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Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a
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We use the third- and fourth-order autocorrelation functions g(3)(τ1,τ2) and g(4)(τ1,τ2,τ3) to detect the
nonclassical character of the light transmitted through a photonic-crystal nanocavity containing a strongly
coupled quantum dot probed with a train of coherent light pulses. We contrast the value of g(3)(0,0) with the
conventionally used g(2)(0) and demonstrate that, in addition to being necessary for detecting two-photon states
emitted by a low-intensity source, g(3) provides a more clear indication of the nonclassical character of a light
source. We also present preliminary data that demonstrates bunching in the fourth-order autocorrelation function
g(4)(τ1,τ2,τ3) as the first step toward detecting three-photon states.
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I. INTRODUCTION

A strongly coupled quantum-dot–cavity system can pro-
duce nonclassical light by filtering the input stream of photons
coming from a classical coherent light source through mech-
anisms described as “photon blockade” [1,2] and “photon-
induced tunneling” [2,3]. Recent proposals [4,5] have extended
the concept of photon blockade from single photons to two-
photon Fock-state generation by coupling the probe laser to
the second manifold of the Jaynes-Cummings ladder via a
two-photon transition [6]. This approach can potentially be
further generalized to create third- and higher-order photon
states inside the cavity through multiphoton transitions to
the corresponding manifold. Following our proposal [4],
we report the probing of these multiphoton transitions into
the higher manifolds of the Jaynes-Cummings ladder of a
strongly coupled quantum-dot–photonic-crystal nanocavity
system [2] by measuring the third-order autocorrelation
function [g(3)(τ1,τ2)] of a probe laser transmitted through such
a system. Prior to this work, higher-order photon correlations
had been measured for thermal [7–10] and laser [11] sources,
relying on the strong excitation and high count rates available
in these systems. Very recently g(3) measurements of the
fluorescence from a single quantum dot weakly coupled to
a microcavity were reported as well [12]. However, in the
low-intensity, strongly coupled regime of cavity quantum
electrodynamics, such correlations have only been measured
in an atomic system [13]. Therefore, this work constitutes a
significant step towards implementing a solid-state nonclassi-
cal light source of photon-number states.

One of the benchmarks used to characterize a source of
single photons is the measurement of the the second-order
autocorrelation function g(2)(τ ) = 〈a†a†(τ )a(τ )a〉

〈a†a〉2 [14] at τ = 0,
which quantifies the suppression of multiphoton states. In
actual experiments, the value of g(2)(0) for a light source is
usually estimated from a Hanbury Brown and Twiss (HBT)
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setup that measures coincidence counts between two single-
photon counting modules (SPCMs). A classical coherent
light source will produce photons with Poisson statistics
[g(2)(0)=1], while a source whose output contains at most
one photon at a time will produce g(2)(0) = 0. More generally,
photons from a “sub-Poissonian” light source—in which the
single-photon component dominates over the multiphoton
states—will be antibunched and yield g(2)(0) < 1.

In theory, the second-order autocorrelation function can
also be used to identify a two-photon source, since a pure
two-photon Fock state will have g(2)(0) = 1/2. However, most
experimental demonstrations of nonclassical light sources
result in low-intensity (sparse) output; i.e., the source is
outputting zero photons most of the time. While this does not
affect the value of g(2)(0) for a single-photon source, a perfect
but low-intensity two-photon source outputting the state ψ ≈√

1 − ε2|0〉 + ε|2〉, with ε � 1, will give g(2)(0) ≈ 1/2ε2 (see
Appendix A). A similar argument can be made for any perfect
but sparse n-photon source, which illustrates the difficulty
of quantitatively distinguishing between various multiphoton
Fock states in an experiment relying on a two-detector
measurement. In particular, photon bunching [g(2)(0) > 1] will
be observed for low-intensity nonclassical light sources in
which the presence of the vacuum state is stronger than that of
the photon-number Fock state [2]. To resolve the presence of
a particular Fock state, it is necessary to evaluate higher-order
photon autocorrelation functions and compare them with
lower-order ones. For example, a low-intensity nonclassical
light source with a dominant two-photon component will show
g(2)(0) > 1 and g(3)(0,0) < 1 (Appendix A). Here the value of
the third-order autocorrelation function [14]

g(3)(τ1,τ2) = 〈a†a†(τ1)a†(τ1 + τ2)a(τ1 + τ2)a(τ1)a〉
〈a†a〉3

(1)

can be estimated with a generalized form of HBT setup
that monitors coincidences between three SPCMs and thus
allows one to measure the suppression of simultaneous three-
and higher-photon events [6]. It is worth noting that the
use of photon-number-resolving detectors [15,16], especially
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transition-edge sensors [17] or superconducting nanowires
[18–20], could provide an alternative technique for the
characterization of multiphoton Fock states; however, these
devices are still under experimental investigation and are not
yet widely available.

