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Abstract

All-optical computing architectures can potentially outperform conventional electronic

computing architectures due to the significantly higher speeds of propagation of optical

signals (∼ 108 m · s−1) as compared to those of electrical signals (∼ 105 m · s−1). One

of the primary challenges in realizing optical information processing systems is that of

achieving on-chip optical nonlinearity at low power. A number of systems, including

cavity enhanced χ(2) and χ(3) nonlinear systems, have been proposed to achieve on-

chip nonlinearity and have subsequently been used to design all-optical logic circuits.

However, experimentally realization such systems that can perform any reasonably

complex information processing task is technologically challenging as it involves the

fabrication of a large number of high quality factor cavities (in case of χ(2) nonlinearity,

the systems need to be fabricated on III-V materials).

Silicon photonic systems, which can be fabricated using standard CMOS processes,

are technologically more amenable to implementing large information processors. In

this thesis, we present the design of all-optical computing architectures using silicon

photonics components such as ring resonators, waveguides, integrated photo-detectors

etc. The central nonlinear block used in our design is a self-electrooptic cavity, which

comprises of a ring resonator with an integrated photo-detector with the nonlinearity

being induced due to an electrical feedback into the optical system. We derive a time-

domain simulation model to compute the characteristics of this nonlinear device. We

also present the design and analysis of all-optical logic gates (AND gate and NOT gate)

and digital memory elements (latch). Moreover, we also investigate the design of an

all-optical neuron, which can potentially be employed for the implementation of fast

optical neural networks and use it to solve a classification problem.
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Chapter 1

Introduction and past work

Ever increasing demand for fast information processing systems and recent advances in

nano fabrication [1,2] have inspired research into alternative computing paradigms (such

as quantum computing [3,4] and neuromorphic computing [5]) and alternative physical

platforms for implementing these system. Amongst the different physical platforms,

using integrated optical systems [6–8] have been widely investigated and used due to the

extremely high speeds of optical waves (∼ 108 m · s−1). In terms of propagation delays,

optical information processing systems are orders of magnitude faster than the more

commonly employed electronic information processing systems [9], which are limited by

the saturation velocity of the electrons (∼ 105 m · s−1).

However, optical systems are typically linear systems, with a very weak nonlinear re-

sponse. Linear systems alone cannot be used to build versatile information processors –

for instance, even basic logic gates operate nonlinearly on the inputs. It has been shown

theoretically and experimentally that use of resonators, which are dielectric structures

that can confine optical fields to small volumes, can enhance the optical nonlinearity

thereby reducing the power consumption of the designed system [10, 11]. Several im-

plementations of optical information processing systems (including digital information

processing) based on cavity enhanced second (χ(2)) [11] and third (χ(3)) [12, 13] or-

der nonlinearity have been proposed. Apart from the inherent dielectric nonlinearity

(e.g. χ(2) and χ(3) nonlinearity), it has also been shown that coupling quantum emitters,
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such as quantum dots [14], colour centres [15] etc., to optical resonators can make the

composite system strongly nonlinear. These advances have indeed made the prospect

of building an all-optical computer significantly achievable.

Most nonlinear systems, however, are not silicon compatible. For instance, strong

χ(2) nonlinearities are often found in III-V systems (such as GaAs or GaP) [16]. Even

quantum emitters are fabricated out of non-silicon systems. Silicon does have a χ(3)

nonlinearity, but this nonlinear effect is very weak and using this nonlinearity at suf-

ficiently low input powers requires the fabrication of ultra-high quality factor cavi-

ties [11, 17]. Although nonlinear devices in non-silicon platforms have been fabricated

and demonstrated [18, 19], silicon based systems are more amenable to large-scale on-

chip integration. This is partly due to the availability of well developed large scale

silicon-based fabrication processes. Silicon photonics fabrication processes can enable

easy on-chip fabrication of photo-detectors, static beam splitters and phase shifters.

Integrating on-chip light sources is hindered by the indirect bandgap of silicon, how-

ever it is possible to route laser signals into the system through coupled optical fibers.

Designing computing systems on such a silicon photonics platform would thus enable a

speedy and large-scale realization of an optical computer.

In this thesis, we investigate the problem of designing computing architectures in

silicon photonics. The fundamental nonlinear block used in our design is the self-

electrooptic cavity [20]. This device uses an electrically modulated ring-resonator which

can be typically constructed by integrating a reverse-biased p-n junction in the ring of

the resonator. The depletion width of this junction can be modulated by changing

the reverse-biased voltage – this change in the depletion region changes the cavity

refractive index profile and hence achieves a modulation of the resonant frequency of

the ring resonator with the reverse-biased voltage. By employing the p-n junction as

a photo-detector in addition to a refractive index modulator and giving an electrical

feedback to the reverse bias, the overall optical characteristics of the cavity becomes

nonlinear. Unlike χ(2) and χ(3) nonlinear systems, the nonlinearity of this electrooptic
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system can be tuned by changing the electrical circuit – this allows for a more versatile

network design. With this element as the central building block, we design all-optical

combinational and sequential digital circuit elements that are a prerequisite for building

complex digital information processing systems.

The integrated optics platform is also suited for the design of a number of spe-

cialised computing systems. These include neural networks and neuromorphic learning

machines [21], which attempt to mimic the functionality of a biological brain, and typ-

ically adjust their function on the basis of a set of training data samples. Although

their usability is limited only to certain specific applications, using optics can poten-

tially speed up such systems by several orders of magnitude. Using the self-electrooptic

cavity, we also present the design of a single optical neuron which can form the basis

for implementing high-speed large-scale neural networks.

This thesis is organised as follows – chapter 2 is devoted to the analysis of the self-

electrooptic cavity and other static linear devices (phase shifters, beam splitters) used

in the designs. A time-domain simulation model for describing this cavity is derived

and the steady state input-output characteristics of this cavity are computed using this

simulation model. Chapter 3 shows how to design digital circuit elements (AND gate,

NOT gate and latch) using the self-eletrooptic cavity. Chapters 4 and 5 are devoted to

design and optimisation of the optical neuron.
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Chapter 2

Optical circuit elements and their

simulation models

This chapter is devoted to describing the different optical circuit elements that we

use in designing computing architectures in the subsequent chapters. We also develop

time-domain simulation models for the nonlinear and linear circuit elements used in

our designs. The circuit elements detailed in this chapter include the self-electrooptic

cavity and linear circuit elements such as static directional couplers and phase shifters.

Section 2.1 elucidates the simulation model for the self-electrooptic cavity and its input-

output characteristics are presented in section 2.2. The simulation models for linear

circuit elements (phase shifters and directional couplers based on channel waveguides)

are described in section 2.3.

2.1 Simulation model for the nonlinear cavity

The basic-setup that we use to develop the simulation model is shown in Fig. 2.1.

We assume that the cavity is coupled to only a single waveguide – it thus has only

one input and one output port. The model developed can easily be extended to more

complicated systems such as systems with multiple coupled waveguides or electrically

coupled cavities – some of these systems are analyzed in detail as and when they are
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Figure 2.1: Schematic of the self-electrooptic cavity coupled to a single waveguide with
a reverse biased p-n junction in the ring.

required in the subsequent designs. The cavity has a photo-detector integrated within

the ring, which is reverse biased through an external voltage source. We assume that the

cavity input is modulated onto a reference laser frequency ωL, which is sufficiently close

to the cavity resonant frequency – i.e. it is of the form bin(t) exp(−iωLt). The cavity

dynamics is described by a complex function of time, a(t) which is proportional to the

slowly varying amplitude of the cavity electric field around frequency ωL (i.e. the cavity

electric field will have a time dependance of a(t) exp(−iωLt)). It follows from standard

coupled mode theory that a(t) satisfies the following dynamical equation [20,22]:

da(t)

dt
= −

(
i∆ +

κ

2

)
a(t)−

√
κwbin(t) (2.1)

where ∆ = ω − ωL is the detuning of the reference laser frequency ωL from the cavity

resonant frequency ω, and would depend on a(t) due to electrical circuit coupled to the

optical cavity. κ = κl + κw captures the losses in the cavity, and can be considered as

a sum of two different sources of loss in the cavity – κw corresponding to the coupling

between the cavity and the input-output waveguide and κl corresponding to the power

absorbed by the integrated p-n junction, thereby resulting in the generation of electron-

hole pairs and hence a photo-current in the photodetector. The waveguide output

bout(t) exp(−iωLt) is a sum of the waveguide input and radiation by the cavity: bout(t) =

bin(t)+
√
κwa(t). In order to complete our description of the simulation model, we need

to analyze two different aspects of the nonlinear cavity:

1. The dependance of ω or ∆ on the p-n junction depletion width.
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2. The dynamics of the photo-generation process.

