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The increase in renewable power generation has greatly changed the current energy market 

dynamics. The cheaper, cleaner but intermittent characteristics of renewable power generation 

such as wind has accelerated the retirement of large coal plants and investments in flexible 

resources such as fast response generators, energy storage and transmission facilities. However, 

this transition requires tremendous effort on how to improve the market design to better handle the 

uncertainty on renewable generation, and to facilitate the deployment of more flexible resources 

such as energy storage. 

In this dissertation, we focus on the planning and operation of energy storage systems. To begin 

with, we discuss in detail different optimization methods that have been proposed to handle this 

growing uncertainty. Yearly simulations were performed to compare the solution accuracy and the 



 

computing efficiency. Then two stochastic multi-stage co-planning models are proposed to 

coordinate investments in battery energy storage and transmission expansion, and in battery energy 

storage and fast generation. These co-planning models have a 25-year horizon and consider not 

only the uncertainty on both wind capacity and load increase, but also the degradation of the 

batteries. A sensitivity analysis is performed to study the competition and cooperation relationship 

between these resources, their investment patterns under different geography, and the correlation 

between the profiles of wind generation and load. At the end of this dissertation, a stochastic energy 

and ancillary service co-optimization model is proposed to evaluate the contribution of storage to 

both energy arbitrage and ancillary services. The actual requirements for regulation reserve and 

spinning reserve are quantified by combining intra-hour system operation with day-ahead 

stochastic optimization. 
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Chapter 1. INTRODUCTION  

1.1 OPERATION OF THE ELECTRIC POWER SYSTEM UNDER UNCERTAINTY 

Unlike traditional generation, renewable resources, such as wind and solar do not incur any fuel 

cost to generate electricity. They are therefore among the first to be used by the power system 

operator. However, due to their highly variable nature, a large proportion of renewable generation, 

will further increase the uncertainty affecting system operation and reliability. As shown in Figure 

1.1, as more wind and solar generation is added to the system, the California Independent System 

Operator (CAISO), is facing increasingly different types of net load patterns. More flexibility is 

therefore needed to deal with the increasing uncertainty.  

 

 

     Source: California Independent System Operator (CAISO), Daily Renewables Watch 

 

Figure 1.1. Effect of Renewable Generation on Load Shape [5] 
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In the short-term operational time frame, increased flexibility can be achieved by a better 

management of existing dispatchable capacity though advanced optimization techniques (such as 

stochastic optimization, interval optimization, robust optimization and etc.), by improving 

renewable generation forecast accuracy, by enhancing market design (such as introducing intra-

hour scheduling and adding flexible ramping constraints), or simply by increasing the reserve 

requirements [1-4]. Over a longer planning timeframe, one should consider deploying flexible 

resources such as energy storage systems and expanding the generation and transmission capacity 

to increase the dispatchable capacity of the current system 

 

1.2 ENERGY STORAGE IN POWER SYSTEMS 

Compared with conventional technologies, electricity storage offers price arbitrage opportunities 

and fast-response services which could be widely deployed throughout an electric power systemð

functioning as generation, transmission, distribution, or end-use assets. Energy storage systems, 

when placed at key locations with an appropriate technology, can alleviate the impact of renewable 

generation variation, enhance system reliability, defer transmission expansion, or postpone the 

need for new generation capacity.  

¶ RENEWABLE GENERATION SUPPLY RELIABILITY  

Energy storage systems, when installed in combination with wind farms or PV plants, could 

greatly facilitate their generation scheduling and improve the reliability of their energy supply by 

mitigating fluctuations in their output. Ghosh and Kamalasadan [6] design an optimal control 

strategy based on energy functions for flywheel energy storage. Their aim is to improve the low 

voltage ride-through characteristics of an integrated doubly fed induction wind generator (DFIG) 



 

and keep the grid power isolated from wind power output and voltage fluctuations. A rank-based 

battery energy storage system dispatch control algorithm is developed in Abdullah et al. [7] to 

achieve assured wind farm power output levels and dispatch for wind farm profit maximization. 

Islam et al. [8] use a supervisory control unit combined with short-term wind speed prediction for 

management of the stored energy in a small capacity flywheel energy storage system to mitigate 

the output fluctuations of an aggregated wind farm. A dual layer BESS control strategy consisting 

of a fluctuation mitigation control layer and a power allocation control layer is proposed in Jiang 

et al. [9] to control the wind farm power output within fluctuation mitigation requirements. Wang 

et al. [10] designed a hybrid energy storage system composed of a vanadium redox battery and a 

supercapacitor bank to smooth the fluctuating output power of a PV plant. In Song et al. [11], a 

new energy storage model based on a Markov chain is used to enhance photovoltaic generation 

power supply availability considering the energy storage capacity degradation. 

 

¶ ECONOMIC MARKET OPERATION  

On the electric market side, energy storage systems can participate in both energy and ancillary 

services markets to facilitate higher renewable integration. Li et al. [12] use a two-step framework 

to evaluate the benefits of battery energy storage in power system operation with the aim of 

decreasing the curtailment of wind generation, reduce load and reserve shortfalls as well as the 

commitment of thermal units, and lower the total system costs. A multi-period Nash-Cournot 

equilibrium model for the joint energy and ancillary services markets is proposed 

to evaluate the contribution of the ESSs in supporting renewable generation by Zou et al. [13]. 

O'Dwyer and Flynn [14] propose a sub-hourly UCED analysis to evaluate the role of energy 

storage in reducing the cycling cost of conventional plants in systems with high wind penetrations. 



 

Jabr et al. [15], used robust optimization to set the base-point of conventional generation and 

storage for the forecasted net load, and participation factors that dictate how conventional 

generation and storage should be adjusted to maintain feasible operation whenever the renewables 

realization deviates from the forecast. In Ghofrani et al. [16], a combination of genetic algorithm 

(GA)-based optimization and probabilistic optimal power flow is used to evaluation energy storage 

for reliability and operability enhancement of wind integration considering uncertainty on wind 

generation, load and equipment availability.  

 

¶ RELIEVE TRANSMISSION CONGESTION 

As energy storage systems respond much faster than conventional generators, they are effective 

at relieving transmission congestion by controlling the charging and discharging sequence and 

rate. Vargas et al. [17] exploit the fast ramping capabilities of energy storage to deal with 

transmission congestion in the case of insufficient ramping from conventional power plants. In 

Wen et al. [18, 19], as well as Del Rosso and Eckroad [20], battery storage system respond before 

conventional generators to relieve line overloading following a contingency. Khani et al. [21] 

propose a real-time optimal dispatch algorithm that aims to optimally prepare a compressed-air 

energy storage system to maximize its contribution to congestion relief. 

 

¶ FREQUENCY REGULATION  

The fast response characteristic of energy storage systems also makes them an ideal resource 

for frequency regulation following a generation contingency or a sudden change in renewable 

generation. A  unit commitment formulation constrained by frequency dynamics is proposed by 

Wen et al. [22], where both the synchronous units' primary reserve requirements and the storage 



 

units' corrective actions are modeled for post-contingency inertial response and primary frequency 

control to guarantee dynamic frequency security following a contingency. Zhang et al. [23] 

propose a fuzzy-logic based frequency controller for wind farms augmented with a battery energy 

storage system to improve the primary frequency response of low-inertia hybrid power systems. 

Pulendran and Tate [24] proposed a model predictive approach to control an energy storage system 

for preventing load shedding due to transient declines in frequency. Datta and Senjyu [25], 

describe a fuzzy-logic based frequency control method for distributed PV inverters, energy 

storage systems (ESSs) and EVs. This method provides frequency control and reduces tie-line 

power fluctuations caused by a large penetration of PV or sudden load variations. Yang and Walid 

[26] proposed a secure scheduling and dispatch approach to investigate the relationship between 

outages and the energy storage capacity during the frequency regulation process considering both 

distributed renewable energy sources failure and renewable generation supply uncertainties. In 

Banham-Hall et al. [27], a Vanadium Redox Flow Battery is attached to a wind farm to time shift 

energy and provide frequency response. 

 

¶ DISTRIBUTION 

In distribution systems, energy storage could be used to deal with voltage fluctuations, to 

enhance the stability of the network and to smooth renewable generation.  

In Wang et al. [28], a coordinated voltage control scheme using energy storage system is 

proposed for distribution networks to solve the voltage problems caused by large, clustered 

distributions of low carbon technologies (wind generation, photovoltaic generation, electric 

vehicles, heat pumps and etc.). In Mokhtari et al. [29], energy storage units are used for both 

voltage support and load management by controlling the reactive and active power respectively. 



 

Sugihara et al. [30] addressed the voltage fluctuation problem in a distribution network with high 

penetration of PV, and proposed to subsidize customer-side energy storage systems to help with 

voltage regulation. In Alam et al. [31], a distributed energy storage system is controlled to mitigate 

the neutral current and neutral potential problems in four-wire multi-grounded low voltage systems 

under unbalanced allocation of rooftop solar PV. 

The utilization of energy storage system is proposed to solve the phase balancing problem in 

power system through Lyapunov optimization in Sun et al. [32]. In Jayasekara et al. [33], 

battery energy storage systems are used for peak shaving, voltage regulation, and loss reduction in 

distribution systems considering battery cycling cost. A supervisory controller is proposed in Liu 

et al. [34] to facilitate the high-level penetration of renewable energy distributed generations. 

Nagarajan and Ayyanar [35] provide a generalized framework for strategic deployment of lithium-

ion-based energy storage to reduce the substation transformer losses, and the life cycle cost of the 

battery storage system, as well as to mitigate PV variability.  In Tant et al. [36], battery energy 

storage systems are installed in residential distribution feeders to reduce voltage deviations and 

facilitate the integration of PV. The trade-offs between voltage regulation, reductions in peak 

apparent power, and the annual energy utilization cost is also discussed.  Somayajula and Crow 

[37], integrate an ultra-capacitor in a power conditioner system to improve the power quality in 

the distribution grid by compensating voltage sags and swells, and smoothing renewable 

intermittency. 

 

¶ END USERS 

On-site energy storage systems provide opportunities for the electricity end users to reduce their 

electricity bill (i.e., for energy use and for demand charges) [38]. In Wang et al. [39], a 



 

reinforcement learning technique is used for consumers to coordinate PV energy generation and 

energy storage with the goal of shaving the peaks of their power demand profile, thereby 

minimizing their electricity bill.  In Paterakis et al. [40] and Erdinc et al. [41], Mixed-Integer Linear 

Programming (MILP) is used to minimize the total energy procurement cost for a smart household 

with assets such as electric vehicles, controllable appliances, energy storage and distributed 

generation. The energy cost minimization performance of different energy storage devices in 

building energy systems is compared in Xu et al. [42] through scenario based stochastic 

optimization, considering uncertainties in demand profiles and solar irradiance. 