Here we report the observation of nonclassical third- and
fourth-order photon correlations in an originally coherent
probe after it was transmitted through a semiconductor
nanocavity containing a single quantum emitter. Our system
consists of a self-assembled InAs quantum dot (QD) embedded
in a three-hole linear defect nanocavity (L3) [21] in a two-
dimensional GaAs photonic crystal, fabricated as described
in previous work [22]. The QD–cavity system is maintained
at cryogenic temperatures (between 4 K and 50 K) using
a continuous-flow liquid helium cryostat. We excite this
system with focused pulses from a mode-locked Ti:sapphire
laser tuned near the bare cavity resonance, and the emitted
light was collected with a high numerical aperture objective
lens (NA = 0.75). We employ the cross polarized reflectivity
technique (input source orthogonal to the collected reflected
signal and at 45◦ relative to the cavity mode) that mimics the
results of a transmission measurement [2]. This experimental
setup is depicted in Fig. 1(a).

II. STRONG COUPLING OF A QD TO A
PHOTONIC-CRYSTAL NANOCAVITY

We verify the strong coupling between the cavity and the
QD by observing an anticrossing in the reflectivity (taken using
a superluminescent broadband diode as a source) when the
QD is temperature tuned through resonance with the cavity
[Fig. 1(c)]. By fitting the observed spectrum [Fig. 2(a)] (see
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FIG. 1. (Color online) Experimental setup for detecting photon
correlations. (a) A scanning electron microscope image of the
photonic-crystal nanocavity (left) and the schematics of the cross-
polarized microscopy setup [2]. The polarizing beam splitter (PBS)
in combination with the half-wave plate (HWP) allows us to filter and
select only the light that circulated inside the cavity. (b) Schematics of
the generalized HBT setup used to detect arrival times of three-photon
events, from which the third-order autocorrelation function g(3)(τ1,τ2)
is then extracted. (c) As the QD is temperature tuned across the
resonance of the cavity, an anticrossing is observed in the system’s
spectrum (the cross-polarized reflectivity curves are obtained by using
a superluminescent broadband diode as the source).

Appendix A) and assuming that the QD radiative and dephas-
ing rates are γ /2π = γd/2π = 1 GHz based on previous work
[4], we extract the experimental parameters of the system: the
decay rate of the cavity field κ/2π ≈ 26 GHz (corresponding
to a quality factor Q ≈ 6,200), the QD–cavity coupling rate
g/2π ≈ 21 GHz, and the fraction of the time the dot spends
in a dark state (not interacting with the cavity) due to blinking,
pdark ≈ 0.38. As mentioned earlier, when probed near reso-
nance with coherent light from a laser, such a system can act
as an adjustable photon-number filter thanks to the anharmonic
Jaynes-Cummings ladder [4]. Prior to this work, however, only
measurements of the second-order autocorrelation function
have been performed on such a system [2,3].

The relevant features of the photon correlations in this
system occur at a time scale given by the lifetime of a photon
inside the cavity [2], which is significantly shorter than the time
resolution of the SPCMs. To resolve these features, we sample
the correlations by a train of pulses from the mode-locked
Ti:sapphire laser (∼80 MHz repetition rate). The linewidth
of the original ∼3-ps pulses was reduced to �λFWHM ≈ 0.04
nm (corresponding to a bandwidth of roughly 14 GHz) by
passing the pulses through a monochromator. This allows us
to resolve the relevant spectral features of the system while
retaining the fast sampling. The average optical power in the
pulse train was measured to be P̄probe ≈ 0.2 nW in front of
the objective lens, which at an frep ∼ 80 MHz repetition rate
and with a coupling efficiency of η ∼ 0.01 corresponds to an
approximate intracavity photon number (during the on time of

the pulse) of n = ηP̄probe

frep�ω
≈ 0.12.

We first tune the pulses to be on resonance with the
QD–cavity system [red arrow in Fig. 2(a)] and record the
arrival times of the transmitted photons using the three-SPCM
setup from Fig. 1(b), with the system held at a temperature
of T ≈ 30 K. From this data we can extract the second-
order autocorrelation function g(2)(τ ) via the two-photon
coincidence counts G̃(2)(τ ) (here G̃(2) means we have time
binned the raw detection events but not yet normalized them)
detected between SPCM1 (start) and SPCM2 (stop) [Fig. 2(b)].
In addition to two-photon bunching caused by photon-induced
tunneling, this data also reveals the presence of classical bunch-
ing resulting from QD blinking [2,23]. The latter manifests
itself as an exponential decay of coincidence counts G̃(2)(τ )
for increasing τ . The time constant of this decay, Tdecay ≈ 0.5
μs, is much longer than the decay of the bunching from
photon-induced tunneling, and we extract it together with the
normalization constant Ḡ

(2)
∞ by fitting the histogram with the

function G̃(2)(mTrep) = [Ḡ(2)(Trep) − Ḡ
(2)
∞ ]e−mTrep/Tdecay + Ḡ

(2)
∞ .

