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Abstract

Planning and Operation of Energy Storage Systems iRower Systems

Ting Qiu

Chair of the Supervisory Committee
Professor Daniel S. Kirschen
Electrical Engineering

The increas in renewable power generation has greatly changed the current energy market
dynamics. The cheaper, cleaner ermittert characteristis of renewablepower generation

such as windhas accelerated the retirement of large coal plamd investmerstin flexible
resources such as fast response generators, energy storage and transmissionHaoigies.

this transition rquirestremendous effort ohow toimprovethemarket desigmo better handl¢he
uncertainty orrenewable generatioand tofacilitate thedeployment ofmore flexible resources

such as energy storage.

In this dissertationwe focus on the planning anogeration of energy storage sys&fMo begin

with, we discussin detaildifferent optimization method$at have been proposed to handle this

growing uncertaintyYearly simulationsvere performedo compare the solution accuracy and the



computing efficiency. Then two stochastic mulitage ceplanning mode are proposed to
coordinate investmesiin battery energy storage and transmission exparaiorinbattery energy
storage and fast generatiofhese ceplanning models have 2b-yearhorizon ad considemot
only the uncertainty omoth wind capacity and load increasmit alsothe degradation othe
batteres A sensitivity analysiss performed to studhecompetition and cooperation relationship
between these resourcdiseir investment pagrns under different geographgnd the correlation
between the profiles ofind generation antbad.At the endf this dissertatiopastochastic energy
and ancillary service eoptimization model is proposed to evaluate the contribudfastorage to
both energyarbitrageand ancillary service The actual requirements for regulation reserve and
spinning reserve are quantified bynabinng intrahour system operation witklay-ahead

stochastic optimization.
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Chapterll NTRODUCTI ON

1.1 OPERATION OF THE ELECRIC POWER SYSTEM URER UNCERTAINTY

Unlike traditional generation, renewable resourcgh as wind and soldo not incur any fuel

cost to generate electricitfhey are therefore among the first to be used by the power system
operator. However, due to their highgriable naturealarge propdion of renewable generation

will further increase the uncertainty affecting systgraration and reliabilityAs shown in Figure

1.1, asmore wind and solar generation is added to the syste@alifornialndependent System
Operator (CAISQ)is facingincreasingly differentypes of net load patternslore flexibility is

therefore needed to deal with the increasingertanty.

CAIS0 load, net load, and wind and solar output on example weekdays during 2014 L‘.iﬁ"
April 22, 2014 July 22, 2014 October 22, 2014
gigawatts gigawatts gigawatts
40 40 40
30 30 30
load
20 20 20
net load
10 10 10
wind
[] rmrrrrrrrrrrrrrrTriITrrrrT il U rmrrrrrrrrrrrrrrrrrrrirTi [] rmrrrrrrrrrrrrrrrrrrrrrTil
1 B 12 18 24 1 B 12 18 24 1 B 12 18 24
hour of day hour of day hour of day

Source: California Independent System Operator (CAISO), Daily Renewabiatch

Figurel.l. Effect of Renewable Generation on Load Shape [5]


http://www.caiso.com/
http://www.caiso.com/

In the shorterm operational time frame, increased flexibiltgn be achievedy a better
management of existingjspatchable capacithoughadvanced optimization techniques (such as
stochastic optimization, interval optimima, robust optimization and etc.), by improving
renewable generation forecast accurdogyenhancing market design (such as introducing-intra
hour scheduling and adding flexible ramping constraintskiraply by increasing the erve
requirements [#4]. Over a longer planning timeframe, one should consider deploying flexible
resources such as energy storage systems and expanding the geaedaiiansmission capacity

to increase the dispatchable capacity of the current system

1.2 ENERGY STORAGE IN POER SYSTEMS

Compared with conventional technologieectricity storageoffers price arbitrage opportunities
and fatresponse services whicbuldbewidely deployed throughout an electric power system
functioning as generation, transmission, distributmmenduse assets. Energy storage systems,
when placedt key locatios with an appropriateechnologycan allevate the impact of renewabl
generation variation, enhance system reliahilitgfer transmission expansijoor postpone the
need for nevwgeneration capacity
1 RENEWABLE GENERATION SUPPLY RELIABILITY

Energy storage systems, when installedombination withwind farms or PV plars could
greatlyfacilitate their generation schedngy andimprove thereliability of their energy supplipy
mitigating fluctwations in their output. Ghosh and Kamalasadgndg&ign an optimal control
strategybased orenergy functios for flywheel energy storagd heir aim isto improvethe low

voltage ridethrough characteristics of an integrated doubly fed induction wind generator (DFIG)



and keep the grid power isolated from wind power output and voltage fluctuations.-Basedk
batery energy storage system dispatch control algorithm is deveiop&ddullah et al. [T to
achieve assured wind farm power output lewagiddispatch for wind farm prdf maximization.
Islam et al. [use a supervisory control unit combined with stterin wind speed prediction for
management of the stored energy in a small capacity flywheel energy storage system to mitigate
the output fluctuations of an aggregated wind farndual layer BESS contraitrategy consisting

of afluctuationmitigationcontol layerand a power allocatiotontrollayer is proposed in Jiang
et al. [9 to control the windarm power output within fluctuatiomitigation requirements. Wang
et al. [1Q desigreda hybrid energy storage system composed of a vanadium redox batteay a
supercapacitor bank to smooth the fluctuating output powarR¥ plant. In Song et al. [},1a
new energy storage modehsed on a Markov chais used to enhance photovoltaic generation

power supply availability considering the energy storage dypdegradation.

1 EconNnomIC MARKET OPERATION

On the electric market side, energy storage systamparticipate in both energy and ancillary
servicegnarkesto facilitate higher reewable integration. Li et al. [12ise a twestep framework
to evaluate e benefits of battergnergystorage in power system operatiatith the aim of
decreamg the curtailment of wind generation, reduce load and reserve shortfalls as well as the
commitment of thermal units, and lower the total system costs. A-prritd NashCournot
equilibrium model for the joinenergyand ancillary serviee marketss proposed
to evaluatehe contributionof the ESSdn supportingenewablegeneration by Zou et al. [13].
O'Dwyer and Flynn [1Apropose a subourly UCED analysis to evadte the role of energy

storage in reducing the cycling ca$tconventional plarstin systems with high wind penetrations



Jabr et al. [1h usedrobust optimization to set the baseint of conventional generation and
storage for the forecasted net loahd participation factors that dictate how conventional
generation and storagbould beadjusedto maintain feasible operation whenever the renewables
realization deviatefrom theforecast. In Ghofrani et al. [1,6a combination of genetic algorithm
(GA)-based optimization and probabilistic optimal power flow is used to evaluation energy storage
for reliability and operability enhancement of wind integraomsideringuncertainty orwind

generationload and equipment availability.

 RELEVE TRANSMISSION CONGESTION

As energy storage systems regpornuch fastethanconventional generators, they are effective
at relieving transmission congestion by controlling the charging and dischargingnsegand
rate. Vargas et al. [17exploit the fast ramping capabilities of energy storage to deal with
transmission congestion the case of insufficient rampinffom conventional power plantsn |
Wen et al. [18, 19], as well as Del Rosso and Eckroall p2fitery storage system respdiefore
conventional generators to relieve line overloadmitpwing a contingency Khani et al. [21
propose a redaime optimal dispatch algorithm that aiftsoptimally prepae a compresseair

energy storage system to maximize its contribution to estign relief.

I FREQUENCYREGULATION

The fast response characterisifcenergy storage systaralsomakes thenan idealresource
for frequencyregulationfollowing a generatiorcontingency ora sudden changa renewable
generation. Aunit commitmat formulation constrainedy frequencydynamicss proposed by

Wen et al. [22 whereboth the synchronous units' primary reserve requirements and the storage



units' corrective actions are modeled for pamttingency inertieresponse and primary frequency
control to guarantee dynamic frequency security folloyvia contingency. Zhang et al. [23
propose duzzy-logic basedrequencycontrollerfor wind farms augmented withbattery energy
storagesystem to improve the primafsequencyresponse of lownertia hybrid powersystems.
Pulendran and Tate [Pgroposed a model predictia@proacho control an energy storage system
for preventing load shedding due to transient declinesdquéncy. Datta and Senjyu [25
describe afuzzy-logic basedrequencycontiol method for distributedPV inverters, energy
storagesystems (ESSs) and EV§his methodprovides frequencycontrol and reducetie-line
power fluctuationgausedy alargepenetration oPV or sudden lad variations. Yang and Walid
[26] proposel a secure scheduling and dispatch approach to investigate the relatioetsieen
outage and thesnergy storage capacity during the frequency regulation process considering both
distributed renewable energy sourdasure and renewable generation supphcertanties. In
BanhamHall et al. [27, a Vanadium Redox Flow Batteryastached t@ wind farm to time shift

energy and provide frequency response.

f DISTRIBUTION

In distribution systers energy storageould be usedo deal with voltage fluctuatian to
enhance the stabilityf the network and temooth renewable generation.

In Wang et al. [2B a coordinated voltage control scheme using energy storage system is
proposed for distribution networks to solve the voltage problems caused by largegedluster
distributions of low carbon technologi€sind generation, photovoltaic generation, electric
vehicles, heat pumps and etdr) Mokhtari et al. [28 energy storage units are used for both

voltage support and load management by controlling the reastvactive poweresspectively.



Sugihara et al. [3taddressed the voltage fluctuation problem in a distribution network with high
penetration oPV, andproposed tsubsidze customersside energy storage systetoshelp with
voltage regulationin Alam etal. [31], adistributed energy storage systesgontrolled to mitigée

the neutral current and neutral potential problems infore multi-grounded low voltage systems
under unbalanced allocation of rooftop solar PV.

The utilization of energy storagestgm is proposed to solve the phase balancing problem in
power system through Lyapunov optintiba in Sun et al. [32]. In Jayasekara et al.]]33
batteryenergystoragesystems are used fpeak shaving, voltage regulation, and loss reduction in
distribuion systers considering battery cycling cost. A supervisory controller is pgegon Liu
et al. [34 to facilitate the higHevel penetration of renewable energy distributed gé¢ioas
Nagarajan and Ayyanar [Bprovide a generalized framework for ségit deployment of lithium
ion-based energy storage to redtloesubstation transformer lossesydthe life cycle cost of the
battery storage systeras well ago mitigate PVvariability. In Tant et al. [3p battery energy
storage systesareinstalled in residential distribution feeders to reduce voltage deviadiwhs
facilitate the integration of PVThe tradeoffs between voltage regulation, reducgsan peak
apparent power, arthe annual energy utilization cost is alsoalissed. Somayula and Crow
[37], integratean utra-capacitorin a power conditioner system to improve the power quality
the distribution gridby compensating voltage sags and swedlad smoothing renewable

intermittency.

