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Electrical Engineering

With an increasing interest in constructing new run-of-the-river (ROR) hydroelectric gene-

ration over the more traditional reservoir-based hydroelectric systems, there is an increasing

operational challenge due to the volatility of streamflow. The Snohomish County Public

Utilities District (SnoPUD) has recently invested in the construction and operation of 3 new

run-of-the-river projects in Northwestern Washington along Calligan Creek, Hancock Creek,

and Youngs Creek. In order to effectively plan generation dispatch, SnoPUD has expressed

interest in the development of an accurate forecasting tool to predict the generation capacity

for these ROR systems.

The following research project aims to use statistical learning models, namely Hidden

Markov Models (HMMs), to predict day-ahead generation capacities for the aforementioned

ROR systems. These models are constructed using 12 years of historical streamflow data

collected at the intake sites and precipitation data recorded at the National Oceanic and At-

mospheric Administration (NOAA) Alpine Meadows station. Four methods of constructing

the models are studied for their forecast accuracies, and are compared with the persistence

model. Despite using only one set of observable variables, the HMMs are shown to have

slight improvements in accuracy over the persistence model approach, which shows great

optimism for future work.
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Chapter 1

INTRODUCTION

As the nationwide demand for renewable energy continues to grow and utilities start

making the transition toward a network with high renewable energy penetration[4], the

Snohomish County Public Utility District (SnoPUD) has maintained itself as a regional leader

in renewable power generation. To meet the growing interest by its customers to achieve a

100% carbon-free power supply mix, SnoPUD has committed to continue investing in the

construction of new renewable generation sources, and purchasing exclusively hydroelectric

power from the Bonneville Power Administration (BPA). In addition to their existing research

work in tidal and geothermal energy generation, some of the facilities SnoPUD have invested

in include[5]:

• Small hydropower plants including the Jackson Hydroelectric Project, Woods Creek

Hydroelectric Project, and Packwood Hydroelectric Project

• Purchases from the Hampton Lumber Mill co-generation plant

• Power purchase agreements with Northwest wind projects including White Creek Wind

Project, Wheat Field Wind Project, and Hay Canyon Wind Project

• Operation of the Qualco Energy Biodigester which consumes biowaste fuel from local

farms

While SnoPUD purchases more than 80% of its consumed power from the BPA, the ma-

jority of the fuel sources used by SnoPUD for generation is still predominantly hydroelectric

generation (Figure 1.1). With the current SnoPUD generation capacity at a fraction of its



2

average demand (120MW generation capacity compared to 1448MW peak demand)[6], there

is always a push for the construction of new hydroelectric generators to meet the increasing

demand.

Figure 1.1: Fuel Sources Used by SnoPUD [1]

Of the 118 new nationwide hydropower plants that have started operation since 2006,

SnoPUD has led the nation in the new stream-reach development projects through the con-

struction of new hydroelectric plants [2].

In 2015, SnoPUD acquired licenses from the Federal Energy Regulatory Commission

(FERC) to start development of two new run-of-the-river (ROR) hydroelectric plants at Cal-

ligan and Hancock Creeks, located approximately 10 miles south of the pre-existing Youngs

Creek plant1. Through the usage of these plants, SnoPUD has been able to increase its

generation capacity by up to 19MW. However, while using ROR generation has its envi-

ronmental advantages, SnoPUD has expressed interest in tackling its operational challenges

1While the construction of the Young Creek project began in the mid-1990s, the plant was not put online
until 2011.
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Figure 1.2: Hydropower Project Development Pipeline (As of December 31, 2017)[2]

through the development of a reliable forecasting tool for planning day-ahead dispatch levels

and achieving cost-effective operations for the future.

This research project investigates the use of statistical learning models, namely the Hid-

den Markov Model (HMM), to provide an accurate day-ahead forecast for the amount of

power that can be generated at the Calligan Creek, Hancock Creek, and Youngs Creek ROR

plants. The models are constructed using from both the historical streamflow data collected

at the intake sites provided by SnoPUD, and meteorological data collected by the National

Oceanic and Atmospheric Administration (NOAA). Finally, the models are validated over

a 12 to 20 month long period to determine the accuracy of the forecast model within the

acceptable tolerance level provided by SnoPUD.
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1.1 Run-of-the-River Hydroelectric Generation Operation

While the use of conventional hydroelectric generation in the United States contributes to

the largest share of renewable energy consumption, the majority of the recent in hydropower

generation capacity does not stem from the construction of new reservoir systems. Instead,

this increase is achieved from the addition of hydropower generation equipment to pre-

existing non-powered dams and conduits[2]. Of the new hydroelectric plants that have

been constructed, most of them have been localized in the Northwestern region due to the

availability of creeks and rivers that can be utilized for ROR generation.

Figure 1.3: Operational Overview of a ROR Generator
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ROR systems operate by diverting a fraction of the upstream streamflow through a

penstock which diverts the streamflow towards a remote powerhouse. Once the water passes

through the turbine, it is then restored to the original creek downstream. The effective

head for ROR systems is equivalent to the altitude difference between the upstream and

downstream sites.

The primary advantage of operating ROR systems over conventional reservoir-based sys-

tems is the avoidance of constructing a dam, which necessitates flooding of the surrounding

lands to create the reservoir. By flooding the area, it can cause large environmental impacts

by displacing the local ecosystem and any agricultural lands. In addition, dams can obstruct

fish migration routes[7], and cause increased greenhouse gas emissions due to the buildup of

decaying rotting vegetation caught in the dams[8].

However, the primary drawback of ROR generation is the volatility of the amount of

streamflow that is available for generating energy. Since the streamflow is not sourced from

a reservoir, the amount of water that can be diverted to the penstock is heavily dependent

on both the weather and the amount of water available at the source (examples include lakes

and snowpack). In addition, the amount of water that can be diverted is dependent on the

Instream Flow Requirement (IFR) which places a restriction on the minimum amount of

water which must remain in the creek at all times to sustain local ecosystems. Therefore,

the development of a reliable forecasting tool is required to factor in both these operational

challenges to predict the amount of flowrate and the amount of available power that can be

generated at the upstream sites for each generation plant.

1.2 Literature Review

One of the simplest, and most common, methods for stochastic simulation of river flows is

the use of an autoregressive-moving-average (ARMA) model2. Models presented by Salas et

al.[9] provide the earliest example of using ARMA models for hydrological modeling, and was

2Another similar model that has been utilized is the autoregressive integrated moving average (ARIMA)
model.
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soon expanded by incorporating seasonal variations[10]. While these initial ARMA models

have been typically applied over a large time period by utilizing monthly-averaged flow, daily

modeling of streamflow has been implemented by Can et al.[11].

