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Introduction 

The focus of this paper is to investigate the application 
of wideband adaptive array processing techniques to the 
problem of radar imaging. In particular we are interested in 
joint range-angle estimation with angular resolution 
improvement for small, relative to A ,  antennas. The 
simulations and experimental results indicate that this 
approach is viable in a practical sense, and yields 
significant angular resolution improvement over 
conventional methods. 

The approach uses conventional Fourier techniques 
for downrange information and uses adaptive 
beamforming for the azimuth dimension. The basic 
approach is to transmit a wideband set of continuous wave 
signals, then apply spatial resampling to the received data 
to correct for the fixed element spacing, then Fourier 
transform this data to extract range information. We then 
have a spectral estimation problem at each range cell. By 
using data associated with each range bin, the angular 
spectrum is computed using a minimum variance spectral 
estimate. In general, adaptive array theory is based on the 
narrow band requirement that the array aperture size is 
much less than the inverse relative bandwidth. This implies 
that plane waves are parameterized primarily by their 
angle of arrival. For this work the narrowband assumption 
is not valid since we will be using bandwidths of at least 
20% of the carrier frequency. Spatial resampling can 
estimate the array data that would occur if the antenna 
spacing were varied physically as a function of frequency. 
See [2] for a discussion of spatial resampling applied to 
underwater acoustics. Another problem that must be 
addressed is that parametric spectral estimation methods 
require a covariance matrix to be estimated from multiple, 
uncorrelated snapshots of the array output. We introduce a 
method that amounts to an induced Doppler shift that can 
be used to generate the required data necessary for angular 
spectral estimates. The final result is a range-angle plot of 
backscattered energy. 

Signal Model and Formulation 

Consider the case of a superposition of plane waves 
incident upon a receiving array. These plane waves are the 
backscattered energy from objects in the field of view of 

the transmitter. Assume objects are in the far field so the 
plane wave assumption is valid. The incident plane waves 
can be parameterized by their angle of arrival as shown in 
Figure 1. 
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Figure 1. Uniform linear array geometry. 

- 
A narrowband incident field with wavenumber vector k is 

present. l i l =  k = 27$/c0, where C, is the free space 

velocity. In the X-Y plane k = k(sin 8, COS e)’, with 
- 

measured clockwise from the Y-axis. The sensor 

positions are given by r‘ = (x,, y,)  . The output of each 
sensor is then given by 

T 

Applying this to the uniform linear array geometry above 
yields the baseband output at each sensor as 

with d the inter-element distance. 
Given that range information requires signal 

bandwidth, consider a point target at a distance r, from 
the origin. A CW transmitter radiates a field that is 
scattered by the target back to the receiver. The target is 
modeled as a delta function with backscattering amplitude, 
A(r,) = A = 1, at the receiver. 

B(r )  = A(r,)S(r - r,) (3) 

The transmitter generates a cw signal at frequency f, , 

with round trip travel time given by z, =-. For 

frequency f,, the received signal is: 

2% 
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f s w  where Af = - and f s w  is the total bandwidth used 

and M is the number of steps. This equation is the discrete 
(spatial) frequency Fourier transform of the target position 

ro . Note that - has units of cycles per unit distance, 

or cycles per meter for example. Therefore a point target at 

position ro is transformed to M samples of a complex 

M 

CO 

r, or - 2 f ~ ~  yo. To exponential of 'frequency', - 2Af 
C O  MCO 

convert this signal to the spatial domain, apply the inverse 
Fourier transform, which yields 

This equation describes a SINC function with peak at 

n = round(- 2 f B w  r) ,  where round() signifies rounding 

to the nearest integer and r is an arbitrary distance. The 
SINC function provides interpolation for range values that 

are non-integer values of - 2 f B w  r .  Increasing the 

bandwidth, f,, , will increase the resolution but reduces 
the maximum usable range due to aliasing. This method of 
ranging is called FM-CW ranging and is well known for 
imaging stationary scenes. The free space medium is linear 
so superposition holds, allowing the extension of one 
target to multiple targets or in our case scatterers 
distributed in range (and angle). As will be shown in the 
next section increasing bandwidth, f B w  , also affects the 
spatial spectrum. 

