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Power systems are evolving rapidly along several fronts. Renewable energy installa-

tions at the distribution and transmission levels are introducing new levels of variabil-

ity and volatility, which are only exacerbated by increasing occurrences of extreme

whether. Meanwhile, inverter-based controls and battery energy storage systems are

providing new levels of flexibility while phasor measurement units and smart meters

are improving the observability of power systems. Taken together, these changes

both necessitate and enable new strategies for power system operation and control.

These new strategies must utilize the fast responsiveness of inverter-based devices

to compensate for increased volatility of power systems. They must do so in a way

that respects the engineering constraints of power systems while handling uncertainty

effectively.

This dissertation addresses the design of policy functions for frequency and voltage

regulation in modern power systems considering the joint challenges of computational

complexity, uncertainty, and safety. First, we consider the problem of safe exploration

for frequency regulation from the perspective of centralized control. We then move

to a decentralized setting motivated by building energy management and develop

new algorithms that yield probabilistic safety guarantees at execution time. The-

oretical results are backed up by simulations demonstrating the advantages of the



proposed methods.
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Chapter 1

INTRODUCTION

1.1 Motivation

The renewable energy revolution is well underway (Figure 1.1). Large-scale solar

and wind installations have grown to encompass 14% of all electricity generation

in the U.S., up from 4% a decade ago [3]. With the growth of variable renewable

energy sources comes the need for energy storage, and battery installations have also

ballooned in recent years (Figure 1.2). As shown in Figure 1.3, batteries do much more

than just shift energy demand in time. They also participate in ancillary (backup)

services such as frequency regulation and spinning reserve, thereby providing a buffer

against the intermittency of renewable energy sources at multiple timescales. These

trends are mirrored at the distribution level and in microgrids where rooftop solar

and home energy storage devices are seeing rapid growth.

Along with these trends, new challenges and opportunities are arising. Inverter-

connected resources contribute to the overall power supply without increasing the

mechanical inertia of the system (provided by synchronous generators), thereby re-

ducing stability margins [74]. At the same time, the variability of wind and solar

energy resources threatens the reliability of the system [97]. Finally, the sheer quan-

tity of new devices in the system makes coordination difficult from a computational

perspective. In terms of opportunities, inverter-connected energy resources can be

controlled on fast timescales and programmed with nearly arbitrary control laws.

Thus, sophisticated control techniques can be implemented to deal with some of the

challenges described above.

These challenges and opportunities necessitate new algorithms for sequential de-
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Figure 1.1: Annual U.S. electricity net generation by energy source for all sectors (1990-

2022). Data source: U.S. Energy Information Administration, Monthly Energy Review,

October 2023, Table 7.2a Electricity Net Generation Total (All Sectors) and Table 10.6 Solar

Electricity Net Generation. EIA note: Zero-carbon generation does not include generation

from distributed energy sources or small-scale solar PV.

Figure 1.2: Large-scale battery storage capacity additions by region (2010–2022). Data

source: U.S. Energy Information Administration, 2022 Form EIA-860 Early Release, Annual

Electric Generator Report.
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Figure 1.3: Applications served by large-scale battery storage (2022). Data source: U.S.

Energy Information Administration, 2022 Form EIA-860 Early Release, Annual Electric

Generator Report.

cision making in power systems. New techniques must address three fundamental

issues in power systems:

1. Constraints. Power systems are subject to many types of constraints. In partic-

ular, we consider operational constraints on the frequencies, voltages, and line

flows throughout a power system. These values must not exceed certain bounds

in order to protect generation and transmission equipment.

2. Uncertainty. The power injections from wind and solar plants are difficult to

predict and quick to vary due to the fluctuating nature of the weather. In

addition, power demand can fluctuate and equipment can fail. The system

operator must be able to maintain the system even in unexpected scenarios.

3. Computational limits. Energy resources may be able to receive real and reac-

tive power setpoints from centralized controllers on longer timescales, such as

seconds or minutes, but on shorter timescales, they must be programmed with

control laws to decide how to act in order to preserve the system in case of an
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emergency. Due to the short timescales and limited computational resources

on individual devices, the control laws must be quick to evaluate and cannot

involve solving large optimization problems.

The purpose of this dissertation is to propose new sequential decision making

algorithms that address these three complexities.

1.2 Context within sequential decision making analytics

Policies for sequential decision making can be grouped into four “meta-classes” [81].

Policy function approximations (PFAs) are closed-form decision rules comprising ev-

erything from linear feedback to neural networks. Cost function approximations

(CFAs) are parameterized optimization problems that are usually used to solve prob-

lems without state dynamics such as bandit problems. Value function approximations

(VFAs) such as value iteration and Q learning trade off between immediate reward and

future value. Direct lookahead approximations (DLAs), most notably model predic-

tive control (MPC), directly optimize a sequence of decisions using some approximate

model of the future.

The last three meta-classes (CFAs, VFAs, and DLAs) all involve solving a op-

timization problem at each time step. Compared to PFAs, these strategies handle

constraints with ease but at the cost of computational complexity. In this dissertation

we focus on designing PFAs with safety guarantees in order to improve the state of

the art in the inherent tradeoff between safety and computational complexity.

However, the best approach to policy design is application-specific and often in-

volves combining techniques from each of the meta-classes. In Chapter 2, VFAs are

used to guide a gradient-based policy search using actor-critic reinforcement learning.

In Chapter 3, DLAs appear when we use a known, differentiable loss function to op-

timize a PFA. And in Chapter 4, CFAs appear when we include a tunable parameter

in the objective function to incentivize safe behavior.
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Within the realm of designing safe policy functions, there exist many strategies

as well as many different notions of safety [41]. Safe exploration involves the design

of correct-by-construction policy functions that uphold state and action constraints

from the first episode of training onward. By contrast, the paradigm of safe execu-

tion permits constraint violations during training while providing guarantees on the

behavior of the trained policy. Notions of safety can either be absolute (precluding

any occurrence of a constraint violation) or probabilistic (limiting the risk of con-

straint violations in some way). More stringent notions of safety require more model

information in order to enforce.

In Chapters 2 and 3, we consider the problem of safe exploration with absolute

guarantees of safety. There are three main approaches to this class of problems [51].

Action replacement uses a classifier to identify unsafe actions and replace them with

safe ones provided by a backup controller before they are executed. Action projection

involves projecting the action recommended by the policy function onto a time-varying

set of safe actions. Action masking involves directly modifying the policy function so

that it can only output safe actions. In Chapters 2 and 3, we focus on the masking

approach. When using the replacement approach, it is difficult to verify the optimality

of the backup controller or the replacement operation. When using the projection

approach, it is difficult to avoid the computational burden of the projection operation.

By contrast, we propose masking procedures that are closed-form and differentiable.

The closed-form property ensures computational efficiency in contrast to projection-

based approaches. The differentiable property enables backpropagation so that the

masking procedure does not interfere with the optimality of a gradient-based policy

search, in contrast to replacement-based approaches. Masking for problems with

continuous state and action spaces is not well-studied [51], and the work in Chapters

2 and 3 addresses this gap.

However, the masking approach requires a degree of model information that is not

available in multi-agent settings. In Chapter 4, we study penalty-based approaches
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that modify the reward function of each agent in order to incentivize safe behavior.

Although popular in the literature, penalty-based methods suffer from a lack of in-

terpretable safety guarantees. In Chapter 4, we provide a new perspective showing

that penalty methods can yield meaningful probabilistic safety guarantees in the safe

execution paradigm.

1.3 Context within power systems literature

Recent review articles [21,42,107] have highlighted the potential role of reinforcement

learning in leveraging new data sources such as smart meters and phasor measurement

units to figure out how to best operate power systems in the face of increased volatility,

uncertainty, and complexity. To this end, several important applications have been

identified: frequency regulation, voltage regulation, and economic dispatch to name a

few. In this context, there has been a pronounced need for new reinforcement learning

algorithms that operate safely, meaning with guarantees on stability or constraint

satisfaction.

Chapter 2 focuses on reinforcement learning for primary frequency control. Recent

work on this topic has considered safety in the context of frequency stability [27] or

has used soft penalties to enforce safe behavior without any guarantees [48]. Other

works disregard safety criteria entirely [99]. In Chapter 2, we provide a method to

guarantee that reinforcement-learning based frequency controllers will satisfy hard

constraints on frequency and angle deviations.

Chapter 4 studies building energy management under distribution system-level

voltage constraints. A closely related work is [80] which trains RL agents to mini-

mize voltage violations, rather than training them to optimize some building-relevant

objective subject to voltage constraints. In [87], a method is proposed to use RL for

decentralized voltage control with stability guarantees. The objective function con-

tains a “transient” term reflecting the discounted accumulation of voltage violations

over time, in contrast to more traditional pointwise-in-time or steady-state voltage
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criteria. The authors in [87] identify an outstanding need to unify these disparate

perspectives, and Chapter 4 makes a substantial contribution towards this goal.

1.4 Outline

In Chapter 2, we propose a computationally efficient approach to safe reinforcement

learning (RL) for frequency regulation in power systems with high levels of variable re-

newable energy resources. The approach draws on set-theoretic control techniques to

craft a neural network-based control policy that is guaranteed to satisfy safety-critical

state constraints, without needing to solve a model predictive control or projection

problem in real time. By exploiting the properties of robust controlled-invariant poly-

topes, we construct a novel, closed-form “safety-filter” that enables end-to-end safe

learning using any policy gradient-based RL algorithm. We then apply the safety filter

in conjunction with the deep deterministic policy gradient (DDPG) algorithm to reg-

ulate frequency in a modified 9-bus power system, and show that the learned policy is

more cost-effective than robust linear feedback control techniques while maintaining

the same safety guarantee. We also show that the proposed paradigm outperforms

DDPG augmented with constraint violation penalties1.

In Chapter 3, we extend the techniques developed in Chapter 2 to situations in

which the reward function is known, leading to a model predictive control (MPC)-

inspired policy search. MPC provides a useful means for controlling systems with

constraints, but suffers from the computational burden of repeatedly solving an opti-

mization problem in real time. Offline (explicit) solutions for MPC attempt to alle-

viate real time computational challenges using either multiparametric programming

or machine learning. The multiparametric approaches are typically applied to linear

or quadratic MPC problems, while learning-based approaches can be more flexible

1Paragraph adapted from D. Tabas and B. Zhang, “Computationally Efficient Safe Reinforcement
Learning for Power Systems,” 2022 American Control Conference (ACC), Atlanta, GA, USA, 2022,
pp. 3303-3310.
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and are less memory-intensive. Existing learning-based approaches offer significant

speedups, but the challenge becomes ensuring constraint satisfaction while maintain-

ing good performance. In this chapter, we provide a neural network parameterization

of MPC policies that explicitly encodes the constraints of the problem. By exploring

the interior of the MPC feasible set in an unsupervised learning paradigm, the neu-

ral network finds better policies faster than projection-based methods and exhibits

substantially shorter solve times. We use the proposed policy to solve a robust MPC

problem, and demonstrate the performance and computational gains on a standard

test system from the literature2.

In Chapter 4, we turn our attention towards building energy management which,

due to privacy considerations, is inherently a multi-agent problem [80]. This requires

investigating a relatively relaxed notion of safety in order to come to a meaningful

solution. Most constrained multiagent reinforcement learning (C-MARL) algorithms

use a primal-dual approach to enforce constraints through a penalty function added to

the reward [64]. In this chapter, we study the structural effects of this penalty term on

the MARL problem. First, we show that the standard practice of using the constraint

function as the penalty leads to a weak notion of safety. However, by making simple

modifications to the penalty term, we can enforce meaningful probabilistic (chance

and conditional value at risk) constraints. Second, we quantify the effect of the penalty

term on the value function, uncovering an improved value estimation procedure. We

use these insights to propose a constrained multiagent advantage actor critic (C-

MAA2C) algorithm. Simulations in a simple constrained multiagent environment

affirm that our reinterpretation of the primal-dual method in terms of probabilistic

constraints is effective, and that our proposed value estimate accelerates convergence

to a safe joint policy. We also support our findings using a 3-building simulation

2Paragraph adapted from D. Tabas and B. Zhang, “Safe and Efficient Model Predictive Control
Using Neural Networks: An Interior Point Approach,” 2022 IEEE 61st Conference on Decision
and Control (CDC), Cancun, Mexico, 2022, pp. 1142-1147.
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environment including various distributed energy resources and a distribution system

solver3.

The dissertation concludes with some closing remarks and directions for future

research.

3Paragraph adapted from Tabas, D., Zamzam, A.S. and Zhang, B. (2023). Interpreting Primal-
Dual Algorithms for Constrained Multiagent Reinforcement Learning. Proceedings of The 5th
Annual Learning for Dynamics and Control Conference, in Proceedings of Machine Learning Re-
search 211:1205-1217.
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Chapter 2

COMPUTATIONALLY EFFICIENT SAFE
REINFORCEMENT LEARNING FOR POWER SYSTEMS1

Power systems are a quintessential example of safety-critical infrastructure, in

which the violation of operational constraints can lead to large blackouts with high

economic and human cost. As variable renewable energy resources are integrated into

the grid, it becomes increasingly important to ensure that the system states, such as

generator frequencies and bus voltages, remain within a “safe” region defined by the

operators [24].

The design of safe controllers concerns the ability to ensure that an uncertain

dynamical system will satisfy hard state and action constraints during execution of a

control policy [65,71]. Recently, set-theoretic control [13] has been applied to a wide

range of safety-critical problems in power system operation [36, 106]. This approach

involves computing a robust controlled-invariant set (RCI) along with an associated

control policy which is guaranteed to keep the system state inside the RCI [13,36,37].

If the RCI is contained in the feasible region of the (safety-critical) state constraints,

then the associated control policy is considered to be safe.

However, the set-theoretic approach requires several simplifying assumptions for

tractability, leading to controllers with suboptimal performance. First, the distur-

bances to the system are assumed to be bounded in magnitude but otherwise arbi-

trary [13,106]. Second, the RCIs must be restricted to simple geometric objects such

as polytopes or ellipsoids [69]. Third, many approaches select an RCI and control

1Adapted from D. Tabas and B. Zhang, “Computationally Efficient Safe Reinforcement Learning
for Power Systems,” 2022 American Control Conference (ACC), Atlanta, GA, USA, 2022, pp.
3303-3310.
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policy in tandem, which usually requires the control policy to be linear and forces

a tradeoff between performance and robustness [12, 62, 73]. Fourth, nonlinear sys-

tems must be treated as linear systems plus an unknown-but-bounded linearization

error [36].