Similarly, the use of Support Vector Machines (SVMs) has been investigated by Shabri

et al.[12]. By using cross-validation and grid-search methods, the SVM parameters were

detected to model the monthly streamflow behavior of Kinta River in Malaysia.

[13] has investigated the usage of neural networks for optimal operation of run-of-the-

river adjustable speed power plants with axial-flow propeller turbines. In this approach,

neural networks were constructed to simulate turbine behavior and turbine efficiency, and a

maximum-efficiency tracking algorithm was implemented to determine the ideal position for

the guide vanes.

Another model construction method was investivated by [14] using rainfall-runoff mo-

dels. This approaches the problem from a purely hydrological perspective, where the unit

hydrograph was constructed for two climatologically different catchments.

An alternate method to the hydrographical approach has been proposed by [15], where

an autoregressive multinomial logistic model was constructed by incorporating precipitation

data with temperature measurements, and tested over a catchment in the River Tees located

in northeast United Kingdom.

The usage of HMMs in hydrography was proposed by Pender et al.[16], where the per-

formance of using ARMA models and HMMs were compared by comparing the cumulative

statistical characteristic of the streamflow measured over a period of one month. While

this approach does not compare the effectiveness of HMMs over shorter time periods, the

study also outlines a methodology to test the appropriateness of using HMMs to model the

hydrographs.



7

Chapter 2

SITE ANALYSIS

The scope of this research project, as described in the previous section, encompasses

3 run-of-the-river hydroelectric plants owned and operated by SnoPUD: Calligan Creek,

Hancock Creek, and Youngs Creek. Located within 15 miles from Snoqualmie Falls along

the west side of the Cascades Range, these facilities provide consumers with a source of local,

competitively-priced renewable power. In this section, hydrology analysis will be conducted

for each facility to provide a brief background for each of the projects.

ROR Station Intake Location Powerhouse Location

Calligan Creek N47◦36′3.54′′ W121◦41′9.44′′ N47◦36′24.04′′ W121◦42′34.54′′

Hancock Creek N47◦34′20.81′′ W121◦42′24.32′′ N47◦34′21.66′′ W121◦42′40.26′′

Youngs Creek N47◦47′3.75′′ W121◦46′47.84′′ N47◦48′7.11′′ W121◦49′22.07′′

Table 2.1: Penstock and Powerhouse Location Information for the ROR Systems

2.1 Instream Flow Requirements

The amount of streamflow that can be sent to the turbine for each plant is not only dependent

on the weather but also on the Instream Flow Requirements (IFR) that are set my the State

of Washington Department of Ecology. The main goal of implementing IFRs for each creek is

to set seasonal requirements for the minimum amount of streamflow that must be retained in

the creeks to protect instream resources, migrational navigation, and water quality[17]. The

monthly IFRs for each stream, expressed in units of cubic feet per second (cfs), is outlined

in Table 2.2.
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Period Calligan Creek Hancock Creek Youngs Creek

Jan. 2.00 5.00 3.00

Feb. 2.00 5.00 3.00

Mar. 2.00 5.00 3.00

Apr. 2.00 5.00 3.00

May 1-15 2.00 5.00 8.00

May 15-Jun. 30 2.00 5.00 40.00

Jul. 1-15 2.00 20.00 40.00

Jul. 16-Aug. 30 2.00 20.00 22.00

Sept. 2.00 20.00 22.00

Oct. 2.00 20.00 3.00

Nov. 2.00 5.00 3.00

Dec. 2.00 5.00 3.00

Table 2.2: IFRs (cfs) for Each Run-of-the-River Site

Taking the IFRs for each site into account, the amount of effective streamflow that can

be utilized for power generation Qeff can be defined as

Qeff = max(0, Q−QIFR)

where Q represents the upstream streamflow, and QIFR represents the IFR streamflow

for the given day in the year.

2.2 Calligan Creek

The Calligan Creek hydroelectric plant operates by bypassing 1.4 miles of Calligan Creek

through a 43.1 inch diameter penstock pipe, and discharged to a single 6MW Pelton gene-

rator, providing a gross head of 1032 feet. Sourced directly from Calligan Lake, the creek
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is consistently supplied year-round. The generator output Po (MW) can be represented as

a function of the amount of the effective streamflow Qeff (cfs), and is visualized on Figure

2.1.

Po(Qeff ) =



0 for Qeff < 5.25

0.0516Qeff + 0.0004 for 5.25 ≤ Qeff < 17.77

0.0761Qeff − 0.0401 for 17.77 ≤ Qeff < 85.82

6.587 for Qeff ≥ 85.82

(2.1)

Figure 2.1: Generation Curve for Calligan Creek

2.3 Hancock Creek

Similar to Calligan Creek, the Hancock Creek hydroelectric plant is sourced from Lake

Hancock. The diverted streamflow flows through a 41.1 inch diameter penstock pipe, and is
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discharged to a single 6MW Pelton generator, providing a gross head of 1113 feet. Unlike

Calligan Creek, Hancock Creek has a higher instream flow requirement during the summer

months to accommodate for the increased fish population in the area. The generator output

function for the plant Po(Qeff ) is outlined below, and the generator curve is visualized in

Figure 2.2.

Po(Qeff ) =



0 for Qeff < 4.18

0.0535Qeff + 0.0004 for 4.18 ≤ Qeff < 16.36

0.0817Qeff − 0.0481 for 16.36 ≤ Qeff < 80.90

6.511 for Qeff ≥ 80.90

(2.2)

Figure 2.2: Generation Curve for Hancock Creek



11

2.4 Youngs Creek

Unlike the Calligan Creek and Hancock Creek projects, Youngs Creek is primarily sourced

from snowpack in the Cascades. As a result, Youngs Creek has a flashier hydrograph,

resulting in a shorter precipitation lag time, higher peak discharge, and faster drainage

rate. The hydroelectric plant operates by bypassing streamflow through a 51 inch diameter

penstock, and discharged through a single 7MW Pelton generator, providing a gross head of

930 feet. The generator output function Po(Qeff ) is outlined below, and the generator curve

is visualized in Figure 2.3.

Po(Qeff ) =



0 for Qeff < 6.33

0.0514Qeff + 0.0012 for 6.33 ≤ Qeff < 25.33

0.0661Qeff − 0.0334 for 25.33 ≤ Qeff < 118.67

7.700 for Qeff ≥ 118.67

(2.3)

2.5 Hydrology Summary

Although the ROR projects are located in close vicinity of each other, there are some key

hydrological differences for each project. The key differences are summarized in Table 2.3.