Note that this decay time is determined by the mean switching
rate between the bright and dark states and is independent of the
fraction of time pdark the QD actually spends in the dark state.
A more detailed analysis of the dark-state dynamics can be
obtained using a rate equation approach [24], but that is beyond
the scope of this work. Unfortunately, because of the much
faster time scales of our system compared to conventional
atom–cavity experiments [13], we cannot resolve the decay
rate of photon bunching caused by photon-induced tunneling,
as this happens within the time scale of the individual
pulses. After normalization, the second-order autocorrelation
is ḡ(2)(0) = G̃

(2)
0 /Ḡ

(2)
∞ = 1.141 ± 0.003 (we use the notation
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FIG. 2. (Color online) Correlations in a resonantly probed strongly coupled dot–cavity system. (a) The transmission spectrum of the
strongly coupled system in which the QD was tuned into resonance with the cavity. For comparison purposes, the dashed gray curve plots the
calculated transmission of an empty cavity with Q = 6200, while the red dotted curve represents the spectrum of the probe pulse (whose center
frequency is tuned into resonance with the dot and the cavity, as marked by a red arrow). (b) Two-photon coincidence counts G̃(2)(τ ) observed
in the transmission of the strongly coupled system. Notice the classical bunching caused by QD blinking. The second-order autocorrelation
is ḡ(2)(0) = G̃

(2)
0 /Ḡ(2)

∞ = 1.141 ± 0.003. (c) Three-photon coincidence counts G̃(3)(τ1,τ2) observed in the photons transmitted through the
resonantly probed system. (d) Diagonal elements of the G̃(3)(τ1,τ2), with τ1 = τ2 = τ . The QD blinking again results in classical bunching that
decays with the same time scale as for that observed in G̃(2)(τ ). (e) G̃(3)(τ1,τ2), with τ2 = 0, corresponding to the three-photon events in which
the system emits the second and third photons simultaneously.

ḡ(2) to indicate we have both time-binned and normalized the
raw coincidence counts, so this represents our experimental
measurement of the theoretical value g(2)).

III. THREE-PHOTON CORRELATIONS FROM A
STRONGLY COUPLED QD-NANOCAVITY SYSTEM

In a process analogous to obtaining the second-order
autocorrelation function, we now extract the third-order
temporal autocorrelation function ḡ(3)(τ1,τ2) via the three-
photon coincidence counts G̃(3)(τ1,τ2) shown in Fig. 2(c).
The observed correlations in this plot are in agreement with
the previously reported measurements of g(2)(τ ) in the photon
tunneling regime of a strongly coupled QD–cavity system. In
particular, the noticeable lines of enhanced peaks correspond
to the number of three photon events in which (i) the first
and second photons arrive simultaneously (the vertical line,
τ1 = 0), (ii) the second and third photons arrive simultaneously
[the horizontal line, τ2 = 0, shown in more detail in Fig. 2(e)],
and (iii) the first and third photons arrive simultaneously (the
diagonal line with τ1 + τ2 = 0). At the same time, the highest
peak at (τ1,τ2) = (0,0) corresponds to third-order temporal
bunching in transmitted photons with ḡ(3)(0,0) = 1.45 ± 0.04,

which is noticeably more than the value obtained for ḡ(2)(0).
Note that the range of variation in this value has contributions
both from the standard deviation of the number of detection
events for a given pulse (as determined by a Poissonian
distribution) and from the uncertainty in the normalization
constant; this is discussed in more detail in Appendix A.

In contrast, the same g(3) and g(2) measurements for the
photoluminescence from a QD weakly coupled to a photonic-
crystal nanocavity show a very different signature [12].
Namely, in such a system we discover that ḡ(3)(0,0) < ḡ(2)(0);
i.e., there are significantly fewer events in which three photons
arrive simultaneously than events in which two photons arrive
simultaneously, as expected for an imperfect single-photon
source (see Appendix B).

IV. FREQUENCY DEPENDENCE OF THE MULTIPHOTON
CORRELATIONS IN THE TRANSMITTED LIGHT

We repeated the autocorrelation measurements for a set
of probe laser frequencies to map the spectral dependence
of ḡ(3)(τ1,τ2). Because the cavity had slightly shifted in fre-
quency, the measurement was now performed with the sample
kept at a higher temperature (∼40 K instead of ∼30 K), which
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FIG. 3. (Color online) (a) A frequency scan of the autocorrelation measurements with P̄probe ≈ 0.3 nW, corresponding to intracavity photon
number n ≈ 0.17 (the asymmetry of the data is due to the dot being slightly detuned from the cavity). The inset shows a comparison of the
second- and third-order autocorrelations for various levels of P̄probe, when the probe is on resonance with the QD and the cavity. The solid
(dashed) lines plot the result of a numerical simulation for the second- (third-) order correlations. (b) A visualization of the time-binned and
normalized fourth-order autocorrelation function ḡ(4)(τ1,τ2,τ3). To guide the eye, the value of each peak is represented both by color and size
of the plotted data point. (c) Schematics of the expanded HBT setup used to detect arrival times of up to four-photon events used to obtain
autocorrelation functions up to the fourth order, ḡ(4)(τ1,τ2,τ3) shown in (b). (d) Increasing values of the autocorrelation functions ḡ(n) at zero
time delay(s), plotted as a function of their order n (the red squares with error bars represent experimental data, while the green diamonds plot
the results of a numerical simulation). To obtain a sufficient number of four-photon coincidences over a reasonable data collection time, the
system was probed with P̄probe ≈ 1.0 nW, which partially saturated the dot and resulted in lower observed values of ḡ(3)(0,0) and ḡ(2)(0) in this
particular measurement.