1 END USERS
On-site energy storage systeprsvide opportunities for the electricity end users to reduce their

electricity bill (i.e., for energyuse and for demand charges) [38]. In Wang et al], [89



reinforcement learning technique is used for consumoereordinate PV energy generation and
erergy storagewith the goal of shavinghe peals of their power demand profile, thereby
minimizing their electricy bill. In Paterakis et al. [40] and Erdinc et al.][AMixed-Integer Linear
Programming (MILP) is usett minimizethe total energy procumgent cost for a smart household

with assets such as electric vehicles, controllable appliances, energy storage and distributed
generation. The energy cost minimipat performance of different energy storage devices in
building energy systemss comparedn Xu et al. [42 through scenario based stochastic

optimization, considering uncertainties in dewhgmofiles and solar irradiance.

1.3 THEEFFECT OFENERGY STORAGESCOSTS

The future applicabn of storage technologiedepend on the one handn how rapidly te
technologies advan@ndthe costs dropOne the other hand,will be essential to developovel
energy storage planning techniques that are rdbuste inevitabldong-term forecasting errors
and advanced operatiormihemeshat make better use of teerviceghatstorage can provide.
Table 1.1 shows the different types of energy storage, their costs and their possible applications
in power systems.t8rage technologiesuch aghermal storagand pumped hydrare matve and
fully commercial But atherslisted in this table, such as battery and flywheel energy stoaage,
still evolving in terms of technotyy andoperatioral roles [5] Since the costan be high when it
comes tdouilding new flexible assets such as st@ggarticularly with emerging technologitise

risk of stranded investmentsinbe significant.



Tablel.1. Costs of Storage @@ions[43]

Storage Options  Cost($/kw)

Li-ion $1000$2000

Compressed Air  $1600$2200

Pumped Hydro

$1200$2100
Storage
NaS Battery $3500$6000
Flywheel $2100$2600

Typical Applications
Frequency regulatig ancillary servicesblack start;
renewable shifting, smoothing and firming; arbitra
peak load shift; reactive power
Ancillary services; black start; renewable shifting ¢
firming; arearegulation; spinning reserve; reacti

power

Same as CAES

Arbitrage; renewable shifting and firming; frequer
regulation and other ancillary services; peak load s
black start; reactive power

Frequency regulation; renewable energy smooth

reactive power

Source: Energy Storage Cost and Performance Report®0ES Business Intelligence

1.4 OBJECTIVE AND STRUCTURE OF THEDISSERTATION

The goal of thiglissertations to investigate how energy storage systems, combined with advanced

optimization techniques could improve the system operational efficiency and reliability. In

particular, we focus on impving energy storage planning and operation medetl methods



Theremainder of this dissertation is organized as follows. Chapter 2 gives an overview of the
many optimization techniques applied to the-dagad unit commitment problem to deal with
wind uncertainty. Some of these optimizations are explained in more dstdlley are the
mathematical foundations of energy storage system planning and operations techniques developed
in the later chapters; Chapter 3 proposes a stochasticstage ceplanning model for energy
storage and transmission lines. This model eanded to determirteelong-term optimakite and
size ofenergystorage, théransmissiornthat should be enhanced; Chapter 4 proposes a staufe
approach for cglanning energy storage and fast response generaéhisschapter also discusses
the co-operatve and competitre relationshig between BESS and fast generataswell aghe
patterns of location and size for BESS and fast generators for nine different scenarios of wind
power output/load ratios and hourly witwhd correlations; Chapter 5st#ibes the optimization
of energy storage in power system for energy arbitrage and ancillary service support from the
perspective of the system operator; Chapter 6 concludes, summarizes the contributions made and

discusses future work.



Chapter22AN OVERVI EW MATMARMHEEHODS
DEAL WI TH UNEERTAI NT

2.1 INTRODUCTION

Wind power has becoea significant parof the total powegeneration in mangower systers.

The accompanying uncert&nhas also brought huge challenges to the system operator. In this
chapter, we will firsdiscussseveral different ways of modeling wind uncertaititstt have been
discussedn the literature. Then, we will introduce different methdds solving these dierent
models. A small example will be used to exemplify each metkodhlly, we will test these

methods using the IEEE RTS and compare the performance of these different methods.

2.2 BAsSeUNIT COMMITMENT MODELING

Y NOTATIONS

Sets

t: (1:--T) - Index to the time interval in the unit commitment
I (1---1) - Index to the generators

b: (1---NB) - Index to the piecavise linear ost segments

l: (1:+-L) - Index to the transmission lines
S: (1:--S) - Index to the nodes

W:  (1-W) - Index to thewind farms



Variables

X.: Binary variable, generatdron-off state at period
P : Generatori power output at period

P,.: Generatorl power outpubf segmentd at periodt
wp, : Wind powerproduced byvind farmW at periodt
WS, : Wind power curtailed fromwind farmW at periodt

SU,; : Generatori startup cost at period

Parameters

NL : No-load cost of generatdr

wf,.: Wind forecast

F : Transmission line rating
G, &, G : Contribution factor of generator, load and wind to power flow orl line

D, : Demand at bu§at periodt

D, : Ramping ability of generatar
P,: Maximum generation of each segment of a cost curve
P, B.: Minimum and maximum generation of each generator

u'---u'®: Dual variables for the corresponding constraints



1 OBJECTIVE FUNCTION
The objective of the base unit commitment problem is to minimize the total generation cost and

wind curtailment penalty cost.

1.T,NB . IT oloa WT .

mnJ= & k, @, &(G sSy) M+ dbg (21)
i=1t 4p E i =1= w it 4 =

u,r G2 NL & (22)

1 SYSTEM CONSTRAINTS
System constraints include the system balance const2a88htafd the DC line flow constraint

(24) and 2.5).

] | w, K.,

ut : a. p,t + aWth = a%,t (23)
i=1 w 3 k E
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u: ag @ alasO F2 a5 (2.4)
i=1 w 3 k E
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i=1 w 3 k &

1 MINIMUM UP-DOWN TIME AND START-UP COST
There are several different ways to model the minimurdayen time constraints and staup
cost, and here we eliminate the details and only gives its abbreviation. Detailed information can

be found inPandzicet al. (A4]

H(x)=0 (2.6)

Y GENERATION CONSTRAINT



The generation constraint includes the generation capacity datsta7) and 2.8), the

generation equation constrai@tq) and the ramping rate constrair2slQ) to .13).

NB
U, ann’x 8 2.7)
b=1
Wor - R 20 PE (2.8)
3 e
Uy - a Rp:- Ry ol (2.9)
b=1
uiz,lt: - Rt 25D t 2 (2.10)
Uil Bys? —Dph 2.11)
ui5,t: Rim By 2 5D t 2 (2.12)
W - R:? - Dpg (2.13)

9 WIND CONSTRAINT

8

Uyel  WR, + WS, =W, (2.14)

The above constraints frame the basic unit commitment problem. When integrating other
resources such as wind generation into the system, additional constraints may be added, and the
objective function could also bwodifiedfor different optimizatiorgoals We will only mention
the modified part of ths basic model when discussing the different optimization magsssd to
solve theday-ahead unit commitment problem with wind uncertainty in the following part. To

simplify the notation, we name the remainganstraints ED constraints

G(P)=0 (2.15)



2.3 STOCHASTICOPTIMIZATION UNIT COMMITMENT MODEL

There are severalays to model wind uncertaintfhemost common and straight forward way is
to represent wind uncertainty by different scenarlt®e more scenaricae usedthe more wind
dynamics can be caught for a certain time peridthd uncertainty modslof this type are

generally used in stochastic optimization unit commitment model.

T NOTATIONS
n: 1...N Wind scenario set

p..  Probability of wind power scenarnio
wf, .. Wind farm power output forecast at peribdf scenarion
ws, ., - Wind farm power curtailment at periddof scenarion

p... . Generator power output of segmemtat periodt of scenarim

1 FORMULATIONS AND SOLVING METHODS
The objective of stochastic unit commitment is to minimize gshm of theexpected total

generation and wind curtailment penalty sost

N g . Wi 8T -
mnJ=8p, 8 A k, RO, M+ AGs., 5 ASY, ) (2.16)
n=1 gi it B 1= w 1t=1 = -i 1 % =

For all scenarioa=1....N, the system angeneration constraints as shown in the base case.
Stochastic optimization unit commitment tries to find common generatoffatates for all
possible wind realizationCompared with the base unit commitment modbk stochastic

optimization unit commitrant model shares the same one set of unit commitment constraints



H (x) =0, and there is a whole set of economic constr&B{#) = 0 for each of theN possible

wind scenarios
Currently, the UCproblem with scenaribased wind model is solved using the following
methods:
1. Centralized saltion method
The @ntralized method solg¢he N scenarios together. As the numbémwind scenarios
increase, the number of Eidnstraints increaseorrespondingly, which also increase the
computation burden for large power systeftse centralized methozhn therefore be used
only for small systemor cases with shorter scheduling pesad with a small number of

wind scenarios

2. Decomposedolutionmethod
As mentioned above, thBl scenarios share the same set of UC constr&iatgever, each
scenario has itmidependent ED constraints, the problem can be decomposed into two stage
problem. The first stage solves a pure unit commitment problem to determine-diffe on
statusof the generatorswhile the second stage solvéé economic dipatch problems.
Since the N economic dispatch problems are independent of each other, parallel
compuation ispossible This is quite beneficial when applying stochastic optimizatoon
larger power systems. The commonly useédconposition method is Bend&y
Decomposition (BD)Howeverother decomposition methedanalso usedfor example see

Papavasiliou an@ren[45, 44.

The following figuredllustrates thecentralized and decomgition methods



Master Problem

unit comitment constraint

Feedback H(X)=0
Cut

Unit Commitment
Constraint

H(x)=0

l Unit On-Off Status x~

Sub-problem Sub-problem

Economic Dispatch : e
Economic Dispath Constraint for Economic Dispath Constraint for

Constraint

Wind Scenario n=1 Wind Scenario n=N
G(p)=0 G(p)=0

G(p)=0

() (b)

Figure2.1. Centralized and Decomposition Methods

I VARIANTS OF STOCHASTIC OPTIMIZATION MODEL
Variant of stochastic optimizatiamnit commitment model havgeen proposed by Chen et al.
[47] and Wang et al. [48]nithese papers, the autharodel the connections among stkenarios
such as the transit limit among different scenarid®s€ constraints require the generation level
of a generator under the expected wind forecast scenario should be able to transit to the generation

level in other scenarios within b minutes.

Dif x, © (217)

ouT'H
olo

|p|,t - P |

A stochasticoptimization unit commitmentattemptsto minimize the expectetbtal costas
calculated on the day ahead. It has gained popularity because of the easy modeling and the
possbility of parallel computing. However, some difficulties persist with stochastic optimization
unit commitment:

1. Scenario generation

In order to capture the wind dynamics, enough scenarios should be generated and added to



the model. These wind scenarios dddoe sufficiently representative to reduce the risk of

violations of operational constraints in réighe.

2. Scenario reduction
Even though a larger number of wind scenarios is better for describing wind uncertainty, it
could put on too much burden orttomputing resources. Reducing the number of scenarios
is thus necessary, especially when stochastic optimization is applied to large power systems

or longterm system operation and planning.