Calligan Creek Hancock Creek Youngs Creek

Gross Head (ft) 1032 1113 930

Generation Capacity (MW) 6 6 7

IFR Constant Seasonal Seasonal

Water Source Lake Lake Snowmelt

Table 2.3: Key Hydrological Differences
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Figure 2.3: Generation Curve for Youngs Creek

2.6 Precipitation Data

Although approximately 50 years worth of daily streamflow data was collected by the intake

sites, the amount of precipitation data spans a small fraction of the time frame. Although

SnoPUD has installed weather stations at each of the intake sites capable of recording and

collecting a multitude of meteorological data including precipitation and temperature, there

were a few technical setbacks with the data collection process. Firstly, the meteorological

data collection was began in 2010, which provides a shorter time span compared with the

streamflow data. Secondly, there were large gaps in the precipitation data due to unexpected

technical issues and loss of connection to the hub.

Therefore, precipitation data was collected from the Alpine Meadows National Oceanic

Atmospheric Administration (NOAA) weather station (N47◦46′48′′ W121◦42′0′′). This site

was chosen due to its proximity to the intake sites, and its location on the same side of

the Cascade Range, albeit situated 1000ft above the intake sites. As visualized in Figure
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Figure 2.4: 2013 Precipitation Data At Hancock Creek Intake (Blue) and NOAA Alpine

Meadows Station (Red)

2.4, the precipitation levels recorded at the intake sites follow the NOAA data relatively

well. Therefore, utilizing the NOAA precipitation data instead of the intermittent intake

precipitation data will be sufficient for the modelling process.
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Chapter 3

MODEL DESCRIPTION

3.1 Hidden Markov Model Overview

3.1.1 Markov Chains

The use of a discrete Markov chain is based on the probabilistic nature of the graph represen-

tation of the system, wherein a sequence of observations can be summarized and classified

by its statistical characteristics. The discrete-time Markov chain can be described as the

sequence of states

Q = q1q2...qT

where each event is from a set of N possible states in the model

qt ∈ S = {s1s2...sN}

wherein each state si represents the different discrete observations that can be made in

the system1.

Using this state sequence Q, a transition probability matrix A can be defined, where each

element aij represents the probability of transitioning from state i to state j

aij = P [qt+1 = sj|qt = si] ∀1 ≤ i, j ≤ N

As well, under the Markov Assumption, it is established that

1For example, a set of states S that can be used to describe weather in a local region can be S =
{sunny, cloudy, rainy}
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0 ≤ aij

and

N∑
j=1

aij = 1

which satisfies the primary statistical characteristics of the Markov Chain.

3.1.2 Hidden Markov Models

While a Markov chain is useful for computing probabilities for a sequence of events that

can be directly observed, Hidden Markov processes consider the hidden observations and

behavior that can occur in the system2. The Hidden Markov Model (HMM) expands on the

Discrete Markov Chain by relating 2 sets of states: the set of N hidden states

S = {s1, s2, ..., sN}

and set of M observation states

V = {v1, v2, ..., vM}

The HMM is inherently a doubly stochastic process, which consists of an underlying

sequence which is hidden from the observer

Q = q1q2...qT

where qt ∈ S, and an observable sequence

O = o1o2...oT

2For a great example involving the prediction of missing weather data with an assiduously recorded ice
cream log, see [18]
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where ot ∈ V . As the HMM is an expansion of the Markov Chain, the HMM λ = (A,B)

is governed by 2 matrices: the transition probability matrix A and an emission probability

matrix B.

Similar to the Markov chain model, A describes the transition between the hidden states

in the sequence

aij = P [qt+1 = sj|qt = si] ∀1 ≤ i, j ≤ N

The emission matrix B on the other hand describes the probability that of a particular

observation state given the hidden state at time index t

bj(k) = P [vk,t|qt = sj] 1 ≤ j ≤ N, 1 ≤ k ≤M

and with matrix characteristics

0 ≤ bj(k)

and

M∑
k=1

bj(k) = 1

A visual representation of the state transitions is shown in Figure 3.1.

Using the HMM model, the three main types of problems of interest are[19]:

• Likelihood Problem: Given an HMM λ = (A,B) and an observation sequence O,

determine the likelihood P (O|λ)

• Decoding Problem: Given an observation sequence O and an HMM λ = (A,B),

discover the best hidden state sequence Q

• Learning Problem: Given an observation sequence O and the set of states in the

HMM, learn the HMM parameters A and B
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Figure 3.1: Visual Representation HMM State Transitions

For the purposes of this project, methods to solve the second and third problems will be

outlined in the subsequent sections.

3.1.3 Decoding Problem

For any model which contains hidden variables, the decoding task is defined as the task

of determining the sequence of hidden variables which is responsible for the sequence of

observations. In other words, the task of the decoder is, given an HMM λ = (A,B) and

a sequence of observations O = o1o2...oT , determine the most probable sequence of states

Q = q1q2...qT .

The most common decoding algorithm being implemented is the Viterbi algorithm [20],

which uses dynamic programming trellis. At iteration t, the Viterbi algorithm determines

the most likely trellis cell vt(j) to determine the probability that qt = Sj based on the state

path estimated for q1, q2, ..., qt−1. This sequence can be formally expressed as

vt(j) = max
q0,q1,...,qt−1

P (q0, q1, ..., qt−1, o1, o2, ..., ot, qt = j|λ)

Under the Markov assumption, this expression can be reduced to a simplified recursive

function
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vt(j) =
N

max
i=1

vt−1(i)aijbj(ot)

where vt−1(i) represents the Viterbi path probability from the previous time step, aij

represents the transition probability from state qi to state qj, and bj(ot) represents the state

observation likelihood of the observation ot given the current state Sj.

3.1.4 Learning Problem

In solving the Learning Problem, the goal of the algorithm is to, given an observation se-

quence O and the set of possible states in the HMM, the HMM parameters A and B should

be estimated. In this case, it is assumed that the vocabulary of the hidden states S is defined

beforehand.

The standard algorithm for HMM training is the Baum-Welch algorithm [21], which uses

an iterative algorithm to determine the best estimates for the elements âij and b̂j(k).