2.1.1 Modulation of ω by the p-n depletion width

Throughout our analysis, we assume a linearly graded junction to model a realistically

fabricable device. The doping density of the cavity can be expressed as [23]:

ND(r)−NA(r) =


2N0(r −R)/d |r −R| < d/2

0 |r −R| > d/2

(2.2)

where d is the ring width and N0 is the maximum net doping density in the p-n junction.

The depletion width (wD) depends on the reverse-bias voltage (VD) across the cavity

through the following well-known equation [23]:

wD =

[
6ε0n

2
Sid

N0e
(VD + Vbi)

]1/3

(2.3)

where nSi is the refractive index of silicon and Vbi ∼ 2kT log(N0/ni)/e is the diode

built-in voltage. Schematic plots of the doping density and the electron and hole carrier

densities (µn(r) and µp(r) respectively) under the abrupt junction approximation are

shown in Figs. 2.2a and 2.2b. The dependance of the cavity resonant frequency on the

(a) (b)

Figure 2.2: Schematic plots of (a) the doping densities (ND(r) and NA(r)) and (b) the
carrier densities (µp(r) and µn(r)) across the graded p-n junction integrated into the
ring of the ring-resonator.
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depletion width is intimately linked with the dependance of the refractive index of Si

on the number of free carriers per unit volume. While this dependance is generally very

complex and can only be empirically determined [24], the Drude model allows us to

approximate it by a linear relationship between the Si permittivity (n2
si) and the carrier

densities µn(r) and µp(r) [25, 26]:

n2(r) = n2
Si − αpµp(r)− αnµn(r) (2.4)

with αp and αn being (frequency dependant) material parameters. To obtain a simple

analytical estimate of the dependance of ωres on wD, we assume a scalar gaussian

approximation E(r) to modal field profile:

E(r) = E0 exp

[
− 1

2

(
(r −R)2

σ2
r

+
z2

σ2
z

)]
exp(imφ) (2.5)

where σr and σz are measures of field confinement in the radial and z directions re-

spectively and the index m determines the mode order and would usually depend on

the ratio of the ring circumference and the wavelength of light in Si. Since E(r) is an

approximation to the actual field profile, it only approximately satisfies the Helmholtz

equation:

∇2E(r) +
ω2

c2
n2(r)E(r) ≈ 0 (2.6)

which is also equivalent to:

ω2 ≈ c2

∫
|∇E(r)|2d3r∫

n2(r)|E(r)|2d3r
(2.7)

Denoting the refractive index profile in the absence of a depletion region by n0(r), and

defining ∆n2(r) = n2(r)− n2
0(r), Eq. 2.7 can be rewritten as:

ω2 = c2

∫
|∇E(r)|2d3r∫

n2
0(r)|E(r)|2d3r +

∫
∆n2(r)|E(r)|2d3r

=
ω2

0

1 + γwD

(2.8)
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where

γwD
=

∫
∆n2(r)|E(r)|2d3r∫
n2

0(r)|E(r)|2d3r
(2.9)

and ω0 is the resonant frequency in the absence of a depletion region. Using Eq. 2.4,

∆n2(r) can be expressed as:

∆n2(r) =


2αnN0(r −R)/d R < r < R + wD/2

2αpN0(R− r)/d R− wD/2 < r < R

0 |r −R| > wD/2

(2.10)

A closed form expression for γwD
can be obtained by substituting Eqs. 2.10 and 2.5 into

Eq. 2.9:

γwD
=

N0σ
2
r(αn + αp)(1− exp(−w2

D/4σ
2
r))√

πn2
Siσrd−N0σ2

r(αn + αp)(1− exp(−d2/4σ2
r))
≈ N0(αn + αp)

4
√
πn2

Siσrd
w2
D (2.11)

Using this expression for γwD
, the detuning ∆ = ω − ωL can be related to VD through:

∆ ≈ ω0 − ωL −
1

2
ω0γwD

= ω0 − ωL − Γ0(VD + Vbi)
2/3 (2.12)

where the coefficient Γ0 quantifies the extent of modulation and is given by:

Γ0 =
N0(αn + αp)

4
√
πn2

Siσrd

(
6ε0n

2
Sid

N0e

)2/3

(2.13)

Assuming the p-n junction to be reverse biased through a voltage source with EMF VS,

we can define ∆0(= ω0 − ωL + Γ0(VS + Vbi)
1/3) as the detuning in the absence of any

photo-current, with which ∆ can be written as:

∆ = ∆0 − Γ0((VD + Vbi)
1/3 − (VS + Vbi)

1/3) (2.14)

Eq. 2.14 is the final equation relating the cavity detuning ∆ to the reverse biased voltage

VD and is used in all the simulations in this thesis.
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2.1.2 Modelling the photo-generation process

The amount of power absorbed by the p-n junction integrated in the cavity and con-

verted in to a photo-current is given by κl|a(t)|2. The photo-current produced not only

depends on this absorbed power, but also on the reverse-biased voltage across the p-n

junction since the reverse biased voltage determines the strength of the electric field

in the cavity, which in turn determines the drift velocity of the carriers. Moreover,

the electrical circuit providing feedback into the cavity has two intrinsic delays associ-

ated with it – the time taken by the generated carriers to move across the depletion

region and the RC time constant arising due to the depletion capacitance of the photo-

detector. To accurately predict the speed of the optical device, these delays need to be

included in the simulation model.

The circuit model for the electrical circuit is shown in Fig. 2.3. The photo-detector

is modelled by a parallel combination of a current source corresponding to the photo-

current (Iph), a current source corresponding to the dark current Idark and the depletion

capacitance Cdep. Both Idark and Cdep are functions of the reverse bias voltage VD, and

Figure 2.3: Equivalent circuit model for the electrical simulation of the photo-detector.
The optical to electrical coupling occurs is captured through κl, which governs the
power absorbed by the photo-detector (κl|a|2).
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are given by [23]:

Cdep(VD) =
C0

(1 + VD/Vbi)1/3
(2.15)

Idark(VD) = IS(1− exp(−VD/VT )) (2.16)

where C0 is the open-circuit depletion capacitance, IS is the reverse saturation current

and VT = kT/e is the thermal voltage.

Modelling the generated photo-current (Iph) is not so straightforward and the model

has to incorporate the nonlinear dependance of the drift velocity of the carriers on the

junction electric field and the delays associated with the finite drift velocity of the

carriers. Since the photo-current is a combination of both electron and hole currents,

Iph can be expressed as a sum of electron (Iph,n) and hole (Iph,p) currents. It is clear

that both Iph,n and Iph,n would be proportional to κl|a|2, which is the optical power

absorbed by the cavity. The two currents would also be proportional to the drift velocity

of the corresponding carriers. The drift velocities (denoted by vn for electrons and vp

for holes), however, depend nonlinearly on the electric field in the junction (Ejun) [27]:

vn =
µnEjun

1 + µn|Ejun|/vsat,n

(2.17a)

vp =
µpEjun√

1 + µ2
pE2

jun/v
2
sat,p

(2.17b)

where vsat,n and vsat,p are the electron and hole saturation velocities (vn, vp → vsat,n, vsat,p

as Ejun → ∞). The junction electric field would in general depend nonlinearly on the

reverse biased voltage. However, as an approximate estimate, Ejun can be expressed as:

Ejun ≈
VD
d

(2.18)
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Putting together Eqs. 2.17 and 2.18, and using the fact that the electron and hole

photo-currents are proportional to the absorbed power (κl|a|2), we obtain:

Iph,n =
Sκl|a|2

2

VD/Vsat,n

1 + |VD/Vsat,n|
(2.19a)

Iph,p =
Sκl|a|2

2

VD/Vsat,p√
1 + V 2

D/V
2

sat,p

(2.19b)

where Vsat,n = vsat,nd/µn and Vsat,p = vsat,pd/µp are the electron and hole saturation

voltages, and can be thought of measures of the reverse bias voltage at which the

respective carrier’s velocity would saturate. S is the photo-detector sensitivity – it

measures the extent of conversion of the absorbed power into a photo-current. In

general, even S depends on both the absorbed power and the reverse bias voltage, we

ignore these non-ideal effects and assume S to be a constant.

