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Electric Vehicles as Grid Resources

Mushfiqur R. Sarker

Chair of the Supervisory Committee:
Professor Miguel Ortega-Vazquez

Electrical Engineering

Electric vehicles (EV) are poised as environmentally-friendly alternatives to conventional

combustion vehicles because of the internal battery which uses electricity for transportation.

It is estimated the global EV penetration will hit upwards of 20 million on the road by 2020.

Even with this technology available today, consumers’ EV adoption is hindered due to the

high upfront cost, lack of adequate charging infrastructure, range anxiety, and slow charging

times. On the other hand, the potential revolution of the transportation sector will bring

forth economic benefits to the operations of the power system.

The EV batteries allow flexibility in the amount of power and the specific time of day

when they can charge and discharge. Such features enable the extraction of resources from

these batteries in order to benefit the power system and EV owner’s themselves. However,

the challenge remains on how to reduce the issues of EV ownership while the power sys-

tem extracts services from EVs that benefit operations. The main motivation behind this

dissertation is to develop frameworks that take advantage of EVs as grid resources.
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Chapter 1

INTRODUCTION

1.1 Background

The global trend is aiming towards the transition of the transportation sector from internal

combustion engine (ICE) vehicles, which use gasoline for motion, to electric vehicles (EVs),

which use electricity for motion. Such a push for the electrification of the transport sector

is occurring due to the effects of climate change since ICE vehicles emit carbon dioxide

emissions into the atmosphere. The Environmental Protection Agency (EPA) estimated

of the total emissions in 2013, transportation was responsible for 27% with electricity at

31% and industry at 21% [5]. With electrification, emissions can be reduced since a mix of

renewable resources, e.g. wind and photovoltaics (PVs), and conventional generation, e.g.

coal, can be used to supply the energy needs of EVs. For such a scenario to occur, however,

the EV penetration must increase.

The global Electric Vehicle Initiative estimated the global EV penetration in 2015 to be

665,000, which is more than a three-fold increase from 2013 [6]. The electrification is led by

the United States at 39%, Japan at 16%, and China with 12% of the total EV population

in 2015 [6]. This increase is in part due to the benefits EVs provide to consumers, which

include lower day-to-day operating costs (see Figure 1.1) and less emissions resulting in

being environmentally conscience, along with the social benefits of EVs being a stand-out

technology. From the viewpoint of the power grid, the current and increasing population of

EVs brings forth both benefits and challenges.

The batteries inside EVs are not only beneficial for transportation purposes but also to

provide grid-related services [7, 8, 9, 10]. EVs are poised to effectively provide energy arbi-

trage [8, 9, 10], voltage regulation [11], frequency regulation [12, 13, 14, 15, 16], and backup
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Figure 1.1: Comparison between the cost of travelling 27 miles for an average compact vehicle

and an EV. Assumes a 27 miles per gallon gasoline vehicle (average compact fuel efficiency)

and an EV efficiency of 0.34 kWh/mile (Nissan Leaf). Data obtained from [1].

power due to the on-demand charging and discharging capabilities, known as grid-to-vehicle

(G2V) and vehicle-to-grid (V2G) [17, 18], respectively. These modes can be controlled by an

energy management system (EMS) that seeks to meet certain objectives while considering

the characteristics and behavior of the EVs. While EVs are seen as power grid resources,

they also introduce challenges because of the additional electricity consumption required to

meet transportation needs. This entails, in some cases, revamping of the power grid assets

[8, 19], e.g. lines and transformers, or even additional generation in order to accommodate

the power needs. However, by managing the charging schedule of EVs, the current grid can

accommodate a large penetration of EVs [7].

The benefits EVs provide to society far outweigh the challenges, if properly managed.

However, their are several issues hindering the widespread adoption of EVs by consumers.

The objective of the following subsection is to present and discuss the issues related to EVs.

1.2 Issues pertaining to EV adoption

Even though the adoption of EVs is increasing year-over-year [6], the rate is still small

compared to the immense vehicle population in the world. This is the case because of issues
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Type All Electric Range All Gasoline Range Total

Nissan Leaf EV 75 - 75

BMW i3 EV 81 - 81

Tesla Model S EV 265 - 265

Toyota Prius PHEV 11 600 611

Chevrolet Volt PHEV 38 344 382

Table 1.1: Efficiency data of common PHEV and EVs [3]

pertaining to range anxiety, slow charging times, lack of infrastructure, and upfront costs.

Range Anxiety

The notorious range anxiety has troubled current and potential EV owners [9, 20, 21].

Range anxiety is when the driver of an EV worries the battery will run out of energy before

the destination or a charging station is reached. Majority of EVs are equipped with Lithium-

ion (Li-ion) chemistry-based batteries due to their high energy density [22, 23]. However,

these batteries have a shorter comparable all electric range to their equivalent ICE vehicles.

EVs can be characterized into two subgroups, which are plug-in electric vehicles (PEVs) and

plug-in hybrid electric vehicles (PHEVs) [4]. The PHEVs use a combination of an electric

battery and combustion engine for motion, whereas the PEVs are based on a pure electric

battery [4]. In general, PEVs have a larger capacity electric battery than PHEVs.

Table 1.1 shows efficiency data of common PHEV and PEVs [3]. As shown, the Tesla

Model S has the largest all electric range at 265 miles as compared to the Nissan Leaf, at

75 miles. On the other hand, plug-in hybrid electric vehicles such as the Toyota Prius and

Chevrolet Volt use a combination of an electric battery along with a combustion vehicle

for transportation and thus the total range is much higher. In addition, the issue of range

anxiety is non-evident in PHEVs because at any given time, the consumers can approach a

gasoline station to replenish their reservoir.

Range anxiety can be mitigated by either improving battery technology so the all electric

range is increased, and/or by installing adequate EV infrastructures. While research is
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Requirements Rating Typical Time Typical Cost

AC Level I 120 volts/12 amps 1.6 kW < 17 hrs -

AC Level II 240 volts/16 amps 3.3kW < 7 hrs $1,354 [27]

DC Fast Charging 480 volts/125 amps 60 kW < 30 mins $10,000 [28]

Table 1.2: Available EV charging levels [4]

ongoing on the former, the latter is a must for widespread EV adoption.

Lack of Public Infrastructure

In most countries, the infrastructure for ICE vehicles, i.e. gasoline stations, is well-

developed. However, such cannot be said for EVs. In the United States alone, their are

121,000 gasoline stations [24] as compared to the 12,922 EV charging stations (see [25]

for a detailed map of EV stations) as of 2015. Innovative companies such as ChargePoint

[26] are developing networks of public charging stations and is based on a pay-as-you-go

and subscription model. From an investor’s point-of-view, however, they may not invest in

EV infrastructure because the current population of EVs may not be sufficient to generate

revenue to offset the installation costs. At the same time, there is a lack in EV penetration

because owners do not see sufficient public infrastructures to justify the purchase.

Furthermore, charging stations may still employ slow charging equipment which does not

benefit EV owners. Thus, more innovative approaches of public charging need to be deployed

in order to decrease wait-time for EV charging.

Slow Charging Times

Unlike ICE vehicles which only require a few minutes to fill up their gasoline reservoir,

EVs must plug-in to an electric source to be charged [7]. Such charging can take approx-

imately minutes to many hours depending on the vehicle and type of infrastructure, e.g.

residential charging can take upwards of 7 hours1. Currently, for direct charging there are

1 Calculations are based on characteristics of a Nissan Leaf EV with a 24 kWh battery [29].
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three levels available, Level I, Level II, and Level III (DC Fast Charging) which are summa-

rized in Table 1.2 [4]. In Table 1.2, Level I is when the vehicle plugs directly into a standard

power outlet. The majority of EVs in the market come pre-packaged with Level I cordset

which on one side contains the standard SAE J1772 plug [4, 30] and on the other side is a

standard household plug. These household outlets are readily available in all locations (i.e.

residential, workplace, and commercial), however, the tradeoff is the large time requirements.

On the other hand, Level II requires installation of specialized chargers, e.g. [31], along with

potential infrastructure upgrades.

Lastly, DC fast charging, i.e. Level III, is a specialized installation usually in public

areas, e.g. Tesla supercharging stations [32], and they result in the fastest charging in less

than 30 minutes2[1]. However, they require specialized cordsets to attach to EVs [4] and

large investments in the equipment.

Upfront Costs

Most EVs, e.g. Nissan Leaf, Tesla Motors, among others, use Lithium-ion (Li-ion) battery

chemistry. From 2012 to 2015, the price of Li-ion batteries has decreased from approximately

500 to 300 $/kWh showing the benefit of economies of scale and innovation in the field [33].

However, for a typical EV (e.g. Nissan Leaf) that houses a 24 kWh battery the cost of the

battery was $12000 in 2012 to $7200 in 2015. Therefore, for a Nissan Leaf [29] priced at

$29,000 retail, the cost of the battery ranged from approximately 41% to 25% of the total

retail price from 2012 to 2015, respectively.

This is a significant reason as to why EVs are priced much higher than their traditional

ICE counterparts as of 2015. However, the price per kWh battery is rapidly decreasing with

time [34]. For example, the best-in-class players, e.g. Panasonic, are expected to have Li-ion

prices at approximately 170 $/kWh by 2025 [35]. This is a positive sign for the advent of

EVs. In addition to such cost decreases, the upfront cost of EVs can be further offset by

exploiting the flexibility of EVs as grid resources and in return generate revenue or minimize

the total cost of energy consumption.
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The objective of the next section is to present a general overview of the solutions devel-

oped to tackle these issues related to EVs from a power system point-of-view.

1.3 Literature Survey

In the early 1980s, it was first discovered load management strategies must be in place to

handle the advent of EVs [36]. Over the years, the concept of EVs being used as a variable

energy storage device that can charge, i.e. G2V mode, and discharge, i.e. V2G mode

[37, 38, 39], on-demand was introduced and developed. Such concepts opened up research

and industry sectors to the capabilities of the EV batteries. However, these capabilities can

only be harnessed if EVs are equipped with bidirectional chargers and such research has

been summarized in [39, 40]. From the point of view of the power system, intensive research

has been undertaken to study the benefits of these EV modes of operation, e.g. see [41], to

provide distribution grid services, e.g. maintaining grid limits, by performing in G2V and

V2G mode, or globally providing services in the wholesale electricity markets, i.e. regulation

and energy markets. The focus of this survey is on the works related to the use of EV

batteries as grid resources.

Previous works have attempted to extract grid services from EVs in centralized verses

decentralized strategies. Because wholesale electricity markets are not designed to manage

large numbers of small consumers, profit-seeking entities, e.g. aggregators, are expected to

emerge and serve as coordinators between these consumers and the wholesale markets [7]. On

the other hand, at the distribution level, consumers may opt to perform under an aggregator

where the entity takes control of the EV operations, or in a decentralized manner where the

consumers manage the operations of their EV with the use of an EMS. The participation in

any services or a combination thereof in a decentralized or centralized manner can provide

a recurring income which may make the vehicles an affordable alternative.

The following subsections will focus on the current works studying EVs at the different

levels of the power grid, i.e. distribution and transmission, providing various types of grid

services.
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Figure 1.2: Theoretical example of the increase of EV demand on the base load with coor-

dinated verse uncoordinated G2V charging

1.3.1 EVs performing in grid-to-vehicle mode

Demand Response (DR) is a G2V service that both EV owners and the power grid can

reap benefits from, if and only if properly implemented. EVs can perform DR by shifting

their charging in G2V mode to another period in time to meet certain objectives, e.g. to

lower costs or to meet grid objectives, or by modulating their charging power. In general,

research has shown majority of EVs tend to arrive at their final destination, i.e. home, at

some point in the afternoon (e.g. 1700 hrs), and thus will begin charging immediately if

coordination techniques are not in place [42]. An example of G2V is shown in Figure 1.2

where if EVs are uncoordinated then the the base load will increase during the peak-hours

of the day, as opposed to the coordinated case where charging occurs in the nighttime hours,

i.e valley-filling. Such uncoordinated operations may cause stress to the local distribution

grid by overloading assets, e.g. transformers and lines, and increases the total system costs

since peaking power plants must come online to meet the increased power needs [7]. Several

works have proposed methods to manage EV charging in order to meet certain outcomes

and these are summarized below:

• EVs can mitigate renewable energy uncertainty, e.g. wind [43, 44, 45, 46] and PVs

[47, 48].
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• EVs can maintain a constant consumption profile, i.e. valley-filling [49, 50, 51], in

order to reduce peaks and increase asset utilization.

• EVs can manage distribution system limits [11, 52, 53, 54, 55, 56] to ensure they are

not violated.

The subsequent discussions will explore the works for each of the situations where an EV

can provide DR.

1.3.1.1 EVs and renewable energy resources

Renewable energy resources (RESs), e.g. wind, exhibit uncertainties and variability in time

and power output. If these issues are not compensated, then at any given time their may be

an excess or deficit of power on the system. The effect of these uncertainties and variabilities

can be minimized with the use of EVs and solutions have been developed in works [43, 44,

45, 46]. Specifically in [43, 44, 45], optimal algorithms are developed for managing the EVs

while considering the wind as an input. However, these approaches ignore the system-wide

operating costs of integrating wind and EV resources, which the approach in [46] considers.

In the realm of RESs, PVs are also an uncertain resource that can cause significant issues at

the distribution level, such as voltage deviations [47]. For example, cloud coverage can cause

PVs to decrease from a high output of power to close to zero output in a small amount of

time. Such issues can also be managed with EVs and optimal frameworks were developed in

works [47, 48].

1.3.1.2 EVs performing demand response and management of grid limits

Another technique to manage EV charging is to maintain a constant demand profile, or

also known as valley-filling shown in Figure 1.2. The work in [49] developed a control

algorithm using non-cooperative games to shift EV consumption to nighttime hours in an

attempt to keep the charging constant over many hours. The algorithm in [49] can perform

in a decentralized manner where minimal communications is required to reach the global
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optimum. Similar to [49], the work in [50] develops an optimization model and considers

explicitly the EV owners’ convenience. Another work [51] bridges the communication barrier

between the power utility and EVs using a control signal to reach the same valley-filling

outcome. Other techniques attempt to use EVs to ensure proper grid limit maintenance

such as power losses [52], nodal voltage deviations [11, 53], and transformer capacity limits

[54, 56, 57, 58, 55]. As for power losses, the work in [52] developed an optimization algorithm

to shift charging to minimize distribution system power losses in a centralized manner. On

the other hand, voltage deviations are more evident in distribution grids because of the lateral

design of the system as compared the networked transmission grid [59, 60]. In [11, 53],

optimal algorithms were developed to schedule EVs in a centralized way that maintains

voltages within defined bounds. As for transformer capacity violations, it is expected that

EVs will typically be connected to chargers located in residential homes, which are connected

to local pole-top distribution transformers. With the increased EV load, such transformers

will be more likely to experience capacity overloads resulting in accelerated aging (or also

known as loss-of-life) as assesed in [61, 62]. To mitigate such adverse effect of overloads,

operating models are developed that cater EV charging behavior in [54, 56, 57] and appliance

behavior in [58] to the dynamics of the transformer.

All of these algorithms that use EV load management to benefit the power grid, i.e.

[11, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58], do not consider the impact of

their approaches to the economics of EV owners. Essentially, the electricity tariff consumers

are subject to from their power utility company is ignored and thus the algorithms force

charging behaviors that may not be in the best interest for the consumers. On the other

hand, the power industry is slowly transitioning consumers, albeit mostly the commercial

ones (see Duke Power [63] and Southern California Edison [2]), to time-varying electricity

tariffs since it motivates demand response (DR) naturally. However, pilot projects such as

the Pacific Northwest Smart Grid Demonstration Projects [64] have discovered that even

residential consumers find benefits in such tarriffs, e.g. real-time pricing (RTP) and time-of-

use (ToU). Examples of these tariffs along with the conventional flat tariff is shown in Figure
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Figure 1.3: Price tariff structures

1.3. If EV owners are under RTP (or even other less time-varying structure such as ToU)

in the near future and such algorithms are implemented, they will be worse off economically

and will opt to perform their own decentralized management to reduce electricity bills, thus

leading to potential damage to the grid. This is the case because each of the algorithms

attempt to meet some system need by exploiting the EV batteries. However, if EV batteries

are used as grid resources then they must be compensated for their services economically.

As a solution, incentive mechanisms must be in place to compensate consumers for assisting

the system’s well-being. The work in [65] attempts to develop a mechanism of giving coupon

incentives on top of flat price tariffs, however, by using flat tariffs EVs cannot provide services

economically due to the lack of change in prices.

1.3.2 EVs performing in vehicle-to-grid mode

Time varying-tariff structures enable V2G to be economic for EV owners, if proper tech-

niques are implemented. Energy arbitrage with EV batteries is a technique that exploits the

difference in prices during the day to obtain further revenue for the owners. For example,

an EV can charge in the nighttime periods of the day in G2V mode when electricity prices

are low and then discharge in V2G mode in the evening hours of the day when prices are

high. Several works developed operating models of arbitrage in the local distribution grid

under time-varying tariffs [10, 18, 66, 67, 68]. The underlying goal of these models was to
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use V2G to increase revenue for consumers, as opposed to sole G2V operations. However,

because V2G requires additional charging to store energy in the batteries to be discharged

later, the EV batteries will undergo life cycle degradation (see [10, 69]) in addition to the

expected degradation for transportation energy needs. Thus, models for V2G applications

must consider the cost of degrading the battery verses the revenue collected from performing

arbitrage or other such services that require discharging actions [10]. Unlike [18, 66, 67, 68],

the work in [10] developed an optimal framework considering such degradation trade-offs for

arbitrage. From [10], it was concluded the potential cost savings to consumers is decreased as

a function of the EV battery costs. Thus, additional streams of revenue must be introduced

in order to assist the widespread adoption of EVs and one such approach is to combine the

management of EVs with household appliances, which do not experience degradation similar

to batteries.

1.3.3 EVs and household appliance management

Consumers can, as an ensemble, manage EV arbitrage with scheduling of household appli-

ances such as electric water heaters (EWH) [70], heating, ventilation, and air condition-

ing (HVAC) [71], refrigerators (REF) [72], among others. Table 1.3 shows typical appli-

ances found in residential home organized into three categories: fully-deferrable, deferrable

but non-interruptable, and non-deferrable. Loads such as EWHs, HVACs, and REFs are

thermostatically-controlled and thus have inertia which can be stored for a period of time.

For example, a smart EMS can pre-schedule the EWH to turn ON during the nighttime

hours when prices are low in order to pre-heat water for the consumers when they wake up.

This way appliances can be predictive in order to lower the electricity bill of consumers. This

type of “smart home” control has been the focus of much research and industry products.

The research works in [73, 74, 70, 75, 76, 71, 72] developed frameworks to schedule

household appliances. Specifically in [73, 74], optimal scheduling models are developed for

arbitrary appliances that have pre-determined energy requirements but accuracy is reduced

because thermal inertia is not considered. The approach in [75] developed an optimal control
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Deferrable
Non-Deferrable

Fully Non-Interruptable

EV X

EWH X

HVAC X

REF X

Washing machine X

Dishwasher X

Dryer X

Lights X

TV X

Table 1.3: Typical household loads categorized into fully deferrable, deferrable but non-

interruptable, and non-defferable.

algorithm and [76] developed a heuristic algorithm, however, both considered pre-determined

temperature thresholds of appliances, i.e. if the threshold is reached, appliance must turn

ON or OFF. Accurate models of thermal inertial response of appliances were considered in

[70, 71, 72] for certain appliances and then embedded into control algorithms. A common

shortcoming in all of these works [73, 74, 70, 75, 76, 71, 72] is in the development of a complete

household EMS that considers the optimal scheduling of all appliances (e.g. thermostatically-

controlled loads, loads such as washing machines, and especially EVs) as an ensemble with

the goal to minimize electricity costs for consumers.

At the industry-level, companies are researching and developing innovative technologies

for appliance management. At the forefront is the Nest Thermostat which is capable of

scheduling HVAC’s by learning the consumers’ day-to-day behavior [77]. This is seen as a

retrofit to the current thermostat in the household. On the other hand, smart appliances

are being developed, e.g. EWHs [78], which include learning algorithms and bi-directional
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communication. Others are developing digital platforms, e.g. [79, 80], where consumers can

visualize and control their energy consumption in real-time.

Even though the benefits of reduced electricity bills, insight into appliance consumption,

and real-time control are viable with a complete “smart home”, practically it may be ex-

pensive [81]. For example, in the case of an EWH, the smart appliance counterpart has

a 50% increase in its price as compared to the conventional appliance [78]. However, the

innovative players in this industry are reducing costs quickly to make it affordable for the

average consumer. As an alternative, however, further revenue can be collected from just

the EVs if consumers participate in more services.

1.3.4 Aggregated participation of EVs in power markets

While managing appliances is one option to offset the cost of EVs, another option is to extract

additional services from EVs instead of solely relying on G2V and/or V2G at the distribution

level. Due to the fast response of EV batteries [17], they are poised to provide energy and/or

ancillary services at the transmission level, through the wholesale power markets. Specifically,

EVs do not have startup or shutdown costs compared to conventional generation and thus

the provision of ancillary services (i.e. in the regulation market) from EVs leads to lower

system costs [13]. However, due to the capacity restrictions set forth by wholesale power

markets, e.g. 1 MW minimum capacity in Pennsylvania-Jersey-Maryland (PJM) [82] and 0.1

MW in California Independent System Operator (CAISO) market [83], hierarchical agents

must aggregate a large fleet of EVs. An EV owner may be motivated to participate under

an aggregator because they receive additional compensation, and do not need to manage

the day-to-day operations. The later motivation is only viable if the aggregator provides

guarantees each vehicle will receive their energy needs for transportation. Research has been

conducted on the business and operating models of aggregators for market participation

[84, 13, 16, 85, 86, 87, 14, 88]. The approaches can be characterized into two strategies,

where the first includes separate participation in the energy market [84] and regulation

market [13, 16], or the second considering a combined participation strategy in both markets
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[85, 86, 87, 14, 88].

The separate participation in markets poses concerns. The first priority of EV owners is

to receive their energy needs for transportation. However, the ancillary markets have limited

capacity requirements pre-defined by the power system operator (SO) and thus bids/offers

by aggregators can be rejected if not competitive. Therefore, relying on such markets for

transportation needs may result in a lack of energy for EV owners. While the energy mar-

ket is also competitive in nature in terms of bidding/offering, any participant may purchase

electricity at the market clearing price in any given period (i.e. a price-taker) [89]. On the

other hand, approaches that only consider the energy market participation are foregoing po-

tential revenue from the regulation market, as was done in [84]. As a solution, approaches in

[85, 86, 87, 14, 88] co-optimize the participating in both markets simultaneously to determine

offering/bidding strategies.

In [85] and [87], the core assumption is that the aggregator participates in ancillary mar-

kets on privileged terms, i.e. aggregator’s offers into the market are always accepted and its

revenue is fixed at a certain percentage of its capacity being deployed in the real-time, e.g.

10%. However, in practice the aggregator’s revenue depends on the outcome of a competitive

market process [90]. Furthermore, in [86], the aggregator is assumed to submit quantity-only

zero-price bids (e.g. 10 MW at 0 $/MW representing price-taker bids) into both markets,

thus assuming the ancillary service offers will be accepted. This assumption, however, may

reduce the revenue if the actual acceptance is not as anticipated by the aggregator. A com-

mon shortcoming in [84, 13, 16, 85, 86, 87, 14, 88] is the use of simplified market clearing

procedures of the SO, which has an impact on the potential revenues obtained by the ag-

gregator in a real-life deployment. Additionally, the approaches do not consider the effect

and compensation of EV battery cycling degradation, which if considered would alter the

participation strategy in each market for the aggregator. A complete model must study

the economic trade-offs of both markets in a realistic market environment while considering

degradation.
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1.3.5 Required infrastructure for the roll-out of EVs

In summary, the aforementioned approaches provide revenue streams for residential con-

sumers that can offset the large upfront cost of owning an EV. The consumers will essentially

have a choice of either participating in services via an aggregator, or individually, which has

limited options (i.e. energy arbitrage) because individual market participation is not viable.

As a profit-seeking business entity, the aggregator may need to provide additional compen-

sation or products (e.g. installation of a free EMS in homes) to entice a large enough fleet of

consumers loads, e.g. EVs and potentially other loads such as EWHs, for a viable business.

While EVs will spend most of their time parked at their residential homes and can provide

services as discussed, other times will be spent at the workplace or commercial locations

[42, 91]. It has been shown that with public (i.e. workplace and/or commercial) EVCS

infrastructure in place, 1 in 73 people would drive an EV, as opposed to the national average

of 1 in 1400 in the US [92]. Therefore, adequate EV charging infrastructure is needed to ease

range anxiety. Such charging infrastructure may be in the form of parking lots equipped

with chargers [93] or charging stations strategically placed in a city [94, 95]. To properly

allocate infrastructure, the traffic routes of EVs along with power grid limitations must be

considered as was done in [93]. In [95], the allocation optimization considered the distance

between each charging station installation in order to ensure the daily journey needs of EVs

are met. However, once allocation of infrastracture is performed, operating procedures must

be developed.

1.3.5.1 EV charging stations (EVCS)

The public infrastructure that is poised to provide such needs are public AC and/or DC,

i.e. fast charging, electric vehicle charging stations (EVCS) installed at commercial and

workplace locations [96]. A typical charging station can provide EVs power ranging from 1.6

to 7.2 kW (Level 1-2 protocols) and up to 120 kW of power using DC Level 3 protocol [96].

Several works have developed operating operating procedures for these stations to interact
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with each individual EV customer, such as done in [97, 98, 99], or with the power grid, such

as in [93, 100, 101, 102, 103, 104].

Specifically, [93] developed a two-stage framework, where in the first-stage the profits from

an ensemble of charging stations participating in energy and reserve markets is considered.

On the other hand, [100] considered in the real-time, the scheduling of both the charging

stations and commercial buildings. Such an approach ensured the coordinated charging is

economically justified for both EVs and buildings that host the stations. The approaches in

[93, 100] scheduled EVs solely considering the impact to the power grid, however, the work

in [101] explored the viewpoint of EV owners as well. Furthermore, [101] showed alternative

approaches, e.g. [93, 100], that manage EV charging to maintain the grid may contradict

EV owners’ requirements. Optimal sizing and operation of an ESS for charging stations is

studied in [102] such that energy procurement and ESS operational costs are minimized. A

rule-based control algorithm was developed in [103] that routes power between the station,

grid, ESS, and photovoltaics. In [104], a scheme is developed that allocates power from the

grid plus ESS to a network of charging stations and also routes EV customers.

In addition, the EVCSs have not only been considered in theory. Commercial businesses

have developed around this concept to take advantage of the growing EV penetration. This

sector includes entities that install, e.g. General Electric [105], among others, and those that

both install and manage EVCSs, e.g. ChargePoint [26], Tesla Motors [32], among others.

For entities that manage EVCSs, their revenue streams are based on the money collected

from each EVs charging needs, and for the case of Tesla Motors, their charging network is

free to use for their EV models. In general, EVCS are seen as large investments because of

the required equipment, potential grid retrofits, and licensing permit costs. These costs can

be offset if stations operated similar to an aggregator and thus managed the charging and

discharging as ensembles to participate in wholesale markets, or simply exploit retail tariffs

provided from their power utility (e.g. RTP or ToU).



17

1.3.5.2 Alternative to EV charging stations

While adequate infrastructure will aid in the widespread adoption of EVs, it is also crucial

to deploy the type of infrastructure that will ease the tensions of owning an EV. The issue

of slow charging will still be evident with public EVCSs since they will tend to use Level II

charging, see Table 1.2. A solution to this is fast charging stations using Level III technology,

however, then the issue of fast degradation of the battery comes into play. An alternative

solution presented by the industry and research community is battery swapping stations

(BSSs). These stations resemble traditional gasoline stations, where a consumer arrives at

the station and a swap is performed of their depleted battery with a fully charged one that the

BSS keeps in stock [106, 107, 108]. Real-life applications have shown this operation can be

performed even quicker than filling a gasoline tank [109]. Several pioneering research works

have developed operating (e.g. [110, 111, 112]) and business models (e.g. [106, 107, 108])

for BSSs.

In [110], the optimal locations where BSS can be installed and operated in distribution

systems are determined. In this model, the type of load, the required reinforcements to

the distribution system, and reliability of the system are explicitly considered. However,

the EV model uses a heuristic approach to determine charging/discharging schedules. An

economic dispatch model that uses BSS to manage wind power intermittency is developed in

[112]. In [111], the number of batteries to be purchased along with their charging schedules

are determined using a basic dynamic programming framework. However, the number of

batteries purchased depends on the scheduling model of the EV batteries which, in such an

approach, is simplified to a wide extent. A common shortcoming of all the BSS works is

the interaction with the electricity markets which can generate additional revenue, since in

essence the BSS can operate similar to an EV aggregator.

The business aspect of the BSS has also been the subject of research. The idea of a

subscription pricing structure, along with the required infrastructure cost, is presented in

[107]. The associated risks, classification of investments, and potential services that could



18

be sold by the BSS are investigated in [106]. The detailed cost analysis required for the

startup of a BSS is performed in [108]. However, these models are simplified since they do

not consider the interactions between the BSS and the power system.

The BSS business and operating models have not only been treated in theory. Commercial

businesses have developed around the BSS concept to take advantage of the existing EV

populations. For example, the company Better Place in 2012 installed multiple stations

that handle specific type of EVs [113]. In 2013, Tesla Motors introduced battery swapping

technology for their EVs and in late 2014, deployed their first pilot station in California

[109]. Also, several utilities in China installed BSSs for their EV population in 2013 [114].

However, the profits in such actual BSSs are entirely dependent on the fees charged for

battery swapping, and ignore the extra revenue that could be collected by participating in

the energy and ancillary services markets. Altogether, a complete operating and business

model of a BSS must consider the interactions with EV owners and the wholesale electricity

markets to maximize its revenue potential.

1.3.6 Degradation of batteries

EVs are equipped with batteries, which in most cases are Li-ion based chemistries. Battery

energy storage (ES) systems, such as available in EVs, are highly beneficial if exploited for

power grid services. However, by doing such exploitation, they undergo adverse degradation

effects that must also be taken into consideration. In most cases, however, research has been

segregated into works on chemical properties, e.g. [115, 116, 117, 118, 119] of Li-ion batteries

to those who develop models for their exploitation, e.g. [8, 9, 10, 120].

Some pioneering works exist on bridging the gap between battery chemistry mechanisms

and grid economics [10, 121, 122]. In [121], battery ES is explored in the context of a micro-

grid considering both cycle-life degradation and power losses due to the charging/discharging.

Additionally, the tradeoff between charge optimization and battery degradation were ex-

plored in [10, 122] for EV Li-ion batteries. The work in [10] developed an operating model

considering an economic indice for cycle-life degradation against power grid revenues. Such
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an approach enables entitis, e.g. aggregators, to reimburse customers for exploitation of

their batteries for grid services. Without such mechanisms in place, EV owners are unlike

to participate since their batteries are being degraded.

The battery ES systems are treated as assets to stakeholders. Therefore, to economi-

cally exploit such systems, the economic cost of degrading the batteries must be taken into

consideration in the day-to-day operating frameworks.

1.3.7 Summary

This survey presented the landscape of EV developments in the research community and

industry. It can be seen EVs are poised as excellent resources for grid services. They can

be managed either solely by the owner or a hierarchical entity, such as an aggregator. They

can provide services when charging at home, workplace, or commercial location. For the

widespread adoption of EVs, further research is required to extract services from EVs to

generate more revenue for owners. In addition, the issues of slow charging times and range

anxiety, can be managed by installing proper EV infrastructures that can provide services

to the grid and thus generate profits. The next section discusses the proposed frameworks

developed in this dissertation to tackle such issues.

