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Mitigating the effects of anthropogenic climate change is a pressing global concern which will

require steep cuts in emissions of greenhouse gases, including from power systems. In line with

over a century of research into environmental economics, private industry has little incentive

to provide enough emissions reductions unless induced to do so by effective public policy.

There has been considerable research into energy and environmental economic policies, as

well as into the technical potential for power systems to be planned and operated for lower

carbon emissions, but so far the literature lacks an intersection of these two areas. This

dissertation is intended to fill that gap, by presenting detailed technical models of power

systems embedded within policy design problems for lowering carbon emissions. Four policy

design models are proposed in detail:

i) Electrification of transportation will likely lead to large increases in at-home vehicle

charging, which can stress residential distributions systems that were not planned for this

level of peak evening demand. The deployment of home energy management systems will

tend to shift loads towards traditional off-peak hours, but may end up creating new local

peaks. How can distribution system operators manage the transition of their customers to

more electrified transportation and price-responsive load scheduling?

ii) Power systems present one of the most practical opportunities for quick emissions

reductions, as fuel-switching on the back-end can significantly reduce emissions with no



change in the quality or quantity of power delivered to consumers. However, many power

systems are operated at minimum fuel cost and allow carbon dioxide to be emitted for free,

or have a price on emissions that is ineffective in driving deep decarbonization. How can we

design a carbon tax rate that achieves a given emissions reduction target at minimum cost

increase?

iii) Much of the world’s primary energy consumption is ultimately induced by the con-

sumption of secondary energy consumption within buildings. If we are designing campus-scale

infrastructure from scratch, which energy conversion and storage equipment should we install

if we have a target for induced emissions? If we only have control of equipment choices via

building codes, what are the relative efficiencies of these less direct policy measures?

iv) Grid-scale energy storage is often touted as the answer to the problem of intermittent

renewable generation. However, if installed in current power systems and operated without

regard for marginal emissions rates, it is likely to increase carbon emissions. If we mandate an

‘emissions neutrality constraint’–the impact of storage operation on power systems cannot

be to increase emissions–how does this change power system emissions, operating costs, and

investment in grid-scale energy storage?

The use of these policy design approaches in broader-scale decarbonization models is

discussed, and several more projects in the same vein are proposed for future work.
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Chapter 1

INTRODUCTION

If it is economically advantageous to a nation to keep up forests, on account of

their beneficial effects in moderating and equalizing rainfall, the advantage is one

which private enterprise has no tendency to provide; since no one could appropriate

and sell improvements in climate.

– Henry Sidgwick, The Principles of Political Economy, 1887

1.1 Motivation

Worldwide, approximately 25% of greenhouse gas (GHG) emissions responsible for anthro-

pogenic climate change are produced by electricity generation [1]. Limiting global average

temperature rises to 2◦C is widely assumed to avoid the worst effects of climate change, al-

though there is a growing consensus that even a rise of 1.5◦C would have significant negative

effects [2]. However, the most recent pledges for the Paris Climate Accords are projected to

result in end-of-century warming of 2.7-3.0◦C, as shown in Figure 1.1 [3]. Worse still, the

currently enacted policies are projected to result in end-of-century warming of 3.1-3.5◦C.

In order to stay below either the 1.5◦C or 2◦C limit, large sustained reductions in GHG

emissions are needed, and power systems will need to contribute to this effort.

This is a problem unprecedented in human history. Similar problems of global scope have

been encountered before, notably the exhaustion of certain natural resources, and innovative

solutions have always been found. However, this is a problem not of resource exhaustion, but

of pollution. In a resource exhaustion problem, the scarcity of supply drives market prices for
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Figure 1.1: GHG emissions trajectories and estimated temperature rises. Source: Climate
Action Tracker [3]

the resource upward, creating a strong incentive to reduce consumption and to develop and

deploy alternative products. In a pollution problem, there is no such feedback loop, since

the costs of pollution are borne by society as a whole, not by producers or consumers of

pollution-causing goods and services.

Only by unprecedented levels of international cooperation has a similar global atmo-

spheric pollution problem been solved in the past: the banning of clorofluorocarbons (CFCs)

with the Montreal Protocol on Substances that Deplete the Ozone Layer. This agreement

was not without its detractors however, as CFC manufacturers downplayed the dangers of

their products. The global market for CFCs was approximately $2 billion in 1974 when their

ozone depleting effects were first discovered [4]; adjusting for inflation this is still less than

1% of the global market in coal, oil, and natural gas today. Innovation has a role to play

in solving anthropogenic climate change, but will not be effective alone without broad co-

ordinating policies to mandate emissions reductions and direct innovation, investment, and



3

operations towards a more sustainable direction.

1.2 The Economic Principle of Externalities

Since the 18th century, the idea of an invisible hand has been a mainstay of economic theory.

This concept, introduced by Adam Smith in The Theory of Moral Sentiments and The Wealth

of Nations, holds that a collection of individuals each acting in their own self-interest will

converge upon a utilization of labor, capital, and natural resources which yield production

quantities and prices that maximize overall social welfare. Social welfare refers to the overall

value that society has gained from the economic exchange: how much all consumers value

their consumption, minus the cost born by all producers. The concept of social welfare also

extends beyond the instantaneous economic exchange to consider value that will be reaped

by future generations, as a result of decisions which are made at present day.

However, self-interested economic behavior when using exhaustible common-pool re-

sources is different than when using private resources. One of the first documentations of

this effect was by William Forster Lloyd in 1833, discussing the use of pasture to raise cattle

[5]. Beyond a saturation point of a private pasture, a farmer will add no more cattle, since

the grass eaten by an additional cow is subtracted from the grass that the rest of their cows

can eat. However, in a ‘common’ (a shared field), a farmer still has an incentive to add more

cows to the field, since the grass eaten by each new cow is subtracted partially from that of

the farmer’s existing cows but mostly from the grass which would be eaten by other farmers’

cows. Without proper management of the common, more work will be done raising more

cows, though no more beef will be harvested.