2.4 INTERVAL OPTIMIZATION

Another way of modeling wind uncertainty is userguncertainty bound or interval that descebe
thepossible lower and upper bowsaf wind generation atach time period. letval optimization
is another way ofolving the unit commitmentproblemwith uncertainty modeling. Interval
optimization can be considered as a variant of stochastic optimization, in which only three
scenarios are considered: the upper and lower bound wind feyeaadtthe expected wind
forecast. The objective of interval optimima is to minimize the cost of the expected wind
forecast scenario, while tlsystem should have enough ramping capability to trandiétween
the lower and upper bourtd wind realization

Interval optimization considers all possible transitions anaifigrent scenariod his transition

process is shown inigure 22 as published by Wang et al. [49), is the net load.
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Figure2.2. Generatiorlevel transit process

Based on thescenariebased modelthe following transition constraintbetweenthese three

scenarios are added to the mddé):

|Prin, = Rian | € (2.18)
Pm - Rean, | € (2.19)
Bn - Ba| € (2.20)
Bin - Ba| € (2.21)

To guarante¢hat the system constraints are satisfied for alidvrealizations, the line flow

constraintsZ.4) and 2.5) are replace by the following:
— X & — K.
-F+maxgd GD,, @ \\6,, Fermin §7.DG (2.22)
k=1 i3 k ¥
The nterval optimizatio unit commitment modefuarantees the feasilyl of all wind
realization within the given boundi reduces the risksf not having enoughampingcapacityor
transmissiorcapaciy when thewind generation drops or increases suddenly. The selection of the

upper and lower bounds plays a significant esld must be chosen carefully to avoid making the

model toocorservative Yu et al. [50] set the uncertain wind generation bound usingukadx



chain to improve the robustness of the original interval optimization unit commitment model.

2.5 ROBUST OPTIMIZATION OR SCHEDULING

The obust optimizatiomnit commitment model aints protect the systeagainsthe worstwind
realization over a given uncertainty .g8enerally, robust optimization model involve two steps:
the first searches for the worst realizatsmenario, and the second is the base unit commitment
under this worstase scenario.Formally, therobust optimizationunit commitment model is

definedasfollows:

21T W, T 1, T
min Zu=max min Z‘ea Ky Roe ¥G0% +M & ws, + &Sy (2.23)
WOyt Pipt:Wsyits Xy Gi=it 2 wH 1= i =1 =
St. 2.6), (2.15)
W |Wgw,t - wa,t| ¢ (2 24)
w=1 I:)Nw,t C .
\wat - D(N,t wg/v,t qu V’%t (2.25)

Equation (2.23) is the objective function witlmaxmin part. Roblens of this type ardard to

solve Equations (2.6), (2.15) are the same constraints as appeared in the base unit commitment
model. The worswind realizationWp,,; is adecision variable in the outer maxim optimization
problem under the uncertainty area defined by (2.24) and (2.25).

As the worst wind realizatiotVd,,; only appears in the economilispatchconstraintswvhich

contain no binary variablescammonmethod for solving the robust optimization moigeto use
a decomposition techni que . sSThecdeconmpased Bnedeldi® r s 0

formulatedas the following:



I FIRST STAGE BENDER®OMASTER PROBLEM

1T
min ZI= § SU, % (2.26)
%t i=1t % ’
St. (2.6)

The first stage minimizes the stap cost with only the unit commitmeobnstraintspanely
the minimum up and down time constraintBénderdcut generadby the second stage problem

is added to the master problem to update the value.of

1 SECOND STAGE BENDERYSUB-PROBLEM:

é 1T W,.T.'
min Zu=max min 8 k, @, +G° +M § wg, (2.27)
WOyt Pipi: Wi’“(;l—lt 4 wH 1= ’

St. ¢.15), 2.24), 2.25)

The second stage solves an economic dispatch pralvider the worst wind realization
scenario, which first needs to be identified within the given uncertaintyseimaxmin second

stage sulproblem can be transformed into the following using prichall theory.

mexzu= & (i, & POG-E® §0, <§ 904 O & 1)

W, i=1t 4
+a u O 4aqt NLOK, OafI wg, O (2.28)
i3t E w 1=
N S .
+ault§F al-ls Qt®a ull(;l: é.IDsGDs,tcg
=1t 2 _l—lt 3 s E -
Poc iU, + U Ok, (2.29)

pe-h 6 B s B (WG 0, -t (2.30)
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Due to thebilinear termu® , Gvg, , in the objective functioli2.28), the above problem is NFard

and arefficient ways to solve this problems still under research. In Zhao and Zeng [5liong
andJirutitijaroen[52] and An and Zeng [53],@lumnandconstraint generation methbdsbeen
used to solve the syfroblem. Jiang et aJ54] use a Monté&Carlo sampling method to find the
worst wind scenarioBertsimaset al. [55] use an outa@pprach method irthe subproblemto
linearize the bilinear partn our comparison, the outer appch method is adopted to find the

worst wind scenario.

I OUTER APPROACH MASTER PROBLEM

mezu= & (v, & POW-E R 4O, § QD&(A O & o)

Wt =1t 4
T 6 1T ; o
AL D BY NOE O
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Subject to: (2.24]2.25), (2.29)2.34)

be -3 (& v, (v waE (6 6 vl) (2:39)

t=1lw %
In theouter approacfOA, thereafter)naster problenthe bilinear part of objective function is

linearized.

1 OUTER APPROACH $§B-PROBLEM

mexzu= & (i, & POY-E® §0, <§ 904 O & 1)

WOt U i=1f #
+au o] +aut NLOK, Oa,i1 wg, © (2.37)
P4 E w 1=
+aU|t§F althﬁauéﬁl' alsQ @

=1t 2 Tl=1t 4
Subject to (2.29]2.34)
The OA subproblem solvesan economic dispatch problen its dual formgiven a wind
realization scenario.During the OA iteration, e subproblem solvesan economic dispatch
problemfor agiven wind realizationand thanaster problemipdates the wind scenario within the
defined uncertainty set for a better objective valuee Whole process is repeated until the result
of the outer approach sydvoblem andof the master problenare equal.Figure 23 shows the

iteration procesas illustratedn Bertsimaset al. [55]:
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Figure2.3. Robust optimization and OA Solving Process

The robust optimization unit commitment model minimizes the total system cost under the
worstcase wind scenarios, agdarantees the feasibility of all wind realization scenarios within
the defined uncertaintset. However, this model hdsawbacks
1. Computation Time
Due to the special structure of the robust optimization unit commitment model, it can only
be solved using decomposition method. It may take a number of iterations for the problem
to converge in some cases. Several heuristics have been suggested to improve the solution
efficiency, such as adding some economic dispatatstraints to thé8 e n d enasterd
problem as mentionetly Bertsimaset al. [55], or by making@ good estimation of the

possible worst wind scenari&s suggested by Zhao and Guan [56]

2. Worstcase Wind Scenario
As mentioned above the-bii near t erm i rrokdlemenak&eadidor s 6 s u
guarantee a glad optimal solution when searching for the wearase wind scenario

especidl when there are many wind farms in the system. The search for thecasestvind



scenarios has become an independent research topic in the literattisé [51

3. Uncertainty Budget
Unlike the interval optimization unit commitment model which can be really conservative
in some cases, the conservativeness of the robust optimization model can be adjusted by
changing the uncertainty budgdiowever, there is no striaule on how to set this

uncertainty budget, and historical information may be needed to get the right setting.

2.6 OTHER DAY-AHEAD OPTIMIZATION METHODS AND TRENDS

Beside the three optimization techniques discussed above, othaheay unit commitment
optimization methods dealing with uncertainty are discussed in the literature. These include rolling
optimization Tuohyet al. [57],MadaeniandSioshans[58] and Qiu et al. [59]), robust mimax
regret optimization (Jiang et al. [60]), and the combined apéition methods (Zhao and Guan
[56] and [6163]).
1 ROLLING OPTIMIZATION

Rolling optimization is one way afealing with wird power output uncertainty by usiagnore
accuratewind forecast.This can beealizedby reducing the forecast time jpmd. Madaeniand
Sioshansj58] proposea way of rolling scheduling (optimizatiotf)atmakes full use of wind data
updats. In the rolling optimization, the daghead unit commitment problem is solved first using
the original wind forecast informationn the economic dispatch period, economic dispatch

problem is solved every Iinutes using the updated wind forecast.



T MIN-MAX REGRET OPTIMIZATION

In practicejt is unlikely to have a zererror wind forecast on the day ahead. There will therefore
always be a adjustment cost associated with errors in the wind forecast. To protect the system
against the worst possible adjustments in-tiead, Jiang et al. [60] propose a robust fmiax
regret optimization unit commitment. Mimax regret optimization has thensa structure as
robust optimization except for the objective function. The former aims at protecting the system
against the worst wind realization in reimhe, while the latter protects the system against the worst

reattime wind change from that forecast the day ahead.

1 COMBINATIONS OF DIFFERENTOPTIMIZATION METHODS

As discussed above, each optimization model has its own advantages and disadvantages, and
their performance is highly dependent on the case and the setting of the optimization parameter
More and more research has focused on the combinations of different optimization methods. The
combination of stochastic and chance constrained optimization is discussed by Wu et al. [61] [62].
Zhao and Guan [60] propose a combination of stochastic izatiom and robust optimization in
day-ahead unit commitment. By adjusting the weight of the two different objective functions, they
control the conservativenesstbeé model A combination of stochastic and interval optimization
described by Dvorkin et gl63] reduces the computing time. The conservativeness of the solution

can be optimized by choosing a good switching time between the two methods.

2.7 TEST SYSTEM ANDRESULTS

Tests were carried out on a modified version of the HEHES 24 bus system. Fulystan data

can be downloaded from [p4The wind power profile used artker om NREL® s Eas



interconnection wind integration study [65Four wind farms with capacities of 112MW,
138.4MW, 243.8MW and 223.2M\&te located at bus 2, bus 18, bus 21 and ba$ @ original
system.

The Easterninterconnectiorstudyyear 2006 observed data are usedesting, and the history
(20042005) forecast and observed data and 2006 forecasamatsed to generate 11 scenarios
for stochastic optimization and bourfds interval and robust optimization.

Other important testing parameters include:

1 For therobust optimization, the uncertainty budgeset to ba.sAv = 2.
1 The gap othe Benders master problem is 0.5% and the convergence gaglig he outer

approach inner convergence gap isble

1 For therobust optimization, the economic dispatch constraints of the average wind forecast are

added into the master problem to predict therstcase scenario and accelerate the
convergence.