While the above analysis incorporates the effect of the reverse bias voltage on the

generate photo-current, it still does not model the non-zero time taken by the carriers

to move across the depletion region. To include these effects in our simulation model,

we make use of the Ramo’s Theorem [28,29], according to which the photocurrent due

to the generation of a charge Q uniformly across the junction is given by:

Iph,n =
2Q

τn

(
1− t

τn

)
(2.20a)

Iph,p =
2Q

τp

(
1− t

τp

)
(2.20b)

Where τn and τp are measures of the time taken by the electrons and holes to drift

across the junction. Note that in the limit of τn, τp → 0, the above expression reduce

to a delta function, which conforms with our intuition of an infinitely fast transfer of

charge across the junction. Eqs. 2.20 can be thought of as the impulse response of

the photo-current with respect to the generation rate, and the finite speed of charge

transfer across the junction can be modeled by convolving Eq. 2.19 with this impulse
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response:

Iph,n =
Sκl
τn

τn∫
0

(
1− τ

τn

)
VD(t− τ)/Vsat,n

1 + |VD(t− τ)/Vsat,n|
|a(t− τ)|2dτ (2.21a)

Iph,p =
Sκl
τp

τp∫
0

(
1− τ

τp

)
VD(t− τ)/Vsat,p√

1 + V 2
D(t− τ)/V 2

sat,p

|a(t− τ)|2dτ (2.21b)

Finally, the net photo-current is simply a sum of the electron and hole currents: Iph =

Iph,n + Iph,p. We note here that since the electron and hole drift velocities are functions

of the junction electric field and hence the reverse biased voltage, τn and τp are not

constants. However, we approximate them as constants since a reverse biases p-n

junction usually has a junction electric field high enough to push the electrons and

holes to saturation, in which case the drift velocities become constant.

The electrical simulation equation can now be easily obtained by applying the Kir-

choff’s current law on the equivalent circuit in Fig. 2.3:

dVD(t)

dt
= − VD(t)

RCdep(VD)
+

VS
RCdep(VD)

− Iph(t) + Idiode(VD)

Cdep(VD)
(2.22)

This put together with the optical equation (Eq. 2.1) complete the description of the

time domain simulation model for the self-electrooptic cavity.

While developing the above model, we have assumed coupling to only a single waveg-

uide, the simulation model can easily be generalised to a cavity coupled to N waveguides

with coupling constants κw,n n ∈ {1, 2, 3 . . . N}, inputs bin,n n ∈ {1, 2, 3 . . . N} and out-

puts bout,n n ∈ {1, 2, 3 . . . N} by modifying the optical equation (Eq. 2.1) to:

da(t)

dt
= −

(
i∆ +

κ

2

)
a(t)−

N∑
n=1

√
κw,nbin,n(t) (2.23a)

κ =
N∑
n=1

κw,n + κl (2.23b)

bout,n(t) = bin,n(t) +
√
κw,na(t) (2.23c)
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We summarise the final simulation equations below for easy referencing:

da(t)

dt
= −

(
i∆ +

κ

2

)
a(t)−

N∑
n=1

√
κw,nbin,n(t) (2.24a)

dVD(t)

dt
= − VD(t)

RCdep(VD)
+

VS
RCdep(VD)

− Iph(t) + Idiode(VD)

Cdep(VD)
(2.24b)

κ =
N∑
n=1

κw,n + κl (2.24c)

∆ = ∆0 − Γ0((VD + Vbi)
1/3 − (VS + Vbi)

1/3) (2.24d)

Cdep(VD) =
C0

(1 + VD/Vbi)1/3
(2.24e)

Idark(VD) = IS(1− exp(−VD/VT )) (2.24f)

Iph =
Sκl
τn

τn∫
0

(
1− τ

τn

)
VD(t− τ)/Vsat,n

1 + |VD(t− τ)/Vsat,n|
|a(t− τ)|2dτ

+
Sκl
τp

τp∫
0

(
1− τ

τp

)
VD(t− τ)/Vsat,p√

1 + V 2
D(t− τ)/V 2

sat,p

|a(t− τ)|2dτ (2.24g)

bout,n(t) = bin,n(t) +
√
κw,na(t) (2.24h)

There are a number of electrical and optical device parameters that appear in the

simulation equations. Some of these parameters are either fixed material properties

or difficult to design during fabrication and can therefore not be used to tune the

characteristics of the self-electrooptic cavity. Table. 2.1 divides the parameters into two

categories – fixed parameters and variable parameters. In all the subsequent circuit

designs, only the variable parameters will be used to tune the properties of different

self-electrooptic cavities.

Type Symbol

Fixed C0, IS, VS, τn, τp, Vsat,n, Vsat,p, Vbi, VT
Variable S,R, κl, κw,Γ0,∆0

Table 2.1: Division of the electrooptic nonlinear device’s parameters into fixed (i.e.
parameters that cannot be changed while fabrication or operation of the device) and
variable (i.e. parameters that can be changed during fabrication).
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2.2 Steady state characteristics of the self-electrooptic

cavity

Steady state characteristics of the self-electrooptic cavity can be simulated by solving

Eq. 2.24 for a constant input bin. These steady state characteristics are crucial to the

designs that follow in the subsequent chapters. The modulation coefficient Γ0 can be es-

timated using Eq. 2.13. The device parameters used in Eq. 2.13 for a typical silicon ring

resonator are listed in Table. 2.2a and with these parameters, Γ0/2π ∼ 100 GHz/V2/3.

The simulation parameters used in computing the steady state characteristics of the

cavity are listed in Table. 2.2b [26,29,30].

The input-output characteristics of the self-electrooptic cavity can be quantified

by defining a transmission coefficient. For an input bin = Bin exp(iφin), and output

bout = Bout exp(iφout), the transmission coefficient τ(Bin) exp(iΦ(Bin)) can be defined

by:

τ(Bin) =
Bout

Bin

(2.25a)

Φ(Bin) = φout − φin (2.25b)

Fig. 2.4 shows the steady state cavity energy (|a|2) as a function of the input power

(|bin|2 = B2
in) for a cavity coupled to a single waveguide. Both a forward and reverse

sweep of the input power is simulated for different detunings ∆0. It can be easily seen

N0 5× 1024 m−3

αn (at 1550 nm) 9× 10−27 m−3

αp (at 1550 nm) 3× 10−27 m−3

nSi 3.4
d 1 µm
σr 0.3 µm

(a)

τn 60.0 ps C0 1.0 fF
τp 20.0 ps IS 10−19 A

Vsat,n 2.0 V VS 7.0 V
Vsat,p 0.8 V S 1.0 A/W
Vbi 0.7 V VT 25 mV

(b)

Table 2.2: Table listing (a) the parameters on which Γ0 depends (Eq. 2.13) (b) the final
simulation parameters used while solving Eq. 2.24.
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Figure 2.4: Forward and backward sweep characteristics of the self-electrooptic cavity.
In all the simulations, Γ0/2π = 100GHz/V2/3, κl/2π = κw/2π = 20 GHz and R = 1
kΩ.

that for small negative ∆0, the cavity is monostable (i.e. it has a unique steady state

output for a given input irrespective of the initial state of the cavity) whereas for large

negative ∆0, the cavity is bistable (i.e. the steady state depends on the initial cavity

state). Moreover, for the assumed parameters, the cavity is at the edge of monostability

and bistability at ∆0/2π ∼ −80 GHz – this is the detuning at which the energy inside

the cavity sharply transits from a low magnitude to a large magnitude. Such a sharp

transition is important from the point of view of designing optical logic gates wherein

this transition demarcates the high and low signal levels.
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Figure 2.5: Steady state transmission (a) amplitude (b) phase of the self-electrooptic
cavity. In all the simulations, Γ0/2π = 100GHz/V2/3, κl/2π = κw/2π = 20 GHz and
R = 1 kΩ.
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Fig. 2.5 show the transmission characteristics (both amplitude τ and phase Φ) as

a function of the input power at ∆0/2π ∼ −80 GHz. Clearly, the derivative of τ with

respect to Bin becomes large near the input power where the cavity energy transits from

a low to high magnitude – the neighbourhood of this transition point can thus be used

for amplifying a small signal input biased at the transition point.

