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Abstract: Metasurface optics is a promising candidate for realizing the next generation of 
miniaturized optical components. Unlike refractive optics, these devices modify light over a 
wavelength-scale thickness, changing the phase, amplitude, and polarization. This review 
details recent developments and state-of-the-art metasurfaces realized using silicon nitride. 
We emphasize this material as to date it has the lowest refractive index with which 
metasurfaces have been experimentally demonstrated. The wide band gap of silicon nitride 
enables reduced absorption over a broad wavelength range relative to its higher index 
counterparts, providing a CMOS-compatible platform for producing a variety of high 
efficiency metasurface elements and systems. 
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1. Introduction 

Metasurfaces have generated substantial research interest and attention in recent years. These 
ultrathin elements comprising arrays of subwavelength-spaced scattering elements can 
achieve a broad class of functionalities in a flat form factor, transforming the phase, 
amplitude, and polarization of incident electromagnetic radiation [1–3]. At optical 
frequencies, the promise of creating miniaturized imaging systems and multiplexing several 
functionalities into a single device has driven research in both academic and industrial labs 
[4–6]. While much of the initial research investigated silicon and metal-based metasurfaces 
[1,4,7–12] for use in transformation optics and integrated optics, lower index materials 
became appealing because of their transparency at visible wavelengths where there are 
numerous applications in imaging, display, and spectroscopy. This initiated an exploration 
into low-loss dielectric platforms that could support high efficiency operation at visible 
wavelengths, producing a wide array of flat and visible wavelength metasurface elements and 
optical systems [13–26]. In this review, we begin in Section 2 by conducting a survey of 
existing low-loss materials employed in metasurface design, expanding on advantages and 
disadvantages of the material platforms. As silicon nitride (SiN) is the widest band gap and 
lowest refractive index material experimentally demonstrated as a metasurface scatterer to 
date [21], we primarily focus on this material in the succeeding sections. We expand on 
design methodologies in Section 3, detail state-of-the-art SiN metasurface elements and 
systems in Sections 4 and 5, discuss future directions in Section 6, and conclude in Section 7. 

2. Materials survey 

Many of the earlier works on optical metasurfaces were based on metallic scatterers [7,27–
30]. The high plasma frequency of metals prevented these devices form working in 
transmission mode and the losses limited efficiency even for reflective devices. Silicon-based 
metasurfaces [4,8–12] enabled much lower loss devices that could operate efficiently both in 
reflection and transmission at infrared wavelengths. Recently, however, a wide range of lower 
refractive index materials have gained popularity as choices for scattering elements in optical 
metasurfaces due to their reduced optical absorption at visible wavelengths. Semiconductors 
generally obey the empirical Moss relation [31], where 4 ~ 1 / gapn E , motivating the selection 

of lower refractive index materials to increase the band gap and limit absorption. Such 
materials include include titanium dioxide [13–18], gallium nitride [19,20], indium tin oxide 
[32], and silicon nitride [21–23]. 

Titanium dioxide has gained popularity as a metasurface material [Fig. 1 (a)-(b)] because 
of its relatively high index (n ~2.6) while being transparent across the visible regime. While 
this material was previously used a couple decades back to make subwavelength blazed 
gratings [13,14], the platform was only recently popularized for metasurfaces after it enabled 
the first demonstration of imaging at visible wavelengths using a metasurface [15]. It has 
since allowed for a variety of metasurfaces [16,17], including a lens designed to be 
achromatic across the whole visible spectrum [18]. While the optical properties of titanium 
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beam deflection by applying a spatially varying voltage to a gold grating with the change in 
the ITO’s refractive index inducing a change in the scattering properties of the gold structures 
[32] [Fig. 1 (c)-(e)]. With the widespread use of ITO in displays, photovoltaics, and light-
emitting diodes, ITO can be readily manufactured in existing foundries. Although currently 
there is little existing work on ITO-based metasurfaces, and none to our knowledge using ITO 
as the scattering material itself, its optical and electrical properties, along with its established 
use in microfabrication, position ITO as a strong choice for future metasurface designs. 