1.4 Proposed Frameworks

In this dissertation, six frameworks are developed that overcome issues with EVs: range

anxiety, slow charging times, lack of public infrastructure, and EV costs.

In the first proposed framework, the focus is on extracting services from a residential

household to aid the power grid in mitigating distribution line overloads. Each consumer is

equipped with an EMS that optimizes the operation of appliances, including EVs, in order to

minimize the electricity costs. However, if all consumers selfishly optimize their own benefits

against an electricity tariff, e.g. RTP, then their will be syncing of power consumption. This

will lead to overloads in the distribution power grid. Therefore, a hierarchical aggregator

can provide monetary incentives to consumers in order to motivate demand response shifting
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from overloaded periods to normal periods. The aggregator performs its own optimization to

maximize profits while determining the least-cost allocation of consumer demand response.

Overall, this framework allows the consumers to obtain additional revenue by using their

controllable loads to take advantage of energy arbitrage and the potential incentives from

the aggregator. Essentially, these additional revenues can provide a justification for offsetting

the costs to own EVs. In addition, it develops a business model of an aggregator to take

part in the day-to-day operations of coordinating a large ensemble of consumers.

• Sarker, M. R.; Ortega-Vazquez, M.A.; Kirschen, D.S., “Optimal Coordination and

Scheduling of Demand Response via Monetary Incentives,” IEEE Transactions on

Smart Grid, vol. 6, no. 3, pp. 1341-1352, May 2015

In the second proposed framework, the aggregator model is further developed to man-

age the effect EV charging/discharging on distribution transformers. Majority of EVs are

expected to be plugged-in and charging at residential homes. Such residential homes are

connected to pole-top distribution transformers, which will overload with the addition of EV

loads. As a consequence, transformers will experience accelerated aging and thus loss-of-life

will occur. An aggregator framework is developed that co-optimizes EV charging/discharging

behavior and transformer aging in order to determine an optimal tradeoff between EV ar-

bitrage revenue and transformer aging costs. This framework can be seen as an extension

of the first proposed framework based on monetary incentives, since the aggregator must

compensate EVs in order to manage their temporal charging behavior and this results in

additional reduction of costs. This framework is based on the following work:

• Sarker, M. R.; Olsen, D. J.; Ortega-Vazquez, M. A., ”Co-Optimization of Distri-

bution Transformer Aging and Energy Arbitrage Using Electric Vehicles,” in IEEE

Transactions on Smart Grid, March 2016, Early Access.

In the third proposed framework, the aggregator model is further developed to take

advantage of the wholesale markets, including energy and secondary regulation. EV batteries
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can be used to extract both energy and regulation services to the grid. However, these

services can only be provided if they are economically justified against the cost of degrading

the battery by additional charging/discharging beyond transportation needs. Therefore, a

model is developed where an aggregator manages a large fleet of EVs to determine its bidding

and offering schedule in the power markets, while considering the economics of providing

such services. The EV owners obtain additional revenue from allowing an aggregator to use

the vehicle to participate in both markets. With this framework along with the incentive

framework, the revenue collected by EV owners will help offset EV costs and essentially

increase the adoption. This framework is based on the following work:

• Sarker, M. R.; Dvorkin, Y.; Ortega-Vazquez, M.A., “Optimal Participation of an

Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets,” IEEE Trans-

actions on Power Systems, November 2015, Early Access.

The previous three frameworks explored aggregator business models for the residential

sector, i.e. consumers. In the fourth proposed framework, a different business model for

an aggregator is explored where it manages electric vehicle charging stations as ensembles.

In addition to residential charging, EVs are also expected to obtain energy from charging

stations installed in commercial and workplace locations. This will require infrastructure in

the form of charging stations. The infrastructures energy needs will be procured through a

power utility, which may not have the capacity to provide such volatile and highpower needs

on-demand and cannot provide energy at the minimal cost. As a solution, an aggregator

can manage an ensemble of charging stations in order to participate in wholesale electricity

markets to reduce energy porecurement costs. The benefits of this framework is threefold: 1)

the stations can focus on their business model of providing services to EV customers instead

of attempting to minimizing energy costs, and 2) the charging stations do not need to change

their business procedures to conform to the aggregator’s framework. This framework is based

on the following work:
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• Sarker, M. R.; Pandzic, H.; Sun, K., Ortega-Vazquez, M. A., ”Optimal Market Par-

ticipation of Aggregated Electric Vehicle Charging Stations Considering Uncertainty,”

in IEEE Transactions on Smart Grid, to be submitted August 2016

In the fifth proposed framework, the issue of EV infrastructure is tackled. An operating

and business model is developed for a BSS. This BSS resembles a traditional gasoline station,

where consumers arrive at the station with their depleted batteries and receive a fully charged

battery in return. The BSS has a stock of EV batteries which must be scheduled to be ready

for incoming customers that require a swap. The outcome of the operating model is a bidding

and offering strategy to participate in the wholesale energy market in order to generate

revenue. The deployment of BSSs can reduce issues of range anxiety and slow charging times,

since consumer’s can do a swap with a fully charged battery. Overall, this proposed BSS

framework is a viable alternative to charging for EV owners and also introduces a business

entity in the power system that extracts services from EV batteries. This framework is based

on the following work:

• Sarker, M. R.; Pandzic, H.; Ortega-Vazquez, M.A., “Optimal Operation and Services

Scheduling for an Electric Vehicle Battery Swapping Station,” IEEE Transactions on

Power Systems, vol. 30, no. 2, pp. 901-910, March 2015

In all of these frameworks, the common element is battery energy storage systems, either

mobile such as equipped in EVs or stationary. Improved operating models of such energy

storage systems can lead to additional revenue generation or even extended cycle-life. The

research on such systems, however, has typically been segregated into focus on the chemistry

and material properties and focus on the grid integration, operation, and economic perfor-

mance (such as done in the previous frameworks). This gap is notorious in both the research

community and in commercial usage of batteries; especially for grid applications where the

day-ahead market-based decision-making tools use simplified models that limit the opera-

tions of the battery because the batteries’ cycle-life degradation and charging/discharging
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efficiencies are not properly characterized. The sixth proposed framework proposes a data-

driven methodology to characterize energy storage systems embedded into a decision-making

optimization model. Such data-driven approaches enable the major battery characteristics

along with grid economics to be co-optimized as a mixed integer linear program, which ben-

efits from low computational burden and optimality. This proposed framework improves the

operations of energy storage systems for additional revenue generation for both EVs and

stationary applications. This framework is based on the following work:

• Sarker, M. R.; Murbach, M. D.; Schwartz, D. T., Ortega-Vazquez, M. A., ”Optimal

Energy Storage Management System: Trade-off between Grid Economics and Health,”

in IEEE Transactions on Smart Grid, to be submitted August 2016

In general, these approaches target several problems, such as offsetting the upfront costs

of owning an EV, slow charging times, public infrastructure, and range anxiety. By providing

solutions to these issues, it may assist the increased adoption of EVs. In addition, from a

business standpoint, the proposed frameworks introduce new players in the market, e.g. an

aggregator, whose roles are to essentially manage the day-to-day operations of large fleets of

controllable loads, e.g. EVs. These frameworks are organized and presented as described in

the following subsection.

1.5 Outline of the dissertation

Chapter 2: Optimal Coordination and Scheduling of Demand Response of Resi-

dential Consumer Loads

In Chapter 2, the first proposed framework is developed and results are shared. The

mixed-integer linear program (MILP) is developed for both the consumer and the aggrega-

tor. The consumer attempts to minimize costs, while the aggregator attempts to maximize

profit. The framework includes two stages, where in the first, the consumers provide their

optimal schedule of loads, and if overloads are present, the aggregator initiates the second
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stage where incentives are used. Results are shown on the effectiveness of incentives to mit-

igate overloads on distribution feeder lines.

Chapter 3: Co-optimization of Distribution Transformer Aging and Energy Ar-

bitrage using Electric Vehicles

In Chapter 3, the second proposed framework is developed. An optimization model is

developed for an aggregator co-optimizing the tradeoff between EV charging/discharging be-

havior and distribution transformer aging. Results are presented on the model’s effectiveness

in managing many EVs connected to a distribution transformer, while in some cases even

increasing the potential lifetime.

Chapter 4: Optimal Participation of an Electric Vehicle Aggregator in Day-

Ahead Energy and Reserve Markets

In Chapter 4, the third proposed framework is developed. The optimization problem is

developed for an aggregator managing a large fleet of EVs. The model considers the power

market structures for the energy and regulation market. The model is flexible to be applied

to any market. The model considers the trade-off of participating in the energy verses the

regulation market, while considering battery degradation. Results are presented on the rev-

enue potential for the aggregator.

Chapter 5: Optimal Market Participation of Aggregated Electric Vehicle Charg-

ing Stations Considering Uncertainty

In Chapter 5, a framework is developed for an aggregator to manage an ensemble of

electric vehicle charging stations. The framework includes the business case for the aggre-

gator along with the day-to-day bidding/offering model in the wholesale electricity markets.

Results are shown on the revenue potential of the aggregator along with the benefits of

managing uncertainty in the electricity market prices and the aggregated charging station

demand, which are both highly volatile.
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Chapter 6: Optimal Operation and Services Scheduling for an Electric Vehicle

Battery Swapping Station

In Chapter 6, a framework is developed for the BSS. The framework includes the business

case for the BSS along with the day-to-day operating model. The discussions include the

benefits of the BSS to consumers and the power system. Results are shown on the revenue

potential of the BSS along with the benefits of managing uncertainty in the electricity market

prices and consumer swapping demand.

Chapter 7: Optimal Energy Storage Management System: Trade-off between

Grid Economics and Health

In Chapter 7, a data-driven methodology and optimization model is developed for ex-

ploiting battery-based energy storage systems at high power (high C-rate) outputs while

characterizing the effect on degradation and efficiencies. Results are shown on the potential

revenue benefits with such a model.

Chapter 8: Conclusion

In Chapter 8, conclusions are provided for this dissertation.
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Chapter 2

OPTIMAL COORDINATION AND SCHEDULING OF
DEMAND RESPONSE OF RESIDENTIAL CONSUMER

LOADS

2.1 Introduction

In this chapter, the motivation is to exploit the flexibility of controllable loads (e.g. see

Table 1.3) for DR and in reduce electricity bills of consumers [8]. To provide DR, how-

ever, consumers must be equipped with an EMS which schedules controllable loads while

communicating with grid entities. An EMS’s objective is to minimize the electricity bill of

consumers by scheduling loads, which include thermal loads such as an EWH, HVAC, REF,

and non-thermal loads such as washing machines (WM), dishwashers (DW), and EVs, as an

ensemble. However, the savings are highly dependent on the electricity tariff and examples

of flat, ToU, and RTP are shown in Figure 1.3. The EMS can exploit electricity tariffs by

optimizing the controllable loads to be scheduled to turn ON during the low-price periods

of the day. However, if the EMS of each individual consumer were to schedule against RTP

tariff then the majority of loads would activate at the lowest priced periods of the day. As

a solution, a hierarchical aggregator provides monetary incentives to invoke DR such that

overloads are mitigated.

As for the contributions, the developed framework uses a combination of RTP and in-

centives to minimize the cost of electricity for consumers while mitigating overloads on

distribution system lines. A decentralized approach is applied with price-based signals sent

downstream to consumers by a hierarchical agent, e.g. an aggregator, and demand-based

signals from EMS sent upstream to the aggregator. As response to the RTP, consumers are

then able to determine their base consumption profiles at the Pre-Scheduling (PS) stage and
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adjust their demand at the Re-Scheduling (RS) stage in response to additional signals, i.e.

incentives, sent by the aggregator. The aggregator must provide these incentives and at the

same time participate in the electricity markets to obtain its profits.

In the followings sections, the aggregator’s role and operations are discussed followed by

the consumers’.

2.2 Aggregator as an intermediary

With the RTP tariff structure, consumers can now schedule loads considering the actions

at the wholesale electricity markets. However, because electricity markets are not designed

to manage large numbers of small consumers, profit-seeking entities called aggregators are

expected to emerge and serve as intermediaries between these small consumers and the

wholesale markets [7, 17, 18]. The aggregator’s role is to communicate with the EMSs

to provide real-time updates of the electricity tariff and in return receive optimized load

schedules.

While consumers will save on their electricity bill by allowing their EMS schedule loads

under a specific tariff provided by the aggregator, the distribution power grid, e.g. distri-

bution feeders, could experience excessive loads that may lead to damage. This is the case

because each EMS attempts to minimize the total electricity cost incurred by the consumer

on a day-to-day basis. This results in many consumers’ loads to be scheduled at the lowest-

priced hours of the day (e.g. at 0300 hours under RTP in Figure 1.3), resulting in a stacking

effect. For example, all EVs under a distribution feeder will tend to schedule charging at the

lowest priced period.

2.2.0.1 Aggregator’s role

The aggregator supplies its consumers via distribution networks which usually have a radial

topology [59]. The functions of an aggregator can be performed by a utility company that

owns and operates the distribution network or by a separate commercial entity. If the

aggregator is the Distribution System Operator (DSO), it incurs all the costs associated
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with the use or abuse of the system. On the other hand, if it trades as a separate commercial

entity, it must compensate the DSO for all the costs resulting from its transactions with

consumers. These costs include the cost of repairing the damage caused by thermal overloads

on system components. However instead of incurring these costs, the aggregator can reward

responsive consumers that shift their load away from the overloaded periods with monetary

incentives.

2.3 Incentives for demand response (DR)

Incentives provided by the aggregator act as a mechanism to invoke DR in consumers in order

to keep the distribution system within its operating limits. To achieve this, the aggregator

offers time-dependent economic incentives βt,i, where t is an index to the set of time periods

T and i is an index to the set of incentives I. These incentives are offered to all consumers as

an adjustment on top of the electricity prices at time period t. Consumers are free to accept

or reject the incentives that they are offered. However, if a consumer responds positively

and is chosen by the aggregator, then an agreement between the parties is created. The

consumer then modifies its demand and receives the corresponding reward. For fairness, all

consumers must be allowed to respond and the incentives must be non-discriminatory.

As an example, consider two consumers where consumer 1 is more flexible than consumer

2. Both consumers will receive the same set of incentive parameters, which are [1, 5] $/MWh.

Consumer 1’s demand decrease to these incentives is [2, 3] kWh and consumer 2’s decrease

is [1, 2] kWh. Since the aggregator’s objective is to procure DR at the least-cost, it will

therefore use consumer 1’s service. Such analysis of DR procurement is performed by the

aggregator’s profit maximization model.

The next subsections discuss the framework in which the consumers minimize their cost of

electricity procurement, while the aggregator attempts to maximize its profits and maintain

the grid limits.
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Figure 2.1: Interactions between the aggregator and consumers

2.4 Framework

The framework developed for the optimal coordination and scheduling of DR of residential

consumers is shown in Figure 2.1. The figure shows the interactions of the consumer and

the aggregator at both, the PS and RS stages.

At the PS stage, the aggregator forecasts the next-day wholesale prices λh and determines

the base case demand profile of its consumers. This profile takes into account the consumers’

response to the time varying prices of electrical energy but not the additional incentives used

to deal with the constraints imposed by the distribution network. The PS stage has a time-
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Figure 2.2: Rolling window horizon

horizon of 24 hours, divided into 96 15-minute intervals (∆t). In the PS stage, the retail

tariff at period sent by the aggregator to all its consumers takes the form of Equation (2.1)

below:

πh = λh + λu + λph (2.1)

Where λh is the wholesale energy price, λu is the distribution system usage price, and λph is

the aggregator’s profit margin. In response to these prices, the automated energy managers of

the consumers optimize their anticipated load usage and submit their pre-scheduled demand

profile to the aggregator. The aggregator combines the profiles DPS
h,f,c of all the consumers c

located at distribution node f . Potential overloads in the system are then identified using

these aggregated PS profiles. If overloads are expected, then the RS stage is required. The RS

stage considers a rolling window from h = [t, |T |+ t−1] [73], as illustrated in Figure 2.2. For

example, at period t = 10 the optimization would occur from h = [10, 96 + 101] = [10, 105].

In each rolling window, incentives are issued only for the current period of the horizon, thus

allowing the aggregator and the consumers to be proactive and to maximize their respective

benefits. This is the case because the aggregator has the most accurate knowledge of the

consumer demand when optimizing at period t as opposed to the future periods where they

may change their consumption, e.g. late arrival of the EV.

The aggregator sends to the consumers the time-varying prices πh and the incentive set

βt,i. Consumers calculate what their optimally adjusted demand profile DRS
h,f,c,i would be for

each βt,i. This profile represents each consumer’s ability to respond to a given incentive over

the rolling window. The consumer performs their optimization for the number of incentives

the aggregator chooses to offer, e.g. |I| = 6 requires 6 independent optimizations from the

consumers. Using these individual profiles the aggregator selects within the pre-defined set
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the optimal βt,i for each consumer that will meet its adjusted demand without violating

network limits. The aggregator performs its optimization only once in each time period.

The RS stage thus yields an agreement on price and quantities between each consumer and

the aggregator. The quantities agreed with each consumer are such that violations of system

operating limits are mitigated.

From the aggregator’s perspective, the prices include the DR incentives needed to achieve

this goal and at the same time, they reflect each consumer’s optimal balance between comfort

and cost. This approach is a non-iterative decentralized algorithm, which has a guaranteed

solution if consumers are participating in DR. By avoiding iterations, the communication

between the aggregator and consumers is minimal and potential nonconvergent processes

are avoided.

2.4.1 Example: consumer’s response to incentives

The consumers’ response to an incentive at period t shifts the energy from this period to

later periods. This is known as the rebound effect. Figure 2.3 shows a consumer’s response

to incentives at period t = 6, in which the controllable loads shifts to periods t = 8 and

9. Figure 2.3 also shows that different incentives, e.g. β1 and β2, yield a different profile

DRS
h,f,c,i, which the aggregator considers when mitigating overloads. However, the incentives

the aggregator needs to offer at the RS stage in order to motivate consumers to shift their

demand and mitigate all the overloads must be based on sound economic principles, i.e.

supply and demand curves [89].

2.5 Procurement of DR: supply-demand economic principles

The procurement of DR by the aggregator are base on supply-demand principles. Since the

aggregator requires DR, it can be seen as the demand-side. Whereas, the consumers provide

DR and thus are the supply side. The crossing of the supply and demand curves equates to

the equilibrium price at which the DR is priced at. A theoretical diagram of this is depicted

in Figure 2.4. Figure 2.4 illustrates how the supply and the demand are balanced on a specific
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Figure 2.3: Example of a single consumer’s response to incentives βi at t = 6.

Figure 2.4: Non-overload case in (a) and the overload case in (b).

distribution feeder at a particular period. It also shows the process the aggregator performs

in its optimization to determine which consumer’s offers are accepted and the amount of DR.

For simplicity in Figure 2.4, the time index has been dropped from the incentives βi and

the real-time prices πh. The ability of each consumer to supply DR is calculated by taking

the difference between DPS
h,f,c and DRS

h,f,c,i. These values are then aggregated to obtain the

cumulative stepwise curve (dashed line in Figure 2.4) representing the DR supply curve. The

stepwise price function in Figure 2.4 is the sum of the retail RTP π, which is fixed from the

PS stage, and the incentives βi for each step.

Each step in this curve represents the total demand response offered by the consumers

to a specific incentive, which the aggregator can use to mitigate overloads, if economical. If,
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based on the consumer demand profiles at the PS stage, the aggregator determines that the

feeder will be overloaded, it calculates its demand response requirement (DRR). The DRR

thus represents the reduction in consumer demand required to bring the flow on the feeder

within its line capacity (LC) limit.

Figure 2.4a shows a case where the aggregator’s DRR = 0 because the LC limit is not

violated. There is thus no need for the aggregator to offer any incentive, and the profiles

agreed upon at the PS stage at price π are used with no gain or loss in revenue. In the

case shown in Figure 4b, the consumers’ response to retail price π results in the LC limit

being violated. The aggregator therefore needs a DRR > 0 and consumer demand reduction

is required. With the stepwise function, the aggregator may accept offers at different βi

values for each consumer depending on their DR amount and location in the network. The

aggregator optimally determines the required incentive βi needed to obtain this DRR. The

accepted consumers then receive πupd = π + βi for the demand reduction, where π was

already agreed upon in the PS stage and is reimbursed and an additional βi is given for the

reduction. The total amount that the aggregator has to pay to the consumers to avoid an

overload is shown in gray in Figure 2.4b.

There may be cases where a large incentive is required to obtain consumer response.

In some extreme cases, the DRR of the aggregator and the customers’ supply may not

intersect. In the former case, the aggregator incurs a very large cost to obtain DR from

the consumers while in the latter, it incurs damage costs to the distribution system assets.

Regular occurrence of such cases provide a basis for investment in upgrading the distribution

network so that it can handle the increased demand.

The following subsections explain the optimization model of the aggregator that incor-

porates the discussed theories.
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2.6 Aggregator Model

2.6.1 Re-scheduling (RS) stage optimization

The aggregator’s RS optimization determines which consumers need to be incentivized to re-

move overloads stemming from the PS stage schedule. Mathematically, this RS optimization

is formulated as follows:

max ∆t

|T |+t−1
∑

h=t

∑

(f∈B)

∑

(c∈C)

∑

(i∈I)

(πh + βt,i)(D
RS
h,f,c,i −DPS

h,f,c) · ηf,c,i −∆t

|T |+t−1
∑

h=t

λh · p
market
h (2.2)

The first term in the objective function (2.2) represents the amount collected (if positive)

or paid (if negative) by the aggregator. If the first term is negative, it indicates that a

payment was made to consumers at period t because incentives were needed. On the other

hand, if the term is positive the demand is reduced at period t, but a rebound is expected in

subsequent periods and will result in revenue for the aggregator (see Figure 2.3). Changes in

demand between the RS and the PS are calculated using the binary variable nf,c,i ∈ {0, 1}.

This binary variable determines the optimal incentive demand profile DRS
h,f,c,i to be agreed

upon with each consumer. βt,i depends on which demand response profile is chosen. However,

βt,i is only given for the current period t of the horizon. Therefore, βh,i = 0 for h > t. The

last term represents the profit or loss resulting from purchasing or selling electricity pmarket
h

in the wholesale electricity market.

The optimization is subject to the energy balance constraint (2.3) which determines the

amount of energy to be purchased or sold in the wholesale electricity market and includes

the network losses.

pmarket
h =

∑

(f∈B)

∑

(c∈C)

∑

(i∈I)

(DRS
h,f,c,i −DPS

h,f,c) · ηf,c,i +
∑

(f,g)∈B

Rfgℓh,f,g ∀h ∈ [t, |T |+ t− 1] (2.3)

In the power balance constraint, however, the aggregator must choose a single RS profile

to be used for each consumer. This is managed in constraint (2.4) as shown below.

∑

(i∈I)

nf,c,i = 1 ∀f ∈ B, c ∈ C (2.4)
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In the next set of constraints, the power flows in the distribution network are modelled

[60]. Constraint (2.5) ensures the distribution lines are operating within their limits. This

constraint, however, is non-linear and is linearized via the special-ordered-sets-of-type 2

(SOS2) technique [123], further discussed in Appendix B.1.

ℓh,f,g ≥
(pflowh,f,g)

2 + (qflowh,f,g)
2

eh,f
∀h ∈ [t, |T |+ t− 1], (f, g) ∈ B (2.5)

The next two constraints (2.6 and 2.7) calculate the real and reactive power flows in each

distribution line. The real and reactive power, pflowh,f,g and qflowh,f,g, have a power factor of κ and

are used to calculate the current ℓh,f,g and the voltage eh,f , taking the resistance Rf,g and

reactance Xf,g of each line into account.

pflowh,f,g =
∑

(j∈B)

pflowh,g,j +Rf,gℓh,f,g + κ
∑

(c∈C)

∑

(i∈I)

DRS
h,g,c,ing,c,i ∀h ∈ [t, |T |+ t− 1], (f, g) ∈ B

(2.6)

qflowh,f,g =
∑

(j∈B)

qflowh,g,j +Xf,gℓh,f,g + (1− κ)
∑

(c∈C)

∑

(i∈I)

DRS
h,g,c,ing,c,i ∀h ∈ [t, |T |+ t− 1], (f, g) ∈ B

(2.7)

Each distribution node has an associated voltage which depends on the real and reactive

power flow. This is calculated by constraint (2.8), as shown below.

eh,f − eh,g = 2
(

Rf,g · p
flow
h,f,g +Xf,g · q

flow
h,f,g

)

−
(

R2
f,g +Q2

f,g

)

ℓh,f,g ∀h ∈ [t, |T |+ t− 1], (f, g) ∈ B

(2.8)

In addition, to ensure the distribution grid is operating within limits, the voltage and

current must be bounded. This is done with equation (2.9) for the voltage at each node and

with equation (2.10) for the current through each line.

ef ≤ eh,f ≤ ēf ∀h ∈ [t, |T |+ t− 1], f ∈ B (2.9)

0 ≤ ℓh,f,g ≤
LCf,g

√

R2
f,g +Q2

f,g

∀h ∈ [t, |T |+ t− 1], (f, g) ∈ B (2.10)
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2.7 Consumer Model

Consumers’ EMS incorporates a cost-minimization model that incorporates specific needs

of each load in the home, e.g. comfort requirements, and EV availability. Apart from the

controllable loads, the house also has non-controllable, e.g. lighting, which are consumer

controlled and modelled as fixed demands. Table 1.3 shows the appliance loads considered

in this framework. The objective of the consumer is to minimize the total cost and it has

two stages, the PS and RS stage.

2.7.1 Consumer pre-scheduling (PS) stage model

The consumer’s PS optimization takes place after the forecasted retail prices τh from the

aggregator are sent to the consumers and is used to determine the appliance schedule for the

next day, which runs from h = 1 to h = |T |. The objective function (2.11) seeks to minimize

the total energy costs and shown below:

min ∆t
∑

(h∈T )

πh



P base
h +

∑

(a∈A)

Pa

δa,h
ALa

+
∑

(v∈V )

(pchgv,h − ηdsgv pdsgv,h)



 (2.11)

The objective function of the consumer is subject to the following constraints:

0 ≤ δa,h ≤ ALa ∀h ∈ T, a ∈ A (2.12)

∑

(a∈A)

Pa

δa,h
ALa

+
∑

(v∈V )

(pchgv,h + ηdsgv pdsgv,h) ≤ Pmains ∀h ∈ T (2.13)

In equations (2.11) and (2.13), Pa is the maximum power consumption of appliance a

in the set of appliances A, pchgv,h and pdsgv,h are the charge/discharge powers of EV v in the

set of EVs V of each household, and P base
h is the total base load power, e.g. lighting. The

appliances have an integer number of operating states ALa, which allow the appliances to

be used in a derated manner (e.g. at 50% rather than 100% of rating). The integer decision

variable δa,h for each appliance must remain at or below the number of operating states

ALa as shown in constraint (2.12). Constraint (2.13) ensures that the household power limit
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Pmains is not violated. This model is subject to the appliance constraints presented in later

subsections.

The RS stage model is similar to the PS stage model and is discussed in the following

section.

2.7.2 Consumer re-scheduling (RS) stage model

At the RS stage, consumers can make adjustments to their PS profile for h = [t, |T |+ t− 1]

in response to the incentives provided by the aggregator. Equation (2.14) implements these

adjustments, where p↑ and p↓ represent increase and decrease in the power consumed by each

load. The increase and decrease adjustment in power depend on the PS stage load profiles

UPS and are calculated in constraint (2.16) for the appliances and constraint (2.17) for the

EVs. The loads interrupted due to accepted incentives must be enabled in a future period

to maintain comfort requirements. This is also considered in constraints (2.16) and (2.17).

min ∆t

|T |+t−1
∑

h=t

(πh + βt,i)





∑

(a∈A)

(p↑a,h − p↓a,h) +
∑

(v∈V )

(p↑v,h − p↓v,h)



 (2.14)

subject to:

Constraints (2.12) and (2.13) (2.15)

Pa

δa,h
ALa

− p↑a,h + p↓a,h = UPS
a,h ∀a ∈ A, h ∈ T (2.16)

(pchgv,h − ηdsgv pdsgv,h)− p↑v,h + p↓v,h = UPS
v,h ∀v ∈ V, h ∈ T (2.17)

This model is also subject to appliance constraints presented in the next subsections.

2.8 Appliance Models

2.8.1 Electric vehicle (EV)

The EVs are modeled as storage devices that can charge their batteries from the grid in G2V

mode, inject power to the household in Vehicle-to-Home (V2H) mode, or inject power back
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to the grid in V2G mode. In order to know when an EV can perform these functions, its

availability αv,h must be declared upfront as well as its trip schedule Sv,h.

As EVs charge and discharge, the batteries energy-state-of-charge (eSOC) varies. The

eSOC indicates the amount of energy present at a given time h in the battery. Equation

(2.18) calculates the eSOC in the battery at each time period h which is a function of its

state-of-charge in the previous period, the charge/discharge powers pchgv,h and pdsgv,h , the charging

efficiency ηchgv , and the total energy required for motion ξv

socEVv,h = socEVv,h−1 + pchgv,hη
chg
v ∆t− pdsgv,h∆t− ξv

Sv,h
∑

h Sv,h

∀h ∈ T, v ∈ V (2.18)

The eSOC, socEVv,h , also must be within its maximum to avoid the risk of setting the

battery on fire, and a minimum to avoid rapid degradation, as shown below:

socEVv,h ≤ socEVv,h ≤ socEVv,h ∀h ∈ T, v ∈ V (2.19)

Furthermore, constraints (2.20) and (2.21) limit the power at cmax
v for charging/discharging

with the EV availability αv,h.

0 ≤ pchgv,h ≤ αv,h · c
max
v ∀h ∈ T, v ∈ V (2.20)

0 ≤ pdsgv,h ≤ αv,h · c
max
v ∀h ∈ T, v ∈ V (2.21)

2.8.2 Electric water heater (EWH)

Each consumer’s EMS predicts the need for hot water Hh (gal) for the next day based on

historical average usage. The model considers the heat rate Q, thermal resistance R, and

heat capacity C of EWHs.

Constraint (2.22) determines the water temperature φwater
h (°C) with the status of the

appliance δa,h. Constraint (2.23) calculates the temperature in the EWH tank, where G

(gal) is the tank capacity and φout
h is the outdoor ambient temperature. Constraint (2.24)



39

ensures the water temperature remains within bounds.

φwater
h = φtank

h +
δewh,h

ALewh

QR −

(

φtank
h +

δewh,h

ALewh

QR − φwater
h−1

)

e
−∆t
RC ∀h ∈ T (2.22)

φtank
h =

φwater
h (G−Hh)− φout

h Hh

G
∀h ∈ T (2.23)

φwater ≤ φwater
h ≤ φ

water
∀h ∈ T (2.24)

2.8.3 Heating ventilation and air conditioning (HVAC)

The HVAC system uses the thermal mass inside the house to pre-heat or pre-cool during

low-price periods, while keeping the temperature within acceptable bounds φroom and φ
room

set by the consumer as shown in (2.25). Constraint (2.26) updates the room temperature

where Q, R, and C are the thermal parameters of the house. While the definition of Q, R,

and C for the HVAC and EWH is the same, the parameter values are different.

