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ABSTRACT

In this paper we present a theoretical study of focused beam wave pulse propagation and diffusion in highly scattering
discrete random media. By using Wigner distributions, we calculate an explicit closed-form expression for the reduced
intensity of focused beam waves. From this analysis, we find that the extent to which the reduced intensity focuses
depends upon the attenuation it experiences from scattering and absorption. We then solve the diffusion equation
for continuous wave sources and delta function input pulses to examine the spatial and temporal spreading of beam
wave pulses. Through numerical approximations to the obtained solutions, we find that focusing effects of the diffuse
intensity are negligible. Finally, we compare these results to those of collimated beam waves and pulsed plane waves.
Through these comparisons, we determine that the spatial spreading of focused beams is similar to that of collimated
beams, and the temporal spreading of the focused beam wave pulse is similar to that of plane wave pulses.
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1. INTRODUCTION

Optical beam wave propagation in discrete random media has attracted considerable amounts of interest among those
working in optical imaging of biological media, and optical communication and remote sensing through fog and rain.
For these applications, a thorough knowledge of the spatio-temporal spreading of the beam wave pulse is necessary.
There has been much theoretical work done on these problems using the parabolic equation technique1,2 where the
scattering is mainly confined to the forward direction. However, for discrete random media where particle sizes vary
on the order of a wavelength or smaller, scattering occurs over large angles and the parabolic approximation is not
valid. Therefore, one must use the theory of radiative transport to investigate these problems.

The theory of radiative transport models classical wave propagation in discrete random media.1 This theory
describes the transport of energy that is emitted, scattered and absorbed in a medium containing a random distri-
bution of scattering particles.3 In the limit when a significant amount of multiple scattering takes place with little
absorption, the diffuse component of the specific intensity develops a nearly isotropic angular distribution and the
corresponding radiative transport equation reduces to a simpler diffusion equation for the angularly averaged diffuse
intensity.4–7 This approach to studying highly scattering random media has lead to a number of fundamental results
that have been successfully applied to biomedical optics,8 for example.

The Wigner distribution was originally constructed to examine quantum mechanical systems in phase space.9

It is also a useful tool for studying classical wave propagation since its properties are very similar to those of the
specific intensity of transport theory. Because the Wigner distribution is constructed from the fundamental wave
field, it provides one with a mathematical tool to bridge fundamental wave fields to the specific intensity of the
phenomenological theory of radiative transport. This relationship of the Wigner distribution to transport theory is
well known and has been studied by a number of authors.10–12

After giving a brief overview of optical diffusion in random media, we examine focused beam waves and their
corresponding Wigner distributions in order to determine the correct form for the reduced intensity. Then we
calculate the solution to the diffusion equation for continuous wave sources and delta function input pulses. From
these investigations, we examine the temporal and spatial spreading of the pulse.
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2. THE THEORY OF RADIATIVE TRANSPORT

Radiative transport theory models classical wave propagation in a scattering and absorbing medium.3 The fundamen-
tal quantity of transport theory is the specific intensity, I(x̄, ŝ, t), which depends on a position vector, x̄ = (x1, x2, x3),
time, t, and a unit directional vector, ŝ. It is a non-negative and real-valued function for all space and directions.
The specific intensity in the narrow-band limit is governed by the space-time radiative transfer equation,

1

c

∂

∂t
I(x̄, ŝ, t) + ŝ · ∇I(x̄, ŝ, t) + γtI(x̄, ŝ, t) =

γs
4π

∫

4π

p(ŝ, ŝ′)I(x̄, ŝ′, t)dΩ(ŝ′), (1)

where c is the constant wave speed, γt is the extinction coefficient, γs is the scattering coefficient, p(ŝ, ŝ′) is the
phase function and dΩ(ŝ′) is the differential element on the unit sphere in direction ŝ′. Upon obtaining a solution to
the radiative transport equation, we can calculate the average intensity by integrating the specific intensity over all
directions,

1

4π

∫

4π

I(x̄, ŝ, t)dΩ(ŝ) = U(x̄, t). (2)

This average intensity is proportional to the energy density. A quantity that is often used in biomedical optics
applications is the radiant energy fluence rate defined as

Ψ(x̄, t) = 4πU(x̄, t) =

∫

4π

I(x̄, ŝ)dΩ(ŝ). (3)

In addition, we can calculate the flux vector by integrating the product of the specific intensity and the direction
vector over all directions,

∫

4π

I(x̄, ŝ, t) ŝ dΩ(ŝ) = F(x̄, t). (4)