 

1.3 THE EFFECT OF ENERGY STORAGES COSTS 

The future application of storage technologies depends on the one hand on how rapidly the 

technologies advance and the costs drop. One the other hand, it will be essential to develop novel 

energy storage planning techniques that are robust to the inevitable long-term forecasting errors, 

and advanced operational schemes that make better use of the services that storage can provide.  

Table 1.1 shows the different types of energy storage, their costs and their possible applications 

in power systems. Storage technologies such as thermal storage and pumped hydro are mature and 

fully commercial. But others listed in this table, such as battery and flywheel energy storage, are 

still evolving in terms of technology and operational roles [5]. Since the cost can be high when it 

comes to building new flexible assets such as storage, particularly with emerging technologies, the 

risk of stranded investments can be significant.  

 

 

 



 

 

 

Table 1.1. Costs of Storage Options [43]  

Storage Options Cost($/kw) Typical Applications 

Li -ion $1000-$2000 

Frequency regulation; ancillary services; black start; 

renewable shifting, smoothing and firming; arbitrage; 

peak load shift; reactive power 

Compressed Air  $1600-$2200 

Ancillary services; black start; renewable shifting and 

firming; area regulation; spinning reserve; reactive 

power 

Pumped Hydro 

Storage 

$1200-$2100 Same as CAES 

NaS Battery $3500-$6000 

Arbitrage; renewable shifting and firming; frequency 

regulation and other ancillary services; peak load shift; 

black start; reactive power 

Flywheel $2100-$2600 

Frequency regulation; renewable energy smoothing; 

reactive power 

Source: Energy Storage Cost and Performance Report 2015 by FC Business Intelligence 

 

1.4 OBJECTIVE AND STRUCTURE OF THE DISSERTATION 

The goal of this dissertation is to investigate how energy storage systems, combined with advanced 

optimization techniques could improve the system operational efficiency and reliability. In 

particular, we focus on improving energy storage planning and operation models and methods. 



 

The remainder of this dissertation is organized as follows. Chapter 2 gives an overview of the 

many optimization techniques applied to the day-ahead unit commitment problem to deal with 

wind uncertainty. Some of these optimizations are explained in more detail as they are the 

mathematical foundations of energy storage system planning and operations techniques developed 

in the later chapters; Chapter 3 proposes a stochastic multi-stage co-planning model for energy 

storage and transmission lines. This model can be used to determine the long-term optimal site and 

size of energy storage, the transmission that should be enhanced; Chapter 4 proposes a multi-stage 

approach for co-planning energy storage and fast response generators. This chapter also discusses 

the co-operative and competitive relationships between BESS and fast generators, as well as the 

patterns of location and size for BESS and fast generators for nine different scenarios of wind 

power output/load ratios and hourly wind-load correlations; Chapter 5 describes the optimization 

of energy storage in power system for energy arbitrage and ancillary service support from the 

perspective of the system operator; Chapter 6 concludes, summarizes the contributions made and 

discusses future work. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



 

 

Chapter 2.  AN OVERVIEW OF MATHEMATICAL METHODS TO 

DEAL WITH UNCERTAINTY  

2.1 INTRODUCTION 

Wind power has become a significant part of the total power generation in many power systems. 

The accompanying uncertainty has also brought huge challenges to the system operator. In this 

chapter, we will first discuss several different ways of modeling wind uncertainty that have been 

discussed in the literature. Then, we will introduce different methods for solving these different 

models. A small example will be used to exemplify each method. Finally, we will test these 

methods using the IEEE RTS and compare the performance of these different methods. 

 

2.2 BASE UNIT COMMITMENT MODELING 

¶ NOTATIONS 

Sets 

t :  (1 T ) - Index to the time interval in the unit commitment 

i :  (1 I ) - Index to the generators 

b : (1 NB) - Index to the piece-wise linear cost segments  

l : (1 L ) - Index to the transmission lines 

s :  (1 S) - Index to the nodes 

w :  (1 W) - Index to the wind farms 

 



 

 

Variables 

,i tx :    Binary variable, generator i on-off state at period t  

,i tp :    Generator i  power output at period t  

, ,i b tp : Generator i  power output of segment b at period t  

,w twp : Wind power produced by wind farmw at period t  

,w tws : Wind power curtailed from wind farmw  at period t  

,i tSU : Generator i start-up cost at period t  

 

Parameters 

iNL :  No-load cost of generator i  

,w twf : Wind forecast 

lF :     Transmission line rating 

, , ,, ,U D W

l i l s l wG G G : Contribution factor of generator, load and wind to power flow on linel  

,s tD  :  Demand at bus sat period t  

iD :   Ramping ability of generator i  

,i bp :    Maximum generation of each segment of a cost curve 

ip , ip :  Minimum and maximum generation of each generator 

1 10u u : Dual variables for the corresponding constraints 

 



 

¶ OBJECTIVE FUNCTION 

The objective of the base unit commitment problem is to minimize the total generation cost and 

wind curtailment penalty cost. 

( )
, , , ,

, , , , , ,

1, 1, 1 1, 1 1, 1

min  
I T NB I T W T

Noload

i b i b t i t i t w t
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J k p C SU M ws
= = = = = = =
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¶ SYSTEM CONSTRAINTS 

System constraints include the system balance constraint (2.3) and the DC line flow constraint 

(2.4) and (2.5). 
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¶ MINIMUM UP-DOWN TIME AND START-UP COST 

There are several different ways to model the minimum up-down time constraints and start-up 

cost, and here we eliminate the details and only gives its abbreviation. Detailed information can 

be found in Pandzic et al.  [44] 

() 0H x =                                                                                                                                     (2.6)  

 

   

¶ GENERATION CONSTRAINT 



 

The generation constraint includes the generation capacity constraints (2.7) and (2.8), the 

generation equation constraint (2.9) and the ramping rate constraints (2.10) to (2.13). 

1

, , , ,

1

:
NB

ii t i b t i t

b

u p x P
=
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2
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5
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¶ WIND CONSTRAINT 

8

, , , ,:w t w t w t w tu wp ws wf+ =                                                                                                  (2.14)   

The above constraints frame the basic unit commitment problem. When integrating other 

resources such as wind generation into the system, additional constraints may be added, and the 

objective function could also be modified for different optimization goals. We will only mention 

the modified part of this basic model when discussing the different optimization models used to 

solve the day-ahead unit commitment problem with wind uncertainty in the following part. To 

simplify the notation, we name the remaining constraints ED constraints 

() 0G P =                                                                                                                                  (2.15)   



 

2.3 STOCHASTIC OPTIMIZATION UNIT COMMITMENT MODEL  

There are several ways to model wind uncertainty. The most common and straight forward way is 

to represent wind uncertainty by different scenarios. The more scenarios are used, the more wind 

dynamics can be caught for a certain time period. Wind uncertainty models of this type are 

generally used in stochastic optimization unit commitment model. 

 

¶ NOTATIONS 

n :       1....N  Wind scenario set 

np :      Probability of wind power scenarion    

, ,w t nwf : Wind farm power output forecast at period t of scenario n  

, ,w t nws  : Wind farm power curtailment at period t of scenario n  

, , ,i b t np  :  Generatori  power output of segmentb  at period t of scenarion  

 

¶ FORMULATIONS AND SOLVING METHODS 

The objective of stochastic unit commitment is to minimize the sum of the expected total 

generation and wind curtailment penalty costs. 

( )
, , , ,
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For all scenarios 1....n N= , the system and generation constraints as shown in the base case. 

Stochastic optimization unit commitment tries to find common generator on-off states for all 

possible wind realization. Compared with the base unit commitment model, the stochastic 

optimization unit commitment model shares the same one set of unit commitment constraints



 

() 0H x = , and there is a whole set of economic constraints () 0G P =  for each of the N possible 

wind scenarios.  

Currently, the UC problem with scenario-based wind model is solved using the following 

methods:  

1. Centralized solution method 

The centralized method solves the N  scenarios together. As the number of wind scenarios 

increase, the number of ED constraints increases correspondingly, which also increase the 

computation burden for large power systems. The centralized method can therefore be used 

only for small systems or cases with shorter scheduling periods or with a small number of 

wind scenarios. 

 

2. Decomposed solution method 

As mentioned above, the N  scenarios share the same set of UC constraints, however, each 

scenario has its independent ED constraints, the problem can be decomposed into two stage 

problem. The first stage solves a pure unit commitment problem to determine the on-off 

status of the generators, while the second stage solves N  economic dispatch problems. 

Since the N  economic dispatch problems are independent of each other, parallel 

computation is possible. This is quite beneficial when applying stochastic optimization to 

larger power systems. The commonly used decomposition method is Bendersô 

Decomposition (BD). However other decomposition methods can also used, for example see 

Papavasiliou and Oren [45, 46].  

 

The following figures illustrates the centralized and decomposition methods. 



 

 

    

                   (a)                                                                          (b) 

Figure 2.1. Centralized and Decomposition Methods 

 

¶ VARIANTS OF STOCHASTIC OPTIMIZATION MODEL  

Variants of stochastic optimization unit commitment model have been proposed by Chen et al. 

[47] and Wang et al. [48]. In these papers, the authors model the connections among all scenarios 

such as the transit limit among different scenarios. These constraints require the generation level 

of a generator under the expected wind forecast scenario should be able to transit to the generation 

level in other scenarios within 10-15 minutes.  

, , , ,

10
 ,    0 

60
i t i t n i i tp p if x- ¢ D >                                                                                              (2.17)   

A stochastic optimization unit commitment attempts to minimize the expected total cost as 

calculated on the day ahead. It has gained popularity because of the easy modeling and the 

possibility of parallel computing. However, some difficulties persist with stochastic optimization 

unit commitment: 

1. Scenario generation 

In order to capture the wind dynamics, enough scenarios should be generated and added to 



 

the model. These wind scenarios should be sufficiently representative to reduce the risk of 

violations of operational constraints in real-time.   

 

2. Scenario reduction 

Even though a larger number of wind scenarios is better for describing wind uncertainty, it 

could put on too much burden on the computing resources. Reducing the number of scenarios 

is thus necessary, especially when stochastic optimization is applied to large power systems 

or long-term system operation and planning.   

 

2.4 INTERVAL OPTIMIZATION 

Another way of modeling wind uncertainty is using an uncertainty bound or interval that describes 

the possible lower and upper bounds of wind generation at each time period. Interval optimization 

is another way of solving the unit commitment problem with uncertainty modeling. Interval 

optimization can be considered as a variant of stochastic optimization, in which only three 

scenarios are considered: the upper and lower bound wind forecasts, and the expected wind 

forecast. The objective of interval optimization is to minimize the cost of the expected wind 

forecast scenario, while the system should have enough ramping capability to transition between 

the lower and upper bound of wind realization.  

Interval optimization considers all possible transitions among different scenarios. This transition 

process is shown in Figure 2.2 as published by Wang et al. [49]. tD is the net load. 