The overuse of natural resources, due to marginal private benefit despite greater marginal

damage to society, was further described by utilitarian philospher Henry Sidgwick in the late

1800s [6]. Interestingly, one of Sidgwick’s examples was of the quality of the climate, the

most common good of all (see the note at the start of this chapter). This marginal damage

to society is today referred to as a negative externality–contrasted with a positive externality

(e.g. improvements in local climate from planting trees).
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Take, for instance, the case of certain fisheries, where it is clearly for the general
interest that the fish should not be caught at certain times, or in certain places, or
with certain instruments; because the increase of actual supply obtained by such
captures is much overbalanced by the detriment it causes to prospective supply.
Here,–however clear the common interest might be–it would be palpably rash to
trust voluntary association for the observance of the required rules of abstinence;
since the larger the number that thus voluntarily abstain, the stronger becomes
the inducement offered to those who remain outside the association to pursue
their fishing in the objectionable times, places, and ways, so long as they are not
prevented by legal coercion. (Sidgwick 1887, Page 410)

This idea is reinforced by Alfred Marshall in 1890 in his influential Principles of Eco-

nomics [7], and further developed in 1920 by Arthur Cecil Pigou [8], who proposes taxes

by the State to correct for these misaligned incentives. Pigovian theory says that after the

application of appropriate tax rates, the market will converge to the optimal prices and

production quantities for maximum social welfare (absent other market failures). Even the

conservative economist Milton Friedman, who argued for less governmental intervention in

markets, endorsed taxation as a means of controlling pollution and mitigating its deleterious

effects [9].

Much remains to be done, by a careful collection of the statistics of demand and
supply, and a scientific interpretation of their results, in order to discover what
are the limits of the work that society can with advantage do towards turning
the economic actions of individuals into those channels in which they will add
the most to the sum total of happiness. (Marshall 1890, Pages 454-455)

It is plain that divergences between trade and social net product of the kinds
we have so far been considering cannot ... be mitigated by a modification of the
contractual relation between any two contracting parties, because the divergence
arises out of a service or disservice rendered to persons other than the contracting
parties. It is, however, possible for the State, if it so chooses, to remove the
divergence in any field by “extraordinary encouragements” or “extraordinary
restraints” upon investments in that field. The most obvious forms, which these
encouragements and restraints may assume, are, of course, those of bounties and
taxes. (Pigou 1920, Page 168)

Most economists agree that a far better way to control pollution than the present
method of specific regulation and supervision is to introduce market discipline
by imposing effluent charges. (Friedman 1980, Page 217)
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Pigovian approaches to negative externalities are not without their criticisms, however.

One of the most well-known is that of Coase [10], which argues that if transaction costs

are low enough (via effective judicial enforcement of property rights and a small number of

involved parties), then the problem of externalities is better handled by private bargaining

between the affected parties than by governmental intervention. However, this approach is

not applicable to the problem of global climate, since the number of affected parties is in

the billions–to say nothing of the number of polluters–so transaction costs are prohibitively

high. The Paris Climate Accords can be seen as an example of successful bargaining at the

international level, showing that cooperation to reduce GHG emissions is possible; however,

neither the pledges made nor the policies currently enacted and scheduled are strong enough

to avoid temperature rises which may destabilize the climate.

Other market failures besides externalities include market power [7], macroeconomic ef-

fects [11], bounded rationality [12], imperfect information [13, 14, 15], and non-convexities

[16]. Therefore it is reasonable to conclude that ‘the invisible hand’ does not always provide

for maximum social welfare. Although governmental intervention does not always lead to

maximum social welfare (see: public choice theory), any unintended consequences can be

weighed against demonstrated benefits in order to assess whether the intervention is a net

positive.

1.3 Emissions Pricing Strategies

With a nod to Pigou, the levying of a tax on producers of a given pollution, to internalize the

negative marginal social cost of the externality, is often known as a Pigovian tax. However, the

true value of the marginal social cost of a ton of CO2 (the social cost of carbon) may be hard

to determine, especially in the case where many people are impacted both geographically

and temporally. Additionally, the marginal social cost of a given pollutant may change with

respect to the quantity emitted. In this case, knowing the marginal social cost of a pollutant

is not sufficient to set the tax rate resulting in a socially-optimal quantity of emissions.

Instead, the supply and demand curves for the particular good(s) being produced (which have
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pollution as a side effect) must be known, and the curve of marginal social cost of emissions

(as a function of pollution quantity) must be considered alongside with the supply and

demand curves for each good in order to determine the socially-optimal emissions quantity,

and therefore the tax rate which should be applied such that emissions are not expected to

exceed this quantity. If precise data on these curves cannot be obtained, another approach

is to periodically update the tax rate based on updated estimates of of marginal cost as the

quantity of emissions changes [17].

As an alternative to setting a price on emissions, a government may set a jurisdiction-

wide emissions limit, and mandate that all polluters must obtain emissions allowances (of

which the government creates a set quantity), proportional to their pollution. These emissions

allowances can be traded, therefore allowing the market to determine their socially optimal

allocation. This approach is often known as cap-and-trade or an emissions trading scheme,

and has its origins in the late 1960s with computer simulations showing that such an approach

provides more cost-effective outcomes than traditional command-and-control regulation [18].

The emissions trading approach was first put into policy in the Clean Air Act of 1977,

drawing on trading practices applied to the Los Angeles basin in 1974 as a result of the

Clean Air Act of 1970; the first nationwide cap-and-trade program was introduced in the

Clean Air Act of 1990 in order to mitigate the incidence of acid rain caused by emissions of

sulfur dioxide.

Both a carbon tax and a cap-and-trade system create a price for carbon emissions, which

will reverberate through the economy so that GHG emissions are a component of the prices

of goods and services proportional to their carbon footprint. A carbon tax creates an explicit

price with the reaction of the broader market (e.g. producers, consumers, investors, tech-

nology development) determining ultimate emissions, while a cap-and-trade system sets an

explicit emissions reduction and the broader market determines a price. Worldwide, there are

57 emissions pricing programs either implemented or scheduled for implementation, which

today cover approximately 15% of global emissions. This will rise to approximately 20% once

the China national emissions trading program is implemented in 2020 [19]. However, the vast
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majority of these prices are well below current estimates of the social cost of carbon (dis-

cussed further in 1.5), so marginal emissions for which the social cost outweighs the private

gain are still likely.

Pricing of carbon in either approach can lead to carbon ‘leakage’, i.e. the increased cost of

producing goods in a jurisdiction with a carbon tax can lead to a shift in production toward

jurisdictions with lower rates, or no tax at all [20]. One approach to avoiding this leakage is

a tariff on the embedded carbon in imported goods; however, this approach is only feasible

for jurisdictions with the ability to set their own tariffs, precluding use by e.g. sub-national

entities or national entities bound by trade agreements.

Electricity generation represents approximately one quarter of worldwide GHG emis-

sions [1], and that share is expected to grow in the future as energy used for heating and

transportation are transitioned from fossil fuels towards electricity, a process known as elec-

trification. On a life-cycle basis, transitioning this energy consumption from fossil fuels to

electricity is expected to lower overall GHG emissions, due to efficiencies of scale in large

modern power plants and the introduction of larger shares of carbon-free energy in power

systems. Electricity also has the benefit of relatively efficient, near-instantaneous transporta-

tion, and in a standardized form independent of primary energy sources. In more-developed

countries where electricity access is ubiquitous (i.e. where the majority of GHG emissions

originate), a single conversion on the consumption side from fossil fuels to electricity allows

the energy network to gradually decarbonize through multiple phases of fuel-switching on a

smaller number of generation-side assets.