Of all the materials with refractive index less than that of silicon, the earliest reported 
visible wavelength metasurface lenses utilized silicon nitride (SiN) (n ~2) nanoposts as 
scatterers [21]. SiN is also the lowest refractive index material experimentally demonstrated 
in use for a metasurface [Fig. 1 (g)-(h)] to date and thus provides the widest band gap, with a 
transparency window extending from the infrared down to the near-ultraviolet regime. This 
broadband transparency makes SiN a versatile metasurface material, allowing a designer to 
use the same material and processing techniques for devices at different wavelengths across 
the transparent region. Furthermore, SiN is a CMOS-compatible material, enabling more 
streamlined integration with foundry infrastructure already in use for semiconductor 
microfabrication [33]. 

There are also other potential transparent metasurface materials, perhaps most notably 
silicon dioxide. Like SiN, this material not only exhibits a wide band gap but is a material that 
is widely used and is CMOS-compatible. While lossless, the lower refractive index (n ~1.5) 
of this material translates to lower beam deflection efficiency at high angles and reduced 
focusing efficiency for high NA lenses [34,35]. This reduced performance arises from the 
decrease in diffraction efficiency that, while minimal at low angles, becomes evident in lower 
index materials at moderate to high deflection angles [34,35]. While silicon dioxide is 
preferable compared to a variety of other dielectrics considering its CMOS-compatibility, its 
manufacturing advantages are matched by those of SiN, but it is inferior in terms of 
performance. This degraded performance is likely the reason there is an absence of 
experimentally realized silicon dioxide metasurfaces. For this reason and SiN being the 
lowest index material experimentally demonstrated in a metasurface, in this paper we 
primarily detail and summarize state-of-the-art metasurface works based on SiN scatterers. 

3. Theory 

Metasurface design requires specifying a spatial distribution of scatterers with varying 
geometric parameters to induce a transfer function for some desired near- or far-field optical 
response. For traditional diffractive optics relying on gradual phase accumulation, local phase 
shifts are proportional to the thickness of the element’s material, but for metasurfaces the 
phase shift mechanism operates differently. There are different classes of scattering elements 
used, but for most dielectric metasurfaces, the phase response arises from either 
Pancharatnam-Berry phase elements [36,37] and the in-plane anisotropy of the scatterer, or 
from a cavity-like effect in which the scatterer behaves as a truncated waveguide supporting a 
mixture of Fabry-Perot resonances. In any case, the distinguishing feature of a metasurface is 
its subwavelength spatial resolution at the design wavelength, which for normal incidence (or 
any incidence for lattice spacing less than λ/2) eliminates higher diffraction orders [38]. This 
is a powerful feature of metasurfaces compared to multi-level diffractive optics with their 
super-wavelength spacing, as these elements produce nonzero diffraction orders and 
correspondingly achieve lower efficiency. 

Designing metasurfaces entails selecting a simulation method to compute and test the 
optical response of the device. The design process can consist of either solving a forward 
problem, where the structure is designed using some analytical description or intuition to 
achieve the desired behavior, or an inverse problem in which the desired output is known, and 
the necessary structure is found via computational optimization. The forward technique has 
successfully been used to enable a class of flat optics including lenses [4,9,10,39–42], 
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In the RCWA simulation, the periodic boundary condition ensures all the scatterers in the 
lattice have identical geometric parameters. When the metasurface is designed, however, the 
geometric parameters are varied from pixel to pixel, which is inconsistent with the 
assumptions made for RCWA. If the geometric parameters of neighboring pixels are varied 
slowly enough, then this discrepancy can be negligible. This assumption is referred to as the 
unit cell approximation and when it is not valid it can pose significant limitations for the 
design process. While this approximation holds well for metasurfaces based on high index 
materials such as metals or silicon [10], optical confinement worsens with decreasing 
refractive index, as for SiN. This approximation is of less concern when designing devices 
that are slowly-varying, such as long focal length lenses, but for rapidly varying profiles such 
as those for holograms, it is necessary to assess the robustness of this approximation. A 
standard method for doing this is to examine a scatterer’s behavior as a function of the lattice 
constant [10]. As the strength of coupling between adjacent elements is related to the gap 
between them, if the optical response varies rapidly with spacing, it is an indication that 
coupling is significant, and that the unit cell approximation is invalid. If, however, the phase 
and amplitude response of a scatterer remains invariant over a wide range of lattice spacings, 
then the scatterers are weakly-coupled to one another and it is reasonable to use the scattering 
response calculated assuming a periodic boundary condition. In this case, the nanoposts can 
be treated as pixels which behave locally and are unperturbed by their neighbors. 