φroom
h = φout

h +
δhvac,h
ALhvac

QR −

(

φout
h +

δhvac,h
ALhvac

QR − φroom
h−1

)

e
−∆t
RC ∀h ∈ T (2.25)

φroom ≤ φroom
h ≤ φ

room
∀h ∈ T (2.26)

2.8.4 Refrigerator (REF)

Shifting refrigeration load in time provides minimal discomfort to consumers if the temper-

ature inside the refrigerator remains within bounds as shown in (2.28). Constraint (2.27)

calculates the temperature φref
h , where ψ = e

−∆t·TI
TM , TI is the thermal insulation, TM is the

thermal mass, ηref is the efficiency, and P comp is the compressor power.

φref
h = ψ

(

φref
h−1 − φroom

h

)

+ φroom
h −

δref,h
ALref

(1− ψ)
ηrefP comp

TI
∀h ∈ T (2.27)

φref ≤ φref
h ≤ φ

ref
∀h ∈ T (2.28)

2.8.5 Dishwasher, washing machine, and dryer

These types of loads are in the category of non-interruptible and deferrable loads. Constraint

(2.29) ensures that their operation is within the time range specified by the consumer TRd,h,
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where d is the index of the subset of the appliance set A. Constraint (2.30) ensures that

operation is not interrupted once it has begun. Constraint (2.31) ensures the operation of

the appliance is equal to its cycle time CTd.

δd,h ≤ TRd,h ∀h ∈ T, d ∈ A (2.29)

t+Hd
∑

z=t+1

δd,z ≥ CTd · (δd,h+1 − δd,h) ∀h ∈ T, d ∈ A (2.30)

∑

(h∈T )

δd,h = CTd ∀d ∈ A (2.31)

2.9 Simulation Results

100 consumers with varying EV driving patterns were simulated using the 2009 NHTS data

[124]. Each consumer has all the appliances described above and one EV. Typical curves for

market prices λh and outdoor temperatures are based on PJM data [125], for every Thursday

during January-March 2013. Thursday was chosen in order to show the impact on a typical

weekday. The retail RTP πh was calculated using equation (1), where λu = 20 $/MWh and

the profit margin λph = 0.1 · λh. 50 consumers were placed on each of the last two nodes of

the IEEE 4-node distribution network [126]. Each consumer is allocated 15 kW as its mains

power limit. The line limits of the distribution system were reduced and only one phase

of the network was considered. Since all the power flows through the substation feeder to

reach the consumers, this line will overload if the EV penetration increases. The feeder line

capacity LC was set at 600 kVA.

The nominal eSoC of the EV batteries is 24 kWh. The eSoC, however, can range only

between a minimum of 15% and a maximum of 95% of the nominal eSoC [127]. The charging

and discharging power is 3.3 kW, the initial eSoC of the EVs are randomized, and the round

trip charging/discharging efficiency is assumed to be 90% [85]. The thermal parameters

and temperature bounds of the appliances were randomized and each appliance was given

two levels of operation (50% and 100%). The EWH, HVAC, and REF power are uniformly

randomized between [3.5 4.0], [2.5 4.0], and [0.20 0.40] kW, respectively. Consumers have



41

0 4 8 12 16 20 24
0

40

80

120

160

200

240

E
V

 d
is

ch
ar

g
e 

(k
W

)

Time (h)
  (a)

 

 

50

55

60

65

70

P
ri

ce
 (

$
/M

W
h
)

V2H V2G τh

0 4 8 12 16 20 24
0

40

80

120

160

200

240

E
V

 d
is

ch
ar

g
e 

(k
W

)

Time (h)
  (b)

 

 

50

55

60

65

70

P
ri

ce
 (

$
/M

W
h
)

V2H V2G τh

Figure 2.5: EV discharge power in V2H and V2G for (a) RTP and (b) ToU tariff.

randomized dishwasher, washing machine, and dryer schedules each with a rating of 1.0 kW.

The base load varies within the range [50 200] W and is randomized for each consumer. The

EWH water usage was forecasted as explained in [128] considering the number of members

in the household and their age. The power factor is 0.9.

The approach described in [129] is used to calculate the thermal overloads if the line

capacity limit is violated, which then is used to obtain the percentage loss of tensile-strength,

Wt,f,g [130]. In general, lines require repair when their tensile-strength drops below 85% of

the nominal [131]. The value of the line maintenance cost LMCf,g is assumed to be $100,000

[59]. Based on this observation, equation (2.32) defines the potential damage cost DCt,f,g as

a percentage of LMCf,g if incentives are not used:

DCt,f,g = LMCf,g ·Wt,f,g (2.32)

With these case study parameters, several simulations were performed and their results

are discussed below.

2.9.1 Impact of tariffs at the PS stage

Tariffs influence how each consumer’s EMS schedules loads. Flat, ToU, and RTP tariffs are

considered to investigate the consumers’ response to each and to determine which would
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Figure 2.6: Total demand profile in PS with one EV per household on (a) ToU with EMS,

and (b) RTP with EMS.

require incentives to avoid overloads. The EV penetration is assumed to be 100%. Figures

2.5a and 2.5b show V2H and V2G power under RTP and ToU, respectively. Buying excess

energy to discharge and sell later in V2G/V2H mode does not make sense under a flat tariff

because prices are the same during all periods. The EVs enable consumers to sell excess

energy in V2G after supplying household loads in V2H. The RTP schedules a larger portion

of discharge power in V2G mode as compared to V2H, thus selling energy to the aggregator.

With ToU (off-peak: 0000 to 0715, 2145 to 2400 hours at 54.1 $/MWh and peak: 0730 to 2130

hours at 65.1 $/MWh), the majority of the discharge is in V2H mode. The total discharge

under RTP and ToU are 1248.8 and 872.9 kWh, respectively. The RTP incorporates multiple

low and high price periods where the EMS can exploit EVs, whereas ToU has limited price

blocks. The RTP tariff thus provides larger benefits with regards to the EVs.

Figure 2.6 shows the consumers’ EMS response to ToU and RTP. Here again, consumers

have no incentive to schedule their loads under a flat tariff. This results in a larger demand
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during peak-hours. In addition, the consumers’ response to a flat tariff is the worst-case

scenario. With a flat tariff of 59.6 $/MWh (average of the retail RTP πh), the total PS stage

energy costs for all consumers is $271.5 with a line damage cost of $154.0. With the ToU

tariff, the energy cost decreases to $169.0 with a line damage cost of $128.20. However, under

the RTP tariff, the energy cost is $150.4 with the smallest line damage cost of $120.33. The

RTP tariff provides the most benefits to consumers and the aggregator, because the former

pays the least for energy and the latter incurs the least damage cost for overloads. However,

the RTP case in Figure 2.6b exceeds the line limits thus requires the use of incentives in

order to avoid the damage costs.

2.9.2 Mitigating line overloads with incentives at the RS stage

Figure 2.7 illustrates the benefits of using incentives at the RS stage to remove overloads

under RTP for different levels of EV penetration. Consumers are assumed to have an EMS

that can receive and act on the basis of RTPs and incentives. The set of incentives offered

to consumers consists of [0, 1, 2, 5, 10, 30] $/MWh.

Figure 2.7 shows the incentives the aggregator offers to the consumers are sufficient to

reduce the demand below LC at each period. The rebound effect causes the demand to

increase at later periods to ensure the desired level of comfort is maintained. With lower

EV penetrations, e.g. 30% in Figure 2.7a, enough capacity is available during off-peak

periods to handle this rebound without adverse effects. As EV penetration increases, more

costly incentives are required to mitigate overloads. For example, in the case of 100% EV

penetration in Figure 2.7c, the available capacity is small and the amount of overload is large.

When the initial incentives are given, the potential overloads are mitigated but create new

overloads during subsequent periods. To correct these new overloads, the aggregator has to

offer further incentives. For instance, the incentive given at 0230 in Figure 2.7c eliminates

an overload but this shifts the demand to a later period causing a new overload and the need

for more costly incentives.

Figure 2.8a shows the potential damage cost under the RTP tariff if incentives are not
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Figure 2.7: (a) 30%, (b) 60%, (c) 100% penetration showing demand in PS (black), and after

incentives are used in RS (red).

offered. In Fig 2.8a, at 100% EV penetration, the line overloads are high resulting in high

potential damage costs compared to the 30% and 60% penetration levels. If there are no

overloads, then the damage cost is zero as is the case for hour 16:00 with penetrations

of 30% and 60% EVs. As an alternative to paying the damage costs, the aggregator can

reward consumers with incentives. The total incentive cost at 30%, 60%, and 100% EV

penetration from Figure 2.7 are $0.39, $0.71, and $0.85, respectively. If the aggregator does

not use incentives to motivate consumers to shift their energy consumption, then the incurred
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Figure 2.8: (a) Damage cost for overloaded periods under RTP and (b) frequency of incentives

paid.

potential damage costs are much higher than the total rewards given to consumers. However,

in the long run since incentives decrease aggregator profits and increase operating costs, the

retail price of energy will increase for consumers.

The aggregator must also analyze whether the set of incentives that it offers to the con-

sumers are effective in motivating DR. Figure 2.8b shows that, at larger EV penetration levels

(e.g. 100%), incentives are not only more frequent but also larger (e.g. 30 $/MWh). Deal-

ing with larger overloads requires the participation of less flexible consumers, who demand

larger incentives. From Figure 2.8b, it can be seen that large incentives are infrequently

given to consumers. However, if given frequently, it indicates inflexible consumers which

either have limited interest in participating in DR or have strict comfort requirements. If

this case persists over time, the distribution system may require reinforcement due to a lack

of DR at an economic value to the aggregator. On the other hand, the high frequency of

smaller incentives, e.g. 1 $/MWh, shown in Figure 7b shows that consumers are participat-

ing at an economic value to the aggregator. Over time as the aggregator learns about its

consumer-base, it will determine a tighter range of incentives that yields enough response to

remove the overloads at each period.
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The proposed approach can also be implemented for infrequent situations, e.g. sporting

events, when a large fleet of EVs may require energy for transportation. The only requirement

will be a management entity, e.g. stadium, capable of providing their consumption and DR

schedule to the aggregator to use in mitigating overloads. In addition, another extreme case

includes when the number of EVs increases for a temporary period of time, e.g. visitors

from neighboring areas. Even though the current area, for example, may have a low EV

penetration (30%), the visiting EVs resemble the impact on the demand at 60% or even

potentially higher levels, which as shown in Figure 2.8 can be managed effectively.

2.9.3 Distribution system avoided costs

Consumers’ participation in DR requires investments in smart-grid technologies. This section

examines how much investment is justified and determines the point where the rate of DR

participation becomes too high and causes overloads during periods of low prices. It is

assumed DR participants have an EMS capable of receiving RTPs and incentives. The

tensile-strength loss Wt,f,g of the feeder is determined for the worst-case demand scenario

where all consumers respond to a flat tariff on a daily basis. The number of days needed to

reduce the tensile strength to the minimum of 85% is then calculated. If demand is shifted

from peak price hours to off-peak hours using DR, there will be fewer overloads and the

number of days before the line must be replaced will increase.

Present-Value (PV) analysis is performed to determine the current investments in order

to delay or avoid repair costs. In the analysis, one p.u. cost is accrued by the aggregator at

a future day when the strength of the line reaches 85% due to overloads. An interest rate of

5% compounded monthly is used in the PV analysis [131]. Figures 2.9a, 2.9c and 2.9e show

the effect of 30%, 60%, and 100% EV penetrations on the number of days during which the

feeder line can withstand increased loading until it must be replaced. The present values

of investments are shown in Figures 2.9b, 2.9d and 2.9f for these same EV penetrations.

For example, at 0% consumer participation in DR and 30% EV penetration (Figure 2.9a),

overloads could be withstood for 600 days. This line will therefore have to be replaced after
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Figure 2.9: Withstand time for 30%, 60%, and 100% EV penetration in (a), (c), and (e),

respectively. PV investment for 30%, 60%, and 100% EV penetration in (b), (d), and (f),

respectively.

600 days at a cost of 1 p.u. However, 1 p.u. in 600 days is equivalent to a PV of 0.93 as

shown in Figure 2.9b. This amount can be invested in consumer participation to avoid the

lump-sum cost of replacing the line.

The worst-case situation includes consumers charging their EVs as soon as they arrive

in their homes, which is represented by 0% consumer participation in DR. As the EV pen-

etration increases at this DR participation level, the withstand time of the feeder decreases

due to non-optimal charging, as shown in Figures 2.9a, 2.9c, and 2.9e. Lower withstand
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Figure 2.10: Optimal consumer participation in DR until incentives are required.

times justify larger investments in DR. As the participation in DR increases (e.g. from 0%

to 10%), the withstand time of the feeder increases and the justifiable present value of in-

vestments decreases. This occurs because more consumers are shifting their consumption

from high-price to low-price hours, thus mitigating the overloads.

Figure 2.9 also shows how limiting the EV modes of operation affects the amount of

investments that can be justified. In G2V, EVs are limited to charging only. In G2V/V2H,

EVs can discharge and supply loads in the home. In G2V/V2H/V2G, any excess energy after

supplying loads can be sold back to the system. V2H and V2G aid the system by decreasing

the amount of power flowing through the feeder. Comparing G2V and G2V/V2H modes

in Figure 2.9 shows V2H results in only a slight increase in withstand time and decrease

in justifiable investments. This is the case because V2H occurs during high-price periods.

However, RTP tariff decreases consumption during these high-price periods and limits the

power that could be injected in V2H. On the other hand, G2V/V2H/V2G modes create

larger benefits. With V2G, EVs discharge during high-price periods and the power is used

to supply other consumers in the system, including those that are not participating in DR.

The G2V/V2H/V2G mode thus result in the largest withstand times and the least justifiable

investments for all EV penetration levels.

Figure 2.10 shows that all EV penetration levels have an optimal DR participation level.

Lower values of optimal DR participation are beneficial because they require smaller invest-

ments. The G2V/V2H/V2G mode requires the least consumer participation because of the
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benefit of V2G. Since the demand is shifted to lower price hours, an increase in consumer

participation in DR above the optimal level may cause overloads and require incentives.

2.10 Conclusion

This chapter presents a methodology to exploit flexibility of household appliances and EVs

to manage the operation of the distribution grid. In the approach, an aggregating entity

seeks to maximize profits, while consumers seek to minimize costs of purchasing electricity

under time-varying tariffs. In addition to day-ahead tariffs, the aggregating entity offers

incentives to relieve overloads in the system. Enabling the demand-side to participate in

daily operations has several advantages, not only in avoiding overloads in the operating time

frame, but also in the long run by avoiding or deferring investments in the grid.

The use of incentives in this framework is not purely limited to maintaining distribution

line limits. Other applications are:

• Voltage stability - EVs can moderate their charging/discharging to maintain the voltage

at a node.

• Frequency regulation - similar to voltage stability, EVs can receive frequency signals

and modulate charging accordingly.

• Wholesale Power Markets - an aggregator can control the charging/discharge of EVs

to obtain revenue from wholesale markets and a portion of this revenue can be passed

on to consumers.

• Damage mitigation - EVs can moderate their charging/discharging to minimize damage

to assets, e.g. distribution transformers.

In the next chapter, a framework is developed in which an aggregator manages charg-

ing/discharging of EVs connected to distribution transformers to ensure the loss-of-life of the

transformer is minimized, while at the same time, the EVs arbitrage revenue is maximized.

The next chapter’s framework, where EVs should be rewarded for their participation, is an

ideal application for the incentive mechanism developed in this chapter.
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Chapter 3

CO-OPTIMIZATION OF DISTRIBUTION TRANSFORMER

AGING AND ENERGY ARBITRAGE USING ELECTRIC
VEHICLES

3.1 Introduction

In Chapter 2, a framework was developed on how an aggregator can incentivize consumers

to shift their power consumption in time to maintain the power grid. Such a framework

can also be applied to controlling EV charging and discharging to maintain grid assets, e.g.

pole-top distribution transformers.

The advent of EVs will bring forth increases in power transmitted over the distribu-

tion power grid. Since it is expected for consumers to mostly charge EVs at their homes

[42], the major impact will be on the local pole-top distribution transformers. This impact

would translate into accelerated aging of the transformers [132] and earlier replacement to

accommodate the additional power peaks required by the EVs’ load.

This chapter proposes a centralized strategy of co-optimizing transformer loss-of-life with

EV charging and discharging in order to minimize the total cost of operations. The consumers

allow a management entity, e.g. an aggregator, to perform the scheduling of their EVs. The

management entity seeks to minimize the energy procurement costs of its consumers by

taking advantage of their price tariff to schedule charging (G2V) and energy arbitrage (V2G

or V2H), and to minimize the transformer damage due to EV charging, while ensuring

that EVs receive their required energy for transportation. With this, the aggregator obtains

revenue from the transformer owner for maintaining lifetime, and some portion of this revenue

must be given to consumers for their services. Through compensation, all parties can benefit

financially. Furthermore, a transformer life expectancy analysis is performed for strategies
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in which consumers independently manage their EVs (i.e. decentralized) and in which a

management aggregator takes control (i.e. centralized).

The major contributions of this work are as follows:

• Centralized co-optimization model of transformer aging and energy arbitrage of EVs.

• Analysis of the use of EVs in G2V, V2H, and V2G to maximize the lifetime of the

transformer under various levels of EV penetration.

• Methodology to analyze the costs/benefits of a transition from decentralized to cen-

tralized operational strategy for EV charging.

3.2 Transformer Model

The aging of transformers is dependent upon thermal effects from loading. The IEEE stan-

dard C57.911 [132] proposes a model for estimating the various transformer temperatures,

which are correlated with its aging factor and LoL.

In order to estimate the transformer windings’ hottest-spot temperature (HST), the fol-

lowing equation is used:

θHST
t = θAt +∆θTO

t +∆θHST
t ∀t ∈ T (3.1)

where θHST
t is the windings’ hottest-spot temperature, θAt is the ambient temperature,

∆θTO
t is the top-oil rise over the ambient temperature, and ∆θHST

t is the winding HST rise

over the top oil temperature, all for time period t in the set of all time periods T . From

(3.1), the value ∆θTO
t is calculated by:

∆θTO
t =(∆θTO,U

t −∆θTO
t−1)(1− e

−∆t

τTO )+∆θTO
t−1 ∀t ∈ T (3.2)

1Alternative approaches such as genetic algorithms [133] and methods based on experimental tests [57]
can also be used to estimate the transformer life.
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where ∆θTO,U
t is the ultimate top-oil rise over the ambient temperature, ∆t is the time

interval, and τTO is the top-oil time constant. In (3.2), the ∆θTO
t is dependent on the state

in the previous period.

The term ∆θHST
t in (3.1) is calculated with Equation (3.3), where ∆θHST,U

t is the ultimate

top-oil rise over the ambient temperature, and τw is the windings time constant. Note that

as in equation (3.2), the term ∆θHST
t is also dependent on its previous state.

∆θHST
t =(∆θHST,U

t −∆θHST
t−1 )(1− e

−∆t
τw )+∆θHST

t−1 ∀t ∈ T (3.3)

The equations that calculate ∆θTO,U
t and ∆θHST,U

t are shown in (3.4) and (3.5), respec-

tively.

∆θTO,U
t = ∆θTO,R ·

(

k2t · R + 1

R + 1

)n

∀t ∈ T (3.4)

∆θHST,U
t = ∆θHST,R · k2·mt ∀t ∈ T (3.5)

where ∆θTO,R is the top-oil rise over ambient at the rated load, ∆θHST,R is the hottest-

spot rise over top-oil at the rated load, kt is the ratio of the load on the transformer to its

nameplate rating, R is the ratio between the losses at rated load and at no load, and m and

n are the cooling parameters of the transformer. The ratio kt is defined as:

kt =
TX load

t

TXrating
∀t ∈ T (3.6)

where TX load
t is the load on the transformer in a certain period and TXrating is the name-

plate rating. It can be seen that as the load ratio kt increases, the transformer temperatures

vary based on Equations (3.1) to (3.5). Equation (3.7) relates the accelerated aging factor,

FAA
t , to the winding hottest-spot temperature, θHST

t .

FAA
t = exp

(

15000

383
−

15000

θHST
t + 273

)

∀t ∈ T (3.7)

The term FAA
t is the accelerated aging factor at a given temperature θHST

t . If FAA
t > 1

then the transformer is experiencing accelerated aging. With this factor, the LoL of the
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Figure 3.1: Loss-of-life as a function of the loading on the transformer for ∆t = 15 min.

Note that the y-axis is logarithmic.

transformer can be determined as shown in Equation (3.8) below:

LoLt =
FAA
t ·∆t

β
∀t ∈ T (3.8)

where β is the normal insulation life of the transformer. Note that according to IEEE

standard, a typical transformer must have a minimum normal insulation life (β) of 180,000

hours (20.5 years) [132].

With equations (3.1)-(3.8), the aging of the transformer can be estimated taking into con-

sideration loading, temperature, and characteristic parameters. For example, if a transformer

with parameters: m = 0.8, n = 0.9, R = 6, ∆θTO,R = 56◦C, ∆θHST,R = 80◦C, τTO = 90 min,

τw = 7 min; is loaded at 90%, where θAt = 24◦C, ∆θTO
t−1 = 25◦C, and ∆θHST

t−1 = 20◦C, for a

∆t of 15 minutes, the transformer would lose 75.5 minutes of its insulation life. As shown,

high loadings lead to accelerated aging of the transformer.

The effect of kt on the LoL is shown in Fig. 3.1. In addition, the aging factor FAA
t is

shown for certain kt ratios. The loading on the transformer increases exponentially the aging

factor and thus the LoL at high loadings. This thermal-based transformer model can be

embedded into an optimization framework.



54

3.3 Consumer Perspective

Consumers are assumed to reside in a household connected to the distribution system and to

purchase their electricity under a variable electricity tariff πt. Therefore it is expected that

the consumers will strive to minimize their electricity costs, by optimizing their consumption

under tariff πt. In general, consumers are not responsible for day-to-day wear and tear

of distribution system assets, especially local pole-top transformers. In some instances,

consumers pay a fixed cost per month for the usage of the distribution system [134]. The

distribution system operator (DSO), which in many cases is the same entity as the power

utility company, has the responsibility of installing and maintaining distribution assets in

order to provide electricity to its consumer-base.

Since the consumers are not responsible for the day-to-day damage of the transformer

they are connected to, their optimization problem only considers the management of their

assets (i.e. EVs). The consumers can manage their own EV charging and discharging by

installing an energy management system or smart charger in their home [7, 10]. Such a

management system can consider the electricity tariff, travel schedule of the EV, and other

factors to procure energy at the least cost on behalf of the consumer. In addition, the

management system may be able to take advantage of the EV battery to perform energy

arbitrage (e.g. V2G or V2H) if it provides further cost savings. In general, this method

is independent from the perspective of the power utility and does not require the use of a

management entity.

3.3.1 Decentralized strategy: consumer optimization model

The consumer’s goal is to minimize its electricity costs, therefore the objective function can

be written as:

min ∆t ·
∑

t∈T

∑

v∈V

πt ·
(

pchgt,v − ηdsgv · pdsgt,v

)

(3.9)

Where πt is the electricity tariff, ηdsgv is the discharging efficiency for EV v in the set of
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EVs V , and pchgt,v and pdsgt,v are the charging and discharging powers, respectively.

The objective function (3.9) is subject to several constraints. In constraint (3.10), the en-

ergy state-of-charge is a function of its previous state, charging efficiency ηchgv , power obtained

from the grid pchgt,v and injected to the grid pdsgt,v , total energy required for transportation ξv,

and the motion schedule St,v ∈ {0, 1}. The parameter ξv is calculated based on the expected

total miles that the EV v will travel and then multiplied by a conversion factor (kWh/miles)

to obtain the total energy needs. The parameter St,v = 1 if the EV is in motion in period t,

otherwise St,v = 0. Furthermore in (3.10), the energy for motion at period t is calculated as

ξv
St,v∑

(t∈T ) St,v
. For example, if an EV consumes 5 kWh for its trip and travels for a total of 5

time periods, then the EV consumes 1 kWh every time period t.

The actions of charging and discharging the EV, however, needs to be within the maxi-

mum power Pmax
v . Also, the EV can only charge or discharge if it is available and connected

to the household circuits. This availability is determined by the parameter αt,v ∈ {0, 1}, as

shown in constraints (3.11) and (3.12). Note that αt,v = 1 before departure from the home

and also after arrival from a trip back to the home, otherwise αt,v = 0. Also, in all time

periods, the state-of-charge must be within the minimum and maximum bounds as shown

in constraint (3.13). Constraint (3.14) ensures the total energy content of the battery at the

end of the optimization horizon is the same as it was at the beginning of the day. Lastly,

constraint (3.15) ensures the total load including the base consumption P base
t is bounded by

the household’s power limit P limit.

soct,v = soct−1,v + ηchgv pchgt,v ∆t− pdsgt,v ∆t− ξv
St,v

∑

(t∈T ) St,v

∀t ∈ T, v ∈ V (3.10)

0 ≤ pchgt,v ≤ αt,v · P
max
v ∀t ∈ T, v ∈ V (3.11)

0 ≤ pdsgt,v ≤ αt,v · P
max
v ∀t ∈ T, v ∈ V (3.12)

socmin
v ≤ soct,v ≤ socmax

v ∀t ∈ T, v ∈ V (3.13)

soct=|T |,v = socinitv ∀v ∈ V (3.14)

−P limit ≤ P base
t + pchgt,v − pdsgt,v ≤ P limit (3.15)
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3.4 Aggregator’s Perspective

Consumers’ EV self-optimizations could result in increased damage to the distribution pole-

top transformer to which they are connected. The owner of the transformer, i.e. utility or

DSO, will incur these costs in two parts: 1) a loss of the currently installed transformer, and 2)

required investment of a transformer of larger capacity transformer in order to accommodate

increased EV loading. To reduce these costs, the owner of the transformer (e.g. DSO), or

separate management entity (e.g. aggregator), can control the charging/discharging of EVs

in a centralized fashion. The transfer of money between the DSO, aggregator, consumers,

and the utility can be seen in Fig. 3.2. If the aggregator is separate from the transformer

owner, the owner should pay the aggregator a portion rmanage of the savings rsave it obtains

from not needing to frequently replace transformers. On the other hand, if the transformer

owner is acting as the aggregator, then the savings are directly captured. In addition, the

consumers pay their energy bill renergy to the utility company.

In this work, a model is developed for the aggregator which focuses only on the consumers,

their EVs, and the transformer. In this centralized strategy, the consumers allow the aggre-

gator to control their EVs. The aggregator co-optimizes the transformer damage cost and

cost of energy (including any arbitrage profits) to determine the charging/discharging pro-

files with the lowest total cost of operations. In return, the consumers receive compensation

cpay from the aggregator to offset their increased energy cost (compared to the decentralized

case), ∆renergy. All parties benefit if rsave > rmanage > cpay > ∆renergy.

3.4.1 Centralized strategy: aggregator co-optimization model

The aggregator objective function is defined as:

min TXcost
∑

t∈T

LOLt +∆t
∑

t∈T

∑

v∈V

πt

(

pchgt,v − ηdsgv · pdsgt,v

)

(3.16)
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Figure 3.2: Revenue/payments by the aggregator from/to the consumer and DSO

subject to:

Constraints (3.1)− (3.5), (3.7), (3.8), and (3.10)− (3.15) (3.17)

k+t − k−t =
TXbase

t +
∑

(v∈V )

(

pchgt,v − pdsgt,v

)

TXrating
∀t ∈ T (3.18)

θHST
t ≤ θHST

t ∀t ∈ T (3.19)

In (3.16), the LoLt is multiplied by the total transformer cost TXcost to obtain the damage

cost to the transformer. The transformer cost is defined as TXcost = TXrating ·TXprice, where

TXrating is the nameplate rating and the TXprice is the price per kVA. For instance, for a

transformer that costs $4152.5 (i.e. a transformer with a rating of 25 kVA priced at 166.1

$/kVA [135]) that is loaded at 90%, with the parameters as specified in Section 3.2, the

damage cost is then $0.03.

Note that the second term in (3.16) is identical to the consumers’ decentralized objective

function (3.9), because now the aggregator is responsible for managing EV energy procure-

ment costs. The consumers are hands-off in the management of their EVs with the guarantee

they will receive their energy needs for transportation and revenue for assisting the grid.

The operator’s objective function is subject to the transformer model equations (3.1)-

(3.5), (3.7), (3.8), and the EV constraints (3.10)-(3.15). An additional constraint determines

the absolute loading of the transformer while considering the base consumer load TXbase
t and
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Figure 3.3: PDFs of the arrival time to the home and departure time from the home (a),

and trip travel time (b).

the net EV power consumption, which is (3.18). Note that TXbase
t is the sum of the base load

of all consumers in each period t, i.e.
∑

P base = TXbase. Also, in (3.18) the total load could

be negative and this makes the loading ratio kt, negative. To avoid this, two non-negative

variables, k+t and k−t are introduced in (3.18) and kt = k+t + k−t . Such a formulation models

the absolute value of the loading ratio. Furthermore, in (3.19) the hot-spot temperature

θHST
t is bounded by the maximum temperature θHST

t to avoid gassing in the solid insulation

and the oil [132].

With the transformer equations in the optimization, the model becomes non-linear.

Transformer equations (3.4), (3.5), and (3.7) are linearized using SOS2 [123], as discussed in

Appendix B.1.

3.5 Simulation Results

The proposed strategies are applied to a pole-top transformer with a rating of 25 kVA,

servicing 6 residential consumers with an individual household limit of 15 kW [136, 8]. Each

consumers’ consumption profile was obtained from a database of empirical data from the

region of Austin, Texas and San Diego, California [137], and scaled so that the peak loading

(without EVs) is similar to loadings in a typical suburban feeder, as described in [138].
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Figure 3.4: Dumb charging at 100% (6) EV penetration, base load, and transformer rating

shown in (a), and the real-time electricity tariff shown in (b).

The 2009 National Household Travel Survey (NHTS) data [124] is used to determine the

characteristics of EVs and generate dumb-charging profiles.

With such data, representative profiles were created by using K-means clustering [139].

Fig. 3.4a shows the base load and dumb charging load for 100% EV penetration, and Fig.

3.4b shows the real-time price tariff, (i.e. average price of 92.1 $/MWh with a range from

37.6 to 189.3 $/MWh and the median price of 92 $/MWh), obtained from [2].

Using the NHTS dataset [124], probability distribution functions (PDF) were created for

the departure time from the home, arrival time to the home, and trip travel time. The PDFs

are shown in Fig. 3.3 and were used to generate the characteristics of the EVs. The EVs are

available for charging and discharging during the period before they depart and the period

after they arrive home again.

For the EV characteristics, the charging/discharging power rate is set at 3.3 kW and

the energy capacity of EV batteries is 24 kWh, as in [8]. The state-of-charge, however, can

only range from a minimum of 15% and a maximum of 95% of the total capacity because

of safety and electrochemical constraints on the battery [127]. The round-trip efficiency is

set to 90% [8] and the initial energy state-of-charge is uniformly randomized between 15%

and 60% of socmax
v . A conversion factor of 0.33 kWh/mile [42] was used to convert the total
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Figure 3.5: Loading on the transformer and aging factor for the decentralized case in (a) and

centralized case in (b) with only G2V enabled.

miles travelled, obtained from NHTS [124], to the total energy required for motion ξv.

Historical data of ambient temperatures from July 2014 was obtained from San Diego,

California [140]. The ambient temperatures were in the range [18.9, 25.6] ◦C with an average

temperature of 21.7 ◦C. The initial transformer temperatures are set by performing the opti-

mization and using the end-of-day temperature results. The maximum hot-spot temperature

is 140 ◦C as discussed in [132]. The transformer parameters are as described in Section 3.2

and in [141]. The cost of the transformer replacement is 166.1 $/kVA, which considers the

fixed and variable costs in a consolidated per-unit of kVA term, as discussed in [135].