1.4 Emissions Policy Design as Game Theory

Game theory is the study of building mathematical models which represent the actions

of a collection of rational actors. The application to economics is immediately apparent.

Although the roots of game theory can be traced back to the early 19th century work of

Antoine Augustin Cournot [21], it blossomed as a field in the early-mid 20th century with

the work of John von Neumann [22] and John Nash [23].
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In market economies, the ultimate provisioning of goods and services is determined by

very large quantities of people making an even larger quantity of decisions, which are typi-

cally modeled as rational (based on the information available to each actor, which may be

incomplete). Since these actions can result in sub-optimal social welfare in the case of exter-

nalities, there is a rationale for a socially-minded entity (e.g. a government) to intervene in

the marketplace in order to guide the collection of decisions to a solution with greater social

welfare (see Section 1.2).

The form of this intervention and the market response to this intervention can be thought

of as a game theory problem, a leader-follower problem. These sorts of problems were first

described by Heinrich Freiherr von Stackelberg [24]. Similar game theory problems within

power systems have been explored in the past in non-emissions contexts [25].

In the context of climate policy, the government (or an alternative socially-minded or-

ganization) acts as the leader, who must decide their action first, knowing that the market

participants (followers) will decide their actions with respect to their own objectives and with

full knowledge of the leader’s action. The question therefore becomes: what is the best policy

to pursue, such that emissions targets are likely to be met with a given level of certainty?

1.5 Literature Review: Balancing Power System Emissions and Costs

Research to include emissions into generator dispatch began in the early 1970s with the

concepts of minimum emissions dispatch [26], pricing of emissions to include their impact in

economic dispatch [27], and varying emissions prices to investigate the tradeoffs between fuel

costs and emissions [28]. These studies focused on local effects of NOx and SOx, the most

recognized pollutants from power system operations in the 1970s. A survey of developments

in environmental/economic dispatch over the following two decades is given in [29].

Coordination of power system operations based on fuel quantity constraints was explored

in the 1990s by Fred N. Lee and others via the use of ‘pseudo fuel prices’ [30], adaptation of

these prices for longer-term fuel consumption constraints (e.g. based on annual fuel purchase

contracts) as realizations of uncertain variables differ from projections [31], and a survey
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of similar long-term resource allocation methods [32]. These longer-term approaches are

more suitable for GHG emissions, since their impact is neither local nor short-lived. This is

highlighted in a review of resource planning models by Benjamin Hobbs in 1995 [33], which

featured a tradeoff curve between annual costs and annual CO2 emissions.

The trend towards deregulation of electricity in the 1990s (e.g. the Energy Policy Act of

1992, FERC Orders 888, 889, & 2000) changed the model for power systems planning; com-

mitment and dispatch became more the domain of independent system operators (ISOs) or

regional transmission organizations (RTOs), while investment in new generation capacity be-

came more the domain of independent power producers. This arrangement is more amenable

to market-based solutions to emissions problems (i.e. a carbon tax or cap-and-trade) rather

than command-and-control regulation. Although market signals cannot incentivize all cost-

effective changes, they are nevertheless powerful tools to effect change in a market environ-

ment (see [34] for examples of market barriers from the energy efficiency context).

Pricing of CO2 emissions began with a few European countries in the 1990s, but a signifi-

cant amount of emissions were covered for the first time with the enactment of the European

Union’s emissions trading scheme in 2005. This has led to a greater focus on emissions

within power systems literature regarding policies and planning. For example: considering

CO2 emissions in generation expansion planning models [35], comparing changes in wind ca-

pacity, load reductions, and dispatch rules on system emissions [36], and considering variable

carbon prices in transmission expansion planning [37]. Still, of the literature which presents

itself as about decarbonization of power systems, the largest share focuses on particular mate-

rials and technologies, rather than on the dynamics of power systems operation, investment,

or policy [38].

In the United States, direct control or pricing of power systems carbon emissions has been

the exception, rather than the rule. A far more popular policy approach has been Renewable

Portfolio Standards (RPSs), in which states mandate that utility companies source some

percentage of their delivered energy from renewable generation (or in some cases, a certain

absolute quantity). Though the first RPS was enacted in Iowa in 1983, the bulk of state RPS
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implementation happened in two waves: one in the late 1990s and one in the mid 2000s. Many

states have subsequently increased their RPS targets, some several times [39]. By mandating

the purchase of energy from renewable sources, RPSs increase the demand for renewable

energy and therefore incentivize construction of new renewable generation. This is effectively

an indirect subsidy for renewable generation, in recognition of the fact that there are un-

priced negative externalities associated with fossil fuel generation. Direct federal subsidies

of renewable electricity production were enacted as part of the Energy Policy Act of 1992,

with several expansions and extensions since then.

Although federal subsidies and RPSs have been instrumental in the rollout of significant

penetration of renewable capacity, they are a less economically efficient decarbonization

policy than one that targets GHG emissions directly (at least in the short term). For example,

the installation of an additional MWh of wind or solar generation count equally towards a

renewable portfolio standard, irrespective of which fossil fuel generation sources they displace.

However, depending on the domain and the emissions target, this efficiency gap may be small

(as in [40]).

Renewable generation and fossil fuel generation are both effectively subsidized (renew-

ables subsidized by ratepayers in RPS jurisdictions and by taxpayers for federal subsidies,

fossil fuel by being allowed to pollute the atmosphere for free), while nuclear and hydroelectric

power often do not count towards renewable goals, despite emitting no GHGs. Accounting

requirements for RPSs typically involve renewable energy credits (RECs)–potentially several

types, as some RPSs have carve-outs and/or multipliers for certain types of energy and/or for

distributed generation–which require rule-setting and compliance monitoring for the trad-

ing, banking, and retirement of allowances. Finally, the negative price bidding by renewable

sources (since with RECs and tax credits the effective marginal cost of generation can be

negative) can in some circumstances increase power system emissions [41].

On the other hand, the technological progress in producing renewable generation technolo-

gies (e.g. developments in cost, efficiency, and durability) as a side effect to RPS mandates

of scale can be viewed as a positive externality; the benefits of this knowledge flow to all pro-
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ducers, not just the individual firm which originally produced a technological breakthrough.