1 The gotimizaion gap for botliheinterval and stochastatay-aheadptimization is set to 0.5%

1 The wind curtailment penalty is $20/MWh and load curtailment penalty is $5000/MWh.

1 The gstem transmission capacity is reduced to 80% of its original value

1. Day-ahead uricommitment sationtime

The size and structure of the dalyead opmization arehemain factorghat affecthe solition
time of the model. Robust optimization has the smallest problem wslake the stochastic
optimization has the largest sizbecause itconsiders more scenarios. Howevtre robust
optimization can only be solved usiaglecomposion method, and the search for twerstcase

scenario is not easyjlany heuristichave been proposed in the literattwehelp accelerate the



speedof the searcland the overall convergence rafdis makeshe soltiontime quite unstable.
Figure 21 is ascatter plot of the sationtime of theday-ahead unit commitmenilt illustrates this
observation about the effect of these heuristics

The leftpart of Figure 2.4a) shows the whole data sét the plot onlie rightside of Figure
2.4(b) the extreme pointsf therobust optimizatiorhave beereliminated.We can see from the
2.4(a) that there are days when it may takeextremdy long time to ind theworstcasewind
scenario However, formost of the daysthe soution time is shorter tharor the interval and
stochastic optimizatian

As stochastic optimization formulation has the largest problem size, we observesioaogen

time comparedvith both interval andabust optimization in Figure 24).

e interval e robust stochatic
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Figure2.4. Scatter Plot oDay-aheadJnit CommitmentSolutionTime

The CDF plot in figure 2.5rovidesa more straightforward comparison of skehree
optimization methods in terms gblution time For a better comparison, the extreme points in
robust optimization metholdave beememoved from the figurae cansee from Figure 2.8hat

the solution time is no more than 20 secdimd®ver 95% of the dayslf stochastic optimization



is applied, the solution time is no more 20 seconds than only 10% of theFaay® 2.5 also
shows thathe solution timeof therobust optimizations not always shorter thahesolution time

of theinterval optimization problerdue to the heuristiossed tosearchfor theworstcasewind

scenario.
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Figure2.5. CDF Plot ofDay-aheadJnit CommitmentSolution Time

2. Total Cost inReattime

Thereaktimetotal cost includes both the stap and dispatch castSince the generator aoff
status is optimized on the dapead and cannot be changed in-tieaé, the starup costis
deterninedby the dayahead unit commitment. The dafiead scheduled generator output can be
adjusted in realime, sathe dispatch coss determined bthe realtimewind and load realizatian
As the three optimization methods are aimed at different objectiver distributionsof reattime

total costaredifferent asshown in kgures2.6, 2.7 and 2.8
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Figure2.6. Scatter Plot oRealtime Cost

Figure 2.6s ascatter plot of theeattimetotal costFigure 2.6(@) showsthe whole dataeg. In
Figure 2.6b) the exteme pointf the stochastic optimizatiohave been removedVe can see
from Figure 2.6(a) that there are more days when the togaktime cost is high when using
stochastic optimization, which meatigtthere is more wind or load curtailmeor thesedays.
These extreme situations happen less frequently when using interval optimization. Aradehere
rarely extreme situations when using robust optimization.

Figure 2.6 (b) showsthat despite the more extreme dagsulting fromthe stochastic
optimizaton, the totakeattime cost is much less using stochastic optimizati@mwith the other
two optimization methodsn days wherthewind realization is clos® the dayahead forecasted

wind scenario compared.
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The CDF plots in Figures2.and 2.8providesa more straight forward comparison of the three
different optimization methods in terms of dalyead start up and totetattime coss. Even
though the daygphead startip cost is likely to be highest using robust optimizatemsshown by

Figure 2.7) wecan see from Figure 2tBat the tadl reattime cost is no more than $1,000,000 for



about95% of the days when using robust optimization. That percentile islglighs when using
interval optimization and drao about 70% when using stochastic optimization.

As robust optimization isiged at minimizing the cost under therstcasewind scenario, the
tail of its CDF plot is much shortes shown in Figure 2.8vhich in turn makes the costs under
preferable wind scenarios bigger tharth the other two methods. Interval optimization and
stochastic optimization aim to minimize the cost under average forecast and the expected cost
under all forecast instea@hereforether CDF has alonger tail which meanghathigh reattime
costarelikely to happeroccasionallyusing these two methedHowever, interval and stochastic
optimization have better performanoa dayswhen the dayahead forecastioesnot deviate

significantly from thereattime wind realization.

2.8 SUMMARY

In this chapter, we investigated thariousoptimization techniquessed tosolve the dayahead

unit commitment under wind generation uncertailgyecial attentiorwas given to stochastic,

interval and robust optimizatiofhe IEEE RTS and the NREEastern wind datavere used to

test and compare their performance. In sunyneach otthe threemainoptimizationmethod has

its own advantages and disadvantages in terms of both computing timeaktirde performance

1 Robust optimization has a relatively smaller problem size, and thgasotfficiency can be
quite high if there iastway tofind theworstcasewind scenarioSince he size otheinterval
optimizationproblemis fixed, its solution timedepend only on the different cases. Even
though the problem size is largestr the stochastic optimizatiormethod the solition
efficiency can be improved significantly using advanced forecast and scenarios reduction

techniques.



1 Thereaktime performance of the three optimization madslhighly dependnton the wind
forecast and the pameter settingsin cases of high uncertainty, robust optimization could
greatly reduce therobability of incurring an extremdy high reattime costif an adequate
uncertainty budges chosenWhentheday-ahead forecast is accurate, stochastic optimizat
or tighter wind generation bous@nd a smaller uncertainty budget in interval and robust

optimization may be a better option.



ChapterSSTOCHASMULGOSTAGE-PCANNI NG OF
TRANSMI SSI ONOM XFPRADSENERGY
STORAGE

3.1 INTRODUCTION

Generation andransmission system planning have been extensively studiec ititehature.
Hemmati et al. [6bprovide a comprehensive reviewtbe topic while Munoz et al. [§As wél
as Martinez Cesena et al. [68liscuss recent progress. With the developmentaitery
technologies, the combined operation and planning of storage devices with other power system
resources is drawing increag attention. Zach and Auer [ppoint out that energy storage and
transmission investments increase system flexibility bait tbhst/benefit analyses are needed to
determine which measures are preferable.

Various studies [/ 6] focus on the planning of energy storage systems alone in power systems.
Oh [7Q uses a DCOPF modend a limited number of time periods per year to erthie problem
of siting and sizing storage units tractable. A full unit commaittmodel is used in Pandzic et al.
[71] to determine both the optimal sizes and sites for energy storage using wind and load profile
over a whole year, and some heuristicsrreduced to limit thgproblem size. Other authors 72
74] focus on the size of energy storage without considering the effects of the transmission network.
The statistical properties of renewable gatien are used in Liu et al. [fj2and the power
spectum density of deviations of renewable generation from feteda applied in Li et al. [73].
Bayram et al. [7/hdeveloped a stochastic analytical framework to determine the proper size of
energy storage and conducted a benefit/cost analysis to evahraige investments.

Co-planning of energy storage and transiaa systems is addressed in{7&. Hu et al. [7H

solve a MILP problem iteratively to determine the ESS investment size and locations by replacing



part of the transmission investment whslatisfying the same sysh requirement. Zhang et al.
[76] propose a MILP model to determine the size and location of a single energy storage unit to
minimize both the operation and investment costs taking line losses into ad¢tedayati et al.
[77] andKonstantelos et al. [{§ropose multistage ceplanning models to determine the location
of a given size energy storage that minimizes thetiome investment cost and theng-term
operation cost. A DCOPF based deterministic planningainedised in lddayati et al. [7][{ while
a SCOPF based stochastic planning framework is longdétbnstantelos et al. [T8Bwhotake into
account N1 security criteria as well as the uncertainty onlding-termwind capacity.
As the size of the planning model tends tddrge, the computing burden can be tremendous
when the planning horizon is long or the model accuracy is high. Researchers either choose a
shorter planning horizon or simplify the UC(ED) operation model to make the problem tractable.
To overcome the abovmentioned limitations,his chapter describes a more accurate technique
for co-planning the multstage expansion of transmission capacity and the deployment of battery
energy storage systems (BESS). Its contributions can be summarized as follows:
a.lt modds the degradation in energy storage capacity due to shelf life and charge/discharge cycles
which have been ignored in all the other BESS planning models
b.Ilt accounts for the delays associated with the planning and construction of transmission lines.
c.It incorporates a unit commitment with reserve requirements to represent accurately the
operation of the system

d.It optimizes both the size and the location of investments in energy storage at each year of the
horizon.

e.lt implements a stochastic optimizatitmtake into account the effect of uncertainty on load as

well as renewable generation.



The remainder of this chapter is organized as follows: Sect®rd@scribes the modeling
assumptions whil&ection 33 provides the detailed mathematical formulatibthe optimization
problem Section 34 describes the test systeBection 35 presents the results of the optimization

and of thesensitivity analysis. Section 3c@ncludes.

3.2 MODELING

Multi-stage planning problems can easily get very large. Careful esh@bout modeling
assumptions must therefore be made to achieve a balance between the accuracy of the results and
the computing time.
1 BATTERY ENERGY STORAGE SYSTEMS

The calendar life of a battery as well as the charge and discharge cycles it has urafeggbne
its energycapacity. A number of papers (e.g. {89) offer detailed and accurate models of battery
degradation. However, because these models aréimeam and involve multiple variables and
nontlinearites, the computational burden that they Wwbimpose on a planning study is not
acceptable. In our study, we assume instead a flat degradation rate of 94%, which means that 6%

of the energy capacity is lost each year, 3% of which is due to calendar aging and 3% to utilization.
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Figure3.1. BESS Investment Unit [29]

Energy storage planning techniques described in the literatur§Z(g£f]) typically determine
the optimal location for storage unit of a given size and for dioreinvestnent. This is a rather
restrictive assumption as storage lends itself to incremental investments over time at the same
location. Instead, as shown kigure 31, we assume that BESS units can be added over time at
each location, providing a variable poweeegy capacity ratio. Each BESS unit is retired

independently when it reaches the end of its useful life.

1 SysTEM OPERATION

Enhancing the fidelity of the modeling of system operation increases the numbers of variables
and constraints. In a planning mod&lese numbers increase further as the number of years
considered as part of the planning horizon is extended. Different strategies have been used to
streamline the operation model. Most planning models ignore or simplify the Unit Commitment
(UC) decisionsand constraints or use very broad time gasi Konstantelos and Strbac [78
removed all time coupling constraints (such as the ramp rate limits on the generators), and

considered a $year planning horizon with a-fear epoch. Hedayagt al. [77 ignore the



uncertainty on future wind generation and load and consideyaardorizon with a4ear epoch.

These assumptions have serious drawbacks. First, it is impossible to know all the committed units
in advance under the current market structure andjttiie unlikely that all the peaking units will

be online at all times. The contribution of storage in dealing with the uncertainty in renewable
generation and in reducing the number of aigg of peaking units would therefore be
undervalued. Second, mcse the available capacity of an energy storage system is likely to fade
substantially over a-5or 8year timeframe, using such a long planning epoch could lead to
inaccurate planning decisions.

Our study adopts a 2fear planning horizon with a-ylearepoch. To reduce the number of
binary variables used to reflect the generato
those that are assumed to be always committed and those that are free, i.e. which can start up or
shut down at any time. Intleer words, slow and fast generators. Two methods can be used to
divide the generators into these two types. We can runto@dunit commitment for 25 years
and assign the generators that are committed more often than a given threshold to the slow catego
while the others are considered free. Alternatively, generators with-laoomeninimum up/down
time can be assumed to be fast generators, while the remaining ones are assigned to the slow

category. Testing showed that the two techniques produce waigrsiesults.