The outcome of the centralized optimization is the optimized EVs charging/discharging

profiles and associated transformer impacts (e.g. aging, LoL, and damage cost) and arbi-

trage benefits. By contrast, the decentralized optimization ignores the transformer damage.

Therefore, a post-process calculation of the transformer damage is performed using the to-

tal load profile obtained from the optimization in order to be able to compare against the

centralized optimization.
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Figure 3.6: Loading on the transformer and aging factor for the decentralized case in (a) and

centralized case in (b) with V2G enabled.

3.5.1 Decentralized versus centralized strategy

In the decentralized case, the consumers optimize the charging/discharging of their EVs

and in the centralized case, the aggregator optimizes all EVs as an ensemble. Both models

were simulated for 100% EV penetration to show the total load and the aging effect on the

transformer (FAA
t ).

The total load through the transformer including EVs, the transformer rating, and the

associated aging acceleration factor FAA
t are shown in Fig. 3.5(a) for the decentralized case

and in Fig. 3.5(b) for the centralized case, both while allowing only G2V (i.e. EVs only

charge to meet their energy needs for transportation). By comparing Fig. 3.5(a) and Fig.

3.5(b), it can be seen that the loading on the transformer has higher peaks in the decentralized

case because each consumer attempts to minimize only their cost of operation independently.

Such actions result in the syncing of power consumption during the low-priced periods of the

day (e.g. 0400 hours). On the other hand, in the centralized case the aggregator optimizes

the EVs while also considering the transformer LoL. Therefore, the charging of the EVs

is spread out during the low-price periods. This minimizes the peak power consumption

during the nighttime and consequently reduces the total FAA
t . However, the cost of energy
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Figure 3.7: Loading on the transformer and aging factor for the decentralized case in (a) and

centralized case in (b) with V2H enabled.

is increased as a tradeoff for improving the transformer lifetime. The aggregator will need

to compensate the consumer for such a tradeoff.

Some EVs have the capability to discharge their batteries to supply energy directly to

the grid in V2G mode. Similar to Fig. 3.5, Fig. 3.6 shows the decentralized case in (a)

and the centralized case in (b) with V2G enabled. In the decentralized case in Fig. 3.6(a),

the EVs charge in excess of transportation needs during the low-price periods (e.g. 0200

to 0800) in order to discharge during the high-price periods. The discharge leads to the

total load on the transformer to be negative during 1500 to 1800 hours because all EVs

are offsetting the base loads and then supplying energy back to the grid. To perform V2G,

however, excessive charging occurs resulting in a large increase in the total aging factor FAA,

ultimately reducing the lifetime of the transformer. On the other hand, with centralized

management as shown in Fig. 3.6(b), the aggregator keeps the loading on the transformer

relatively constant during the nighttime periods. This results in a lower total aging factor

FAA. Again, to achieve the low aging factor the aggregator must reduce energy arbitrage

and consumers must be compensated.

The last mode in which an EV can perform is in V2H. That is, EVs can discharge their
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batteries to offset the base loads of the consumer, but cannot export power to the grid. Fig.

3.7 shows the total load and aging factor for the decentralized and centralized case in (a) and

(b), respectively. The V2H operation is similar to V2G, except that the total FAA is lower in

both the decentralized and centralized operations. This is the case because in V2H, EVs are

constrained to discharge only up to the magnitude needed to offset base loads, while in V2G

mode the EVs have more freedom to take advantage of arbitrage. Essentially, V2G does

not reduce transformer damage as much as V2H because the high-price periods (in which

the consumer would prefer to discharge) may not correlate with the high base load periods

(in which the total FAA can be most effectively reduced). Regardless of the strategy, V2H

provides slightly lower aging effect to the transformers as compared to V2G, but does not

capture the maximum benefits from energy arbitrage.

The centralized strategy is superior in keeping the total FAA low, whereas the decentral-

ized strategy maximizes the benefits from charging/discharging of the EVs under real-time

pricing. Most consumers would prefer to perform under the decentralized strategy unless

the aggregator can provide the necessary incentives for a hand-over of control of the EVs.

3.5.2 Effect on the transformer life expectancy

The centralized and decentralized strategies are run for EV penetrations from 0 to 6 (i.e. 0%

to 100% EV penetration) for a 24-hour period in order to see the effect on the transformer

life and the associated transformer damage cost. The damage to the transformer is assumed

to occur on a daily basis and by using the following equation an approximate value for the

transformer life expectancy in years is obtained:

TX life =
1

365 ·
∑

(t∈T ) LoLt

(3.20)

Fig. 3.8 shows the life expectancy for the dumb (i.e. unoptimized), centralized, and

decentralized charging cases for G2V in (a), V2G in (b), and V2H in (c). Note that the

G2V case with dumb charging is shown in Fig. 3.4(a), where the EVs charge immediately

when they arrive home without any sort of management. With zero EV penetration (i.e.
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Figure 3.8: Transformer life expectancy in the dumb, centralized, and decentralized strategies

under G2V (a), V2H (b), and V2G (c) operations.

base load shown in Fig. 3.4(a)), the typical life expectancy as stated in the IEEE standard

C57.91 of 20.5 years is sustained [132]. This can be seen in all subplots in Fig. 3.8 at 0 EV

penetration.

From Fig. 3.8a it can be seen that as the EV penetration increases, the life expectancy

under the dumb charging strategy decreases significantly. This is expected since the EVs

are adding their charging power onto the peak base load as shown in Fig. 3.4(a) in red.

In the decentralized case considering only G2V, the expectancy is closely maintained at the

typical 20.5 years up to 50% EV penetration (3 EVs). However, with further increase in EV

penetration, the transformer life decreases drastically. This is the case because each consumer

is self-optimizing their benefits and thus a large peak is created in the low-price periods (see

Fig. 3.5(a)). In the centralized case with G2V (Fig. 3.8(a)), the life expectancy remains

near the typical value, even under high EV penetration. For example, at a penetration of 6

EVs, the life only decreases to 17.45 years.

The life expectancy with V2H enabled is shown in Fig. 3.8(b). Since V2H discharging

offsets the base loads, the transformer life expectancy is increased from the typical life for

low EV penetrations under both strategies. This is beneficial because the transformer owner
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obtains increased lifetime of their sunk-cost asset. However, with higher EV penetration in

the decentralized case (e.g. greater than 3 EVs), the life is significantly decreased because

of the excessive charging during the low-price periods (see Fig. 3.7(a)). With centralized

charging at 100% EV penetration, the life is 11.8 years. This shows that by enabling V2H, the

transformer owner experiences a decrease of 5.65 years of transformer lifetime, because EVs

will increase their charging in order to offset house loads during peak price hours. Under

V2H, the aggregator receives additional transformer life and consumers receive arbitrage

benefits.

With V2G enabled, as shown in Fig. 3.8(c), neither strategy experiences an increase in

lifetime as high as that in V2H. This effect occurs because V2G takes full advantage of the

price difference in the electricity tariff and therefore obtains larger amounts of energy during

the nighttime period as compared to V2H. In the centralized case under 100% EV penetra-

tion, the lifetime is 10.64 years. Therefore, V2G is not beneficial in terms of minimizing the

damage cost of the transformer as compared to V2H. However, it does provide the largest

arbitrage benefits to the consumers, and has the lowest overall operational cost.

In Fig. 3.8(b) and Fig. 3.8(c) it can be seen that for some penetration levels, the lifetime

of the transformer is more than doubled. This is technically feasible in terms of the electrical

and thermal characteristics of the transformer. However, other external factors, e.g. storms,

corrosion, etc., may be a limiting factor on this extended lifetime. An analysis of these

factors is outside the scope of this work.

With the initial introduction of EVs, the most probable operating mode is G2V, then

V2H, and finally V2G. This is the case because V2H/V2G require bidirectional chargers in

the EVs and V2G requires bidirectional power flow in the grids as well [40]. At high penetra-

tions of EVs, the transformer will experience a relatively small decrease in lifetime if and only

if the system is centrally managed under all modes of operations. The transformer owner,

however, must provide the proper incentives to a management aggregator for performing this

centralized strategy. At the same time, the aggregator must provide the proper incentives to

consumers for participation in such a strategy. If the transformer owner opts to forgo cen-
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Figure 3.9: Total EV discharge in (a) and arbitrage daily profit/loss in (b) for different

strategies and modes of operation (V2G, V2H).

tralized management, then each consumer will perform their decentralized optimization and

the owner must replace the transformer frequently or install a larger capacity transformer.

3.5.3 Tradeoff between arbitrage and transformer damage

The notion that there is a tradeoff between obtaining the maximum benefits of arbitrage

and the minimum transformer damage cost is evident in the centralized strategy. On the

other hand, the decentralized strategy favors maximum arbitrage benefits and ignores the

transformer. It is of importance to analyze these aspects. Fig. 3.9 shows the total discharge

energy that is supplied by the EVs and the overall profit/loss for V2G and V2H modes.

Note that overall profit is defined as the total discharge revenue minus total cost of charging

energy (including transportation needs) for the EV. In addition, Fig. 3.10 shows the daily

transformer damage cost for both strategies with varying EV penetration.

The total energy discharged by EV batteries is always higher in the decentralized case as

compared to the centralized case, as is shown in Fig. 3.9a. Consequently, the arbitrage profits

are also higher in the decentralized case, as shown in Fig. 3.9b. This is expected because

in this strategy, consumers take advantage of arbitrage to its fullest potential ignoring the

transformer’s damage. With low EV penetrations (i.e. less than 4 EVs), the centralized and
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Figure 3.10: Daily transformer damage cost for the centralized (a) and decentralized strategy

(b) with varying EV penetration.

decentralized strategies have negligible difference in the total EV discharge and arbitrage

profits. This is the case because the aggregator can use the few EVs connected to the

transformer to cater a charging/discharge profile that both reaps arbitrage benefits and

reduces the damage cost as shown in Fig. 3.10(a) for V2G and V2H. In addition, the

EVs’ ability to discharge during the peak hours actually reduces the overall damage cost

compared to G2V mode (see Fig. 3.10(a)). However, as the EV penetration grows in the

centralized strategy, the additional charging of the EVs starts to increase the transformer

damage and therefore the centralized strategy begins to limit arbitrage activities, as shown

in Fig. 3.10)(a). This discharge limiting ultimately reduces the total arbitrage profits as a

tradeoff for maintaining the transformer life.

Under 100% EV penetration, the total daily arbitrage profits in V2G mode in the decen-

tralized and centralized case are $5.73 and $3.94, respectively. In addition, the life expectan-

cies of the transformer for the decentralized and centralized strategies are 0.10 years and 10.6

years, respectively. For a loss of $1.79 of arbitrage profit, the centralized case can provide

an increase of two orders of magnitude in the transformer life expectancy. The transformer

owner and the aggregator can perform such analyses to effectively determine the tradeoffs
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(6) EV penetration case and the y-axis cost scales

and benefits of both strategies.

3.5.4 Determining the optimal replacement transformer rating

Once the 25 kVA transformer reaches its end-of-life, the transformer owner must decide the

capacity rating of the replacement transformer. To do so, an optimization is performed over

a set of replacement transformer ratings S = {25, 30, 35, 40, 45, 50} kVA. The present cost

of perpetual replacements [142] is calculated using a 5% annual interest rate [143]. This

approach balances the replacement transformer cost and the replacement frequency. The

results are shown in Fig. 3.11. Fig. 3.11(a) shows the decentralized strategy and Fig.

3.11(b) shows the centralized strategy under G2V, V2G, and V2H operations for the 6 EV

case. By considering the already-established loadings on the transformer (shown in Fig. 3.5-

3.7) and by varying the transformer rating, it can be seen that the present cost of perpetual

replacements in the decentralized strategy is much higher than in the centralized strategy,

due to the lack of coordination between consumers. In addition, the optimal transformer

rating that minimizes this cost is 35 kVA in the centralized strategy regardless of the mode
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# of Investment deferral Consumer arbitrage Max. potential

EVs benefit ($) benefit ($) profit ($)

G2V

1 0.13 −0.07 0.06

4 267 −20.7 246

6 6, 369 −64 6, 305

V2H

1 10.2 −3.7 6.5

4 795 −110 685

6 53, 589 −614 52, 975

V2G

1 8.2 −5.5 2.7

4 1, 100 −139 961

6 73, 074 −652 72, 422

Table 3.1: Decentralized to Centralized Annualized Benefits

of operations, whereas in the decentralized strategy, the optimal rating varies from 35 to 45

kVA, with V2G requiring the largest capacity.

3.5.5 Maximum potential revenue of the aggregator

For the aggregator to develop a business case, it must quantify its potential profit from a

decentralized to centralized transition. It is shown in Fig. 9b that the consumers obtain

greater arbitrage benefit in the decentralized strategy compared to the centralized strat-

egy. On the other hand, the transformer owner obtains the benefit of increased transformer

lifetime under a centralized strategy compared to a decentralized one. The aggregator can

negotiate to obtain a share of the transformer lifetime benefit, and a portion of that must

be provided to consumers to compensate for their lower arbitrage revenue.

The cost of the optimally-sized transformer replacement (as described in Section 3.5.4)

is discounted based on the lifetime of the 25 kVA transformer (see Fig. 3.8) and a 5%

interest rate. For example, if the 25 kVA transformer reaches its end-of-life in 10 years,
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then a replacement transformer must be installed and its present cost is 61% of the future

cost. The present cost in the centralized strategy is subtracted from the cost in decentralized

strategy to obtain the investment deferral benefit for transitioning to a centralized strategy.

This represents the transformer owner’s benefit, of which the aggregator can negotiate its

share.

On the other hand, the aggregator must quantify the benefit (in actuality, the cost) for

consumers of a transition to a centralized strategy. This is calculated by taking the difference

between the annual arbitrage revenue in the centralized and decentralized strategies.

Table 3.1 shows these benefits in the first and second column for the different modes of

operation (i.e. G2V, V2H, and V2G) and EV penetrations. The last column is the maximum

profit the aggregator can obtain, which is the sum of the investment deferral benefit and

the consumer arbitrage benefit (loss). The investment deferral benefits are annualized by

representing the one-time transformer replacement cost with the equivalent-annual-annuity

approach, as described in [142].

From Table 3.1, the benefit seen by the transformer owner is highest in V2G mode under

100% EV penetration. This is because in the decentralized strategy, the consumers have

the maximum flexibility to use their EVs for arbitrage, which is extremely damaging to the

transformer. In contrast, a centralized strategy avoids much of this damage. Therefore, the

aggregator has a strong case to negotiate a contract with the transformer owner. However,

with low EV penetrations (e.g. 1-4), the annualized deferral benefit is much smaller. In this

case, the aggregator may not have a strong business case when considering the cost to equip

and control these EVs.

The consumer arbitrage benefit (shown in the second column) is negative in all cases.

This is expected because in the decentralized strategy consumers are able to generate more

revenue from energy arbitrage (see Fig. 3.9(b)). Thus, consumers must be compensated

for their loss in revenue by the aggregator, otherwise they would not be willing to hand

over control of their EVs. The maximum potential revenue (last column) shows the amount

of money available for the aggregator’s business case. A portion of this money should be
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given to consumers for allowing the control of their EVs for the aggregator’s benefit, and the

transformer owner will likely want to retain some of the investment deferral benefit. Using

an analysis such as the one shown in Table 3.1, an aggregator can negotiate contracts with

both the transformer asset owner and consumers in which all the entities profit.

3.6 Conclusion

A centralized model is developed in this chapter which co-optimizes the transformer loss-of-

life (LoL) with electric vehicle (EV) charging and discharging for arbitrage, while ensuring

the EVs obtain their energy needs for transportation. Such a model can be implemented

by the transformer asset owner, e.g. distribution system operator, or a separate hierarchi-

cal entity. The model considers the transformer’s thermal temperatures, accelerated aging

factor, and LoL. For comparison, a decentralized model is also presented which could be

implemented by consumers’ energy management systems or smart chargers in their homes.

In the decentralized approach, the consumers are not responsible for transformer damage

and thus optimize their EV charging/discharging only for arbitrage.

Results show that in the centralized strategy the transformer life decreases under high

penetrations of EVs when charging only. In the decentralized strategy, the transformer must

be fully replaced under similarly high penetrations after fractions of its expected lifetime.

Furthermore, when the EV penetration is moderate, the transformer life is increased beyond

its expected lifetime when performing in vehicle-to-home (V2H) and vehicle-to-grid (V2G)

modes under both strategies. This is the case because the EVs discharge their battery and

decrease the net load experienced by the transformer during peak hours, when transformer

damage is greatest.

In the decentralized strategy, the EV consumers receive additional revenue for performing

energy arbitrage, as compared to the centralized strategy (V2G mode at a high EV penetra-

tion). The centralized aggregator essentially limits energy arbitrage in order to maintain or

even increase the lifetime of the transformer. However, the decrease in arbitrage benefit is

more than offset by the transformer investment deferral benefit, creating a situation where
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a management aggregator can reduce the costs of the consumers and the transformer owner

simultaneously, and still have a viable business case.

Although the benefits of centralized EV charging management have been demonstrated

in this chapter, the DSO would have to invest in communications and control infrastructure

in order to implement such a strategy, and thus would have to weigh their potential costs

and benefits to ensure such a venture is profitable.

The proposed model and results that can be obtained with it will:

• inform DSOs of the potential impact EVs may have on their distribution transformer

assets

• quantify the market potential for new businesses, i.e. aggregators, to emerge and

manage EVs

In the next chapter, a framework is developed considering an aggregator’s participation

in the wholesale power markets. Such a framework allows for further revenue generation by

the aggregator which can then be used to reward EV owners for their participation.
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Chapter 4

OPTIMAL PARTICIPATION OF AN ELECTRIC VEHICLE

AGGREGATOR IN DAY-AHEAD ENERGY AND RESERVE
MARKETS

4.1 Introducton

EVs are poised as effective participants in both the energy and reserve markets. In the energy

markets, they can shift consumption in time to exploit the low and high prices of the day.

On the other hand in the reserve markets where capacity must be on stand-by in the DA

and then deployed in the RT based on the need of the system, EV batteries can react quickly

to provide such services. The combined participation in these markets increases the revenue

potential of EV owners. However, the aggregator exploiting EVs must consider the tradeoff

between the cost of degrading the batteries verses revenue potential from the markets and

thus make an optimal economic decision.

In this chapter, a framework is proposed to assess the aggregator’s capabilities to provide

energy and different reserve services in a realistic market environment [120]. The aggregator

participates in the energy market as a price-taker, and its offers to the ancillary services

market are optimized taking into account both i) the probability of acceptance and ii) the

probability of deployment in the market environment. The former represents the expected

probability of the aggregator’s offers being accepted in the DA ancillary market, thus receiv-

ing the revenues at the market capacity price for its bid, and the latter is the probability the

accepted offer to be deployed in the RT, thus receiving the revenues for the deployed energy

at the RT energy price.

The contributions of this framework are as follows:

• An optimal strategy for both energy and reserve markets considering their tradeoffs
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and effect on EV battery degradation.

• Realistic approach to participating in the voluntary reserve markets with price-quantity

offers that are justified.

• Assessing the expected profit the EV aggregator can collect by participating in the

energy and regulation market.

4.2 Power system entities

4.2.1 Electric vehicle’s perspective

EV owners can allow the aggregator to manage their EVs’ scheduling by charging energy in

G2V mode and discharging energy in V2G mode, as long as these priorities are fulfilled:

1. Energy requirements for transportation are not comprised,

2. Monetary benefits are provided for participation, and

3. Compensation is provided for the aggregator’s additional usage of EV batteries.

For the aggregator to properly schedule EVs, each EV must inform their availability

αt,v ∈ {1, 0} (1 if available to charge/discharge, and 0 otherwise) at each time period t for

each vehicle v. During the availability periods (αt,v = 1), the EVs must obtain their energy

for motion ξv and charge any additional energy that the aggregator schedules to provide

services to the power grid. In essence, the process from the EVs perspective should be

well-integrated and automated with minimal owner participation.

4.2.2 Aggregator’s perspective

The goal of the the aggregator is to exploit its EV fleet to maximize profits. The profits

are the difference between the revenues for providing services to the system and the costs

of services provision. The costs of providing these services are a function of the incurred

battery degradation that must be reimbursed to EV owners. In order for the services from
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EVs to be economically viable, the revenues must outweigh the cost compensation for the

degradation of EV batteries. If this is not the case, then using EV batteries beyond supplying

their motion needs does not make economic sense.

The aggregator participates in two markets: day-ahead energy and day-ahead regulation.

However, in the regulation market it submits separate up and down offers. The aggregator

can submit competitive offers in order to provide a share of the regulation services, because

the SO fulfills its regulation requirement by selecting the least priced offers.

The markets it participates in and the revenue structure is described below:

• Day-ahead Energy Market: aggregator is a price-taker in this market and thus

cannot influence its outcome. It forecasts market prices and schedules EVs accordingly

to maximize profit.

• Day-ahead Up Regulation Market: aggregator can influence the price, i.e. price-

maker, in this market. The revenues are obtained in the DA in the form of a capacity

payment for being on-stand by and an additional deployment payment in RT if called

to deploy the energy.

• Day-ahead Down Regulation Market: similar to the up regulation market, the

DA capacity payment is obtained for stand-by, however, no deployment payment is

given since otherwise the EVs receive a double benefit of free energy and revenue.

Considering these opportunities, the aggregator can make optimal decisions on the par-

ticipation in each individual market.

4.2.2.1 Probability of acceptance and deployment

In order to structure a competitive bid pair (i.e. price and quantity) in the regulation market,

the aggregator must use the probability of acceptance (πa) and probability of deployment

(πd). πa represents the aggregator’s assumption on the likelihood of its capacity offers pcap

to be accepted paccept in the DA regulation market, i.e. Prob(pcap ≥ 0) ≥ πa. Similarly,
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Figure 4.1: Decision tree for regulation market interactions

πd represents the assumed likelihood of the accepted offers paccept to be deployed in real-

time, i.e. Prob(0 ≤ pdepl ≤ paccept) ≥ πd, where pdepl is the expected power deployment.

The system operator cannot call upon the aggregator to deploy more than the DA accepted

capacity. Since the aggregator is not aware what fraction of paccept the SO can call upon in

the RT, it needs to schedule the purchase of the shortage pshort in the RT energy market,

where pshort = paccept−pdepl. This shortage power has an associated probability Prob(pshort =

paccept − pdepl ≥ 0) = 1 − πd = πshort and thus allows a risk-averse decision to be made by

the aggregator.

Figure 4.1 shows the probability-based decision tree considered by the aggregator in its

DA model. In branch (I), the DA capacity offer is accepted with a probability πa. After the

offer is accepted, it may be deployed by the SO up to paccept, i.e. 0 ≤ pdepl ≤ paccept. This

occurs with probability πd as shown in branch (II). The aggregator also needs to consider if

the actual deployment required by the SO is larger than expected pdepl, and thus it considers

the cost of the shortage pshort. An ideal case without penalties is shown in Figure 4.2a where

the aggregator obtains the DA capacity price λcap for the accepted capacity paccept and the

expected RT energy price λRT for the deployment pdepl.

In branch (V), the aggregator expects its DA offer to be accepted with probability πa but
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not deployed by the SO in the RT. In this case, it cannot take advantage of the additional

revenue for deployment, however, it does not have the risk of being unable to deploy if

called upon by the SO. It receives only the DA accepted offer times the capacity price

λcap. In branch (IV), the offer is accepted and the full accepted capacity is expected to be

deployed. This occurs without the aggregator assuming any expected energy shortage in the

DA because it is able to use its available EV fleet. The aggregator obtains benefits from

both the DA capacity and RT market revenue streams. This is summarized in Figure 4.2a

when pdepl = paccept.

Figure 4.2b summarizes branch (III) which includes penalties. In branch (III), the aggre-

gator considers some portion its full capacity offer to be accepted and some fraction that to

be deployed beyond the expected pdepl. This occurs because the aggregator’s decisions in the

DA are based on estimates of its EV fleet availability in the RT. Therefore, it has the risk of

over-offering in the ancillary market, which if accepted, it may not be able to deploy due to a

lack of capacity. Thus, it needs to consider the possibility the actual deployment requirement

in RT pact to be larger than its expectation pdepl. In Figure 4.2b, the aggregator receives

the DA capacity revenue. As for RT revenue, the SO requested pact which the aggregator

is unable to provide. Therefore, it receives the RT price for pdepl and must purchase the

actual shortage, pact − pdepl, at λRT. However, in the DA, the aggregator already considers

the possibility of shortage (pshort) and thus the decisions are hedged against.

These cases are incorporated into the DA optimization to determine the optimal offering

schedule for regulation services. The different cases shown in Figure 4.1 are constructed by

determining their corresponding probability of acceptance for regulation up πa and down φa,

as well as the probability of deployment for regulation up πd and down φd.

4.2.2.2 Determining market prices for energy and regulation

The aggregator obtains the prices for the reserve and energy markets when these markets

clear. In the reserve market, the clearing process requires a quantity-price offer from the ag-

gregator, which must be competitive due to a limited capacity requirement in these markets.
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Figure 4.2: Actual revenues and costs when participating in ancillary markets, where (a) is

the case with no penalties and (b) includes penalties.

Therefore, the aggregator needs a method to estimate these prices in order to optimally bid

into these markets. By using historical data, price-quantity-probability (PQP) curves, as

shown in Figure 4.3, can be incorporated into the model. Figure 4.3a represents the com-

plementary CDF of prices, Figure 4.3b represents the complentary cumulative distribution

function (CDF) of quantity, and Figure 4.3c shows the PQP curve which is derived from

the curves in Figure 4.3a and Figure 4.3b. In order to create these functions, historical data

must be obtained from markets for regulation prices, energy prices, and capacity accepted

and deployed.

The process to obtain the PQP curve shown in Figure 4.3c is constructed following these

steps: i) First, the complementary CDF, i.e. 1-CDF, is calculated for prices (see Figure

4.3a) and quantity (see Figure 4.3b), individually. ii) Next, these separate curves are then

combined as shown in Figure 3c, where the x-axis is the quantity and the y-axis maps the

prices. Each corresponding step in the PQP curve represents a probability π, which has a

corresponding market price to be used in the aggregator’s optimization model. This process

is applied to the reserve prices against the total accepted quantities for regulation up and

down with their respected probability of acceptances (i.e. πa, φa), and also to the real-time

energy price against the regulation deployed in the RT with the probability of deployments

(i.e. πd, φd). The probabilities are sorted in descending order: π1 > π2 > · · · > π|B| where
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Figure 4.3: Capacity price and total accepted capacity quantity complementary CDF’s shown

in (a) and (b), respectively. In (c), the price-quantity-probability (PQP) curve is shown which

is derived from the curves in (a) and (b).

B is the set of segments with index b. For example, the first two corresponding steps in

Figure 4.3c labeled π1 and π2 can take on the values of 100% and 90%, respectively. As the

price-quantity pair increases, the likelihood decreases.

4.2.3 System operator’s perspective

In the presented model, it is assumed the system operator clears a simultaneous energy and

reserve pool-based market with unit commitment (UC) in order to determine the schedule

and power output of generators. A generic two-stage market structure of a DA and RT

planning is implemented in this work. These market structures are common in United States

electricity markets, e.g. PJM [82] and ERCOT [144]. However, the market design used in

this work is generic to be compatible with other market-based power systems [89]. Such
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co-optimization of energy and reserve 1 markets yields substantial cost savings for the SO

[147, 148], and incentivizes the SO to enable participation of all eligible energy and reserve

providers, including EV aggregators. The energy price is a by-product of the clearing process,

as well as the least-cost allocation of regulation up/down, resulting in regulation prices [149].

When an imbalance materializes as a lack of generation to meet the demand, then regu-

lation up is required to accommodate such imbalance. On the other hand, if the imbalance

materializes as an excess of generation to meet the demand, then regulation down is required.

In the DA, the system operator enforces a pre-established requirement of regulation up and

down for each hourly period of the optimization horizon, which in this work is determined

by the ‘3+5’ rule [150]. This criterion ensures the hourly reserve requirements are set to 3%

of the hourly load and 5% of the hourly available renewable energy capacity. Therefore, this

rule accounts for all sub-hourly balancing needs of the SO to mitigate the impact of wind

power and load forecast errors [151]. The SO then optimally determines in a least-cost man-

ner which market participant’s offers to accept to meet the requirement. If a participant’s

offer is accepted, it receives the market clearing price for the specific service it provides (i.e.

capacity price for being on standby). If a participant’s accepted capacity is called upon for

deployment in RT, then they must provide the energy and then receive the RT price for

energy deployed. If they are unable to provide the energy, they may purchase it in the RT

energy market. In this work, the UC model is implemented as explained in [149].

4.3 Aggregator Optimization Model

4.3.1 Market participation

The aggregator participates in the DA energy and regulation market. In the energy market,

the aggregator is a price-taker, thus submitting quantity-only zero-price bids. On the other

hand, the regulation market has pre-defined requirements.

1Throughout this chapter, regulation is assumed to be a joint reserve product, i.e. it combines the
secondary and tertiary regulation interval, as explained in [145] and [146].
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From the aggregator’s perspective, their are several actions that can be exploited from

EVs. These include:

• Energy Market Charge (EMCHG): Schedule EVs to charge energy from the DA

energy market thus receiving the DA energy revenue.

• Energy Market Discharge (EMDSG): Schedule EVs to discharge energy to the

DA energy market thus receiving the DA energy revenue.

• Regulation Up (REGUP): Schedule EVs to discharge energy to the grid and receive

the capacity revenue for being on-standby and the RT energy revenue for deploying

the capacity if required.

• Regulation Down (REGN): Schedule EVs to charge energy to the grid and receive

the capacity revenue for being on-standby. No RT deployment compensation collected

because EVs will then obtain two benefits of free energy.

• Stop Charging (STOPCHG): Part of the REGUP product which can only occur if

a subset of the EV fleet is already scheduled to charge energy from the energy market

and are interrupted voluntarily.

• Stop Discharge (STOPDSG): Similar to STOPCHG but bundled with the REGDN

product. Also can be only scheduled if the EV fleet is already scheduled to discharge

in the energy market.

The scheduling of charging and discharging in the energy, regulation up, and regula-

tion down market are considered by the optimization model as described in the following

subsection.

4.3.2 Optimization model

The aggregator seeks to maximize its profits. The objective function of the aggregator is:

max rem + rcap + rdepl − cregup − cregdn − cdeg (4.1)
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where rem is DA energy market revenue, rcap is the DA regulation market revenue for

capacity, rdepl is the expected revenue for deployment in real-time, and in terms of costs,

cregup is the cost for regulation up service, cregdn is the cost for regulation down service, and

cdeg are the battery degradation costs that must be compensated to consumers.