 

 

Figure 2.2. Generation level transit process 

 

Based on the scenario-based model, the following transition constraints between these three 

scenarios are added to the model [49]: 

2 1, , , -1,  i t n i t n ip p- ¢D                                                                                                              (2.18)   

1 2, , , -1,  i t n i t n ip p- ¢D                                                                                                              (2.19)   

2, , , -1 i t n i t ip p- ¢D                                                                                                                (2.20)   

2, , , -1 i t n i t ip p- ¢D                                                                                                                (2.21)    

To guarantee that the system constraints are satisfied for all wind realizations, the line flow 

constraints (2.4) and (2.5) are replace by the following: 
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The interval optimization unit commitment model guarantees the feasibility of all wind 

realization within the given bounds. It reduces the risks of not having enough ramping capacity or 

transmission capacity when the wind generation drops or increases suddenly. The selection of the 

upper and lower bounds plays a significant role and must be chosen carefully to avoid making the 

model too conservative. Yu et al. [50] set the uncertain wind generation bound using a Markov 



 

chain to improve the robustness of the original interval optimization unit commitment model.  

 

2.5 ROBUST OPTIMIZATION OR SCHEDULING 

The robust optimization unit commitment model aims to protect the system against the worst wind 

realization over a given uncertainty set. Generally, robust optimization model involve two steps: 

the first searches for the worst realization scenario, and the second is the base unit commitment 

under this worst-case scenario.  Formally, the robust optimization unit commitment model is 

defined as follows: 
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St. (2.6), (2.15) 
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, , ,wt w t w t wt w twf w wg wf w-D ¢ ¢ +D                                                                                          (2.25)   

Equation (2.23) is the objective function with a max-min part. Problems of this type are hard to 

solve. Equations (2.6), (2.15) are the same constraints as appeared in the base unit commitment 

model. The worst wind realization ,w twp  is a decision variable in the outer maximum optimization 

problem under the uncertainty area defined by (2.24) and (2.25). 

As the worst wind realization ,w twg only appears in the economic dispatch constraints which 

contain no binary variables, a common method for solving the robust optimization model is to use 

a decomposition technique such as Bendersô Decomposition. The decomposed model is 

formulated as the following: 



 

 

¶ FIRST STAGE: BENDERSô MASTER PROBLEM 

,
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St. (2.6) 

The first stage minimizes the start-up cost with only the unit commitment constraints, namely 

the minimum up and down time constraints. A Bendersô cut generated by the second stage problem 

is added to the master problem to update the value ofb. 

 

¶ SECOND STAGE: BENDERSô SUB-PROBLEM:  

, , ,,

, ,

, , , , ,
,

1, 1 1, 1

min max min + +
i b t w tw t

I T W T
Noload

i b i b t i t w t
p wswg

i t w t

Zu k p C M ws
= = = =

å õ
= Öæ ö

ç ÷
ä ä                                                  (2.27)  

St. (2.15), (2.24), (2.25) 

 

The second stage solves an economic dispatch problem under the worst wind realization 

scenario, which first needs to be identified within the given uncertainty set. The max-min second 

stage sub-problem can be transformed into the following using primal-dual theory. 
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Due to the bilinear term 8

, ,w t w tu wgÖ in the objective function (2.28), the above problem is NP-hard 

and an efficient ways to solve this problem is still under research.  In Zhao and Zeng [51], Xiong 

and Jirutitijaroen [52] and An and Zeng [53], a column-and-constraint generation method has been 

used to solve the sub-problem. Jiang et al. [54] use a Monte-Carlo sampling method to find the 

worst wind scenario. Bertsimas et al. [55] use an outer approach method in the sub-problem to 

linearize the bilinear part. In our comparison, the outer approach method is adopted to find the 

worst wind scenario.  

 

¶ OUTER APPROACH MASTER PROBLEM 
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Subject to: (2.24)-(2.25), (2.29)-(2.34)   
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In the outer approach (OA, thereafter) master problem, the bilinear part of objective function is 

linearized.  

 

¶ OUTER APPROACH SUB-PROBLEM 
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Subject to (2.29)-(2.34) 

The OA sub-problem solves an economic dispatch problem in its dual form given a wind 

realization scenario. During the OA iteration, the sub-problem solves an economic dispatch 

problem for a given wind realization, and the master problem updates the wind scenario within the 

defined uncertainty set for a better objective value. The whole process is repeated until the results 

of the outer approach sub-problem and of the master problem are equal. Figure 2.3 shows the 

iteration process as illustrated in Bertsimas et al. [55]: 



 

 

Figure 2.3. Robust optimization and OA Solving Process   

 

The robust optimization unit commitment model minimizes the total system cost under the 

worst-case wind scenarios, and guarantees the feasibility of all wind realization scenarios within 

the defined uncertainty set. However, this model has drawbacks: 

1. Computation Time 

Due to the special structure of the robust optimization unit commitment model, it can only 

be solved using a decomposition method. It may take a number of iterations for the problem 

to converge in some cases. Several heuristics have been suggested to improve the solution 

efficiency, such as adding some economic dispatch constraints to the Bendersô master 

problem as mentioned by Bertsimas et al. [55], or by making a good estimation of the 

possible worst wind scenario as suggested by Zhao and Guan [56]. 

 

2. Worst-case Wind Scenario 

As mentioned above the bi-linear term in the Bendersô sub-problem makes it hard to 

guarantee a global optimal solution when searching for the worst-case wind scenario, 

especially when there are many wind farms in the system. The search for the worst-case wind 



 

scenarios has become an independent research topic in the literature [51-55].  

 

3. Uncertainty Budget 

Unlike the interval optimization unit commitment model which can be really conservative 

in some cases, the conservativeness of the robust optimization model can be adjusted by 

changing the uncertainty budget. However, there is no strict rule on how to set this 

uncertainty budget, and historical information may be needed to get the right setting.  

 

2.6 OTHER DAY-AHEAD OPTIMIZATION METHODS AND TRENDS 

Beside the three optimization techniques discussed above, other day-ahead unit commitment 

optimization methods dealing with uncertainty are discussed in the literature. These include rolling 

optimization (Tuohy et al. [57], Madaeni and Sioshansi [58] and Qiu et al. [59]), robust min-max 

regret optimization (Jiang et al. [60]), and the combined optimization methods (Zhao and Guan 

[56] and [61-63]). 

¶  ROLLING OPTIMIZATION  

Rolling optimization is one way of dealing with wind power output uncertainty by using a more 

accurate wind forecast. This can be realized by reducing the forecast time period. Madaeni and 

Sioshansi [58] propose a way of rolling scheduling (optimization) that makes full use of wind data 

updates. In the rolling optimization, the day-ahead unit commitment problem is solved first using 

the original wind forecast information. In the economic dispatch period, economic dispatch 

problem is solved every 15 minutes using the updated wind forecast.  

 

 



 

¶ MIN-MAX REGRET OPTIMIZATION 

In practice, it is unlikely to have a zero-error wind forecast on the day ahead. There will therefore 

always be an adjustment cost associated with errors in the wind forecast. To protect the system 

against the worst possible adjustments in real-time, Jiang et al. [60] propose a robust min-max 

regret optimization unit commitment. Min-max regret optimization has the same structure as 

robust optimization except for the objective function. The former aims at protecting the system 

against the worst wind realization in real-time, while the latter protects the system against the worst 

real-time wind change from that forecast on the day ahead.   

 

¶ COMBINATIONS OF DIFFERENT OPTIMIZATION METHODS  

 As discussed above, each optimization model has its own advantages and disadvantages, and 

their performance is highly dependent on the case and the setting of the optimization parameters. 

More and more research has focused on the combinations of different optimization methods. The 

combination of stochastic and chance constrained optimization is discussed by Wu et al. [61] [62]. 

Zhao and Guan [60] propose a combination of stochastic optimization and robust optimization in 

day-ahead unit commitment. By adjusting the weight of the two different objective functions, they 

control the conservativeness of the model. A combination of stochastic and interval optimization 

described by Dvorkin et al. [63] reduces the computing time. The conservativeness of the solution 

can be optimized by choosing a good switching time between the two methods.  

 

2.7 TEST SYSTEM AND RESULTS 

Tests were carried out on a modified version of the IEEE-RTS 24 bus system. Full system data 

can be downloaded from [64]. The wind power profile used are from NRELôs Eastern 



 

interconnection wind integration study [65]. Four wind farms with capacities of 112MW, 

138.4MW, 243.8MW and 223.2MW are located at bus 2, bus 18, bus 21 and bus 23 of the original 

system.  

The Eastern interconnection study year 2006 observed data are used for testing, and the history 

(2004-2005) forecast and observed data and 2006 forecast data are used to generate 11 scenarios 

for stochastic optimization and bounds for interval and robust optimization. 

Other important testing parameters include: 

¶ For the robust optimization, the uncertainty budget is set to be1.5 3W = .  

¶ The gap of the Benders master problem is 0.5% and the convergence gap is 1e-4. The outer-

approach inner convergence gap is 1e-5. 

¶ For the robust optimization, the economic dispatch constraints of the average wind forecast are 

added into the master problem to predict the worst-case scenario and accelerate the 

convergence.  

¶ The optimization gap for both the interval and stochastic day-ahead optimization is set to 0.5%. 

¶ The wind curtailment penalty is $20/MWh and load curtailment penalty is $5000/MWh. 

¶ The system transmission capacity is reduced to 80% of its original value. 

 

1. Day-ahead unit commitment solution time 

The size and structure of the day-ahead optimization are the main factors that affect the solution 

time of the model. Robust optimization has the smallest problem size, while the stochastic 

optimization has the largest size because it considers more scenarios. However, the robust 

optimization can only be solved using a decomposition method, and the search for the worst-case 

scenario is not easy. Many heuristics have been proposed in the literature to help accelerate the 



 

speed of the search and the overall convergence rate. This makes the solution time quite unstable. 

Figure 2.1 is a scatter plot of the solution time of the day-ahead unit commitment. It illustrates this 

observation about the effect of these heuristics. 

The left part of Figure 2.4 (a) shows the whole data set. In the plot on the right side of Figure 

2.4(b) the extreme points of the robust optimization have been eliminated. We can see from the 

2.4(a) that there are days when it may take an extremely long time to find the worst-case wind 

scenario. However, for most of the days, the solution time is shorter than for the interval and 

stochastic optimizations. 

As stochastic optimization formulation has the largest problem size, we observe longer solution 

time compared with both interval and robust optimization in Figure 2.4(b). 

 

(a)                                                                        (b) 

Figure 2.4. Scatter Plot of Day-ahead Unit Commitment Solution Time  

 

 The CDF plot in figure 2.5 provides a more straightforward comparison of these three 

optimization methods in terms of solution time. For a better comparison, the extreme points in 

robust optimization method have been removed from the figure. We can see from Figure 2.5 that 

the solution time is no more than 20 seconds for over 95% of the days.  If  stochastic optimization 



 

is applied, the solution time is no more 20 seconds than only 10% of the days. Figure 2.5 also 

shows that the solution time of the robust optimization is not always shorter than the solution time 

of the interval optimization problem due to the heuristics used to search for the worst-case wind 

scenario. 

