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Figure 2-e: Experiment: 6,~34.84 degrees, numerical 6,~35.22 degrees.

Normalized M ueller matrix from experiment Normalized M ueller matrix from numerical
Deg=8.51 Deg = 8.3926
tau = 0.9000 deg = 8.51 tau = 0.9000 theta = 8.3926
0.0193 0.9880 -0.0536 0.0456 0.0002 1.0382 0.0000 0.0000
1.0000 0.0313 0.0536 -0.0456 1.0000 0.0002 -0.0000 0.0000
0.0249 0.1636 -1.0574 -0.0661 0 0 -1.0186 0.0183
0.1051 -0.0205 0.0146 0.9254 0 0 0.0183 1.0184
tau = 1.8000 deg = 8.51 tau = 1.8000 theta = 8.3926
0.0196 0.9878 -0.0456 0.0421 0.0005 1.0333 0.0000 0
1.0000 0.0318 0.0456 -0.0421 1.0000 0.0005 -0.0000 0
0.0330 0.1646 -1.0597 -0.0735 0 0 -1.0158 0.0143
0.1256 -0.0428 0.0101 0.9241 0 0 0.0143 1.0156
tau = 3.6000 deg = 8.51 tau = 3.6000 theta = 8.3926
0.0200 0.9869 -0.0479 0.0359 0.0027 1.0234 0.0000 0.0000
1.0000 0.0331 0.0479 -0.0359 1.0000 0.0027 -0.0000 0
0.0329 0.1671 -1.0610 -0.0117 0 0 -1.0088 0.0078
0.1055 -0.0328 0.0319 0.9277 0 0 0.0078 1.0099
tau = 7.2000 deg = 8.51 tau = 7.2000 theta = 8.3926
0.0312 0.9855 -0.0411 0.0542 0.0240 1.0087 0.0000 0.0000
1.0000 0.0457 0.0411 -0.0542 1.0000 0.0240 -0.0000 0
0.0309 0.1648 -1.0470 -0.0551 0 0 -0.9803 0.0012
0.1195 -0.0435 0.0030 0.9149 0 0 0.0012 1.0030
tau = 14.4000 deg = 8.51 tau = 14.4000 theta = 8.3926
0.1269 0.9811 -0.0325 -0.0071 0.1779 1.0011 0 0
1.0000 0.1458 0.0325 0.0071 1.0000 0.1779 0 0
0.0449 0.1444 -0.9556 -0.0775 0 0 -0.8226  0.0004
0.0928 0.0136 -0.0095 0.8443 0 0 -0.0005 1.0144
tau = 28.8000 deg = 8.51 tau = 28.8000 theta = 8.3926
0.5925 0.9687 0.0068 0.0218 0.5855 1.0001 0 0
1.0000 0.6238 -0.0068 -0.0218 1.0000 0.5856 0 0
0.0413 0.0685 -0.4568 -0.0191 0 0 -0.4145 0.0002
0.0723 0.0264 -0.0599 0.5497 0 0 -0.0003 0.9361




Normalized M ueller matrix from experiment
Deg = 25.82

Normalized Mueller matrix from numerical
Deg = 26.2775

tau = 0.9000 deg = 25.82
0.0916 0.9416 -0.0621 0.0220
1.0000 0.1500 0.0621 -0.0220
0.0179 0.1475 -0.9201 -0.0454
0.1105 -0.0207 0.0067 0.7735

tau = 0.9000 theta = 26.2755
0.0023 1.1312 0.0000 0
1.0000 0.0022 -0.0000 -0.0000
0 0 -1.0591 0.0237
0 0 0.0238 1.0603

tau = 1.8000 deg = 25.82
0.0741 0.9418 -0.0595 0.0178
1.0000 0.1323 0.0595 -0.0178
0.0245 0.1506 -0.9565 -0.0411
0.0897 -0.0066 0.0081 0.7930

tau = 1.8000 theta = 26.2755
0.0051 1.0895 0.0000 0.0000
1.0000 0.0050 -0.0000 0
0 0 -1.0370 0.0075
0 0 0.0076 1.0408

tau = 3.6000 deg = 25.82
0.0690 0.9502 -0.0669 0.0036
1.0000 0.1188 0.0669 -0.0036
0.0354 0.1546 -0.9726 -0.0072
0.0962 0.0042 -0.0059 0.8160

tau = 3.6000 theta = 26.2755
0.0145 1.0537 0.0000 -0.0000
1.0000 0.0143 -0.0000 0
0 0 -1.0111 0.0035
0 0 -0.0033 1.0250

tau = 7.2000 deg = 25.82
0.1953 0.9230 -0.0189 0.0350
1.0000 0.2723 0.0189 -0.0350
0.0426 0.1089 -0.7614 -0.0413
0.0884 -0.0100 -0.0157 0.6869

tau= 7.2000 theta= 26.2755
0.0559 1.0263 0.0000 -0.0000
1.0000 0.0554 -0.0000 0

0 0 -0.9570 0.0062
0 0 -0.0063 1.0200

tau = 14.4000 deg = 25.82

0.2846 009510 -0.0146 0.0075
1.0000 0.3336 0.0146 -0.0075
0.0583 0.1160 -0.7353 -0.0822
0.0667 0.0042 -0.0188 0.6967

tau = 14.4000 theta= 26.2755
0.2263 1.0068 0.0000 0

1.0000 0.2264 0 0
0 0 -0.7769 0.0039
0 0 -0.0054 1.0323

tau = 28.8000 deg = 25.82
0.6964 0.9572 -0.0064 0.0125
1.0000 0.7392 0.0064 -0.0125
0.0405 0.0444 -0.3292 -0.0342
0.0465 0.0333 -0.0346 0.4431

tau = 28.8000 theta= 26.2755
0.6175 1.0004 0.0000 0.0000
1.0000 0.6186 0 0

0 0 -0.3821 0.0017
0 0 -0.0028 0.9362

Figure 3: Comparison of Mueller matrix between numerical calculation and experiments for different T and scattering angle.