The DA energy market revenue rem is given as:

rem = ∆t
∑

(t∈T )

∑

(v∈V )

λDA
t

(

ηdsgv · pemdsg
t,v − pemchg

t,v

)

(4.2)

where λDA
t is the DA energy market price, ηdsgv is the battery discharge efficiency, and

pemdsg
t,v and pemchg

t,v are the discharge and charging powers specifically targeted for the energy

market, respectively. The revenue rcap is obtained from the DA regulation market as:

rcap =
∑

(t∈T )

∑

(b∈B)

[(

wup
t,b · λ

up
t,b

)

· πa · pupt +
(

wdn
t,b · λ

dn
t,b

)

· φa · pdnt
]

(4.3)

where λupt,b and λdnt,b are the DA regulation up and down capacity prices, respectively,

obtained from the CDF curves. The binary variable wup
t,b ∈ {1, 0} activates only one segment

of the capacity price CDF curves as a function of the probability πa. Similar rationale applies

for wdn
t,b as a function of probability φa. The revenue term, takes into account the likelihood

of capacity offers to be accepted and is represented by branch (I) in Figure 4.1. The power

pupt and pdnt are the regulation up and down capacity offers to the market. This revenue

stream only considers the capacity revenue, however, if the capacity is deployed by the SO,

additional revenue for deployment rdepl should be accounted at RT prices:

rdepl = πa · πd · ηdsg
∑

(t∈T )

∑

(v∈V )

∑

(b∈B)

(

vupt,b · λ
RT
t,b

)

(

eregupt,v + estopdsgt,v

)

(4.4)

where λRTt,b is the RT energy price obtained from the CDF curve, eregupt,v is the expected

energy deployment for regulation up service, and estopdsgt,v is the energy in regulation up service

that is only potentially scheduled in the same period t in which energy market discharging

(EMDSG) is scheduled. Each segment of the real-time energy price CDF curve has a binary

variable vupt,b ∈ {1, 0}. This variable determines which particular segment b is active, and
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it is a function of the probability πd. Therefore, rdepl represents the revenue that may be

obtained from deployment in the RT market and represents the case in branch III (Figure

4.1). This, however, assumes the aggregator would deploy a fraction of its capacity offer

and ignores the risk of being deployed more than it anticipated. In order to account for this

outcome, equation (4.5) is the cost cregup for regulation up service:

cregup = πa · πd · (1− πd)
∑

(t∈T )

∑

(b∈B)

(

vupt,b · λ
RT
t,b

) (

pupt − πa · πd · pupt
)

(4.5)

where the difference between the capacity offers pupt and the expected deployment πaπbpupt

determines the amount of shortage that may need to be purchased in the RT energy market.

This situation can occur with a conditional probability product of πaπd(1 − πd), where

1 − πd = πshort, which is represented by branch (IV) (Figure 4.1). This case covers the

penalty for being unable to deploy in the RT. Similar rationale applies for regulation down

service as shown below:

cregdn = φa · φd · (1− φd)
∑

(t∈T )

∑

(b∈B)

(

vdnt,b · λ
RT
t,b

) (

pdnt − φa · φd · pdnt
)

(4.6)

Since the aggregator is not the owner of the EV batteries, it must compensate EV owners

for degrading their batteries. In this work, it is assumed the degradation characteristic is

sensitive to the number of cycles and insensitive to the depth-of-discharge, as explained in

[10]. The degradation cost is:

cdeg =
∑

(v∈V )

Cbat
v

∣

∣

∣

mv

100

∣

∣

∣





∆t
∑

(t∈T )

(

pemdsg
t,v + pemchg

t,v

)

− ξv

BCv

+

∑

(t∈T )

(

πaeregupt,v + φaeregdnt,v

)

BCv





(4.7)

In (4.7), BCv is the battery energy capacity, Cbat
v is the battery cost, ξv is the total

energy for motion, and mv is the linear approximated slope of the battery life as a function

of the number of cycles [10]. The value of mv is estimated from manufacturer datasheets

[10]. In (4.7), the aggregator must compensate EVs for discharging in V2G mode for energy

market arbitrage as determined by the term pemdsg
t,v . On the other hand, for energy obtained



84

for charging from the energy market, it only needs to compensate additional energy on top

of the motion needs as determined by subtracting ξv. For the regulation services, only the

components of the service that degrade the battery are included, i.e. eregupt,v and eregdnt,v . This is

the case because stop charge and stop discharge actions do not degrade the battery, instead

they only interrupt the actions of the EVs in the period.

The objective function in (4.1) is subject to several constraints. The first set of constraints

(4.8) and (4.9) calculate the capacity offer for regulation up and down, respectively. In these

constraints, the sum of the energy for each service calculated from each EV must equal the

total regulation offer. Furthermore, these constraints relate the offered capacity in the DA

regulation market to the expected deployment in the RT. The capacity offer is multiplied by

the probability πd for regulation up in (4.8) and φd for regulation down in (4.9), to get RT

deployment.

pupt π
d∆t =

∑

(v∈V )

(

eregupt,v + estopchgt,v

)

∀t ∈ T (4.8)

pdnt φ
d∆t =

∑

(v∈V )

(

eregdnt,v + estopdsgt,v

)

∀t ∈ T (4.9)

Constraints (4.10) to (4.15) determine the energy state-of-charge (eSOC) soct,v of each

EV and the energy of each product offered in the market. In (4.10), the eSOC is dependent on

the previous state, power obtained from the energy market pemchg
t,v and injected to the energy

market pemdsg
t,v , motion needs, and motion schedule St,v. Note that this same constraint allows

arbitrage in the energy market. However, before arbitrage can be scheduled, the motion needs

must be fulfilled which are obtained from the energy market, because unlike the regulation

market, this market is open to all participants without any preset SO requirements. This is

managed in constraint (4.11). If additional capacity is available in the batteries, they can

be scheduled to provide regulation down/up service as shown in constraints (4.12)-(4.13).

At all time periods, the eSoC must be within the defined minimum and maximum bounds

as shown in constraint (4.14). Constraint (4.15) ensures the total energy at the end of the

optimization horizon is the same as it was at the beginning of the day. This ensures the
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aggregator returns the EV batteries to their initial state.

soct,v = soct−1,v + ηchgv pemchg
t,v ∆t− pemdsg

t,v ∆t− ξv
St,v

∑

(t∈T ) St,v

∀t ∈ T, v ∈ V (4.10)

soct,v ≥ ξv
St,v

∑

(t∈T ) St,v

∀t ∈ T, v ∈ V (4.11)

0 ≤ eregdnt,v + estopdsgt,v ≤ SoCmax
v + soct,v ∀t ∈ T, v ∈ V (4.12)

0 ≤ eregupt,v + estopchgt,v ≤ soct,v − SoCmin
v ∀t ∈ T, v ∈ V (4.13)

SoCmin
v ≤ soct,v ≤ SoCmax

v ∀t ∈ T, v ∈ V (4.14)

soct=|T |,v = SoC init
v ∀v ∈ V (4.15)

Constraints (4.16) to (4.20) determine how much energy and at which periods regulation

and energy market services can be provided. In (4.16) and (4.17), an individual EV can

perform charging or discharging if it is available, such that αt,v = 1. An EV at a specific

period t can either charge for the energy or the regulation down market as shown in constraint

(4.16), or it can discharge for the energy or regulation up market as shown in constraint (4.17).

This is managed in such constraints by the auxiliary binary variable zt,v and the maximum

power Pmax
v that an EV can provide. If an EV is scheduled to discharge in the energy

market, the aggregator may decide to interrupt this discharging by scheduling regulation

as shown in constraint (4.18). The same rationale applies for constraint (4.19) to interrupt

energy market charging. Since the aggregator must meet each EV’s motion requirements, it

can only interrupt charging that is in addition to energy obtained for motion as shown in

constraint (4.20).

0 ≤ pemchg
t,v ∆t+ eregdnt,v ≤ αt,v (P

max
v ∆t) (1− zt,v) ∀t ∈ T, v ∈ V (4.16)

0 ≤ pemdsg
t,v ∆t + eregupt,v ≤ αt,v (P

max
v ∆t) zt,v ∀t ∈ T, v ∈ V (4.17)

0 ≤ estopdsgt,v ≤ pemdsg
t,v ∆t ∀t ∈ T, v ∈ V (4.18)

0 ≤ estopchgt,v ≤ pemchg
t,v ∆t ∀t ∈ T, v ∈ V (4.19)

∑

(t∈T )

estopchgt,v ≤ ∆t
∑

(t∈T )

(

pemchg
t,v

)

− ξv ∀v ∈ V (4.20)
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The last set of constraints for the aggregator are related to the regulation and energy

market PQP curves as shown in Figure 4.3. In constraint (4.21), binary variable wup
t,b will be

active at one specific segment b when parameter PQP up
b equals πa. This rationale applies

to constraints (4.21) to (4.24). By deciding which segment of the CDF curves is active, a

corresponding market price can be used in equation (4.1).

∑

(b∈B)

wup
t,b · PQP

up
b = πa ∀t ∈ T (4.21)

∑

(b∈B)

vupt,b · PQP
RT
b = πd ∀t ∈ T (4.22)

∑

(b∈B)

wdn
t,b · PQP

dn
b = φa ∀t ∈ T (4.23)

∑

(b∈B)

vdnt,b · PQP
RT
b = φd ∀t ∈ T (4.24)

Note that constraints (4.3)-(4.6) include multiplication of binary and continuous variables,

which are linearized as discussed in [123]. The linearization is further explained in Appendix

B.1. A discussion on the software and techniques used to solve this model is presented in

Appendix A.

4.4 Simulation Results

The proposed approach is applied to a fleet of 1000 EVs managed by an aggregator. The

driving patterns are obtained from the 2009 NHTS [124]. The capacity of the EV batteries

is 24 kWh [9], however the eSoC can only range between a minimum of 15% and a maximum

of 95% of the capacity due to electrochemical constraints on the battery [127]. Both the

charging and discharging power rate was 3.3 kW, the initial eSoC was randomized, and the

round trip charging/discharging efficiency was set to 90% [85]. The degradation cost was

accounted for using equation (4.7) with the cost per EV battery set to [550 450 350 250]

$/kWh and with corresponding slopes mv = −[0.015 0.012 0.008 0.0013] [9]. The lower
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slope is the approximation of 2012 technology and the higher slope represents technological

improvement in the battery cycle-life to three times the current value [9, 34].

Historical data was obtained from the ERCOT market for capacity and energy prices

along with their corresponding market clearing power quantities from [152]. The data was

used to create the price-quantity-probability curves as shown in Figure 4.3 for regulation

up and down, and the RT markets. Each curve has 10 steps with descending probability

from 100% to 0% with uniform increments and the curves were created for each hour of the

operating day, i.e. 24 hours. For simplicity, it is assumed the probabilities of acceptance

for regulation up/down follow πa = φa and for deployment πd = φd. The day-ahead energy

market prices were obtained to create a typical representative curve using k -means clustering

[139]. In order to model the SO, UC was performed on a modified IEEE RTS-96 with 96

generators, an aggregator, and wind resources [149]. For simplicity, the regulation up/down

offers of the generators are 10% of their energy offers. The softwares and techniques used to

solve the model are discussed in Appendix A.

4.4.1 Estimation of the probability of acceptance/deployment

The aggregator estimates the probability of acceptance and deployment to maximize its rev-

enue for offer acceptance in the DA and capacity deployment in the RT, while compensating

EV owners for degradation. In order to determine the best estimation of such probabilities,

Monte Carlo (MC) simulations are performed. The process is as follows. First, the aggrega-

tor performs its optimization and the offers/bids for the DA energy and regulation market

are submitted to the SO. Next, the operator performs UC in the DA to determine the energy

price and which offers are accepted for the provision of down and up regulation, resulting

in capacity prices. After that, the aggregator is notified whether its offers were accepted,

however, it remains unaware if it will be requested to deploy its capacity in the RT. Finally,

to validate if the aggregator is able to deploy in the RT with maximum profits, MC sim-

ulations are performed. Each trial of the MC consists of a randomly generated wind and

demand realization using the sampling process discussed in [153]. The number of MC trials
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Figure 4.4: CDF of the total profit obtained by the aggregator with varying probabilities.

The battery cost is 250 $/kWh for all trials.

is set to max (1000, NMC), where NMC is the number of MC trials required to ensure a 95%

confidence interval of an error less than 1% [154]. The total profits of the aggregator from

all trials are used to create a CDF curve for each combination of probability of deployment

and acceptance. The results are shown in Figure 4.4. Note that all potential combinations

of the probabilities in the range of [0,1] with step-size of 0.1 were solved but only a subset is

shown for clarity.

Figure 4.4 shows the CDF where the right-most curves indicate larger profits obtained

by the aggregator. When πa is low and πd is relatively high, e.g. πa = 0.1 and πd = 0.8,

the majority of the profits are obtained from energy arbitrage, thus all trials result in the

same profits (i.e. straight line). This occurs because the probability of acceptance πa is too

low to yield any accepted offers in the regulation market and results in no deployments. On

the other hand, if πd = 0.3 and πa is varied (dotted cases in Figure 4.4), the total profits

decrease because these combinations result in higher penalty costs, calculated in (4.5)-(4.6),

if the aggregator is unable to deploy its capacity offers. As a result, less overall capacity is

offered to the regulation market to minimize such costs.
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Further shown in Figure 4.4, if πd is increased from 0.5 to 0.8, e.g. solid line cases, the

total profits are substantially increased, because the aggregator will now be deployed in the

RT with a higher probability and so it increases its DA capacity offers. However, less energy

is scheduled to be supplied into the energy market so that it may be instead offered to the

regulation market. Such a tradeoff materializes because the potential revenue obtained in

the regulation market is greater than the energy market.

Moreover in Figure 4.4, the profits decrease when πa > 0.9 and πd > 0.8, because at

this point the aggregator is over-offering into the regulation market and thus when asked to

deploy in the RT, it fails to fulfill the requirements due to a lack of energy capacity. This

results in additional costs since it must compensate the imbalance through the RT market.

The combination of πa = 0.9 and πd = 0.8 yields the largest profits for the aggregator and

is used in subsequent analysis.

4.4.2 Cost/Benefit analysis with varying battery price

Using the best combination of probabilities (πa = 0.9 and πd = 0.8), the itemized costs and

revenues are analyzed with varying battery costs. The aggregator must compensate EVs for

the charging and discharging of their batteries for its own monetary benefit. The aggregator,

however, must determine how to cycle its fleet of EVs to decide the quantity to provide in

energy, and up/down regulation markets to maximize profit.

By varying the battery costs from 550 to 250 $/kWh, accounting for the expected ad-

vancement of battery technologies [34], the itemized expected revenue and costs are shown

in Figure 4.5a and Figure 4.5b, respectively, and the expected total profits in Figure 4.5c.

At higher battery costs (e.g. 550 and 450 $/kWh), the energy market provides the largest

revenue opportunities (Figure 4.5a). On the other hand, the participation of the aggregator

in the regulation market is kept to a minimum due to the effect of the degradation costs

and the potential inability to deploy in the RT. As the battery cost decreases to 350 $/kWh,

the participation in the regulation market leads to larger revenues (Figure 4.5a), but at the

same time the aggregator is unable to deploy some of that capacity in the RT resulting in
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Figure 4.5: Itemized breakdown of the expected revenue in (a) and costs in (b) with varying

battery cost. The expected total profits are shown in (c).

penalty costs, as shown in Figure 4.5b.

If the battery cost decreases to 250 $/kWh, the aggregator now decreases its participation

in the energy market to increase participation in the regulation market. This shift is explained

by lower degradation cost which results in increased revenues from both DA capacity and

RT exercise payments as shown in Figure 4.5a. Also shown in Figure 4.5a is the RT exercise

revenue which is only obtained because the SO requested the aggregator to deploy a portion

of its capacity in the RT.

The aggregator incurs costs which are in the form degradation, because of deployment

in the RT, and penalties because of the inability to supply the requirements by the SO. The

latter occurs because the aggregator estimates its expected capacity offer and deployment

using the probabilities πa and πd. For example, in a certain period, the aggregator may offer
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into the market a quantity of 2 MW, however, due to its expectation of this full quantity to

be accepted in the competitive market, it schedules the EV fleet’s charging/discharging for

a quantity less than 2 MW depending on the values of πa and πd. Therefore, the difference

between the offered quantity, which the SO can either accept fully or a portion thereof, and

the actual scheduled quantity demonstrates the aggressiveness of the aggregator’s market

participation. The aggregator runs the risk of over-offering into the market, which it may be

unable to deploy and thus must purchase the imbalance in the RT.

Figure 4.5c shows the total expected profits which indicates that for higher costs, the

profits are much lower than with lower cost batteries. Overall, when the cost is more than

350 $/kWh, energy market arbitrage is advantageous and as technology improves resulting

in lower costs, e.g. 250 $/kWh, providing regulation services becomes more profitable.

However, note that the aggregator is profitable at all levels of battery costs, which shows

potential as a commercial business participating in both markets simultaneously.

4.4.3 Offering strategy of the aggregator in the DA

Using the best combination of probabilities (πa = 0.9 and πd = 0.8), Figure 4.6 shows the

aggregator’s DA offering strategy to obtain the revenue/costs, shown in Figure 4.5, when

the battery cost is 250 $/kWh. Figure 4.6a shows the DA and RT energy price. The RT

price is obtained from the PQP curves from the process in Figure 4.3. Figure 4.6b shows the

down/up capacity prices and Figure 4.6c shows the itemized quantities of all services and

the total system eSoC. From Figure 4.6b, the down reserve prices are higher during the early

hours of the day as compared to the latter hours. This is beneficial to the aggregator because

EVs are more likely to be plugged-in during the nighttime hours and thus can provide such

services. On the other hand, up reserve prices have two distinct peaks at 0800 and 1900

hours and the aggregator can provide such services around these peaks.

Figure 4.6c shows the itemized breakdown of all potential services the aggregator can

provide to the DA energy and reserve markets. The aggregator charges its fleet from the

energy market (EMCHG) to meet transportation needs of EV owners. Although the down
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itemized breakdown of capacity, energy, and eSoC in the DA.

reserve prices are cheaper than the DA energy prices, the aggregator schedules a majority

of the regulation down (REGDN) between hours 0100 to 0800 so it may use that to provide

arbitrage services later during the course of the day. Therefore, procuring transportation

needs from the energy market (EMCHG) decreases the risks because if the SO does not accept

the down regulation offers, it is still able to meet the EV needs. In addition, down regulation

services are not entitled to the exercise revenue because otherwise the aggregator would

receive double benefit of energy that can be used for transportation and at the same time

being paid for it. As a tradeoff, by scheduling down regulation, the aggregator is decreasing
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the potential charging from the energy market (EMCHG), which could be scheduled to

discharge back into the grid when profitable. On the other hand, with regulation up, the

aggregator may potentially obtain two sources of revenue, DA capacity and RT exercise.

Therefore, regulation up provision is scheduled in every period of the operating day and

the aggregator is essentially performing arbitrage between two markets. It charges its EV

fleet with energy (EMCHG) and a large portion of it is supplied as regulation up (REGUP

and STOPCHG) and a smaller portion discharged back into the energy market (EMDSG).

As a benefit, if the up regulation offers are accepted but only a portion is requested to be

deployed, the aggregator essentially acquires two benefits:

1. the energy stored in the fleet of EVs can be used in future exploitations, and

2. no discharging compensation is required since no deployment materialized.

Degradation has a major effect on the benefits that the aggregator may attain from

providing energy arbitrage and regulation. However, for regulation, the aggregator can

essentially schedule for up/down regulation in the DA to obtain the capacity revenue for

being on-standby and have a chance that it will not be deployed in the RT. This is the best

case for the aggregator, since it is virtually using its EVs without causing any degradation,

hence no compensation to the EV owners. This effect can be seen in Figure 6c with the large
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amount of up regulation offers, because the aggregator is aware only a portion of these will

be accepted and even smaller portion will be actually deployed in the RT.

The total offered, accepted, and deployed quantities for up and down reserves are shown

Figure 4.7a and Figure 4.7b, respectively. The deployed values are based on the results of

the MC simulations performed in Figure 4.4. For deployment, the solid bar represents the

average quantity for all trials and the confidence interval (red) for one standard deviation,

thus showing the variability. In Figure 4.7a, 47.8 MW over the course of the day was offered

as up regulation, of which 40.7 MW (85.1%) was accepted by the SO, and of that 8 MW

(27.2%) on average was deployed with a standard deviation of 4.9 MW (16.7%). On the other

hand, down regulation yielded a total offering quantity of 2.2 MW, of which 1.1 MW (51%)

was accepted, and 0.4 MW (37.9%) with a deviation of 0.24 MW (22.1%) was deployed in

the RT. The aggregator favors up regulation because it allows both the capacity and exercise

revenues to be obtained. Major reasons for lower quantities of down regulation is caused by

the aggregator’s commitment to procuring energy for transportation, which limits the EV

fleets capacity for additional charging for down regulation, and also because only the capacity

revenue can be obtained. On the other hand, STOPDSG portion of down regulation can

only be activated if energy market discharging (EMDSG) occurs. However, because REGUP

services are profitable, this limits EMDSG from occurring often and so STOPDSG is limited.

For purposes of simplicity, it was assumed the probabilities of acceptance and deployment

were equal, i.e. πa = φa and πd = φd. Different values, however, can be chosen for the down

regulation which better resemble the outcome of Figure 4.7b. At the same time, this also

shows the SO requires less down regulation.

4.4.4 System operator’s perspective

Table 4.1 uses the MC trials to show the SO’s expected operating cost, standard deviation of

cost, and the startup cost of committing additional units in the RT, which is compared to the

cost of DA commitments. The base case in Table 4.1 presents the costs in the power system

without the aggregator. Next, the case when the aggregator participates in energy markets
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Base Energy Market
Regulation and

Energy Market

RT

Total costs (106 $) 2.436 2.435 2.433

Standard deviation of costs ($) 32,755 32,690 32,282

Start-up costs ($) 4,521 4,490 3,940

DA Start-up costs ($) 163,780 162,800 152,020

Table 4.1: System Operator’s Costs

only and finally, the case when aggregator partakes in both markets. From Table 4.1, the

SO’s expected costs in the RT are reduced when the aggregator provides services to the grid.

Also, the startup costs in the DA and RT decrease. Even though the total quantitative cost

savings seem low, e.g. 0.08% when the aggregator participates in energy market and 0.12%

when performing in both markets the qualitative benefits are of importance [155], and these

would be mirrored as large amounts of money over an operating year.

The decrease in the start-up costs shows that less cycling of conventional generation

occurs in both the DA and RT [156]. Especially in the RT, the lower start-up costs indicate

the SO requires less fast-starting units to be on stand-by in the case of deviations. This

follows because the aggregator obtains energy when there is an abundance and less need for

deployment, and then supplies it when there is a need, thus making it a viable alternative to

conventional generation for reserve provision. As compared to the conventional generation,

the aggregator has essentially no startup costs and also has lower operating costs, which only

include the compensation of the battery degradation to the EVs owners.

4.5 Conclusion

EV aggregators are the required mediators between large fleets of EVs and the SO. This chap-

ter proposed a framework to determine the optimal bidding/offering strategy in the energy

and regulation reserve markets, which maximizes the aggregator’s profits while observing the
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incurred loss of utility for the EV batteries. In addition, the aggregator takes into account

its expected probability of acceptances and deployments for up and down regulation. EVs

can provide a new stream of services to the power system, however in order to incentivize

the EVs’ participation in energy and reserve markets, a fair compensation mechanism must

in place such as discussed in Chapter 2.

Results show the aggregator benefits from the reserve market more than the energy

market for two main reasons: 1) it collects capacity revenue for providing regulation, which

does not incur degradation, and 2) it gains additional revenue if required to deploy in the

real-time. When the battery costs are high, most of the revenue is obtained from the energy

market, however, with low battery costs most of the revenues come from regulation reserve

provision. This is because as the battery costs decrease, the provision of regulating reserve

would result into two streams of revenue: capacity and deployment. The provision of these

services from EVs is also beneficial to the SO, since it would reduce the total operating costs

of the system.

By combining the works in Chapter 2, 3, and 4, a complete business and operating

framework can be incorporated by an aggregator. This complete framework considers the

methodology to control consumer loads, e.g. EWHs, HVAC, EVs, among others, manage the

grid limits, e.g. lines, transformer aging, and the bidding/offering strategy in the wholesale

markets to generate revenue. Such frameworks open business opportunities for new players

to enter the market.



97

Chapter 5

OPTIMAL MARKET PARTICIPATION OF AGGREGATED

ELECTRIC VEHICLE CHARGING STATIONS CONSIDERING
UNCERTAINTY

5.1 Introduction

In Chapters 2-4, the focus was on an aggregator managing residential customers equipped

with EVs and other loads in order to provide benefits, i.e. additional revenue, lower operating

costs, among others. However, an aggregator is capable of not only managing ensembles of

loads but also a fleet of electric vehicle charging stations (EVCS), which is the focus of this

chapter.

As the EV penetration grows high-capacity charging infrastructure is required to provide

energy needs for transportation. The infrastructures energy needs will be procured through

a power utility, which may not have the capacity to provide such volatile and high-power

needs on-demand and at the same time at the minimal cost. As a solution, the stations can

resort to the day-ahead (DA) electricity markets, where they may obtain their energy needs

at lower costs and ensure quality-of-service for their EV customers.

To participate in DA markets, market operators set forth minimum capacity require-

ments, e.g. 0.5 MW in CAISO [157] and 0.1 MW in ERCOT [158]. However, a single station

will not be able to meet these minimum capacity requirements. On top of this, it would

be extremely difficult to predict its daily load curve. Thus, a centralized aggregator can

aggregate the power requirements of an ensemble of EVCS in order to effectively participate

in the DA market and reduce the electricity procurement costs. To further reduce the costs,

the aggregator can perform energy arbitrage with an energy storage system (ESS) it manages

in conjunction with the charging station ensemble.
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The work in this chapter proposes a framework for an aggregator to manage an ensemble

of EVCSs to bid/offer into the wholesale electricity market with the primary goal of minimiz-

ing operating costs. The aggregator, to further reduce its costs, is equipped with an ESS that

acts as a buffer which can provide flexibility to the market bids/offers, while considering the

effect of battery degradation due to cycling. The aggregator DA optimization model incor-

porates uncertainty management of market prices, using robust optimization (RO), and of

EVCS power demand, using stochastic optimization. For cost-effective operation, the aggre-

gator must effectively manage uncertainty while considering the trade-off between potential

cost reduction compared to degradation of its ESS. The main contributions of this work are:

• Aggregator DA optimization model managing aggregated power needs of EVCSs while

considering demand and market price uncertainty.

• Complete ESS model that supplies energy to the grid or to the EVCSs, if economically

profitable, while considering degradation costs.

• Realistic framework of an aggregator exploiting its ESS, power system market, and

EVCSs.

5.2 Framework

Aggregator is a profit-seeking business entity who acts as a mediator between the EVCSs and

the wholesale electricity markets and contains an ESS. Fig. 5.1 shows its interactions with

the different entities: ensemble of EVCSs, power system, and electricity markets. The ag-

gregator coordinates with each EVCS under its jurisdiction to obtain their charging demand

requirements for the next day. The demand of each EVCS is then used to obtain the aggre-

gated demand. The aggregator performs a DA optimization to schedule its operation at the

least-cost, while exploiting its ESS asset. The ESS charges from the grid in grid-to-battery

(G2B) mode when the price of electricity is low. During the periods of high electricity prices

it can either supply the stations in battery-to-station (B2S) mode or inject energy back into
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Figure 5.1: Aggregator’s interaction with the EVCSs, electricity market, and power system.

the grid in battery-to-grid (B2G) mode. If the aggregator is unable to supply all of the

energy needs from the ESS in B2S mode, it resorts to obtain the power directly from the

grid in grid-to-station (G2S) mode. The aggregator’s optimization determines the market

bids (G2B and G2S services) and offers (B2G services) as a price-taker in the DA wholesale

markets.

5.2.1 EVCS perspective

Without the intervention of an aggregator, each individual EVCS resorts to purchasing

electricity directly from their local power utility company. From a business perspective, the

average cost of retail energy is higher than in the wholesale electricity markets [159]. Each

individual EVCS, however, may not meet the minimum energy requirements to participate

in a wholesale market, and at the same time, their primary objective is to provide charging

services to their EV customers. On the other hand, the purpose of the aggregator is to

optimize its market performance and provide service to the individual EVCSs. Therefore, the

aggregator should be reimbursed for its services by the EVCSs. However, this methodology

is not in the scope of this work.
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Within this framework, the EVCS are assumed to have in place an internal day-to-day

operation for managing each individual EV customer. An interested reader is advised to refer

to [97, 98, 99] for such methodologies. In this framework, each EVCS must provide its load

curve for the following day. Note that internally, each EVCS may accommodate any pricing

structure to expense individual EV charging and the resulting forecasted demand would

be a by-product of that. Such communication hides proprietary information, for example,

the number of EVs arriving at the stations, power requirements of EVs, type of charging

protocols used, among others. The major benefit is that an EVCS is not required to change

their internal business/operating procedures to conform to the aggregator’s framework.

5.2.2 ESS

The ESS, which is owned by the aggregator, is beneficial when scheduling energy in the DA.

Without the ESS, the aggregator has no other option but to blindly follow the aggregated

demand curve. With the ESS at the disposal, however, it can charge and store energy which

is either used to supply EVCSs in B2S mode or return to the grid in B2G mode, if economical.

These operations by the ESS, however, cause battery degradation [10] and for them to be

viable, the potential cost savings incurred must be higher than the cost of degradation.

The following section discusses the mathematical formulation of the optimization model

considering the interactions of the aggregator shown in Fig. 5.1.

5.3 Optimization Model

5.3.1 Day-ahead model

In the DA model, an optimal charging/discharging schedule is determined for the EVCS to

maximize its profit. The EVCS determines the amount of energy to sell psellt and buy pbuyt

from the grid to meet the aggregated EVCS demand Dt. The objective function is formulated
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as follows:

min ∆t
∑

t∈T

λt · (p
buy
t − psellt ) (5.1)

where pbuyt = pG2B
t + pG2S

t and psellt = pB2G
t · η within the set of time periods T with index

t. The aggregator sells energy (psellt ) by scheduling its ESS to perform in B2G mode, i.e.

pB2G
t , while considering battery discharge efficiency η. On the other hand, the aggregator

purchases energy from the market (pbuyt ) to both charge the ESS (pG2B
t ) and directly supply

the power consumption requirements of EVCSs (pG2S
t ). The buying and selling of energy is

priced at the DA market prices λt with a timestep of ∆t.

The objective function (5.1) is subject to several constraints. The first set of constraints

(5.2) and (5.3) determine the energy state-of-charge (SoC) of the ESS. In (5.2), the SoC is

dependent on its previous state, the charging power pG2B
t , the discharging power pB2G

t , and

the amount of power discharged from the battery to supply the stations pB2S
t . Constraint

(5.3) ensures the SoC does not violate its preset minimum and maximum limits, and at the

same time is below its rated capacity BCES.

soct = soct−1 +∆t
(

pG2B
t · η − pB2G

t − pB2S
t

)

∀t ∈ T (5.2)

0 ≤ SoC ≤ soct ≤ SoC ≤ BCES ∀t ∈ T (5.3)

The aggregator obtains forecasts of the power consumption from each EVCS dt which is

then summed to obtain Dt, i.e. Dt =
∑

dt. This then must be met from a combination of

the ESS discharging in B2S mode, pB2S
t , or directly from the grid in G2S mode, pG2S

t . This

is managed by constraint (5.4).

pB2S
t · η + pG2S

t = Dt ∀t ∈ T (5.4)

The set of constraints (5.5)-(5.7) ensures the different services provided by the ESS are

within their minimum and maximum power limits, Pmax. At the same time, these constraints

also disallow B2S to occur simultaneously with B2G and G2B, where xt ∈ {0, 1} is an

auxiliary binary variable. For example, if xt = 1 then B2S is allowed whereas B2G and G2B
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are disallowed. This is implemented to ensure the ESS system performs only charging or

discharging, and not both simultaneously, which is physically not viable.