Figure 3.2: Visual Representation of the Joint Event [3]

In solving for the parameter estimation, it is important to examine the joint event between

states Si and Sj as illustrated in Figure 3.2. During iteration t, the joint event that connects

the two states, aijbj(Ot+1) is governed by the forward variable
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αt(i) = P (o1o2...ot, qt = Si|λ)

which expresses the probability of the partial observation sequence of o1o2...ot given state

qt = Si and model λ, and the backward variable

βt(i) = P (ot+1ot+2...oT |qt = Si, λ)

which represents the probability of the partial observation sequence ot+1ot+2...oT state

qt = Si given model λ.

Using the forward and backward variables, the behavior of the joint event ξt(i, j) that

connects states Si at iteration t and Sj at iteration t+ 1 can be expressed as

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ) =
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ)

As well, the state variable γt(i) which describes the probability of being in state Si at

time t can be represented as

γt(i) = P (qt = Si|O, λ) =
N∑
j=1

ξt(i, j)

By combining the joint events and state variables, the Baum-Welch algorithm estimates

the state transition and emission probabilities:

âij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

1 ≤ i ≤ N, 1 ≤ j ≤ N

b̂j(k) =

∑T
t=1ot=vk

γt(j)∑T
t=1 γt(j)

1 ≤ j ≤ N, 1 ≤ k ≤M

While the Baum-Welch algorithm outlines an iterative approach to calculating the HMM

parameters, the convergence the the algorithm is not guaranteed. For example, if a sudden

torrential downpour is recorded during the summer months, the Baum-Welch algorighm

treats this anomalous event as a common occurrence, which skews the resulting λ. Therefore,
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it is also important to initialize the algorithm with a set of initial state probabilities and

define any state transitions that are physically impossible.

3.2 Model Construction and Implementation

3.2.1 Model Definitions

As outlined in the previous section, the role of the HMM is to relate the set of observation

states V with the set of hidden states S. The observation states V is defined using the

precipitation data recorded at the Alpine Meadows NOAA station. Each observation state

vi was based primarily on the precipitation amount (mm). As well, the number of consecutive

days with 0mm precipitation was considered to account for the time delay associated with

the rainfall-runoff model. The V states are defined in Table 3.1.

State vi 1 2 3 4 5 6 7 8 9 10

Precipitation (mm) 0 0 0 0 0-5 5-10 10-20 20-30 30-50 ≥50

Consec. Days with 0mm Precip. 1 2 3 ≥4

Table 3.1: Observation State V Definitions

As an example, a histogram of the observation states for Calligan Creek is visualized in

Figure 3.3. Due to the relatively high count for Vi = 4, it is indicative of a long dry period

during the summer months.

The set of hidden states S for this research project is defined to be the difference of the

daily potential generating capacity (MW) between 2 consecutive days. In order to comply

with the planning department at SnoPUD, the generating capacity values are rounded down

to the nearest integer using the floor function

x̂ = bxc

Each state can be formally represented as



21

Figure 3.3: Observation State Vi Distribution for Calligan Creek

Si = ∆bPoc+ C = bPo,tc − bPo,t−1c+ C

where C represents the zero-offset. The S definitions for each ROR station are outlined

in Table 3.2.

Likewise, the histogram for the S distribution for Calligan Creek (Figure 3.4) shows a

noticeable peak at state 4, which also corresponds to long periods during the summer season

where there is insufficient streamflow for generation.

Therefore, the original model problem can be restated as (as originally structured by

Eisner [18]): Given a sequence of precipitation observations at the Alpine Meadows Station

V , forecast the hidden sequence of S which corresponds to the available generation output
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State Si 1 2 3 4 5 6 7 8 9

Calligan Creek (MW) ≤-3 -2 -1 0 1 2 3 ≥4

Hancock Creek (MW) ≤-4 -3 -2 -1 0 1 2 3 ≥4

Youngs Creek (MW) ≤-4 -3 -2 -1 0 1 2 3 ≥4

Table 3.2: Hidden State S Definitions

Figure 3.4: Hidden State Si Distribution for Calligan Creek

for the 3 run-of-the-river hydroelectric systems.

3.2.2 Model Construction

The historical streamflow and precipitation data were partitioned into two sets: a con-

struction set and a validation set. Table 3.3 outlines the time period for each creek that were

used for each set.
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Construction Period Validation Period

Calligan Creek 10/1/1994-12/31/2006 1/1/2007-9/29/2008

Hancock Creek 10/1/1994-12/31/2006 1/1/2007-9/29/2008

Youngs Creek 10/1/1994-3/31/2000 4/1/2000-3/31/2001

Table 3.3: Date Periods Used to Construct and Validate the Hidden Markov Models

Figure 3.5: Visualized Pseudocode Flowchart

Using the construction set, the HMM matrices λ = (A,B) were constructed using 3

different methodologies: Baum-Welch model, aggregate model, and seasonal models. A

generalized flowchart is visualized in Figure 3.5

Model 1: Baum-Welch Model

Using this methodology, the Baum-Welch algorithm was used to produce the best estimates

for the model. It should be noted that, because no filtering was done for the construction

set to remove any anomalous data, convergence was not guaranteed. The steps taken to
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construct the Baum-Welch model are as follows:

1. Calculate the effective streamflow Qeff that can be utilized for generation

2. Generate the set of hidden states Q using the generator curve Po(Qeff ) and Table 3.2

3. Generate the set of observable states O using Table 3.1

4. Construct the best estimate HMM (A,B) by running the Baum-Welch algorithm until

either convergence or reaches timeout

Model 2: Aggregate Model

In the aggregate model, a normalized histogram of O and Q during the construction period

was utilized. For the transition matrix Â, each element represents the count of all the

transitions between indexes t and t+1. Thus, each of the elements represents the conditional

probability

aij = P (qt+1 = sj|qt = si)

By analyzing through all of the dates in the construction period, the model λ = (A,B)

is constructed as

aij =

∑T−1
t=1 xij,t∑N

i=1

∑T−1
t=1 xij,t

bij =

∑T
t=1 yij,t∑N

i=1

∑T
t=1 yij,t

where T represents the number of dates in the construction period, and x and y represents

the count, where

xij,t =

1 for qt+1 = sj|qt = si

0 otherwise
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and

yij,t =

1 for ot = vj|ot = si

0 otherwise

Similar to the steps for constructing the Baum-Welch model, the aggregate model is

constructed as follows:

1. Calculate the effective streamflow Qeff that can be utilized for generation

2. Generate the set of hidden states Q using the generator curve Po(Qeff ) and Table 3.2

3. Generate the set of observable states O using Table 3.1

4. Construct (A,B) by building row-normalized histograms

Model 3: Seasonal Model

Due to the effect of seasonal variability for each of the hydrological systems, it is also useful

to construct 4 different aggregate models based on the seasons. By separating the data,

each seasonal effect can be isolated from each other; the effects of the dry period during

the summer can now be separated from the winter months. The seasons were defined as

per Table 3.4. Although the hidden states were separated into its respective seasons (Figure

3.6), it should be noted that the state corresponding to ∆bPoc = 0MW still comprise the

majority of the hidden states.