negatively affected the amount of detectable photon bunching.
The QD is also slightly red detuned from the cavity resonance.
Nevertheless, the frequency scan in Fig. 3(a) shows that as
the probe is tuned, the third-order autocorrelation ḡ(3)(0,0) of
the transmitted photons exhibits either antibunched or bunched
behavior as the system transitions from the photon blockade to
the photon-induced tunneling regime (for a probe red-detuned
from the cavity resonance). For comparison, Fig. 3(a) also
shows the values of ḡ(2)(0) obtained for the same frequency
scan. In the tunneling regime ḡ(3)(0,0) > ḡ(2)(0), i.e., the
simultaneous arrival of three photons is enhanced compared
to simultaneous two-photon arrivals, which is in qualitative
agreement with numerical simulations (shown in Appendix A).
During the experiment, we kept the probe power constant at
P̄probe ≈ 0.3 nW (corresponding to an approximate intracavity
photon number of 0.17) and the coupling of the probe into the
cavity was reoptimized for every data point. The data in Fig. 3
show a good agreement with numerical simulations of the
values of g(2)(0) and g(3)(0,0) as a function of probe detuning,
given the system parameters measured earlier (g/2π = 21
GHz, κ/2π = 26 GHz, and γ /2π = γd/2π = 1 GHz), a
probe driving strength of E/2π = 10 GHz, a QD–cavity
detuning of � = 20 GHz, and the fraction of QD “dark state”
time pdark ≈ 0.9 (note that this is significantly higher than
our earlier estimate based on the reflectivity spectrum of the
QD–cavity system, probably due to the higher temperature
needed to bring the dot into resonance with the cavity during
this measurement). Importantly, the experimental data and
numerical simulations show that the bunching in g(2)(0) and
g(3)(0,0) when the probe is on resonance with the QD and the
cavity drops off as a function of probe power [the inset of
Fig. 3(a)], leveling out when the intracavity photon number
nears 1. This power dependence indicates that the bunching

we observe is indeed due to photon-induced tunneling and
not classical bunching due to blinking; at higher powers, the
QD saturates [25], which in turn diminishes the polariton dip
[26] and reduces the amount of bunching observed in the
light transmitted through the system, an effect which is well
reproduced by our numerical simulations. Last, we would like
to point out that there are several factors that account for the
difference between the theoretically predicted values of the
second- and third-order autocorrelations ḡ(2)(τ ) and ḡ(3)(τ1,τ2)
and our experimentally observed values: background light
due to imperfect extinction of the uncoupled probe in the
cross-polarization setup, QD blinking and spectral diffusion,
temperature-dependence of the QD dephasing rate, and non-
negligible bandwidth of the probe pulses. In particular, the
QD blinking and background light cause the observed signal
to have a large coherent-state component.

V. FOUR-PHOTON CORRELATIONS FROM A STRONGLY
COUPLED QD-NANOCAVITY SYSTEM

We observe that the theoretically predicted values of
g(3)(0,0), the third-order photon correlations in a laser beam
transmitted through a strongly coupled QD–cavity system,
differ more significantly than the values of g(2)(0) from the
unity expected from coherent (laser) light. This confirms that
g(3)(τ1,τ2) is a more sensitive diagnostic tool for observing
nonclassicality in the measured photon statistics, as it can
more clearly be distinguished from the signature of coherent
light. This approach—increasing the order of the correlations
in order to get a more clear signature of noncoherent light—is
further illustrated in Figs. 3(b)–3(d), showing the preliminary
results of our measurements of the fourth-order autocorrelation
function
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g(4)(τ1,τ2,τ3) = 〈a†a†(τ1)a†(τ1 + τ2)a†(τ1 + τ2 + τ3)a(τ1 + τ2 + τ3)a(τ1 + τ2)a(τ1)a〉
〈a†a〉4

. (2)

The four-photon correlations [Fig. 3(b)] were obtained by
adding another photon counter to the generalized HBT setup
[Fig. 3(c)] and then binning and normalizing the four-photon
coincidences in the transmitted light through this QD–cavity
system probed with resonant [Fig. 2(a)] laser pulses, a process
equivalent to that described above for g(2)(τ ) and g(3)(τ1,τ2).
Figure 3(d) then shows how the value of the autocorrelation
function at zero time keeps increasing with the order of the
autocorrelation function for light transmitted by the QD–cavity
system in the photon-induced tunneling regime. A down side
of this approach is the increasing measurement time required
to collect enough events for a meaningful statistical analysis,
which might not be possible in some experimental systems
(see Appendix A for a discussion of the count rate in our setup).