2.1. The Diffusion Approximation

The specific intensity is normally expressed as the sum of the reduced intensity, Iri, and the diffuse intensity, Id.
When the specific intensity undergoes a significantly large amount of scattering, its reduced intensity exponentially
decays according to the extinction theorem and its diffuse component’s angular distribution becomes nearly isotropic
or nearly independent of ŝ. This limiting process towards an isotropic specific intensity is the main assumption of the
diffusion approximation.1,4–7 From this assumption, we can expand the diffuse intensity into an asymptotic series
of Legendre functions,

Id(x̄, ŝ, t) ∼ U(x̄, t) +
3

4π
F(x̄, t) · ŝ+ · · · (5)

leading to a diffusion equation for the average intensity of the form,7

1

c

∂

∂t
U(x̄, t)−D∇2U(x̄, t) + γaU(x̄, t) = γsUri(x̄, t). (6)

The diffusion coefficient, D = `tr/3, is defined in terms of the transport mean free path, `tr. The scattering coefficient
is denoted by γs and the absorption coefficient, γa, is related to the total and scattering coefficients by γa = γt − γs.
The right hand side is proportional to the average reduced intensity denoted by Uri(x̄, t). From the solution of the
diffusion equation, we can compute the diffuse flux vector by the approximate equality7

F(x̄, t) ∼= −cD∇U(x̄, t). (7)

For a continuous wave source, the corresponding diffusion equation is

−D∇2U(x̄) + γaU(x̄) = γsUri(x̄). (8)

Although there exist many discrepancies among various researchers regarding the “proper” form of the diffusion
equation, its boundary conditions and its coefficients,13–16 we have chosen to adhere to the commonly used diffusion
theory presented in a recent review by van Rossum and Nieuwenhuizen.7 In this proceeding, we intend to keep the
analysis and results as general as possible so that they can be easily adapted to other diffusion theories. Discrepancies
between the variety of different diffusion theories most often occur at early times proximal to sources where the
diffusion approximation is not valid.16 Therefore, we shall restrict our attention to long times and large distances
away from the source where all diffusion theories seem to agree with reasonably well with each other.16



3. THE REDUCED INTENSITY FOR FOCUSED BEAM WAVES

A scalar, time-harmonic wave field of a high-frequency Gaussian beam wave with a quadratic phase front propagating
in the ẑ direction takes the form17

φ(x̄T , x3) =
Ao

αβ(x3)
exp

[

−
x2
T

β(x3)
+ ikonx3

]

. (9)

The beam wave parameters are defined as

α = 1/W 2
o + iko/2Ro, and β(x3) = 1/α+ i2x3/kon,

whereWo is the beam waist, ko is the free space propagation constant, and Ro is the phase front’s radius of curvature.

To consider these focused beam waves in the theory of radiative transport and thus, the diffusion approximation,
we must understand the behavior of the reduced intensity of these beam waves. In anticipation of using the Wigner
distribution of this wave field to derive the reduced intensity, we consider propagation in a lossy medium with a
complex refractive index, n = n′ + in′′. For the reduced intensity, the attenuation of the wave field is due to
extinction and the expression, γt = 2kon

′′, relates the imaginary part of the refractive index used above to the
extinction coefficient.4

3.1. The Wigner Distribution

The Wigner distribution was originally constructed as an auxiliary phase-space distribution function for quantum
mechanical systems.9 However, it is also useful as a tool for studying classical wave propagation, and there exists a
relationship between the Wigner distribution and the specific intensity that is well established.10–12 Let us summarize
some of these important relationships.

The Wigner distribution of a time-harmonic wave field, φ(x̄), is defined as

W(x̄, k̄) = (2π)−3

∫

IR3

d3ȳ exp[ik̄ · ȳ]φ∗(x̄+ ȳ/2)φ(x̄− ȳ/2). (10)

Integrating the Wigner distribution with respect to the wave vector, k̄ = (k1, k2, k3), yields the energy density of the
wave,

∫

IR3

W(x̄, k̄) d3k̄ = |φ(x̄)|2. (11)

Calculating the first moment of the Wigner distribution with respect to the wave vector yields the Poynting vector,
∫

IR3

W(x̄, k̄) k̄ d3k̄ =
1

2i
[φ∗(x̄)∇φ(x̄)− φ(x̄)∇φ∗(x̄)] . (12)

Furthermore, the Wigner distribution is a real-valued function for all x̄ and k̄.