The steps for building the seasonal model are:

1. Calculate the effective streamflow Qeff that can be utilized for generation

2. Generate the set of hidden states Q using the generator curve Po(Qeff ) and Table 3.2

3. Generate the set of observable states O using Table 3.1

4. Separate the states O and Q based on the season each data falls on
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(a) Winter (b) Spring

(c) Summer (d) Autumn

Figure 3.6: Seasonal Hidden State Si Distributions for Calligan Creek
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Season Months

Winter Dec Jan Feb

Spring Mar Apr May

Summer Jun Jul Aug

Autumn Sep Oct Nov

Table 3.4: Season Definitions for the Seasonal Model

5. Construct 4 different models (A1, B1), (A2, B2), (A3, B3), (A4, B4) using the row-normalized

histogram approach outlined in the aggregate model

3.2.3 Model Validation

Using the validation set, the accuracy of the model forecast is compared with the historical

values. The validation steps are outlined as follows:

1. Acquire the generation capacity Po,i

2. Acquire the last 2 days of rainfall data
[
Ri−1 Ri

]
to create the observable sequence

3. Append the rainfall forecast for the following day R̃i+1

4. Run the Viterbi algorithm using the model λ = (A,B) to get the most probable hidden

state sequence, s̃i+1

5. Using the last element from the Viterbi algorithm, compute the forecast generation

capacity Po,i+1 = Po,i + ∆Po,i+1

6. Calculate the accuracy value based on ±0MW and ±1MW tolerance levels
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Chapter 4

MODEL TESTING AND RESULTS

4.1 Model Results

For each the methodologies outlined in the previous chapter, the results of the validation

algorithm was compared with a benchmark analysis model. The accuracy of the models

were calculated by evaluating if the forecast values were within the tolerance bound of the

historical values.

4.1.1 Benchmark Model

The benchmark case was chosen to be the persistence model, where the recorded value for

index t is used as the forecast value for the following time index t+ 1:

p̂t+1 = pt

This methodology is commonly used in forecasting short-term forecasting for other types

of variable renewable energy sources, particularly in wind generation where the persistence

model has shown to be relatively effective in the short time ranges[22]. Hence, any forecast

models that is developed should be tested against this classical benchmark of persistence

method to check how much it can improve over the persistence derived forecasts[23].

4.1.2 Baum-Welch Model

Using the Baum-Welch model, it is visually evident that the forecast values do not match

the historical values very well. Even during the summer season (days 200-240), the model

makes nonzero generation capacity predictions despite the low levels of precipitation.
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(a) Calligan Creek

(b) Hancock Creek
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(c) Youngs Creek

Figure 4.1: Baum-Welch Model Forecast Results (blue) Compared With Actual Historical

Values (red)

The forecast results are indicative of the inherent drawbacks with the Baum-Welch mo-

del. The performance of the model is dependent on knowing the ideal distribution for each

system beforehand, which is not always guaranteed. In addition, initializing the algorithm by

defining state transitions which are physically impossible is required to assist the convergence

of the algorithm.

4.1.3 Aggregate Model

Using the aggregate model, it is evident that, on first inspection, the plots match up perfectly.

However, upon closer inspection, the forecast values are actually offset by exactly 1 day. This

behavior implies that the aggregate model behaves identical to the persistence model.
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(a) Calligan Creek

(b) Hancock Creek
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(c) Youngs Creek

Figure 4.2: Aggregate Model Forecast Results (blue) Compared With Actual Historical

Values (red)

This behavior in the aggregate model is primarily due to the unbalanced hidden state

distribution. For example, the state distribution for Calligan Creek has a large peak at

state 4. This state corresponds to ∆Po = 0 MW, which is identical to the definition for the

persistence model. Therefore, when the Viterbi algorithm is run, the trellis end up favoring

the state with the largest probability which is coincidentally same as the condition for the

persistence model.

4.1.4 Seasonal Model

By utilizing the four different HMMs, the seasonal models were able to capture the seasonal

effects, resulting in a slight increase in accuracy.
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(a) Calligan Creek

(b) Hancock Creek
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(c) Youngs Creek Creek

Figure 4.3: Seasonal Model Forecast Results (blue) Compared With Actual Historical Values

(red)

Although the improvement in accuracy using the seasonal model is difficult to spot visu-

ally, the slight improvement is apparent in Table 4.1.

4.1.5 Hierarchical Model

Based on the concept of Hierarchical Hidden Markov Models (HHMMs)[24], the output of the

Viterbi algorithm is modified from a single variable output to a probability distribution for

all the possible states. For example, during an iteration of the Viterbi algorithm performed

at Calligan Creek, the correct state transition (highlighted in red) has the second largest

probability value (p-value). In the current form of the Viterbi algorithm, the forecast returns

the state corresponding to the largest p-value, which is attributed to the initial hidden state
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Si distribution for Calligan Creek. Therefore, a method of extracting the correct state

transition given the probability distribution is be utilized.

Figure 4.4: Probability Distribution Output of the Viterbi Algorithm

Using this new output format, a threshold test was implemented using the states with

the 2 largest p-values (s1 and s2 respectively). Let us define the difference between the 2

largest p-values as p

p = p1 − p2

where p1 and p2 represent the p-values for the respective states s1 and s2. Using this, the

next state transition Si+1 can be chosen as
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Si+1 =

s1 if p ≥ η

s2 if p < η

where η represents the threshold value, which is calculated by running the aggregate

model over h days in the construction period1. By computing the weighted average of the

historical p values and comparing the results of running the Viterbi model during this period,

η is computed as

η = 1− 1

h

h∑
i=1

(1− pi)

Based on this modification of the aggregate model, the resultant plots in Figure 4.5

show that the forecast values perform equally well, if not better than the persistence model.

The usage of the threshold test dissuades the model from choosing the persistence solution,

resulting in more nonzero state transitions.

1The threshold computation period 1/1/2002-12/31/2004.
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(a) Calligan Creek

(b) Hancock Creek
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(c) Youngs Creek Creek

Figure 4.5: Hierarchical Model Forecast Results (bblue) Compared With Actual Historical

Values (red)

Theoretical Accuracy Rates

While the threshold test that was implemented for the hierarchical model is limited to the

first 2 largest p-values, it brings up the question of the theoretical accuracy rate: if the

hierarchical model methodology was able to incorporate up to the n-th largest p-value in the

probability distribution output from the Viterbi algorithm and be able to choose the correct

state transitions, what is the theoretical accuracy that can be achieved using this model?