Therefore, an argument can be made that the effective subsidization of renewable generation

installation can be warranted. Case studies on the emissions effects of various RPS targets

have estimated that the cost per ton of carbon reduced can still be well below estimates of

the social cost of carbon [42]. There is a growing trend towards transitioning from Renewable

Portfolio Standards to Clean Electricity Standards (CESs), which include contributions from

nuclear and hydro generation. When factoring in co-benefits such as reductions in NOx and

SOx emissions, RPS/CES policies can be clearly beneficial to social welfare, even if they are

not as efficient as policies explicitly based on GHG reductions.

At a whole-economy scale, integrated assessment models (IAMs) estimate the interactions

between between the climate and the economy in order to derive estimates for the social cost

of carbon, and can be used to model the relative costs of various GHG mitigation strategies.

Well-developed IAMs include Hope’s PAGE [43, 44, 45], FUND by Anthoff and Tol [46],

and Nordhaus’s DICE/RICE [47]. However, these models have their limitations when it

comes to decision-making for low-carbon power systems. The modeling of energy networks

is necessarily very high-level, and therefore is unable to compare the impact of policy and

planning decisions for power systems specifically. Additionally, the estimates for the social

cost of carbon have a considerable degree of uncertainty, due to uncertainty in projections of

economic parameters and climate impacts, and use of a social cost of carbon alone to price

carbon emissions ignores the differences between countries in their historical contributions

to climate change and their present capacity to invest in lower-carbon energy systems.

A similar modeling effort is the Energy Policy Simulator developed by Energy Innovation

[48]. The simulator is an interface for estimating how given policy instruments affect the

trajectory of overall US GHG emissions. Many policy options specific to the electricity sector

are available, although spatial and temporal constraints of power systems are not modeled in

detail. Accompanying policy design considerations are given in a book by the same authors

[49].

Further academic work on energy policy is also conducted at the following institutions:
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• The Center on Global Energy Policy, Columbia University

• The Energy Policy Institute, University of Chicago

• The Kleinmann Center for Energy Policy, University of Pennsylvania

1.6 Contributions

How should we plan and operate power systems, when the true social cost of carbon emissions

from fossil fuels is unknown? One approach is to look at what policies can be implemented

in order to reach a given emissions goal, where this goal is determined via cooperation from

climate scientists (how much carbon can be emitted worldwide? ), international representatives

(how much of that carbon should each country be allowed to emit? ), and social planners (how

much of each country’s emissions budget should be devoted to power systems? ). In the context

of this dissertation, ‘policy’ is a broad umbrella for any planning decisions or operational rules

which relate to power systems and decarbonization.

These policies can be mandates of emissions limits in operational and planning decisions,

or policies of setting a price to induce economic actors to reduce their induced emissions.

Alternatively, power systems can be planned and operated in adaptation to changing us-

age of the power system, due to decarbonization efforts outside the electricity sector. For

example, electrification of transportation increases energy consumption from power systems

while reducing overall GHG emissions; planning for this new electricity demand involves

decarbonization policy that includes power systems, even though power system carbon emis-

sions are not directly targeted. For the purpose of categorization, these three policy options

are referred to as carbon constraints, carbon pricing, and adaptation to external changes,

respectively.

Another categorization of policies and plans for low-carbon power systems is the domain

over which they operate: do we need to model the policy impacts on the wholesale generation

and transmission of electricity, the flow of electricity through the distribution grid, the use

of electricity by consumers, or a combination of these domains?
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For any combination of policy option and domain, there is a commonality, which is the

theme of this dissertation. In market environments, detailed models anticipating the

economic reactions of independent stakeholders to a given emissions policy are

necessary in order to reach emissions targets at lowest overall social cost. This

dissertation describes in detail several policy and planning approaches for power systems

decarbonization. Each approach is mapped onto the two aforementioned categories in Figure

1.2. In addition, there are several proposed approaches worthy of future study, which are

briefly described in Chapter 6.

Carbon 
Constraint

Carbon 
Pricing

Behind-the-meterDistribution system
Generation/ 
Transmission

“Optimal Carbon Taxes 
for Emissions Targets in 
the Electricity Sector”
IEEE Trans. Power Sys. 

(2018)

“Optimal Penetration of Home Energy Management 
Systems in Distribution Networks Considering 

Transformer Aging”
IEEE Trans. Smart Grid (2018)

“Planning Low-Carbon 
Campus Energy Hubs”
IEEE Trans. Power Sys.

(2019)

“Profitable Emissions-
Reducing Energy 

Storage”
(in review, IEEE Trans. 

Power Sys.)

Adaptation 
to External 
Carbon 
Adaptation

Figure 1.2: Low-carbon power system design models, organized by method and point(s) of
application

There are several important aspects of power systems decarbonization policy that are

outside the scope of this work:

• What to do with revenue collected from carbon pricing? Adding a price on
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carbon makes electricity generated from lower-carbon sources more competitive with

electricity generated from carbon-intensive sources. However, increasing taxation is po-

litically sensitive and must often be offset with investment in public goods or reduction

of taxes in other sectors in order to be politically palatable. Where to spend collected

revenue is a distinct policy question which can be decided separately from what the

price should be.

• What technology developments would change carbon emissions trajectories?

Energy is an integral part of the world economy, and research and development in new

technologies is a rich field. Although there will undoubtedly be new energy technologies

which emerge in the future, there are a multitude of potential technologies and extreme

uncertainty about whether any particularly technology will reach commercialization.

The techniques presented in this dissertation can be applied to an arbitrary set of

potential futures with different sets of commercial technologies, given estimations of

their relative likelihood.

• What spillovers effects will these policies have outside of power systems?

Any significant energy policy will have secondary effects on other sectors, both pos-

itive (e.g. increased employment in new lower-carbon energy industries, co-benefits

from improved local air quality) and negative (e.g. decreased employment in carbon-

intensive industries, utility ratepayer responsibility for prematurely-closed energy in-

frastructure). Inclusion of these factors would render detailed optimization of power

systems policy intractable; integrated assessment models are better tools for these sorts

of economy-wide analyses, where sector-specific details must necessarily be reduced in

order to produce results in a reasonable amount of time.

• What technical changes are needed for 100% carbon-free power systems?.

The technical considerations for transitioning power systems from business-as-usual

to low-carbon systems are very different than those from transitioning a low-carbon
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system to a carbon-free system. Transitioning to a carbon-free system will likely require

sweeping changes in both grid control strategies and power markets, and will depend

on the particular trajectory towards a lower-carbon system [50, 51].