3.2 Inverse design 

For the inverse design method, while the desired response is known, the exact metasurface 
structure to realize that behavior can be challenging to determine by forward methods. To 
circumvent this, a figure of merit is defined to quantify the performance of the device and 
upon successive iterations of solving the forward problem and updating the design parameters 
of the structure, the figure of merit can be optimized until the desired behavior is attained. 

There are various existing algorithms for such optimization problems. One promising 
route is to use topology optimization combined with a finite-difference solver, which has 
already been applied in the context of designing multi-layer metasurfaces for angular 
aberration correction of a metalens [Fig. 2(b)] as well as focusing of incident light to the same 
position over a range of incidence angles [53]. This approach requires definition of a desired 
phase profile which is included in the figure of merit and the method modifies the spatial 
permittivity distribution in a binary manner across a set of pre-defined layers. The layer 
thicknesses in this method are on the order of the wavelength and it inherently accounts for 
interactions and coupling between the layers. This work used silicon and alumina as the 
materials of choice but could be extended to lower index material platforms such as SiN as 
well. Topology optimization has also been used for designing high efficiency single layer 
beam deflection metasurfaces [Fig. 2(c)] and free-space wavelength splitters, using a wide 
span of refractive indices (~1.5-3.5), including that of SiN [34]. In this case, RCWA was used 
to simulate periodic structures and the deflection angle of the unit cell was optimized. 
Significantly, higher refractive index materials performed better in general, achieving higher 
efficiencies; however, for low to moderate deflection angles the differences were not as 
appreciable. For a specified period, the optimized grating structure was similar in shape over 
a wide range of indices for achieving the same deflection angle, with similar modal structure, 
yet the difference in efficiency was attributed to greater intra- and inter-mode coupling. 

Separately, a work [54] demonstrating inverse design of arrays of dielectric spheres 
successfully generated single and double layer metalenses using the adjoint method and 
generalized multi-sphere Mie theory (GMMT). While this work used spheres with a refractive 
index of 1.52, the index for polymers used in state-of-the-art two-photon polymerization 3-D 
printers, the algorithm was recently used in a separate study [35] for indices from 1.2 to 3.5, 
which includes the index for SiN. GMMT is a method based on the T-matrix formalism and 
can calculate the electromagnetic scattering off an ensemble of spheres [55–57]. Compared to 
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ranges of 3.2 cm to 9.8 cm and 9 cm to 30 cm at 1550 nm and 633 nm respectively over the 
maximum possible lateral actuation range of the structures. These are the largest tunable focal 
length ranges demonstrated to date for optical metasurfaces. Using the large area visible 
Alvarez lens, varifocal zoom imaging was performed, keeping the object position fixed and 
tuning the focal length to shift the image plane, achieving magnifications from 0.5×  to 2.0×  
[Fig. 4 (c)], a 4×  zoom range without utilizing any other elements in the imaging path. 

5. Optical systems 

 

Fig. 5. Hollow core fiber metasurface mirror cavity [25]. Schematic representation (left) and a 
scanning electron micrograph (right) of the metasurface-based cavity design. The inset shows 
the measured spectrum and fit. Adapted with permission from [25]. Copyright (2018) 
American Chemical Society. 