Once an RCI is generated using the conservative assumptions listed above, data-

driven approaches can use learning to improve performance with respect to the true

behavior of the disturbances and nonlinearities without risk of taking unsafe ac-

tions [7, 25, 44, 95]. However, these techniques require solving a model predictive

control (MPC) or projection problem each time an action is executed, which may be

too computationally expensive. Several approaches that avoid repeatedly solving an

optimization problem have also been proposed. One such approach involves tracking

the vertices of the set of safe actions, and using a neural network to specify an action

by choosing convex weights on these vertices. However, this is only possible when the

RCI has exceedingly simple geometry [109]. Other strategies only guarantee safety

in expectation, and do not rule out constraint violations in every situation [1, 102].

Controllers with Lyapunov stability or robust control guarantees have also been pro-

posed [27,29,33], but stability does not always translate to constraint satisfaction.

In this chapter, we present a method to design safe, data-driven, and closed-form

control policies for frequency regulation in power systems. Our approach combines

the advantages of set-theoretic control and learning. In particular, we use simple

linear controllers to find a maximal RCI, and then use reinforcement learning (RL) to

train a neural network-based controller that improves performance while maintaining

safety. The safety of this control policy is accomplished by constraining the output of

the neural network to the present set of safe actions. By leveraging the structure of

polytopic RCIs, we construct a closed-form safety filter to map the neural network’s

output into the safe action set without solving an MPC or projection problem. The

safety filter is differentiable, allowing end-to-end training of the neural network using

any policy gradient-based RL algorithm. We demonstrate our proposed control de-
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sign on a frequency regulation problem in a 9-bus power system model consisting of

several generators, loads, and inverter-based resources (IBRs). The simulation results

demonstrate that our proposed policy maintains safety and outperforms safe linear

controllers without repeatedly solving an optimization problem in real time.

We focus on applying our algorithm to the problem of primary frequency control in

power systems. Frequency is a signal in the grid that indicates the balance of supply

and demand. Generators typically respond to the change in frequency by adjusting

their power output to bring the frequency back to nominal (e.g., 60 Hz in the North

American system) [53, 108]. For conventional generators, these responses are limited

to be linear (possibly with a dead-band). In contrast, IBRs such as solar, wind

and battery storage can provide almost any desired response to frequency changes,

subject to some actuation constraints [2]. Currently, however, these resources still use

linear responses, largely because of the difficulty in designing nonlinear control laws.

Recently, RL based methods have been introduced in the literature (see, e.g. [21]

and the references within). However, most approaches treat safety and constraint

satisfaction as soft penalties, and cannot provide any guarantees [21,55,99].

The rest of the chapter is organized as follows. Section 2.1 introduces the power

system model and formulates the problem of safety-critical control from a set-theoretic

perspective. Section 2.2 describes the proposed controller design. Section 2.3 presents

simulation results for the modified 9-bus power system.

2.1 Problem Formulation

2.1.1 Model assumptions

In this chapter we are interested in a linear system with control inputs and distur-

bances. We write the system evolution as

xt+1 = Axt +But + Edt, (2.1)



13

where xt ∈ Rn, ut ∈ Rm and dt ∈ Rp are vectors of the state variables, control inputs,

and disturbances at time t. We assume the disturbance dt is bounded but otherwise

can take arbitrary values. More precisely, we assume that dt lies in a compact set.

This boundedness assumption on dt is fairly general, since it allows the disturbances

to capture uncontrolled input into the system, model uncertainties in A, B, and E,

and linearization error. For more compact notation, we will sometimes summarize

(2.1) as x+ = f(xt, ut, dt).

The constraints on inputs are ut ∈ U ⊂ Rm and dt ∈ D ⊂ Rp for all t. The sets

U and D are assumed to be polytopes, defined as the bounded intersection of a finite

number of halfspaces or linear inequalities [18]. Specifically, U and D are defined as

U = {u ∈ Rm | −ū ≤ Vuu ≤ ū} and (2.2)

D = {d ∈ Rp | −d̄ ≤ Vdd ≤ d̄}. (2.3)

In safety-critical control problems such as frequency regulation, operators want to

keep the system states within hard constraints. For example, frequencies are generally

kept within a tenth of a hertz of the nominal frequency and rotor angle deviations

are limited for stability considerations [53]. We use the set

X = {x ∈ Rn | −x̄ ≤ Vxx ≤ x̄} (2.4)

to denote the constraints that the state x must satisfy in real-time.

2.1.2 Safety-critical control

Because of the presence of disturbances, it may not be possible for the system state

to always remain in X . Some states close to the boundary of X could be pushed out

by a disturbance no matter the control action, while for other states in X , there may

exist a control action such that no disturbance would push the state outside of the

prescribed region. This motivates the definition of a robust controlled-invariant set.
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Definition 2.1 (Robust controlled-invariant set (RCI) [13]). An RCI is a set S for

which there exists a feedback control policy ut = π0(xt) ∈ U ensuring that all system

trajectories originating in S will remain in S for all time, under any disturbance

sequence dt ∈ D.

If S is contained in X , then π0 is a safe policy. Often, the goal is to find the policy

that maximizes the size of S while being contained in X , since it corresponds to mak-

ing most of the acceptable states safe [69]. In general, this is a difficult problem. For-

tunately, if we restrict the policy to be linear, there are many well-studied techniques

that have been shown to be successful at producing large safety sets [14, 61,62,93].

In this chapter, we assume that S is a polytope described by 2r linear inequalities,

and that π0 is a linear feedback control policy. Specifically, we assume

S = {x ∈ Rn | −s̄ ≤ Vsx ≤ s̄} ⊆ X and (2.5)

π0(x) = Kx (2.6)

where Vs ∈ Rr×n, s̄ ∈ Rr, and Kx ∈ U for all x ∈ S. For robustness, we choose

the largest RCI satisfying (2.5). The algorithm used for choosing (S, π0) is described

in [61]. The algorithm uses a convex relaxation to find an approximately maximal

RCI S and an associated K as the solution to an SDP. The objective of the SDP is

to maximize the volume of the largest inscribed ellipsoid inside S.

Of course, a linear policy that maximizes the size of S may not lead to satisfactory

control performance. The set S is chosen jointly with the policy π0, but there could

be many policies (not necessarily linear) that keep S robustly invariant. We want

to optimize over this class of nonlinear policies to improve the performance of the

system. To explore the full range of safe policies, we define the safe action set at time

t as

Ω(xt) := {ut ∈ U | xt+1 ∈ S, ∀ dt ∈ D} (2.7)
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where it is assumed that xt ∈ S. By induction, any policy that chooses actions from

Ω(xt) is a safe policy [13].

We define the set of safe policies with respect to the RCI S as

Π := {π : Rn → Rm | π(xt) ∈ Ω(xt), ∀ xt ∈ S}. (2.8)

Given S, we search for a policy by optimizing over Π:

min
π∈Π

Ex0∈S,dt∈D

[
1

T

T∑
t=1

J(xt, ut)

]
(2.9a)

subject to: xt+1 = Axt +But + Edt (2.9b)

ut = π(xt) (2.9c)

where Ex0∈S,dt∈D is the expectation with respect to randomness in initial conditions

and in the sequence of disturbances, and J(xt, ut) is the cost associated with occu-

pying state xt and taking action ut. To estimate (2.9a), dt is sampled from D but

treated as stochastic, so that standard RL algorithms can be used to solve (2.9) [95].

This relaxation does not require thorough sampling of D to preserve safety, since

the constraint π ∈ Π imposes state and input constraint satisfaction for all possible

disturbances dt ∈ D. The solution of (2.9) depends on the distribution of dt over D

but safety is guaranteed for any π ∈ Π.

One example of a cost function that can be used in (2.9) is the classical LQR cost

on state and control [45], but other non-quadratic cost functions can also be used. For

example, for sparsity-promoting controllers, we may set J(xt, ut) = xTt Qxt + c∥ut∥1,

where Q ⪰ 0 and c > 0 [34].

2.2 Controller Design

In this section, we describe how set-theoretic control techniques can be used to create

a safety guarantee for data-driven controllers without solving an MPC or projection

problem in real time. Since dt is unknown, data-driven approaches for choosing π are
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Figure 2.1: Policy network architecture for safe learning. The components are: Kxt, a

safe linear feedback included for numerical stability; Ω(xt), the set of safe actions from

observed state xt; ψθ(xt), a neural network; and the closed-form gauge map which maps

neural network outputs to the current set of safe actions Ω(xt).

appropriate if safety guarantees can be maintained. For control problems with con-

tinuous state and action spaces, one class of RL algorithms involves parameterizing π

as a neural network or other function approximator and using stochastic optimization

to search over the parameters of that function class for a (locally) optimal policy.

A common approach to safety-critical control with RL is to combine a model-

predictive controller with a neural network providing an action recommendation or

warm start [7, 95]. However, this makes it difficult to search over Π efficiently and

leads to control policies with higher computational overhead. One optimization-free

approach involves tracking the vertices of Ω(xt) and using a neural network to choose

convex weights on the vertices of Ω(xt). However, this is only possible when S has

exceedingly simple geometry [109]. While it is difficult to constrain the output of

a neural network to arbitrary polytopes such as Ω(xt), it is easy to constrain the

output to B∞, the ∞-norm unit ball in Rm, using activation functions like sigmoid

or hyperbolic tangent in the output layer. By establishing a correspondence between

points in B∞ and points in Ω(xt), we will use neural network-based controllers to

parameterize Π.

In particular, we construct a class of safe, differentiable, and closed-form policies
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πθ, parameterized by θ, that can approximate any policy in Π. The policy first chooses

a “virtual” action in B∞ using a neural network ψθ. The policy then uses a novel,

closed-form, differentiable “safety filter” to equate ψθ(xt) with an action in Ω(xt).

Figure 2.1 illustrates the way ψθ, Ω, and π0 are interconnected using a novel gauge

map in order to form the policy πθ. In order to efficiently map between B∞ and Ω(xt),

we now introduce the concepts of C-sets and gauge functions.

Definition 2.2 (C-set [13]). A C-set is a set that is convex and compact and that

contains the origin as an interior point.

Any C-set can be used as a “measuring stick” in a way that generalizes the notion

of a vector norm [13]. In particular, the gauge function (or Minkowski function) of a

vector v ∈ Rm with respect to a C-set Q ⊂ Rm is given by

γQ(v) = inf{λ ≥ 0 | v ∈ λQ}. (2.10)

If Q is a polytopic C-set defined by {w ∈ Rm | F T
i w ≤ gi, i = 1, . . . , r}, then the

gauge function is given by

γQ(v) = max
i

{F T
i v

gi

}
, (2.11)

which is easy to compute since it is simply the maximum over r elements. Equation

(2.11) is derived in Appendix A.1. We will use (2.11) to construct a closed-form,

differentiable bijection between B∞ and Ω(xt).

2.2.1 Gauge map

We will first show how to use the gauge function to construct a bijection from B∞ to

any C-set Q, and will then generalize to the case when Q does not contain the origin

as an interior point. For any v ∈ B∞, we define the gauge map from B∞ to Q as

G(v|Q) = ∥v∥∞
γQ(v)

· v. (2.12)

We assign G(0|Q) := 0 and justify this choice in Appendix A.5.
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Figure 2.2: Action of the gauge map from B∞ to randomly generated Q, with the 1
4 ,

1
2 , and

3
4 level sets of the respective gauge functions shown in white. For each point v ∈ B∞ and

its image w ∈ Q, v and w have the same direction and γQ(w) = ∥v∥∞.

Lemma 2.1. For any C-set Q, the gauge map G : B∞ → Q is a bijection. Specifically,

w = G(v|Q) if and only if w and v have the same direction and γQ(w) = ∥v∥∞.

The proof of Lemma 2.1 is provided in Appendix A.3. By Lemma 2.1, choosing a

point in B∞ is equivalent to choosing a point in Q. The action of the gauge map is

illustrated in Figure 2.2.

We cannot directly use the gauge map to convert between points in B∞ and points

in Ω(xt), since Ω(xt) may not contain the origin as an interior point. Instead, we must

temporarily “shift” Ω(xt) by one of its interior points, making it a C-set. Lemma 2.2

provides an efficient way to achieve this.

Lemma 2.2. If π0(x) = Kx is a policy in Π, then for any xt in the interior of S,

the set Ω̂t := [Ω(xt)−Kxt] is a C-set.

The proof of Lemma 2.2 is provided in Appendix A.4. Figure 2.3 illustrates the

way the gauge map and Lemma 2.2 are used in the policy network as a safety filter,

by transforming the output of the policy network from B∞ to Ω(xt).
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2.2.2 Policy architecture

Theorem 2.1. Assume the system dynamics and constraints are given by (2.1), (2.2)

and (2.3), and there exists a choice of (S, π0) conforming to (2.5) and (2.6). Let

ψθ : S → B∞ be a neural network parameterized by θ. Then for any xt in the interior

of S, the policy

πθ(xt) := G(ψθ(xt)|Ω̂t) +Kxt (2.13)

has the following properties.

1. πθ is a safe policy.

2. πθ can be computed in closed form.

3. πθ is differentiable at xt.

4. πθ can approximate any policy in Π.

We will comment briefly on the last property and leave the proof of Theorem 2.1 to

Appendix A.5. The ability of πθ to approximate any policy in Π given proper choice

of θ is based on the function approximation properties of ψθ [46] and the ability of

the gauge map to establish a one-to-one correspondence between points in B∞ and

actions in Ω(xt).

2.2.3 Policy optimization through reinforcement learning

We parametrize the search over Π using (2.13) with parameter θ, and we choose θ

to optimize (2.9) using policy gradient RL algorithms. The policy gradient theorem

from reinforcement learning allows one to use past experience to estimate the gradi-

ent of the cost function (2.9a) with respect to θ [10]. This is a standard approach

for RL in continuous control tasks [60]. Policy gradient methods require that it be



20

Figure 2.3: In the policy network, the gauge map is used to map virtual actions to safe

actions.

possible to compute the gradient of πθ with respect to θ. More specifically, G must be

differentiable (Thm. 2.1, part 3) or else the safety filter would have to be treated as

an uncertain influence whose behavior must be estimated from data. The parameter

θ is randomly initialized at the beginning of the policy gradient algorithm.

In addition to being differentiable, πθ has two other noteworthy attributes. First,

under the optimal choice of θ, the controller πθ performs no worse than π0. This is

because π0 is a feasible solution to (2.9), so the optimal solution to (2.9) can do no

worse. Second, unlike projection-based methods [44], the structure of πθ facilitates

exploration of the interior of the safe action set. This is because smooth functions

such as the sigmoid or hyperbolic tangent can be used as activation functions in the

output layer of ψθ to constrain its output to B∞. By tuning the steepness of the

activation function, it is possible to bias the output of ψθ towards or away from the

boundary of B∞.