1 LOAD AND WIND GENERATION CAPACITY SCENARDS

To reduce the risk of stranded assets, investments in transmission or storage capacity should be
robust with respects to errors in the letlegm evolution of the load and the renewable generation
capacity. The proposed optimalptanning approach therefore considers 3 scenarios that combine

the load and wind generation uncertaifiijgure 32 illustrates these scenarios.
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Figure3.2. Load and Wind generation capacity scenarios

f RESERVE REQUIREMENT

Most planning models do not consider the need to provide operating reserve. As the proportion

of stochastic renewable generation increases, this simplification becomes untenable. The proposed

model considers the reserve constraint in the unit commitmenises the 3+5 rule to specify the

amount of operating reserwghich means that the reserve required is equal to 3% of the forecast

load prediction plus 5% dhe forecast wind generation, [3]. The amount of reserve provided

by BESS follows thenodeldescribed by Hu et al. [$4This model is explained in detail later in

this chapter

I LOCATIONS FORBESSAND ADDITIONAL TRANSMISSION CAPACITY

Limiting the number of locations where BESS could be installed and the number of transmission

lines that coulde upgraded significantly reduces the computational burden. To determine a good

set of likely candidates, a planning problem vath-year horizon was run to determine the best



locations for each of the 25 years in the actual horizon. Locations whesaohtssrm planning
problem frequently installed BESS were selected as candidates foloffgeterm planning
problem. Lines where the power flow frequently exceeded 55% of their rating were considered for

a capacity upgrade.

 REPRESENTATIVE DAYS

In long-term planning, considering a whole year of operation is unnecessary and makes the
problem intractableWhen integrating renewables, the shape of net load could be quite different
from that of the original one due to the increasing renewable capHity,5 days are selected to
represent typical wind generation and load profiles for each year based on how the daily wind is
changing with daily loadThe correlation coefficient of daily load and witsctalculatedandnet
load profiles arelustered into 5 @upsusingthe K-means methadrhe profile which is closest
to the centroid of each grougpselected as a representative day of that grSinqze these 5 days

are usually not consecutive, the initial ramp constraints are relaxed.

3.3 FORMULATION OF THEPLANNING PROBLEM

T NOTATIONS

Sets and Indices:

y: (1Y) -Index to the study year

Parameters:

[ Number of days represented by each typical day in a year



r: Discount rate
ST: Life time of a BESS
LT: Life time of a transmission line

ki,: Marginal cost of a segment of generator cost curve

C®: Cost per MWh of a BESS

CP: Cost per MW of a BESS

C' : Cost per MW of capacity of a transmission line
k®: Annualized cost per MWh of a BESS

k?:  Annualized cost per MW of a BESS

k':  Annualized cost per MW of a transmission line
at:  Spinning reserve response time

nds, per: Storage device discharge and charge efficiency
EM™: Minimum energy capacity of a BESS

WK Wind forecast

DY, Load forecast

m S : Mapping of generators to nodes

M . Mapping of wind farms to nodes

m L . Line connection

B : B Matrix for DC power flow calculation

r: Energy capacity degradation factor of energy storage

k,. Calendamageing rate



k... Cycling ageing rate

cycle

Binary variables:

x» . Generator status; bnline, 0- offline
I, Line decision, 1start construction, ©no construction

z,,+ New line status,-lin service, G not in service

Variables

C,: Discounted annual operation cost

CoPe=": Hourly unit operation cost

s_ INy,: Discounted annuatorage investment cost
L _INv, : Discounted annual line investment cost
pY, .. Generation on each segment of the cost curve
p, . Total generation of each generator

ch?,: Charging power of a BESS

dis!,: Discharging power of a BESS

So,: State of charge of a BESS

g’,- Busvoltage angle

fy: Power flow on an existing line

NfY: Power flow on a new line

rg’, : Reserve provided by a generator



re?,. Reserve provided by a BESS

E. .. Investment in energy capacity for a year

S, Y

Peg ,: Investmentin power capacity for a year
APe ,: Available power capacity by the end of a year

AE, ,: Available energy capacity by the end of a year

1 OBJECTIVE FUNCTION

For clarity of exposition, the equatiotelow define the deterministiohgterm planning
problem. e stochastioptimization planning modedan be easilpbtainedby adding one more
dimension into the operation variable and related constraintsdetailed formulations follow the
same structe as that shown in Chapter Zquation 8.1) shows that the lontgrm planning

problem aims to minimize the sum of the operating cost over the horizon:

Y
min 3 C,+S INY +L IN
Q,tv)gtvpg,yvlé,yvll,yal y+S-INY +L_ Ny (3.1)

Equation 8.2) gives the discounted operating cost over the planning horizon. The penalty term

discourages wind curtailments (at 20$/MWh) and load curtailments (at 5000 $/MWh).

AT | )
t. % aCt(?iperatlon f)ena":y

C — Cl:l i
y (1+r)” (32)
Lo
Ct(?ipera ion — a pi;t @b Nl SH X (3.2a)
b=1

Equation(3.3) gives the discounted BESS investment cost for gaah Equations3(3a) and

(3.3b) give the annualized BESS energy and power capacity cost 83t ¢ives the annual



discount factor needed to ensure that all costsodye paid off within the BESS life time.

y S o
S_IN=3a,,, &K B K+P°
n=1 s

(3.3)
o e @) )
k®=CF O——— ($/MwhCrea) (3.3a)
(1+r)” 4
ST
w=cr S (33b)
(1+r)” 4
€ 1 nesT
a,=j(1+r) (3.3c)
ho nz ST 4

Equation(3.4) gives the discounted transmission line investment cost for each year. An annual
payment is assumed to be made each year after the investment decision is made. Baiagtion (

gives the annualized line capacity cost while Equat®b] gives the amual discount factor

needed to ensure that the cost of the | ine
J L. .
L_INV,=§ b, ,, @K I, (34)
n=1 | &
.r1+rLT
K'=C 9% ($/Year) (34a)
(1+r)" 4
e 1 heLT
b, =1 (1+r) (3.4b)
to nz LT 4

Y GENERATOR CONSTRAINTS



Equations 8.5) to 3.8) describehe constraints on minimum and maximum generation capacity

and maximum ramping.

NB

Pi=a R (3.5)
b=1

pL2 p & (3.6)

Phe ¢ Py & (3.7)

|pi),lt - Fﬁ.l| ¢ iI (3-8)

 RESERVE CONSTRAINTS

Equations 8.9) and 8.10) determine the amount of reserhatteach generator can provide:
Pi+ra; o (39)

rg’, ¢ D adOx) (3.10)

1 ENERGY STORAGECONSTRAINTS
Equation 8.11) keeps track of the state of charge of each BESS while EquaibRstp 3.14)
enforce their energy and power capacity limits. Equati8ris) and 8.16) determine the amount

of reserve that each BESS can provide:

SoQ, = So¢,, +ch -di (3.11)
EXV ¢ SoQ, ¢AE, (3.12)
ch’, ¢ APe, (3.13)
dis’, ¢ APe, (3.14)

Oc¢rel, Hisl, eh, R (3.15)



) o (3.16)

 POWER BALANCE CONSTRANTS
Equation 8.17) enforces the system poviidance at each node. Equati8ri8) limits the wind

generation to the availlowind power, which is assumed to be equal to the forecast:

| w L
ap, S -awpl, MY, A NP} ML
w % | E

i=1

2 oy (3.17)
=D}, A ( hc,;‘ dis!, 7O

t=1 s
wp,, + W, =WE, (3.18)

f RESERVE REQUIREMENT
Equation 8.19) define the 3+5 reserve requirement [2],83. te total reserve should be no

less han 3% of the forecasted load plus 5% of the forecasted wind power.

| S S w
arg’ + are’, 20.03 Gp., 065 @, (3.19)
i=1 s E

s 3 w 1=

1 LINE FLOWS AND TRANSMSSION CAPACITY
Equation 8.20) calculates thines flows using a DC power flow. Equatior&2(1) and 8.22)

implement the line flow constraints.

£ =B (g2 - &) (3.20)

-FR, of) &, (321)

p ¢y ¢ (322)



1 STORAGE PLANNING

Equation 8.23) gives the available BESS energy capacity for each year considering
degradation. Equation8.23a) and3.23b) calculate the capacity factor at each yeardoybining
the calendar aging and the aging caused by cycling. The energy capacity of a BESS is assumed to

be zero once it reaches the end of its life.

y ae
AE =@ a,,; G, (3.23)
to=1
Ea@rF™  n 6T
=j 323
*=l nz ST 4 (3.232)
CF :1 -kcal kcycle (323b)

Equation 8.24) gives the available power capacity of a BESS for each year. No degradation is

assumed. Equatiol.4a) removes this power capacity once the BESS has red&ehedd of its

life.
y ..
APg =8 h.,, Be, (3.24)
to=1
=& NesST (3.24a)
{0 n2sT4

Equations 8.25) and 8.26) are optional constraints that specify that a certain amount of

available BESS in a certain year.

S

j AE, = AE (3.25)
s=1

S *

a APg, = APe (3.26)

Equation 8.27) keeps the power/energy capacity ratio of each BESS within a technologically

reasonable range:



0.25¢ 2% g8 (3.27)

S, Y

1 LINE PLANNING AND OPERATIONMODEL
Equation 8.28) enforces a construction delay of one year between the investeresion and
the availability of an expanded transmission line. Equat®A9] makes sure that once a

transmission line is available, it remains available.
yi

ZI,y = a. II,r (328)
r=1

Zy2 2y, (3.29)

Equations 3.30) to 8.32) determine the flows on new transmission lines. The large ninber

prevents power from flowing in lingbat have not yet been built [[77

N2 B (g - @) (@ Z) M (3:30)
NfY ¢ B (g -4) (& z,) M (3.31)
-F. B, Nfj Fez,

(3.32)

3.4 TEST SYSTEM

Tests were carried out on a modified version of the HEHES 24 bus system. Full systerata

can be downloaded from [B4The wind power profileised are the same data from][@dnly the

three wind farms located at bus 20, 21 and 23 of subsystem | are selected with initial capacities
600MW, 300MW and 300MW. Wind energy generation accounts for 21.7% of the annual load at

year 1. A line was addduzktween buses 7 and 8 to make the systehsBcure.
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Figure3.3. Test System Topology

Other important testing parameters include:
Transmission capacity was reduced to 90% of its origialale toincrease congestion
The cost of a BESS is assumed to be 300%plus 25%Wh, and its lifetime is10 years
The cost of building a leis assumed to be 927,000 $, &fedi me 60 years [85
The discount rate was set at 5%.
In the base caséhe windgeneration capacity increases by 4% per year and the load by 3%.
Buses that are candidates for the installation of a BESS and lines that are candidates for
transmission upgrades were selected usingetttenique described in Section B.Details are

shownin Figure 3.3



Table3.1. Unit Category

Type No Min-Down (hr) | Min-Up (hr) | Committed Rate (%)| Category
1 1519 1 2 0-30 Fast
2 1-2,56 1 2 0-30 Fast
3 24-29 1 2 0-30 Fast
4 3-4, -8 2 3 100 Slow
5 9-11 2 4 100 Slow
6 20-21, 3631 16 24 100 Slow
7 12-14 3 4 100 Slow
8 32 5 8 100 Slow
9 22-23 24 168 100 Slow

3.5 TESTRESULTS AND SENSITIVTY ANALYSIS

1 Co-PLANNING VS. INDEPENDENTPLANNING

Using the base case settings, simulations for the three different planning models are carried out
to compare the decisions under different planning methods: transmission expansion and ESS
together ceplanning, transmission expansion only and BESS only.