The transition input power, henceforth called the threshold power, is an important

measure of the power required to observe nonlinearity in the cavity response. At input

powers much smaller than this threshold power, the cavity response would be similar

to that of a linear cavity with the same parameters. While designing large optical

networks, it is often essential to tune this threshold power. Although it is possible to

optimize the cavity threshold through a number of parameters (such as Γ0, S, VS, R, κl

etc.), not all parameters are experimentally accessible. We investigate the impact of

two parameters, namely the cavity quality factor Q and the external resistance R, that

can easily be controlled in experiment. The cavity quality factor is a direct measure

of the loss in the cavity and hence strongly effects the cavity threshold. The external
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Figure 2.6: Variation of (a) input threshold power of the self-electrooptic cavity (b)
detuning required to operate the cavity at the edge of monostable and bistable regimes
(∆0 < 0) as a function of the cavity quality factor. In all the simulations, Γ0/2π =
100GHz/V2/3, κl = κw = ω0/4πQ and R = 1 kΩ.
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resistance R is a measure of the effect of the photo-current (and hence the input power)

on the reverse biased voltage – it can thus be also used to tune the cavity threshold.

Fig. 2.6a shows how the threshold power scales with the quality factor Q ∼

ω0/2π(κw +κl). We assume the critical coupling condition in our simulations (κl = κw)

– a condition that is typically satisfied by fabricated resonators. The detuning parame-

ter ∆0 is chosen so as to operate the cavity at the edge of the monostable and bistable

regimes – Fig. 2.6b shows the ∆0 required to achieve this condition as a function of the

quality factor. Clearly, an increase in Q reduces the threshold power – our simulations

indicate the the threshold power approximately scales inversely with Q1.2. Recent

advances in fabrication technologies have enabled the on-chip integration of silicon

cavities with quality factors as high as ∼ 105 [31, 32]. Fig. 2.6a clearly shows that it is

possible to achieve threshold power of the order of 1 µW at these high quality factors.

However, it should also be noted that the speed of the optical cavity varies inversely

with κ = κl + κw (Eq. 2.1) and therefore the cavity becomes slower on increasing Q.

Speeds ∼ 10 − 100 GHz can be achieved with Q ∼ 103 − 104 and the self-electrooptic

cavity have threshold powers ∼ 100 µW− 1 mW at these quality factors.
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Figure 2.7: Variation of (a) input threshold power of the self-electrooptic cavity (b)
detuning required to operate the cavity at the edge of monostable and bistable regimes
(∆0 < 0) as a function of the external resistance R. In all the simulations, Γ0/2π =
100GHz/V2/3 and κl/2π = κw/2π = 20 GHz.
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Increasing the resistance R also reduces the threshold power (Fig. 2.7a) with the

threshold power scaling inversely with R1.1. This is expected since for large R, even a

small photo-current (corresponding to a small input power) can produce a large change

in the reverse-biased voltage and hence the cavity resonance. However, it should also

be noted that increasing resistance also increases the power dissipation in the electrical

circuit, even though it makes the resonator more optically power efficient. Again, in our

simulations we have chosen ∆0 so as to operate the cavity at the edge on the monostable

and bistable regimes, and the required ∆0 as a function of R is shown in Fig. 2.7b

Finally, we consider the transmission characteristics of a self-electrooptic cavity

coupled to two waveguides (Fig. 2.8a). The cavity has one input bin(t) which is fed

through one of the coupled waveguides and two outputs, bout,1(t) and bout,2, corre-

sponding to the two waveguides. Since the input is being fed into only one waveguide,

bout,1 = bin +
√
κw,1a and bout,2 =

√
κw,2a corresponding to the two waveguide outputs.

The variation of the output power and phase corresponding to the two waveguides

with the input power is shown in Figs. 2.8b and 2.8c. It can clearly be seen that this

structure behaves like a thresholder between the input and the output of the waveguide

complementary to the input waveguide.
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Figure 2.8: (a) Schematic of cavity circuit with two waveguides (b) Steady state output
power as a function of input power (c) Steady state output phase as a function of input
power. In all simulations, Γ0/2π = 100 GHz/V2/3, κw,1/2π = κw,2/2π = 20 GHz and
∆0/2π = −80 GHz.
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2.3 Linear circuit elements: directional couplers

and phase shifters

A number of versatile linear operations can be performed on a silicon photonics plat-

form by using isolated and coupled structures based on channel waveguides [33]. Circuit

designs presented in the subsequent chapters require the use of phase-shifter and direc-

tional couplers. Realisation of these circuit elements in silicon photonics is described

below.

A phase-shifter can be realised by an appropriately chosen length L of a channel

waveguide (Fig. 2.9a). For an input signal bin(t), the output of the phase shifter bout(t)

is given by:

b̃out(ω) = exp(iφ(ω))bin(ω) (2.26)

where b̃in(ω) and bout(ω) are the fourier transforms of bin(t) and bout(t) respectively.

The phase φ(ω) can be designed by appropriately changing the length of the channel

waveguide:

φ(ω) =
ω + ωL

c
Lneff(ω + ωL) (2.27)

neff(ω) being the effective refractive index of the waveguide. Bandwidths of the input

signals would typically be ∼ 10 GHz while the laser frequency is many order of mag-

nitudes higher ωL/2π ∼ 106 GHz. It is therefore reasonable to neglect the frequency

dependance of φ(ω) (since ω + ωL ∼ ωL in Eq. 2.27) and the input-output relationship

(a)
(b) (c)

Figure 2.9: (a) Schematic of an on-chip phase shifter and directional coupler realized
using channel waveguides (b) Circuit symbol for the phase shifter (c) Circuit symbol
for the directional coupler.
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can be simply expressed as:

bout(t) = exp(iφ)bin(t) (2.28)

It should however be noted that the frequency dependance of φ(ω) has to be accounted

for an accurate calculation of the effect of waveguide dispersion on the characteristics

of the phase-shifter. The circuit symbol used for a phase-shifter is shown in Fig. 2.9b.

Directional couplers (Fig. 2.9a) can be constructed by fabricating two channel waveg-

uides in close proximity to each other. The two waveguides then couple through their

evanescent fields resulting in the output of one waveguide also being dependant on the

input to the other waveguide. Mathematically, the directional coupler can be described

by:

b̃out,1(ω)

b̃out,2(ω)

 =

 cos θ(ω) −i sin θ(ω)

−i sin θ(ω) cos θ(ω)


b̃in,1(ω)

b̃in,2(ω)

 (2.29)

where the bin,i(t), i ∈ {1, 2} are the directional coupler inputs and bout,i(t), i ∈ {1, 2} are

the directional coupler outputs (Eq. 2.29) is expressed in terms of the fourier transforms

of the input and output signals.The parameter θ(ω) depends on the length L of the

coupled region, and overlap integrals between the modal field profiles of the two channel

waveguide:

θ(ω) =
(ω + ωL)L

cneff(ω + ωL)

∫
∆n2(ρ)E(ρ)E(ρ− ρc) d2ρ∫

E2(ρ) d2ρ
(2.30)

where ρ = (x, y) are the transverse coordinates (i.e. coordinates in plane perpendicular

to the propagation axis) of the point in question, ρc is the centre-centre displacement

between the two channel waveguides and ∆n2(ρ) is the difference between the refrac-

tive index profile of the coupled structure and the refractive index profile of an isolated

waveguide. θ(ω) can be designed by appropriately choosing the length of the coupled re-

gion. Again, the frequency dependance of θ(ω) may be neglected under the assumption

of a small signal bandwidth, and the input-output relation for the directional coupler
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can be expressed as:

bout,1(t)

bout,2(t)

 =

 cos θ −i sin θ

−i sin θ cos θ


bin,1(t)

bin,2(t)

 (2.31)

The circuit symbol used for a directional coupler is shown in Fig. 2.9c.

It is worthwhile to note that the linear operations achieved by the phase-shifter and

the directional coupler are unitary operations – a physical implication of this mathe-

matical property is the conservation of energy between the input and output signals.