2.3 Simulations

2.3.1 Power system model

The main application considered in this chapter is frequency control in power systems.

We consider a system withN synchronous electric generators. The standard linearized
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swing equation at generator i is:

δ̇i = ωi (2.14a)

Miω̇i = −Diωi −
N∑
j=1

Kij(δi − δj) +
m∑
k=1

bikuk −
p∑

l=1

eildl, (2.14b)

where δi is the rotor angle, ωi is the frequency deviation, andMi andDi are the inertia

and damping coefficients of generator i. The coefficients Kij, bik, and eil are based on

generator and transmission line parameters taken from a modified IEEE 9-bus test

case, and are computed by solving the DC power flow equations. Thus, the size of

the coefficient measures the influence of each element on the dynamics of generator

i. The quantity uk represents controller k, an IBR such as a battery energy storage

system or wind turbine [52,98], where the active power injections can be controlled in

response to a change in system frequency. The feasible control set U ⊂ Rm represents

limits on power output for each of the m IBRs.

The disturbance dl captures the uncertainties both in load and in uncontrolled re-

newable resources. It is also possible to use d to account for parameteric uncertainties,

linearization error associated with the linearized swing equation dynamics, or error

associated with the DC power flow approximation, by adding virtual disturbances

at every bus in the system [36, 67]. The disturbance set D ⊂ Rp is conservatively

estimated from the capacity of the p uncontrolled elements [22].

Discretizing the continuous-time system in (2.14) and assembling block compo-

nents gives a system in the form of (2.1). Let δ and ω ∈ RN be vectors representing

the rotor angles and frequency deviations of all generators in the system, and let the

system state be represented by x =
[
δ ω

]T
∈ Rn where n = 2N. Using time step τ ,
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Figure 2.4: Illustration of 9-bus power system model.

the discrete-time system matrices are given by

A =

 I τI

−τM−1K I − τM−1D

 ,
B =

 0

M−1B̂

 , E =

 0

M−1Ê


where [M ]ii =Mi, [D]ii = Di, [K]ij = Kij, [B̂]ik = bik, and [Ê]il = eil.

We simulate the proposed policy network architecture on a 9-bus power system

consisting of three synchronous electric generators, three controllable IBRs, and three

uncontrolled loads. The time step for discretization is 0.05 seconds. The load is

modeled as autoregressive noise defined by

dt+1 = αdt + (1− α)d̂ (2.15)

where d̂ ∈ Rp is randomly generated from a uniform distribution over D, and α ∈

(0, 1). The system is illustrated in Figure 2.4.

2.3.2 RL algorithm

To train the policy network, we used the Deep Deterministic Policy Gradient (DDPG)

algorithm [60], an algorithm well-suited for RL in continuous control tasks. DDPG is
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an actor-critic algorithm, in which the “actor” or policy chooses actions based on the

state of the system, and the “critic” predicts the value of state-action pairs in order

to estimate the gradient of the cost function (2.9a) with respect to θ (the “policy

gradient”). In our simulations, the cost was given by

J(xt, ut) = xTQx+ uTRu (2.16)

where Q = block diag{1000IN , 10IN}, R = 5Im, and IN is the identity matrix in

RN×N . The actor was given by (2.13). The function ψθ was parameterized by a neural

network with two hidden layers of 256 nodes each, with ReLU activation functions in

the hidden layers. We use sigmoid functions in the last layer to limit the the outputs

to be within [−1, 1]. The critic, or value network, had the same hidden layers as ψθ

but a linear output layer. We trained the system for 200 episodes of 100 time steps

each.

2.3.3 Benchmark comparisons

To demonstrate the advantages of the proposed policy architecture, we compare

against two benchmarks. The first is the linear controller Kx, chosen to maximize the

size of the associated RCI. Using the algorithm in [61], we choose (S, K) by solving

the optimization problem

max
S∈S,K∈Rn×m

vol(S) (2.17a)

s.t. Invariance: (A+BK)S ⊕ ED ⊆ S (2.17b)

Safety: S ⊆ X (2.17c)

Control bounds: KS ⊆ U (2.17d)

where ⊕ denotes Minkowski set addition and S is a class of polytopes described by

(2.5). Figure 2.5 displays the accumulated cost during a number of test trajectories,

showing that πθ is a more cost-effective controller than Kx when the same S is used
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Figure 2.5: Accumulated cost over several test trajectories with a fixed initial condition and

randomly generated disturbance sequences, showing that the RCI policy network achieves

better performance than the safe linear feedback.

for each policy. This makes sense, since the nonlinear policy is afforded additional

flexibility in balancing performance and robustness. Since πθ andKx are both policies

in Π, the learned policy has the same safety guarantees as the linear policy.

The second benchmark is a policy network that is trained using DDPG augmented

with a soft penalty on constraint violations, in order to incentivize remaining in X .

The policy network for this benchmark consists of two 256-node hidden layers with

ReLU activation, and hyperbolic tangent activation functions in the output layer that

clamp the output to the box-shaped set U . The soft penalty is the total constraint

violation, calculated as

λ∥max{Vxxt − x̄, 0} −min{Vxxt + x̄, 0}∥1

where the max and min are taken elementwise, and λ > 0.

In Fig. 2.6, we plot an example of the maximum angle deviation during training.

We place a hard constraint of 0.1 radians on this angle deviation. For the policy given

by (2.13), the trajectory always stays within this bound, by the design of the the

controller. For a policy trained with a soft penalty, trajectories initially exit the safe

set. With enough training, the trajectories eventually satisfy the state constraints.
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Figure 2.6: Maximum angle deviation per training episode for the safe policy network

(blue) and the baseline policy network with soft penalty (orange). The safe policy network

guarantees safety during training, while soft penalties eventually drive the baseline policy

towards constraint satisfaction.

Figure 2.7 shows that safety in training does not imply safety in testing. The

policy network trained using a soft penalty can still result in constraint violations,

whereas the safe policy network does not. In some sense, this is not unexpected.

Only a limited number of disturbances can be seen during training, and because of

the nonlinearity of the neural network-based policy, it is difficult to provide guarantees

from the cost alone. In addition, picking the right soft penalty parameter is nontrivial.

If the penalty λ is too low, constraint satisfaction will not be incentivized, and if λ

is too high, convergence issues may arise [101]. In our experiments, we tuned λ by

hand to strike the middle ground, but even automatic, dynamic tuning of λ during

training is not guaranteed to prevent constraint violations in all cases [101].
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Figure 2.7: Even though soft penalties succeed in driving policies to be safe during training,

they do not necessarily provide safety during testing. In this example, a policy network

that was safe during training (Fig. 2.6) still exhibits constraint violations during testing.

In contrast, starting from the same initial conditions and subject to the same disturbance

sequence, the proposed safe policy network guarantees constraint satisfaction.
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Chapter 3

SAFE AND EFFICIENT MODEL PREDICTIVE
CONTROL USING NEURAL NETWORKS: AN

INTERIOR POINT APPROACH1

Model predictive control (MPC) [82] is a powerful technique for controlling systems

that are subject to state and input constraints, such as agricultural [31], automotive

[47], and energy systems [2]. However, many applications require fast decision-making

which may preclude the possibility of repeatedly solving an optimization problem

online [6].

A popular approach for accelerating MPC is to move as much computation offline

as possible [6, 103]. These techniques, known as explicit MPC, involve precomputing

the solution to the MPC problem over a range of parameters or initial conditions.

Most of the research effort has focused on problems with linear dynamics and con-

straints, and linear or quadratic cost functions. In this case, the explicit MPC solution

is a piecewise affine (PWA) function defined over a polyhedral partition of the state

constraints. However, many of the applications of interest have cost functions that

are not necessarily linear or quadratic, or even convex. Further, the memory required

to store the partition and affine functions can be prohibitive even for modestly-sized

problems.

In order to reduce the complexity of explicit MPC, the optimal offline solution

can be approximated. Approximations generally fall into two categories: partition-

based solutions [43,49,50] that generate piecewise control laws over coarser state space

1Adapted from D. Tabas and B. Zhang, “Safe and Efficient Model Predictive Control Using
Neural Networks: An Interior Point Approach,” 2022 IEEE 61st Conference on Decision and
Control (CDC), Cancun, Mexico, 2022, pp. 1142-1147.
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partitions, and learning-based solutions [5,20,32,76] that use function approximation

to compactly represent the optimal MPC policy. In this chapter, we focus on the

latter with the key contribution of ensuring constraint satisfaction while exploring all

feasible policies.

Constraint satisfaction is crucial in many engineering applications, and the ability

of MPC to enforce constraints is a major factor in its popularity. However, it is not

straightforward to guarantee that a learning-based solution will satisfy constraints.

The main challenge arises from the fact that while neural networks can limit their

outputs to be in simple regions, there is no obvious way of forcing complex constraint

satisfaction at the output. In [5,68], supervised and unsupervised learning were used

to approximate the solution of MPCs, but did not provide any feasibility guarantees.

By contrast, [20] trains an NN using a policy gradient approach, and guarantees

feasibility by projecting the NN output into the feasible action set. However, this

extra optimization step slows down the speed of online implementation, making it

difficult to use in applications that require high-frequency solutions [109]. Supervised

learning approaches that provide safety guarantees [32, 76] rely on a choice of MPC

oracle that is not obvious when persistent disturbances are present.

In this chapter, we propose an NN architecture for approximating explicit solutions

to finite-horizon MPC problems with linear dynamics, linear constraints, and arbi-

trary differentiable cost functions. The proposed architecture guarantees constraint

satisfaction without relying on projections or MPC oracles. By exploring the interior

of the feasible set, we demonstrate faster training and evaluation, and comparable

closed-loop performance relative to other NN architectures.

The proposed approach has parallels in interior point methods for convex opti-

mization [18]. Interior point methods first solve a Phase I problem to find a strictly

feasible starting point. This solution is used to initialize the Phase II algorithm for

optimizing the original problem. Our approach accelerates both phases. The Phase I

solution is given by a simple function (e.g., affine map) and the Phase II problem is
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solved using an NN architecture that can encode arbitrary polytopic constraints (Fig.

3.1).

The Phase II solution builds on a technique first proposed in [91], which uses

a gauge map to establish equivalence between compact, convex sets. With respect

to [91], the current work has three novel aspects. First, the reinforcement learning

(RL) algorithm in [91] only uses information about the constraints, and does not use

information about the cost function or dynamics. The resulting policy is safe, but can

exhibit suboptimal performance. The MPC formulation in the current chapter gives

rise to a training algorithm that can exploit knowledge about the system, improving

performance. Second, the MPC formulation permits explicit consideration for future

time steps. The RL formulation cannot optimize entire trajectories due to the presence

of constraints. This inability to “look ahead” again limits the performance of the

RL algorithm. Finally, the previous work required a Phase I that used a linear

feedback to find a strictly feasible point. A linear feedback, however, may not exist for

some problems. The current work proposes a more general class of Phase I solutions

(piecewise affine), while providing a way to manage the complexity of the Phase I

solution.

We demonstrate the effectiveness of the proposed technique on a 3-state test sys-

tem, and compare to standard projection- and penalty-based approaches for learning

with constraints. The results show that the proposed technique achieves Pareto effi-

ciency in terms of closed-loop performance and online computation effort. All code

is available at github.com/dtabas/gauge_networks.

Notation

The p-norm ball for p ≥ 1 is Bp = {z | ∥z∥p ≤ 1}. A polytope P ⊂ Rn := {z ∈ Rn |

Fz ≤ g} is the (bounded) intersection of a finite number of halfspaces. Scaling of

polytopes by a factor λ > 0 is defined as λP = {λz ∈ Rn | Fz ≤ g} = {z ∈ Rn | Fz ≤

λg}. Given a matrix F and a vector g, the ith row of F is denoted F (i)T and the ith
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Figure 3.1: Illustration of the interior point approach to learning-based MPC. The set

F(x0) represents the MPC feasible set, while µ0(x0) and µθ(x0) are control input sequences

representing solutions to the Phase I and Phase II problems, respectively. The neural

network µθ moves the Phase I solution to a more optimal solution.

component of g is g(i). The interior of any set Q is denoted int Q. The value of a

variable y at a time interval t is denoted yt. A state or control trajectory of length τ

is written as the vector x =
[
xT1 , . . . , x

T
τ

]T
∈ Rnτ or u =

[
uT0 , . . . , u

T
τ−1

]T
∈ Rmτ . The

column vector of all ones is 1. The symbol ◦ denotes function composition.

3.1 Problem Formulation

In this chapter, we consider the problem of regulating discrete-time dynamical systems

of the form

xt+1 = Axt +But + dt (3.1)

where xt ∈ Rn is the system state at time t, ut ∈ Rm is the control input, and dt ∈

Rn is an uncertain input that captures exogenous disturbances and/or linearization

error (if the true system dynamics are nonlinear) [17]. We assume the pair (A,B) is

stabilizable. The input constraints (actuation limits) are U = {u ∈ Rm | Fuu ≤ gu}

while the state constraints arising from safety-critical engineering considerations are

X = {x ∈ Rn | Fxx ≤ gx}.
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We consider the problem of operating the system (3.1) using finite-horizon model

predictive control. The goal is to choose, given initial condition x0 ∈ X , a sequence of

inputs u of length τ that minimizes the cost of operating the system while respecting

the operational constraints.

However, since the disturbances dt are unknown ahead of time, the designer must

carefully consider how to achieve both optimality and constraint satisfaction. Robust

MPC literature contains many ways to handle the presence of disturbances in both the

cost and constraints [9]. For example, the certainty-equivalent approach [6] considers

only the nominal system trajectory, while the min-max approach [43] considers the

worst-case disturbance. Interpolating between these two extremes, the tube-based

approach [54] considers the cost of a nominal trajectory while guaranteeing that the

true trajectory satisfies constraints. A stochastic point of view in [38] considers the

disturbance as a random variable and minimizes the expected cost while providing

probabilistic guarantees for constraint satisfaction.

In most robust MPC formulations, the set of possible disturbances is modeled as

either a finite set, a bounded set, or a probability distribution [86]. In this chapter, we

assume the disturbances lie in a closed and bounded set D := {d ∈ Rn | Fdd ≤ gd}.