Finally, to achieve efficient generation of photon pairs and
other higher-order Fock states in this way, a system with
a better dot–cavity coupling strength g and higher cavity
quality factor would be needed (as indicated by the numerical
simulations presented in Appendix A). In addition, optimizing
the dot–cavity detuning of the system with current parameters
could possibly also be employed to improve photon blockade
and as an alternative scheme for generating higher-order Fock
states, as recently proposed by Sánchez-Muñoz et al. [5]. A
source of such higher-order photon states could then be used
for efficient generation of the highly entangled NOON states,
which are particularly interesting for quantum metrology and
high-resolution quantum lithography and sensing [27]. Last,
these higher-order autocorrelations have the potential to be
used for monitoring phase transitions in condensed-matter
simulations based on photon gases [28].
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APPENDIX A: METHODS

1. Theoretical modeling

Our simulations were performed by numerically integrating
the quantum master equation using the QOToolbox originally
developed by Tan [29]. We model the dynamics of a coupled
QD–cavity system (coherently driven by a laser field) with the
Jaynes-Cummings Hamiltonian of the form

H=�aσ+σ−+�ca
†a + ig(a†σ− − aσ+) + E(t)a + E∗(t)a†,

(A1)

which assumes the rotating-wave approximation and a frame
of reference rotating with the frequency of the laser field ωl .
Here �a = ωa − ωl and �c = ωc − ωl are respectively the
detuning of the QD resonant frequency ωa and the cavity
resonance frequency ωc from the laser, g is the coherent
coupling strength between the QD and the cavity mode,

E(t) =
√

κP (t)
�ωc

is the slowly varying envelope of the coherent

driving field with power P (t) incident onto the cavity, and a

is the annihilation operator for the cavity mode. If the excited
and ground states of the QD are denoted by |e〉 and |g〉, then
σ− = |g〉〈e| and σ+ = |e〉〈g|.

Three main loss mechanisms of this system (the cavity field
decay rate κ = ωc/2Q where Q is the quality factor of the res-
onator, QD spontaneous emission rate γ , and pure dephasing
of the QD γd ) are incorporated in the master equation,

dρ

dt
= −i[H,ρ] + κL[a] + γL[σ ] + γdL[σ+σ−], (A2)

where ρ is the density matrix of the coupled QD–cavity
system and L[D] is the Lindblad operator corresponding to
operator D, defined as

L[D] = 2DρD† − D†Dρ − ρD†D. (A3)

We define the values of the second- and third-order
autocorrelation functions g(2)(τ1) and g(3)(τ1,τ2) [14] as

g(2)(τ1) = 〈a†a†(τ1)a(τ1)a〉
〈a†a〉2

,

(A4)

g(3)(τ1,τ2) = 〈a†a†(τ1)a†(τ1 + τ2)a(τ1 + τ2)a(τ1)a〉
〈a†a〉3

,

where τ1 is the time between the arrival of the first and
second photons and τ2 is the time between the arrival of
the second and third photons. Thus, if we assume that the
output photon state transmitted through the system can be
expressed as a superposition of the Fock (photon number)
states |ψ〉 = ∑

n cn |n〉 where the probability of the nth Fock
state is P (n) = |cn|2, it follows that

g(2)(0) =
∑

n n(n − 1)P (n)[ ∑
n nP (n)

]2 ,

(A5)

g(3)(0,0) =
∑

n n(n − 1)(n − 2)P (n)[∑
n nP (n)

]3 .

In particular, this means that g(2)(0) = 0 for a single-photon
pulse train (whether perfect or sparse), while g(2)(0) = 1/2
for a perfect two-photon pulse train but g(2)(0) ≈ 1/2ε2

for a sparse two-photon pulse train (defined as
|ψ〉 ≈ √

1 − ε2|0〉 + ε|2〉).
Note that a classical light source producing a coherent state

|α〉 = ∑
n

αn√
n!

|n〉 can also have a particular Fock state |m〉 to
be the state with the highest probability of occurrence P (m),
if α is chosen such that m + 1 > α2 > m. Thus, to evaluate
the nonclassicality of a Fock-state generating light source,
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FIG. 4. (Color online) Creating and detecting two-photon states inside a cavity containing a quantum emitter. (a) Energy diagram of a
strongly coupled QD–cavity system showing the spacings between the levels of the first- and second-order manifolds. Because the energy
differences between consecutive levels are not constant, the system can act as a photon-number filter when the frequency of the probe laser
is tuned properly. Here the blue arrow represents the probe frequency at which only individual photons couple into the system. The red
arrow represents the probe frequency at which photons couple in pairs via a two-photon transition, while the green arrow represents the
frequency at which a three-photon transition is addressed. (b) Probability of n-photon state, P (n), inside the QD–cavity system as a function of
laser-cavity detuning � and (c) the corresponding second- and third-order correlation functions (plotted in log scale). The photon statistics was
numerically calculated for a system driven by Gaussian pulses with duration τp ∼ 25 ps. The simulation parameters for both (b) and (c) are
g = 2π × 40 GHz, κ = 2π × 4 GHz, and Eo = 2π × 9 GHz, which are close to the highest achievable g with this type of cavity and QD and
to the highest quality factor (Q ≈ 25 000) measured in our laboratory; γ /2π = 1 GHz and pure QD dephasing γd is neglected. The magnified
sections of the plots (both in linear scale) show the frequency range (marked by the vertical dashed lines) in which the two-photon state is
dominant over the other states [P (2) > P (1) + P (3)] and g(2)(0) > 1 and g(3)(0,0) < 1. The functions (d) r1 = P 2(1)