• How can political will be built for the policies needed for significant carbon

reductions? Economists have consistently agreed that pricing of externalities priori-

tizes the most-cost effective emissions reductions (in the general case); however, carbon

pricing is one of the least popular policies in many jurisdictions, and public preference

leans toward alternate policies such as Renewable Portfolio Standards or Clean Energy

Standards which are more expensive per ton of CO2 reduced. Political viability of more

efficient policies will be dependent on messaging strategies and outreach to the general

public.

• How can the global transition to low-carbon power systems be conducted

equitably? Policies to achieve low-carbon power systems will have wide-ranging effects

on the cost and availability of energy, which has distributional effects both within

countries and internationally. Determining which complementary policies to implement

to ensure that this transition is conducted ‘fairly’ will be a significant endeavor.

1.7 Organization

The following four chapters detail four models for planning various aspects of low-carbon

power systems, either published or in review:

• Chapter 2: Optimal Penetration of Home Energy Management Systems in

Distribution Networks Considering Transformer Aging [52] answers the ques-

tion How should we plan for increased penetration of electric vehicles and home energy

management systems and their impacts on the distribution system?

• Chapter 3: Optimal Carbon Taxes for Emissions Targets in the Electricity
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Sector [53] answers the question How can we determine what tax rate to apply to

power systems emissions such that emissions are reduced below a given target?

• Chapter 4: Planning Low-Carbon Campus Energy Hubs [54] answers the ques-

tion What is the relative efficiency of infrastructure design policies aimed at reducing

induced emissions from large-scale greenfield developments?

• Chapter 5: Profitable Emissions-Reducing Energy Storage, currently under revi-

sion for resubmission to IEEE Transactions on Power Systems [55], answers the ques-

tion How does an emissions-neutrality constraint applied to energy storage operation

impact the quantity of storage economically installed and the resulting power system

emissions?

Chapter 6 details four additional models for planning low-carbon power systems, in pre-

liminary stages of development but intended to round out the preceding publications:

• Emissions-Aware Tariff Design

• Operation of a Closed-Loop Carbon Cycle Power System

• Planning Low-Carbon District Energy Systems

• Comparing a Carbon Tax with Emissions Trading in Power Systems Operation

Finally, Chapter 7 concludes.

1.8 Optimization Notation

Optimization for power systems often takes the form of a series of equations similar to (1.1)-

(1.3).
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min
x,y

f(x,y) (1.1)

subject to:

gi(x,y) ≤ 0 ∀i ∈ I (1.2)

hj(x,y) = 0 ∀j ∈ J (1.3)

x ∈ R, y ∈ I

Traditionally, power system operators have a mandate to serve all connected load at

minimum cost, subject to technical constraints and reliability requirements. In this paradigm,

minimization of system cost f(x,y) is equivalent maximization of overall social welfare. In

some formulations, there is the ability to not serve a segment of the load demand, but only

at extremely high cost (this is equivalent to a cap on the maximum price at which electricity

can be sold). This penalty is known as the value of lost load. At a very high value of lost

load, the solution maximizing social welfare approaches the solution found by minimizing

the cost of satisfying all load.

Often, a subset of the decision variables are constrained to take only discrete values,

represented by y in the formulation above (this is often referred to as integer programming).

The constraints on the decision variables, gi(x,y) and hj(x,y), are typically technical con-

straints, but may also be constraints related to mathematical transformations to improve

tractability or to represent the actions of followers in multi-level models (see Section 1.4).

When optimization problems with integer variables are solved, they are often not solved

to the absolute best solution due to the computational effort required. Candidate solutions

are typically evaluated until the solver can guarantee that the best solution can be no more

than a given percentage better than the current best candidate (this percentage is known

as the optimality gap, at which time the candidate solution is returned as ‘the solution’).

Although there may not be a large difference between the returned solution and the true

optimum, there may be significant differences in terms of the decision variables, and therefore



18

important results such as prices and participant revenue [56]. Therefore, sensitivity analyses

and/or Monte Carlo simulations are important, in order to be able to filter general trends

out of a set of results which may have significant noise.
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Chapter 2

OPTIMAL PENETRATION OF HOME ENERGY
MANAGEMENT SYSTEMS IN DISTRIBUTION NETWORKS

CONSIDERING TRANSFORMER AGING

Published as:

Olsen, D. J., Sarker, M. R., & Ortega-Vazquez, M. A. (2018). Optimal penetration of home

energy management systems in distribution networks considering transformer aging. IEEE

Transactions on Smart Grid, 9(4), 3330-3340.

2.1 Introduction

In the smart grid framework, real-time pricing (RTP) schemes have been proposed in order

to better reflect the utilization of the generation and transmission assets at the retail level.

These pricing schemes, together with the rapidly falling cost of communications and controls,

will result in large volumes of customers featuring high degrees of demand flexibility [57].

In this context, customers will strive to minimize their electricity costs by reducing their

consumption during high-price periods (traditionally correlated with peak demand periods),

in favor of greater consumption in lower-price periods. In effect, this should reduce the

traditional demand peaks (which can be in the early morning, the afternoon, or the evening,

depending on the region and the customer mix) and fill in the valleys, while lowering the

overall cost of procuring energy [58].

To take advantage of this pricing scheme, some residential customers are likely to install

home energy management systems (HEMSs) to control their large appliances and electric

vehicles (EVs). These systems can lower overall electricity bills while ensuring that occupants’

needs are met [57, 58, 59, 60, 61, 62]. However, if a high enough percentage of residential
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customers are optimizing their electricity use for the same tariff (e.g., RTP), large demand

spikes may occur in the lowest-priced time periods, whose magnitudes may eclipse those of

the traditional peaks [63].

High demand causes temperatures to rise in the pole-top transformers that these res-

idential customers are connected to, leading to accelerated breakdown of the transformer

insulation [64]. This is known as “accelerated aging”. These new demand peaks can cause

greater aging than the case without HEMS installations. However, a mixture of residences

with and without HEMSs can result in lower overall demand peaks and consequently less

transformer aging. This is the case because the peak consumption of the two groups (i.e.,

with and without HEMSs) is non-coincident.

In a 2006 survey of distribution utility capacity enhancement projects, new transformer

installations represented the largest share of total costs [65]. Clearly, the maintenance of these

sunk cost assets should be a priority, in order to avoid the cost of premature replacement.

In this case, distribution system operators (DSOs) would like to be able to influence the

rollout of HEMSs in their networks, in order to manage the aging of their transformers.

One approach to do this is through the use of incentives, which have a long history of use

in controlling customer loads through demand response [66] and energy efficiency programs

[67, 68].

Other studies have investigated the impact of other emerging technologies on distribution

transformer aging: uncontrolled EV charging in [69, 70, 71], controlled EV charging in [72,

73, 74], residential solar generation in [75], harmonics from solid state electronics in [76].