In order to ensure constraint satisfaction, we operate the system within a robust

control invariant set (RCI) S ⊆ X , defined as a set of initial conditions for which

there exists a feedback policy in U keeping all system trajectories in S, under any

disturbance sequence in D [13]. In our simulations, we used approximately-maximal

RCIs computed with the semidefinite program from [61].

With S := {x ∈ Rn | Fsx ≤ gs}, we define the target set T as {x ∈ Rn | x + d ∈

S, ∀ d ∈ D} = {x ∈ Rn | Fsx ≤ g̃s} where for each row i, g̃
(i)
s = g

(i)
s −maxd∈D F

(i)T
s d

[13]. Any policy that maps S to T under the nominal dynamics will map S to itself

under the true dynamics, rendering S robustly invariant. By constraining the nominal

state to the target set, robust constraint satisfaction is guaranteed for the first time

step. Since S is RCI, this is sufficient for keeping closed-loop trajectories inside S.
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Under this formulation, the MPC problem is posed as follows, given initial state x0:

min
u

τ−1∑
k=0

l(xk, uk) + lF (xτ ) (3.2a)

subject to ∀ k: xk+1 = Axk +Buk (3.2b)

xk+1 ∈ T (3.2c)

uk ∈ U (3.2d)

where l and lF are stage and terminal costs that are differentiable but possibly non-

linear or even non-convex. Although (3.2) differs from the standard tube-based ap-

proach, the techniques introduced in this chapter can be applied to a variety of MPC

formulations.

In this chapter, we seek to derive a safe feedback policy πθ : Rn → Rm that

approximates the explicit solution to (3.2) by first approximating the optimal control

sequence with a function µθ : Rn → Rmτ and then implementing the first action of

the sequence in the closed loop. In practice, any MPC policy implemented in closed

loop must be stabilizing and recursively feasible. Recursive feasibility is the property

that closed-loop trajectories generated by the MPC controller will not lead to states in

which the MPC problem is infeasible. This property is guaranteed when S is RCI [13].

If recursive feasibility is not guaranteed, then a backup controller must be developed

or a control sequence that is feasible for the most immediate time steps can be used.

There is suggestion in the literature that the latter approach performs quite well in

practice [96], but the theoretical aspects remain open. In terms of stability, recursive

feasibility guarantees that trajectories will remain within a bounded set. Since this

work focuses on constraint satisfaction, we do not consider stricter notions of stability.
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3.2 Phase I: Finding a Feasible Point

The feasible set of (3.2) is a polytope F(x0) ⊆ Rmτ , defined by the following inequal-

ities in u:

Hs(M0x0 +Muu) ≤ h̃s, (3.3a)

Huu ≤ hu (3.3b)

where Hs, Hu,M0,Mu, h̃s, and hu are block matrices and vectors derived from the sys-

tem dynamics and constraints. In this chapter, we assume that F(x0) has nonempty

interior for all x0 ∈ S. Since the state constraints S form an RCI, F(x0) is al-

ready guaranteed to be nonempty, and the assumption of nonempty interior is only

marginally more restrictive.

The gauge map technique introduced in [91] provides a way to constrain the out-

puts of a neural network µθ : Rn → Rmτ to F(x0) without a projection or penalty

function, but F(x0) must contain the origin in its interior. If this is not the case, then

we must temporarily “shift” F(x0) by subtracting any one of its interior points. In

this section, we discuss several ways to reduce the complexity of finding an interior

point.

We begin by considering the feasibility problem for the one-step safe action set

defined as V(x0) = {u ∈ Rm | u ∈ U , Ax0 + Bu ∈ T }, which is guaranteed to have

an interior point by the assumption on F(x0). One way to find an interior point of

V(x0) is to minimize the maximum constraint violation:

min
u,s

s (3.4a)

subject to: Fs(Ax0 +Bu) ≤ g̃s + s1 (3.4b)

Fuu ≤ gu + s1 (3.4c)

which has an optimal cost s∗ ≤ 0 if V(x0) is nonempty, and s∗ < 0 if V(x0) has

nonempty interior [18]. To avoid solving a linear program online during closed-loop
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implementation, the solution to (3.4) can be stored as a piecewise affine (PWA)

function π0(x0) : Rn → Rm [50]. Although solutions to multiparametric LPs can

be demanding on computer memory, we take advantage of the fact that feasibility

problems have low accuracy requirements: any suboptimal solution to (3.4) that

achieves a cost s < 0 for all x0 ∈ S is acceptable.

Definition 3.1. A function π0 : Rn → Rm is said to solve (3.4) if, for all x0 ∈ S, the

optimal cost of (3.4) is negative when the decision variable u is fixed at π0(x0).

Existing techniques for approximate multiparametric linear programming [39], es-

pecially those that generate continuous solutions [89], can be used to reduce the

memory requirements of offline solutions to (3.4).

To show just how far one can go with reducing complexity, we will construct an

affine (rather than PWA) function that solves (3.4), for the system studied in Section

3.4. Let π0(x0) = Wx0 + w. If W ∈ Rm×n and w ∈ Rm satisfy

Fx(Ax0 +B(Wx0 + w)) < g̃x (3.5a)

Fu(Wx0 + w) < gu (3.5b)

for all x0 ∈ S, then π0(x0) = Wx0 + w solves (3.4). The following optimization

problem can be solved to find W and w or certify that none exists. Let Y(s) = {x0 ∈

Rn | Fs(Ax0 +B(Wx0 +w)) ≤ g̃s + s1, Fu(Wx0 +w) ≤ gu + s1}. If the optimal cost

of

min
W,w,s

s subject to S ⊆ Y(s) (3.6)

is negative, then (3.5) holds for all x0 ∈ S, thus π0 solves (3.4). This happens to be

the case for the example in Section 3.4, taken from [103]. The constraint in (3.6) is a

polytope containment constraint in halfspace representation, thus (3.6) can be solved

as a linear program [85].

Now consider the feasibility problem for F(x0), which is obtained by replacing

(3.4b) and (3.4c) with (3.3a) and (3.3b), and changing the optimization variable from
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u ∈ Rm to u ∈ Rmτ . One would naturally expect the complexity of the PWA solution

to this feasibility problem to increase rapidly with the time horizon τ , as more decision

variables and constraints are added. However, the next proposition shows that the

cardinality of the stored partition can be made constant in τ .

Proposition 3.1 (Phase I solution). If π0 solves (3.4), then the vector µ0(x0) :=[
π0(x0)

T , . . . , π0(xτ−1)
T

]T
, where xk+1 = Axk+Bπ0(xk), is an interior point of F(x0)

for any x0 ∈ S.

Proof. If π0 solves (3.4), then π0(x) ∈ int V(x) for all x ∈ S. Applying the def-

inition of V in an inductive argument, it is straightforward to show that the state

trajectory associated with µ0(x0) is entirely contained in S. Fix any such tra-

jectory {x1, . . . , xτ} ⊂ S originating from x0 ∈ S under policy π0. For any k ∈

{1, . . . , τ}, xk ∈ S implies π0(xk) ∈ int V(xk), which implies π0(xk) ∈ int U and

Axk + Bπ0(xk) ∈ int T . Since this holds for all k, the constraints defining F(x0)

hold strictly at µ0(x0).

In our simulations on the example from [103], (3.6) was feasible with negative

optimal cost, meaning that a polyhedral partition of the state space was not needed

(see Section 3.4). This indicates that the minimum number of regions in a polyhedral

state space partition associated with a PWA solution to (3.4) is in general very small

relative to the number of regions in an explicit solution to (3.2).

3.3 Phase II: Optimizing Performance

In this section, we construct a class of policies from x0 ∈ S to F(x0), that can

be trained using standard machine learning packages. Although it is difficult to

constrain the output of a neural network to an arbitrary polytope such as F(x0), it is

easy to constrain the output to the hypercube B∞ by applying a clamping function

elementwise in the output layer. We apply a mapping between polytopes that is

closed-form, differentiable, and bijective. This mapping establishes an equivalence
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Figure 3.2: The proposed control policy uses a neural network combined with the Phase I

solution and a gauge map to constrain the decision u to the MPC feasible set F(x0). The

first action from the sequence u is extracted and implemented. On the right, the action of

the gauge map is illustrated.

between B∞ and F(x0), allowing one to constrain the outputs of the policy to F(x0).

The mapping from B∞ to F(x0) is called the gauge map. The concept is illustrated

in Figure 3.2.

We begin constructing the gauge map by introducing some preliminary concepts.

A C-set is a convex, compact set that contains the origin as an interior point. The

gauge function with respect to C-set P ⊂ Rn, denoted γP : Rn → R+, is the function

whose sublevel sets are scaled versions of P . Specifically, the gauge of a vector v with

respect to P is given by γP(v) = inf{λ ≥ 0 | v ∈ λP}. If P is a polytopic C-set given

by {v ∈ Rk | Fv ≤ g}, then γP is the pointwise maximum over a finite set of affine

functions [91]:

γP(v) = max
i

F (i)Tv

g(i)
. (3.7)

Given two C-sets P and Q, the gauge map G : P → Q is

G(v | P ,Q) = γP(v)

γQ(v)
· v. (3.8)
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This function maps level sets of γP to level sets of γQ.

Proposition 3.2. Given two polytopic C-sets P and Q, the gauge map G : P → Q

is subdifferentiable and bijective. Further, given a function π0 from Proposition 3.1,

the set F̃(x) := [F(x)− π0(x)] is a C-set for all x ∈ S.

Proof. The properties of subdifferentiability and bijectivity are established in Chapter

2. For the C-set property, fix x ∈ S. Since S, U , and D are convex and compact, so

is F(x). Since µ0(x) is an interior point of F(x), the set F̃(x) contains the origin as

an interior point and is therefore a C-set.

We now use the gauge map in conjunction with the Phase I solution to construct

a neural network whose output is confined to F(x0). Let ψθ : S → B∞ be a neural

network parameterized by θ. A safe policy is constructed by composing the gauge

map G : B∞ → F̃(x0) with ψθ, then adding µ0(x0) to map the solution into F(x0):

µθ(x0) = G(· | B∞, F̃(x0)) ◦ ψθ(x0) + µ0(x0). (3.9)

Computing the gauge map online simply requires evaluating HsM0x0 from (3.3a) as

well as the operations in (3.7).

The function µθ has several important properties for approximating the optimal

solution to (3.2). First, it leverages the universal function approximation properties

of neural networks [46] along with the bijectivity of the gauge map (Proposition 3.2)

to explore all interior points of F(x0). This is an advantage over projection-based

methods [20] which may be biased towards the boundary of F(x0) when the optimal

solution may lie on the interior. Second, µθ is evaluated in closed form, and its

outputs are constrained to F(x0) without the use of an optimization layer [68] that

may have high computational overhead. Finally, the subdifferentiability of the gauge

map (Proposition 3.2) enables selection of parameter θ using standard automatic

differentiation techniques.
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Optimizing the parameter θ

Similar to the approach taken in [5], we optimize θ by sampling x ∈ S and apply-

ing stochastic gradient descent. At each iteration, a new batch of initial conditions

{xj0}Mj=1 is sampled from S and the loss is computed as

J(θ) =
1

M

M∑
j=1

τ−1∑
k=0

l(xjk, u
j
k) + lF (x

j
τ ) (3.10)

with the control sequences uj given by µθ(x
j
0) and state trajectories xj generated

according to the nominal dynamics. The parameters θ are updated in the direction

of ∇θJ , which is easily computed using automatic differentiation [8].

3.4 Simulations

3.4.1 Test systems

We simulate the proposed policy using a modified example from [103] with n = 3,

m = 2, and τ = 5. The system matrices, constraints, costs, and Phase I solution

(found using (3.6)) are given below:

A =


−.5 .3 −1

.2 −.5 .6

1 .6 −.6

 , B =


−.601 −.890

.955 −.715

.246 −.184

 , (3.11)

∥x∥∞ ≤ 5, ∥u∥∞ ≤ 1, ∥d∥∞ ≤ 0.1, (3.12)

l(x, u) = ∥x∥22 + c1∥u∥22, lF (x) = c2∥x∥22 (3.13)

W =

 0.116 0.210 −0.370

−0.320 −0.104 −0.122

 , w =

 −0.157
−0.0533


where c1 and c2 are positive constants. Although quadratic costs are used in the

simulations, the proposed method can work with any differentiable cost.

We evaluate the performance of a given policy in both open- and closed-loop

experiments. In the open-loop experiments, we evaluate the MPC cost (3.2a) and
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compare it to the optimal cost. The fraction suboptimality is

δ =
cnn − cmpc

cmpc

(3.14)

where cnn is the average cost (3.2a) incurred by the control sequence µθ on a validation

set {xj0}
Nval
j=1 ⊂ S and cmpc is the optimal cost.

In the closed-loop experiments, we evaluate the performance of a policy πθ(xt) :

Rn → Rm, t ≥ 0 which is derived from µθ(xt) by taking the first action in the sequence.

We simulate (3.1) for T ≫ τ time steps. The trajectory cost in the closed-loop

experiments is computed as
∑T−1

t=0 l(xt, ut) + lF (xT ) and the disturbance is modeled

as an autoregressive sequence [90], dt+1 = αdt + (1 − α)d̂ where α ∈ (0, 1) and d̂ is

drawn uniformly over D.

3.4.2 Benchmarks

We compare the proposed method to two of the most common approaches for learning

a solution to (3.2). The first benchmark is a penalty-based approach [35] which

enforces the constraints (3.2c) and (3.2d) by augmenting the cost (3.10) with a linear

penalty term on constraint violations given by β ·max{0, Fxxt− g̃x} where the max is

evaluated elementwise and β > 0. Since the penalty-based approach does not encode

state constraints in the policy, the policy is constrained to the Cartesian product

U τ =
∏τ−1

k=0 U using scaled tanh functions elementwise.

The second benchmark is a projection-based approach [20] which constrains the

policy to the set F(x0) by solving a convex quadratic program in the output layer of

a neural network [4]. The optimization layer v→ u returns

argmin
u
∥v− u∥22 subject to u ∈ F(x0).

Another class of approaches to learning-based MPC seeks to learn the optimal

solution to (3.2) using regression [32,68,76]. Specifically, data-label pairs (x0, u
∗
0) are

generated by sampling x0 from S, solving (3.2) for each sample, and extracting u∗0
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Table 3.1: Hyperparameters for the three neural networks.

Type Width LR M

Gauge 859 4.7× 10−4 1655

Penalty 318 8.7× 10−4 133

Projection 956 9.0× 10−5 813

from the optimal solution u∗. Then, a neural network or other function approximator

is trained to learn the relationship between x0 and u∗0. Performance and constraint

satisfaction are handled e.g. by bounding the approximation error with respect to

the MPC oracle. We do not compare against this type of approach since it requires

a large number of trained samples, making it difficult to compare with our and the

other unsupervised examples.