The compactness of metasurfaces enables miniaturization of a broad class of optical systems. 
This allows for implementation in devices where size constraints are stringent, as in machine 
vision sensors, implantable microscopy, and planar cameras [59]. This has been demonstrated 
with SiN metasurface systems in optical cavities [25], computational imaging systems [26], 
and disorder-engineered wavefront shaping [60], providing substantial size reductions while 
maintaining or enhancing the desired performance. In addition to the size benefits of 
metasurfaces in general, SiN is particularly well suited for a broad range of applications 
because of its wide band gap, enabling high efficiency from the near-UV into the infrared. In 
this section, we expand on some existing optical systems that leverage SiN metasurfaces to 
enhance performance and reduce size. 

5.1 Optical cavities 

A metasurface can be used as a high reflectivity mirror without higher diffraction orders. 
Placing two such mirrors in front of each other, the structures can from a Fabry-Perot cavity. 
Recently, such a device was realized by transferring two SiN metasurfaces on either end of a 
hollow core fiber [25] (Fig. 5). The metasurface scatterers relied on holes rather than 
nanoposts, operating similarly to a photonic crystal lattice. In this manner, the cavity still 
allowed for gases to diffuse into and out of the cavity. Spectral characterization of the 
fabricated hollow core fiber metasurface cavity demonstrated Q factors as high as 54.5 10×  
and a finesse of 11. The ability to realize a cavity in this manner has applications in enhanced 
gas spectroscopy and fiber lasing. Beyond simple metasurface planar mirrors, it may be 
possible to design metasurface-based diffractive elements to engineer transverse modes, such 
as flat top beams or arbitrary mode profiles [61] and output beam shapes for fiber-based 
lasers. 
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will require more sophisticated calibration protocols, deconvolution algorithms, and 
optimization of the metasurface phase mask. 

5.3 Disorder-engineered metasurfaces for wavefront shaping 

Disordered media often complicate the task of transforming a wavefront. Prominent examples 
include imaging through biological tissue or other highly scattering media such as fog, which 
distort incident wavefronts and hinder image formation. Some disordered media, however, 
can be used to enhance wavefront shaping capability, leveraging multiple scattering to expand 
both the spatial extent and range of wavevectors in an optical system [66–72]. In this case, the 
employed disordered medium must be fully characterized to understand its effect on an 
incident wavefront. In knowing the effect of the disordered medium, the distortion it 
introduces can be removed via post-processing or exploited in conjunction with a source to 
achieve more sophisticated functionalities [70–73]. 

 

Fig. 7. Disorder-engineered SiN metasurface system used for wavefront shaping [60]. The 
designed system comprised a spatial light modulator (a) with reconfigurable pixels (e) and a 
disorder-engineered metasurface made of square nanoposts of SiN on a quartz substrate (b). By 
accessing a broader real and wavevector space, the system enabled high-NA focusing over a 
wide FOV (c). The thinness of the element provided a wide memory effect range and its static 
nature after fabrication made for a highly stable disordered medium. 

Calibration of the medium typically consists of measuring its transmission matrix, 
necessitating a sequence of O(N) measurements to map N input-output connections [72,74–
77]. For many applications, N more than 1210  is necessary to achieve an accurate mapping, 
requiring a very large number of measurements, which can be prohibitively time consuming. 
Recently, however, this cumbersome calibration procedure was circumvented by engineering 
a disordered medium using a silicon nitride metasurface [60] [Fig. 7 (a)-(b)]. The metasurface 
was designed to isotropically scatter incident light in the far-field, using the Gerchberg-
Saxton algorithm to generate a hologram with uniform amplitude and random phase. As the 
phase mask of the metasurface was known a priori, its effect on incident light was known 
without requiring measurement of its transmission matrix. Instead, a quick two step alignment 
procedure was used to position the metasurface in the optical path. In conjunction with a 
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reconfigurable spatial light modulator [Fig. 7(e)], the system demonstrated high-NA focusing 
over a wide field of view [Fig. 7(c)]. The selection of SiN as the metasurface material enabled 
higher efficiency performance at visible wavelengths, suitable for biological fluorescent 
imaging applications. The system was used to image Giardia lamblia cysts with fluorescent 
labels, demonstrating the resolution of a 20x objective with the field of view of a 5x 
objective. The thinness of the element relative to conventional disordered media enabled a 
high degree of correlation under angular tilt, which is known as the optical memory effect 
[Fig. 7(d)]. Additionally, as the metasurface is unchanging after fabrication, it is 
extraordinarily stable, whereas many disordered media are dynamic and transmission 
matrices often become decorrelated with time. 