Based on Figure 4.6, the improvement in the accuracy starts to diminish as n approa-

ches 32. As well, since these theoretical accuracy rates evaluate the ±0MW tolerance, it

2For the case when n = 1, the theoretical maximum is identical to the persistence model as the largest
p-value will always correspond to the state where ∆P = 0.
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is inferred that the accuracy rate for the ±1MW tolerance would be much higher. There-

fore, it is sufficient to use n = 2 and achieve a potentially high accuracy rate, provided a

more sophisticated threshold test methodology which would reliably return the correct state

transitions.

Figure 4.6: Maximum Model Accuracy Based On Decision Variable Breadth, Calligan Creek

4.1.6 Summary of Model Results

As summarized in Table 4.2, utilizing both seasonal and hierarchical models acted as a

data filter for the HMM construction, resulting in slight improvements over the benchmark

model. By incorporating both seasonality effects and methodologies to minimize the effect

of the uneven hidden state distribution, the validation accuracy was able to outperform the
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n = 1 n = 2 n = 3 n = 4

Calligan Creek 0.720 0.856 0.936 0.970

Hancock Creek 0.633 0.830 0.915 0.962

Youngs Creek 0.518 0.649 0.696 0.795

Table 4.1: Theoretical Maximum Accuracy Using Hierarchical HMM with Increasing n

persistence model. Additionally, the improvements in accuracy is dependent on the type

of hydrological system the models were used on, as the evident in the greatest increase for

Youngs Creek, which was identified as the flashiest system.

Calligan Creek Hancock Creek Youngs Creek

Model Type ±0 MW ±1 MW ±0 MW ±1 MW ±0 MW ±1 MW

Persistence 0.720 0.928 0.693 0.920 0.540 0.712

Baum-Welch 0.382 0.613 0.438 0.662 0.408 0.627

Aggregate 0.720 0.928 0.693 0.920 0.540 0.712

Seasonal 0.721 0.930 0.695 0.922 0.521 0.701

Hierarchical 0.730 0.930 0.673 0.923 0.553 0.712

Table 4.2: Cumulative Accuracy Results for Running All 4 Models over the 3 ROR Systems

4.2 Discussion of Results

4.2.1 Financial Advantages

In order to quantify the improvements in the forecast accuracy, it is useful to analyze this

in terms of savings in operational cost. While the forecast values are accurate within the

tolerance level of ±1MW, the cost of balancing this offset will need to be considered from

an operational standpoint.
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Figure 4.7: Transmission Overview

Youngs Creek

The Youngs Creek plant is connected to the SnoPUD network through a transmission line

which is owned and operated by SnoPUD. As a result, the cost of balancing the mismatched

generation is dependent on the marginal price within the network. Therefore, the implica-

tions of having a more accurate forecast would yield to operational savings, given that the

marginal cost of operating the Youngs Creek plant is lower than that of the next cheapest

generator that is available.

Calligan and Hancock Creek

Unlike Youngs Creek, Calligan Creek and Hancock Creek plants are connected to the Sno-

PUD network via transmission lines owned and operated by Puget Sound Energy (PSE).

Therefore, if there is more power that is sent across those lines than initially planned for,

the cost of balancing the mismatched generation is he total sum of both the marginal cost

in the SnoPUD network, and the excess penalty cost incurred by PSE. Because this excess
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penalty is set by the real time market price of electricity in the network, this penalty cost

can be much greater than the marginal cost.

4.2.2 Precipitation Data Error

The main source of error for the data used for the modeling process stems from the utilization

of NOAA sites instead of precipitation data recorded directly at the intake sites. Since the

NOAA station is located approximately 15 miles north and 1000 feet above the intake sites,

there are some deviations in precipitation measurements which must be considered. Figure

4.8 visualizes the observation state error ∆oi between the NOAA data and the Hancock

Creek intake data during 2013. The deviations in the states can be generalized by the

meteorological differences between the 2 sites.

During dry periods in the summer months, deviations in the precipitation data does

not cause large differences in the observation states. Conversely, during periods of heavy

precipitation, there is some state deviation between the 2 sites as it is likely that both sites

are experiencing the same rainfall. However, there are periods when one site experiences a

heavier rainfall compared to the other site. However, the majority of the state deviation stem

from the utilization of a hard 0mm precipitation level for defining states 1-4. Therefore, it is

important to match the accuracy of the weather stations to better record the precipitation

data.

The other biggest source of error is the lack of temperature data during the model con-

struction. The difference in altitude between the 2 sites translates to a temperature difference

of 3◦F, which can translate to a difference between rainfall and snowfall. Since snowfall le-

ads to accumulation rather than contributing to discharge, the lack of categorization in the

precipitation data can lead to misleading forecasts.

Therefore, while the use of the NOAA data is valid for a majority of the days in the

validation period, there are some inherent limitations due remoteness from the intake sites.
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(a) Observation States

(b) Observation State Error oi,NOAA − oi,Intake

Figure 4.8: Observation Sequence oi Error Between NOAA and Intake Sites
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Chapter 5

CONCLUSION

The application of statistical learning models for the operation of run-of-the-river hyd-

roelectric generation is a growing field with numerous potential applications based on both

previous research work and from the Hidden Markov Model approach proposed in this rese-

arch project. Through the implementation of HMMs, this research project has demonstrated

accurate day-ahead generation forecasts with better accuracy compared to the persistence

model approach.

Using various algorithms and filtering methods to create different types of HMMs, it

was shown that the hierarchical HMM approach yielded the greatest improvement in the

accuracy rate, especially for Youngs Creek. This was primarily due to the management of

the uneven hidden state distribution, which created a bias in the Viterbi algorithm. Although

this improvement is relatively small (< 1.5%), the ability to achieve this improvement using

only one set of observation states shows a promising sign for greater improvements with the

addition of additional observations.

In addition to the choice of the construction algorithm, the effectiveness of HMMs is

dependent on the type of hydrograph that they are utilized on. Within the scope of the

research project, it was demonstrated that the flashier hydrographs such as Youngs Creek

saw the greatest improvement in the accuracy rate compared to the steadier systems at

Calligan and Hancock Creeks. This was primarily due to the relatively low accuracy rates for

the persistence model for Youngs compared to Hancock and Calligan, where the persistence

model sets a high benchmark. Despite the lumping of the additional complexities in the

hydrograph system such as the effects of groundwater leaching and evapotranspiration, the

black-box approach of HMMs is effective in capturing the effect of precipitation and the
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variations in the available amount of generation for each system.