 

Figure 2.5. CDF Plot of Day-ahead Unit Commitment Solution Time  

 

2. Total Cost in Real-time 

The real-time total cost includes both the start-up and dispatch costs. Since the generator on-off 

status is optimized on the day-ahead and cannot be changed in real-time, the start-up cost is 

determined by the day-ahead unit commitment. The day-ahead scheduled generator output can be 

adjusted in real-time, so the dispatch cost is determined by the real-time wind and load realizations. 

As the three optimization methods are aimed at different objectives, their distributions of real-time 

total cost are different as shown in Figures 2.6, 2.7 and 2.8.  
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(a)                                                                           (b) 

Figure 2.6. Scatter Plot of Real-time Cost 

 

Figure 2.6 is a scatter plot of the real-time total cost. Figure 2.6 (a) shows the whole data set. In 

Figure 2.6(b) the extreme points of the stochastic optimization have been removed. We can see 

from Figure 2.6 (a) that there are more days when the total real-time cost is high when using 

stochastic optimization, which means that there is more wind or load curtailment on these days. 

These extreme situations happen less frequently when using interval optimization. And there are 

rarely extreme situations when using robust optimization. 

Figure 2.6 (b) shows that despite the more extreme days resulting from the stochastic 

optimization, the total real-time cost is much less using stochastic optimization than with the other 

two optimization methods on days when the wind realization is close to the day-ahead forecasted 

wind scenario compared.  



 

 

Figure 2.7. CDF Plot of Day-Ahead Start-up Cost 

 

 

Figure 2.8. CDF Plot of Real-time Cost 

 

The CDF plots in Figures2.7 and 2.8 provides a more straight forward comparison of the three 

different optimization methods in terms of day-ahead start up and total real-time costs. Even 

though the day-ahead start-up cost is likely to be highest using robust optimization (as shown by 

Figure 2.7), we can see from Figure 2.8 that the total real-time cost is no more than $1,000,000 for 
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about 95% of the days when using robust optimization. That percentile is slightly less when using 

interval optimization and drops to about 70% when using stochastic optimization.  

As robust optimization is aimed at minimizing the cost under the worst-case wind scenario, the 

tail of its CDF plot is much shorter as shown in Figure 2.8, which in turn makes the costs under 

preferable wind scenarios bigger than with the other two methods. Interval optimization and 

stochastic optimization aim to minimize the cost under average forecast and the expected cost 

under all forecast instead. Therefore, their CDF has a longer tail, which means that high real-time 

cost are likely to happen occasionally using these two methods. However, interval and stochastic 

optimization have better performance on days when the day-ahead forecast does not deviate 

significantly from the real-time wind realization. 

 

2.8 SUMMARY  

In this chapter, we investigated the various optimization techniques used to solve the day-ahead 

unit commitment under wind generation uncertainty. Special attention was given to stochastic, 

interval and robust optimization. The IEEE RTS and the NREL Eastern wind data were used to 

test and compare their performance. In summary, each of the three main optimization method has 

its own advantages and disadvantages in terms of both computing time and real-time performance. 

¶ Robust optimization has a relatively smaller problem size, and the solution efficiency can be 

quite high if there is fast way to find the worst-case wind scenario. Since the size of the interval 

optimization problem is fixed, its solution time depends only on the different cases. Even 

though the problem size is largest for the stochastic optimization method, the solution 

efficiency can be improved significantly using advanced forecast and scenarios reduction 

techniques.  



 

¶ The real-time performance of the three optimization models is highly dependent on the wind 

forecast and the parameter settings. In cases of high uncertainty, robust optimization could 

greatly reduce the probability of incurring an extremely high real-time cost if an adequate 

uncertainty budget is chosen. When the day-ahead forecast is accurate, stochastic optimization, 

or tighter wind generation bounds and a smaller uncertainty budget in interval and robust 

optimization may be a better option. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3. STOCHASTIC MULTI-STAGE CO-PLANNING OF 

TRANSMISSION EXPANSION AND ENERGY 

STORAGE 

3.1 INTRODUCTION 

Generation and transmission system planning have been extensively studied in the literature. 

Hemmati et al. [66] provide a comprehensive review of the topic while Munoz et al. [67] as well 

as Martinez Cesena et al. [68] discuss recent progress. With the development of battery 

technologies, the combined operation and planning of storage devices with other power system 

resources is drawing increasing attention. Zach and Auer [69] point out that energy storage and 

transmission investments increase system flexibility but that cost/benefit analyses are needed to 

determine which measures are preferable.  

Various studies [70-76] focus on the planning of energy storage systems alone in power systems. 

Oh [70] uses a DCOPF model and a limited number of time periods per year to make the problem 

of siting and sizing storage units tractable. A full unit commitment model is used in Pandzic et al. 

[71] to determine both the optimal sizes and sites for energy storage using wind and load profile 

over a whole year, and some heuristics are introduced to limit the problem size. Other authors [72-

74] focus on the size of energy storage without considering the effects of the transmission network. 

The statistical properties of renewable generation are used in Liu et al. [72], and the power 

spectrum density of deviations of renewable generation from forecasts is applied in Li et al.  [73]. 

Bayram et al. [74] developed a stochastic analytical framework to determine the proper size of 

energy storage and conducted a benefit/cost analysis to evaluate storage investments.   

Co-planning of energy storage and transmission systems is addressed in [75-78]. Hu et al. [75] 

solve a MILP problem iteratively to determine the ESS investment size and locations by replacing 



 

part of the transmission investment while satisfying the same system requirement. Zhang et al. 

[76] propose a MILP model to determine the size and location of a single energy storage unit to 

minimize both the operation and investment costs taking line losses into account. Hedayati et al. 

[77] and Konstantelos et al. [78] propose multi-stage co-planning models to determine the location 

of a given size energy storage that minimizes the one-time investment cost and the long-term 

operation cost.  A DCOPF based deterministic planning model is used in Hedayati et al. [77], while 

a SCOPF based stochastic planning framework is used by Konstantelos et al. [78], who take into 

account N-1 security criteria as well as the uncertainty on the long-term wind capacity. 

As the size of the planning model tends to be large, the computing burden can be tremendous 

when the planning horizon is long or the model accuracy is high. Researchers either choose a 

shorter planning horizon or simplify the UC(ED) operation model to make the problem tractable. 

To overcome the above mentioned limitations, this chapter describes a more accurate technique 

for co-planning the multi-stage expansion of transmission capacity and the deployment of battery 

energy storage systems (BESS). Its contributions can be summarized as follows: 

a. It models the degradation in energy storage capacity due to shelf life and charge/discharge cycles, 

which have been ignored in all the other BESS planning models.  

b.It accounts for the delays associated with the planning and construction of transmission lines. 

c. It incorporates a unit commitment with reserve requirements to represent accurately the 

operation of the system. 

d.It optimizes both the size and the location of investments in energy storage at each year of the 

horizon. 

e. It implements a stochastic optimization to take into account the effect of uncertainty on load as 

well as renewable generation. 



 

The remainder of this chapter is organized as follows: Section 3.2 describes the modeling 

assumptions while Section 3.3 provides the detailed mathematical formulation of the optimization 

problem. Section 3.4 describes the test system. Section 3.5 presents the results of the optimization 

and of the sensitivity analysis. Section 3.6 concludes. 

 

3.2 MODELING 

Multi -stage planning problems can easily get very large. Careful choices about modeling 

assumptions must therefore be made to achieve a balance between the accuracy of the results and 

the computing time. 

¶ BATTERY ENERGY STORAGE SYSTEMS 

The calendar life of a battery as well as the charge and discharge cycles it has undergone affect 

its energy capacity. A number of papers (e.g. [79-81]) offer detailed and accurate models of battery 

degradation. However, because these models are non-linear and involve multiple variables and 

non-linearities, the computational burden that they would impose on a planning study is not 

acceptable. In our study, we assume instead a flat degradation rate of 94%, which means that 6% 

of the energy capacity is lost each year, 3% of which is due to calendar aging and 3% to utilization. 

 



 

 

Figure 3.1. BESS Investment Unit [29] 

 

Energy storage planning techniques described in the literature (e.g. [77-78]) typically determine 

the optimal location for storage unit of a given size and for a one-time investment. This is a rather 

restrictive assumption as storage lends itself to incremental investments over time at the same 

location. Instead, as shown in Figure 3.1, we assume that BESS units can be added over time at 

each location, providing a variable power/energy capacity ratio. Each BESS unit is retired 

independently when it reaches the end of its useful life. 

 

¶ SYSTEM OPERATION 

Enhancing the fidelity of the modeling of system operation increases the numbers of variables 

and constraints. In a planning model, these numbers increase further as the number of years 

considered as part of the planning horizon is extended. Different strategies have been used to 

streamline the operation model. Most planning models ignore or simplify the Unit Commitment 

(UC) decisions and constraints or use very broad time periods. Konstantelos and Strbac [78] 

removed all time coupling constraints (such as the ramp rate limits on the generators), and 

considered a 15-year planning horizon with a 5-year epoch. Hedayati et al. [77] ignore the 



 

uncertainty on future wind generation and load and consider an 8-year horizon with a 4-year epoch. 

These assumptions have serious drawbacks. First, it is impossible to know all the committed units 

in advance under the current market structure and it is quite unlikely that all the peaking units will 

be online at all times. The contribution of storage in dealing with the uncertainty in renewable 

generation and in reducing the number of start-ups of peaking units would therefore be 

undervalued. Second, because the available capacity of an energy storage system is likely to fade 

substantially over a 5- or 8-year timeframe, using such a long planning epoch could lead to 

inaccurate planning decisions.  

Our study adopts a 25-year planning horizon with a 1-year epoch. To reduce the number of 

binary variables used to reflect the generatorsô status, all generators are divided into two types: 

those that are assumed to be always committed and those that are free, i.e. which can start up or 

shut down at any time. In other words, slow and fast generators. Two methods can be used to 

divide the generators into these two types. We can run a 24-hour unit commitment for 25 years 

and assign the generators that are committed more often than a given threshold to the slow category 

while the others are considered free. Alternatively, generators with a one-hour minimum up/down 

time can be assumed to be fast generators, while the remaining ones are assigned to the slow 

category. Testing showed that the two techniques produce very similar results. 

 

¶ LOAD AND WIND GENERATION CAPACITY SCENARIOS 

To reduce the risk of stranded assets, investments in transmission or storage capacity should be 

robust with respects to errors in the long-term evolution of the load and the renewable generation 

capacity. The proposed optimal co-planning approach therefore considers 3 scenarios that combine 

the load and wind generation uncertainty. Figure 3.2 illustrates these scenarios. 