Moreover, any unitary (and by extension energy conserving) operation can be realized

with an appropriate combination of directional couplers and phase shifters.
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Chapter 3

Optical logic gates

The thresholding characteristics of the self electro-optic nonlinear cavity can be used for

realising digital logic gates and memory elements. In this chapter, we present circuits

that implement a NOT gate, an AND gate (and by extension any combinational logic

architecture) and an optical latch (thereby opening up the possibility of implement-

ing sequential logic). In the implementation presented in chapter, the binary data is

encoded into the amplitude of the optical signals in the circuit.

The implementation of the optical NOT gate is presented in section 3.1, optical

AND gate is presented in section 3.2 and optical latch in section 3.3

3.1 Optical NOT gate

The optical circuit implementing the NOT gate is shown in Fig. 3.1 [12, 13]. A combi-

nation of phase shifters and a directional coupler is used interfere the NOT gate input

bin with a constant signal b0 which is also equal to the input high level to produce the

cavity input bcav:

bcav =
b0 − bin√

2
(3.1)

Clearly, when the gate input is high, the cavity input is 0 and when the gate input is

low, the cavity input is b0/
√

2. If the cavity threshold is designed so as to lie between
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Figure 3.1: Schematic of the circuit implementing an optical NOT gate. The constant
signal b0 is also equal to the high level amplitude of the input signal.

0 and b0/
√

2, then this circuit performs a NOT operation on the cavity input. An

important consideration in gate design is for the circuit to be cascadable i.e. the gate

output should be a valid input for other logic gates. Assuming all the logic gates to

be designed for the same input high level, this is equivalent to requiring equal output

and input high levels. However, since the cavity is lossy and since the gate output

corresponds to the output of only one of the waveguides, the output high level of the

NOT gate is typically smaller than the input high level. This necessitates the insertion

of level restorers at different points within a large network. So as to minimize the

number of such level restorers, we design the input high level b0 so as to maximize
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Figure 3.2: (a) Variation of the output gain of the NOT gate with the input high level
power (b2

0) – the circled point indicates the designed input high level (b) Transient
simulation of the designed NOT gate.
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the output gain (i.e. ratio of the output high level to the input high level) as shown

in Fig 3.2a. Fig. 3.2b shows a transient simulation illustrating the inversion operation

performed by this circuit.

3.2 Optical AND gate

The optical AND gate can be realized using the circuit shown in Fig. 3.3 [11–13]. The

phase shifters and a directional coupler interfere the AND gate inputs bin,1 and bin,2 so

as to produce the following cavity input bcav:

bcav =
bin,1 + bin,2√

2
(3.2)

Feeding both low inputs into the AND gate results in bcav = 0, and thus both the cavity

outputs are equal to 0. This circuit therefore trivially satisfies one entry of the AND

gate truth table ( low·low = low). For the input combination with one high and one low,

bcav = b0/
√

2 and for the input combination with both high, bcav =
√

2b0 where b0 is the

input high level. To satisfy the three remaining entries of the AND gate truth table,

we design the input high level so as to ensure that the cavity threshold lies between

b0/
√

2 and
√

2b0.

Figure 3.3: Schematic of the circuit implementing an optical AND gate.
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Figure 3.4: (a) Variation of the output gain of the AND gate with the input high level
power (b2

0) – the circled point indicates the designed input high level (b) Transient
simulation of the designed AND gate.

However, since the cavity thresholding is not perfect, the cavity output will not

be exactly 0 for the input combination with one high input and one low input. It is

possible to cascade another thresholder with the AND gate so as to decrease this ampli-

tude, a simpler approach is to interfere the outputs of the two waveguides destructively

through a combination of a beam splitter and a phase shifter as shown in Fig. 3.3. The

parameters θ and φ are chosen so as to ensure that the output amplitude for an input

combination of one high and one low is 0. We point out that since the cavity is a nonlin-

ear device, destructively interfering the waveguide outputs for this input combination

does not imply a destructive interference for the input combination of high and high.

Again, for the gate design to be cascadable, it is necessary for the output high level

to be as close to the input high level as possible. We therefore design the input high

level b0 so as to maximize the ratio of output high level to input high level as shown in

Fig. 3.4a. A transient simulation illustrating the operation of an AND gate is shown in

Fig. 3.4b.
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3.3 Optical latch

The optical circuit implementing the latch is shown in Fig. 3.5a [11–13]. The two

cavities are provide feedback to each other and this results in the overall circuit behaving

bistably. The input high level b0 is designed to lie near the cavity threshold (both the

cavities are operated monostably). The two inputs to the latch either set it to a high

output (bset = b0, breset = 0), reset it to a low output (bset = 0, breset = b0) or hold the

output at its previous state (bset = b0, breset = b0).

To see that this circuit indeed behaves like a latch, consider its operation during

a set or a reset phase. For instance, during a set phase, the upper cavity in Fig. 3.5a

operates above threshold. The phase φb is designed so as to ensure that the constant

input bc interferes destructively with the output of the upper cavity so as to give a low

input to the lower cavity and push it below the threshold. The circuit is in a similar

state during a reset phase, with the upper cavity being below threshold and the lower

cavity being above threshold. The feedback phase φf is designed so as to ensure that

the cavity states remain the same for a hold following a set (or reset) phase. This

is equivalent to ensuring that the feedback phase φf imparted to the feedback signal
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Figure 3.5: (a) Schematic of the circuit implementing an optical latch (b) Transient
simulation of the designed latch.
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ensures that it interferes destructively with the set (or reset) input to the cavity below

threshold, thereby preserving the previous state of the circuit.

The phase shifter φ and the beam splitter θ is designed so as to ensure that the final

output bout has the same amplitude during a set and the following hold, and a reset

and the following hold. A transient simulation of this circuit is shown in Fig. 3.5b .
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Chapter 4

Optical neuron

The neuron is a bio-inspired nonlinear system that can potentially be used as a building

block for more complex neural networks and learning machines. Mathematically, a

neuron is equivalent to a mapping from N inputs to one output, with an input-output

relation given by (Fig. 4.1a):

bout = F
( N∑

n=1

wnb
in
n

)
(4.1)

where F(z) is the neuron ‘activation’ function, and is typically chosen according to the

specific application at hand. Common choices for the activation function include the

sigmoid activation function F(z) = 1 + tanh(βz) (β being a design parameter) and the

step activation function F(z) = 1 if z > 0 and 0 if z ≤ 0 (Fig. 4.1b). The weights wn

are termed as the neuron ‘synaptic’ weights – an important property of these weights is

their adaptability i.e. they need to be designed in a way that they can be tuned using

an external control signal. This tunability is an essential requirement if the neuron is

to perform a learning task, wherein it adapts its transfer function according to a given

training data set.

This chapter is devoted to the design and simulation of the synaptic weights and

the activation function for an all-optical neuron using the self-electrooptic nonlinear

device as the fundamental building block. The designed neuron is then used to solve a

28



(a) (b)

Figure 4.1: (a) Block diagram of a neuron with inputs bin
n and output bout (b) Schematic

plots of the sigmoid and step activation functions

simple classification problem, and its performance is compared with a similarly trained

Support Vector Machine (SVM) [34].

4.1 Design of synaptic weights

A tunable amplifier can easily be constructed by biasing the input signal to the transi-

tion region of the self-electrooptic cavity. The bias can then be used to control the gain

of the amplifier. One issue with this design is the fact that the self-electrooptic cavity

not only scales the amplitude of the input signal when used as an amplifier, but also

introduces a non-zero bias dependant phase shift in the amplifier output. By definition,

the neuron synapse should have a real output for a real input. So as to remove the

undesired imaginary part introduced by the amplifier, we cascade the amplifier with a

quadrature filter i.e. a circuit that takes in a complex signal and filters out the imaginary

part of the complex signal.

The amplifier is implemented using a differential structure as shown in Fig. 4.2 [35].