P (0)P (2) , (e) r2 = P 2(2)
P (1)P (3) , and

(f) r3 = P 2(3)
P (2)P (4) , as functions of frequency of the probe laser. Each plot is contrasted with r1, r2, and r3 for a coherent light source with 〈a†a〉 = 2

(dashed gray lines).

we define the ratio rm = P 2(m)
P (m−1)P (m+1) [4], which contrasts

the probability of state |m〉 with the probabilities of the
neighboring Fock states |m − 1〉 and |m + 1〉 in a given light
source. For a coherent state the ratio rm = 1 + 1/m remains a
constant for a given m, which cannot be optimized by adjusting
the value of α. This, in turn, leads to g(n)(0) = 1 for all n

for an m-photon Fock-state generating light source based on
attenuation of coherent light (based on the simple application
of the expressions above for g(2) and g(3)). Thus, the level of
nonclassicality of a weak m-photon Fock-state generating light
source, such as one based on the generalized photon blockade,
can be quantified either by how much its rm differs from the
classical limit [Figs. 4(d)–4(f)] or by looking at the values of
its g(m)(0) and g(m+1)(0) [Fig. 4(c)].

Figure 4(a) shows the theoretical technique for addressing
higher-order manifolds of the Jaynes-Cummings ladder of a
strongly coupled QD–photonic-crystal nanocavity system [2],
while Figs. 4(b)–4(f) plot the numerical simulation results
that show the response of the system to different probe
laser frequencies. The parameters used for the simulation
are those of an ideal QD–cavity system that is currently
within experimental reach and that is driven with laser pulses
comparable to those used in our experiment. As expected,
the system behaves as a highly nonclassical source in the
single-photon regime [blue arrows in Fig. 4(a)]. The single-
photon component dominates the vacuum, as well as all

multiphoton Fock states [Fig. 4(b)], resulting in g(2)(0) ≈ 0.4
[Fig. 4(c)] and r1 ≈ 25 [Fig. 4(d)] for �/g ≈ 1.1. Accessing
the two-photon regime requires addressing the levels of the
second manifold of the Jaynes-Cummings ladder [red arrows
in Fig. 4(a)]. This addressing is more difficult to do precisely,
given that the linewidth of the levels in the second manifold is
roughly twice as big as the linewidth of the levels in the first
manifold [30]. As a result, the frequency for the maximum
probability of a two-photon state [�/g = 0.94, Fig. 4(b)] does
not fully coincide with the maximum nonclassicality of the
two-photon regime [r2 ≈ 4.4 at �/g ≈ 0.9, Fig. 4(e)], and
both are actually outside of the frequency region in which the
two-photon state dominates over the other nonzero Fock states
[g(3)(0,0) < 1 and g(2)(0) > 1, magnified section of Fig. 4(c)].
The detrimental effect of the increasing level broadening of the
higher-order manifolds fully takes over when one tries to ac-
cess the three-photon regime [green arrows in Fig. 4(a)]. While
P (3) is maximized at �/g ≈ 0.7 [Fig. 4(b)], the three-photon
state is far from dominant and r3 only reaches ∼2 [Fig. 4(f)].

These results illustrate the main limit of this scheme
for nonclassical light generation, which comes from the
unresolvability of the higher-order manifolds in the currently
achievable GaAs L3 cavities with self-assembled QDs. The
full potential of this scheme, in particular its photon-number
filtering capabilities, could, however, be utilized in optical
systems with higher quality factors (such as silicon-based
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L3 cavities) or smaller mode volumes (which can potentially
result in higher coupling strengths) or in circuit cQED systems.

2. Extraction of parameters from the spectrum of a
strongly coupled system

Based on our previous work [4], we estimate QD dipole
decay and pure dephasing rates to be γ /2π ≈ γd/2π ≈ 1
GHz (for simplicity we neglect any temperature dependence
of the dephasing). To describe the QD’s blinking and spectral
diffusion, we use a simplified model in which we assume
the QD is in a bright state and resonant with the cavity for
pbright fraction of the time and does not interact with the
cavity for pdark = 1 − pbright fraction of the time, when it
either goes dark [31] or has jumped to a far off-resonant
state. To extract the decay rate of the cavity field κ and
the QD–cavity coupling rate g, we perform a least-squares
fit of Ftotal = pbrightIinFDIT + (1 − pbright)IinFcav + Ibg to the
observed transmission spectrum [Fig. 3(a)] of the strongly
coupled system. Here Iin is the intensity of the laser coupled
into the cavity, Ibg is the background laser signal unsuppressed
by the cross-polarization setup,

FDIT =
∣∣∣∣ κ[γtot + i(ωQD − ωl)]

[κ + i(ωcav − ωl)][γtot + i(ωcav − ωl)] + g2

∣∣∣∣
2

(A6)

is the transmission spectrum of a strongly coupled QD–cavity
system in the weak probe approximation [22],

Fcav =
∣∣∣∣ κ

κ + i(ωcav − ωl)

∣∣∣∣
2

(A7)

is the Lorentzian transmission spectrum of an empty cavity,
γtot = γ + γd , ωcav, and ωQD are (respectively) the resonant
frequencies of the cavity and the dot, ωl is the frequency of the
probe laser, and we used pbright, Iin, Ibg, κ , g, ωcav, and ωQD as
the fitting parameters.