 

 

 

Figure 3.2. Load and Wind generation capacity scenarios 

 

¶ RESERVE REQUIREMENT 

Most planning models do not consider the need to provide operating reserve. As the proportion 

of stochastic renewable generation increases, this simplification becomes untenable.  The proposed 

model considers the reserve constraint in the unit commitment and uses the 3+5 rule to specify the 

amount of operating reserve, which means that the reserve required is equal to 3% of the forecast 

load prediction plus 5% of the forecast wind generation [2, 83]. The amount of reserve provided 

by BESS follows the model described by Hu et al. [84]. This model is explained in detail later in 

this chapter.   

 

¶ LOCATIONS FOR BESS AND ADDITIONAL TRANSMISSION CAPACITY  

Limiting the number of locations where BESS could be installed and the number of transmission 

lines that could be upgraded significantly reduces the computational burden. To determine a good 

set of likely candidates, a planning problem with a 1-year horizon was run to determine the best 
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locations for each of the 25 years in the actual horizon. Locations where this short-term planning 

problem frequently installed BESS were selected as candidates for the long-term planning 

problem. Lines where the power flow frequently exceeded 55% of their rating were considered for 

a capacity upgrade. 

 

¶ REPRESENTATIVE DAYS 

In long-term planning, considering a whole year of operation is unnecessary and makes the 

problem intractable. When integrating renewables, the shape of net load could be quite different 

from that of the original one due to the increasing renewable capacity. Thus, 5 days are selected to 

represent typical wind generation and load profiles for each year based on how the daily wind is 

changing with daily load. The correlation coefficient of daily load and wind is calculated, and net 

load profiles are clustered into 5 groups using the K-means method. The profile which is closest 

to the centroid of each group is selected as a representative day of that group. Since these 5 days 

are usually not consecutive, the initial ramp constraints are relaxed. 

 

3.3 FORMULATION OF THE PLANNING PROBLEM 

¶ NOTATIONS 

Sets and Indices: 

y :  (1 Y ) - Index to the study year  

 

Parameters: 

t:  Number of days represented by each typical day in a year 



 

r : Discount rate 

ST: Life time of a BESS 

LT : Life time of a transmission line 

,i bk :  Marginal cost of a segment of generator cost curve 

eC :  Cost per MWh of a BESS  

pC :  Cost per MW of a BESS  

lC  :  Cost per MW of capacity of a transmission line 

ek  : Annualized cost per MWh of a BESS  

pk : Annualized cost per MW of a BESS 

lk : Annualized cost per MW of a transmission line 

td:  Spinning reserve response time 

dis

sh , ch

sh : Storage device discharge and charge efficiency 

min

sE :   Minimum energy capacity of a BESS 

,

y

w twf :  Wind forecast 

,

y

s tD :  Load forecast 

,

G

i sM : Mapping of generators to nodes 

,

W

w sM :  Mapping of wind farms to nodes 

,

L

l sM :  Line connection 

msB :  B Matrix for DC power flow calculation 

sr :  Energy capacity degradation factor of energy storage 

calk :   Calendar ageing rate  



 

cyclek :  Cycling ageing rate 

 

Binary variables: 

,

y

i tx :  Generator status, 1- online, 0 - offline 

,l yI :  Line decision, 1- start construction, 0 - no construction  

,l yZ :  New line status, 1- in service, 0 - not in service 

 

Variables 

yC :  Discounted annual operation cost 

,

operation

t iC :  Hourly unit operation cost 

_ yS INV : Discounted annual storage investment cost 

_ yL INV : Discounted annual line investment cost 

, ,

y

i b tp :  Generation on each segment of the cost curve 

,

y

i tp :  Total generation of each generator 

,

y

s tch :  Charging power of a BESS 

,

y

s tdis :  Discharging power of a BESS 

,

y

s tSoC : State of charge of a BESS 

,

y

s tq : Bus voltage angle 

,

y

l tf :  Power flow on an existing line 

,

y

l tNf :  Power flow on a new line 

,

y

i trg :  Reserve provided by a generator 



 

,

y

s tre :  Reserve provided by a BESS 

,s yE :  Investment in energy capacity for a year 

,s yPe :  Investment in power capacity for a year 

,s yAPe : Available power capacity by the end of a year 

,s yAE : Available energy capacity by the end of a year 

 

¶ OBJECTIVE FUNCTION 

For clarity of exposition, the equations below define the deterministic long-term planning 

problem. The stochastic optimization planning model can be easily obtained by adding one more 

dimension into the operation variable and related constraints, and detailed formulations follow the 

same structure as that shown in Chapter 2.  Equation (3.1) shows that the long-term planning 

problem aims to minimize the sum of the operating cost over the horizon: 
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Equation (3.2) gives the discounted operating cost over the planning horizon. The penalty term 

discourages wind curtailments (at 20$/MWh) and load curtailments (at 5000 $/MWh). 
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Equation (3.3) gives the discounted BESS investment cost for each year. Equations (3.3a) and 

(3.3b) give the annualized BESS energy and power capacity cost while (3.3c) gives the annual 



 

discount factor needed to ensure that all costs are to be paid off within the BESS life time. 
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Equation (3.4) gives the discounted transmission line investment cost for each year. An annual 

payment is assumed to be made each year after the investment decision is made. Equation (3.4a) 

gives the annualized line capacity cost while Equation (3.4b) gives the annual discount factor 

needed to ensure that the cost of the line is paid off over the lineôs life time. 
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¶ GENERATOR CONSTRAINTS 



 

Equations (3.5) to (3.8) describe the constraints on minimum and maximum generation capacity 

and maximum ramping. 
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¶ RESERVE CONSTRAINTS 

Equations (3.9) and (3.10) determine the amount of reserve that each generator can provide: 
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¶ ENERGY STORAGE CONSTRAINTS 

Equation (3.11) keeps track of the state of charge of each BESS while Equations (3.12) to (3.14) 

enforce their energy and power capacity limits. Equations (3.15) and (3.16) determine the amount 

of reserve that each BESS can provide: 
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¶ POWER BALANCE CONSTRAINTS 

Equation (3.17) enforces the system power balance at each node. Equation (3.18) limits the wind 

generation to the available wind power, which is assumed to be equal to the forecast: 
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¶ RESERVE REQUIREMENT 

Equation (3.19) defines the 3+5 reserve requirement [2, 83], i.e. the total reserve should be no 

less than 3% of the forecasted load plus 5% of the forecasted wind power. 
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¶ LINE FLOWS AND TRANSMISSION CAPACITY 

Equation (3.20) calculates the lines flows using a DC power flow. Equations (3.21) and (3.22) 

implement the line flow constraints. 
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¶ STORAGE PLANNING  

Equation (3.23) gives the available BESS energy capacity for each year considering 

degradation. Equations (3.23a) and (3.23b) calculate the capacity factor at each year by combining 

the calendar aging and the aging caused by cycling.  The energy capacity of a BESS is assumed to 

be zero once it reaches the end of its life. 
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Equation (3.24) gives the available power capacity of a BESS for each year. No degradation is 

assumed. Equation (3.24a) removes this power capacity once the BESS has reached the end of its 

life. 
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Equations (3.25) and (3.26) are optional constraints that specify that a certain amount of 

available BESS in a certain year. 
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Equation (3.27) keeps the power/energy capacity ratio of each BESS within a technologically 

reasonable range: 
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¶ LINE PLANNING AND OPERATION MODEL 

Equation (3.28) enforces a construction delay of one year between the investment decision and 

the availability of an expanded transmission line. Equation (3.29) makes sure that once a 

transmission line is available, it remains available. 
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Equations (3.30) to (3.32) determine the flows on new transmission lines. The large numberM

prevents power from flowing in lines that have not yet been built [77]. 
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3.4 TEST SYSTEM  

Tests were carried out on a modified version of the IEEE-RTS 24 bus system. Full system data 

can be downloaded from [64]. The wind power profile used are the same data from [64]. Only the 

three wind farms located at bus 20, 21 and 23 of subsystem I are selected with initial capacities 

600MW, 300MW and 300MW. Wind energy generation accounts for 21.7% of the annual load at 

year 1.  A line was added between buses 7 and 8 to make the system N-1 secure.  



 

 

 

Figure 3.3. Test System Topology 

 

Other important testing parameters include: 

¶ Transmission capacity was reduced to 90% of its original value to increase congestion 

¶ The cost of a BESS is assumed to be 500$/kW plus 25$/kWh, and its lifetime is 10 years 

¶ The cost of building a line is assumed to be 927,000 $, and lifetime 60 years [85] 

¶ The discount rate was set at 5%.   

¶ In the base case, the wind generation capacity increases by 4% per year and the load by 3%. 

¶ Buses that are candidates for the installation of a BESS and lines that are candidates for 

transmission upgrades were selected using the technique described in Section 3.2E. Details are 

shown in Figure 3.3. 



 

 

Table 3.1. Unit Category 

Type No Min-Down (hr) Min-Up (hr) Committed Rate (%) Category 

1 15-19 1 2 0-30 Fast 

2 1-2, 5-6 1 2 0-30 Fast 

3 24-29 1 2 0-30 Fast 

4 3-4, 7-8 2 3 100 Slow 

5 9-11 2 4 100 Slow 

6 20-21, 30-31 16 24 100 Slow 

7 12-14 3 4 100 Slow 

8 32 5 8 100 Slow 

9 22-23 24 168 100 Slow 

 

3.5 TEST RESULTS AND SENSITIVITY ANALYSIS  

¶ CO-PLANNING VS. INDEPENDENT PLANNING  

Using the base case settings, simulations for the three different planning models are carried out 

to compare the decisions under different planning methods: transmission expansion and ESS 

together co-planning, transmission expansion only and BESS only.  

Table 3.2 shows that co-planning investments in transmission line and BESS capacity 

significantly reduces the number of lines that must be built. 

 

 

Table 3.2. Investments in Transmission Line Capacity 



 

 Upgraded lines 

Line 

Capacity(MW) 

Construction Start 

Co-Planning Line 21 (buses 12-23) 450 Year 09 

Lines Only 

Line 29 (buses 16-19) 450 Year 10 

Line 15 (buses 09-12) 360 Year 18 

Line 07 (buses 03-24) 360 Year 19 

Line 18 (buses 11-13) 450 Year 22 

 

Similarly, Table 3.3 shows that co-planning the deployment of storage with upgrades in 

transmission line capacity results in the installation of BESS at fewer locations. However, Figure 

3.4 shows that the total energy and storage capacities are installed at essentially the same rate, 

albeit at different locations. As illustrated by Figures 3.5 and 3.6, BESS capacity investments shift 

from buses at or near wind generation (e.g. buses 14 and 23) to buses close to the load centers (bus 

03) to reduce the more expensive load curtailment. 

 

Table 3.3. BESS Investment Location 

 BESS Locations 

Co-Planning Bus 3, 6, 10, 12, 19 

BESS Only Bus 3, 6, 10, 12, 14, 19, 23 

 



 

 

Figure 3.4. Total available BESS energy and power capacity as a function of time 

 

 

Figure 3.5. Total BESS energy capacity installed at each bus 
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Figure 3.6. Total BESS power capacity installed at each bus. 