We then combine the FM-CW technique with the 
angle of arrival results to describe the antenna outputs for 
the M, CW linear stepped frequencies, with angles of 

CO 

C O  

, incident upon N antenna 

elements. Combining Eq(2) and Eq(4), and letting A=l, 
the baseband antenna output for frequency m and element 

for one emitter at range ro and angle 6 is 

M 
2 

Transmit frequency, f, = f o  + ( m  - -)Af and f o  is 

the center frequency of the antenna. The first exponential 
term describes the phase information for range, and the 
second and third terms describe the inter-element phase 
due to the incidence angle. The second term describes the 
linear phase shift across the array for incidence angle 6 ,  
which is independent of frequency. However the third term 
shows an additional phase across the array which is 
dependent on frequency mAf . The affect of the last term 
is to cause the angle of arrival to appear to change as the 
incident field wavelength changes. The angle of arrival 
sweeps linearly from 

230  f s w  

C O  2fo 
230  f sw 

C O  2fo 

- (1 - -)dsin8 radians 

(6 )  to - (1 + -)dsin6 radians. 

The angular sweep is proportional to the true angle. For 
large angles of arrival the angular broadening is greatest. 
Targets are smeared in range by the third term also. 
Conventional delay and sum beamfonning correctly 
accounts for both of these affects, but for small antennas 
the angular resolution will be poor. The set of received 
signal samples from M frequencies, at N outputs of the 
antenna array is formed into a matrix for processing. 

Spatial Resampling 

The array outputs must be properly focussed so that 
the angle of arrival of a single plane wave for any given 
frequency m will be constant. This is accomplished by 
resampling the array outputs to correct for the constant 
element spacing d .  See [4] for discussion of spatial 
resampling techniques applied to wideband angle of arrival 
estimation for uncorrelated signals. For joint range-angle 
estimation we have the additional requirement that the 
antenna phase center for each resampled array output must 
remain fixed at the center of the array. The spatial 
resampling concept is motivated by treating the outputs of 
the N element linear array as the result of spatially 
sampling a continuous linear array. The resampling is 
accomplished by approximating a continuous array by 
interpolation of the given data and then extracting the 
required samples at the new sampling interval required for 
each temporal frequency m . Interpolation is 
accomplished by inserting K - 1 zeros between samples, 
where K is the interpolation factor, to produce a vector of 
length K N .  A linear phase, low pass filter is applied to 

the data. This filter has a cutoff frequency of -, where 
e 
K 
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6' is the maximum normalized spatial angle, typically 

f .7/: . A fast implementation utilizes the polyphase 

filtering architecture [3].  The resampling process will 
create a set of data that contains samples at varying 
distances from the antenna phase center. To prevent the 
algorithm from trying to sample beyond the ends of the 

array we introduce a scale factor p = , which has 

the affect of making the interpolated array spacing 
d appear fractionally smaller than the original by p. 
Consequently the steering vectors used later for angular 
spectrum estimation will be corrected by palso. 
Combining these ideas with the bandwidth relation in ( 6 )  it 
is easily shown that the resampled data for element n , and 
frequency m , from the interpolated array is given by 

Y(n,m) = 

f o  

Xint erp 

(7) 

K [ n - $ )  

j ,  

where Xinterp (*) is the interpolated array of length 

KN . Y is a matrix of size M by N . The offsets into the 
interpolated array are all relative to the array center at 

- . This procedure amounts to interpolation followed 
KN 
2 

by decimation of the original data. 

Angular Spectrum Estimation 

This section outlines the minimum variance spectral 
estimation method used to derive the angular spectrum at 
each range bin. Consider an array of N sensors whose 
location and directional characteristics are known. 
Assume that there are multiple signal sources whose 
statistical characteristics are uncorrelated. A simple model 
for the received signal y(t) at the output of each element 
can be expressed by: 

The vector a( v) is the spatial signature (Nxl) that depends 
upon the angle of arrival ty and x is a scalar associated with 
the lth signal source and incorporates the time variation of 
the signal. Assume there are L signal sources and M 
uncorrelated snapshots. n(t) is addittive Gaussian noise. 
The signal received by the sensors is y(t) and it is an N x 1 
complex vector. As evident, the signal y(t) is a linear 
combination of the spatial signature and the additive noise. 
When the geometry of the array is linear with equally 
spaced sensors, the steering vector of the lth signal source 
is 

a(w, = [I eifl~v, ) ei2n(w ) ... ei(N-')n(w) ]', where 

a(t,v,) = kd sin v1 represents spatial frequency, and d 
denotes sensor spacing. The source signal x(t) and the 
noise n(t) are white Gaussian distributed with zero mean, 
statistically independent of the field signal(s). 
Consequently we have: 

where ' represents conjugate transposition. The stationarity 
assumption extends to both it's temporal and spatial 
properties. The spatial covariance matrix can be expressed 
as follows: 

1=1 

The rank of the covariance matrix for a single 
complex exponential field is one. When more signals are 
present, the individual covariance matrices will sum to 
increase the rank for each signal (e.g., three signals 
produces a covariance matrix of rank three). 