3.4.3 Neural network design

The neural networks were designed with n inputs, mτ outputs, and two hidden layers

with rectified linear unit (ReLU) activation functions. The width of the networks was

chosen during hyperparameter tuning. In particular, we performed 30 iterations of

random search over the width of the network (number of neurons per hidden layer)

∈ {64, . . . , 1024}, the batch size (number of initial conditions, M) ∈ {100, . . . , 3000}

and the learning rate (LR, the step size for gradient descent) ∈ [10−5, 10−3]. For each

set of hyperparameters under consideration, we computed the validation score using

(3.14) with Nval = 100. The hyperparameters after tuning are reported in Table 3.1.

3.4.4 Simulation results

Here we compare our proposed approach (Gauge NN), the penalty-based approach

(Penalty NN), the projection-based approach (Projection NN) and the “ground truth”
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Table 3.2: Open-loop test results.

Type δ (3.14) Solve time (sec)

Gauge 0.007 .0015

Projection 0.010 .024

Figure 3.3: Training trajectories for the three types of neural netwokrs. Our proposed

Gauge-based approach achieves lower cost at a much faster rate.

obtained by solving (3.2) online in cvxpy. The results of the open-loop experiments

are shown in Table 3.2, with performance computed relative to the optimal MPC

solution using (3.14) with Nval = 100 trials. The proposed Gauge NN achieves lower

cost compared to the projection-based method, and has a much lower computational

complexity (solve time is only 6% of projection). Table 3.2 only compares the NNs

with safety guarantees because constraint violations are not accounted for in (3.14).

Figure 3.3 shows the training curves for each type of network. The lower training

cost achieved by the Gauge NN illustrates that it can be more efficient to explore the

interior of the feasible set than the boundary. Since the MPC cost in the simulations

is strictly convex, solutions with lower cost are closer to the optimal solution.
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Figure 3.4: Solve time vs. trajectory cost for the networks under consideration applied to

the 3-state system. The Gauge NN is Pareto-efficient in terms of cost and computation

time compared to the other techniques with safety guarantees (Online MPC and Projection

NN).

Figure 3.4 compares the policies in terms of computation time and test perfor-

mance. The box-and-whisker plots indicate the range of performance over 100 test

trajectories of length T = 50, while the vertical position of each box indicates the av-

erage time to compute a control action. Of the policies with safety guarantees (Gauge

NN, Projection NN, and online MPC), the Gauge NN achieves Pareto efficiency in

terms of average solve time and median trajectory cost. Our intuition behind the high

performance of the neural networks is that (3.2) is a heuristic and the unsupervised

learning approach can lead to better closed-loop policies.
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Chapter 4

INTERPRETING PRIMAL-DUAL ALGORITHMS FOR
CONSTRAINED MULTIAGENT REINFORCEMENT

LEARNING1

As reinforcement learning (RL) algorithms progress from virtual to cyber-physical

applications, it will be necessary to address the challenges of safety, especially when

systems are controlled by multiple agents. Examples of multiagent safety-critical

systems include power grids [28], building energy management (BEM) systems [11],

autonomous vehicle navigation [110], and drone swarms [23]. In each of these applica-

tions, agents must learn to operate in a complicated environment while satisfying vari-

ous local and system-wide constraints. Such constraints, derived from domain-specific

knowledge, are designed to prevent damage to equipment, humans, or infrastructure

or to preclude failure to complete some task or objective.

Constrained multiagent reinforcement learning (C-MARL) poses challenges be-

yond the single-agent constrained reinforcement learning (C-RL) problem because the

interactions between agents can influence both the satisfaction of constraints and the

convergence of policies. The potential scale of C-MARL problems eliminates the pos-

sibility of directly using common model-based methods for C-RL, such as in [20,66,92].

The main strategy for tackling C-MARL problems found in the literature is the La-

grangian or primal-dual method (see, e.g. [56, 59, 64, 77] and the references therein).

Our aim is to understand some potential drawbacks of this approach and some ways

these drawbacks can be mitigated.

1Adapted from Tabas, D., Zamzam, A.S. and Zhang, B. (2023). Interpreting Primal-Dual Al-
gorithms for Constrained Multiagent Reinforcement Learning. Proceedings of The 5th Annual
Learning for Dynamics and Control Conference, in Proceedings of Machine Learning Research
211:1205-1217.
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In the primal-dual approach to C-MARL, each agent receives a reward signal

that is augmented with a penalty term designed to incentivize constraint satisfaction.

The magnitude of the penalty term is tuned to steer policies away from constraint

violations while not unnecessarily overshadowing the original reward. Although this

approach has been shown to converge to a safe joint policy under certain assumptions

[64], it changes the structure of the problem in a way that is not well understood,

leading to two challenges.

The first challenge is that the primal-dual algorithm only enforces discounted sum

constraints derived from the original safety constraints of the system. As we will show,

discounted sum constraints guarantee safety only in expectation, which is difficult

to interpret. We propose simple modifications to the penalty term that enable the

enforcement of more interpretable constraints, namely, chance constraints [70] and

conditional value at risk constraints [83], providing bounds on the probability and

the severity of future constraint violations. There have been several C-RL algorithms

that work with risk sensitivities [26, 41], but the multiagent context is less studied,

and our contributions provide a novel understanding of the safety guarantees provided

by C-MARL algorithms.

The second challenge is the fact that the reward is constantly changing as the dual

variables are updated, which diminishes the accuracy of value estimates. We quantify

this loss of accuracy, and we propose a new value estimation procedure to overcome

it. Our proposal builds on results in [94] showing the affine relationship between the

value function and the dual variables. We develop a novel class of temporal difference

algorithms for value function estimation that directly exploits this observation, giving

rise to a value estimate that maintains an accurate derivative with respect to the dual

variables. Compared to existing algorithms, our estimates are much more robust to

dual variable updates.

The specific C-MARL formulation we study in this chapter is inspired by the

BEM problem [11, 72], illustrated in Figure 4.1. The main objective of BEM is
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Figure 4.1: Building energy management with a voltage constraint at the point of common

coupling. Key: PV = photovoltaic array, BESS = battery energy storage system, SWH =

smart water heater, SCC = smart climate control system.
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to control a building’s resources to minimize the cost of energy consumption while

maintaining comfort and convenience for the occupants. However, when BEMs are

deployed in multiple buildings, it is critical to ensure that the power network connect-

ing them is safely operated because the uncoordinated control of buildings can cause

network-level voltage or power flow violations. This mandates a level of coordination

among agents in the learning stage; thus, we adopt the commonly-studied centralized

training/decentralized execution (CTDE) framework [40,63], in which a simulator or

coordinator provides global state information, constraint evaluations, and Lagrange

multipliers (dual variables) to each agent during training. During the testing (execu-

tion) phase, we assume that there is no real-time communication between the agents.

This stems from the need for privacy and the lack of communication infrastructure

in practical systems2.

The rest of the chapter is organized as follows. In Section 4.1, we formulate the

problem under consideration. In Section 4.2, we provide an overview of our main

interpretive tool, the occupation measure [16]. In Section 4.3, we use the occupation

measure to reformulate discounted sum constraints as probabilistic constraints. In

Section 4.4, we study the value structure of the primal-dual problem and use the

results to propose a new value estimation algorithm. In Section 4.5, we provide some

simulation results affirming the contribution of the theoretical observations.

Notation

The natural numbers and the real numbers are denoted N and R, respectively. Given

a measurable set S, the set of all possible probability densities over S is denoted as

∆S . For any discount factor γ ∈ (0, 1) and any sequence {yt}Tt=0, the discounted sum

operator is ΓT
t=0[yt | γ] = (1 − γ)

∑T
t=0 γ

tyt, and Γ∞
t=0[yt | γ] = limT→∞ΓT

t=0[yt | γ]

if the limit exists. We often drop the second argument γ for brevity. The positive

2Even in buildings with advanced metering infrastructure or smart meters, they typically only
exchange information with the utility a few times a day.
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component operator is [y]+ = max{y, 0}, and the logical indicator function I[·] maps

{True,False} to {1, 0}.

4.1 Problem formulation

4.1.1 Constrained MARL

We consider a noncooperative setting in which n agents pursue individual objectives

while subject to global constraints (e.g., a shared resource constraint). We assume

there is no real-time communication, and that each agent’s action is based only on

its local observations. However, policy updates can use global information under the

CTDE framework [40, 63]. In this chapter, we consider the case of continuous state

and action spaces.

The setting is described by the tuple ({Xi}i∈N , {Ui}i∈N , {Ri}i∈N , f, C, p0, γ), where

N is the index set of agents, Xi ⊂ Rni
x and Ui ⊂ Rni

u are the state and action spaces

of agent i, and Ri : Xi×Ui → R is the reward function of agent i. We assume that the

sets Xi and Ui are compact for all i. Let X =
∏

i∈N Xi and U =
∏

i∈N Ui be the joint

state and action spaces of the system, respectively. Then f : X × U → ∆X describes

the state transition probabilities, i.e., f(· | x, u) is a probability density function. The

function C : X → Rm is used to describe a set of safe states, S = {x ∈ X | C(x) ≤ 0}.

Let p0 ∈ ∆X denote the initial state probability density and γ ∈ (0, 1) be a

discount factor. At time t, the state, action, and reward of agent i are xit, u
i
t, and r

i
t,

respectively, and constraint j evaluates to cjt = Cj(xt). Using a quantity without a

superscript to represent a stacked vector ranging over all i ∈ N or all j ∈ {1, . . . ,m},

a system trajectory is denoted τ = {(xt, ut, rt, ct)}∞t=0.

In the noncooperative C-MARL framework, each agent seeks to learn a policy

πi : Xi → ∆Ui
that maximizes the expected discounted accumulation of individual

rewards. We let π : X → ∆U denote the joint policy, and fπ : X → ∆X is the state

transition probability induced by a joint policy π. The tuple (p0, f, π) induces a state



48

visitation probability density at each time step, pπt (x) =
∫
X t p0(x0) ·

∏t
k=1 f

π(xk |

xk−1) dx0 . . . dxk−1, and we say pπ∞(x) = limt→∞ pπt (x) for each x ∈ X if the limit

exists. The collection of visitation probabilities {pπt }∞t=0 gives rise to a probability

density of trajectories τ , denotedM∈ ∆∏∞
t=0(X×A×Rn×Rm); thus, the objective of each

agent can be stated precisely as maximizing Eτ∼M[Γ∞
t=0 r

i
t].

The agents, however, must settle on a joint policy that keeps the system in the

safe set S. Due to the stochastic nature of the system, satisfying this constraint at

all times is too difficult and in some cases too conservative. A common relaxation

procedure is to formulate an augmented reward r̃it = rit − λT ct where λ ∈ Rm
+ , the

Lagrange multiplier or dual variable, is adjusted to incentivize constraint satisfaction.

This leads to the primal-dual algorithm for C-MARL, discussed in the next section.

The following mild assumption facilitates the analysis.

Assumption 4.1. Ri, Cj, and pπt are bounded on X for all i ∈ N , all j ∈ {1, . . . ,m},

and all t ∈ N.

The boundedness of Ri and Cj is a common assumption [64,79,94] that we will use

to exchange the order of limits, sums, and integrals using the dominated convergence

theorem. The assumption of bounded pπt is not strictly necessary and does not change

the results; however, we use it throughout the chapter to simplify calculations.

4.1.2 Primal-dual algorithms

The augmented reward function leads to the following min-max optimization problem

for agent i:

min
λ≥0

max
πi

Eτ∼M
[ ∞

Γ
t=0

[rit − λT ct]
]

(4.1)

=min
λ≥0

max
πi

(
Eτ∼M

[ ∞

Γ
t=0

[rit]
]
− λTEτ∼M

[ ∞

Γ
t=0

[ct]
])

(4.2)

where (4.2) uses absolute convergence (stemming from Assumption 4.1) to rear-

range the terms of the infinite sum. Note that the minimization over λ is coupled
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across agents. Any fixed point of (4.2) will satisfy Eτ∼M[Γ∞
t=0 ct] ≤ 0 because if

Eτ∼M[Γ∞
t=0 c

j
t ] ̸= 0, then the objective value can be reduced by increasing or de-

creasing λj, unless Eτ∼M[Γ∞
t=0 c

j
t ] < 0 and λj = 0. In other words, the primal-dual

method enforces a discounted sum constraint derived from the safe set S. Although

discounted sum constraints are convenient, it is not obvious what they imply about

safety guarantees with respect to the original constraints. We begin our investigation

of discounted sum constraints by taking a closer look at a state visitation probability

density known as the occupation measure.

4.2 Occupation measure

The occupation measure describes the average behavior of a Markov process in some

sense which will be made precise shortly. As we will show, the occupation measure

is instrumental in clarifying the role of discounted sum constraints. In this chapter,

we use a definition common for continuous-state, infinite-horizon discounted MDPs

[79,88].

Definition 4.1 (Occupation measure). The occupation measure µπ
γ ∈ ∆X associated

with discount factor γ, induced by a joint policy π, is defined for any x ∈ X as

µπ
γ(x) = Γ∞

t=0 p
π
t (x).

In this section, we provide some interpretations for the occupation measure before

using it to ascribe meaning to discounted sum constraints. The first question one

might ask is whether µπ
γ is itself a pdf. It is, of course, nonnegative, and the following

proposition shows it integrates to unity under mild conditions.

Proposition 4.1. Under Assumption 4.1,
∫
X µ

π
γ(x)dx = 1.

The proof for Proposition 4.1 is in Appendix B.1. What does µπ
γ tell us about the

behavior of a system under a given policy? It describes the probability of visiting a

certain state but with more weight placed on states that are likely to be visited earlier

in time. In fact, µπ
γ describes the near-term behavior in the following sense.
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Figure 4.2: Example of the occupation measure for various levels of γ.

Proposition 4.2. Under Assumption 4.1, for any x ∈ X , the following statements

hold:

1. limγ→0+ µ
π
γ(x) = p0(x).

2. limγ→1− µ
π
γ(x) = limt→∞ pπt if the latter limit exists.

The proof for Proposition 4.2 is in Appendix B.1. Figure 4.2 provides an illustra-

tion of the result in Proposition 4.2 when pπt evolves as a normal distribution with

mean 0.95t and constant variance. The point at which µπ
γ equally resembles p0 and

pπ∞ is exactly at γ = 0.95.