3. Calculation of g(3)(τ1,τ2)

For the measurement of g(3)(τ1,τ2), we implemented
a three-channel photon arrival detecting setup [shown in
Fig. 2(b)] that records the arrival times of individual photons
at each of the three SPCMs using FPGA-based timing
electronics. We time bin the resulting data files containing
the arrival sequence in order to produce a time-of-arrival
histogram for three-photon events. Similar to the process used
to extract the number of two-photon coincidences G(2)(τ ) from
a two-detector measurement, our time-binning algorithm uses
a photon detected by SPCM1 as a start signal, the detection of
a photon by SPCM2 as the first stop (τ1), and the detection of a
photon by SPCM3 as the second stop (τ1 + τ2). This results in a
two-dimensional histogram for G(3)(τ1,τ2) with a grid of peaks
with spacing given by the repetition rate of the Ti:sapphire
pulses, as shown, for instance, in Fig. 5(a). The width of the
peaks in the grid is in this case mostly given by the time jitter
of the TTL output from the SPCMs, so integrating each peak
will result in a time-binned average number of three-photon
events, which we denote by G̃(3)(τ1,τ2) [examples plotted in
Figs. 5(b)–5(d)].

To obtain the normalized pulse-averaged third-order auto-
correlation function ḡ(3)(τ1,τ2), we generalize the procedure

for extracting the value of the second-order autocorrela-
tion function [2]; specifically, we rescale the data such
that ḡ(3)(τ1 → ∞,τ2 → ∞) = 1. This is done by dividing
G̃(3)(τ1,τ2) by Ḡ

(3)
∞ , which we obtain by fitting the histogram

of G̃(3)(τ,τ ) with the function

G̃(3)(mTrep,mTrep) = [
Ḡ(3)(Trep,Trep) − Ḡ(3)

∞
]

× e−mTrep/Tdecay + Ḡ(3)
∞ (A8)

to remove the effects of probe-induced blinking [23] on Ḡ
(3)
∞ .

The error ranges given on our final values for ḡ(2)(0) and
ḡ(3)(0,0) take into account both the standard deviation σ0 =√

G̃
(n)
0 of the number of detection events in the given pulse (at

zero time delay) as derived from Poissonian statistics and the
uncertainty σ∞ in the normalization value Ḡ

(n)
∞ . Combining

these effects,

ḡ(n)(τ1 = 0,τ2 = 0, . . . ,τn−1 = 0)

≡
G̃

(n)
0 ±

√
G̃

(n)
0

Ḡ
(n)
∞ ± σ∞

=
G̃

(n)
0 ±

√
G̃

(n)
0

Ḡ
(n)
∞

[
1 ∓ σ∞

Ḡ
(n)
∞

+ O

(
σ∞
Ḡ

(n)
∞

)2]

≈ G̃
(n)
0

Ḡ
(n)
∞

±
(
Ḡ

(n)
∞ + σ∞

)√
G̃

(n)
0 + σ∞G̃

(n)
0

Ḡ
(n)
∞

2 , (A9)

which provides a method of easily computing both the nominal
values for ḡ(2)(0) and ḡ(3)(0,0) as well as their expected
variation.

4. Count rate for multiple-photon correlations

In our setup, the single-photon count rate on each SPCM
was roughly 7 × 105 counts per second for the g(4) measure-
ments shown in Fig. 3. After identifying the multiple-photon
correlations and time binning the delays, the coincidence
counts are distributed into a histogram consisting of a series
of discrete peaks (corresponding to different time delays
between photon arrivals in increments of 12.5 ns, the repetition
rate of the driving laser), as discussed earlier. On average
(away from the zero time-delay peak), each two-photon
coincidence peak accumulated counts at a rate of 22 000
to 42 000 counts per second (depending on the particular
SPCM configuration), while three-photon coincidence peaks
accumulated at a rate of 27 to 42 counts per second, and
four-photon coincidence peaks accumulated at a rate of only
0.25 counts per second. It can be seen that moving to the next
higher-order autocorrelation function decreases the count rate
(and hence increases the integration time) by roughly a factor
of 100. Since at minimum several hundred counts are needed
to make a reliable measurement, this puts the total integration
time for g(4) measurements (in our setup) on the order of hours.