Operating strategies to manage this aging using demand response [77], EVs [72, 78], energy

storage [79], and increased penetration of distributed generation [80] have been developed,

but so far no work has been done to optimize the rollout of these emerging technologies with

regard to transformer aging.

This study presents an approach for determining the optimal rollout of HEMSs in a dis-

tribution network, measured by the total cost of transformer aging, under several different

rollout management strategies. Centrally optimizing the operation of this growing population



21

of smart devices would require the collection, transmission, and processing of large volumes

of customer data (e.g. appliance characteristics, schedules, real-time temperatures), but op-

timizing the rollout of independent HEMSs on the network is a more tractable problem that

can reduce the aging of transformers, potentially even below the baseline (pre-HEMS) case.

The main contributions of this study are:

• An approach for assessing the cumulative damage cost of a feeder (i.e. transformer

aging) populated by mixed group of residential customers with and without HEMSs,

• A simplified formulation for determining the optimal combination of HEMS customers

on a feeder, and

• A demonstration of these methods using representative data on feeder topology, cus-

tomer appliances, and relevant external factors (e.g., outdoor air temperature and

electricity tariff).

These contributions will provide DSOs with the ability to evaluate both the impact of a

growing population of HEMS devices on their networks as well as their ability to mitigate

the associated damages.

The rest of this chapter is organized as follows: Section 2.2 describes the model compo-

nents, Section 2.3 provides a case study, Section 2.4 presents the results, Section 2.5 discusses

considerations for implementation, and Section 2.6 concludes. A nomenclature section follows

at the end of the chapter.

2.2 Proposed Approach

A distribution system, including distribution transformers and residential load profiles for

both the HEMS and no-HEMS case, is modeled to study the impact of HEMS penetration

on transformer damage costs. This approach has three major components: i) the modeling

of the transformer damages, ii) the modeling of the rollout of HEMS in the distribution

network, and iii) the modeling of HEMS load profiles. Though each of the components
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operates independently, the modeling of HEMS load profiles is needed in order to model

the transformer damages given a combination of HEMS and no-HEMS customers, which are

used to model the HEMS rollout and management strategies. The relationship between the

models is shown in Fig. 2.1. The following subsections describe each of these components.

HEMS 
Profiles

Transformer damages

Parameters
• Transformers
• Weather
• Topology
• Baseline profiles

Parameters
• Appliances
• EVs
• Weather
• Prices

Optimal HEMS 
penetration

HEMS Rollout 
Model

Eqs. (12)-(14)

Transformer 
Model

Eqs. (1)-(8)

HEMS Model
Eqs. (15)-(26)

Figure 2.1: The relationship between model components

2.2.1 Transformer model

The loading kj,t of the transformer j at time t for a combination of HEMS and no-HEMS

customers can be calculated as in Equation (2.1),

kj,t =

∑
i∈N aij ·

[
dno-HEMS
i,t · (1− pi) + dHEMS

i,t · pi
]

αj
∀t ∈ T, j ∈M (2.1)

This time-varying load, kj,t, is used to estimate the accelerated aging of the transformer,

using IEEE Standard C57.91-2011 [64], as described in Equations (2.2)-(2.8). Alternate esti-

mation methods using genetic programs [81] and more complicated thermodynamic models

[82] have also been proposed. A method of estimating the transformer parameters used in

Equations (2.2)-(2.8) is given in [78].
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FAAj,t = exp

(
15000

383
− 15000

ΘHS
j,t + 273

)
∀j ∈M, t ∈ T (2.2)

LoLj =
∆t
∑T

t=1 FAAj,t
βj

∀j ∈M (2.3)

ΘHS
j,t = ΘA

t + ∆ΘTO
j,t + ∆ΘHS

j,t ∀j ∈M, t ∈ T (2.4)

∆ΘTO
j,t = (∆ΘTO,U

t −∆ΘTO
t−1)

(
1− exp

(
− ∆t

τTO
j

))
+ ∆ΘTO

t−1 ∀j ∈M, t ∈ T (2.5)

∆ΘTO,U
j,t = ∆ΘTO,R

j ·
[

(kj,t)
2 ·Rj + 1

Rj + 1

]nj
∀j ∈M, t ∈ T (2.6)

∆ΘHS
j,t = (∆ΘHS,U

j,t −∆ΘHS
j,t−1)

(
1− exp

(
− ∆t

τHS
j

))
+ ∆ΘHS

t−1 ∀j ∈M, t ∈ T (2.7)

∆ΘHS,U
j,t = ∆ΘHS,R

j · (kj,t)2mj ∀j ∈M, t ∈ T (2.8)

Equations (2.2)-(2.8) describe the impact of the transformer loading on the corresponding

impact on loss-of-life. Briefly, a specified loading yields ultimate top-oil (6) and hot-spot (8)

temperature rises; the realized temperature rises are governed by the ultimate rises, previous

rises, and thermal time constants (5,7); the absolute hot-spot temperature is based on the

ambient temperature and these rises (4); and the cumulative loss-of-life is based on the

absolute hot-spot temperature in each period (2,3). For more information, the reader is

advised to refer to IEEE standard C57.91-2011 [64].

It is important to note that higher peak loading does not necessarily translate into greater

transformer damage. This is because the transformer aging factor is related non-linearly to

the transformer hot-spot temperature, which does not respond instantaneously to trans-

former loading due to the thermal time constants of the top-oil and winding hot-spot. As

an example, Fig. 2.2 shows two of the load profiles that were constructed from the Pecan

Street data (as described in III.B), and their resulting transformer aging when connected to

identical transformers. In (a), the loading factor always remains under 1.3, and the cumula-

tive aging of the transformer is 1.1 days. In (b), the loading factor reaches a peak of 1.47,

but the cumulative aging of the transformer is only 0.5 days. This shows the importance of
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optimizing for transformer damage directly.
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Figure 2.2: Illustration of potential differences between peak loading and transformer aging.
In (a), a load profile with a lower peak loading but high transformer aging. In (b), a load
profile with a higher peak loading but lower transformer aging.

2.2.2 Transition Strategies

Residential customers may have several reasons to install a HEMS. If they are exposed to

TOU or RTP schemes [83, 84], a HEMS may help them save money on their electricity

bills by scheduling loads. Even without TOU/RTP, some HEMSs may intelligently control

appliances in order to facilitate integration of renewable energy [85], or for energy efficiency

purposes. If customers live in areas that are prone to high demand or constrained supply

during extreme weather events, they could contribute to grid reliability, and thus ensure their

own continuity of supply. Other customers may desire remote control and automation over

their home appliances. Regardless of the motivations, customers must balance their desire for

a HEMS with the up-front cost and inconvenience of purchasing, installing, and configuring

one. The interested reader is encouraged to refer to [86] for a discussion of motivations for

HEMS installation.