According to Proposition 4.2, the occupation measure describes a state distribu-

tion that lies between the initial and long-term behavior of the system. But where

exactly does it lie in between these two extremes? The effective horizon of a dis-

counted planning problem is often set to T1(γ) =
1

1−γ
, which is the expected termi-

nation time if the probability of an episode terminating at any given time step is

(1 − γ) [78]; however, the concept of a random stopping time might not be sensible

in all applications. Another way to define the effective horizon is to study the geo-

metric accumulation of weights. In this case, the effective horizon can be measured
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as T2(γ, ε) = min{K ∈ N : Γ
K−1
t=0 [1] ≥ 1 − ε}, where ε ∈ (0, 1) is a tolerance. Using

either of these two definitions, the occupation measure can be said to describe the be-

havior of the system from the start time up to the effective horizon. Specifically, one

may truncate the sum in Definition 4.1 at the effective horizon to obtain a conceptual

understanding of what the occupation measure describes.

Depending on the application, either T1 or T2 can provide a more sensible connec-

tion between discounted and finite-horizon problems. But are these two definitions

related? The next proposition answers this affirmatively by showing that T1 is actually

a special case of T2.

Proposition 4.3. T1(γ) = T2(γ, ε) when ε is set to γ
1

1−γ ≈ 1
e
.

The proof for Proposition 4.3 is in Appendix B.1. Proposition 4.3 is illustrated in

Figure 4.3, where the effective horizon is plotted as a function of γ for three different

values of ε. With an understanding of the occupation measure as a visitation density

describing behavior up to the effective horizon, we can begin to derive meaningful

risk-related interpretations of discounted sum constraints. These interpretations lead

directly to sensible recommendations for the design of C-MARL algorithms.
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4.3 Discounted risk metrics

The discounted sum constraint can naturally be reinterpreted as a certain type of aver-

age constraint. In particular, Assumption 4.1 ensures the equivalence Eτ∼M[Γ∞
t=0C(xt)] =

Ex∼µπ
γ
[C(x)] [79]. This near-term average does not relate to any well-known risk met-

rics and hence does not provide a practical safety guarantee. In general, information

about the mean of a distribution cannot be used to infer information about its tails;

however, simple changes to the penalty function can yield information about either

the probability of incurring a constraint violation or the expected severity of constraint

violations.

Proposition 4.4 (Near-term probability of constraint violations). Suppose that for

some δj ∈ [0, 1] and αj ∈ R , we have Eτ∼M[Γ∞
t=0 I[C

j(xt) ≥ αj]] ≤ δj. Then under

Assumption 4.1, Pr{Cj(x) ≥ αj | x ∼ µπ
γ} ≤ δj.

Proof. Eτ∼M[Γ∞
t=0 I[C

j(xt) ≥ αj]] = Ex∼µπ
γ
[I[Cj(x) ≥ αj]] = Pr{Cj(x) ≥ αj | x ∼

µπ
γ}. The first equality uses Assumption 4.1 to apply an equivalence established in

e.g. [79]. The second equality follows from the definition of expectation.

Proposition 4.4 makes it easy to enforce chance constraints using primal-dual

methods. When the penalty term Cj(x) is replaced by the quantity I[Cj(x) ≥ αj]−

δj, the primal-dual algorithm enforces Eτ∼M[Γ∞
t=0 I[C

j(xt) ≥ αj]] − δj ≤ 0. By

Proposition 4.4, this guarantees that Pr{Cj(x) ≥ αj | x ∼ µπ
γ} ≤ δj. Because

the probability of constraint violations is defined with x varying over µπ
γ , we call

the resulting guarantee a near-term or discounted chance constraint. This can be

repeated for each j ∈ {1, . . . ,m}, providing a set of bounds on the probability of

violating each constraint by more than its tolerance αj. On the other hand, we can

control the probability of violating any constraint as follows. Define the statement

C(x) ≥ α to be true if Cj(x) ≥ αj ∀ j ∈ {1, . . . ,m}, and false otherwise. Then,

applying Proposition 4.4 to the test condition C(x) ≥ α will result in a bound on
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Pr{C(x) ≥ α | x ∼ µπ
γ}.

While discounted chance constraints enable one to control the probability of ex-

treme events in the near future, conditional value at risk constraints [83] afford control

over the severity of such events.

Definition 4.2 ( [83]). Given a risk level β ∈ (0, 1), a cost h : X → R, and a

probability density µ on X , the value at risk (VaR) and conditional value at risk

(CVaR) are defined as:

VaR(β, h, µ) = min{α ∈ R : Pr{h(x) ≤ α | x ∼ µ} ≥ β},

CVaR(β, h, µ) =
1

1− β

∫
h(x)≥VaR(β,h,µ)

h(x)µ(x)dx.

In other words, VaR(β, h, µ) is the least upper bound on h that can be satisfied

with probability β, while CVaR(β, h, µ) describes the expected value in the VaR-tail

of the distribution of h. CVaR characterizes the expected severity of extreme events,

which can be defined precisely as the (1 − β) fraction of events x with the worst

outcomes as ranked by the cost incurred, h(x). The VaR and CVaR for h(x) = x,

when x follows a standard normal distribution, are illustrated in Figure 4.4, where

the shaded region has an area of (1− β). For the rest of the chapter, we assume that

the cdf of h(x) is continuous when x ∼ µ. For further details and for cases in which

this assumption does not hold, we refer the reader to [84].

Proposition 4.5 (Near-term CVaR). For any αj ≥ 0, suppose that Eτ∼M[Γ∞
t=0[[C

j(xt)−

αj]+]] ≤ δj. Then, CVaR(β, C
j, µπ

γ) ≤ αj + (1− β)−1δj.

Proof. Under Assumption 4.1, the identity Eτ∼M[Γ∞
t=0[C

j(xt)−αj]+] = Ex∼µπ
γ
[[Cj(x)−

αj]+] holds [79]. Next, we use the fact that the CVaR is the minimum value of the con-

vex function in αj given by F (αj | β, Cj, µπ
γ) := αj+(1−β)−1Ex∼µπ

γ
[[Cj(x)−αj]+] [83];

thus, F provides an upper bound on CVaR. Some rearranging leads to the result.

Similar to the chance-constrained case, Proposition 4.5 makes it easy to enforce

CVaR constraints in the primal-dual algorithm. Here, the penalty term used is
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[Cj(x) − αj]+ − δj. Using this penalty, the algorithm enforces Eτ∼M[Γ∞
t=0[[C

j(xt) −

αj]+]]− δj ≤ 0, which by Proposition 4.5 implies CVaR(β, Cj, µπ
γ) ≤ αj +(1−β)−1δj.

By repeating for each j ∈ {1, . . . ,m}, we can bound the expected severity of the

constraint violations for each of the m constraints. Because the CVaR constraint

is defined with x varying over µπ
γ , the resulting guarantee is called a near-term or

discounted CVaR constraint.

To obtain a tight bound on the CVaR, αj must be set to VaR(β, Cj, µπ
γ), which

minimizes the function F introduced in the proof of Proposition 4.5 [83]. Unfortu-

nately, the VaR is not known ahead of time. [26] include αj as an optimization variable

in the learning procedure, but extending their technique to the multiagent setting is

not straightforward. Our approach is to include it as a tunable hyperparameter. Sim-

ulation results in Section 4.5 show that it is easy to choose αj to give a nearly tight

bound.

4.4 Primal-dual value functions

In this section, we investigate challenges with value estimation in the primal-dual

regime. The fact that the reward to each agent is constantly changing (due to dual

variable updates) makes it difficult to accurately estimate state values. To quantify
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this decrease in accuracy, we introduce the value functions induced by the joint policy

π, {V i
π : X × R→ R}i∈N , {V i

R,π : X → R}i∈N , VC,π : X → Rm where:

V i
π(x, λ) = Eτ∼M[

∞

Γ
t=0

rit − λT ct | x0 = x], (4.3)

V i
R,π(x) = Eτ∼M[

∞

Γ
t=0

rit | x0 = x], VC,π(x) = Eτ∼M[
∞

Γ
t=0

ct | x0 = x]. (4.4)

Note that ct could be modified as indicated in Section 4.3, and the following results

would hold for the modified penalty function.

Obviously, it is impossible to learn an accurate value function when λ is unknown

and changing; however, simply making λ available to a value function approximator

does not guarantee good generalization beyond previously seen values of λ. Having

a good estimate of the derivative of the value function with respect to λ will ensure

accuracy under small perturbations to the dual variables. Fortunately, this derivative

is easy to obtain. Formally, under Assumption 4.1, we can write V i
π(x, λ) = V i

R,π(x)−

λTVC,π(x) [94], and therefore, ∇λV
i
π(x, λ) = −VC,π(x). By learning V i

R,π and VC,π

as separate functions and then combining them using the true value of λ, we can

construct a value estimate whose derivative with respect to the dual variables is as

accurate as our estimate of VC,π itself. This estimate will be more robust to small

changes in λ. We will refer to this type of value estimate as a structured value function

or a structured critic.

Proposition 4.6. Let c̄ = Ex∼µπ
γ
[C(x)] and Σ2

C = Ex∼µπ
γ
[(c̄ − C(x))(c̄ − C(x))T ].

Suppose λ is randomly varying with mean λ̄ and variance Σ2
λ. Using a structured

value function approximator can reduce the mean square temporal difference error by

up to Tr[Σ2
λ · (Σ2

C + c̄c̄T )].

The proof of Proposition 4.6 is in Appendix B.1. Figure 4.5 illustrates Proposition

4.6 in a simple value estimation task with quadratic rewards, linear dynamics and

policies, linear state constraints, and randomly varying λ. The generic critic (GC)
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Figure 4.5: Temporal difference error trajectories in a simple policy evaluation task.

is a value function modeled as a quadratic function of the state only. The input-

augmented critic (IAC) is a value function modeled as an unknown quadratic function

of the state and dual variables, while the structured critic (SC) is modeled using

V̂ i
π = V̂ i

R,π − λT V̂C,π with quadratic V̂ i
R,π and linear V̂C,π trained on their respective

signals.

The dashed line in Figure 4.5 is at the value Tr[Σ2
λ · (Σ2

C + c̄c̄T )] predicted in

Proposition 4.6. In this simple value estimation task, high accuracy can be achieved

when conditioning on the randomly varying λ; however, having an accurate estimate of

∇λV
i
π by using a structured critic is also shown to help. Although in practice λ̄ and Σ2

λ

change over time, the simulation results in Section 4.5 confirm that using structured

critics improves performance. The loss function for value function approximation is

therefore given by:

TDE(x, x′) = [Ri(xi) + γV̂ i
R,π((x

i)′)− V̂ i
R,π(x

i)]2 + ∥C(x) + γV̂C,π(x
′)− V̂C,π(x)∥22

(4.5)
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where x ∈ X and x′ ∼ fπ(x). Equation (4.5) is simply a sum of squared temporal

difference errors over the set of m + 1 value functions. For algorithmic details, we

refer the reader to Appendix B.2.

4.5 Simulations

4.5.1 Multiagent Particle Environment

In our simulations, we sought to demonstrate the effectiveness of the penalty modifi-

cations and structured critic proposed in sections 4.3 and 4.4. We tested our findings

in a modified multiagent particle environment3 [63] with two agents pursuing individ-

ual objectives subject to a constraint on the joint state. The state of each agent is its

position and velocity in R2, i.e. xi =
[
yiT viT

]T
where yi ∈ R2 is the position and

vi ∈ R2 is the velocity of agent i. The objective of each agent is to drive its position

yi to a landmark yi∗ ∈ R2, while making sure that the agent ensemble satisfies the

safety constraint. The reward and constraint functions are given by:

Ri(yi) = −ξi∥yi − yi∗∥22, C(y) = 1Ty (4.6)

where ξi > 0 is a constant and y =
[
y1T y2T

]T
is the position of the agent ensemble.

The landmark y∗ =
[
y1∗T y2∗T

]T
is stationed outside of the safe region S = {y |

C(y) ≤ 0}. Thus, the agents cannot both reach their goals while satisfying C(y) ≤ 0.

To train the agents to interact in this environment, we used a modified version of the

EPyMARL codebase4 [75]. We tested several MARL algorithms, including MAD-

DPG [63], COMA [40], and MAA2C [75]. We decided to use the MAA2C algorithm

because it consistently produced the best results and because as a value function-based

algorithm, it provided the most straightforward route to implementing the changes

proposed in Section 4.4. Details of the algorithm, pseudocode, hyperparameters, and

supplementary simulation results are provided in Appendix B.2.

3Code for the environments is available at github.com/dtabas/multiagent-particle-envs.

4Code for the algorithms is available at github.com/dtabas/epymarl.
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Figure 4.6: Pr{C(x) ≥ 0.1 | x ∼ µπγ} measured throughout training. Key: SC = structured

critic, MP = modified penalty (Prop. 4.4). Both modifications speed convergence to a safe

policy. The shaded region represents ±1 standard deviation across 5 training runs.
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For each risk metric described in Section 4.3, we tested the convergence of the

agents to a safe policy with and without modifications to the penalty and value

functions. Figure 4.6 shows the results when we make the substitution C(x) ←

I[C(x) ≥ α]−δ in the penalty function to enforce a chance constraint, Pr{C(x) ≥ α |

x ∼ µπ
γ} ≤ δ with α and δ each set to 0.1. The modified penalty function performs

the best as a chance constraint-enforcing signal (red and green lines in Figure 4.6).

Whether or not the penalty function is modified, the structured critic finds safer

policies throughout training (red vs. green and orange vs. blue lines).

Figure 4.7 shows the results when we make the substitution C(x)← [C(x)−α]+−δ

in the penalty function to enforce the constraint CVaR(β, C, µπ
γ) ≤ α + (1 − β)−1δ.

Using the modified penalty (red and green lines in Figure 4.7) drives the CVaR upper

bound (drawn in dashed lines) to the target value, and due to the choice of α, this

bound is nearly tight. On the other hand, using the original penalty results in an

overly conservative policy that achieves low risk at the expense of rewards (right

panel). We also point out that when using the modified penalty with the structured

critic, the CVaR is lower throughout training compared to when the generic critic is

used, indicating improved effectiveness in enforcing limits on risk.

We chose α using the following heuristic, to make the bound on CVaR nearly

tight. The “correct” value of α that would achieve a tight bound is VaR(β, C, µπ
γ).