APPENDIX B: THREE-PHOTON CORRELATIONS IN A
WEAKLY COUPLED QD–CAVITY SYSTEM

To demonstrate the measurement of the third-order au-
tocorrelation function from a solid-state system, we first
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FIG. 5. (Color online) Three photon correlations from a QD fluorescence. (a) Three-photon coincidences (a subset of the raw data) detected
in the fluorescence from a quasiresonantly (∼889 nm) excited QD weakly coupled to a photonic-crystal cavity. Here τ1 is the time interval
between the arrival of the first and second photons, while τ2 is the time interval between the arrival of the second and third photons.
(b) G̃(3)(τ1,τ2), the un-normalized values of the three-photon correlations, obtained by integrating the counts under the coincidence peaks in (a).
(c) Diagonal elements of the G̃(3)(τ1,τ2), with τ1 = τ2 = τ . Trep ≈ 12.5 ns is the repetition period of the pulse train from the Ti:sapphire
laser used to excite the QD and the dashed red line marks the normalization level, Ḡ(3)

∞ = 819 ± 34, for the autocorrelation function.
(d) Coincidence counts G̃(3)(τ1,τ2), with τ2 = 0, corresponding to the three-photon events in which the system emits the second and third
photons simultaneously. Note the different scale of the vertical axes compared to (c). (e) Two-photon coincidence counts G̃(2)(τ ) observed from
the QD. The normalization level here is Ḡ(2)

∞ = (4.26 ± 0.01) × 105.

measured g(3)(τ1,τ2) from a single-photon source based on
the spontaneous emission from an individual QD coupled
to a low-quality factor cavity (Q ∼ 2000). This particular
QD–cavity system was in the weakly coupled regime, with
the cavity improving the photon collection efficiency. The QD
was temperature tuned to be on resonance with the cavity at
921 nm. The system was then illuminated with focused pulses
from a mode-locked Ti:sapphire laser tuned to a higher-order
mode of the L3 cavity (∼889 nm), which allowed us to excite
the dot through a higher-order state [32]. The pulses were ∼3 ps
long with a repetition rate of ∼80 MHz. The light emitted by
the QD was collected with a high numerical aperture objective
(NA = 0.75) and passed through a ∼1-nm FWHM bandpass
filter to reject the scattered light from the excitation pulses and
to suppress any undesired fluorescence.

Figure 5(a) shows a subset of the raw data for the
three-photon coincidence histogram collected from the QD

fluorescence with our three-channel setup (as discussed in
more detail in the Methods section above). Even before
any further time binning, we can see qualitative features of
the system that can be intuitively expected for the emission
from a single quantum emitter. In particular, the noticeable
lines of suppressed peaks correspond to the number of three
photon events in which (i) the first and second photons arrive
simultaneously (the vertical line, τ1 = 0), (ii) the second
and third photons arrive simultaneously [the horizontal line,
τ2 = 0, shown in more detail in Fig. 5(d)], and (iii) the first
and third photons arrive simultaneously (the diagonal line
with τ1 + τ2 = 0). At the same time, the missing peak at
(τ1,τ2) = (0,0) corresponds to the number of events in which
all three photons arrive simultaneously.

Each peak in the histogram in Fig. 5(a) represents the
un-normalized value of the third-order autocorrelation, spread
over the duration of the excitation pulse. Since the width of the
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peaks is an artifact of the SPCM timing jitter, we sum the events
under each peak into a single time bin to obtain the average
number of three-photon events G̃(3)(τ1,τ2), in which the
photons are spaced by τ1 = mTrep and τ2 = nTrep [Figs. 5(b)–
5(d)]. We find that the normalized third-order autocorrelation
at (τ1,τ2) = (0,0) is given by ḡ(3)(0,0) = G̃(3)(0,0)/Ḡ(3)

∞ =
0.016 ± 0.005; i.e., the simultaneous arrival of three photons
is almost completely suppressed. For comparison, Fig. 5(e)
then plots the two-photon coincidence counts G̃(2)(τ ) detected
between SPCM1 (start) and SPCM2 (stop), from which we
extract ḡ(2)(0) = G̃(2)(0)/Ḡ(2)

∞ = 0.126 ± 0.001. Note that for
this case of quasiresonant excitation we observe the blinking-
related decay of two-photon coincidences with Tdecay ≈
1.37 μs. The nonzero values of both ḡ(3)(0,0) and ḡ(2)(0) are
the result of imperfect spectral filtering of the background

photoluminescence (PL) from the sample. We also excited the
system through the wetting layer of the QDs (860 nm), which
resulted in additional PL noise, worsening the single-photon
behavior of the system. In this case, ḡ(2)(0) = 0.795 ± 0.002
(with Tdecay ≈ 0.3 μs), while ḡ(3)(0,0) = 0.59 ± 0.02; i.e., the
number of events in which three photons arrive simultaneously
is still significantly lower than the number of events in which
two photons arrive simultaneously.

It is also worth mentioning that since we extract the
correlations from a complete list of photon arrival times instead
of the more conventional approach of detecting two photons
and binning the difference of their arrival times, our recorded
correlations at τ � Trep are not affected by the exponential
decay that otherwise arises as a consequence of the single-stop
binning technique [33].
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J. Vučković, Nature (London) 450, 857 (2007).

[23] C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and
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P. Petroff, and J. Vučković, Phys. Rev. B 82, 045306 (2010).

[26] D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and
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