In situations where the costs of HEMSs outweigh the perceived benefits, the DSO has the
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ability to use techniques such as marketing materials, up-front incentives, or recurring bill

credits to motivate customers. If the uptake of HEMSs can reduce the operating costs of the

distribution system via reduced transformer aging then there may be a mutual benefit in the

DSO offering an incentive to the customer in exchange for HEMS adoption. However, this

mutual benefit may not exist over all HEMS penetration levels, so the DSO must manage

the HEMS rollout to minimize costs.

Four strategies for managing the HEMS rollout are investigated. The first three strategies

as heuristic strategies, and the last is an optimized strategy.

Heuristic Strategies

• Random Strategy: Residences are transitioned from no-HEMS to HEMS randomly.

This could be the case where a distribution system operator (DSO) incentivizes HEMSs

without any pre-defined targeting.

• Even Strategy: The residence targeting order (i.e. to transition to HEMS) to is based

on the transformer with the lowest HEMS penetration at any given time. If there is a

tie in lowest penetration, priority goes to the transformer with the highest number of

residences, so that the increase in penetration is smallest. The residence to be transi-

tioned is randomly chosen out of all of the residences at the transformer. This could be

the case where the DSO incentivizes HEMSs by targeting residences at transformers

which currently have low penetrations of HEMSs.

• Greedy Strategy: Residences are transitioned using a greedy algorithm. For each deci-

sion about the next residence to target, under each transformer the impact of transi-

tioning one randomly chosen residence is calculated, and the transformer whose tran-

sition offers maximum benefit (or minimum loss) is chosen to be transitioned. This

could be the case where a DSO incentivizes HEMS adoption by targeting residences at

transformers which experience frequent high loading and therefore accumulate damage
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rapidly.

Optimized Strategy

In the optimized strategy, a DSO selects the combination of HEMS residences with the

minimum total transformer damage cost.

The problem of finding the optimal set of residences to transition is described in the

objective function (2.9), where kj,t is calculated using Equation (2.1) and is related to LoL

using Equations (2.2)-(2.8).

min
p

∑
j∈M

αj · LoL(kj,t) (2.9)

subject to:

Equations (2.1)-(2.8) (2.10)∑
i∈N

pi ≤ c (2.11)

For a case where there is a limit on how many residences can be transitioned (e.g., when

the distribution company only has a certain budget) another constraint can be added, as

shown in (2.11).

The complexity of this formulation, however, grows exponentially with the numbers of

residences, |N |, since there are 2|N | possible values of pi, each with their own non-linear

calculation of the total transformer damage cost, as shown in Equations (2.1)-(2.8). Even if

a lookup table is created of the damage costs at each transformer, for each combination of

HEMS and no-HEMS residences, there are still
∑

j∈M 2rj damage costs which must be pre-

calculated and loaded into an optimization problem, or estimated within the optimization

process using a piecewise linearization technique such as special ordered sets of type 2 (SOS2)

[87].

Fortunately, the problem can be simplified to a formulation where there are only
∏

j∈M rj

candidate solutions, by using the following method:
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• For each transformer, calculate the damage for each combination of no-HEMS and

HEMS residences. For instance, a transformer that supplies three residences, where

one has a HEMS, another has no HEMS, and the last has a HEMS can be represented

as (1, 0, 1).

• Group the combinations by the number of residences with HEMSs. For instance,

(0, 1, 1), (1, 0, 1), and (1, 1, 0) would be grouped based on each having two residences

with HEMSs.

• For each group, discard all combinations except for the least damaging one. This dam-

age cost represents the damage cost of that number of HEMS residences.

• Reformulate the decision of which residences to transition at the transformer (rj binary

decisions) to how many residences to transition (one integer decision in [0, rj]).

• The discarded combinations are provably sub-optimal for the transformer in question,

and since there is no interaction with any other transformers, the discarded combina-

tions are also provably sub-optimal for the problem as a whole.

Therefore, the problem is reduced in complexity: the number of damage costs per trans-

former is thus reduced by a factor of 2rj/(rj + 1), which in the rj = 20 case is nearly

50,000. The problem is transformed from the formulation in Equations (2.9)-(2.11) to the

optimization problem below:

min
v

∑
j∈M

αj · LoL(kj,t) (2.12)

subject to:

Equations (2.1)-(2.8) (2.13)∑
j∈M

vj = c (2.14)
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Figure 2.3: Elimination of sub-optimal candidate solutions

This process is illustrated in Fig. 2.3, representing a transformer connected to 12 resi-

dences. The transformer damage resulting from each combination of HEMS and no-HEMS

customers is marked by the symbol ‘×’, and the least-damaging combination for each num-

ber of is marked by the symbol ‘◦’. In this way, the 12 binary variables representing 212

(4,096) potential solutions are reduced to an integer variable on [0,12], representing 13 po-

tential solutions. Because the elimination of sub-optimal candidates solutions is conducted

on a per-transformer basis, the level of computation involved in the elimination stage scales

linearly with the total number of customers and the eliminations can be conducted in parallel

to speed up computation.

Since the HEMS load profiles dHEMS
i,t are needed to calculate the time-varying transformer

loading as described in Equation (2.1), a model for estimating the HEMS load profiles is

needed. The model described in [59] is used, and is described in Section II.C.

2.2.3 HEMS Model

The load profiles for residences equipped with HEMS are constructed using an optimiza-

tion formulation, where each residence minimizes their electricity costs while maintaining
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constraints on indoor temperature, EV battery state-of-charge (SoC), and other appliance

operations within acceptable bounds, as described in equations (2.15)-(2.26) [59]. Consid-

ered appliances are water heaters (WH), heating ventilation and air-conditioning (HVAC)

systems, EVs, dishwashers, washers, and dryers. This problem is mathematically formulated

as follows:

min ∆t
∑
t∈T

πt

[
P base
t +

∑
a∈A

Pa
δa,t
La

+ PEV
t

]
(2.15)

subject to:

δa,t ≤ Va,t ∀t ∈ T, a ∈ A (2.16)∑
t∈T

δa,t = Da ∀a ∈ A (2.17)

t+Da−1∑
h=t

δa,h ≥ Da · (δa,t − δa,t−1) ∀t ∈ T, a ∈ A (2.18)

t−1∑
h=0

δwasher,h ≥ Dwasher · δdryer,t ∀t ∈ T (2.19)

0 ≤ PEV
t ≤ PEV · αt ∀t ∈ T (2.20)