Next, define the steering vector as a sequence of 
complex exponentials, which are chosen to cancel the 
plane-wave signal's propagation-related phase shift. This 
vector either steers the beam's assumed propagation 
direction to the wave's direction of propagation or focuses 
the beam in the case of a near-field source. The general 
form for the steering vector is: 

The notation 
propagation at each sensor. 

denotes the phase shift due to the wave's 
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direction. 
beamformer is: 

The output power of the minimum variance 

Adaptive Beamforming 

The basic approach here is to solve a constrained, 
minimum mean-squared error, optimization problem. 
Many algorithms have been developed using this concept. 
The received signal y(t) from antenna array is expressed 
as: 

where a is the spatial signature of the desired signal. 
Using the conventional beamforming approach described 
above, we may form a weight vector w focus the array: 

Y 0)  = a ( v ) W  + n( t )  (12) 

q t )  = w"y(t) (13) 
The objective is to maximize the output signal to 
interference-plus-noise ratio (SINR). For constrained 
optimization, instead of maximizing the output SINR 
directly, we minimize the mean-squared value of the 
weighted observations, 

Po = E[/WHy12] = wHRw 

subject to a look-direction gain constraint. 

Minimum Variance Beamforming 

Consider an ideal, unit-amplitude signal, assumed to 

be propagating in the direction 6 . The notation for this 

signal is e({). The idea is to apply the weight vector w 
to the sensor output. Any signal from the direction 
specified by e should have unit gain. Noise and signal 
propagating from other direction should be suppressed. In 
this case, the constraint optimization problem is: 

- 
- 

min E[lwHy12] subject to ReLe" w J = 1 

(15) 
where the constraint Re[eH w J = 1 ensures that the ideal 
signal has unit gain. The optimum weight vector that 
solves the optimization problem is given by [ 11: 

R-'e 
eHR-'e 

W O  = 

It is evident that the optimum weight vector depends 
on two parameters: the correlation matrix R and the 

direction of propagation 6 . As different directions are 
scanned, the weights adapt to the signal and noise 
component of the observations. The beamformer output 

power is P = W, Rw, , in the assumed propagation 

- 

H 

Covariance Matrix Estimation 

To estimate R from the available data, it must be 
derived from I.I.D. samples of 2,  the observed data. The 
approach utilized for deriving multiple snapshots is 
perhaps the most important one for imaging since it can 
yield an array that does not sacrifice degrees of freedom as 
is required for sub-array averaging. This technique is based 
on the use of a set of orthogonal, closely spaced, sub- 
frequencies around each frequency m . By referring again 
to (3), (4) it is evident that another way to view the 
situation is that of a moving target within a single tone, 
continuous wave transmit field. With this Doppler shift in 
mind we can look at the work described earlier in a 
different way. If the transmitter is swept around each of 

A4 frequencies, in L steps of step size Dx, then the 

Lsub-frequencies form an orthogonal set over a narrow 
frequency band. D is defined as the total bandwidth of 
the induced Doppler shift. Thus we have created a set of 
receive vectors X m r ,  that are uncorrelated signals to be 
used in (1 6). The total bandwidth utilized by the system is 
the same although it has been more finely divided. The 
resulting data cube is of size N * M  * L .  Ideally 
L would be equal to 2N since it can be shown that this 
value yields estimates of R that are within 3dB of optimal. 
The resampling process is carried out for each frequency 
fml, as described above. After range compression is 
applied using the FFT (Fast Fourier Transform), the 
corresponding groups of z,,,, are used to build R for that 
range bin, as shown by 

Next is a brief description of forward-backward 
averaging, which is an effective way to improve a 
correlation matrix estimate. A ULA (uniform linear amay) 
steering vector remains invariant up to a scaling if it's 
elements are reversed and complex conjugated. Let J be an 
NxN exchange matrix whose components are zero except 
for the anti-diagonal. Then for the ULA it holds that 
JS*(q$) = e-i(N-')p$(q$) , 
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The backward array correlation matrix is therefore 

R, = JR*J. By averaging this matrix with the normal 
one we get the new correlation matrix 

1 
2 

R, = - (R + JR* J) . (19) 

By combining the methods outlined above we are able to 
estimate R with a great deal of robustness. In general, R 
will be full rank but may have a high condition number. 
We wish to obtain reasonable estimates in all normal 
imaging environments, so for this reason we include a user 

controllable amount of diagonal loading a21, added to R 
to set the dynamic range of the image. 