 

Figures 3.7 and 3.8 further illustrate the differences in the timing and the location of the 

investments recommended by the two planning approaches. 

 

Figure 3.7. Energy capacity installed each year at each bus of the planning horizon using the 

co-planning method 
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Figure 3.8. Energy capacity installed each year at each bus of the planning horizon using the 

BESS only planning method 

 

¶ STOCHASTIC OPTIMIZATION  

Because long-term forecasts of load growth and renewable energy development are inaccurate, 

considering multiple scenarios and performing the planning using a stochastic optimization 

provides a more robust investment plan. Figure 3.9 shows how much BESS energy capacity should 

be installed each year at each bus based on a stochastic optimization and the three wind generation 

and load growth scenarios described in Section 3.2D. Figure 3.10 shows the results obtained with 

a deterministic optimization using only the base scenario.  

Comparing the results of Figure 3.9 and Figure 3.10 leads to the observation that deterministic 

planning distributes investments in BESS more widely over the years, while stochastic planning 

recommends larger investments in fewer years. The starting years, capacity at each bus, and total 

available energy and power capacities are also quite different. 
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Figure 3.9. Total BESS energy capacity installed each year at each bus using stochastic 

optimization 

 

 

Figure 3.10. Total BESS energy capacity installed each year at each bus using deterministic 

optimization 

 

¶ EFFECT OF BESS LIFETIME  

The effect of changing the lifetime of each BESS from 10 to 15 years was studied using the co-

planning approach. The annualized BESS energy and power capacity costs were changed 

accordingly, but all other parameters remained the same.   
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Table 3.4. BESS Investments 

BESS lifetime BESS Locations 

10 years Bus 3, 6, 10, 12, 19 

15 years Bus 6, 10, 12, 14, 19, 23 

 

 

Figure 3.11. Total Available Energy Capacity 

 

Table 3.4 shows that more BESS are installed when they have a longer lifetime and Figure 3.11 

that their installation starts sooner. 

Table 3.5 shows that more lines are built when the BESS operate for more years. This is 

reasonable, since a longer life time means the cost of using BESS has reduced, the saved cost can 

be used to upgrade more line capacities. 
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Table 3.5. Line Capacity Upgrades 

BESS lifetime Upgraded Lines 

Line 

Capacity(MW) 

Construction Year 

10 years  Line 21 (bus 12-23) 450 Year 09 

15 years  

Line 23 (bus 14-16) 450 Year 09 

Line 22 (bus13-23) 450 Year 22 

Line 10 (bus 06-10) 157.5 Year 24 

 

 

¶ EFFECT OF TRANSMISSION CAPACITY  

To compare the effect of transmission capacity on co-planning, the initial transmission capacity 

was set at 100%, 90% and 80% of the original RTS transmission capacity. As one might expect 

and as Table 3.6 shows, fewer lines need to be upgraded if the initial transmission capacity is 

larger. On the other hand, as Table 3.7 shows, the locations where BESS are installed change. 

When less transmission capacity is available, the location of BESS shifts from corridors used to 

transport wind generation towards load centers (bus 03) to avoid load curtailments and to wind 

generation centers (bus 23) to reduce wind curtailments. Figure 3.12 shows that the transmission 

capacity has an almost negligible effect on the total installed BESS energy capacity in the system. 

 

 

 

 

 

 



 

Table 3.6. Line Capacity Upgrades 

Initial capacity Upgraded Lines 

Line  

Capacity(MW) 

Construction Year 

100%  None NA None 

90%  line 21 (bus 12-23) 450 Year 09 

80%  

Line 22 (bus13-23) 400 Year 07 

Line 29 (bus16-29) 400 Year 11 

Line 10 (bus 6-10) 140 Year 21 

 

 

Table 3.7. BESS Investment Location 

 BESS Locations 

100% Capacity Bus 06, 10, 12, 14, 19, 23 

90% Capacity Bus 03, 06, 10, 12, 19 

80% Capacity Bus 03, 06, 10, 12, 14, 19, 23 

 

 



 

 

Figure 3.12. Total available BESS energy capacity for different initial transmission capacities 

 

3.6 CONCLUSIONS 

In this chapter, we has proposed a stochastic multi-stage method for co-planning transmission and 

BESS. Compared with the state of art, the proposed method uses more detailed and accurate 

models over a longer planning horizon. In particular, it takes into account the degradation and 

limited lifetime of BESS, it considers the reserve constraints and optimizes both the location and 

capacity of BESS. The size of the problem, and hence the computing burden, remain manageable 

because generators are grouped by types, and the locations where BESS be installed and the lines 

that can be upgraded are pre-selected. A sensitivity analysis has been performed to highlight the 

effect of different planning approaches, of the uncertainty on future load and wind developments, 

of the BESS lifetime and of the initial transmission capacity. 

The reserve rate is defined as follows: 

 
Conventional Generation Capacity + Wind Generation

Load Forecast
 

Over the course of 25 years planning horizon, this reserve rate will decrease. A negative reserve 
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rate may appear in times when the wind is low and the load is high such as in day 3 and 4. Despite 

the negative reserve rate, the system remain balanced because of the installed BESS. BESS charges 

during the early hours when the reserve rate is high and discharges during the hours when the 

reserve rate is low, so part of the capacity has been shifted. In hours when the reserve rate is 

negative, the BESS virtual generation capacity shifted from the high reserve rate hours is used to 

keep the system in balance. In the future, there may be significant value in co-planning generation, 

transmission and BESS to evaluate the benefit of BESS in providing both virtual transmission and 

generation capacity.    

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4. STOCHASTIC MULTI-STAGE CO-PLANNING OF 

GENERATION AND BATTERY ENERGY 

STORAGE 

4.1 INTRODUCTION 

Because of their intermittency and stochasticity, wind and solar generation cannot be treated in the 

same way as conventional plants in generation planning. To ensure that enough generation is 

available when these renewable resources are not available, conventional fossil-fired units may 

still be required. Furthermore, as the proportion of renewable generation increases, flexible 

generating units or battery energy storage systems (BESS) [86-87] may be needed to keep the 

system in balance. Traditional generation expansion planning techniques must therefore be 

modified to consider the need for flexibility as well as the benefits of distributed energy storage. 

Generation expansion planning has attracted a significant amount of interest in recent years [88-

95]. Hua et al. [88] proposed a generation expansion planning model that incorporates operational 

flexibility through a convex relaxation of the unit commitment problem. Hinojosa and Gonzalez-

Longatt [89] described a generation expansion model considering N-m contingencies, with the 

goal of enhancing system reliability under both normal operation and after the occurrence of a 

major disturbance. Kirschen et al. [90] proposed a stochastic method to optimize the flexibility of 

a portfolio of generating plants. De Jonghe et al. [91] discussed the effect of short term demand 

response on the optimization of the generation mix. All these methods are based on a snapshot of 

the system conditions for a given year. Multi-stage long-term planning methods are discussed in 

[93-95]. Saboori and Hemmati [93] developed a multi-stage generation expansion planning model 

to minimize the planning costs and the CO2 emissions using a particle swarm optimization 

algorithm. Zhan et al. [94] introduced amstochastic programming model that maximizes total 



 

profits, considering the effect of investment decisions on electricity prices. Dominguez et al. [95] 

proposed a multi-stage generation investment model that takes into consideration the demand 

growth and the generating units cost uncertainty. They used a linear decision rule (LDR) approach 

to reduce the computing burden.  

Various studies [96-100] focus on the planning of energy storage systems. Oh [96] used a DC 

OPF model and a limited number of time periods per year to keep the problem of siting and sizing 

storage units tractable. Dvijotham et al. [97], developed a heuristic procedure for energy storage 

placement and sizing based on historical data. Wogrin and Gayme [98] discussed a co-optimizing 

model for siting and sizing of a storage technology portfolio consisting of four technologies in a 

transmission-constrained network. A stochastic optimization-based model is used by Xiong and 

Singh [99] to optimize both the location and size of an energy storage system considering the 

uncertainty on wind power generation. These authors use a capital/operating cost frontier to show 

how a budget constraint affects the ESS planning decisions. Pandzic et al. [71] used a full unit 

commitment model to determine both the optimal sizes and sites for energy storage based on wind 

and load profiles over a whole year. They introduced some heuristics to limit the problem size. Liu 

et al. [72] modeled wind fluctuation using power spectrum density and optimized only the size of 

the ESS to increase the level of wind power penetration while meeting the limits on grid frequency 

deviations. Xu et al [100] developed a bi-level formulation to optimize both the location and size 

of energy storage systems used for energy arbitrage and regulation services. Additional rate-of-

return constraints are enforced to guarantee the profitability of investments in energy storage. 

A few papers have dealt with the co-planning of energy storage and generation [101-107]. 

Yasuda et al. [101] proposed a model based on dynamic programming and a gradient search to co-

optimize the mix of generation and storage, but did not consider transmission constraints or 



 

renewable generation. Pudjianto et al. [102] developed an approach to simultaneously optimize 

investments in generation, network and storage capacity. However, the transmission and generator 

operating constraints are simplified to keep the computations tractable. Yang and Nehorai [103] 

used a consensus-based method to co-optimize investments in storage, renewable generation, and 

diesel generator capacities for a micro-grid. Carrión et al. [104] developed a coordinated 

generation and storage expansion formulation considering the primary frequency response 

constraints. Kargarian et al. [105] used a detailed hourly and intra-hourly operation model in a 

stochastic co-planning problem to optimize both the flexible generation and ESS capacity. Liu et 

al. [106] used a progressive hedging algorithm to solve a multi-stage stochastic planning model. 

To reduce the computation time, these authors considered only 4 investment periods over a 10-

year horizon. 

This chapter describes a multi-stage co-planning model for generation capacity and battery 

energy storage systems (BESS). Its contributions can be summarized as follows: 

a. It models the degradation of the energy storage capacity and time delays in the construction 

of generating plants.  

b. The multi-stage planning model optimizes both the size and the location of investments in 

energy storage and traditional generators at each year over the whole planning horizon. 

c. It provides a detailed analysis of common investment patterns and differences for 9 

combinations of penetrations of renewable generation and hourly wind/load correlations. 

d. It discusses the effect of the choice of representative days on the planning results and 

provides a way to obtain near-optimal planning results for large systems. 

e. It analyzes competition and complementarity between storage and flexible generation. 

Section 4.2 provides the detailed mathematical formulation of the optimization problem. Section 



 

4.3 discusses the modeling assumptions. Section 4.4 describes the test system. Section 4.5 presents 

and discusses numerical results. Section 4.6 concludes this chapter. 