Table 32 shows that cplanning investments in transmission line and BESS capacity

significantly reduces the number afidis that must be built.

Table3.2. Investments in Transmission Lin@agacity



Line
Upgradedines Construction Start
Capacity(MW)

Co-Planning Line 21 (buses 123) 450 Year 09

Line 29 (buses 149) 450 Year 10

Line 15 (buses 092) 360 Year 18
Lines Only

Line 07 (buses 024) 360 Year 19

Line 18 (buses 113) 450 Year 22

Similarly, Table 33 shows that cplanning the deployment of storage with upgrades in
transmission line capacity results in the installation of BESS at fewer locations. However, Figure
3.4 shows that the total energy and storage capacities are instadiegeatially the same rate,
albeit at different locations. As illustrated by FiguBésand3.6, BESS capacity investments shift
from buses at or near wind generation (e.g. buses 14 and 23) to buses close to the load centers (bus

03) to reduce the moreensive load curtailment.

Table3.3. BESS Investment Location
BESS Locations

Co-Planning Bus 3, 6, 10, 12, 19

BESS Only Bus 3, 6, 10, 12, 14, 19, 23
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Figures3.7 and 3.8 further illustrate the differences in the timing and the location of the

investments recommended by the two planning approaches.
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Figure3.7. Energy capacity installed each year at each bus of the planning horizon using the

co-planning method
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1 STOCHASTIC OPTIMIZATION

Becausdong-termforecasts of load growth and renewable energy development are inaccurate,
considering multiple scenasoand performing the planning using a stochastic optimization
provides a more robust investment plaigure 39 shows how much BESS energy capacity should
be installed each year at each bus based on a stochastic optimization and the three wind generation
and load growth smarios described in Section B.Zigure 310 shows the results obtained with
a deterministic optimization using only the base scenario.

Comparing the results of Figure 3.9 and Figure 3.10 leads to the observatiogtéhaimstic
planning distributes investments in BESS more widely over the years, while stochastic planning
recommends larger investments in fewer years. The starting years, capacity at each bus, and total

available energy and power capacities are also quite different.
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i ErFFeECT OFBESSLIFETIME
The effect of changing the lifetime of each BESS from 10 to 15 years was studied using the co
planning approach. The annualized BESS energy and power capacity costs were changed

accordingly, but all other parameters remained the same.



Table3.4. BESS hvestments

BESS lifetime BESS Locations
10 years Bus 3, 6, 10, 12, 19
15 years Bus 6, 10, 12, 14, 19, 23
8000 {
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Figure3.11 Total Available Energy Capacity

Table 34 shows that more BESS are installed when they have a longer lifetinréganel 311
that treir installation starts sooner.

Table 35 shows that more lines areibbwhen the BESS operate for more yearhis is
reasonable, sinaelonger life time means the cost of using BESS has reduced, the savedrcost

be used to upgrade more line capacities.



Table3.5. Line Capacity pgrades

BESS lifetime Upgraded Lines -ne Construction Year
Capacity(MW)
10 years Line 21 (bus 123) 450 Year 09
Line 23 (bus 1416) 450 Year 09
15 years Line 22 (busl133) 450 Year 22
Line 10 (bus 06L0) 157.5 Year 24

1 EFFECT OF TRANSMISSI® CAPACITY

To compare the effect of transmission capacity eplaaning, the initial transmission capacity
was sefat 100%, 90% and 80% of the original RTS transmission capacity. As one might expect
and asTable 36 shows, fewer line need to be upgraded if the initial transmission capacity is
larger. On the other hand, @aable 37 shows, the locations where BESS are installed change.
When less transmission capacity is available, the location of BESS shifts from corridors used to
transport wind generation towards load centers (bus 03) to avoid load curtailments and to wind
generation centers (bus 23) to reduce wind curtailméigare 312 shows that the transmission

capacity has an almost negligible effect on the fosdhlled BES energy capacitin the system.



Table3.6. Line Capacity pgrades

Initial capacity Upgraded Lines Hne Construction Year
Capacity(MW)
100% None NA None
90% line 21 (bus 123) 450 Year 09
Line 22 (bus133) 400 Year 07
80% Line 29 (bus1&29) 400 Year 11
Line 10 (bus 610) 140 Year 21

Table3.7. BESS Investment Location

BESS Locations

100% Capacity

Bus 06, 10, 12, 14, 19, 23

90% Capacity

Bus 03, 06, 10, 12, 19

80% Capacity

Bus 03, 06, 10, 12, 14, 19, 23
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Figure3.12. Total available BESS energy capacity for different initial transmission capacities

3.6 CONCLUSIONS

In this chapter, wlas proposed a stochastic msltage method for eplanning transmission and
BESS. Compared with the state of art, the proposed method uses more detailed and accurate
models over a longer planning horizon. In particular, it takes into account the diegrada
limited lifetime of BESS, it considers the reserve constraints and optimizes both the location and
capacity of BESS. The size of the problem, and hence the computing burden, remain manageable
because generators are grouped by types, and thelwathere BESS be installed and the lines
that can be upgraded are {m@ected. A sensitivity analysis has been performed to highlight the
effect of different planning approaches, of the uncertainty on future load and wind developments,
of the BESS lifetine and of the initial transmission capacity.

Thereserve ratés defined as follows

Conventional Generation Capacity + WiBéneratior
Load Forecast

Over the course of 25 years planning horizbis reserve rateidecrease. A negative reserve



rate may appear in times when the wind is low thiedoad is high such as in day 3 and 4. Despite

the negative reserve rate, the system remain balanced because of the installed BESS. BESS charges
during the early hours when the reserve rate is high asuhaliges during the hours when the
reserve rate is low, so part of the capacity has been shifted. In hours when the reserve rate is
negative, the BESS virtual generation capacity shifted from the high reserve rate hours is used to
keep the system in balasdn the future, there may be significant value ipt@nning generation,
transmission and BESS to evaluate the benefit of BESS in providing both virtual transmission and

generation capacity.



Chapter4ASTOCHAST I GS MAGE-PCANNI NG OF
GENERATI ON AR EANEREKEY
STORAGE

4.1 INTRODUCTION

Because of their intermittency and stochasticity, wind and solar generation cannot be treated in the

same way as conventional plants in generation planning. To ensure that enough generation is

available wien these renewable resources are not available, conventionafifedsunits may

still be required. Furthermore, as the proportion of renewable generation increases, flexible

generating units or battegnergy storage systems (BESS)-fB6 may be needeto keep the

system in balance. Traditional generation expansion planning techniques must therefore be

modified to consider the need for flexibility as well as the benefits of distributed energy storage.
Generation expansion planning has attracted afsigni amounof interest in recent years [88

95]. Hua et al. [8Bproposed a generation expansion planning model that incorporates operational

flexibility through a convex relaxation of the unit commitment probleimojosa and Gonzalez

Longatt [89 descibed a generation expansion model consideriag Montingencies, with the

goal of enhancing system reliability under both normal operation and after the occurrence of a

majordisturbance. Kirschen et al. [Pfroposed a stochastic method to optimize texiliiility of

a portfolio of genering plants. De Jonghe et al. [discussed the effect of short term demand

response on the optimization of the generation mix. All these methods are based on a snapshot of

the system conditions for a given year. Mglagelong-term plaming methods are discussed in

[93-95]. Saboori and Hemmati [P@eveloped a mukstage generation expansion planning model

to minimize the planning costs and the CO2 emissions using a particle swarnmzaibimi

algorithm. Zhan et al. i§ introduced arstochastic programming model that maximizes total



profits, considering the effect of investment decisions on electricity prices. Dogaiegal. [9%
proposed a mukstage generation investment model that takes into consideration thaddema
growth and the generating units cost uncertainty. They used a linear decision rule (LDR) approach
to reduce the computirtgurden
Various stulies [9610(Q focus on the planningfe@nergy storage systems. OhJ28ed a DC
OPF model and a limited numbafrtime periods per year to keep the problem of siting and sizing
storage unit¢ractable. Dvijotham et al. [9,7developed a heuristic procedure for energy storage
placement and sizing based onttiical data. Wogrin and Gayme [Qdiscussed a coptimizing
modelfor siting and sizing of a storage technology portfolio consisting of four technologies in a
transmissiorconstrained network. A stochastic optimizatimsed modds used by Xiong and
Singh [99 to optimize both the location and size of anrggestorage system considering the
uncertainty on wind power generation. These authors use a capital/operating cost frontier to show
how a budget constraint affects the ESS plagecisions. Pandzic et al. [7dsed a full unit
commitment model to deteine both the optimal sizes and sites for energy storage based on wind
and load profiles over a whole year. They introdisz@me heuristics to limite problem size. Liu
et al. [73 modeled wind fluctuation using power spectrum density and optimizedtmnbize of
the ESS to increase the level of wind power penetration while meeting the limits oeguelricy
deviations. Xu et al [1JGleveloped a bievel formulation to optimize both the location and size
of energy storage systems used for energyragatand regulation services. Additional rafe
return constraints are enforced to guarantee the profitability of investments in energy storage.
A few papers have dealt with the-panning of eergy storage and generation [1DQ7].
Yasuda et al. [1QJproposed anodel based odynamic programming araigradient search to €o

optimize themix of generation and storage, but did not consider transmission constraints or



renewablegeneration. Pudjianto et al. [10@eveloped an approach to simultaneousglyimize

investments in generation, network and storage capacity. However, the transmission and generator

operating constraints are simplified to keep the computatractable. Yang and Nehorai [103

used a consensimsed method to eoptimize investmets in storage, renewable generation, and

diesel generator capacities far microgrid. Carrion et al. [L04 developed a coordinated

generation and storage expansion formulation considering the primary frequency response

constraints. Kargarian et al. [1PGsed a detailed hourly and indnaurly operation model in a

stochastic cgplanning problem to optimize both the flexible generation and ESS capacitgt Liu

al. [109 used a progressive hedging algorithm to solve a ratdfie stochastic planning model.

To reduce the computation time, these authors considered only 4 investment periods ever a 10

year horizon.

This chapterdescribes a mukstage ceplanning model for generation capacity and battery

energy storage systems (BESS). Its contributions can beauned as follows:

a. It models the degradation of the energy storage capacity and time delays in the construction
of generating plants.

b. The multistage planning model optimizes both the size and the location of investments in
energy storage and traditiorggnerators at each year over the whole planning horizon.

C. It provides a detailed analysis of common investment patterns and differences for 9
combinations of penetrations of renewable generation and hourly wind/load correlations.

d. It discusses the effect dhe choice of representative days on the planning results and
provides a way to obtain neaptimal planning results for large systems.

e. It analyzes competition and complementarity between storage and flexible generation.