0 ≤ pB2S
t ≤ Pmax · xt ∀t ∈ T (5.5)

0 ≤ pB2G
t ≤ Pmax · (1− xt) ∀t ∈ T (5.6)

0 ≤ pG2B
t ≤ Pmax · (1− xt) ∀t ∈ T (5.7)

The last constraint (5.8) ensures the total energy in the ESS at the beginning of the

optimization horizon is replenished by the end, i.e. t = |T |.

soct=|T | = SoC init (5.8)

5.3.2 Demand uncertainty

The aggregator obtains demand requirements of each EVCS for the next operating day,

which is then aggregated into Dt. However, each EVCSs demand is prone to uncertainty thus

rendering Dt to be uncertain. This is the case because the demand is based on predictable,

yet uncertain arrival, departure, and charging times of EVs at EVCSs. Thus, the aggregator

must take into consideration the effect of such demand uncertainty on its decision-making

process for wholesale market participation. To hedge against this uncertainty, the technique

of stochastic optimization [160] is implemented. This technique takes advantage of the known

probability distributions of the uncertain parameters (i.e. Dt). With this, instead of using a

single aggregated demand scenarioDt in the optimization, now a set of scenarios S with index

s is considered, i.e. Ds,t. In addition, each demand scenario Ds,t has an expected probability

πs to materialize in the real-time (RT). With this approach, the aggregator obtains the DA

bidding/offering schedule that is optimal with respect to all the demand scenarios instead of

only of them particularly.

The mathematical formulation of the aggregator’s DA stochastic optimization is as fol-

lows:
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min ∆t
∑

t∈T

λt · (p
buy
t − psellt ) + ∆t

∑

s∈S

πs
∑

t∈T

λ↑t · p
−
s,t

−∆t
∑

s∈S

πs
∑

t∈T

λ↓t · p
+
s,t (5.9)

subject to:

socs,t = soct−1 +∆t
(

pG2B
t · η − pB2G

t − pB2S
s,t

)

∀s ∈ S, t ∈ T (5.10)

0 ≤ SoC ≤ socs,t ≤ SoC ≤ BCES ∀s ∈ S, t ∈ T (5.11)

pB2S
s,t + pG2S

t + p−s,t − p+s,t = Ds,t ∀s ∈ S, t ∈ T (5.12)

0 ≤ p−s,t ≤ pB2S
s,t + pG2S

t ∀s ∈ S, t ∈ T (5.13)

0 ≤ p+s,t ≤ pB2S
s,t + pG2S

t ∀s ∈ S, t ∈ T (5.14)

0 ≤ pB2S
s,t ≤ Pmax · xt ∀s ∈ S, t ∈ T (5.15)

socs,t=|T | = SoC init ∀s ∈ S (5.16)

Constraints (5.6), (5.7) (5.17)

The objective function (5.9) has two additional terms as compared to (5.1). The expected

cost of purchasing additional energy in the RT market in scenario s is determined based on

the power shortage p−s,t and the buying price λ↑t . Similarly, the expected revenue from selling

surplus energy in the RT market in scenario s is determined based on the excess power p+s,t

and selling price λ↓t . Both of these two terms contain probability πs representing the chance

of the demand scenario s to materialize in the RT.

The objective function is subject to the constraints similar to (5.2)-(5.8), however, with

the addition of stochastic scenario index s. The decision variables that include index s are

socs,t and pB2S
s,t , as they are wait-and-see decisions within the stochastic framework [160],

and are determined after the demand materializes in the RT [160]. On the other hand, the

variables representing G2B (pG2B
t ), B2G (pB2G

t ), and G2S (pG2S
t ) are here-and-now decisions,

i.e. they have the same value regardless on the scenario. The bidding/offering decisions into
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the markets, i.e. G2B, B2G, and G2S, are based on the weighed average values over all

scenarios. Slack variables p−s,t, p
+
s,t capture the shortage/excess at each scenario. The final

energy balance is expected to be obtained from the RT market. On the other hand, B2S

is the operation of the ESS to supply the EVCSs, which does not require interaction with

markets and can be controlled by the aggregator as demand materializes in the RT.

5.3.3 Market price uncertainty

The aggregator, using its ESS, exploits electricity market prices λt by purchasing energy

pbuyt when prices are low and selling energy psellt when prices are high. To participate in

the DA market, however, the aggregator forecasts market prices which are uncertain. Such

price uncertainties may cause the aggregator to incur monetary losses. For example, with

forecasted prices λt, the aggregator’s optimization will schedule and consequently bid into

the DA market for large amounts of energy to be procured during the low-price periods.

After the DA market clears, however, the realization of specific prices may be higher than

forecasted, and thus may leave the aggregator with high monetary losses. To hedge against

such uncertainty in the DA, the RO technique is implemented [161]. RO is an uncertainty

modeling approach suitable for situations where the range of the uncertainty (e.g. range of

electricity prices) is known and not necessarily the distribution.

Deviations of the market prices are modelled within the range
[

λmin
t , λmax

t

]

, where λmax
t =

λmin
t +∆λt and ∆λt is the highest expected price deviation in period t. To control the level

of protection against uncertainty, parameter Γ is varied from [0, J ], where [J = t|∆λt > 0].

With Γ = 0, no price deviations are considered and the solution is equivalent to the deter-

ministic case, i.e. no consideration of uncertainty. On the other hand, if Γ = |J | the solution

is the most conservative since price deviations at all time periods t are considered, i.e. prices

at all time periods are equal to λmax
t . This solution is equivalent to the RO model proposed

by [162]. However, the implemented RO procedure is based on [161] and it allows choosing

any Γ from range [0, J ], thus fine-tuning the level of conservatism.



105

The RO-based DA model is formulated as follows:

min ∆t
∑

t∈T

λmin
t · (pbuyt − psellt ) + ΓRO · zRO +

∑

t

yRO
t (5.18)

subject to:

Constraints (5.2)− (5.7) (5.19)

zRO + yRO
t ≥ ∆t ·∆λt ·

(

pG2B
t + pG2S

t

)

∀t ∈ T (5.20)

yRO
t ≥ 0 ∀t ∈ T (5.21)

zRO ≥ 0 ∀t ∈ T (5.22)

In comparison to the deterministic DA objective function (5.1), the extended objective

function (5.18) includes two additional terms containing variables zRO and yRO
t used to

account for the known price bounds and parameter Γ. This objective is subject to the original

constraints (5.2)-(5.7) along with constraints (5.20)-(5.22). Constraint (5.20) determines the

worst set of time periods in which price deviations could materialize when interacting with

the market in G2B and/or G2S. RO variables zRO and yRO
t are positive, which is imposed in

constraints (5.21)-(5.22). The interested reader is encouraged to refer to [161] for details on

how to obtain the robust counterpart.

5.3.4 Battery degradation management

As the battery cells within the ESS charge and discharge, they lose a fraction of their capacity,

which is often referred to as battery degradation [10]. The aggregator incurs all costs related

to the ESS and thus must consider costs of degradation in its DA optimization. Degradation

management determines the optimal trade-off between revenue collected from services, i.e.

B2G and B2S, and the cost of cycling the battery. Without degradation management,

the ESS would be exploited to obtain the maximum revenue, however, it would experience

excessive degradation that is not economically justified.
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The formulation of the aggregator model that considers battery degradation is as follows:

min ∆t
∑

t∈T

λt · (p
buy
t − psellt ) +

∣

∣

∣

m

100

∣

∣

∣

∑

t∈T soc
deg
t

BCES
· CES · BCES (5.23)

subject to

Constraint (5.2)− (5.7) (5.24)

socdegt ≥ soct−1 − soct ∀t ∈ T (5.25)

socdegt ≥ 0 ∀t ∈ T (5.26)

The second term in objective function (5.23) represents the degradation costs, where CES

is the $/kWh price of the ESS, which includes the balance-of-system costs, e.g. battery and

labor [163]. In addition, socdegt determines the amount of energy discharged from the battery

in period t and m is a linear approximation of the battery life as a function of the number of

cycles. Parameter m can be estimated based on datasheets of battery manufacturers [164].

The objective function is subject to constraints (5.2)-(5.7) and (5.25)-(5.26). In (5.25),

the constraint models max {0, soct−1 − soct}, where the amount of energy discharged from

periods t− 1 to t is determined. It is assumed the same energy discharged was charged into

the battery in previous time periods in order to complete one full cycle of degradation [10].

Constraint (5.26) imposes non-negativity on socdegt .

5.3.5 Complete DA model

The complete aggregator’s DA model that includes EVCSs demand uncertainty, market price

uncertainty, and ESS degradation costs is formulated as follows:

min ∆t
∑

t∈T

λt · (p
buy
t − psellt )

+ ∆t
∑

s∈S

πs
∑

t∈T

λ↑t · p
−
s,t −∆t

∑

s∈S

πs
∑

t∈T

λ↓t · p
+
s,t

+ ΓRO · zRO +
∑

t

yRO
t

+
∣

∣

∣

m

100

∣

∣

∣

∑

t∈T soc
deg
t

BCES
· CES · BCES (5.27)
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Figure 5.2: Day-ahead forecast of aggregated EVCS demand at the workplace location (a),

commercial location (b), and the total sum of the two (c). The intervals 50%, 90%, and

100% are shown to represent the spread of the data. For example, 50% of the EVCS demand

lies within the specified range.

The objective function (5.27) is subject to constraints (5.6), (5.7), (5.10)-(5.16), (5.20)-

(5.22), and (5.25)-(5.26). Note in (5.25)-(5.26), the stochastic index s is included into the

SoC, similar to (5.10)-(5.11).

5.4 Case Study

The proposed approach is applied to aggregated EVCS demand Dt obtained by implement-

ing the methodology outlined in [42] using the vehicle data from the National Household

Travel Survey (NHTS) [124]. A total of 5,000 EVs were tracked over 1000 days to obtain

daily charging consumption profiles in the workplace and commercial (e.g. shopping and

restaurants) locations equipped with EVCS. The EVCSs are assumed to be fast charging

stations (FCS) using Level 3 charging protocol at 40 kW power rating [96]. Fig. 5.2 shows
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Figure 5.3: Day-ahead market price with deviation band for uncertainty

the aggregated EVCS charging profiles at workplace (a), commercial (b), and the total of the

two locations (c). In Fig. 5.2(a)-(c), the light grey area represents the 50% band (i.e. 0.67

of the standard deviation from the mean consumption), the red is the 90% band (i.e. 1.645

of the standard deviation from the mean), and the dark grey is the 100% band, which rep-

resents the minimum/maximum of the data. One thousand EVCS charging demand profiles

are reduced to a set of scenarios with their respective probabilities πs using the K -medoids

scenario reduction technique [165].

The capacity of the ESS is 1 MWh, however, the available SoC ranges from 15% to 95%

of the rated capacity due to constraints on the batteries [127]. The charging and discharging

power ratings are 500 kW, while the charging/discharging efficiencies are 95%. The initial

(t = 0) SoC of the ESS is randomized. The ESS price is set to 300 $/kWh unless otherwise

specified.

To represent a typical weekday DA market prices, the ERCOT historical data in the

period January-March 2016 is used [166]. A typical price curve that best characterizes the

data set is obtained using the K -medoids approach [165], and is shown in Fig. 5.3 as λmin
t .

The upper bound prices λmax
t used in RO are proportional to λmin

t . To discourage scheduling

of bids/offer in the RT markets under the stochastic optimization framework, the buying λ↑t

and selling λ↓t prices are assumed to be twice and half the DA typical prices λmin
t , respectively.
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Figure 5.4: Normalized cost CDFs for combinations of stochastic scenarios and price robust-

ness parameter.

5.4.1 Optimal combination of stochastic scenarios and RO parameters

To minimize its operating cost, the aggregator must determine its optimal bidding/offering

strategy in the DA market. To do so, the uncertainty of energy prices and EVCS demand

must be estimated using the RO parameter, Γ, and the number of scenarios |S| in stochastic

optimization, respectively.

To determine the best combination of parameters that yield the minimal operating cost,

Monte Carlo (MC) simulations are performed [154]. The DA schedules are obtained for all

discrete RO parameters in Γ = [0, |T |], and stochastic scenarios, |S| = [1, 5, 10, 25, 50, 100].

For each combination of |S| and Γ yielding a DA schedule, MC trials were performed to

determine the actual cost of operation as the uncertainty materializes. The number of MC

trials are set to min{1000, NMC}, where NMC is the number of trials required to obtain a

95% confidence of an error less than 1% [154]. In the MC simulations, 32 price and 32 EVCS

demand profiles are used totalling 1024 MC trials.

Fig. 5.4 shows the normalized CDF of the aggregator operating cost for different com-

binations of Γ and |S|. Cost of each MC trial is normalized against the mean cost of the

deterministic MC trial, i.e. |S| = 1 and Γ = 0. In other words, normalization occurs against

cost realizations when uncertainty is not taken into consideration. While all combination of
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|S| and Γ are considered, Fig. 5.4 shows only select combinations for clarity.

From Fig. 5.4, the CDF curves to the left of the deterministic curve yield the lowest

operating cost over all MC trials. In all combinations where |S| > 1 and Γ > 0, the

aggregator sees cost savings. However, if only a single scenario, i.e. |S| = 1, is considered

with Γ > 0, specifically the case shown in Fig. 5.4 where |S| = 1,Γ = 36, the costs are

higher than in the deterministic case. This is caused by the RO, where it increases B2S and

decreases B2G energy to protect against unforeseen price deviations that may materialize

within the bounds shown in Fig. 5.3. Thus, it is more favorable to offset the demand needs

of the EVCSs using the ESS to discharge in B2S, compared to selling energy back to the

grid in B2G mode. Since B2S is highly-favored with respect to the set with a single scenario,

i.e. |S| = 1, the operating cost is increased because once the demand materializes, the single

demand scenario cannot capture the volatile demand variations thus requiring additional

energy purchases.

On the other hand, the cases with |S| > 1,Γ > 0 outperform the deterministic case.

This shows that both the demand and price uncertainty should be properly characterized in

order to obtain the minimum operating cost. In addition, from Fig. 5.4, some combinations

outperform others, e.g. |S| = 10,Γ = 72 and |S| = 25,Γ = 72. Thus, the price uncertainty

parameter Γ = 72 yields the lowest cost. The major difference, however, between these two

cases are the number of considered scenarios, i.e. 10 compared to 25 scenarios. In terms

of computational complexity of stochastic optimization, larger number of scenarios requires

additional computational time to obtain the optimal solution [160]. Thus, it is important to

analyze the saturation point at which higher number of scenarios does not yield substantial

cost savings. This is studied in Fig. 5.5, where the average normalized costs over all MC

trials are shown against the number of stochastic scenarios |S| for different values of Γ. In

addition, the computation times for Γ = 72 over a select number of stochastic scenarios are

shown in Table 5.1. As expected, the average cost experiences a significant decrease from a

single scenario to five scenarios. If Γ = 72, there are clear cost savings between 10 and 25

scenarios (Fig. 5.4). However, the computational time increases from 34.3 to 806 seconds.
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Figure 5.5: Normalized average cost as a function of the number of stochastic scenarios.

Table 5.1: Computational Times (seconds)

Stochastic Scenarios, |S|

1 5 10 25 50

Γ = 72 2.1 9.9 34.3 806 4486

This increase in computational time still keeps the problem tractable for market operations.

On the other hand, moving from 25 to 50 scenarios, the cost savings is minimal but the

computational time increases drastically to 4486 seconds.

The combination of the number of scenarios, |S| = 25, and the RO parameter, Γ = 72,

yields a balance between the least operating cost over all MC trials and computational

burden. This combination is used throughout the remainder of the test case.

5.4.2 Battery degradation effects

As the ESS is used, it experiences cycle-life degradation which can be translated into cost,

as shown in equation (5.23). The ES price, normalized on a per-kWh basis, is varied from

800 $/kWh to 300 $/kWh to study the effect on the aggregator’s G2B, B2S, and B2G

actions. The degradation model, as shown in (5.23), is linear and represented by slopes

m = −[0.0017, 0.0006]. The lower slope is the approximation of the current technology [164],

and the higher slope indicates technological life cycle improvement.

The aggregator’s daily total energy scheduled as a function of the ESS price is shown
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Figure 5.6: Total daily energy scheduled in the deterministic case (a) and with uncertainty

management considered (b), as a function of varying ESS prices. Note in (b) the average

B2S is shown since it is a function of scenario s.

in Fig. 5.6 for G2B, B2S, and B2G services. Fig. 5.6(a) shows the deterministic case, i.e.

|S| = 1,Γ = 0, whereas Fig. 5.6(b) considers uncertainty with the best estimates. In both

cases, as the ESS price decreases, the amount of energy scheduled for all operating modes

monotonically increases because the potential revenue outweighs the degradation costs.

As for the specific modes, selling energy back to the grid in B2G mode is highly unfa-

vorable when uncertainty is considered. For B2G to occur profitably, the aggregator must

purchase energy in the low-price periods to charge the ESS (G2B) so it can sell back to the

grid by discharging in the high-price periods. However, the uncertainty in market prices

renders the potential arbitrage revenue to be lower than expected and thus as a result, less

B2G is scheduled. However, if the price of the ESS is low enough, i.e. less than 400 $/kWh,

B2G is sporadically scheduled because the potential grid revenue obtained for such services

outweighs the degradation costs, as shown in Fig. 5.6(b).

On the other hand, when considering uncertainty management in Fig. 5.6(b), the ag-

gregator decreases B2G and increases B2S for all battery prices. This happens because by

scheduling B2S, the aggregator offsets the need to purchase energy from the grid (G2S)

exactly in periods when the EVCSs require it. Instead, the aggregator uses the energy pur-

chased during low-price periods and stored in the ESS to discharge and supply the EVCS
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Figure 5.7: DA market buying and selling strategy in the deterministic case.

(B2S). The aggregator uses the ESS as a method to reduce monetary risks in the electricity

markets.

5.4.3 Day-ahead schedules

The aggregator determines its bidding/offering schedule in the DA as shown in Fig. 5.7 for

the deterministic case, and in Fig. 5.8 for the case considering uncertainty with the best

estimates. The net power purchases pbuyt with and without the ESS, the power sold psellt , and

DA market prices are shown in the figures. The net purchases with the ESS is equivalent

to pbuyt = pG2S
t + pG2B

t −
(
∑

s∈S p
B2S
t,s

)

/|S|, whereas without the ESS it is equivalent to

pbuyt = pG2S
t . Also, psellt = pB2G

t in both cases. If any period, the pbuyt with ESS is greater

than pbuyt without ESS, then the ESS is performing in G2B and thus additional purchases

are made. On the other hand, if the opposite is true (less than), then B2S is occurring which

reduces purchases in the market (i.e. offsets G2S).

In the deterministic case (|S| = 1,Γ = 0), the aggregator exploits the low-price periods

(03:00 to 04:30, and 14:15 to 15:45) by scheduling purchases in the form of G2B (pbuyt with

ESS in red is larger in these periods). During the high-price periods (07:15 to 08:45, and 19:30

to 21:00), the aggregator discharges the ESS to obtain revenue from the market (pbuyt with

ESS in red is lower in these periods). The discharging, however, is split between B2G (psellt )

with 526.3 kWh and B2S with 1074 kWh total. The total B2S energy is higher than B2G
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Figure 5.8: DA market buying and selling strategy when uncertainty management is con-

sidered. Note that the average B2S is used in pbuyt with ESS since it is dependent on the

scenario set.

because the demand needs of the EVCS, as shown in Fig. 5.2(c), correlate with the high-price

regions. Thus, it is economical to discharge, while incurring degradation costs, to supply the

EVCSs in B2S and offset purchases directly from the market in G2S. Furthermore, B2G is

only exploited when the potential revenue that can be obtained by selling in the market

outweighs both the degradation cost and the potential benefit of performing in B2S mode

to offset G2S. This effect can be seen in Fig. 5.7 where B2G (psellt ) is scheduled to be sold

during the high-price periods but not during the peaks, because it is more economical to

perform B2S due to correlation with EVCS demand.

In Fig. 5.8, the DA schedule is shown considering the best estimates of uncertainty

management, i.e. |S| = 25,Γ = 72. As compared to the deterministic case, G2B is spanned

across more time periods (i.e. pbuyt with ESS is larger). This occurs because the RO technique

makes the aggregator hedge against the worst-case of unforeseen increase in market prices.

As an example, in Fig. 5.7, the lowest-price period is 03:15 hours, and the maximum power

of 500 kW is scheduled by the aggregator. However, potential uncertainty exists in the

estimate of the market price, and thus the aggregator is risk-averse by scheduling 212 kW in

that time period as shown in Fig. 5.8.

When considering uncertainty (Fig. 5.8), the aggregator does not schedule any B2G
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(psellt = 0 in all periods). Instead, it increases the average B2S to 2161 kWh compared

to the 1074 kWh in the deterministic case in Fig. 5.7. An example of this can be seen

from periods 18:00 to 23:30, where B2S is performed consistently (pbuyt with ESS is lower).

This occurs because in the worst-case the market prices may be higher than expected, and

thus there might be an adverse effect on the overall cost caused by excessive purchasing

in G2S mode from the market. In addition, since the aggregator also considers multiple

scenarios of demand that may materialize, the B2S is scheduled as an average response across

all scenarios, as opposed to only a single scenario. Therefore, B2S is not only increased

significantly, but also spread across multiple time periods that correlate with the EVCS

demand (see Fig. 5.2(c)) to offset G2S purchases.

5.4.4 Yearly cost/benefit analysis

The aggregator must obtain a monetary benefit when participating in the grid markets and

scheduling the ESS. A yearly cost/benefit analysis is performed for two cases: 1) day-ahead

market (DAM) case where the aggregator schedules the aggregated EVCSs without the ESS,

and 2) DAM including the ESS. The results are summarized in Table 5.2.

In the first case (1), the aggregator manages the EVCSs and participates in the DAM,

which incurs a cost of $311,092 which is solely based on purchases from the market in G2S

mode. Furthermore, if the aggregator uses an ESS in conjunction with the market schedul-

ing, it obtains revenue benefits of $47,321 by performing in B2S/B2G mode. However, this

introduces additional costs related to purchasing energy in the markets in G2B mode and the

respective degradation costs when charging/discharging as shown in Table 5.2. By imple-

menting an ESS, the total costs are reduced from the DAM case by 5.31%. It is important to

emphasize that the ESS installation cost, cost of market participation, bidirectional metering

cost, or any other auxiliary costs that arise in the cases are not considered. Therefore, the

presented comparison of yearly revenue should be used as a basis for a detailed cost/benefit

analysis.
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Table 5.2: Yearly Cost/Benefit Analysis

Costs ($) Benefit ($) Total ($)

G2S G2B ES deg. B2S/B2G

1) DAM 311,092 - - - 311,092

2) DAM + ESS 311,092 27,185 3,627 47,321 294,583

5.5 Conclusion

This chapter developed a framework for an aggregator to manage an ensemble of electric

vehicle charging stations to participate in the day-ahead electricity market to minimize energy

procurement costs. To further reduce costs, the aggregator exploits its energy storage system

to charge during the low-price periods in G2B mode, and then to discharge and either supply

the stations directly in B2S mode or to inject power to the grid in B2G mode. However,

since the charging/discharging of the ESS causes degradation, this effect is translated into

an economic index and taken into consideration. To manage uncertainty, a stochastic and

robust optimization approach are employed for the charging station power needs and market

prices, respectively. The employment of robust optimization for market price uncertainty

allows fine-tuning the conservativeness of the solution by varying the parameter Γ. On the

other hand, weighed stochastic scenarios capture the expected cost of operations over demand

scenarios that are estimated probabilistically. The benefit of this framework is twofold. First,

the volatile and high-power needs of the charging stations are now procured in the day-ahead

market, and second, the charging stations can now focus on their primary role to provide

services to electric vehicle customers as opposed to attempting to reduce energy procurement

costs.

Results show that the aggregator provides extensive benefits to the charging stations by

managing their energy procurement from the wholesale market. The cost savings, however,

are only experienced if uncertainty is properly characterized. The total cost savings are

5.31% if both DA market participation and uncertainty management is implemented with



117

an ESS, as compared to ignoring the ESS.

While it is expected that charging stations will provide the necessary infrastructure for

EVs, other infrastructures are needed that provide on-demand service for EVs. The concept

of battery swapping stations have been discussed in the literature and also in commercial ap-

plications. The next chapter develops a business and operating framework for such swapping

stations.
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Chapter 6

OPTIMAL OPERATION AND SERVICES SCHEDULING FOR

AN ELECTRIC VEHICLE BATTERY SWAPPING STATION

6.1 Introduction

The frameworks in Chapter 2, 3, and 4 are methods that tackle EV issues of upfront costs by

providing streams of revenue to owners. However, the issues of range anxiety, slow charging

times, and lack of public infrastructure cannot be solved directly by extracting services from

EVs. Battery swapping stations (BSS) are poised as effective means of eliminating these

issues [9].

Since the BSS is a new player that aggregates and operates a large number of EV batter-

ies in its stock, it can directly participate in the wholesale power markets without the need

of a mediator, e.g. aggregagor. As an objective, the BSS seeks to maximize its profits, by

participating in markets and providing services, such as demand response, energy storage,

and reserves. The storing capabilities of the BSS are scheduled based on time-varying elec-

tricity prices, e.g. RTP. The BSS maximizes its profits by exploiting the low-price periods of

the day to purchase electricity and charge batteries in Grid-to-Battery mode (G2B), and sell

during the high-price periods by discharging batteries to the grid in Battery-to-Grid mode

(B2G). Additionally, BSS can perform Battery-to-Battery (B2B) services in order to charge

certain batteries using the energy stored in other batteries.

The BSS mimics a traditional gasoline station in its operations. Consumer’s arrive at

the BSS with depleted batteries and the batteries are swapped with fully-charged ones.

Such swapping relieves the stress of range anxiety and slow charging times of EV owners.

In addition, the BSS would lease the batteries to EV owners and thus reduce the overall

operating cost in maintaining the battery. The motivation behind this chapter is to present
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Figure 6.1: BSS interactions with customers, market, and the power system.

a complete BSS framework that benefits the BSS itself, EV consumers, and the power grid.

The main contributions of this chapter are:

• A realistic framework of a BSS in the DA scheduling process in order to take advantage

of G2B and B2G services.

• Complete BSS operating model including battery degradation, market price uncer-

tainty, and battery demand uncertainty. The impact of each feature is individually

analyzed.

• The model exploits the ability to transfer energy among batteries in B2B mode, if there

is an economic benefit.

6.2 Business Case

6.2.1 Operations

The operation of the BSS is shown in Figure 6.1 [167]. The BSS’s goal is to supply the

battery demand while maximizing its profits. The BSS requires a stock of batteries with

different capacities to serve its customers. It is assumed the batteries are owned by the BSS

and leased to the customers. The customers benefit from this arrangement since all the

costs related to the batteries, including degradation and maintenance, are accrued by the

BSS. The customer is not concerned with the battery lifetime nor with the way in which the
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battery was charged (rapid, high power charging or slow charging). To recoup these costs

and to make a profit, the BSS charges customers a fixed fee for the service of swapping.

The BSS decides the optimal battery charging/discharging schedules and purchases/sells

electricity by submitting bids and offers in the electricity market. By exploiting the time-

dependencies of wholesale electricity prices, the BSS can take advantage of buying electricity

(in G2B mode) during the low-price periods, selling electricity (in B2G mode) during the

high-price periods, and shifting energy within its stock of batteries (in B2B mode).

As an example of B2B mode, consider a scenario of two 24 kWh batteries with current

state-of-charges 18 kWh and 21 kWh, in which one of them is to be swapped in the near

future, and the price of electricity is high. If we assume the power rating is 3 kW, and ignore

the efficiencies for the sake of simplicity, then the BSS has three choices: it can purchase 3

kWh in the market and charge the 21 kWh battery (G2B mode), it can purchase 6 kWh in

the market and charge the 18 kWh battery (G2B mode), or it can discharge 3 kWh from

the 18 kWh battery to fully charge the 21 kWh battery (B2B mode). Since the electricity

price is high, it is more economical to perform B2B and thus postpone G2B to low-price

time periods. The proposed optimization model takes advantage of these scenarios in order

to maximize profits for the BSS.

6.2.2 Customer perspective

From the customers’ perspective, the largest cost of owning an EV is the battery. In 2012,

the replacement cost of a 24 kWh battery ranged from $12,000 to $14,400 (i.e. 500-600

$/kWh) [34]. However, in the proposed BSS scheme, the customers would lease the battery

from the BSS and avoid a lump investment.

The other aspects that concern potential EV owners are the long charging times, the

costs of upgrading household installations to high power chargers, and the limited number

of public charging stations. Typical EVs are equipped with standard 1.6 kW level I chargers

(see Table 1.2) that connect directly to a household outlet [168]. At this charging level, it

would take about 15 hours to fully charge a 24 kWh battery. Owners, however, can install
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upgraded level II chargers [168], with a power level of 3.3 kW and thus reduce the charging

time to about 7 hours. However, the upgraded charger comes at an extra cost, which is

approximately $849 in 2013 [31]. Even if these additional expenses are acceptable to the

owners, they may not be able to install upgraded chargers due to limits in their current

electric supply installations, or the regulations of the housing structure they reside in (e.g.

apartments).

Another concern of the EV owners is the limited range due to the relative small capacity

of the batteries. In order to ease this concern, the owners would need to have access to pub-

lic charging stations, which are translated into requiring heavy infrastructure investments.

These concerns could be eliminated if an EV owner has access to BSSs in the areas where

they usually travel.

6.2.3 Power system benefits

As the penetration of EVs increases [169], and if instead of resorting to the BSS, the con-

sumers favor high-power charging, they would need to install upgraded chargers to accom-

modate their daily energy needs for transportation. This may require upgrades not only of

the electric installations at the household level, but also of the distribution system itself, in

order to successfully accommodate the increased power demand. On the other hand, if BSSs

are installed, some of the investments would be avoided, and the only required upgrades

would be at the site at which the BSSs are located.

Furthermore, the BSS is an aggregator of batteries, and these stations could also be

used to provide services to the system as a whole. The BSS can inject power back into

the power system to smooth the net daily demand curve, if the BSS perceives a benefit in

doing so. In addition to acting as a storage device, the BSS can also provide a share of the

required ancillary services in different intervals, e.g. frequency regulation, load following,

and voluntary reserve provisions [170].
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6.3 Optimization Model

6.3.1 Assumptions

In the DA scheduling, the BSS estimates the market price λDA
t and the battery demand

Ng,t. With this information, the DA optimization takes place. In this process, the discounts

for swapping only partially charged batteries to the customers are incorporated. These

discounts are a form of compensation for the inconvenience caused to the customers, and

can be adjusted based on the BSS business. The DA model determines the battery charging,

discharging and swapping schedules as well as the offering/bidding schedule to the market.

6.3.2 Day-ahead model

In the DA, the model determines the amount of electricity to buy embuy
t , and to sell emsell

t ,

in the market to meet the battery demand Ng,t. An optimal charging/discharging schedule

is derived to maximize profits for the BSS. The DA model is formulated as:

maximize BSR
∑

(t∈T )

∑

(i∈I)

xi,t (6.1)

−
∑

(t∈T )

λDA
t

(

embuy
t − emsell

t

)

− V oCD
∑

(t∈T )

∑

(g∈G)

batshortg,t

−BSR
∑

(t∈T )

∑

(i∈I)

βi,t

In equation (6.1), the first term is the revenue collected from customers for swapping

priced at BSR. The binary variable xi,t is equal to 1 if battery i is swapped at the beginning

of time period t, and 0 otherwise. The second term is the energy purchased and sold in the

DA market at price λDA
t . The objective function also considers the BSS’s inability to supply

battery demand batshortg,t , which is penalized at the cost of value-of-customer-dissatisfaction,
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V oCD. The last term is the discount βi,t given on the revenue BSR collected from consumers

for a battery swap if a 100% charged battery cannot be supplied.