The differential structure not only provides for an automatic bias cancellation, but

also increases the linearity of the output. The amplitude of the bias Bbias can be used

to control the gain of the amplifier. A general definition of the amplifier gain needs

to account for the fact that the input and output signals are complex. We define an
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Figure 4.2: Schematic of the circuit implementing the bias-controlled differential am-
plifier. The gain of this structure can be tuned by changing the bias amplitude Bbias.

in-phase gain g+ and a quadrature-phase gain g− via:

bin

b∗in

 =

g+ g−

g∗+ g∗−


bout

b∗out

 (4.2)

The gains g+ and g− can be related to the nonlinear transmission coefficient

τ(Bin) exp(iΦ(Bin)) of a self-electrooptic cavity coupled to a single waveguide (Eq. 2.25)

via (refer to appendix A for derivation):

g+ = τ(Bbias) exp(iΦ(Bbias)) +
Bbias

2

d

dBin

[
τ(Bin) exp(iΦ(Bin))

]
Bin=Bbias

(4.3a)

g− =
Bbias exp(2iφbias)

2

d

dBin

[
τ(Bin) exp(iΦ(Bin))

]
Bin=Bbias

(4.3b)

Fig. 4.3, shows the variation of the magnitude and phase of the in-phase and

quadrature-phase gains with the bias power |Bbias|2 assuming φbias = 0. Clearly,

the magnitude of these gains becomes large near the threshold of the SEO cavity.

Moreover, the phase of these gains also changes sharply near the cavity threshold.

The range of the gains that can be achieved by varying the bias power can also be

controlled using the detuning ∆0. From Fig. 4.4, it can be seen that as the detuning

is increased, the self electro-optic cavity tends to the bistable regime, and the range
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Figure 4.3: Variation of (a) amplitude (b) phase of the in-phase and quadrature-phase
gains for the differential amplifier with the bias power (B2

bias). In all the simulations,
S = 0.01 A/W, Γ0/2π = 100 GHz/V2/3, κl/2π = κw/2π = 20 GHz, ∆0/2π = -80 GHz
and φbias = 0

.

of achievable gains increases significantly. In conclusion, the gains themselves can be

controlled using the bias power, and the range of achievable gains can be controlled

via the detuning.

The amplifier structure described above can also be employed to implement a

quadrature filter by appropriately choosing the bias amplitude in phase. According

to the gain definitions, the complex output of the amplifier bout is related to the input

bin through the following equation:

bout = g+bin + g−b
∗
in (4.4)

where g+ and g− depend on Bbias and φbias. If the bias is chosen so as to ensure

g+ = g∗−, then it is clear that the amplifier output would be purely real irrespective of

the input phase. This particular choice of the bias thus achieves quadrature filtering

of the input signal. The procedure for appropriately choosing the bias amplitude Bbias

and phase is straightforward, since |g+| and |g−| are independent of the bias phase, the

bias amplitude can be chosen so as to ensure |g+| = |g−|. The bias phase can then be

chosen to ensure that ∠g+ +∠g− = 0. The synapse can then be designed by cascading
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Figure 4.4: Variation of (a) in-phase gain amplitude (b) quadrature-phase gain ampli-
tude the differential amplifier with the bias power (B2

bias) for different detuning ∆0. In
all the simulations, S = 0.01 A/W, Γ0/2π = 100 GHz/V2/3, κl/2π = κw/2π = 20 GHz.

the an amplifier with a quadrature filter. Note that in our design, the quadrature

filter’s bias is fixed and cannot be used to tune the synapse gain – the synapse gain is

entirely controlled by the amplifier bias. Additionally, even though the amplifier can

be controlled using both the bias amplitude and phase, changing the phase is usually

not as straightforward as changing the amplitude. Since the weights wn in the neuron

transfer function that are being implemented by the controlled amplifier can be both

negative and positive, the amplifier bias phase is chosen so as to ensure that the overall

synapse gain has equal positive and negative swings over the tunable range of bias

amplitudes. Fig. 4.5a shows the synapse gain as a function of the amplifier bias power

for a synapse designed according to the guidelines outline above. Fig. 4.5b shows the

maximum gain in the imaginary part of the output for a small signal input with power

upto 0.1 mW. Clearly, the quadrature filter ensures that the synapse output is almost

purely real with an imaginary part that is nearly 80 dB smaller than the real part.

It can also be noted that the synapse implementation described above is only valid

for input powers much smaller than the bias powers – increasing the input power makes

the nonlinear dependance of the output on the input more significant. This requirement

thus limits the magnitude of the inputs that can be fed into the neuron.
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Figure 4.5: Variation of (a) real synapse gain (b) maximum imaginary synapse gain
(for maximum input amplitude of 0.1 mW) with the bias power (B2

bias) for different
detuning ∆0. In all the simulations, S = 0.01 A/W, Γ0/2π = 100 GHz/V2/3, κl/2π =
κw/2π = 20 GHz and ∆0 = −80 GHz.

4.2 Design of activation function

The typical activation function used in most neural networks is the sigmoid activation

function - F(z) = 1 + tanh(βz). Certain classes of problems, called the classification

problems, require the step activation function: F(z) = 1 if z > 0 and 0 if z ≤ 0.

Hardware implementations of these activation functions can only approximate them.

However, the one essential property that the hardware implementation should satisfy

is that the activation function output saturates as the input becomes infinitely large.

Failure to conform to this property might lead to undesirable instabilities in the neural

network. The circuit implementation of the activation function is shown in Fig. 4.6a.

An optically controlled phase shifter is wrapped in a Mach-zender interferometer with

a constant input being fed into one of its arm – depending on the phase of this phase

shifter, this constant input is switched in and out of the output port. The struc-

ture implementing the optically controlled phase-shifter is shown in Fig. 4.6b. Two

self-electrooptic cavities are electrically coupled to each other i.e. their junctions are

connected in parallel. The input to one of the cavities therefore affects the detuning of

the second cavity. From Eq. 2.1, the steady state output corresponding to any one of
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(a) (b)

Figure 4.6: (a) Schematic of the circuit implementing the sigmoid or step activation
function (b) Implementation of the controlled phase shifter by electrically coupling to
self-electrooptic cavities.

the cavities is related to its input and the cavity detuning via:

bout =

(
i∆ + (κ− 2κw)/2

i∆ + (κ)/2

)
bin =

(
i∆ + (κl − κw)/2

i∆ + (κl + κw)/2

)
bin (4.5)

Clearly, if κl << κw, then bout ≈ bin exp(iΘ) with Θ = π − 2 tan−1(2∆/κw). Since

the two cavities are electrically coupled, ∆ and hence the transmission phase Θ cor-

responding to one waveguide depends on the input bctr to the complementary (other)

waveguide. Fig. 4.7a shows this transmission phase as a function of the input power

corresponding to the complementary waveguide. Moreover, it can also be seen from
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Figure 4.7: Variation of the (a) transmission phase of the output waveguide (b) output
amplitudes of both the waveguides as a function of the input power to the waveguide
complementary to the output waveguide. In all simulations, S = 1 A/W, Γ0/2π =
500 GHz/V2/3, κl/2π = 2 GHz, κw/2π = 20 GHz, ∆0/2π = −32 GHz, φbias/2π = 0.03
and the power input to the output waveguide is maintained at 0.025 mW.
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Fig. 4.7a that the output amplitudes in both the waveguides are nearly equal to the

input amplitudes – this structure therefore only induces a phase-shift in the waveguide

output relative to the waveguide input. It can be noted that the detuning and hence the

transmission phase is only a function of the input amplitude and not the input phase

since the electrical coupling is affected through the generated photo-current which de-

pends on the power absorbed in the cavity p-n junction. From a design perspective, it

is often convenient to cascade a static phase-shifter φbias with this structure so as to

control the range of phases that can be achieved by changing the input amplitude.

It is now straightforward to see that the output bout of the circuit implementing the

activation function is given by:

bout ≈
[

1√
2
− i√

2

]exp(iΘ) 0

0 1


 1√

2
− i√

2

− i√
2

1√
2


b0

0

 =
b0√

2
(1− exp(iΘ)) (4.6)

The input bin to this circuit is linearly combined with a constant signal through a

directional coupler and (bin +bth)/
√

2 fed into the phase-shifter. This allows the control

of the activation function threshold – for instance, adjusting bth allows us to design

the input threshold to be equal to 0 so as to achieve an approximation of the sigmoid

activation function. Fig. 4.8a shows the steady state characteristics of an approximate

sigmoid neuron implemented with this structure.

It is often desired to use the neuron as a classifier – i.e. design its activation func-

tion to be equal to the step activation function (φ(z) = 1 if z > 0 and 0 if z ≤ 0).