Section 4.%rovides the detailed mathematical formulation of the optimization problem. Section



4.3discusses theodeling assumptions. Section descibes the test system. Section grtBsents

and discusses numerical results. Sedfi@concludeghis chapter

4.2 MODELING ASSUMPTIONS

This chapteradopts a 2&ear planning horizon with a-ylear resolution. Because muitiage
planning problems can easily get very large, careful modeling simplifications must be made to
achieve a balance between the accuracy of thdtseand the computing time. The following
paragraphs describe briefly these assumptidiose details can be found in [107

1 TYPES OF GENERATORS

A simplified generation expansion problem was first solved to determine the types of generators
that should beonsidered as candidates for investments. At each location, additional generators of
the type that are already connected there can be built, creating an aggregated generation capacity
with larger ramping and operating limits but with the same up/dowrstand a single operating
status. Nine different types of traditional generators are represented in the test system. The
investment costs for tee generators can be found in][90nits of types 1 and 4 with maximum
capacities of 20MW and 76MW respectivélyned out to be selected most frequently during this
simplified generation expansion problem. Because units of type 4 are somewhat larger, they were
selected for all further investments in flexible generation.

To further simplify the model and the amowftcomputation required, both existing and new
generators were divided into two types: those that are assumed to be always committed and those
that are free, i.ethat can start up or shut down at any time. In other words, slow and flexible
generators. Geerators with a minimum up/down time of less than 2 hours are assumed to be

flexible generators, while the remaining ones are in the slow category. Units of Type 4 unit chosen



in the previous step are treated as flexible generators.

 REPRESENTATIVE DAYS

When planning a system with a large amount of renewable generation, simply providing enough
generation to meet the expected peak load is not sufficient. One must also ensure that the system
has enough flexibility from generation or storage to follow the loatl profile. High wind
generation from remote locations can also cause stress in the transmission network and thus require
the availability of resources located closer to the load. One must also have enough generation to
deal with days of minimal wind gemation. Particular attention must therefore be paid to the shapes
of the load and renewable generation profiles, which can be positively or negatively correlated.
The difference between the load and renewable genepbites define the shape of thet tead
which drives decisions about investmemsonventional generatiomeing independent of the
load value and wind capacity (which chasgeger the years), the correlation coefficient between
these quantities is a good discriminatiiegturein the K-means clustering algorithm used to
identify representative days. Using this algorithm, we divided a whole year into 3 clusters. Each
cluster was then further divided into 3 subgroups based on the total wind output of that day. Our
results are thus based nine representative days based on the total wind generation level and how
the daily wind is changing witthe daily load. The day that is closest to the centroid of each

subgroup is selected as repreaéme of that subgroup. Table &@mmarizes thesfeatures.



Table4.1. Features Used for Identifying Representatiay®

HW High ratio of wind generation to load
AW Average ratio of wind generation to load
LW Low ratio of wind generation to load
HC High correlation between wind and load profiles
AC Average correlation between wind and load profiles
LC Low correlation between wind and load profiles
A HW-LC Day A HW-HW Day
2500 ! : 2500 : :
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Figure4.1l. Examples of representative days

Figure 4.1shows the load and wind generation profiles for two representative days. The one on

the left represents the HWC cluster, while the one on thetleépresents the HWC cluster.



4.3 FORMULATION OF THEPLANNING PROBLEM

9 NOTATIONS
Parameters:

GT Life time of a generator

Binary variables
nx!, New invested generator investment statugnline, Oi offline

nz?, Construction status of new generators

Integer variables
lg, Number of generators installed at bus in a single year

Z, Accumulated number of new generators in service

Variables

c, Discounted annual operating cost

cre=n Hourly unit operation cost

NG*®*=*" Hourly unit operation cost of new generators
C No-load cost of new generators

C Startup cost of new generators

c_iny, Discounted annual generation investment cost

nply, New generation on each segment of the cost curve



npe, Total generation of inatled new generators

nrgl, Reserve provided by new built generators

9 OBJECTIVE FUNCTION

For clarity of exposition, the equations below define the deterministicteng planning
problem. The stochastic version of this problem baneasily obtained by adding one more
dimension to the operation variables and related constraints. Théelomgplanning problem
aims to minimize the sum of the operating, generation investment and energy storage investment

costs over the horizon:

Y
min & C,+S_INV, +G_ INV (4.1)

y=1
The total annual operating cost discounted over the planning horizon includes the operating cost
of both existing and newly built genéoes, and a penalty term that discourages wind and load

curtailments (at 20 $/MWh and 5000 $/MWh respectively):

aT _ ST A
¢ (ia th’;iperatlon + a ngperatlon penalty
C —_GC-us s M 10
y (1+ r )y_l

(4.2)
Equation ¢.2a) gives theoperatingcost of &isting generators. Equations (8)2o @.2) give
this cost for newly built generators, whefe) and 4.2d) describes the Rlmad cost and4(2e)

to (4.2f) the startup cost.
i NB ae
Cr"=a ni, ©, N sy 2 (4.22)
b=1

i I\"B = n| LIC
operauon:a psybt Q; G;*lt C?.t (423)

.S
b=1



Cl2NLA, ( n¥) M (4.Z)

crz2 NL 6%, (4.2d)
cizsuC @, ( nZ) N (4.2)
Ce2 SUC @2, (4.2)

Equation(4.3) gives the discounted annual BESS investment cost. Equédi@ay and(4.3b)
specify the annualized BESS energy and power capacity costs (#t8@ gives the annual

discount factor needed to ensure that all costs are paidtbiii the battery lifetime.

y S
S_IN=8a,,, Gk B K+Pf (43)
n=1 si
e L(1+r)” )
k*=CF &—— ($/MwhCrea) (4.39)
ST
(1+r)” 1
ST
w=cr ST ($/MW Crea) (4.3)
ST
(1+r)” 4
& 1
5 ¢ ST
a =@yt " (4.3%)
bo n2 ST 4

Equation(4.4) gives the discounted annual generation investment cost. An annual payment is
assumed to be made each year after the investment decision. E{idtipgives he annualized

generation investment cost while Equatférib) gives the annual discount factor needed to ensure

that the cost of the generator is paid off ov
Y s, .=

G_|va:na=_lby_ni %‘kg QP (4.4)

. r(1+r)”

k¢=C® O~ — ($/Year) (4.4a)

(1+r)" 4
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(4.4p)
0 nz GT 4

1 OPERATING CONSTRAINTS
Equationg4.5) to(4.8) enforce the constraints on minimum and maximum gepeara#pacity
and maximum rampingEquations(4.9) and(4.10) specify the amount of reserveat each

generator can provide:

P% =& R, &) (4.9)
S ! (4.6)
Ph ¢ R, & 4.7)
0% - By ¢ (4.8)
pL*rgy op of (4.9)
g ¢ Padx) (4.10)

Equation(4.11) keeps track of the state of charge of each BESS. Equédid23 to (4.14)
enforce their energy and power capacity limits. Equatiéri®) and(4.16) determine the amount

of reserve that each BESS can provide:

SoQ, = So¢,, +ch -di (4.11)
E™ ¢ SoC, ¢AE, (4.12)
chl, ¢ APg (4.13)
dis!, ¢ APg, (4.14)

Oc¢rel, His!, e, AP¢ (4.15)



o (4.16)

Equation(4.17) enforces the power balance at each node:
5 L OMS RR, AwR, M AR M.
ap: Mmoo awR, MR akeM, (4.17)

T s O
= Dgt "taﬂé%/?ht Ghs;lt hgb §

Equation(4.18) limits the wind generation to the available wind power, which is assumed to be
equal to the forecast:
wpl, +wg, =W, (4.18)
Equation(4.19) defineghe 3+5 reserve requirement {83, i.e. it specifies that the total reserve

should be no less than 3% of the forecasted load plus 5% of the forecasted wind power.

| S S S w
argy+ anrg., + del, .03 @, 006 v}, (4.19)
s E wil-=

i=1 s 3 s 1=

Equation(4.20) calculates the line flows using a dc model, while Equat$24) and(4.22)

enforce the constraints on these flows.

fY =B @) ¢) (4.20)
B IEI,t ¢f ) @t (4.21)

9 GENERATION PLANNING MODEL
Equation(4.23 records the year when a generator is installed, which triggers the investment
cost in equatior(4.4). Equationg4.23 and (4.24)enforce a construction delay of two years

between the investment decision and the availability of a new generator.



,\e' 2

z =lal. y*3 (4.23
1
|

Zlyy 2 Z|'y,1 (4-2%
Because all generation investments made over time at a given node are assumed to consist of
the same type of unit, they can be represented by an aggregated generator whose capacity varies

over time. Equation§t.29 to (4.30)describe this aggregated generator:

npg{tzga'j npl,, ©X, (4.295
npl, 2 p O, (4.26a)
np,2pa, (E n¥) M (4.260)
e, ¢ M P, nd, (4.27a)
NP, ¢y @, (4.270)
IRl - Rl ¢ G (4.29
npd,+nrg?, ¢M TONX( (4.2%)
npY,+nrgl, ¢p 2, (1- nXy) M (4.2%)
nrg?, ¢ Dad nxQ M (4.30)
nrgl, ¢ DA®Z. O 1 nAxX)-M (4.3M)

4.4 TESTSYSTEM

Tests were carried out on a modified version of the HEHIS 24bus system. The fullystendata

can be downloaded from [p4r'he wind power profilessed are from Pandzic et al. [7Only the



three wind farms located at bus 20, 21 and 23 of subsystem 1 are selected with initial capacities of
600MW, 300MW and 300MW. Wind generation acotaufor 21.7% of the annual load at year 1.

A line was added between buses 7 and 8 to make the sysiesedure.

Bus 21
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Figure4.2. Test System Topology

Other important parameters include:

1 The capacity of th transmission lines was reduced by 20%



1 The cost of a BESS is assumed to be 500$/kW plus 25%/kWihtsdifetime 10 years.

1 The cost ofa flexible generator is assumed to be 536,000 $/MW itz lifetime60 years.

1 The discount rate is set at 5%.

1 In the base scenario, the wind generation capacity increases linearly each year by 4% of its
initial capacity and the load by 3% of its initial value. By the end of the planning horizon, wind
generation and load reach 196% and 172% of their initial valuegctesyy.

1 The committed units are selectesing the method as Chapter 4 showing in Table 4.2

Table4.2. Unit Categories

Type No Min-Down (hr) Min-Up (hr) Category
1 1519 1 2 Fast
2 1-2,56 1 2 Fast
3 24-29 1 2 Fast
4 34, -8 2 3 Fast
5 9-11 2 4 Slow
6 20-21, 3031 16 24 Slow
7 12-14 3 4 Slow
8 32 5 8 Slow
9 22-23 24 168 Slow

All modeling was done using GAMS 23.7. The computations were carried out using the MILP
solver of CPLEX 12.®n a computer cluster with x nodes consisting of-@doaé¢ Intel Xenon 2.55

GHz processors with 32 GB RAM.