With these properties, one may be inclined to interpret the Wigner distribution as a wave-vector dependent
energy density that is equivalent to the specific intensity, but the Wigner distribution is not a non-negative function,
in general. Therefore, the Wigner distribution cannot be entirely interpreted as this wave-vector dependent energy
density. However, the Wigner distribution becomes a non-negative function in the high-frequency asymptotic limit.12

For example, consider a plane wave with constant amplitude, Ao, propagating in free space in the ŝ direction,

φ(x̄) = Ao exp[ikoŝ · x̄]. (13)

Upon substituting this plane wave expression into the definition of the Wigner distribution, we obtain

W(x̄, k̄) = |Ao|
2δ(k̄− koŝ). (14)

Similarly, a high-frequency wave with a slowly varying complex amplitude, A(x̄), and phase, S(x̄), is

φ(ε) ∼ A(x̄) exp[iS(x̄)/ε] as ε→ 0+, (15)

where ε is a small, positive parameter used to evaluate the high-frequency limit. The high-frequency asymptotic
Wigner distribution12 takes the form

W(x̄, k̄) ∼ |A(x̄)|
2
δ(k̄−∇S(x̄)). (16)
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Figure 1. Ray paths of the Wigner distribution starting from xT = Wo/3, 2Wo/3 and Wo. Here Wo = 1mm,
Ro = 1.5mm, n′ = 1.37 and λ = 467nm. Dotted lines correspond to propagation in free space and solid lines
correspond to propagation with γt = 42mm−1. The inset plot is a close-up showing the defocusing due to extinction.

3.2. Wigner Distribution of Focused Beam Waves

By rearranging terms in the beam wave defined in (9), we find that the amplitude is

A(x̄) =
Ao

αβ(x3)
exp

[

−fr(x3)
x2
T

W 2
o

− kon
′′x3

]

. (17)

In addition, we find the phase is

S(x̄) = kon
′x3 − fi(x3)

x2
T

W 2
o

. (18)

Here, we define

fr(x3) = Re

[

Wo2

β(x3)

]

= d−1(x3)

(

1 +
x3

n′zo

n′′

n′
1 + z2

o/R
2
o

1 + n′′2/n′2

)

, (19)

fi(x3) = Im

[

Wo2

β(x3)

]

= d−1(x3)

(

zo
Ro

−
x3

n′zo

1 + z2
o/R

2
o

1 + n′′2/n′2

)

, (20)

zo = koW
2
o /2, (21)

and

d(x3) = 1 +
x2

3

n′2z2
o

1 + z2
o/R

2
o

1 + n′′2/n′2
+ 2

x3

n′zo

1

1 + n′′2/n′2

(

n′′

n′
−

zo
Ro

)

. (22)

Upon substituting these expressions above as well as n′′ = γt/2ko into the high-frequency asymptotic form of the
Wigner distribution, we obtain

W(x̄, k̄) =
|Ao|

2

d(x3)
exp

[

−fr(x3)
2x2

T

W 2
o

− γtx3

]

δ

(

k̄T + fi(x3)
2x̄T
W 2

o

)

δ

(

k3 − kon
′ +

dfi(x3)

dx3

2x2
T

W 2
o

)

. (23)
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Figure 2. On-axis beam intensity without exponential decay from extinction (left plot) and beam width (right plot)
of the Wigner distribution. Here the beam wave parameters are the same as in Figure 1. Dotted lines correspond
to propagation free space and solid lines correspond to propagation in a medium with γt = 42mm−1. Insets in both
plots are close-ups that show the effect of extinction on focusing.

In (23), the argument of the transverse wave-vector distribution leads to the ray path equation,

δ

(

k̄T + fi(x3)
2xT
W 2

o

)

⇒ k̄T = ko sin θ = −fi(x3)
2xT
W 2

o

=
dxT
dx3

. (24)

For a particular radial distance given at x3 = 0, the solution to the differential equation above yields the ray path.
Some sample ray paths are given in Figure 1. Here, we have chosen the beam wave parameters to correspond to
narrow beam waves in biological media.18 As the extinction coefficient increases, the ray paths deviate from the ray
paths in free space and widen the focusing spot size.