Computer Simulation Results 

A computer simulation has been created to verify the 
proposed scheme for adaptive imaging. Figure 2 shows a 
image created by performing conventional beamforming 
on a 12-element array, using 800-1200 MHz bandwidth, 
and 40 frequency steps. The 8 targets are not discernible 
due to the antenna sidelobes. The 5 targets at 5 meters 
downrange are not separable. Figure 3 uses a 12-element 
array and 4 sub-frequencies but uses spatial resampling to 
achieve the best possible imaging. All targets are clearly 
discernible. 

Conventdond Dekv and Sum. 12 element. 8 0 L 1 2 M  MI+ 

4 do 4 0  -20 0 20 40  00 m 
Argle -degrees 

Figure 2. 
element array with 8 targets. 

Conventional beamfoming, using a 12- 

Faeurrd. 12 element adaPlive array. 8OD-1200 MHz bardwdlh 

I4 

l2 t 

I I 
4 - 4 0 - X I  0 x) 40 eo m 

Azimuth Argle, degrees 

Figure 3. 
using 12-element array with 8 targets. 

Resampled, Prefocussed Adaptive array 

Experimental Results 

The imaging system consists of a 4-element uniform 
linear array for receive, and a wide beamwidth horn 
antenna for the transmitter. The source is stepped from 800 
MHz to 1200 MHz in 80 increments. The system center 
frequency is, F,= 1 GHz or approximately 33cm 

wavelength and AC = cO/Fc. Transmit power is 5dBm 
into the horn antenna. The receiver consists of 4 vertical 
half wave at A,, dipoles, spaced at half wave at /2, 
intervals, followed by matched (equal group delay) receive 
channels, with 60dB gain, and each mixed to a 102.5 KHz 
IF frequency. The transmitted signal is tapped off at the 
antenna and mixed by the LO to 102.5 KHz to form the 
reference signal. The 5 signal channels are sampled at 10 
KHz each, thus converting each signal to 2.5 KHz discrete 
time due to undersampling. This signal, being 'A of the 
sample rate is then converted to complex baseband by 
mixing with digital quadrature oscillators, followed by low 
pass filtering. Finally, one set of 4 complex signals, 
representing S,, for each antenna is created by dividing 
each channel's baseband signal by the reference signal to 
derive the round trip phase and amplitude response at each 
antenna element for each frequency. The system is placed 
in an anechoic chamber for testing. Test objects consist of 
various metal cylinders, approximately 1-2 wavelength in 
size and placed from 3 to 8 meters away. It should be 
noted that our anechoic chamber is not highly effective at 
absorbing energy at lGHz, so there is some clutter energy. 
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Focussed 4 element array 2 taqerclunff 800-1200 MHz 

e 

%a 4 3  4 0  -XI 0 20 44 60 80 
Azimldh degrees 

Figure 4. One target at 4.5m downrange and -30” 
crossrange, A larger cylindrical object is at 5.5m 
downrange and 25” crossrange. 

Focusred 4dements. 1 target,Tx Leakage+ marclldter 800-1200 M M  
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Figure 5. One small cylinder target at 5.5m 
downrange and +20° crossrange, transmitter is at 2.5m 
downrange and 30” crossrange. Near field clutter is seen 
between the transmitter and target. 

The experimental array uses the same frequency and 
bandwidth parameters as the simulation except has 4 
elements, utilizes forward-backward averaging, and 4 sub- 
frequencies. This array could benefit from using more sub- 
frequencies to improve the estimate of R, but system 
constraints restricted the available data storage. Future 
hardware will allow more data storage as well as additional 
antenna elements. Diagonal loading is used to set the 
dynamic range of the image and stabilize the correlation 
matrix estimates. Figure 4 shows a image of 2 targets in 
the chamber. The available space is fairly small, 
consequently the target scenario is simple. Figure 5 shows 

a higher level of near field clutter as well as some emitted 
signal from the transmitter hom. 

Conclusion 

This paper has outlined an approach for radar imaging 
using wideband array processing techniques. In particular 
the use of spatial resampling to convert signals to a 
narrowband model, and an induced Doppler shift for 
angular spectrum estimation are combined for imaging. 
Simulations were validated by an experimental 4-element, 
stepped CW system. Ongoing work will investigate larger 
arrays, performance issues, antenna element dispersion and 
calibration. This approach may be useful for automotive 
radar applications that utilize small patch antennas or 
foliage penetration systems that utilize low frequencies for 
imaging and area surveillance. 
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