4.5 TESTRESULTS ANDANALYSIS

To analyze how the ratio of wind generation capacity to peak load and the correlation between the
wind and load profiles would affect planning decisions, 9 different groups of simulations were
performed. Each simulation assumes that there is only onetyppresentative days for a whole

year. This allows us to explore how these factors affect the planning results and the interaction

between the two types of resources.

1 EFFECT OFWIND LEVEL AND WIND/LOAD CORRELATION
Tables 4.3 and 4.gdhow the amount antiiming of investments in flexible generation and in

storage for 9 combinations of wind penetva and wind/load correlations.

Table4.3. Co-planning of Generation Capacity for 9 Combinations of Wind patietrs and
Wind/load @rrelations

Total Installed Gen Capacity (MW) Investment Start Year

HW AW LW HW AW LW
HC 228 0 836 17 N/A 11
AC 304 988 912 14 11 10
LC 304 1292 1368 14 9 6




Table4.4. Co-planning of Storage for 9 Combinations of Wind Penetrations and Wind/load

Correlations

Total Installed Energy Capacity (MWh) Investment Start Year

HW AW LW HW AW LW
HC 389 20 0 1 23 N/A
AC 170 440 0 1 1 N/A
LC 1611 1031 0 1 1 N/A
Total InstalledPower Capacity (MW) Investment Start Year

HW AW LW HW AW LW
HC 52 8 0 1 23 N/A
AC 21 55 0 1 1 N/A
LC 256 129 0 1 1 N/A

We can draw the following conclusions from these results:
91 Days with lower wind/load correlation (LC) provide more energy arbitrage opportunities for
BESS. In these cases, the wind generation tends to be larger when the load is lighter, a larger

BESS capacity is needed to store wind energy during valley loaddmmidischarge it during



peak load hours.

1 This effect becomes more significant for higher wind penetrations. No BESS investment
happes when the wind/load ratio (LW) is low.

1 When the wind penetration is low, more conventional generation is requiredhesel t
investments occur earlier.

1 For a given wind generation level, if the wind/load correlation is small, less wind power is
available during peak hours and additional flexible generators are needed.

1 The wind/load ratio and the correlation together det@ernow much flexible generation and
storage are needed.

1 A higher wind/load correlation (HC) means that wind power can be used to supply the load
most of the time. However, a different wind/load ratio can lead to completely different
plannirg results. Ashown in Table 4.For a medium wind/load ratio (AC), existing resources
are adequate to serve the load without the need to plan for additional generation. As the
wind/load ratio increases (HW), some additional generation should be planned to dea with t
high hourly wind fluctuation. As wind power generation drops, additional generations are

needed to serve the increasing load.

T INVESTMENT LOCATION DISTRIBUTION

To identify the preferred locations for investments in storage and flexible generatimnses|
in the system are divided into three categories depending on whether they are near a load center,
along the transmission corridor, or nearwthed generation. Tables 4.5.6 and 4.5how how tle

capacities shown in Tables 4.3 and dd geograplally distributed.



Table4.5. Total Generation Capacity (MW) with the ®anning Model

HW AW LW

HC 152 0 836
Load

AC 304 836 912
Center

LC 304 912 1368

HC 76 0 0
Corridor AC 0 152 0

LC 0 380 0

HC 0 0 0
Wind

AC 0 0 0
Center

LC 0 0 0




Table4.6. Total BESS Energy Capacity (MWh) in Rlanning Model

HW AW LW

HC 167 14 0
Load

AC 144 0 0
Center

LC 755 590 0

HC 46 0 0
Corridor AC 0 0 0

LC 479 0 0

HC 176 6 0
Wind

AC 26 440 0
Center

LC 377 442 0




Table4.7. Total BESS Power Capacity at Eachclation (MW)

HW AW LW

HC 21 5 0
Load

AC 18 0 0
Center

LC 122 74 0

HC 9 0 0
Corridor AC 0 0 0

LC 81 0 0

HC 22 3 0
Wind

AC 3 55 0
Center

LC 53 55 0

Several locational patterns are apparent from these results:
1 The majority of investments in flexible generation occur near the load centers and some along
transmission corridors.
1 Since wind farms are often located far from load centers, more transmission capacity is

required when more wind power is used inglistem. Because of limitations on the available



transmission capacity, load centers tend to be a better choice for investments in flexible
generation. This is particularly true under the HC and LW scenarios.

1 Investments in storage capacity tend to takeeplaear wind centers and near load centers.
Unlike generators that can only produce power, the ability of a BESS to charge as well as
discharge gives it more flexibility. The coordinated operation of BESS pairs located near
sources and sinks of energy desaadditional transmission capacity which is particularly
useful during HW days. Some BESS investments happen along the transmission corridor under
the LC scenario because a BESS is able to reshape the wind power output, and hence relieve

the congestionmthe transmission corridor.

1 COMPETITION AND COMPLEMENTARITY

Flexible generation and storage provide different types of flexibility to a power system. While
both are able to respond to changes in the output of renewable generation, their contributions to
the system are determined not only by the amount of wind generation capacity but also by its
production profile. For the LWHC case, investments gnergy storagsystemsare not needed
because the net load is smooth enough that additional flexibiligtisequired. For the HWAC
case, wind power might use most of the transmission capacity, leaving little room for power from
flexible generators. The energy and ramping capacity that flexible generators could provide would
indeed be limited by the transmims capacity of the system.

Because of their respective advantages and limitations, in some cases these two types of
resources compete, while in others they are complememtrie 4.8hows how much generation
capacity should be built and the year wiliteshould start being built assuming imvestments in

storage. Table 4.8hows how these decisions change when generation andesareplanned



together. Table 4.18ummarizes the location of these investments.

Table4.8. Generation Only Planning

Total Installed Gen. Capac{tyW) Investment Start Year

HW AW LW HW AW LW
HC 304 0 836 15 N/A 11
AC 304 988 912 13 11 10
LC 228 1216 1368 14 8 6

Table4.9. Differences between Gplanning and Generation Only Planning

Total Installed Gen. Capac{tyW) Investment Start Year

HW AW LW HW AW LW
HC -76 0 0 2 0 0
AC 0 0 0 1 0 0
LC 76 76 0 0 1 0




Table4.10. Total Installed Capacity (MW) with &erationrOnly Planning

HW AW LW

HC 304 0 836
Load

AC 228 684 912
Center

LC 228 532 1368

HC 0 0 0
Corridor AC 76 304 0

LC 0 532 0

HC 0 0 0
Wind

AC 0 0 0
Center

LC 0 152 0

Competition In general, investments in flexible generation start earlier when there is no energy
storage. In a HAHC system, the transmission network is highly stressed and constrains the
response of both storage and flexible generators. Competition happens baev@enresources
under this scenario, especially near the load centepl&@ming results in less flexible generation

investment under these scenarios.



ComplementarityCo-planning increases the amount of flexible generation capacity compared
with generabn-only planning. Investments in flexible generation are indeed highly dependent on
the availability of transmission. The virtual transmission capacity created by storage provides more
opportunities for flexible generators, especially in the4®/and AW-LC scenarios when large

investments are made in storage.

T SIMULATIONS WITH MULTIPLE REPRESENTATIVEDAYS
The planning results discussed so far are based on a single type of representative day. In practice,
a year consists of a combination of all 9 types of representative days, although one or two types
might represent a majority. To explore how different corations of representative days might
affect the results, two additional tests with 9 types of representative days were carried out.
1 TESTZ1: In this test, the HW.C day represents 55% of the days in a year, and the other 8
types account for about 5.6% bktdays each.
1 TEST2: In this test, the AWAC day represents 55% of the days in the year, and the other
8 types account for about 5.6% of the days each.
Figures 4.3 and 4.4 show how the total available BESS power and energy capacity evolves over
the years with each representative day separately as well as the TEST1 and TEST2 combinations.
Compared with the results from the nine simulations with a siggéerepresentative day: (1) the
results from TEST1 are closest to the results from-H¥\single representative day simulation;
(2) the results from TEST2 are closest to the results fromL&Asingle representative day
simulation. Similar conclusions can lbeawn from Table 4.11, which shows the generation
investments.

The following conclusion can be made looking at similarity of the results of TEST1 th EIW



single representativeay simulationand TEST2 to AWAC single representative day simulation
We can get a good enough near optimal planning results by looking only at the majority days or
by reducing the types of minority days. This could be really practical when tigderm

planning for large system which has a higher requirement on computigaesnd time.
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Figure4.3. Total Available BESS Power Capacity over time
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Figure4.4. Total Available BESS Energy Capacity over time

Table4.11. Generation Investment in TEST1 and TEST2

Total Generation Capac{iyiw) Investment Start Year

TEST1 TEST2 TEST1 TEST2
Load Center 304 532 15 15
Corridor 76 76 17 18
Wind Center 76 0 20 N/A

4.6 CONCLUSIONS

In this chapter, weroposed a stochastic muftiage method for eplanning flexible generation

and BESS. Compared with the state of art, the proposed method uses more detailed and more



accurate models over a longer planning horizon. In particular, ititatkesccount the degradation,
limited lifetime of BESS and the delay in generation installation. It also considers the reserve
constraints and optimizes both the location and capacity of BESS and generators. A detailed
analysis highlights the combined efte of different wind generation levels and wind/load ratio on

the capacity, initiation year, preferred location of BESS and flexible generation investments.

Chapter5SSTOCHASTI C EBRBERGASYI ANARY SERVI C
COOPTI MI ZATI ONSSNI TH BE

5.1 INTRODUCTION

Energy stoagecanbe usedn different pars of the electric grido hedge the risk of renewable
generation volatilityto provide baseload arbitrag& increag transmission utilizatiortp enhane
distributionsystemstability, to improwve electric power serviceuglity andfor other purposes

As Figure 51 shows, egulation service which requires continuous and rapid control,
commands the highest price comgato the price forenergy and other types of reserve. As shown
below, the price of regulation cdre up to ten timedarger than the pricef spinning reserve,
especially at times when the load is low, the online capacity is limited and most of the generators

are running at their minimum.



Figure5.1.Cal i f orni ads daweervegpecedfar R0OO2A. [§P9anc i |

Based uportheseprices, the faster response services are more attractive for st@aiferies
can indeed react very fast to rapid changewiimd generation to support frequency ukgion.

Such actions reduce tmeed forsynchronous generators to provide inertia and primary reserv
Storage thus reducsegstem power imbalansand reduce the overall operation cost.

The use of energy storage for combined applications has beersdidtiyysa number of authors.
References[110] 119] f ocus on applications of energy
or benefits. Shi et al. [1]1(ropose a joint optimization method foommercial battery storage
users to reduce their electticbill by allowing the BESS to participate in both the energy and
primary frequency regulation markeBattery storage degradation, customer load and regulation
signals uncertainties are taken into considerationigntiodel. Xi et al. [11] use a stohastic
dynamic programming model to optimize the application of a distributed energy storage (PHEV)
in different applications to achieve the maximum gain per unit of cap&imgng and Powell

[112] propose to coptimize the applications of BESS fenergy arbitrage and frequency
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