The V oCD is a monetary value the BSS business places on the inability to supply a

customer with a battery. This value is determined by performing research studies and surveys

of its customers. A parallel can be drawn between the V oCD and the value-of-lost-load

(V oLL), which is used in operating and planning models for power systems, e.g. [153]. V oLL

represents the value customers place on the loss of 1 MWh of supply, which is dependent on

interruption duration, time of day, location, and cause of interruption [171]. The BSS has

two criteria when estimating the V oCD: i) the monetary loss of swapping revenue that could

have been obtained at present and potentially in the future from the dissatisfied customer,

and ii) the monetary loss due to new customer acquisition. However, the estimation of V oCD

is beyond the scope of this work.

This objective function is subject to several constraints as discussed and shown below.

soci,t =

(

soci,t−1 + batchgi,t η
chg −

batdsgi,t

ηdsg

)

(1− xi,t) + SOC init
i,t · xi,t ∀i ∈ I, t ∈ T (6.2)

Equation (6.2) is the energy state-of-charge soci,t of each battery i. This energy state-of-

charge takes into account the state-of-charge at the previous time period, the charging power

batchgi,t , discharging power batdsgi,t , and efficiencies. Thus, in (6.2), if xi,t is equal to 1, the soci,t

is not updated. Instead, the battery is swapped with a different one with the incoming energy

state-of-charge, SOC init
i,t . Constraint (6.2) performs multiplication of continuous and binary

variables, which are linearized with the approach discussed in [123] and further explained in

Appendix B.2.

soci,t−1 + socshorti,t ≥ BCmax
g · Si,g · xi,t ∀i ∈ I, g ∈ G, t ∈ T (6.3)

Constraint (6.3) captures the battery swapping mechanics. If battery i is swapped to an

EV, the state-of-charge should be at the maximum battery capacity BCmax
g , for the battery

group g it belongs to. Binary parameter Si,g is used to identify the appropriate battery

group g, which battery i belongs to. If the maximum battery capacity cannot be met, the
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remainder is captured in the energy shortage variable socshorti,t .

∑

(i∈I)

Si,g · xi,t + batshortg,t = Ng,t ∀g ∈ G, t ∈ T (6.4)

In (6.4), The BSS seeks to meet the battery demand Ng,t. Battery shortage is captured

in variable batshortg,t , which is penalized in (6.1). To meet the demand, energy needs to be

purchased from the market and the excess can be sold back if this results in profit for the

BSS, as shown in (6.5).

embuy
t − emsell

t =
∑

(i∈I)

(

batchgi,t − batdsgi,t

)

∀t ∈ T (6.5)

Each battery has a maximum charging/discharging power limit Pmax
i , enforced by con-

straints (6.6) and (6.7). The batteries energy state-of-charge and energy state-of-charge

shortage are constrained by maximum and minimum battery capacities in constraints (6.8)

and (6.9). The energy state-of-charge ceiling is below the nominal value in order to avoid the

risk of setting the battery on fire, and the minimum avoids rapid degradation of the battery,

as explained in [127]. Constraints (6.10) and (6.11) disallow charging and discharging to

occur simultaneously at any given period of time, while (6.12) and (6.13) disallow activat-

ing the purchasing and selling variables simultaneously. Constraint (6.14) ensures the total

stored energy is the same as it was at the beginning of the day.

0 ≤ batchgi,t ≤ (1− xi,t)P
max
i ∀i ∈ I, t ∈ T (6.6)

0 ≤ batdsgi,t ≤ (1− xi,t)P
max
i ∀i ∈ I, t ∈ T (6.7)

∑

(g∈G)

BCmin
g · Si,g ≤ soci,t ≤

∑

(g∈G)

BCmax
g · Si,g ∀i ∈ I, t ∈ T (6.8)

∑

(g∈G)

BCmin
g · Si,g ≤ socshorti,t ≤

∑

(g∈G)

BCmax
g · Si,g ∀i ∈ I, t ∈ T (6.9)
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Figure 6.2: Piecewise discount function. The values in (·) are used in the case studies in

Section IV.

batdsgi,t ≤ Pmax
i · ai,t ∀i ∈ I, t ∈ T (6.10)

batchgi,t ≤ Pmax
i (1− ai,t) ∀i ∈ I, t ∈ T (6.11)

emsell
t ≤M · ct ∀t ∈ T (6.12)

embuy
t ≤M (1− ct) ∀t ∈ T (6.13)

soci,t=|T | = SOC init
i,t=0 ∀i ∈ I (6.14)

If the BSS cannot manage to fully charge a battery that potentially could be swapped to

a customer, it has two alternatives. The first is to offer a discount on the price of the battery

swap, BSR. The second alternative is not to swap the battery incurring the V oCD penalty.

The discounts are modeled as a piecewise linear curve in Figure 6.2 and they increase as the

battery energy shortage increases. The piecewise curve needs to incorporate the discount

due to the energy shortage in the swapped battery and the perceived inconvenience of the

customer having to return to the BSS sooner due to the energy shortage. This is modeled
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through constraints (6.15)-(6.17). Constraint (6.15) calculates the normalized energy state-

of-charge shortage and distributes it among the discrete energy state-of-charge shortage

segments Li,t,d. The discount βi,t in (6.16) is calculated as the product of the slope of each

discount segment kd and the respective shortage segment Ld. Lastly, constraint (6.17) limits

the state-of-charge shortage segments to their preset limits Lmax
d . An example is shown in

Figure 6.2. For the first 5% (Lmax
1 ) of the missing energy, the BSS gives up to 10% discount

(k1 · L
max
1 ) on the price of the battery swap, BSR. For the next 10% (Lmax

2 ) of the missing

energy, the BSS gives up to an additional 30% discount (k2 · L
max
2 ). This rationale follows

for the remaining segments.

socshorti,t
∑

(g∈G) Si,g · BCg

=
∑

(d∈D)

Li,t,d ∀i ∈ I, t ∈ T (6.15)

βi,t =
∑

(d∈D)

kd · Li,t,d ∀i ∈ I, t ∈ T (6.16)

0 ≤ Li,t,d ≤ Lmax
d ∀i ∈ I, t ∈ T, d ∈ D (6.17)

6.3.3 Demand uncertainty with inventory robust optimization

At the DA stage, battery demand intervals [Nmin
g,t , N

max
g,t ] represent the bounds of the expected

battery demand for the next day. If the battery demand is high, the BSS will need to resort

to purchasing energy in the volatile real-time market to meet the demand. Furthermore,

the BSS might need to offer discounts for non-fully charged batteries or it might even be

unable to supply some customers. On the other hand, if the battery demand realization is

low, the excess electricity can either be sold in the real-time market or stored in the batteries

for later use. However, having a battery stock fully charged would prevent the BSS to take

advantage of possible low prices in the real-time market. This uncertainty is managed using

the robust inventory theory [172]. In such approach, a sub-optimal solution is obtained if

the demand realizations are within the defined interval that belongs to [Nmin
g,t , N

max
g,t ], where

Nmax
g,t = Nmin

g,t +∆Ng,t and ∆Ng,t is the battery demand deviation. The DA model (6.1)-(6.17)
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extended to account for demand uncertainty is formulated as follows:

maximize BSR
∑

(t∈T )

∑

(i∈I)

xi,t − DA
(

embuy
t − emsell

t

)

− V oCD
∑

(t∈T )

∑

(g∈G)

batshortg,t

− BSR
∑

(t∈T )

∑

(i∈I)

βi,t

−
∑

(g∈G)

yg (6.18)

This objective function is subject to the constraints shown below:

Constraints (6.2), (6.3), (6.5)− (6.17) (6.19)
∑

(i∈I)

Si,g · xi,t + batshortg,t = Nmin
g,t + bataddg,t ∀g ∈ G, t ∈ T (6.20)

yg ≥ V oCD



−
∑

(t∈T )

bataddg,t + Γg · qg +
∑

(t∈T )

rg,t



 ∀g ∈ G (6.21)

qg + rg,t ≥ ∆Ng,t ∀g ∈ G, t ∈ Jg (6.22)

The robust objective function is shown in (6.18). The last term represents the penalty

cost yg imposed by the inventory RO for each battery group g. Equation (6.20) ensures the

minimum battery demand (Nmin
g,t ) is met. Variable bataddg,t represents the additional number

of batteries charged on top of Nmin
g,t . Constraint (6.21) determines the worst time periods

in which additional battery demand could materialize. Parameter Γg is used to control the

level of robustness of the solution taking values in [0, |Jg|], where Jg = {t|∆Ng,t > 0}. If

Γg = 0, no deviations are considered and the solution is equivalent to the deterministic

one, whereas if Γg = |Jg|, deviations at all time periods are considered, acquiring the most

conservative solution (i.e. demand at all time periods is equal to Nmax
g,t ). Variables qg and rg,t

are non-negative auxiliary variables used to account for the known demand bounds. Variable

rg,t is incorporated in constraints (6.21)-(6.22) as the dual variable of constraint (6.4) and
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Figure 6.3: DA price deviations with multiple bands.

qg is used to preserve linearity. A detailed explanation of how to obtain the inventory RO

problem is given in [172].

6.3.4 Price uncertainty with multi-band robust optimization

The BSS can interact with electricity markets by purchasing energy when it is inexpensive

and injecting it back when the price is high, at a profit. Profit opportunities may be missed

or the BSS could incur losses if uncertainty of market prices is not appropriately accounted

for. To hedge against this uncertainty, the multi-band RO approach is used [173].

In [173], deviations in prices are modeled within the range [λmin
t , λmax

t,b ], where λmax
t,b =

λmin
t + ∆λt,b and ∆λt,b is the market price deviation for each band b. Unlike inventory RO

used for the battery demand uncertainty, the multi-band approach uses multiple deviation

bands controlled by robustness parameter θb, which takes values in [0, |Ub|], where Ub =

{t|∆λt,b > 0}. However, the total number of deviations over the optimization horizon must

be
∑

(b∈B) |θb| ≤ |T |. As an example, Figure 6.3 shows three uncertainty bands. The band

λmax
t,5% represents all the uncertainty materializations that are 5% above λmin

t . Similar rationale

applies to λmax
t,10% and λmax

t,15%. The formulation of the model that manages price uncertainty
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using multi-band RO is:

maximize BSR
∑

(t∈T )

∑

(i∈I)

xi,t −
∑

(t∈T )

λmin
t

(

embuy
t − emsell

t

)

− V oCD
∑

(t∈T )

∑

(g∈G)

batshortg,t

− BSR
∑

(t∈T )

∑

(i∈I)

βi,t

−
∑

(b∈B)

θb · vb

−
∑

(t∈T )

zt (6.23)

This objective function is subject to the following constraints:

Constraints (6.2)− (6.17) (6.24)

vb + zt ≥ ∆λt,b · em
buy
t ∀b ∈ B, t ∈ Ub (6.25)

The objective function (6.23) includes additional variables vb and zt, and parameter

θb, which controls the robustness of the solution. If θb = 0, the effect of price deviations

is ignored and the solution is deterministic. On the other hand, for θb = |Ub| all price

deviations are considered, which results in the most conservative solution. Equation (6.25)

ensures feasibility for any deviation ∆λt,b. The non-negative variable zt is the dual variable of

the DA objective function (6.1) and the non-negative variable vb is used for linear equivalency.

A detailed explanation of how to obtain the multi-band RO problem is discussed in [173].

6.3.5 Battery degradation costs

Charging cycles reduce batteries’ lifetime. Since the BSS incurs all costs related to batteries,

it needs to incorporate the costs resulting from battery degradation. In this work, degrada-

tion characteristic is highly sensitive to the number of cycles and virtually insensitive to the

depth-of-discharge, as explained in [10]. However, other chemistries with higher sensitivity
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to the depth-of-discharge can be modeled as proposed in [10]. The formulation of the BSS

model that manages battery degradation is:

maximize BSR
∑

(t∈T )

∑

(i∈I)

xi,t −
∑

(t∈T )

λDA
t

(

embuy
t − emsell

t

)

− V oCD
∑

(t∈T )

∑

(g∈G)

batshortg,t

− BSR
∑

(t∈T )

∑

(i∈I)

βi,t

−
∑

(t∈T )

∑

(i∈I)

Cdeg
i,t (6.26)

Subject to:

Constraints(2)− (17) (6.27)

Cdeg
i,t =

∣

∣

∣

mi

100

∣

∣

∣

batchgi,t + batdsgi,t
∑

g∈G Si,g · BCg

Cbat
i ∀i ∈ I, t ∈ T (6.28)

The objective function (6.26) explicitly includes the cost of degrading the battery Cdeg
i ,

due to charging/discharging cycles undergone. Cdeg
i is calculated in (6.28), where mi is

the slope of the linear approximation of battery life as a function of the number of cycles,

and Cbat
i is the cost of the battery. The value of mi is approximated from manufacturer

datasheets [174].
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6.3.6 Complete day-ahead model

The complete DA model that incorporates battery demand uncertainty, market price uncer-

tainty, and battery degradation costs is as follows:

maximize BSR
∑

(t∈T )

∑

(i∈I)

xi,t −
∑

(t∈T )

λmin
t

(

embuy
t − emsell

t

)

− V oCD
∑

(t∈T )

∑

(g∈G)

batshortg,t

−BSR
∑

(t∈T )

∑

(i∈I)

βi,t

−
∑

(g∈G)

yg −
∑

(b∈B)

θbvb −
∑

(t∈T )

zt

−
∑

(t∈T )

∑

(i∈I)

Cdeg
i,t (6.29)

subject to:

Constraints (6.2), (6.3), (6.5)− (6.17), (6.20)− (6.22), (6.25), (6.28) (6.30)

6.4 Case Study

The proposed approach is applied to two case studies over a 24 hour period. The charg-

ing/discharging efficiencies are 90% with maximum charging/discharging power of 3.3 kW.

The energy state-of-charge variable (soci,t) is bounded within 15% and 95% of the nom-

inal capacities in order to protect the batteries [127]. The initial energy state-of-charge

(SOC init
i,t=0) of the batteries are uniformly randomized between 15% and 95%, and the in-

coming energy state-of-charge (SOC init
i,t>0) is randomized within 30% and 60% of the nominal

capacity. Parameter SOC init
i,t=0 represents the energy stored in each battery in the BSS stock

at the beginning of the day, whereas SOC init
i,t>0 represents the energy in the customer’s battery

when they arrive to the BSS for swapping. The BSR is set to $70, as used in [13], and the

V oCD is $200. The piecewise discount curve is designed with four segments: 1) k1 = 2 and

Lmax
1 = 5%, 2) k2 = 3 and Lmax

2 = 10%, 3) k3 = 4 and Lmax
3 = 5%, and 4) k4 = 100 and

Lmax
4 = 80%, and is shown in Figure 6.2.
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Figure 6.4: Distribution of demand at BSS in (a), and uncertainty bounds in (b).

In order to represent a typical weekday, the historical data of every Thursday in the period

January-March 2013 from the PJM market [125] was used. The typical weekday curve was

obtained using the K -means clustering approach [139] to identify a price profile that best

characterizes the data. The upper bound prices λmax
t,b are proportional to the derived typical

weekday curve which is equivalent to λmin
t , as shown in Figure 3. The arrival times for

swapping are assumed to follow the probability distribution function (PDF) shown in Figure

6.4a, which is derived from [124]. This assumption is justifiable since there is no historical

data available for any existing BSS. The demand range [Nmin
g,t , N

max
g,t ] for battery group 24

kWh is shown in Figure 6.4b in light grey, and for 16 kWh batteries in dark grey.

A discussion on the software and techniques used to solve these models is presented in

Appendix A.

6.4.1 Small battery stock with a single battery type

This study assesses the individual effects of price uncertainty, demand uncertainty, and

battery degradation. A single battery group is used with a stock of 200 batteries with

nominal capacities of 24 kWh, as shown in Figure 6.4b in light grey area.
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Figure 6.5: Impact on B2G and B2B as battery capacity cost decreases.

6.4.1.1 Effect of battery degradation

By varying the battery capacity cost from 500 (cost in 2012) to 100 $/kWh, accounting for

the advancement of battery technologies as time progresses, the effect on B2G and B2B is

studied. The degradation model of the batteries is linear and represented by equation (6.28)

with slopes mi = [−0.0158,−0.0009]. The lower slope is the linear approximation of the

2012 technology [34], and the higher slope represents a technological improvement in the

battery cycle-life of three times the current value. Figure 6.5 shows the energy transfer in

B2G and B2B modes for different values of battery capacity cost. When the battery capacity

cost is 500 $/kWh, the battery performs no B2G or B2B. However, these services become

attractive as the battery capacity cost decreases, reaching a maximum for the lowest battery

capacity cost. If B2G and B2B are not present, the BSS purchases only the electricity needed

to supply the battery demand. B2B is significantly lower than B2G since B2B requires a

battery to discharge in order to charge another battery. This causes degradation of both

batteries and thus, the overall cost increases. However, B2G supplies electricity to the system

by discharging a battery and thus, only degrading a single battery during the optimization

horizon. Figure 6.5 shows that as the battery technology improves, the provision of services

to the grid, and internal energy transfers in B2B result in economic benefits to the BSS.
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Figure 6.6: (a) Effect on battery shortage, discounts, and net energy purchased, and (b)

effect on B2G, G2B, and B2B services. B2G and B2B are referred to the left-side-axis and

G2B to the right-side-axis.

6.4.1.2 Effect of uncertainty in battery demand

As discussed, the parameter Γ controls the level of robustness in the objective. Figure 6.6a

shows the battery shortage, discounts given (dashed line), and net energy purchased (solid

line) to charge batteries as a function of Γ. Figure 6.6b shows the total energy in B2G,

G2B, and B2B modes as a function of Γ. The net energy purchased is defined as the energy

required to meet the battery demand over the optimization horizon.

In Figure 6.6a, it can be seen that as Γ increases, the net energy purchased to charge

batteries increases, because the BSS needs to schedule additional batteries for the worst-
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case realizations (within the ranges shown in Figure 6.4b) without having to resort to offer

discounts, or incur V oCD. This figure shows that the net energy purchased saturates after

Γ = 15, since the BSS has insufficient stock to offer fully charged batteries, and thus needs

to give discounts and even is unable to serve all the customers. The battery stock is the

limiting factor because additional batteries cannot be scheduled above Γ = 15.

Figure 6.6b shows B2G, G2B and B2B as a function of Γ. This figure shows that B2G

decreases until Γ = 6, because additional batteries are scheduled in order to cope with the

uncertainty. This results in energy that used to be sold to the grid to be used for swapping

purposes. On the other hand, B2B reaches the maximum for Γ = 4 and Γ = 5 because the

demand increase requires more energy. However, before resorting to buying energy from the

grid, B2B is a less expensive option. This is because stand-by batteries pre-charge during

the low-price periods, and supply other batteries in the BSS stock when they require energy

during the high-price periods. For Γ values from 6 to 12, B2B reduces because the batteries

that used to pre-charge are now required to be swapped. Thus, they store their pre-charged

energy rather than transferring to other batteries. For Γ ≥ 12, B2G and B2B do not occur

because the additional batteries scheduled for swapping has increased up to the point where

the BSS cannot exploit the advantages of selling and transferring energy, but has to store

energy for swapping.

Battery demand uncertainty reduces the attractiveness of B2G and B2B services at the

benefit of protection against the worst-case demand realizations. The BSS needs to decide

what level of robustness is desired in the DA scheduling by weighing the benefits of B2G and

B2B against incurring discounts and V oCD if it is not able to meet the demand.

6.4.1.3 Effect of uncertainty in market prices

In general, the BSS tries to purchase electricity during the lowest-price periods. However,

with market price uncertainty, electricity purchases span over multiple time periods to pro-

tect against price deviations. The robustness parameters θ10% and θ15%, are varied between

[0, |Ub|] for price deviations of 10% and 15% above λmin
t as shown in Figure 6.3. The varia-
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Figure 6.7: Effect of price uncertainty on the energy injected in B2G (a) and B2B (b) in p.u.

(i.e. normalized over kWh).

tions, however, need to follow the rule |θ10%| + |θ15%| ≤ |T | [173]. The model is solved for

these combinations of robustness parameters and the effect on B2G and B2B are shown in

Figure 6.7. Quantities in Figure 6.7a are normalized to the maximum energy in B2G mode

of 463.16 kWh, and in Figure 6.7b to the maximum energy in B2B mode of 120.60 kWh.

As an example, if the BSS decides to protect against eight deviations in the 10% band and

four deviations in 15% band, i.e. θ10% = 8 and θ15% = 4, the B2G would be approximately

0.81-0.90 p.u and B2B would be 0.56-0.65 p.u. In Figure 6.7a, B2G decreases as the robust-

ness parameter is increased. However, B2G decreases faster to its minimum of 0.45-0.35 p.u.

for increases in θ15% as compared to θ10%. This is the case because 15% price deviations

are associated to larger price increments as compared to 10%. There are two reasons for

the decreasing trend of B2G as a result of the price uncertainty. First, B2G requires excess

electricity to be purchased and stored in batteries. By decreasing B2G, the amount of elec-

tricity purchased decreases, minimizing the potential impact of high-price materializations.

Second, the large electricity purchases that were concentrated in the low-price periods, in

order to minimize costs, are spread over multiple periods. This causes higher-price periods
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to purchase rather than sell energy to cope with the uncertainty.

Since the RO approach spans the energy purchases over time, resulting even in purchases

during the high-price periods, B2B is an economic alternative to the expensive market pur-

chases. By exercising B2B, pre-charged batteries supply the batteries that require energy for

swapping. From Figure 6.7b, it can be seen that if the robustness parameters are set to zero

(θ10% = θ15% = 0 ), B2B is at its minimum of 0.46-0.55 p.u. As the robustness parameters

increase, B2B increases as well. As in the B2G case, a higher increase in B2B occurs for 15%

price deviations as compared to the 10% price deviations.

6.4.2 Large battery stock with two battery types

In the large-scale case study, 16 kWh and 24 kWh battery groups are used with 100 and 200

battery stock, respectively, as shown in Figure 6.4b. From Figure 6.5, battery capacity cost

is set to 200 $/kWh to denote a trend towards cheaper batteries in the future, where the

benefits of B2G and B2B will be more evident. This study uses the complete DA model.

To determine the optimal combination of RO parameters, MC simulations were performed

[154]. The DA schedules for all combinations of Γg for 16 and 24 kWh batteries, and θb for

10% and 15% price deviation bands are simulated against MC trials. The number of MC

trials is set to the min {1000, NMC}, where NMC is the number of MC trials required to

ensure a 95% confidence of an error less than 1% [154]. All combinations of demand robust

parameters Γg and price robust parameters θb were simulated against 32 market price and

32 battery demand profiles, totaling 1024 MC trials.

In order to create price profiles, the difference between the typical curve, shown in Figure

6.3, and the historical data from the PJM market for each time period was calculated, which

represents the error. Next, the CDF of the error is obtained for each time period considering

the inter-hour correlation. Finally, price profiles are created using the error distribution.

The distribution function in Figure 6.4a is used to create the demand profiles.

Figure 6.8 shows the normalized CDFs of the BSS profits for different combinations of

robustness parameters. Although the MC simulations were performed for all combination of



138

0.995 1.0 1.0005 1.01 1.015 1.02 1.025
0

0.2

0.4

0.6

0.8

1

Profit (p.u.,$)

C
D

F

 

 

Γg = 0, θ10% = 20, θ15% = 4 (a)
Γg = 4, θ10% = 0, θ15% = 0 (b)
Γg = 4, θ10% = 0, θ15% = 20 (c)
Γg = 8, θ10% = 4, θ15% = 16 (d)
Γg = 12, θ10% = 4, θ15% = 8 (e)

Figure 6.8: CDF for combination of robustness parameters for price and demand.

parameters, only selected CDFs are shown for clarity. Each MC trials’ DA profit is obtained

for the robustness combination without uncertainty, i.e. Γg = 0 and θb = 0, and these profits

are used as the base-case, in which all other combination MC trials’ profits are normalized

against.

In general, the combination that yields the right-most CDF performs best, since it obtains

the highest profits. From Figure 6.8, the lower tails of the right-most group of CDFs show

differences in profit, where case (c) (labelled in Figure 6.8) yields the highest. However,

there is no distinct CDF that can be determined as the optimal combination. This is the

case because the right-most CDFs do not yield a large difference in profit for the majority of

the MC trials, apart from the lower-tail. Since the right-most CDFs are similar, the BSS has

less risk in determining an optimal combination of robust parameters for battery demand

uncertainty. Therefore, to analyze the remainder of the results, Γg is chosen as 4 for both

the 16 and 24 kWh battery groups.

On the other hand, if price uncertainty is ignored as in the case labeled (b) in Figure

6.8, the CDF is the one that has lowest profits (left-most) with some trials’ profit below 1

p.u. Therefore, price uncertainty parameters (θb) need to be properly chosen otherwise a

decrease in profits may occur. To determine θb combinations, MC simulations are performed

but this time each MC trial is characterized by a fixed demand profile (Nmin
g,t from Figure
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Figure 6.10: G2B and B2G (a), and B2B (b) services in the deterministic case.

6.4b), with different price profiles. The combination of robust parameters that result in the

highest overall profit was identified for each MC trial. Figure 6.9 shows the probability of

yielding the highest overall profit for different combinations of robustness parameters θ10%

and θ15%. The chances of incurring the highest profit for θ10% = 0 and θ15% = 0 is less than

1%, because no protection against price uncertainty is used. The optimal combination of

θ10% and θ15% is 8 and 4, which results in probability of 27% for obtaining the highest profits.

This combination of price robustness parameters is used while analyzing the remainder of

the results.
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Figure 6.11: G2B and B2G (a), and B2B (b) services in the uncertainty case.

At the DA stage, the BSS determines its energy bidding and offering schedules which

are equivalent to G2B and B2G mode, as shown in Figure 6.10a for the deterministic case

when battery demand and market price uncertainty are not included. If the market price is

high, the BSS sells electricity whereas during the low-price periods it purchases electricity.

Figure 6.10b shows the energy transfer between batteries in B2B mode, which occurs during

the high-price periods. The figure shows that B2B can occur simultaneously with B2G.

Since battery demand and market prices are high during periods in which B2B occurs, the

BSS uses stand-by batteries to discharge and charge other batteries. This way, they can be

swapped and the remaining energy is sold in the market in B2G mode. B2B mode counteracts

electricity to be purchased in G2B mode during the high-price periods. The total electricity

scheduled in B2G mode is 499.40 kWh, and in B2B mode is 71.51 kWh.

With market price and battery demand uncertainty included, as shown in Figure 6.11,

the BSS is more conservative by purchasing more electricity to supply the uncertain battery

demand in G2B mode. Battery demand uncertainty decreases B2G services because the

energy that was used for pre-charging batteries to be sold in later periods is instead being

used to supply the battery demand. Market price uncertainty also decreases B2G because it

limits the electricity that can be purchased at a competitive price during low-price periods.
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Both of these effects can be seen in Figure 6.11a where the total energy purchased increases

caused by the uncertain battery demand. However, the purchasing is spread between periods

in order to minimize losses caused by realization of high prices.

Battery degradation further limits B2G since this service comes at a cost of additional

charging in order to discharge later on, which degrades the battery life. From Figure 6.11a,

B2G decreases by 77% to 112.56 kWh as compared to the deterministic case. Due to market

price uncertainty, B2B decreases by 60% to 28.46 kWh in Figure 6.11b as compared to the

deterministic case. The uncertainties decrease B2G and B2B, however it also protects against

the worst-case materialization of prices and demand.

In the deterministic case, the total profit over the 24 hour period is $55,648 and costs

are $352.20, of which $323.44 correspond to electricity costs and $28.76 to degradation

costs. When considering uncertainty, the profit is $55,609, while costs are $421.63, of which

electricity costs are $361.1 and degradation costs are $30.26. The remainder totaling to

$30.27 indicates the cost of including uncertainty in the model. The profit is lower and

losses are higher when considering the battery demand and price uncertainty because the

BSS purchases more energy and minimizes the purchases during the low-price periods.

The losses the BSS incurs do not include any discounts in the deterministic and uncertain

cases, because the battery demand is met and the excess energy is sold in the market in B2G

mode. If cases occur where the battery demand increases, the amount of energy in B2G

mode would decrease until only G2B mode takes place at all time periods. Any further

increase in the battery demand will require discounts to be given to customers, since the

BSS is purchasing at maximum capacity of all the batteries in G2B mode. In the worst case,

when even discounts cannot satisfy the demand, then it is because battery stock is too small

and V oCD would be incurred by the BSS for each battery not supplied.

6.5 Conclusion

A detailed operating model of the BSS is presented in this chapter. The BSS can schedule

batteries to operate in G2B, B2G, or B2B modes. The model employs robust optimization
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techniques to manage uncertainty of electricity prices and battery demand. In addition, the

effect of battery degradation due to the charging/discharging cycling is taken into account

as well as their economic losses.

Results show that accounting for battery demand uncertainty, electricity price uncer-

tainty, and battery degradation costs, decreases B2G and B2B services. Electricity price

uncertainty has a major impact on the profits of the BSS and it needs to be managed prop-

erly in order to avoid poor economic performance. On the other hand, the impact of battery

demand uncertainty is less severe, but proper management of this uncertainty results into

better operating strategies for the BSS.

The order of priority for the services that the BSS can perform are dependent on the excess

energy, in addition to battery swapping needs, obtained in G2B mode. Then, depending on

the market conditions (e.g. high energy prices), the BSS schedules some of the batteries to

transfer energy to other batteries in B2B mode. Lastly, if there is an economic benefit, the

BSS sells the excess energy in B2G mode to the market.

The proposed model and the results that can be obtained by it will:

• help inform stakeholders on the design and operation of BSS stations

• allow more efficient short-run and long-run market decisions that can exploit storage

capabilities of the BSS

• enhance the environmental sustainability of the power sector by allowing further intro-

duction of renewable energy sources
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Chapter 7

OPTIMAL ENERGY STORAGE MANAGEMENT SYSTEM:

TRADE-OFF BETWEEN GRID ECONOMICS AND HEALTH

7.1 Introduction

Energy storage is expected to change the operating paradigm of the power grid. They are

expected to be available in EVs providing not only the transportation needs of customers,

but also grid services, and available in stationary applications. In all frameworks developed

in this work, energy storage was at the forefront. Specifically, battery ES systems consisting

of Lithium-ion (Li-ion) chemistries were studied since they are especially poised to provide

grid services due to their high power and energy density and relatively low cost per unit of

energy.

Research on battery ES systems has typically been segregated into focus on the chemistry

and material properties, e.g. [115, 116, 117, 118, 119], and focus on the grid integration,

operation, and economic performance, e.g. Chapters 2-6. This gap is notorious in both

the research community and in commercial usage of batteries; especially for grid applica-

tions where the DA market-based decision-making tools use simplified models that limit

the operations of the battery because cycle-life degradation (capacity fade [118]) and charg-

ing/discharging efficiencies are not properly characterized. In addition, empirical/theoretical

degradation models developed, e.g. [115, 116, 117, 118, 119], are typically highly non-linear

and thus introduce computational burden when optimizing over a multi-period time hori-

zon. By combining the economic exploitation of ES systems for grid services with data-driven

characterization of chemical properties, the decision-making processes can be improved.

The work in this chapter proposes a data-driven methodology to characterize battery ES

systems embedded into a decision-making optimization model. Such data-driven approaches
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enable the major battery characteristics along with grid economics to be co-optimized as a

MILP, which benefits from low computational burden and optimality. As for characteristics,

the ES system undergoes cycle-life degradation as a function of how it is operated in terms of

C-rate charging/discharging, i.e. amount of energy that is charged/discharged in a certain

timestep. Additionally, the internal resistance of the ES system leads to charging/discharging

power losses which are also functions of the battery operation. These two mechanisms,

variable C-rates and variable efficiencies, are embedded into the model so that batteries may

be scheduled at high-power (high C-rate) operations to capture additional grid revenues,

only if economical against the cost of adverse effects on the ES system.