From the expression of the Wigner distribution given in (23), we determine the on-axis beam intensity, b(x3),
and the beam width, w(x3), to be

b(x3) =
|Ao|

2

d(x3)
exp(−γtx3) and w2(x3) =

W 2
o

2fr(x3)
. (25)

In the expression for beam intensity, we easily see that it attenuates exponentially due to extinction. However, in
order to fully understand the effect of extinction on the intensity and width, we plot some typical beam intensities
(without the exponential decay factor due to extinction) and beam widths in free space and with extinction in Figure
2. As the extinction coefficient increases, deviations the from free space case are seen again near the focal distance
that inhibit focusing. In Figure 3 we plot the beam intensity with the exponential decay due to extinction for a
variety of extinction coefficients.

3.3. The Reduced Average Intensity

The result for the high-frequency asymptotic Wigner distribution given in (23) is proportional to the reduced intensity
of transport theory. Recall that the average intensity is proportional to the energy density,1

|φ(x̄)|2 =
1

c

∫

4π

I(x̄, ŝ) dΩ(ŝ) =
4π

c
U(x̄). (26)

The asymptotic form of the Wigner distribution in the high frequency limit (16) is easy to integrate over all k̄−space
and yields,

∫

IR3

W(x̄, k̄)d3k̄ = |A(x̄)|2 =
|Ao|

2

d(x3)
exp

[

−fr(x3)
2x2

T

W 2
o

− γtx3

]

= |φ(x̄)|2, (27)
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Figure 3. Effect of extinction on the on-axis beam intensity. The beam parameters are the same as figure 1 and 2.

where we have substituted n′′ = γt/2ko. Therefore, we can easily see from these expressions that the average reduced
intensity is related the k̄−integrated Wigner distribution by a constant factor of 4π/c.

4. FOCUSED BEAM WAVE DIFFUSION

As a beam wave propagates in a random medium, the reduced intensity exponentially decays due to scattering
and absorption. Then the distribution of power that is scattered feeds into diffuse intensity. In a highly scattering
medium with little absorption, the average diffuse intensity can be approximated by the diffusion approximation. In
this section, we solve the diffusion equation in which the results from previous section are used as source terms.

4.1. Spatial Behavior

To study the spatial behavior of the diffuse average intensity, let us consider the diffusion equation with a continuous
wave source,

∇2U(x̄)− κU(x̄) = −ηUri(xT , x3). (28)

Here, we define κ = γa/D and η = γs/D. To simplify this calculation, we normalize the average reduced intensity,
(27) so that it takes on a value of unity at (xT , x3) = (0, 0) yielding

Uri(xT , x3) =
1

d(x3)
exp

[

−fr(x3)
2x2

T

W 2
o

− γtx3

]

. (29)

By applying the Hankel transform of order zero on (28), we obtain

∂2

∂x2
3

Û(kT , x3)− (κ+ k2
T )Û(kT , x3) = −ηaoÛri(kT , x3), (30)

where we define the Hankel transform of order zero as

f̂(kT ) = Ho[f(xT )] =

∫

∞

0

dxT xT Jo(kT xT )f(xT ), (31)

and Jo(x) is the Bessel function of order zero. Since the two-dimensional Fourier transform of a radially symmetric
function is related to the Hankel transform of order zero by

1

(2π)2

∫

IR2

d2x̄T exp
[

ik̄T · x̄T
]

f(xT ) =
1

2π
Ho [f(xT )] =

1

2π
f̂(kT ), (32)
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Figure 4. Numerical calculation of the solution of the continuous wave diffusion equation given in (37). This plot
shows the on-axis averaged total intensity (solid curve) as well as the reduced intensity (dotted curve). The inset
shows a detail of the plot including the average diffuse intensity. Here we consider an albedo value of 0.98 and
asymmetry parameter value of 0.80. The other parameters are the same as in Figure 1.

we find that

Ûri(kT , x3) =
1

4

W 2
o

d(x3)fr(x3)
exp

[

−
k2
TW

2
o

8fr(x3)
− γtx3

]

. (33)

Therefore, the solution to (30) is

Û(kT , x3) =

∫

∞

0

dζ G(kT , x3 − ζ)Ûri(kT , ζ), (34)

where the Green’s function,

G(kT , x3 − ζ) =
1

2
√

κ+ k2
T

exp

[

−
√

κ+ k2
T |x3 − ζ|

]

(35)

satisfies
∂2

∂x2
3

G(kT , x3 − ζ)− (κ+ k2
T )G(kT , x3 − ζ) = −δ(x3 − ζ). (36)

Here we have assumed that the source function is only non-zero for positive propagation distances. Finally, we can
recover the solution in the physical domain by inverse Hankel transforming the result from (34),

U(xT , x3) =

∫

∞

0

dkT kT Jo(kT xT )