Moreover, the upper bound that we used is convex and continuously differentiable in

α [83]; therefore, small errors in α will lead to small errors in the upper bound on

CVaR, and any approximation of the VaR will suffice. We obtained an approximation

simply by running the simulation once with α set to zero and computing VaR(β, C, µπ
γ)

over some test trajectories. If necessary, the process could be repeated additional

times. Alternatively, α could be tuned adaptively by computing VaR online, but the

stability of such a procedure would need further investigation.
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Figure 4.7: CVaR(β = 0.9, C, µπγ ) measured throughout training. Key: SC = structured

critic, MP = modified penalty (Prop. 4.5). The dashed lines represent the CVaR upper

bound used in Prop. 4.5. The panel on the right shows progress toward the original objective

through the total original returns,
∑2

i=1Γ
T
t=0 r

i
t, without penalty terms. The shaded region

represents ±1 standard deviation across 5 training runs. The rewards increase then decrease

because the agents first learn to navigate towards the landmark, which is outside the safe

region, then learn to back off to satisfy the constraint.
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4.5.2 Building energy management environment

We next tested the primal-dual method with modified penalty functions in a three-

building PowerGridWorld environment with a distribution system solver [11]. Each

building consists of the following behind-the-meter controllable components: an HVAC

system, a PV array, and a battery energy storage system. Each building is controlled

by one agent operating the three components. The objective of each agent is to

operate the HVAC system in a way that satisfies a soft constraint on internal build-

ing temperature (the environment can easily be modified to include costs on energy

consumption, etc). The agents must learn to operate their respective buildings in a

scenario in which a sudden drop in PV availability threatens an undervoltage event

at the feeder head. For additional details, we refer the reader to [11], Section 3.1.

We enforce a system-wide CVaR constraint on the voltage at the feeder head as

described in Section 4.3 and train the agents using a modified version of the MADDPG

algorithm [63]. The results demonstrate the sufficiency of the CVaR condition in

Proposition 4.5 (Figure 4.8). Although the dual variable converges to 0, indicating

that a strictly feasible equilibrium joint policy exists, the result nonetheless serves as

a certificate that the CVaR constraint is satisfied. Due to the highly nonlinear system

physics, necessity of the criterion in Proposition 4.5 is not guaranteed.
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Figure 4.8: Learning curves for the 3-building scenario. The horizontal axis is in increments

of 1000 training episodes, for all plots. Top row: Individual agent costs (left) and total

cost (right), corresponding to building temperature deviations. Second row: average actor

loss (left) and critic loss (right). Third row: voltage excursions from the interval [0.95, 1.05]

per unit (cumulative per episode). Last row: Dual variables and CVaR upper bound from

Proposition 4.5.
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Chapter 5

CONCLUSION

In Chapter 2, we proposed an efficient approach to safety-critical, data-driven

control. The strategy relies on results from set-theoretic control and convex analysis

to provide provable guarantees of constraint satisfaction. Importantly, the proposed

policy chooses actions without solving an optimization problem, opening the door to

safety-critical control in applications in which computational power may be a bottle-

neck. We applied the proposed controller to a frequency regulation problem, but the

applications are much more wide-ranging1.

In Chapter 3, we provided an efficient way of exploring the interior of the MPC

feasible set for learning-based approximate explicit MPC, and demonstrated the per-

formance and computational gains that can be achieved by approaching the problem

from the interior. The paradigm relies on a Phase I solution that exploits the structure

of the MPC problem and a Phase II solution that features a projection-free feasibility

guarantee. The results compare favorably against common approaches that use unsu-

pervised learning, as well as against the oracle itself used in supervised approaches2.

One direction for future research on gauge map techniques is to study the gener-

alization capabilities of policy neural networks that use a gauge map as a safety filter.

If the system being controlled undergoes a change (such as a line outage), what is the

resulting performance of the already-trained policy? We have reason to believe that

1Paragraph adapted from D. Tabas and B. Zhang, “Computationally Efficient Safe Reinforcement
Learning for Power Systems,” 2022 American Control Conference (ACC), Atlanta, GA, USA, 2022,
pp. 3303-3310.

2Paragraph adapted from D. Tabas and B. Zhang, “Safe and Efficient Model Predictive Control
Using Neural Networks: An Interior Point Approach,” 2022 IEEE 61st Conference on Decision
and Control (CDC), Cancun, Mexico, 2022, pp. 1142-1147.
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policy networks designed using the principles in Chapter 2 will maintain some level

of performance following such a change. The reason is that even if the set-valued

map from states to safe actions changes, the optimal action from a particular state

(when mapped backwards from the safe action set to the infinity norm ball) might

remain relatively unchanged. Since the gauge map safety layer involves scaling and

translation but no rotation, the physical meaning of the direction of a specified control

action has a degree of consistency before and after a change in parameter values. An-

other way to achieve generalization is to condition the policy network on contextual

variables (such as parameter values) and train across multiple system configurations.

Chapters 2 and 3 demonstrated how gauge maps can be used to design policy

networks for frequency regulation. However, the ability to design neural networks

whose outputs are constrained to nearly arbitrary full-dimensional polytopes has far-

reaching implications for data-driven control and optimization. The technique has

already been picked up and studied for nonlinear control [100], parametric optimiza-

tion [58], and solving robust versions of the DC optimal power flow problem [105].

New advances in convex restrictions for AC optimal power flow [104], when combined

with gauge map techniques, promise to yield new and powerful tools for power system

operations.

In Chapter 4, we studied the effect of primal-dual algorithms on the structure of

constrained MARL problems. First, we used the occupation measure to study the

effect of the penalty term on safety. We showed that using the constraint function as

the penalty enforces safety only in expectation, but by making simple modifications to

the penalty term, one may enforce meaningful probabilistic safety guarantees, namely,

chance and CVaR constraints. These risk metrics are defined over the occupation

measure, leading to notions of safety in the near term. Next, we studied the effect

of the penalty term on the value function. When the dual variable and constraint

evaluation signals are available, it is easy to model the relationship between the

penalty term and the value function. By exploiting this structure, the accuracy of
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the value function can be improved. We demonstrated the usefulness of both of these

insights in simulations, showing that convergence to a low-risk policy is accelerated3.

One direction for future research in primal-dual based MARL algorithms is the

question of convergence. The work in Chapter 4 studied the behavior of learned poli-

cies assuming that some equilibrium had been reached. However, it remains to show

under which conditions an equilibrium will actually be reached, as well as whether

that equilibrium will represent a social optimum. Some hardness results [30] indicate

that these questions will have to be answered for particular problem instances. Also,

some recent counterexamples [19] suggest that optimal constraint-satisfying policies

must be conditioned on dual variables updated in real time, contradicting previous

results on the convergence of primal-dual RL algorithms [15, 94]. In terms of social

optimality, the objective function for the dual problem can be modified in order to

incorporate notions of fairness, such as enforcing equal contribution to constraint

violations from all agents. Taken together, such results will greatly improve the ap-

plicability of MARL in constrained, non-cooperative environments.

3Paragraph adapted from Tabas, D., Zamzam, A.S. and Zhang, B. (2023). Interpreting Primal-
Dual Algorithms for Constrained Multiagent Reinforcement Learning. Proceedings of The 5th
Annual Learning for Dynamics and Control Conference, in Proceedings of Machine Learning Re-
search 211:1205-1217.



66

ACKNOWLEDGEMENTS

I would like to begin by thanking my advisor, Prof. Baosen Zhang, for being an

invaluable mentor and resource. I am grateful for the level of support and academic

freedom he provided throughout my studies, and will always hold on to his advice

to “just try more things” whether or not I happen to be stuck on a problem. I

would also like to thank the other UW faculty members who had an impact on

my education: Daniel Kirschen, Lillian Ratliff, Maryam Fazel, Sam Burden, Brian
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Appendix A

ADDITIONAL RESULTS FOR CHAPTER 21

A.1 Derivation of (2.11)

Let Q = {x ∈ Rn | Fx ≤ g} be a C-set, where F ∈ Rr×n, g ∈ Rr, F T
i denotes the ith

row of F , and gi denotes the ith element of g. The gauge function γQ(v) is computed

as follows.

γQ(v) = inf{λ ≥ 0 | v ∈ λQ} (A.1)

= inf{λ ≥ 0 | 1
λ
F T
i v ≤ gi, i = 1, . . . , r} (A.2)

= inf{λ ≥ 0 | λ ≥ F T
i v

gi
, i = 1, . . . , r} (A.3)

= max{0,max
i
{F

T
i v

gi
}}. (A.4)

We now argue that maxi{F
T
i v

gi
} ≥ 0. If F T

i v < 0 for all i, then Q is unbounded in the

direction of v and Q cannot be a C-set, a contradiction. Further, since 0 ∈ int (Q),

it must hold that gi > 0 for all i. Therefore, there exists i such that
FT
i v

gi
≥ 0.

A.2 Additional lemmas

The following lemma will be used in the proofs of Lemma 2.2 and Theorem 2.1.

Lemma A.1. Under the assumptions of Theorem 2.1, the safe action set Ω(xt) is a

polytope for all xt ∈ S.

1Adapted from D. Tabas and B. Zhang, “Computationally Efficient Safe Reinforcement Learning
for Power Systems,” 2022 American Control Conference (ACC), Atlanta, GA, USA, 2022, pp.
3303-3310.
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Proof. Starting from (2.1), (2.5), and (2.7), the safe action set is

Ω(xt) = {ut ∈ U | −s̄ ≤ Vsxt+1 ≤ s̄, ∀ dt ∈ D} (A.5)

= {ut ∈ U | −s̄i −min
d∈D

V (i)T
s Ed

≤ V (i)T
s (Axt +But)

≤ s̄i −max
d∈D

V (i)T
s Ed,

∀ i = 1, . . . , r} (A.6)

where s̄i is the ith element of s̄ and V
(i)T
s is the ith row of Vs. Since the min and max

terms evaluate to constant scalars for each i, and since xt is fixed, (A.6) is a set of

linear inequalities in ut, making Ω(xt) a polytope [13].

A.3 Proof of Lemma 2.1

We will prove the more general case in which B∞ is replaced by any polytopic C-set.

Let P and Q be two polytopic C-sets, and define the gauge map from P to Q as

G(v|P ,Q) = γP (v)
γQ(v)

· v. We will prove that G is a bijection from P to Q. The proof is

then completed by noting that γB∞ is the same as the ∞-norm.

To prove injectivity, we fix v1, v2 ∈ P and show that if G(v1|P ,Q) = G(v2|P ,Q)

then v1 = v2. Assume G(v1|P ,Q) = G(v2|P ,Q). Then v1 and v2 must be nonnegative

scalar multiples of each other, i.e. v2 = βv1 for some β ≥ 0. Making this substitution

and applying positive homogeneity of the gauge function [13] yields

G(v2|P ,Q) =
γP(v2)

γQ(v2)
v2 =

γP(v1)

γQ(v1)
v2. (A.7)

Noting that G(v1|P ,Q) = γP (v1)
γQ(v1)

v1, we conclude that β = 1, thus v1 = v2.

To prove surjectivity, fix w ∈ Q. We must find v ∈ P such that G(v|P ,Q) = w.

Since P and Q are C-sets, each set contains an open ball around the origin, thus P

and Q each contain all directions at sufficiently small magnitude. Choose v in the
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same direction as w such that γP(v) = γQ(w). Since w ∈ Q, v ∈ P . Then, we have

G(v|P ,Q) = γP(v)

γQ(v)
v (A.8)

=
γQ(w)

γQ(v)
v. (A.9)

Since v and w are in the same direction, v
γQ(v)

= w
γQ(w)

. Making this substitution

completes the proof.

A.4 Proof of Lemma 2.2

Let int and bd denote the interior and boundary of a set, and rewrite (A.6) as

Ω(x) = {u ∈ Rm | Hu ≤ h, F (Ax + Bu) ≤ g}. Fix x ∈ int (S) and let u∗ = Kx.

By Lemma A.1, Ω(x) is convex and compact. To fulfill the properties of a C-set, it

remains to show that u∗ ∈ int (Ω(x)). Since π0 ∈ Π, u∗ ∈ Ω(x). Assume for the sake

of contradiction that u∗ ∈ bd(Ω(x)). Then either F T
i (A+BK)x = gi or H

T
j Kx = hj

for some i or j, where the subscript denotes a row index. Suppose without loss of

generality that the former holds, i.e. F T
i (A+BK)x = gi for some i. Since x ∈ int (S),

there exists ε ∈ (0, 1) and α = [1 + ε · sign(gi)] such that y = αx is also in int (S).

The set Ω(y) is contained in the halfspace {u | F T
i (Ay + Bu) ≤ gi}. Evaluating this

inequality with u = Ky, we have F T
i (A + BK)y = αF T

i (A + BK)x = αgi > gi,

thus Ky ̸∈ Ω(y) even though y ∈ S, contradicting the assumption that π0 ∈ Π. We

conclude that u∗ ̸∈ bd(Ω(x)). Since u∗ ∈ Ω(x), u∗ must be an element of int (Ω(x)).

A.5 Proof of Theorem 2.1

1. It suffices to show that the gauge map from B∞ to Ω̂t is well-defined on int (S).

This is a direct result of Lemma 2.2.

2. By Lemmas 2.2 and A.1, Ω̂t is a polytopic C-set. By (2.11), γΩ̂t
(and πθ) can

be computed in closed form.
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3. Let P = {z ∈ Rn | Az ≤ b} and Q = {z ∈ Rn | Cz ≤ d} with A ∈

Rm×n,b ∈ Rm
++,C ∈ Rk×n, and d ∈ Rk

++. Let Aij be the polytope described

as {z ∈ P | i ∈ argmaxi=1,··· ,m
aT
i z

bi
, j ∈ argmaxj=1,··· ,k

cTj z

dj
}. The set {Aij |

i ∈ 1, · · · ,m, j ∈ 1, · · · , k} forms a polyhedral partition of P , and the gauge

map is an analytic function on the interior of each Aij except when cTj z = 0 or

z = 0. Specifically, the gauge map on the interior of Aij ⊆ P can be written as

G(z | P ,Q) = aT
i z/bi

cTj z/dj
z.

For any j ∈ 1, · · · , k, cTj z = 0 if and only if z = 0: since Q forms a full-

dimensional and bounded polytope, C must be full-rank and tall (k > n).

Thus, Cz = 0 if and only if z = 0.

We can now justify the choice G(0 | P ,Q) := 0 as follows. Let z = αh for some

α > 0 and h ∈ Rn\{0}. There exist some (i, j) and sufficiently small ε > 0 such

that z ∈ Aij ∀ α ∈ (0, ε). The limit of
aT
i z/bi

cTj z/dj
z as α→ 0 evaluates to 0 ∈ Rn.