The main contributions of this work are:

• A complete MILP optimization model for battery ES systems considering the effect on

cycle-life degradation and efficiency based on its operations.

• A data-driven methodology to transform variable C-rate degradation and efficiencies

into economic indices to be optimized.

7.2 Data Analytics of Li-Ion Batteries

Lithium ion batteries are a popular energy storage technology due to their high energy

density and coulombic efficiency. However, the capacity of these chemistries fades over time

due to degradative processes occurring alongside the main electrochemical reactions [175].

This capacity fade determines the usable lifetime of the batteries and is a function of how

that battery is operated. In addition to the long-term capacity fade of these batteries, the

internal (ohmic) resistance of the cells leads to power losses during charging/discharging.

These losses affect the coulombic efficiency of the battery and are also a function of the

battery’s operation [176]. To improve the accuracy of the optimization of this ES system,

the effects of battery operation on the cycle-life and efficiency are considered.
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Figure 7.1: SoH measurements of a Samsung INR18650 Li-ion battery cell at various C-rates.

7.2.1 Variable C-rate degradation mechanism

Lithium-ion batteries undergo cycle-life degradation as a function of increased C-rates [118].

C-rate is defined as the charging/discharging current normalized by the current which would

charge/discharge the nominal capacity of the battery in an hour, e.g. +1C and +3C are

equivalent to charging the battery in 1 hour and 20 minutes, respectively.

In order to obtain representative cycle-life characteristics, Li-ion nickel-manganese-cobalt

(Li-NMC) batteries, specifically 1.5 A-hr Samsung INR18650 cells [177], were cycled continu-

ously at specified C-rates using a Maccor 4300M battery cycler [178]. In this context, a cycle

is defined as a full constant current constant voltage (CC-CV) charge and constant current

(CC) discharge using the manufacturer supplied voltage limits (2.5V to 4.2V with a 100mA

cutoff for CV charging [177]). The capacity of the cells was measured every 10 cycles with

a ±0.5C cycle for each of the C-rates studied. Fig. 7.1 shows the cycle-life degradation of

the Samsung INR18650 at ±0.5C, ±1C, ±2C, and ±3C. From Fig 7.1, it can be seen higher

C-rate operations lead to larger decreases in state-of-health (SoH) of the battery. Note that

this process can be applied to any battery chemistry.
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Figure 7.2: The charge and discharge voltage deviation (∆V ) shown in (a) and (b), respec-

tively, for a single cell Li-ion battery. The charging and power losses are shown in (c) and

(d), respectively, for an ES system with 200 kWh capacity.

7.2.2 Variable efficiency mechanism

The internal resistance of the electrodes and electrolytes within Li-ion battery chemistries

lead to heat dissipation, which is correlated to power losses when charging or discharging the

battery [121, 116]. Such power loss can be mathematically written as P loss = ∆V ·I, where a

positive current I > 0 means the battery is charging. Furthermore, as I increases/decreases,

the voltage sees an immediate change, as captured by the voltage drop ∆V .

∆V is related to the current I by the internal resistance of the cell, i.e. higher currents

lead to higher voltage drops. The following step-by-step process is applied to measure ∆V as

a function of the current I and state-of-charge (SoC) in order to obtain the charging power
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losses using an Autolab PGSTAT128N potentiostat1 [179]:

1. Slowly charge/discharge the battery to specified SoC.

2. Induce current I to the battery cell

3. Measure the instantaneous (0.01 sec) voltage drop ∆V

4. Calculate power losses for the ES system, i.e. P loss = n ·∆V · I, where n is the number

of Li-ion batteries used in the ES system.

5. Repeat step 1 with a new SoC level

The same rational follows for measuring the discharging power losses, however, instead cur-

rent is withdrawn from the battery, i.e. I < 0. Fig. 7.2 shows the measured voltage drop

for charging and discharging in (a) and (b), respectively, and the corresponding calculated

power loss for charging and discharging in (c) and (d), respectively, as well.

7.3 Energy Storage Optimization

The ES system optimal charging/discharging model is developed by first introducing the

standard model, and then embedding variable C-rate degradation and efficiency mechanisms

to improve the operations.

7.3.1 Standard model

The objective function minimizing the costs of operating the ES system is formulated as

follows

min ∆t ·
∑

t∈T

τt ·
(

pES+t − pES−t · η−
)

(7.1)

where ∆t is the time step, τt is the price of electricity, pES+t is the charging power, and pES−t

is the discharging power of the ES system with η− discharge efficiency.

1A potentiostat is an instrument that measures and controls the voltage difference between two electrodes.
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The objective function (7.1) is subject to several constraints (7.2)-(7.6). The energy

state-of-charge (SoC) of the ES system is tracked over time t and is formulated as

socESt = socESt−1 +∆t · pES+t η+ −∆t · pES−t ∀t ∈ T (7.2)

where socESt is the SoC of the ES system. The current periods’s SoC socESt as shown in (7.2)

is dependent on its previous period’s SoC, the amount of energy charged by the battery

∆t · pES+t with η+ charging efficiency, and the amount of energy discharged by the battery

∆t · pES−t . The SoC, however, must be within bounds and is formulated as

0 ≤ SoCES ≤ socESt ≤ SoC
ES

≤ BCES ∀t ∈ T (7.3)

where BCES is the rated capacity of the ES system, and SoCES and SoC
ES

are the minimum

and maximum useable SoC, respectively. The SoC must lie below the rated capacity to

avoid the risk of fire, whereas it must also lie above zero to avoid rapid degradation [127].

In addition to the SoC being within limits, the charging and discharging powers must also

be within limits, which is expressed as

0 ≤ pES+t ≤ P
ES

· xt ∀t ∈ T (7.4)

0 ≤ pES−t ≤ P
ES

· (1− xt) ∀t ∈ T (7.5)

where P
ES

is the maximum power of the ES system. The charging and discharging actions,

however, cannot occur simultaneously as managed by binary variable xt, i.e. if xt = 1 then

pES+t is enabled, otherwise pES−t is enabled. Constraint (7.6) ensures the energy available in

the ES at the start of the day is at least recouped by the end of the day.

socESt=|T | ≥ SoCES
t=0 (7.6)

7.3.2 Variable C-rate degradation

7.3.2.1 Piecewise degradation model

A piecewise approximation of the variable C-rate degradation shown in Fig. 7.1 is performed

to ensure the optimization considers continous C-rates, i.e. it is assumed the degradation at
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Figure 7.3: Piecewise approximation of the SoH degradation as a function of C-rates the ES

system charges or discharges at in period t.

±2.5C falls within the pre-measured ±2C and ±3C curves.

To develop the piecewise curves, linear fits are done on the data as shown in Fig. 7.1,

and their respective slopes, k, with units of %
cycle

degradation are determined. Next, with

these slopes, a piecewise linear curve is created with multiple blocks i as shown in Fig. 7.3,

where each block includes the slope of the piecewise curve ki and a C-rate maximum for that

block Li. The outcome of Fig. 7.3 is the percent degradation on the battery state-of-health

(SoH). This curve is embedded into the DA optimization to determine the optimal C-rate

operation in each period t.

7.3.2.2 DA optimization model

The optimization considering variable C-rate degradation has the objective (7.7), while simi-

lar to (7.1), includes an additional term determining the degradation costs and is formulated

as

min ∆t
∑

t∈T

τt ·
(

pES+t − pES−t · η−
)

+ CES · BCES ·
∑

t∈T

bt (7.7)

where CES and BCES is the price and capacity of the ES system, respectively, and bt is the

percent state-of-health (SoH) loss due to cycling of the battery in period t. For example, if
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in a period t, the SoH loss is 1% (bt = 0.01), then the degradation cost is 1% of the purchase

cost of the ES system.

The objective function (7.7) is subject to constraints (7.2)-(7.6) in addition to the fol-

lowing constraints. Constraints (7.8) and (7.9) capture the amount of energy charged or

discharged, respectively. For example, in (7.8), socES+t will be greater than 0 if the SoC in

the current period t increases from the previous period t − 1, i.e. it is in the charge cycle.

The same rationale applies to the discharge cycle with equation (7.9).

socES+t ≥ socESt − socESt−1 ∀t ∈ T (7.8)

socES−t ≥ socESt−1 − socESt ∀t ∈ T (7.9)

The next set of constraints (7.10) and (7.11) determines the how much the battery is cycled

in period t. In (7.10), the amount cycled, defined as the total energy over the rated capacity

in a period, is matched to the piecewise C-rate ℓt,i in each block i. In other words, it is

attempting to determine where on the x -axis of Fig. 7.3 the ES C-rate lies. The C-rate in

each block ℓt,i, however, must be within the maximum pre-defined C-rates, Li, in each block

i as shown in Fig. 7.3. As an example, if an ES system is rated at 200 kWh with a max

power of 600 kW (i.e. equivalent to a 3C rate), then to achieve a 1C rate in a time interval

of ∆t = 15 min, the ES system must charge at 200 kW resulting in 50 kWh entering the

battery and thus performing one-fourth of a cycle. This process is determined in equation

(7.10)-(7.11).

∆t ·
∑

i∈I

ℓt,i =
socES−t + socES+t

BCES
∀t ∈ T (7.10)

ℓt,i ≤ Li ∀i ∈ I, t ∈ T (7.11)

To obtain the SoH degradation bt (as shown in Fig. 7.3) due to cycling of the battery at

C-rate ℓt,i, constraint (7.12) is used as shown below

bt =
∑

i∈I

ki
100

· ℓt,i ∀t ∈ T . (7.12)
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7.3.3 Variable efficiency

7.3.3.1 Charging/discharging power loss model

The charging and discharging power losses, shown in Fig. 7.2(c) and Fig. 7.2(d), respectively,

can be modelled quadratically as a function of C-rate and SoC. To preserve tractability and

linearity under a linear optimization framework, the power losses are averaged over all SoCs,

such that they are recast into quadratics as a function of C-rate. This allows the recasted

quadratics to be approximated using special-ordered-sets-of-type 2 (SOS2) [123, 180], which

is discussed in detail in Appendix B.

The charging αES+
t and discharging αES−

t power losses, as a function of C-rate, are mod-

elled as:

αES+
t = a+ ·

(

socES+t

BCES

)2

, αES−
t = a− ·

(

socES−t

BCES

)2

(7.13)

where a+ and a− are the second-degree polynomial coefficients for charging and discharging,

respectively. As the charging/discharging C-rates increase in a period t, the power losses

quadratically increase which can also be seen as variable efficiencies of the ES system. These

functions are embedded into the DA optimization to schedule the ES system.

7.3.3.2 DA optimization model

The objective function considering variable efficiencies is formulated as follows

min ∆t ·
∑

t∈T τt ·
(

pES+t −
[

pES−t − αES−
t

])

(7.14)

where the term
[

pES−t − αES−
t

]

represents the total power sold to the grid in period t including

the variable discharging losses (αES−
t obtained from the process in Section 7.2.2). Compared

to the standard ES system model in Section 7.3.1 where power losses are modelled by fixed

efficiency percentages, i.e. η+ and η−, in this case efficiency is modelled indirectly as η+ =
(

pES+t − αES+
)

/P
ES

and η− =
(

pES−t − αES−
)

/P
ES
. The objective function is subject to
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Figure 7.4: RTP tariffs based on time of the year and weather, i.e. normal or high temper-

atures, obtained from [2].

(7.3)-(7.6) in addition to

socESt = socESt +∆t ·
(

pES+t − αES+
t

)

−∆t · pES−t ∀t ∈ T (7.15)

Constraint (7.15), similar to equation (7.2), updates the SoC in period t considering the

charging power losses αES+
t . The quadratic terms αES−

t and αES+
t render the optimization

problem to be non-linear. These terms are linearized using the technique of special ordered

sets-of-type-2 (SOS2). The interested reader is encouraged to refer to Appendix B.

7.4 Case Study

The ES system optimization model was solved for an operating day of 24 hours, with a

timestep ∆t of 15-min. The ES system was subject to retail real-time electricity tariffs

obtained from Southern California Edison [2], which are based on outdoor temperatures in

the region during a day. Using data from [2], representative price curves were categorized

for the seasons of spring, winter, fall and summer shown in Fig. 7.4.

The ES system is rated at 200 kWh, which is compromised of 37,000 Samsung INR18650

cells rated at 3.6 V and 1.5 Ah each [177]. The ES power rating was taken as 600 kW allowing

it to perform up to ±3C rates. The measured data for the Samsung INR18650’s cycle-life

degradation is shown in Fig. 7.1 and its charge and discharge power losses are shown in Fig.
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Figure 7.5: Typical base demand in the winter, spring, summer, and fall seasons shown in

(a), and power output of PV (p.u.) shown in in (b).

7.2(a) and Fig. 7.2(b), respectively. The measured cycle-life degradation data in Fig. 7.1

was transformed into a piecewise approximation, as shown in Fig. 7.3, that consists of four

blocks with degradation slopes of ki = [0.0145, 0.016, 0.0182, 0.0192] %
cycle

and pre-set C-rates

of Li = [0.5, 0.5, 1, 1], where
∑

Li = 3C. As an approximation, it is assumed charge and

discharging both have equal effect on degradation, thus the measured degradation slopes are

halved, i.e. ki =
ki
2
. The round-trip efficiency is set to 95%, if variable efficiencies are not

considered. The ES price was set to 300 $/kWh unless otherwise specified.

7.4.1 ES system operations

7.4.1.1 Illustrative example

The effect of variable C-rate and efficiency mechanisms on the power schedule of the ES

system is shown in Fig. 7.6 as an example for the spring tariff. In Fig. 7.6(a), the optimal

schedule is shown in which both variable C-rate degradation and efficiencies are not consid-

ered. On the other hand, Fig. 7.6(b) shows the optimal schedule where both mechanisms

are included in the optimization. In Fig. 7.6(a), the optimization exploits the low- and high-

price periods at close to maximum power. This occurs because the total arbitrage profit is

increased if energy is obtained at the lowest price and then sold at the highest price. On the
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Figure 7.6: ES system’s DA power schedule in (a) and (b) for the case where variable C-rate

and efficiency mechanisms are ignored and considered, respectively.

other hand, in Fig. 7.6(a) when both mechanisms are considered, the high C-rate behavior

is sub-optimal because it causes increased degradation (see Fig. 7.1), and thus the C-rate is

maintained below ±1C (below 200 kW in a period) to operate at the least cost. However,

in the high-price region (1615-1730) the ES system increases beyond −1C for discharging,

because the revenue collected from the grid is higher than the incurred degradation cost.

Although, this increase beyond −1C (-200 kW) is still significantly lower than in Fig. 7.6(a).

The power schedules shown in Fig. 7.6 have a profound effect on both the monetary

benefits and cycle-life loss of the ES system. For cycle-life loss, 0.0145% compared to 0.0127%

is experienced by the ES system during the operating day when the mechanisms are ignored

and included in the model, respectively. The mechanisms increase the effective lifetime of

the ES system. In Fig. 7.6(a), such a power schedule has adverse monetary effects, where

the potential grid revenue is reduced by the actual cost of degradation that is not modelled.

In this case, the grid revenue totals $17.73 for the operating day. However, the actual cost of
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Figure 7.7: Yearly profit potential of the ES system in (a) and yearly energy discharged in

(b) while the ES price is varied.

degrading the ES system is $8.71 thus leaving an actual profit of $9.02. On the other hand,

with both mechanisms in Fig. 7.6(b), the revenue is $17.47 with a degradation cost of $7.62,

and thus a profit of $9.85. It can be seen the revenue is higher in the Fig. 7.6(a) compared

to Fig. 7.6(b) because high C-rate operations are favored. However, the actual degradation

cost is also higher. Therefore, it is beneficial to operate the system with both mechanisms

because profits are increased from $9.02 to $9.85, and SoH loss is decreased.

7.4.1.2 Yearly profit with ES system mechanisms

Using the realistic real-time tariffs for each day based on the time of the year (see Fig. 7.4(a)),

the yearly profit potential and discharge energy of the ES system is explored while varying

the ES price from 500 $/kWh to 250 $/kWh. The results are shown in Fig. 7.7, where (a)

shows the the yearly profits and (b) shows the total discharge energy. The yearly profit and

discharge energy are shown for four cases: 1) both mechanisms ON, 2) only variable-C rate

degradation ON, 3) only variable efficiency ON, and 4) both mechanisms OFF.

As the ES price decreases from 500 to 250 $/kWh, both profits and discharge energy

to the grid increase. This is the case because the potential grid revenues outweigh the

degradation costs, which are a function of ES price. For any given ES price in Fig. 7.7(a),
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using both mechanisms generates the maximum profit and deactivating both generates the

least. In between these profit curves are the cases where only one mechanism (variable

C-rate degradation or efficiency) is ON. When only variable C-rate mechanisms is ON, it

obtains higher profit than compared to when variable efficiency is ON. This is because high

C-rate operations cause a decrease in SoH (see Fig. 7.1) resulting in high degradation costs.

Consequently, according to Fig. 7.2, the efficiency of the ES system is quadratic function

of the C-rate. Therefore, by lowering the C-rates to preserve the SoH, consequently, the

efficiency is also improved. However, if variable efficiency is only ON, then it under-performs

because while it does reduce high C-rates, it does not characterize the degradation costs.

For the total discharge energy shown in Fig. 7.7(b), the case where both mechanism are

OFF and only variable efficiency is ON, provide the same energy discharge to the grid. When

both mechanisms are OFF, the optimization exploits charging/discharging at high C-rates

to maximize profit with usage of the standard fixed efficiencies. To this point, however, the

profits are smaller when both mechanisms are OFF as shown in Fig. 7.7(a). This occurs

because the quadratic power losses shown in Fig. 7.2 are inherently affecting the ES system

but ignored in the model. Additionally, activation of both mechanisms optimally schedules

the most energy and achieves the maximum profits.

In summary, it is of benefit to implement both mechanisms in the ES system model

so that maximum energy is provided for grid services and maximum profit is generated in

return.

7.5 Conclusion

In this chapter, an optimal decision-making model was developed to perform tradeoff between

potential grid revenue that can be collected and the effect of degrading the battery. This

model used a data-driven methodology to consider the effect of variable C-rate operations

on both the cycle-life and charging/discharging efficiencies of the system. By considering the

effect of variable C-rates, the grid revenue potential is increased significantly while consider-

ing the effect on the state-of-health and efficiencies. The implementation of the mechanisms
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on a day-to-day basis may require revamped hardware, e.g. inverters, to manage the high

C-rate operations. On a yearly basis, results show a 3.1% improvement on the potential

profits of the ES system using the improved optimization model.

The proposed model and the results that can be obtained by it will:

• allow economic exploitation beyond the current operating paradigm of ES systems in

grid-scale and EV applications,

• enabled in-depth economic analysis to be performed on the viability of ES systems,

and

• allow further introduction of renewable energy sources since ES systems are operated

in a more optimal manner.
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Chapter 8

CONCLUSION

EVs are poised as alternatives to traditional internal combustion engine vehicles due to

using electricity as opposed to gasoline for transportation. EVs can be used to provide a

plethora of grid services by charging and discharging their batteries and in return, the owners

can receive revenue. To take advantage of EVs as grid resources, however, their needs to be

widespread adoption. In the current market, potential consumers may be hindered due to

range anxiety, slow charging times, lack of public infrastructure, and upfront costs in regards

to owning an EV. With the proposed frameworks developed in this dissertation, the effect

of these issues is decreased and thus can assist the adoption of EVs in the market. The

frameworks developed are summarized below:

1. In the first framework developed in Chapter 2, a decentralized methodology is de-

veloped in which an aggregator can obtain demand response from consumers with

calculated monetary incentives. The consumers optimize their load schedules based

on a set of incentives. The aggregator then runs an optimization to determine the

least-cost allocation of demand response to meet certain objectives. Results show the

aggregator can effectively control EV consumers with proper incentives, however, it

needs to consider the rebound of the loads in future periods of the day as that may

cause issues in the grid. In addition, large benefits were obtained in terms of avoided

costs in the distribution grid. Overall, this methodology can be applied to any scenario

where a hierarchical agents desires control of a large fleet of consumers loads, e.g. EVs

and appliances.

2. In the second framework developed in Chapter 3, the aggregator’s operating and busi-



159

ness framework is further developed at the residential sector. As the EV penetration

grows, they are expected to obtain their energy from their homes which are connected

to pole-top distribution transformers. This will cause accelerated aging of the trans-

former assets. An aggregator, on behalf of the DSO or it can be the DSO itself,

can manage the EV charging/discharging behavior to ensure transformer life aging is

minized. Results show that by managing the tradeoff between EV revenue potential

from energy arbitrage and the transformer aging, the potential aging can be maintained

at expected values and in some cases, it can even be further improved. The incentives-

based framework developed in Chapter 2 can be implemented with this framework to

motivate EV owners to participate.

3. In the third framework developed in Chapter 4, a model is developed that optimizes

the bidding/offering strategy for a fleet of EVs managed by an aggregator in both

the day-ahead energy and regulation markets, while considering the cost of degrading

EV batteries. The results showed that an aggregator, even while considering battery

degradation, obtained a profit on a day-to-day basis. In addition, the avoided costs to

the power system was significant if EVs bid/offer into the markets since some tradi-

tional power plants were not required to cycle. Such a framework, partnered with the

first developed framework of incentives, provides an approach to generate revenue for

consumers on a day-to-day basis to offset the upfront costs of owning an EV.

4. In the fourth framework developed in Chapter 5, the focus was on the charging infras-

tructure, specifically charging stations. These stations’ power profiles are both large in

magnitude and volatile. A local power utility, from which they are expected to obtain

such energy, may not be able to supply it at the minimal cost. In this context, an

aggregator manages an ensemble of charging stations to participate in wholesale elec-

tricity markets in order to reduce operating costs. Results show that the aggregator

can provide significant cost savings, while also taking into consideration uncertainties

in market prices and the volatile demand needs of the stations.
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5. In the fifth framework developed in Chapter 6, a similar hierarchical entity is developed

like the aggregator that takes advantage of EV batteries to generate profits. This entity

is a battery swapping station that alleviates issues of range anxiety, slow charging times,

and lack of public infrastructure. Specifically, the role of a battery swapping station is

to swap consumers’ depleted EV battery with fully-charge ones from its battery stock.

In return, consumers pay for this swap similar to a traditional gasoline station. The

swapping station optimizes its operations to take advantage of the EV battery stock it

owns to meet consumer demand and bid/offer into the energy market.

6. A common element in Chapters 2-6 is energy storage, either mobile in EVs or station-

ary. In the sixth framework developed in Chapter 7, a data-driven methodology and

an optimal decision-making tool is developed to exploit energy storage to its fullest po-

tential. In this chapter, energy storage systems are exploited to perform at high-power

(high C-rate), while characterizing the adverse degradation effects via two mechanisms:

1) effect of variable C-rate degradation on life cycle-loss, and 2) effect on the charg-

ing/discharging efficiencies. These mechanisms are characterized with by a data-driven

methodology which includes real-life testing of Li-ion batteries. Then, these mecha-

nisms are transformed into economic costs along with the potential grid revenues and

a tractable optimization model is developed. Results show additional grid revenues are

obtained with these improved models when performing energy arbitrage, while consid-

ering the cost of degradation. When applied, the additional revenue obtained from the

improved model can reduce upfront costs, and allow fast-charging capabilities while

considering its effect on degradation.

These frameworks provide solutions to assist further EV adoption. Several entities will

benefit from such frameworks which are discussed in the following subsection.
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8.1 Beneficiaries of the developed frameworks

The developed frameworks, while orientated towards the research community, also provides

numerous benefits to others, e.g. the industry. The benefits of these frameworks to different

entities are summarized below:

• Research community: the frameworks can lay groundwork for future research un-

dertaken by universities, laboratories, and the industry. Further research is required to

tackle the four main issues with EVS: range anxiety, slow charging times, infrastruc-

ture, and upfront costs.

• Industry: the industry can develop technologies employing the principles in these

frameworks. The industry is split into three sub-groups and benefits of each are ex-

plained further.

– Power Industry: the power grid player, e.g. utilities, system operators, among

others, may use these frameworks as a basis to understand the challenges and

benefits EVs bring to the grid. The frameworks can quantify these benefits so

that changes can be made to the current operating paradigm to more easily accept

EVs.

– Large Companies: The developed frameworks require new products to be devel-

oped, e.g. management systems, smart appliances, among others. Companies can

use these frameworks to understand the type of products that must be developed.

For example, one of the underlying assumptions in these frameworks is that all the

EVs are equipped with V2G technology and without such technology, discharging

of the battery is not possible. This is one such technology the large players in

the technology industry may develop so that the power grid and consumers can

benefit.

– Startups: the power grid industry will see new startups enter the market that will

introduce innovative technologies and business models to the power grid. Many
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of these startups are currently and will in the future focus on the advent of EVs.

These frameworks can provide a starting reference for these startups.

• Investors: for these frameworks to be deployed in the real-world, large investments

will be required. Investors can use these frameworks as guidelines to understand the

revenue potential of such businesses.

8.2 Suggestions for future work for other researchers

In this section, a few ideas are discussed to further use EVs as grid resources.

• With regards to aggregator business and operating model frameworks developed in this

dissertation (see Chapter 2-5), it was assumed that the arrival, departure, and travel

time of EVs were known with 100% certainty. This was assumed because if a large

enough fleet of EVs are considered then the uncertainties would be small. However,

uncertainty management techniques should be developed for proper characterization

and to determine the full revenue potential.

• In all power systems, ancillary services are important for the well-being of the system.

However, such services have usually been provided from the supply side as opposed to

the demand side. As the demand side becomes more flexible, they are poised to provide

such services. The works in Chapters 2, and 5-7 only considered energy arbitrage as a

primary revenue stream from wholesale markets. However, additional revenue can be

obtained by participating in the ancillary markets, e.g. secondary regulation, as was

shown in Chapter 4 with an aggregated fleet of EVs. Further work is required to cater

the frameworks to optimize the bidding and offering strategy in the ancillary markets

as well.

• An aggregator provides many opportunities for EVs and the power grid to benefit.

It is expected, however, that many aggregators will co-exist in a system. Therefore,
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questions remain unanswered on the revenue potential when numerous aggregators are

participating in wholesale markets. Also, it is unknown the impact of several aggre-

gators on distribution grid assets, since each aggregator may have different objectives

that may not align to meet a certain global objective.

• As for EV infrastructures, further work is needed on the optimal allocation of combined

battery swapping and charging stations in a city. It is expected that a swapping station

will be more expensive in terms of infrastructure as opposed to a charging station.

Therefore, their is a tradeoff on the number of swapping verses charging stations, while

considering EVs’ driving behavior. Such work can assist city planners determine where,

how many, and type of stations to install.
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Appendix A

MIXED-INTEGER LINEAR PROGRAMMING (MILP)

An integer program is a mathematical optimization in which some or all variables are

integers. A MILP is a sub-problem of integer programming where some variables are allowed

to be continuous while others integer. The work in this dissertation uses MILP as a tool to

find optimal solutions to problems.

A typical MILP problem can be formulated as follows:

minimize cT · x (A.1)

subject to

A · x = b (A.2)

l ≤ x ≤ u (A.3)

where cT and b are vectors, A is a matrix, and l and u are the lower and upper bound

vectors on variable x. In this model, some or all of x must take on integer values, which

may be in the form of binary {0,1}. A typical MILP problem can have several equality and

inequality constraints to model real-life applications.

A.1 General Algebraic Modeling System (GAMS)

GAMS is a high-level programming language that connects to solvers to perform mathemat-

ical optimization [180]. In this dissertation, GAMS is used to develop the model and then

passed onto the solver, IBM CPLEX [181], which obtains the MILP solution.

The feasibility gap of all the MILP problems are set to less than 0.01% to obtain an

optimal solution.
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Appendix B

LINEARIZATION TECHNIQUES

B.1 Special Ordered Sets of Type 2 (SOS2)

MILP problems require linearity in equations. However, by introducing variables and con-

straints, the SOS2 technique can piecewise approximate functions, e.g. x2, x3, x · y, among

others, in order for them to be present in MILP problems.

This technique will be demonstrated on the framework developed in Chapter 2. From

the power flow constraints in Chapter 2, equation (2.5) is non-linear and must be linearized

and must be linearized in order to obtain an optimal solution under the MILP framework.

For simplicity, the indices are removed from equation (2.5) and thus can be written as:

ℓ ≥
(pflow)2 + (qflow)2

e
(B.1)

The following steps are taken to simplify equation (B.1):

e · ℓ ≥ (pflow)2 + (qflow)2 (B.2)

Where the term e · ℓ can be represented quadratically as:

e · ℓ =
(e+ ℓ)2 − e2 − ℓ2

2
(B.3)

By combining equation (B.2) and (B.3), the simplified equation is represented as:

(e+ ℓ)2 − e2 − ℓ2

2
≥ (pflow)2 + (qflow)2 (B.4)

The terms (e+ ℓ)2, e2, ℓ2, (pflow)2, and (qflow)2 are non-linear and are linearized via SOS2

[123, 180]. For simplicity, the process to linearize (e+ℓ)2 is shown. The same rationale applies

to the remaining non-linear terms. The SOS2 technique is used for modelling piecewise
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approximations of functions of a variable. The piecewise linear approximation is defined by

the x- and y-coordinates (Om, Ym) ofM points, with m = 1, ...,M . Note that with M points

there are M − 1 piecewise segments. This is modelled as follows:

M
∑

m=1

Om · θm = (e+ ℓ) (B.5)

M
∑

m=1

Ym · θm = ρ (B.6)

M
∑

m=1

θm = 1 (B.7)

These three equations involve only two unknowns: θm, ρ. On the other hand, (e + ℓ)

is known. Om are the preset values that linearly map to (e + ℓ). The value ρ represents

the approximate value of (e + ℓ)2, which is linearly mapped by the preset values Ym. The

continuous variable θm is used to determine over which points the value is within. However,

to guarantee the non-zero θm variables correspond to only two adjacent points, additional

constraints are required:

θ1 ≤ µ1 (B.8)

θm ≤ µm + µm−1 ∀m ∈ 2 . . .M − 1 (B.9)

θM ≤ µM−1 (B.10)

M−1
∑

m=1

µm = 1 (B.11)

Where µm is a binary variable, such that µm = 1 if (e + ℓ) lies within two points repre-

senting a segment, and µm = 0 otherwise. The same rationale can be applied for the other

non-linear terms. The interested reader is advised to refer to [123] and [180] for more details.

B.2 Multiplication of continous and binary variables

The multiplication of binary variable g and continuous variable x renders an optimization

problem non-linear. The linearization is performed by introducing a new continuous variable
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y that takes on the resulting value of the multiplication, as shown in (B.12):

y = g · x (B.12)

In order to linearize (B.12), the following constraints are needed:

y ≤ x (B.13)

y ≥ x−M · (1− g) (B.14)

y ≤M · g (B.15)

where M is a large number. For example, if g = 0, then according to (B.15), y = 0.

However, if g = 1, then equation (B.15) is non-binding. In addition, in (B.13), y ≤ x and in

(B.14), y ≥ x, and thus y = x is obtained. By using constraints (B.13)-(B.15), the variable

y can either take on the value of 0 or x.

Constraints (B.13)-(B.15) can be used to linearize each multiplication of binary and

continuous variables present in equations (4.3)-(4.6). In (4.3)-(4.6), the binary variables are

wup
t,b , w

dn
t,b , v

up
t,b , and v

dn
t,b , and the positive continuous variables are pupt , pdnt , eregupt,g , and estopdsgt,g .
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