Specific applications of such neuron include hardware implemention the support vector

machine [34] and reservoir computing systems [36]. Increasing the detuning so as to

make the self-electrooptic cavity bistable is favourable in this design, since the thresh-

olding characteristics of a bistable structure becomes much sharper than a monostable

structure. Fig. 4.8b shows the forward and reverse sweep characteristics of an optically

implemented classification neuron. It can clearly be seen that the transition region

for the classification neuron is much smaller than the transition region for the sigmoid
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Figure 4.8: Hardware approximations of the (a) Sigmoid activation function (b) Step
activation function obtained using the optical neuron. In all simulations, S = 1 A/W,
Γ0/2π = 500 GHz/V2/3, κl/2π = 2 GHz, κw/2π = 20 GHz. ∆0/2π = −32 GHz is
used for the sigmoid activation function and ∆0/2π = −33 GHz is used for the step
activation function.

neuron. However, it should also be noted that this neuron can misclassify the input

if it lies within the hysteresis loop of the activation function, but the probability of

producing an invalid output (i.e. an output that cannot be interpreted as high or low),

is very small due to its bistable characteristics.

4.3 Performance of the optical neuron

So as to benchmark the performance of the designed optical neuron, we use it to solve

a simple linear classification problem. The neuron is trained off-chip using the SVM

algorithm to compute the weights wn from the training test. The synapse bias corre-

sponding to the required wn can be calculated using Fig. 4.5b. Since we are solving a

classification problem, it is desirable to operate the activation function bistably (i.e. use

large detuning). Fig. 4.9 compares the classification performed by the optical neuron to

an ideal SVM. It can clearly be seen that the optical neuron has a performance similar

to an ideal SVM trained on the same dataset. The misclassification performed by the

optical neuron (shown in red in Fig. 4.9) can be attributed to the nonlinearity in the
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synapse, and the indeterminacy in the activation function threshold due to its bistable

operation.
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Figure 4.9: Performance of (a) an ideal SVM (b) optical neuron trained on the same
training dataset. The red dots indicate a misclassification performed by the optical
neuron as compared to the ideal SVM.
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Chapter 5

Optimizing the synapse design

The synapse design described in chapter 4 requires the use of 4 self-electrooptic cavities

per synapse. In a large neural network, the number of synapses can be huge – as an

example, consider a feedforward neural network (Fig. 5.1) – one of the most commonly

used learning machines. The number of synapses between two neuron layers is equal

to the product of the number of neurons in these layers. Typical feedforward neural

networks have as many as 100 neurons per layer, which is equivalent to approximately

104 synapse connections between two layers. Integrating these many cavities on-chip

Figure 5.1: Schematic of a feedforward neural network showing different neuron layers
and synapses interconnecting those layers.
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is experimentally difficult and the chip layout optimisation may itself be an extremely

complicated task.

In this chapter, we describe an alternative design of the synapse between two neuron

layer. The proposed design uses a silicon based linear structure integrated on top of a

planar waveguide to achieve a matrix multiplication equivalent to the synapse operation.

The tunability of the synaptic weights is achieved by changing the refractive index of

the linear structure by employing the thermooptic property of silicon.

5.1 Image propagation through a tunable linear

medium as a vector multiplication

All the designs presented so far used single mode channel waveguides as interconnects

to transmit optical signals. Single mode channel waveguides cannot be used transmit

spatially multiplexed information (i.e. an image), since only the modal field profile

(which has a fixed spatial dependance) can propagate through the waveguide. A planar

waveguide, on the other hand, guides electromagnetic fields only in one direction, and

Figure 5.2: Three-dimensional schematic of the modified synapse – the inputs taken
from a channel waveguide are fed into a planar waveguide. They then propagate through
a phase mask which imparts a x dependant phase profile. After propagation through
length L, the imaginary part of the electric field is filtered through a quadrature filter
to obtain the synapse output.
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can thus be used to transmit a one-dimensional image. We make use of this property

of planar waveguides in the subsequent design.

Fig. 5.2 shows a schematic of the modified synapse. The synapse inputs,

bin
1 , b

in
2 . . . b

in
N , are fed into a planar waveguide as a one dimensional image. This

image then propagates through a phase-mask which imparts a different phase to each

pixel of the one dimensional image. This phase-mask is designed so as to thermo-

optically tunable – the phase profile imparted by this phase-mask can be changed by

varying its temperature non-uniformly across the structure. The output of the phase

mask propagates through a length L before reaching the quadrature filter. The input

to the quadrature filter is thus a linear transformation of the synapse inputs, with the

phase-mask introducing tunability in this linear transformation. The quadrature filter

then removes the unwanted imaginary part of the input, and the resulting output is a

purely real linear combination of the synapse inputs. In the remainder of this section,

we show how to design the phase mask corresponding to a given set of synaptic weights

wn.

Assuming the synapse inputs to be fed in through channel waveguides, with modal

field profile Ec(ρ), the field incident onto the planar waveguide is given by (Note ρ ≡

(x, y)):

Einc(ρ) =
N∑
n=1

bin
n Ec(ρn) (5.1)

where ρn = ρ − (n − N/2)ρc is the transverse coordinate with respect to the centre

of the nth channel waveguide, and ρc is the centre-centre displacement between two

adjacent channel waveguides. Assuming the planar waveguide to be single mode, the

electric field transmitted into the planar waveguide can be expressed as:

Etran(ρ) = Ep(y)f(x) (5.2)
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where Ep(y) is the modal field profile of the planar waveguide and

f(x) ≈
N∑
n=1

bin
n

∞∫
−∞

E∗p(y) · Ec(ρn) dy (5.3)

This electric field then propagates through a phase mask, at the output of which the

electric field is given by:

Eph(ρ) = T Ep(y)f(x) exp(iP(x)) (5.4)

where T is the (approximately uniform) transmission amplitude of the phase-mask and

P(x) is its transmission phase. The electric field at the at the input plane corresponding

to the quadrature filter can now be computed from Eph using (refer to appendix B for

derivation):

Eqf(ρ) =

(
ineff

λ0L

)1/2

exp(−ik0neffL)T Ep(y)

∞∫
−∞

f(x′) exp(iP(x′)) (5.5)

× exp

(
− ik0neff

2L
(x− x′)2

)
dx′

Assuming the channel waveguide feeding input to the quadrature filter is centred at

x = 0, the input to the quadrature filter (bin
Q) can be computed from:

bin
Q =

∞∫
−∞

∞∫
−∞

E∗c(ρ) · Eqf(ρ)d2ρ (5.6)

The synapse output bout
sun, which is also the activation function input, is thus given by:

bout
syn = Re(GQ exp(iφQ)bin

Q) (5.7)
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where g+ = GQ exp(iφQ)(= g∗−) is the in-phase gain of the quadrature filter. Using

Eqs. 5.3, 5.5, 5.6 and 5.7, the synapse output is given by:

bout
syn =

N∑
n=1

wnb
in
n (5.8)

where the weights wn are given by:

wn = GQ

(
neff

λ0L

)1/2

T
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

(Ep(y) · E∗c(ρ))(E∗p(y′) · Ec(ρ′n))×

cos

(
π

4
+ φQ − k0neffL−

k0neff

2L
(x− x′)2 + P(x′)

)
dxdydx′dy′ (5.9)

Eq. 5.9 is the required relationship between the phase mask P(x) and the synaptic

weights wn, and maybe numerically solved to approximate P(x) for a given set of

synaptic weights.

5.2 Design of on-chip tunable phase mask

The on-chip tunable phase mask can be realized by fabricating a silicon grating on top

of the planar waveguide used for transmitting the one-dimensional image as described

in the previous section. Three-dimensional and two-dimensional schematics of the pro-

posed structure are shown in Fig. 5.3. The presence of the grating on top of the planar

waveguide locally changes the effective refractive index of the planar waveguide – this

effective refractive index can be controlled by thermo-optically controlling the refractive

index of the grating. Since the phase accumulated by the waveguide mode on prop-

agating through the grating depends on this effective refractive index, this structure

provides a thermo-optic control over the imparted phase profile. Silicon’s thermo-optic

effect [37,38] induces an approximate change of 0.2 in its refractive index over an achiev-

able temperature range (50 K – 300 K). The amount of phase-change this change in

refractive index translates to depends on the grating length Lg and the grating thick-
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(a) (b)

Figure 5.3: (a) Three-dimensional schematic of the on-chip grating used as a tunable
phase mask (b) Two dimensional schematic of the same structure. The two dimensional
structure is used for the finite difference frequency domain simulations.

ness dg. While a larger grating thickness dg would increase the variation in the grating

effective index for a fixed change in the silicon refractive index, it is often desired to

retain a single-mode structure through out and increasing dg indefinitely might result

in multiple modes propagating through the grating region. dg is thus bounded by this

requirement.