 

4.2 MODELING ASSUMPTIONS 

This chapter adopts a 25-year planning horizon with a 1-year resolution. Because multi-stage 

planning problems can easily get very large, careful modeling simplifications must be made to 

achieve a balance between the accuracy of the results and the computing time. The following 

paragraphs describe briefly these assumptions. More details can be found in [107]. 

¶ TYPES OF GENERATORS 

A simplified generation expansion problem was first solved to determine the types of generators 

that should be considered as candidates for investments. At each location, additional generators of 

the type that are already connected there can be built, creating an aggregated generation capacity 

with larger ramping and operating limits but with the same up/down times and a single operating 

status. Nine different types of traditional generators are represented in the test system. The 

investment costs for these generators can be found in [90]. Units of types 1 and 4 with maximum 

capacities of 20MW and 76MW respectively turned out to be selected most frequently during this 

simplified generation expansion problem. Because units of type 4 are somewhat larger, they were 

selected for all further investments in flexible generation. 

To further simplify the model and the amount of computation required, both existing and new 

generators were divided into two types: those that are assumed to be always committed and those 

that are free, i.e. that can start up or shut down at any time. In other words, slow and flexible 

generators. Generators with a minimum up/down time of less than 2 hours are assumed to be 

flexible generators, while the remaining ones are in the slow category. Units of Type 4 unit chosen 



 

in the previous step are treated as flexible generators. 

 

¶ REPRESENTATIVE DAYS 

When planning a system with a large amount of renewable generation, simply providing enough 

generation to meet the expected peak load is not sufficient. One must also ensure that the system 

has enough flexibility from generation or storage to follow the net load profile. High wind 

generation from remote locations can also cause stress in the transmission network and thus require 

the availability of resources located closer to the load. One must also have enough generation to 

deal with days of minimal wind generation. Particular attention must therefore be paid to the shapes 

of the load and renewable generation profiles, which can be positively or negatively correlated. 

The difference between the load and renewable generation profiles define the shape of the net load, 

which drives decisions about investments in conventional generation. Being independent of the 

load value and wind capacity (which changes over the years), the correlation coefficient between 

these quantities is a good discriminating feature in the K-means clustering algorithm used to 

identify representative days. Using this algorithm, we divided a whole year into 3 clusters. Each 

cluster was then further divided into 3 subgroups based on the total wind output of that day. Our 

results are thus based on nine representative days based on the total wind generation level and how 

the daily wind is changing with the daily load. The day that is closest to the centroid of each 

subgroup is selected as representative of that subgroup.  Table 4.1 summarizes these features. 

 

 

 

 



 

 

Table 4.1. Features Used for Identifying Representative Days 

HW High ratio of wind generation to load 

AW Average ratio of wind generation to load 

LW Low ratio of wind generation to load 

HC High correlation between wind and load profiles 

AC Average correlation between wind and load profiles 

LC Low correlation between wind and load profiles 

 

 

 

Figure 4.1.  Examples of representative days 

 

Figure 4.1 shows the load and wind generation profiles for two representative days. The one on 

the left represents the HW-HC cluster, while the one on the left represents the HW-LC cluster. 

 



 

4.3 FORMULATION OF THE PLANNING PROBLEM 

¶ NOTATIONS 

Parameters: 

GT  Life time of a generator 

 

Binary variables 

,

y

s tnx  New invested generator investment status, 1- online, 0 ï offline 

,

y

s tnz  Construction status of new generators 

 

 Integer variables 

,s yI           Number of generators installed at bus in a single year  

,s yZ          Accumulated number of new generators in service 

 

Variables 

yC             Discounted annual operating cost 

,

operation

t iC    Hourly unit operation cost 

,

operation

t sNC  Hourly unit operation cost of new generators 

,

nl

t sC          No-load cost of new generators 

,

suc

t sC          Startup cost of new generators 

_ yG INV   Discounted annual generation investment cost 

, ,

y

s b tnp         New generation on each segment of the cost curve 



 

,

y

s tnp           Total generation of installed new generators 

,

y

s tnrg       Reserve provided by new built generators 

 

¶ OBJECTIVE FUNCTION 

For clarity of exposition, the equations below define the deterministic long-term planning 

problem. The stochastic version of this problem can be easily obtained by adding one more 

dimension to the operation variables and related constraints.  The long-term planning problem 

aims to minimize the sum of the operating, generation investment and energy storage investment 

costs over the horizon: 
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y
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+ +ä                                                                                          (4.1) 

The total annual operating cost discounted over the planning horizon includes the operating cost 

of both existing and newly built generators, and a penalty term that discourages wind and load 

curtailments (at 20 $/MWh and 5000 $/MWh respectively): 
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Equation (4.2a) gives the operating cost of existing generators. Equations (4.2b) to (4.2f) give 

this cost for newly built generators, where (4.2c) and (4.2d) describes the no-load cost and (4.2e) 

to (4.2f) the startup cost. 
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Equation (4.3) gives the discounted annual BESS investment cost. Equations (4.3a) and (4.3b) 

specify the annualized BESS energy and power capacity costs while (4.3c) gives the annual 

discount factor needed to ensure that all costs are paid off within the battery lifetime. 
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Equation (4.4) gives the discounted annual generation investment cost. An annual payment is 

assumed to be made each year after the investment decision. Equation (4.4a) gives the annualized 

generation investment cost while Equation (4.4b) gives the annual discount factor needed to ensure 

that the cost of the generator is paid off over the generatorôs life time. 

1 ,

1 1

_
y S

g

y y n s n

n n

G INV k I Pb- +

= =

= Ö Ö Öä ä                                                                                           (4.4) 

( )

( )

1

1 1

LT

g g

LT

r r
k C

r

+
= Ö

+ -
 ( )$ /Year                                                                                                        (4.4a) 



 

( )
1

1

1

0 1

n

n

n GT
r

n GT

b
-

ë
¢î

+=ì
î

² +í

                                                                                                   (4.4b) 

¶ OPERATING CONSTRAINTS 

Equations (4.5) to (4.8) enforce the constraints on minimum and maximum generation capacity 

and maximum ramping. Equations (4.9) and (4.10) specify the amount of reserve that each 

generator can provide: 

, , , ,

1

NB
y y y

i t i b t i t

b

p p x
=

= Öä                                                                                                                  (4.5) 

, ,

y y

i t i i tp p x² Ö                                                                                                                              (4.6) 

, , , ,

y y

i b t i b i tp p x¢ Ö                                                                                                                             (4.7) 

, , 1

y y

i t i t ip p -- ¢D                                                                                                                            (4.8) 

, , ,

y y y

i t i t i i tp rg p x+ ¢ Ö                                                                                                                 (4.9) 

, ,

y y

i t i i trg t xd¢D Ö Ö                                                                                                               (4.10) 

Equation (4.11) keeps track of the state of charge of each BESS. Equations (4.12) to (4.14) 

enforce their energy and power capacity limits. Equations (4.15) and (4.16) determine the amount 

of reserve that each BESS can provide: 
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Equation (4.17) enforces the power balance at each node:  
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Equation (4.18) limits the wind generation to the available wind power, which is assumed to be 

equal to the forecast: 

, , ,

y y y

w t w t w twp ws wf+ =                                                                                                                (4.18) 

Equation (4.19) defines the 3+5 reserve requirement [83-84], i.e. it specifies that the total reserve 

should be no less than 3% of the forecasted load plus 5% of the forecasted wind power. 
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Equation (4.20) calculates the line flows using a dc model, while Equations (4.21) and (4.22) 

enforce the constraints on these flows. 
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¶ GENERATION PLANNING MODEL 

Equation (4.23) records the year when a generator is installed, which triggers the investment 

cost in equation (4.4). Equations (4.23) and (4.24) enforce a construction delay of two years 

between the investment decision and the availability of a new generator.  
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Because all generation investments made over time at a given node are assumed to consist of 

the same type of unit, they can be represented by an aggregated generator whose capacity varies 

over time. Equations (4.25) to (4.30) describe this aggregated generator: 
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4.4 TEST SYSTEM 

Tests were carried out on a modified version of the IEEE-RTS 24-bus system. The full system data 

can be downloaded from [64]. The wind power profiles used are from Pandzic et al. [71]. Only the 



 

three wind farms located at bus 20, 21 and 23 of subsystem 1 are selected with initial capacities of 

600MW, 300MW and 300MW. Wind generation accounts for 21.7% of the annual load at year 1.  

A line was added between buses 7 and 8 to make the system N-1 secure.  

 

 

Figure 4.2.  Test System Topology 

 

Other important parameters include: 

¶ The capacity of the transmission lines was reduced by 20%  



 

¶ The cost of a BESS is assumed to be 500$/kW plus 25$/kWh, and its lifetime 10 years. 

¶ The cost of a flexible generator is assumed to be 536,000 $/MW, and its lifetime 60 years. 

¶ The discount rate is set at 5%.   

¶ In the base scenario, the wind generation capacity increases linearly each year by 4% of its 

initial capacity and the load by 3% of its initial value. By the end of the planning horizon, wind 

generation and load reach 196% and 172% of their initial values, respectively. 

¶ The committed units are selected using the method as Chapter 4 showing in Table 4.2. 

 

Table 4.2. Unit Categories 

Type No Min-Down (hr) Min-Up (hr) Category 

1 15-19 1 2 Fast 

2 1-2, 5-6 1 2 Fast 

3 24-29 1 2 Fast 

4 3-4, 7-8 2 3 Fast 

5 9-11 2 4 Slow 

6 20-21, 30-31 16 24 Slow 

7 12-14 3 4 Slow 

8 32 5 8 Slow 

9 22-23 24 168 Slow 

 

All modeling was done using GAMS 23.7. The computations were carried out using the MILP 

solver of CPLEX 12.6 on a computer cluster with x nodes consisting of dual-core Intel Xenon 2.55 

GHz processors with 32 GB RAM.  



 

 

4.5 TEST RESULTS AND ANALYSIS 

To analyze how the ratio of wind generation capacity to peak load and the correlation between the 

wind and load profiles would affect planning decisions, 9 different groups of simulations were 

performed. Each simulation assumes that there is only one type of representative days for a whole 

year. This allows us to explore how these factors affect the planning results and the interaction 

between the two types of resources.  

 

¶ EFFECT OF WIND LEVEL AND WIND/LOAD CORRELATION 

Tables 4.3 and 4.4 show the amount and timing of investments in flexible generation and in 

storage for 9 combinations of wind penetrations and wind/load correlations. 