5.1 Future Work

This project paves the way for potential future work in the area of run-of-the-river hydroe-

lectricity operation, including:

• Implementation of a wider range of meteorological data to introduce more observational

states, including temperature and snow water equivalence

• Determining a more sophisticated threshold test to improve the accuracy of the hier-

archical HMM

• Extending the forecast period to test the effectiveness of forecasting over a longer period

of time (ie. week-ahead forecasts)

• Constructing a tool to translate remote precipitation data at the NOAA weather station

to forecast the precipitation data at the intake sites
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Appendix A

CALLIGAN CREEK PROJECT OVERVIEW

In the following pages, a brochure which summarizes the details of the Calligan Creek

hydroelectric project is outlined courtesy of Jessica Spahr from SnoPUD. A more compre-

hensive FERC report can be seen in [25].
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QUICK FACTS 

Location:  

 9 miles northeast of the city of North Bend, in King County 
 Runs between Calligan Lake (2,226 feet msl) and the confluence with the 

North Fork Snoqualmie River (1,100 feet msl) 
 Within the 89,500-acres of timber forest lands owned by Campbell Global 

Forest Management 

Generation: 

 Nameplate capacity – 6.0 megawatts 
 20,700 megawatt-hours annually on average 
 Run-of-the-river operation 
 Typically not operating in July-September 

Facilities: 

 Impoundment – 1.04-acre-ft, 0.26 surface acres, no active storage 
 Weir – 45’ x 8’ spillway, also includes sluice gate and trash racks 
 Fish screens – self-cleaning, approach velocities of 0.4 ft per second or less 
 Fishway – pool and weir fish passage, passes minimum instream flows 
 Penstock – 1.2-miles, 41-45” diameter pipe, conveying up to 88 cubic feet 

per second of water 
 Powerhouse – 48’ x 60’ x 41’ building with one 6-MW Pelton turbine 
 Tailrace – 135’ riprap-lined channel, with 2’ high fish exclusion barrier 
 Switchyard – step-up transformer 
 Transmission line – 2.5-mile long, 34.5kV buried line 
 Roads – two short access roads – one to intake, one to powerhouse 

Construction: 

 Estimated cost – $24 million 
 Started September 2015, estimated finish late 2017 
 Estimated start of operation after commissioning – early 2018  
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Licensing: 

 Started due diligence investigation in 2009 
 Filed Pre-Application Document in September 2011and Final License 

Application in August 2013, using FERC’s Traditional Licensing Process 
 Received License on June 23, 2015, with 50-year term (expires May 2065) 

Environment: 

 Fish – above anadromous fish barrier (Snoqualmie Falls), no ESA species or 
Essential Fish Habitat in area; mostly cutthroat, brook, and rainbow trout, 
stickleback, whitefish, and sculpin 

 Animals – no ESA species, typical of forest management areas 
 Plants – no rare plants, some noxious weeds and wetland, typical of forest 

management areas 
 Recreation – provided by Campbell Global with permit, hiking, hunting, 

primitive camping 
 Cultural – no National Register eligible properties, general area historically 

used for timber, mining, and hops farming, and Snoqualmie tribe use 

Mitigation: 

 Minimum instream flows – 2 cfs downstream of weir (year round), 15 cfs 
(5/15–9/14) and 6 cfs (9/15–5/14) downstream of spring-fed area  

 Downramping rates – 1-2” per hour based on time of year and day/night 
 Flow monitoring – stream gage monitoring of instream flows and 

downramping rates in two locations 
 Trout monitoring and adaptive management – snorkel survey up to 5 yrs to 

compare pre- and post-operation flow adequacy, increase minimum 
instream flows if catastrophic decline in trout population reported 

 Flushing sediments – flush once/yr when flows above 80 cfs, for 6 hrs min. 
 Water quality monitoring – monitoring water temperature (6 locations) 

and turbidity (1 location) 
 Project placement – relocated penstock to avoid wetlands, buried 

penstock to allow animal crossing and t-line to avoid bird collisions 
 Land mitigation and management – 10.53 acres for preservation, 

replanting/seeding penstock corridor 
 Weed management – control weeds on lands within project boundary 
 Recreation – allow access to penstock corridor for those with Hancock 

Forest Management permit 
 Cultural – implementation of the Unanticipated Discovery Plan if needed, 

allow tribal access to penstock corridor 
 Aesthetics – use natural colors, directional and time-phased lighting, and 

vegetative screening at facilities 
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Appendix B

HANCOCK CREEK PROJECT OVERVIEW

In the following pages, a brochure which summarizes the details of the Hancock Creek

hydroelectric project is outlined courtesy of Jessica Spahr from SnoPUD. A more compre-

hensive FERC report can be seen in [26].



53

 

 

QUICK FACTS 

Location:  

• 7 miles northeast of the city of North Bend, in King County 
• Runs between Lake Hancock (2,172 feet msl) and the confluence with the 

North Fork Snoqualmie River (1,043 feet msl) 
• Within the 89,500-acres of timber forest lands owned by Campbell Global 

Forest Management 

Generation: 

• Nameplate capacity – 6.0 megawatts 
• 22,100 megawatt-hours annually on average 
• Run-of-the-river operation 
• Typically not operating in July-September 

Facilities: 

• Impoundment – 0.65-acre-ft, 0.18 surface acres, no active storage 
• Weir – 46’ x 6’ spillway, also includes sluice gate and trash racks 
• Fish screens – self-cleaning, approach velocities of 0.4 ft per second or less 
• Fishway – pool and weir, passes minimum instream flows 
• Penstock – 1.5-miles, 39-44” diameter pipe, conveying up to 81 cubic feet 

per second of water 
• Powerhouse – 48’ x 60’ x 40’ building with one 6-MW Pelton turbine 
• Tailrace – 100’ riprap-lined channel, with 2’ high fish exclusion barrier 
• Switchyard – step-up transformer 
• Transmission line – 0.3-mile long, 34.5kV buried line 
• Roads – two short access roads – one to intake, one to powerhouse 

Construction: 

• Estimated cost – $28 million 
• Started April 2016, completed early 2018 
• Start of operation February 16, 2018  
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Licensing: 

• Started due diligence investigation in 2009 
• Filed Pre-Application Document in September 2011and Final License 