Increasing the grating length Lg increases the range of phases that can be achieved

by this design for a fixed change in silicon refractive index. We verified the design’s

performance by simulating a two-dimensional structure (Fig. 5.3b) in using the finite

difference frequency domain simulator [39, 40]. It was observed that for Lg ∼ 10 µm,
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Figure 5.4: (a) Variation of the transmission amplitude and phase of the two dimen-
sional structure shown in Fig. 5.3b (b) Electric field profile for the same structure. In
all the simulations, d = dg = 120 nm, Lg = 10 µm and nSi = 3.5.
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all phases from 0 to π can be achieved over a change of 0.2 in the silicon refractive

index (Fig. 5.4a). The transmission amplitude of this structure remained approximately

constant (T ∼ 0.8). Fig. 5.4b shows the electric field profile obtained on simulating

this structure. It can clearly be seen that within the grating region, the mode maxima

shifts to lie in the grating layer rather than the original waveguiding layer – this is a

consequence of the grating layer having a refractive index similar to that of the guiding

layer. The coupling between the grating layer and the planar waveguide is therefore

stronger than an evanescent coupling (which would have occurred if the grating layer

had a refractive index much smaller than the guiding layer). A large grating length is

thus not required to achieve a desired variation in the output phase of this structure.
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Chapter 6

Conclusion

In this thesis, we presented the self-electrooptic cavity as a fundamental nonlinear

optical element that can be used to design silicon based optical information processing

systems. The self-electrooptic cavity was analyzed and an approximate time-domain

simulation model to compute its characteristics was derived. The self-electrooptic cavity

was then used to design optical logic gates (NOT gate, AND gate, latch) and an optical

neuron. The design methodology described in this thesis can form the basis of building

advanced computing systems, including large-scale digital systems and neuromorphic

learning machines.

A significant part of this thesis was devoted to the problem of designing an optical

neuron. In an integrated optics setting, using the synaptic weights based on the self-

electrooptic cavity would require a very large number of cavities for implementing a

neural network. As an alternative, synapse based on propagation of one-dimensional

image through a planar waveguide was proposed. The fundamental building block of

this alternative synapse was a tunable phase-shifter – using simple two dimensional

simulations, it was shown that an on-chip tunable phase-shifter could be realized by

fabricating thermooptically controlled silicon structures on top of the planar waveguide

used for image propagation.

The designs developed and presented in this thesis are expected to be of relevance

to the implementation of silicon based information processing systems.
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Appendix A

Derivation of Equation 4.3

To analyze the differential amplifier (Fig. 4.2), we first compute the small signal gain

of a self-electrooptic cavity coupled to a single waveguide. From section 2.2, the

transmission amplitude τ(Bin) and phase Φ(Bin) are defined as: for a constant input

bin = Bin exp(iφin), the steady state output is given by:

bout = τ(Bin) exp(iΦ(Bin))bin = τ(Bin)Bin exp(i(Φ(Bin) + φin)) (A.1)

Consider an input of the form bin = B0 exp(iφ0) + δbin, where δbin is a small (complex)

signal. The output would consequently be of the form bout ≈ τ(B0)B0 exp(i(φ0 +

Φ(B0))) + δbout where

δbout =
∂bout

∂bin

∣∣∣∣
B0 exp(iφ0)

δbin +
∂bout

∂b∗in

∣∣∣∣
B0 exp(iφ0)

δb∗in (A.2)

The partial derivatives can easily be computed by changing variables from (bin, b
∗
in) to

(Bin, φin) through:

Bin =
√
b∗inbin and φin = − i

2
log

(
bin

b∗in

)
(A.3)
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Thus,

∂bout

∂bin

=
∂bout

∂Bin

∂Bin

∂bin

+
∂bout

∂φin

∂φin

∂bin

=
d

dBin

(Binτ(Bin) exp(i(Φ(Bin) + φin)))

(
b∗in
4bin

)1/2

− iBin

2bin

(iτ(Bin) exp(i(Φ(Bin) + φin)))

=
1

2Bin

d

dBin

(Binτ(Bin) exp(iΦ(Bin))) +
1

2
τ(Bin) exp(iΦ(Bin))

= τ(Bin) exp(iΦ(Bin)) +
1

2

d

dBin

(τ(Bin) exp(iΦ(Bin))) (A.4)

and similarly,

∂bout

∂b∗in
=
∂bout

∂Bin

∂Bin

∂b∗in
+
∂bout

∂φin

∂φin

∂b∗in

=
d

dBin

(Binτ(Bin) exp(i(Φ(Bin) + φin)))

(
bin

4b∗in

)1/2

+
iBin

2bin

(iτ(Bin) exp(i(Φ(Bin) + φin)))

=
exp(2iφin)

2Bin

d

dBin

(Binτ(Bin) exp(iΦ(Bin))) +
exp(2iφin)

2
τ(Bin) exp(iΦ(Bin))

=
exp(2iφin)

2

d

dBin

(τ(Bin) exp(iΦ(Bin))) (A.5)

Clearly from Fig. 4.2, the inputs to the two cavities are given by Bbias exp(iφbias) ±

bin/
√

2. The output of the amplifier is simply a difference of the two cavity outputs,

scaled down by a factor of
√

2. To the first order, bout can thus be expressed as:

bout = g+bin + g−bin (A.6)

where from Eqs. A.4 and A.5:

g+ = τ(Bbias) exp(iΦ(Bbias)) +
1

2

d

dBin

[
τ(Bin) exp(iΦ(Bin))

]
Bbias

(A.7a)

g− =
exp(2iφbias)

2

d

dBin

[
τ(Bin) exp(iΦ(Bin))

]
Bbias

(A.7b)
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Appendix B

Derivation of Equation 5.5

Consider the problem of computing the electric field profile at z = L given the electric

field profile at z = 0 in a planar waveguide (with z axis as the propagation constant

and y axis as the confinement direction). Let the field at z = 0 be given by:

E(x, y, z = 0) = Ep(y)f(x) (B.1)

wherein we have assumed that the fields are sufficiently paraxial so as to ignore dif-

ference in the polarisation of modes not propagating along the z-axis. This electric

field can be expressed as a superposition of planar waveguide modes propagating along

directions not parallel to the z-axis. To see this, we re-express Eq. B.1 as:

E(x, y, z = 0) =

∞∫
−∞

Ep(y)f̃(kx) exp(ikxx) dkx (B.2)

where f̃(kx) is the fourier transform of f(x):

f̃(kx) =
1

2π

∞∫
−∞

f(x) exp(−ikxx) dx (B.3)

Each of the components E(y)f̃(kx) corresponds to a waveguide mode propagating along

an angle sin−1(kx/k0neff) with z−axis (neff is the effective index of the waveguide). The
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electric field at z = L can be computed by multiplying each of these components by an

appropriate phase shift according to their propagation direction:

E(x, y, z = L) =

∞∫
−∞

Ep(y)f̃(kx) exp(i(kxx+ kzL)) dkx (B.4)

where kz =
√
k2

0n
2
eff − k2

x. For paraxial fields, kx << k0neff, and hence kz ≈ k0neff −

k2
x/2k0neff. Using this approximation and Eq. B.3, Eq. B.4 can be expressed as:

E(x, y, z = L) =
Ep(y) exp(ik0neffL)

2π

∞∫
−∞

∞∫
−∞

f(x′) exp(−ikxx′) exp

{
i

(
kxx+

k2
xL

2k0neff

)}
dkxdx

′

=
Ep(y) exp(ik0neffL)

2π

∞∫
−∞

f(x′)

[ ∞∫
−∞

exp

{
i

(
kx(x− x′) +

k2
xL

2k0neff

)}
dkx

]
dx′

(B.5)

The integral with respect to kx in Eq. B.5 can easily be evaluated to obtain:

E(x, y, z = L) =

(
ineff

λ0L

)1/2

exp(−ik0neffL)Ep(y)

∞∫
−∞

f(x′) exp

(
− ik0neff(x− x′)2

2L

)
dx′

(B.6)

which is the desired result.
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