6. Future directions 

While there have been many substantial research advancements in SiN and other 
metasurfaces with refractive index less than that of silicon, there is still a wide array of 
challenges and research directions to be explored. In terms of design methodology, there is 
significant room for improvement and adaptation of inverse design algorithms for use in 
making more advanced devices. Currently, these inverse design techniques have only been 
applied to relatively simple metasurface structures, such as beam deflectors and lenses 
[34,53,54]. The real benefits of inverse design, however, will only come when it can deliver 
devices with non-intuitive designs, such as multiplexers and multifunctional elements, that 
are beyond what can already be done using traditional forward-based methods. Much of this 
work will entail defining performance metrics and figure of merit design. Aside from inverse 
design of metasurfaces alone, co-optimizing both the optics and post-processing software as a 
full pipeline [63] is a possible route to improve system performance for computational 
imaging with metasurfaces. This approach exists in the context of refractive and multi-level 
diffractive optics but has yet to be applied to metasurfaces directly, where the inherent 
subwavelength resolution can potentially deliver further benefits. Furthermore, computational 
imaging with metasurfaces has only focused on mitigating chromatic aberrations [26], 
whereas there is no existing work specifically targeting geometric aberrations. Tackling 
chromatic and geometric aberrations simultaneously will be a challenging but worthwhile 
research direction. 

Beyond design method considerations, there are also material and scalable manufacturing 
challenges to be examined. Using even lower index materials, such as organic polymers, may 
provide additional benefits, including the possible use of printable photonics or two-photon 
polymerization-based 3D printing for fabricating devices. Specifically, roll-to-roll printing 
could significantly reduce the manufacturing cost of metasurfaces, which could potentially be 
used for making cheap concentrators for photovoltaics. These printing techniques could be 
extended to making volume optics comprising several sets of metasurfaces working in tandem 
to enable more advanced multifunctional or multiplexing capabilities [78]. Transitioning to 
even lower index materials, however, will entail having to overcome the drop in beam 
deflection efficiency associated with decreasing refractive index [34]. Appropriate material 
selection could also facilitate realization of arbitrarily reconfigurable visible wavelength 
metasurfaces, by using ITO or other transparent conducting oxides, or complex oxides 
exhibiting large electro-optic coefficients [79]. Arbitrary subwavelength tuning of two-
dimensional metasurfaces, however, is a significant electronics control problem on its own, 
with the use of even lower index materials being an additional constraint for improving 
efficiency at visible frequencies. 

7. Conclusion 

Metasurfaces with a refractive index less than that of silicon have generated substantial 
attention in the optics community in recent years. As the refractive index of a dielectric obeys 
the empirical Moss relation, the band gap increases for lower indices. This relationship 
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motivated a push away from metallic and silicon-based resonators to lower index materials, 
which provide transparent operation at visible frequencies. In this review, we primarily 
examined SiN as it is the lowest refractive index material experimentally demonstrated as a 
metasurface scatterer to date. Additionally, the CMOS compatibility of this material makes it 
particularly attractive for large-scale manufacturing. We conducted a comprehensive 
overview of the forward and inverse design processes employed for metasurfaces and then 
discussed state-of-the-art optical elements and systems that leverage SiN structures. As 
optical elements, SiN nanoposts have enabled visible frequency metasurface lenses, 
holograms, and freeform surfaces. When integrated with other components, SiN metasurfaces 
have found use in a diverse array of applications ranging from disorder-engineered wavefront 
shaping and computational imaging, to hollow core fiber-based optical microcavities. With 
their compact form factor, CMOS compatibility, and unprecedented capabilities for 
efficiently modifying wavefronts with subwavelength resolution, the future of SiN 
metasurfaces looks promising. 
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