 

Table 4.3. Co-planning of Generation Capacity for 9 Combinations of Wind penetrations and 

Wind/load Correlations 

Total Installed Gen Capacity (MW) Investment Start Year 

 HW AW LW HW AW LW 

HC 228 0 836 17 N/A 11 

AC 304 988 912 14 11 10 

LC 304 1292 1368 14 9 6 

 

 

 



 

 

 

 

 

Table 4.4. Co-planning of Storage for 9 Combinations of Wind Penetrations and Wind/load 

Correlations 

Total Installed Energy Capacity (MWh) Investment Start Year 

 HW AW LW HW AW LW 

HC 389 20 0 1 23 N/A 

AC 170 440 0 1 1 N/A 

LC 1611 1031 0 1 1 N/A 

Total Installed Power Capacity (MW) Investment Start Year 

 HW AW LW HW AW LW 

HC 52 8 0 1 23 N/A 

AC 21 55 0 1 1 N/A 

LC 256 129 0 1 1 N/A 

 

We can draw the following conclusions from these results: 

¶ Days with lower wind/load correlation (LC) provide more energy arbitrage opportunities for 

BESS. In these cases, the wind generation tends to be larger when the load is lighter, a larger 

BESS capacity is needed to store wind energy during valley load hours and discharge it during 



 

peak load hours.  

¶ This effect becomes more significant for higher wind penetrations. No BESS investment 

happens when the wind/load ratio (LW) is low. 

¶ When the wind penetration is low, more conventional generation is required, and these 

investments occur earlier.  

¶ For a given wind generation level, if the wind/load correlation is small, less wind power is 

available during peak hours and additional flexible generators are needed. 

¶ The wind/load ratio and the correlation together determine how much flexible generation and 

storage are needed.   

¶ A higher wind/load correlation (HC) means that wind power can be used to supply the load 

most of the time. However, a different wind/load ratio can lead to completely different 

planning results. As shown in Table 4.3, for a medium wind/load ratio (AC), existing resources 

are adequate to serve the load without the need to plan for additional generation. As the 

wind/load ratio increases (HW), some additional generation should be planned to deal with the 

high hourly wind fluctuation.  As wind power generation drops, additional generations are 

needed to serve the increasing load. 

 

¶ INVESTMENT LOCATION DISTRIBUTION  

To identify the preferred locations for investments in storage and flexible generation, all buses 

in the system are divided into three categories depending on whether they are near a load center, 

along the transmission corridor, or near the wind generation. Tables 4.5, 4.6 and 4.7 show how the 

capacities shown in Tables 4.3 and 4.4 are geographically distributed. 

 



 

 

 

 

 

Table 4.5. Total Generation Capacity (MW) with the Co-Planning Model 

 HW AW LW 

Load  

Center 

HC 152 0 836 

AC 304 836 912 

LC 304 912 1368 

Corridor 

HC 76 0 0 

AC 0 152 0 

LC 0 380 0 

Wind  

Center 

HC 0 0 0 

AC 0 0 0 

LC 0 0 0 

 

 

 

 

 

 



 

 

 

 

 

 

Table 4.6. Total BESS Energy Capacity (MWh) in Co-Planning Model 

 HW AW LW 

Load  

Center 

HC 167 14 0 

AC 144 0 0 

LC 755 590 0 

Corridor 

HC 46 0 0 

AC 0 0 0 

LC 479 0 0 

Wind  

Center 

HC 176 6 0 

AC 26 440 0 

LC 377 442 0 

 

 

 

 

 



 

 

 

 

 

Table 4.7. Total BESS Power Capacity at Each Location (MW) 

 HW AW LW 

Load  

Center 

HC 21 5 0 

AC 18 0 0 

LC 122 74 0 

Corridor 

HC 9 0 0 

AC 0 0 0 

LC 81 0 0 

Wind  

Center 

HC 22 3 0 

AC 3 55 0 

LC 53 55 0 

 

Several locational patterns are apparent from these results: 

¶ The majority of investments in flexible generation occur near the load centers and some along 

transmission corridors.  

¶ Since wind farms are often located far from load centers, more transmission capacity is 

required when more wind power is used in the system. Because of limitations on the available 



 

transmission capacity, load centers tend to be a better choice for investments in flexible 

generation. This is particularly true under the HC and LW scenarios. 

¶ Investments in storage capacity tend to take place near wind centers and near load centers. 

Unlike generators that can only produce power, the ability of a BESS to charge as well as 

discharge gives it more flexibility. The coordinated operation of BESS pairs located near 

sources and sinks of energy creates additional transmission capacity which is particularly 

useful during HW days. Some BESS investments happen along the transmission corridor under 

the LC scenario because a BESS is able to reshape the wind power output, and hence relieve 

the congestion on the transmission corridor. 

 

¶ COMPETITION AND COMPLEMENTARITY 

Flexible generation and storage provide different types of flexibility to a power system. While 

both are able to respond to changes in the output of renewable generation, their contributions to 

the system are determined not only by the amount of wind generation capacity but also by its 

production profile. For the LW-HC case, investments in energy storage systems are not needed 

because the net load is smooth enough that additional flexibility is not required. For the HW-HC 

case, wind power might use most of the transmission capacity, leaving little room for power from 

flexible generators. The energy and ramping capacity that flexible generators could provide would 

indeed be limited by the transmission capacity of the system.  

Because of their respective advantages and limitations, in some cases these two types of 

resources compete, while in others they are complementary. Table 4.8 shows how much generation 

capacity should be built and the year when it should start being built assuming no investments in 

storage. Table 4.9 shows how these decisions change when generation and storage are planned 



 

together. Table 4.10 summarizes the location of these investments. 

 

 

 

 

Table 4.8. Generation Only Planning 

Total Installed Gen. Capacity(MW) Investment Start Year 

 HW AW LW HW AW LW 

HC 304 0 836 15 N/A 11 

AC 304 988 912 13 11 10 

LC 228 1216 1368 14 8 6 

 

 

 

Table 4.9. Differences between Co-planning and Generation Only Planning 

Total Installed Gen. Capacity(MW) Investment Start Year 

 HW AW LW HW AW LW 

HC -76 0 0 2 0 0 

AC 0 0 0 1 0 0 

LC 76 76 0 0 1 0 

 



 

 

 

 

 

Table 4.10. Total Installed Capacity (MW) with Generation Only Planning 

 HW AW LW 

Load  

Center 

HC 304 0 836 

AC 228 684 912 

LC 228 532 1368 

Corridor 

HC 0 0 0 

AC 76 304 0 

LC 0 532 0 

Wind  

Center 

HC 0 0 0 

AC 0 0 0 

LC 0 152 0 

 

Competition: In general, investments in flexible generation start earlier when there is no energy 

storage. In a HW-HC system, the transmission network is highly stressed and constrains the 

response of both storage and flexible generators. Competition happens between the two resources 

under this scenario, especially near the load center. Co-planning results in less flexible generation 

investment under these scenarios. 



 

Complementarity: Co-planning increases the amount of flexible generation capacity compared 

with generation-only planning. Investments in flexible generation are indeed highly dependent on 

the availability of transmission. The virtual transmission capacity created by storage provides more 

opportunities for flexible generators, especially in the HW-LC and AW-LC scenarios when large 

investments are made in storage.  

 

¶ SIMULATIONS WITH MULTIPLE REPRESENTATIVE DAYS 

The planning results discussed so far are based on a single type of representative day. In practice, 

a year consists of a combination of all 9 types of representative days, although one or two types 

might represent a majority. To explore how different combinations of representative days might 

affect the results, two additional tests with 9 types of representative days were carried out.  

¶ TEST1: In this test, the HW-LC day represents 55% of the days in a year, and the other 8 

types account for about 5.6% of the days each. 

¶ TEST2: In this test, the AW-AC day represents 55% of the days in the year, and the other 

8 types account for about 5.6% of the days each. 

Figures 4.3 and 4.4 show how the total available BESS power and energy capacity evolves over 

the years with each representative day separately as well as the TEST1 and TEST2 combinations.  

Compared with the results from the nine simulations with a single type representative day: (1) the 

results from TEST1 are closest to the results from HW-LC single representative day simulation; 

(2) the results from TEST2 are closest to the results from AW-LC single representative day 

simulation. Similar conclusions can be drawn from Table 4.11, which shows the generation 

investments.  

The following conclusion can be made looking at similarity of the results of TEST1 to HW-LC 



 

single representative day simulation and TEST2 to AW-AC single representative day simulation: 

We can get a good enough near optimal planning results by looking only at the majority days or 

by reducing the types of minority days.  This could be really practical when doing long-term 

planning for large system which has a higher requirement on computing resource and time. 

 

 

Figure 4.3.  Total Available BESS Power Capacity over time 
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Figure 4.4.  Total Available BESS Energy Capacity over time 

 

 

Table 4.11. Generation Investment in TEST1 and TEST2 

 

Total Generation Capacity(MW) Investment Start Year 

TEST1 TEST2 TEST1 TEST2 

Load Center 304 532 15 15 

Corridor 76 76 17 18 

Wind Center 76 0 20 N/A 

 

4.6 CONCLUSIONS 

In this chapter, we proposed a stochastic multi-stage method for co-planning flexible generation 

and BESS. Compared with the state of art, the proposed method uses more detailed and more 
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accurate models over a longer planning horizon. In particular, it takes into account the degradation, 

limited lifetime of BESS and the delay in generation installation. It also considers the reserve 

constraints and optimizes both the location and capacity of BESS and generators. A detailed 

analysis highlights the combined effects of different wind generation levels and wind/load ratio on 

the capacity, initiation year, preferred location of BESS and flexible generation investments.  

 

 

Chapter 5. STOCHASTIC ENERGY AND ANCILLARY SERVICE 

CO-OPTIMIZATION WITH BESS 

5.1 INTRODUCTION 

Energy storage can be used in different parts of the electric grid to hedge the risk of renewable 

generation volatility, to provide baseload arbitrage, to increase transmission utilization, to enhance 

distribution system stability, to improve electric power service quality and for other purposes.  

As Figure 5.1 shows, regulation service, which requires continuous and rapid control, 

commands the highest price compared to the price for energy and other types of reserve. As shown 

below, the price of regulation can be up to ten times larger than the price of spinning reserve, 

especially at times when the load is low, the online capacity is limited and most of the generators 

are running at their minimum.  

 



 

 

Figure 5.1. Californiaôs average hourly ancillary service prices for 2002. [109] 

 

 

Based upon these prices, the faster response services are more attractive for storage. Batteries 

can indeed react very fast to rapid changes in wind generation to support frequency regulation. 

Such actions reduce the need for synchronous generators to provide inertia and primary reserve. 

Storage thus reduces system power imbalances and reduce the overall operation cost. 

The use of energy storage for combined applications has been discussed by a number of authors. 

References [110] - [119] focus on applications of energy storage that increase their ownerôs profits 

or benefits. Shi et al. [110] propose a joint optimization method for commercial battery storage 

users to reduce their electricity bill by allowing the BESS to participate in both the energy and 

primary frequency regulation markets. Battery storage degradation, customer load and regulation 

signals uncertainties are taken into consideration in this model.  Xi et al. [111] use a stochastic 

dynamic programming model to optimize the application of a distributed energy storage (PHEV) 

in different applications to achieve the maximum gain per unit of capacity. Cheng and Powell 

[112] propose to co-optimize the applications of BESS for energy arbitrage and frequency 
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