∫

∞

0

dζ G(kT , x3 − ζ)Ûri(kT , ζ) (37)

To understand the behavior of the diffuse intensity as it propagates in the medium, we numerically compute the
solution given by (37). From our analysis of the reduced intensity, we found that the attenuation due to extinction
impeded focusing effects. In the diffusion limit, since directional information of the beam source is lost due to
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significant amounts of multiple scattering, one can expect that focusing would be even more greatly impeded.19–22

In fact, from our numerical calculations, we find that the effects of focusing on the average diffuse intensity are hardly
noticeable. In Figure 4, we show some results from a sample calculation for a medium with albedo equal to 0.98 and
mean scattering cosine equal to 0.80. The beam wave parameters for these calculations are the same as the ones
used for the reduced intensity study.

In Figure 4, we plot the average total intensity at beam-center as a function of distance. As a reference, we also
plot the average reduced intensity at beam-center. The inset of this figure shows the transition that the total intensity
makes as the reduced intensity attenuates from scattering and absorption. Although one cannot entirely assume that
the diffusion approximation is valid this close to the source, the overall qualitative behavior demonstrated in this
figure seems intuitively correct. At the focal length (∼ 2.055mm for these particular parameters), the total intensity
is effectively equal to the average diffuse intensity since the average reduced intensity suffers from a significant amount
of attenuation from scattering and therefore, the diffusing beam does not seem to undergo any focusing effects.

Numerically investigating the spatial spreading as the beam propagates into the medium, we find that beam width
increases linearly with propagation distance. This linear growth is a significant departure from the average reduced
intensity’s beam width (see Figure 2) which spans several orders of magnitude as it propagates in the medium.

4.2. Temporal Behavior

To study the temporal behavior of focused beam wave pulses in a diffusing medium, let us consider the diffusion
equation with a delta function input pulse,

1

c

∂

∂t
U(xT , x3, t)−D∇2U(xT , x3, t) + γaU(xT , x3, t) = γsUri(xT , x3, t)δ(t− x3/c). (38)



Here, we are assuming a narrow-band limit whereby the reduced intensity’s spectrum is supported locally about the
carrier frequency.4,16 By applying the Fourier Transform on (38), we obtain

∇2U(xT , x3, ω)− (κ+ iω/cD)U(xT , x3, ω) = −
1

2π
ηUri(xT , x3) exp(−iωx3/c), (39)

where ω is the frequency. Notice that this diffusion equation in the frequency domain takes the same form as (28).
Therefore, we can easily write the solution as

U(xT , x3, ω) =

∫

∞

0

dkT kT Jo(kT xT )

∫

∞

0

dζ Gc(kT , x3 − ζ, ω)Ûri(kT , ζ) exp [−iωζ/c] , (40)

where the Green’s function,

Gc(kT , x3 − ζ, ω) =
1

2
√

κ+ iω/cD + k2
T

exp

[

−
√

κ+ iω/cD + k2
T |x3 − ζ|

]

, (41)

is a complex function that parametrically depends on frequency. Although some special care must be taken in
choosing a branch of the square root functions within the Green’s function given above, only a relatively simple
modification to the numerical code used to approximation the continuous wave case is needed to consider the pulse
case in the frequency domain. Upon computing the spectrum of the diffuse intensity, one can recover the pulse in
the time-domain using Fast Fourier Transforms.

As pulses propagate in a scattering medium, one expects that the pulse spreads in time due to scattering.2 In
Figure 5, we plot numerical calculations of (40) along the beam center, xT = 0 at various optical depths. The medium
is the same as the one studied in the continuous wave case. The pulse responses have sharp rise and long tails typical
of pulses propagating in a diffusing random medium.16 As pulses propagate deeper into the medium, they undergo
a significant amount of temporal spreading. For these calculations we measure the temporal pulse width at −3 dB
below the peak intensity, and find that the pulse spreads nearly linearly with respect to the optical depth.

4.3. Comparison With Collimated Beam and Plane Waves

From the numerical results described above, we find that focused beam wave pulses spread significantly in space and
time as they propagate deeper into the medium. Furthermore, these numerical results seem to demonstrate that the
effects of focusing in highly-scattering random media are negligible. To fully understand whether focusing effects are
evident for focused beam pulses in diffusing media, let us compare the results presented above for spatial spreading
to collimated beam waves and temporal spreading to pulsed plane waves.