By the above analysis, the gauge map is piecewise analytic under analytic par-

tition (PAP) on P which implies desirable properties for automatic differentia-

tion [57]. Specifically, PAP functions can be composed with one another (they

obey a chain rule), they are differentiable almost everywhere (except possibly

on a set of measure zero), and standard automatic differentiation tools will

compute the derivatives at all points where the function is differentiable2.

4. This is due to the fact that ψθ is a universal function approximator for functions

from S to B∞ [46]. By (2.13) and Lemma 2.1, πθ approximates any function in

Π.

2Adapted from Zhang, L., Tabas, D., and Zhang, B. (2023). An Efficient Learning-Based Solver
for Two-Stage DC Optimal Power Flow with Feasibility Guarantees. arXiv: 2304.01409
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Appendix B

ADDITIONAL RESULTS FOR CHAPTER 41

B.1 Theoretical results

B.1.1 Proof of Proposition 4.1

Applying the definition of µπ
γ , we have

∫
X µ

π
γ(x)dx =

∫
X Γ

∞
t=0 p

π
t (x)dx. Using the

Dominated Convergence Theorem, we can exchange the order of the sum and integral.

Each individual pπt integrates to 1. The geometric sum property ensures that the

resulting expression evaluates to 1.

B.1.2 Proof of Proposition 4.2

1. By definition, we have limγ→0+ µ
π
γ(x) = limγ→0+ Γ∞

t=0 p
π
t (x). Using Tannery’s

theorem, we can exchange the order of the limit and the infinite sum. The

zeroth term in the sum evaluates to p0(x) and all other terms evaluate to 0.

2. Assume limt→∞ pπt exists, and denote it pπ∞. Using the triangle inequality, we

have

|µπ
γ(x)− pπ∞(x)| ≤

∞

Γ
t=0

|pπt (x)− pπ∞(x)| (B.1)

=
N

Γ
t=0

|pπt (x)− pπ∞(x)|+
∞

Γ
t=N+1

|pπt (x)− pπ∞(x)| (B.2)

for some N ∈ N. Since pπt (x)→ pπ∞(x), we can choose N large enough to make

the second term in (B.2) arbitrarily small. Then, using boundedness of pπt for

all t, we can take γ → 1− to make the first term arbitrarily small.

1Adapted from Tabas, D., Zamzam, A. S., and Zhang, B. (2023). Interpreting Primal-Dual
Algorithms for Constrained MARL. arXiv: 2211.16069.
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B.1.3 Proof of Proposition 4.3

By the geometric sum property, we have T2(γ, ε) = min{K ∈ N : Γ
K−1
t=0 [1] ≥ 1− ε} =

min{K ∈ N : 1− γK ≥ 1− ε} = min{K ∈ N : K ≥ log ε
log γ
} =

⌈
log ε
log γ

⌉
. The termination

time follows a geometric distribution with parameter (1− γ), and thus has expected

value 1
1−γ

. Setting T2(γ, ε) = T1(γ) and solving for ε (ignoring the integer constraint)

yields ε = γ
1

1−γ . Finally, taking limγ→1 γ
1

1−γ yields 1
e
.

B.1.4 Proof of Proposition 4.6

Let x ∼ µπ
γ , x

′ ∼ fπ(x), c̄ = Ex∼µπ
γ
[C(x)], and Σ2

C = Ex∼µπ
γ
[(c̄ − C(x))(c̄ − C(x))T ].

Suppose λ is randomly distributed with mean λ̄ and variance Σ2
λ. For any value

function approximator V̂ i
π , assume λ and V̂ i

π are independent. Let η =
[
1 λT

]T
,

d =
[
Ri(x) C(x)T

]T
, V̂ i

π : X → R, V̂ i
R,π : X → R, and V̂C,π : X → Rm. Let D be a

dataset of trajectories sampled fromM that is used to train V̂ i
π , V̂

i
R,π, and V̂C,π. The

mean square temporal difference error achieved by using a generic value function is

MSTDE1 = Ex,x′,λ,D[(η
Td+ γV̂ i

π(x
′)− V̂ i

π(x))
2] (B.3)

while the error achieved using the structured value function is

MSTDE2 = Ex,x′,D[(η
Td+ γ[V̂ i

R,π(x
′)− λT V̂C,π(x

′)]− [V̂ i
R,π(x)− λT V̂C,π(x)])

2].

(B.4)

Note that in (B.4) we do not take the expectation over λ since the dual variables are

made available to this function approximator.

Begin with the states and dual variables fixed at (x̄, x̄′, λ̄). Let ĝ(x̄, x̄′) =[
V̂ i
R,π(x̄) V̂C,π(x̄)

T

]T
−γ

[
V̂ i
R,π(x̄

′) V̂C,π(x̄
′)T

]T
and ĥ(x̄, x̄′) = V̂ i

π(x̄)−γV̂ i
π(x̄

′). Then,

suppressing the arguments (x̄, x̄′) and setting η̄ =
[
1 −λ̄T

]T
, we can write the

squared temporal difference error at (x̄, x̄′, λ̄) as

STDE1(η̄) = ED[(η̄
Td− ĥ)2], (B.5)

STDE2(η̄) = ED[(η̄
Td− η̄T ĝ)2]. (B.6)
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The loss function used to train V̂ i
R,π and V̂C,π is

ED[∥d− ĝ∥2]. (B.7)

Since d is a deterministic function of x, (B.7) can be decomposed into bias and variance

terms:

ED[∥d− ĝ∥2] = ED[
m∑
k=0

(dk − ĝk)2] (B.8)

=
m∑
k=0

ED[(dk − ĝk)2] (B.9)

=
m∑
k=0

[(dk − EDĝk)
2 + ED[(ĝ − EDĝ)

2]] (B.10)

:=
m∑
k=0

[b2k + σ2
k] (B.11)

:= Tr[bbT + Σ2] (B.12)

where k = 0 corresponds to the reward signal and k = 1, . . . ,m corresponds to the

cost signals.

Following a similar line of reasoning, we can use (B.12) to rewrite (B.6) as

STDE2(η̄) = Tr[(bbT + Σ2)(η̄η̄T )]. (B.13)

For the sake of argument, we assume that ĝ and ĥ achieve the same performance

at (x, x′, λ), that is,

STDE1(η̄) = STDE2(η̄) = Tr[(bbT + Σ2)(η̄η̄T )] (B.14)

where Tr[(bbT )(η̄η̄T )] and Tr[Σ2η̄η̄T ] reflect the bias squared and variance terms, re-

spectively. How do STDE1 and STDE2 change when λ is allowed to vary? Using

the generic estimator, the noise in λ will introduce some amount of irreducible error

into STDE1. On the other hand, using λ = λ̄ + ∆λ in our proposed estimator will

change the bias and variance terms in STDE2 while the irreducible error remains at
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zero (since there is no uncertainty when ∆λ is known). Setting ∆η =
[
0 −∆λT

]T
,

the temporal difference errors at (x̄, x̄′, λ̄+∆λ) are

STDE1(η̄ +∆η) = Tr[(bbT + Σ2)(η̄η̄T )] + (∆ηTd)2, (B.15)

STDE2(η̄ +∆η) = Tr[(bbT + Σ2)((η̄ +∆η)(η̄ +∆η)T )]. (B.16)

Taking the expectation over ∆λ which has a mean of zero and a variance of Σ2
λ,

and setting Σ2
η =

0 0

0 Σ2
λ

, yields
E∆λ[STDE1(η̄ +∆η)− STDE2(η̄ +∆η)] = Tr[Σ2

η(dd
T − bbT − Σ2)] (B.17)

= Tr[Σ2
λ(cc

T − b̃b̃T − Σ̃2)] (B.18)

where b̃ = (c − EDĝC), Σ̃
2 = ED[(ĝC − EDĝC)

2], and ĝC = V̂C,π(x) − γV̂C,π(x
′). Note

that ED[∥c− ĝC∥2] = Tr[b̃b̃T + Σ̃2]. Taking b̃, Σ̃2 → 0 as the accuracy of ĝC improves,

(B.18) can be estimated as

Tr[Σ2
λcc

T ]. (B.19)

Taking the expectation over c ∼ C(x), x ∼ µπ
γ yields the final result.

B.2 Simulation details

B.2.1 Algorithm

The Constrained Multiagent Advantage Actor Critic (C-MAA2C) algorithm is shown

in Algorithm 1. The main differences from the basic MAA2C algorithm are the

penalty modifications in lines 9 and 11, the use of vector-valued value functions V̂ i :

X → Rm+1 (one per agent in the noncooperative setting), and the dual update.

There are two apparent differences between Algorithm 1 and the concepts de-

scribed in the main text. The first is that Algorithm 1 uses n-step returns in the

advantage function, whereas Section 4.4 only considers one-step returns. We resolve
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this discrepancy by revisiting the proof of Proposition 4.6. First, note that the coeffi-

cients η can be factored out of the returns just like they are factored out of the rewards.

Thus, the proof only requires slight modifications up to the last line, Equation (B.19).

Using returns instead of rewards in (B.19) will lead to a different numerical result but

the conclusion (justification for using a structured value function) will be the same.

The second apparent difference is the fact that Algorithm 1 considers finite-horizon

episodic tasks, thus the primal-dual algorithm will enforce Eτ∼M[ΓT
t=0 ct] ≤ 0. Due

to the finite horizon, we cannot directly use the occupation measure to interpret the

meaning of this constraint. However, we can define the occupation measure over a

finite horizon as

µπ
γ,T (x) =

1

1− γT+1

T

Γ
t=0

pπt (x). (B.20)

It is easy to show that µπ
γ,T is nonnegative and integrates to unity over X . We can

use µπ
γ,T in place of µπ

γ everywhere in order to interpret discounted sum constraints

and to generate probabilistic constraints in finite-horizon episodic tasks. The state-

ments Eτ∼M[ΓT
t=0 ct] ≤ 0, Eτ∼M[(1− γT+1)−1ΓT

t=0 ct] ≤ 0, and Ex∼µπ
γ,T

[C(x)] ≤ 0 are

equivalent. Note that the effective horizon discussed in Section 4.2 may be shorter

than the horizon length T .
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B.2.2 Hyperparameters

Simulation hyperparameters are listed in Table B.1.

Table B.1: Simulation hyperparameters.

Simulation

Episode length 25

Number of episodes {4, 8} × 104

Number of trials per configuration 5

RL algorithm

Discount factor γ 0.99

Actor learning rate ζθ 3× 10−4

Critic learning rate ζω 3× 10−4

Dual update step size ζλ 1× 10−4

Optimizer Adam(βAdam = (0.9, 0.999))

n-step return horizon κ 5

Constraint enforcement

λmax 10

Risk level β 0.9

“LHS tolerance” α:

Average constraints N/A

Chance constraints 0.1

CVaR constraints 0.2

“RHS tolerance” δ:

Average constraints 0

Chance constraints 0.1

Continued on next page
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Table B.1 – continued from previous page

CVaR constraints 5× 10−3

Actors

Policy architecture Multi-layer perceptron

Number of hidden layers 2

Hidden layer width 64

Hidden layer activation ReLU

Output layer activation Linear

Action selection Categorical sampling

Parameter sharing No

Critics

Critic architecture Multi-layer perceptron

Number of hidden layers 2

Hidden layer width 64

Hidden layer activation ReLU

Output layer activation Linear

Target network update interval 200 episodes

Parameter sharing No
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B.2.3 Additional simulation results

Here, we provide some additional results to supplement the findings in Section 4.5.

First, we compared the convergence to a safe policy under the original discounted sum

constraint and found that similar to the results for the other types of constraints, the

structured critic demonstrates a better safety margin throughout training. This is

illustrated in Figure B.1.
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Figure B.1: Evaluation of the discounted sum constraint throughout training, showing that

the structured critic helps the actor to find safer policies faster. Each line and shaded region

represents the mean and standard deviation over 5 training runs. Key: SC = structured

critic.

Next, we provide a closer look at the accuracy of the CVaR upper bound provided

in Proposition 4.5, and illustrated using dashed lines in the left panel of Figure 4.7.

Table B.2 shows that in all four configurations in which the CVaR was evaluated,

the upper bound is a fairly accurate estimate. The results from Section 4.5 show

that this upper bound can be used to drive the actual CVaR below a target value.

Although using a structured critic with modified penalty function yielded the most

accurate CVaR UB, the accuracy in all four configurations could be improved by
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making further adjustments to the tolerance α. The error is reported for policies

tested at the end of the training phase.

Penalty function Critic CVaR UB error

C(x) Generic 18.3%

C(x) Structured 11.8%

[C(x)− α]+ − δ Generic 7.6%

[C(x)− α]+ − δ Structured 3.7%

Table B.2: Accuracy of CVaR upper bound.
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Algorithm 1 C-MAA2C with probabilistic safety & structured value functions

1: Input discount factor γ, learning rates ζθ, ζω, ζλ, n-step return horizon κ, tol. α

and δ, mult. limit λmax, ep. len. T , num. ep. K, risk metric (avg, chance, CVaR)

2: Initialize actor params {θi}i∈N , critic params {ωi}i∈N , policies πi(· | θi) : Xi →

∆Ui
, value estimates V̂ i(· | ωi) : X → Rm+1, dual variables λ ∈ Rm

3: for k = 1, 2, . . . , K do

4: Initialize x0 ∼ p0 ▷ Run 1 episode

5: for t = 0, 1, . . . T do

6: Sample uit ∼ πi(· | xit, θi) for i ∈ N

7: Receive {rit}i∈N , ct, xt+1

8: if risk metric = chance then

9: ct ← I[ct ≥ α]− δ ▷ Proposition 4.4

10: else if risk metric = CVaR then

11: ct ← [ct − α]+ − δ ▷ Proposition 4.5

12: end if

13: Let dit =
[
rit cTt

]T
for i ∈ N

14: end for

15: for i ∈ N do

16: for t = 0, 1, . . . , T do

17: N = min{T, t+ κ}

18: Di
t =

∑N−1
n=t γ

n−tdin + γN−tV̂ i(xN | ωi) ▷ Compute n-step returns

19: Ai
t = ηT (Di

t − V̂ i(xt | ωi)) where η :=
[
1 −λT

]T
▷ Compute advantages

20: end for

21: θi ← θi + ζθ
∑T

t=0A
i
t∇θi log π

i(uit | xit, θi) ▷ Actor update

22: ωi ← ωi − ζω∇ωi

∑T
t=0 ∥Di

t − V̂ i(xt | ωi)∥22 ▷ Critic update

23: end for

24: λ← λ+ ζλΓT
t=0 ct ▷ Dual update

25: λ← min{[λ]+, λmax}

26: end for
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