Application in August 2013, using FERC’s Traditional Licensing Process 
• Received License on June 19, 2015, with 50-year term (expires May 2065) 

Environment: 

• Fish – above anadromous fish barrier (Snoqualmie Falls), no Endangered 
Species Act (ESA)listed species or Essential Fish Habitat in area; mostly 
rainbow, cutthroat, and brook 

• Animals – no ESA species, typical of forest management areas 
• Plants – no rare plants (except water lobelia is a State threatened plant), 

some noxious weeds and wetlands, typical of forest management areas 
• Recreation – provided by Campbell Global with permit, hiking, hunting, 

primitive camping 
• Cultural – no National Register eligible properties, general area historically 

used for timber, mining, and hops farming, and Snoqualmie tribe use 

Mitigation: 

• Minimum instream flows – 5 cfs (10/16-6/15) and 20 cfs (6/16-10/15) 
downstream of weir  

• Downramping rates – 1-2” per hour based on time of year and day/night 
• Flow monitoring – stream gage monitoring of instream flows and 

downramping rates in two locations 
• Trout monitoring and adaptive management – snorkel survey up to 5 yrs to 

compare pre- and post-operation flow adequacy, increase minimum 
instream flows if catastrophic decline in trout population reported 

• Flushing sediments – flush once/yr when flows above 100 cfs, for 6 hrs min. 
• Water quality monitoring – monitoring water temperature (4 locations) 

and turbidity (1 location) 
• Project placement – relocated penstock to avoid wetlands, buried 

penstock to allow animal crossing and t-line to avoid bird collisions 
• Land mitigation and management – 4.08 acres for preservation, 

replanting/seeding penstock corridor 
• Weed management – control weeds on lands within project boundary 
• Recreation – allow access to penstock corridor for those with Hancock 

Forest Management permit 
• Cultural – implementation of the Unanticipated Discovery Plan if needed, 

allow tribal access to penstock corridor 
• Aesthetics – use natural colors, directional and time-phased lighting, and 

vegetative screening at facilities 
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Appendix C

YOUNGS CREEK PROJECT OVERVIEW

In the following pages, a brochure which summarizes the details of the Youngs Creek hyd-

roelectric project is outlined courtesy of Jessica Spahr from SnoPUD. A more comprehensive

FERC report can be seen in [27].
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Youngs Creek Hydro Overview
Page 1

The Youngs Creek Hydroelectric Project is a new run-of-the-river hydroelectric facility with 
an installed capacity of 7.5 megawatts located approximately 4.5 miles south of the city of 
Sultan in Snohomish County, Washington. The Project was licensed with the Federal 
Energy Regulatory Commission in May 1992; however, due to a lack of progress on 
construction the FERC was going to terminate the license in the late 2000s.  The District 
acquired the Project assets in 2008, and immediately began engineering and permitting 
activities for the construction of the Project.  The Project is the first run-of-the-river project 
(not using existing facilities) in Washington State to be constructed in over 20 years; and 
the first to be built in Snohomish County in the last 30 years.

Environment
The Project is located on Youngs Creek, a tributary to Elwell Creek which is a tributary to 
the Skykomish River.  Project features begin 1.4 miles upstream of a permanent adult 
migration barrier to anadromous fish at river mile (RM) 1.0 on Youngs Creek.    The Project 
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Youngs Creek Hydro Overview
Page 2

is situated on approximately 25.3 acres of District-owned, previously-classified timberland 
on the west slope of the Cascade Mountain Range in the Skykomish River Basin.  Nearly the 
entire drainage has been logged at least once within the last 75 years, leaving timber stands 
of various ages and plant species associations.  No ESA-listed species are in the area.

Construction
The District initiated construction of the Project in February 2010 and expects to be 
completed with construction in October 2011.  Testing of the turbines commenced in 
summer 2011.  Formal commissioning and operation of the Project is to occur in October 
2011.  The Project will have cost approximately $28,000,000 to purchase, engineer, license, 
permit and construct.

Facilities
Intake
A diversion weir and intake structure is at RM 5.0 on Youngs Creek (elevation 1,530 feet 
above mean sea level).  The weir is 12.0 feet high and 65 feet long.  The total pool behind 
the weir is approximately 9,150 square feet (0.21 acres).  The water intake structure 
consists of a concrete structure with a self-cleaning trash rack, fish screens, and closure 
gate built to Washington Department of Fish and Wildlife fish protection standards.

Penstock
The buried penstock runs along the right bank along with the intake and powerhouse 
structures, so no crossing of Youngs Creek occurs.  A 14,300-foot long, steel penstock with 
an initial diameter of 51 inches transitioning to 48 inches, is routed down existing roads 
that have been cleared of trees since 1994.

Powerhouse
The powerhouse is located at RM 2.4, upstream of a complete natural barrier to 
anadromous fish migration located at RM 1.0.  The powerhouse is an approximately 46-foot 
by 48-foot wide concrete structure, set-back from the ordinary high water mark of the river 
approximately 40-feet.  Discharge flows would be returned to the creek in a 12 -foot wide 
by riprap lined channel.  An outdoor switchyard is located next to the powerhouse to 
contain the main power transformer and other electrical equipment.  The powerhouse 
contains a Pelton turbine/generator with an installed capacity of 7.5 MW. That is enough to 
power over 5600 homes annually based on nameplate capacity.

Transmission Line
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Youngs Creek Hydro Overview
Page 3

The new transmission line follows the access and other existing roads for 7.8 miles to the 
Snohomish County PUD substation at Sultan.  Portions of the transmission line are buried 
along the existing roads; others are overhead on existing poles or new poles that would 
contain an existing distribution line and the new transmission line. 

Mitigation, Protection and Enhancement Measures (PM&Es)
Multiple management plans are in place to monitor and mitigate the fishery, terrestrial 
(avian, vegetation), and water resources of the Project area. 

Ribbon Cutting
A ribbon cutting will take place at the Project powerhouse around October 2011 to 
commemorate the commissioning of the Project. (The exact date is currently being selected 
in consultation the District’s General Manager’s and Commissioners’ schedules).   This is 
the first new constructed run-of-the-river project in many years for Washington State and 
the first generation facility built and owned by the District since 1984 when the Jackson 
Hydro Project was complete.   Lunch and program will occur from 11:30-1:00 with tours of 
the powerhouse and intake sites from 1:00-2:00.  Further details will follow once the date 
is selected for this event.

Contact
For further information on the Ribbon Cutting Event or the Youngs Creek Project, contact 
Dawn Presler in the Generation Resources Department at 425-783-1709 or 
DJPresler@snopud.com.  
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