4.3.1. Collimated Beam Diffusion

To examine spatial spreading, let us revisit the diffusion equation with a continuous collimated beam wave source.
Picking up from (30), we examine Hankel transform of the reduced intensity of a collimated beam wave,

Ûri(kT , x3) =
1

4

W 2
o

d̃(x3)f̃r(x3)
exp

[

−
k2
TW

2
o

8f̃r(x3)
− γtx3

]

. (42)

The parameters,

f̃r(x3) = d̃−1(x3)

(

1 +
x3

n′zo

ε

1 + ε2

)

and d̃(x3) = 1 +
x2

3

n′2z2
o

1

1 + ε2
+ 2

x3

n′zo

ε

1 + ε2
, (43)

are evaluated in the collimated beam limit of Ro →∞. Following Ito21,22 we assume that the ratio of the extinction
coefficient to the wave number is very small which motivates defining the small parameter ε = γt/(2kon

′)¿ 1. Upon
evaluating the asymptotic limit as ε→ 0+, we obtain,

Ûri(kT , x3) ∼
W 2

o

4
exp

[

−
k2
TW

2
o

8
− γtx3

]

+O(ε). (44)
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Figure 6. Comparisons of the diffuse intensity’s spatial spreading with collimated beams (left plot) and temporal
spreading with plane wave diffusion (right plot).

This asymptotic expression greatly simplifies the x3-dependence in the average reduced intensity, and upon solving
(34), we obtain,

Û(kT , x3) =
W 2

o

8
√

κ+ k2
T

exp

[

−
1

8
k2
TW

2
o

]

(

exp[−γtz]− exp[−
√

κ+ k2
T z]

√

κ+ k2
T − γt

+
exp[−γtz]

√

κ+ k2
T + γt

)

, (45)

which can be substituted into (37) to yield the desired solution.

From the previous section, we determined that the focused beam width grows linearly as a function of the
propagation distance. We find from numerical calculations that the collimated beam spreads linearly as a function
of distance as well. In fact we find that the difference of beam spread of the diffuse component of the focused beam
wave defined as

〈x2
T 〉 =

∫

U(xT , x3)x
2
T dxT

/

∫

U(xT , x3)dxT (46)

from that of the collimated beam is qualitatively negligible. A sample comparison can be seen in the left plot of
Figure 6.

4.3.2. Plane Wave Diffusion

To examine temporal spreading, let us reconsider the diffusion equation with a plane wave delta function input
source. Starting from (39) with a plane wave source whose reduced intensity is normalized to unity at x3 = 0, we
have the following differential equation,

∂2

∂x2
3

U(x3, ω)− (κ+ iω/cD)U(x3, ω) = −
1

2π
η exp [−(1 + iω/c)x3] . (47)

The solution in the frequency domain can be written as

U(x3, ω) =
η

2π

∫

∞

0

dζ gc(x3 − ζ, ω) exp [−(1 + iω/c)ζ] , (48)

where

gc(x3 − ζ, ω) = Gc(xT = 0, x3, ω) =
1

2
√

κ+ iω/cD
exp

[

−
√

κ+ iω/cD |x3 − ζ|
]

(49)



By numerical quadrature and Fourier transform methods, we can compute the resultant solution in the time-domain.

In Figure 6, we compare the temporal spreading of the plane wave pulse to the focused beam wave. Although
rates of spreading are different, the spread of the focused beam pulse is qualitatively the same as the plane wave
pulse. Therefore, the temporal spread of focused beam wave pulses is qualitatively similar to the temporal spread of
plane wave pulses.

5. CONCLUDING REMARKS

In this paper, we have derived a high-frequency asymptotic expression for the reduced intensity of focused beam waves
using Wigner distributions. This expression was then used to investigate focused beam pulses in highly scattering
media using the diffusion approximation. From the solutions obtained from the diffusion equation, we found that
these focused beams spread linearly in space in a similar way to collimated beams and spread linearly in time in a
similar way to plane waves.

One aspect of this investigation that was not considered involves addressing the variety of diffusion theories
available. Each diffusion theory can yield drastically different results16 from the others. These discrepancies would
most likely get amplified for boundary-value problems since posing physically exact boundary conditions in the
diffusion approximation is not always possible and subject to a variety of treatments. In order to address the
applicability of the various diffusion theories, we feel that one must closely examine the transition that waves make
as they go from a transport theory description to a diffusive one. From understanding this transition, one can
diagnostically determine the validity of applying a diffusion approximation and pose physically correct boundary
conditions. In future studies, we will address this issue more carefully.
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