SoCt+1 = SoCt + ∆t · PEV
t · η − ξ Mt∑

t∈T Mt

∀t ∈ T (2.21)

SoC ≤ SoCt ≤ SoC ∀t ∈ T (2.22)

Θa ≤ Θa,t ≤ Θa ∀a ∈ {WH,HVAC}, t ∈ T (2.23)

Θroom
t = exp

(
∆t

τHVAC

)
Θroom
t−1 +

(
1− exp

(
∆t

τHVAC

))(
ΘA
t +

δHVAC,t

LHVAC

QHVACPHVAC

)
∀t ∈ T

(2.24)

Θwater
t = exp

(
∆t

τWH

)
Θwater
t−1 +

(
1− exp

(
∆t

τWH

))(
Θtank
t +

δWH,t

LWH

QWHPWH

)
∀t ∈ T

(2.25)

Θtank
t = Θwater

t −HtΘ
out
t ∀t ∈ T (2.26)

Equation (2.15) is the objective function, which consists of minimizing the cost of procur-
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ing energy as a function of the energy prices and the power consumption of base loads,

controllable loads, and EV charging. The constraints are:

• Dishwashers, washers, and dryers can only operate during certain hours for noise rea-

sons (2.16), must be on for their duration time (2.17), and must stay on for their full

duration once activated (2.18). Additionally, the washing machine must finish running

before the dryer can be run (2.19).

• Electric vehicles’ charging power is limited to the chargers’ rated power and can only

be non-zero when the vehicle is plugged in (2.20). The battery state-of-charge follows

conservation of energy when considering charging power and required transportation

energy (2.21), and the state-of-charge stays within operational limits (2.22).

• Temperatures controlled by each thermal appliance Θa,t remain within acceptable

ranges (2.23).

• Appliance controlled temperatures maintain conservation of energy considering the ap-

pliance power, heat loss to the environment, (2.24)-(2.25), and hot water consumption

patterns (2.26).

To model the diversity of residential demands for the HEMS model, the optimization

is run for many different parameter sets. Equipment parameters that can be varied include

appliance power ratings and capacities. Operational parameters that can be varied include

temperature setpoints for thermostatically controlled appliances and availability ranges for

non-thermal appliances. Initial conditions that can be varied include the EV SoC upon

arrival and the starting temperature of thermostatically controlled appliances.

2.3 Case Study

To test the effect of increasing HEMS penetration on a distribution network, a representative

distribution feeder is populated with two sets of representative residential load profiles, one
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representing the no-HEMS case and one representing the HEMS case (i.e., appliance demand

is optimized based on Equations (2.15)-(2.26). Several penetration levels of HEMSs are tested

using the transition strategies described in Section II.B and II.C. For each HEMS penetration

level, the LoL for each transformer is calculated and converted to a damage cost using a cost

of transformer replacement of 166.1 $/kVA [65], and summed to yield the total damage cost

for that penetration level.

Ten trials are run, in which the residential load profiles are randomly assigned to locations

in the feeder, in order to reduce the impact of anomalous load profile groupings and observe

the variance in total transformer damage costs.

The case study was run on a desktop computer with a quad-core 3.10 GHz processor and

16 GB of RAM, and was completed in approximately 17 hours. The majority of this time

(14 hours) was consumed by the sub-optimal candidate elimination stage (as described in

Section II.B.2 and demonstrated in Figure 3). Since the calculation time for this stage scales

linearly with the number of customers and is parallelizable, the authors believe that this

approach is suitable for larger case studies, especially since this is a planning model and not

an operating one.

2.3.1 Feeder

A Taxonomy Test Feeder developed by the Pacific Northwest National Laboratory (PNNL),

specifically R1-12-47-1 [88], is used as a representative feeder. This feeder is rated at 12.47

kV and classified as a “moderate suburban and rural” topology. As this feeder is described

in the GridLAB-D .glm file, each triplex load is served by an individual pole-top transformer

(598 transformers in total), several of which are connected to a single node in the distribution

system. In the context of the GridLAB-D feeder model, “triplex” refers to a service drop to a

single residence, providing split phase 120/240V power over a three-wire bundle. The sizes for

the transformers ranged from 5 to 62.5 kVA, with an average of 18.6 kVA. The demands for

each triplex load ranged from 0 to 66 kVA, with an average of 10.2 kVA. Further information

about the distribution is shown in Table 2.1. Only a single demand for each load was given,
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this demand is assumed to be the value of the daily peak.

Table 2.1: Characteristics of residential load distribution (kVA)

Minimum Maximum Mean Median Mode Mode Freq.

0.027 66.0 10.2 5.83 2.59 27.8%

To convert this topology into one that is more representative of a typical suburban feeder,

where several residences are connected to a single distribution transformer [89], the trans-

formers connected to a single node in the topology were merged into a single transformer.

Note that the capacity rating of this single transformer is the sum of the individual trans-

former ratings. This process results in 426 new transformers, with ratings ranging from 5

to 75 kVA, with an average of 26.8 kVA. The number of residences for each of these new

transformers is determined by summing the demand of each triplex load connected to the

node in the original topology, and dividing this total demand by the demand of the most

common load in the network (2.6 kVA, assumed to represent a single residence). This re-

sulted in 2,153 residences for the feeder, with the number of residences at each transformer

ranging from 1 to 19. An illustration of this process is shown in Fig. 2.4, and the results for

this case study are shown in Fig. 2.5. Forty-four percent of the transformers on the feeder

were consolidated, and four transformers were split for tractability purposes, but as can be

seen, the distribution of transformer sizes and demands remains similar (pre-consolidation

µ = 0.53, σ = 0.24; post consolidation µ = 0.54, σ = 0.28). The vast majority of transformer

ratings still fall in the 10-50 kVA range. Transformer parameters nj, mj, Rj, and βj are taken

from IEEE Standard C57.91-2011 [64].

2.3.2 Baseline Load Profiles

Baseline residential load profiles are sampled from the Pecan Street database [90]. The profiles

are scaled so their peak is equal to the typical residential demand from the Taxonomy Test
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Figure 2.4: Consolidation and standardization of residential customers.

Feeder (i.e. 2.6 kVA), and finally summed with an electric vehicle (EV) charging profile. This

EV charging profile is modeled using NHTS data [91] to estimate the distribution of arrival

times and charge statuses for electric vehicles. Scale factors for the baseline load profiles had

an average of 0.62, with a standard deviation of 0.20.

2.3.3 HEMS Load Profiles

The parameters used to generated the HEMS profiles are summarized in Table 2.2. The

model is run for 24 hours using a timestep of 15 minutes (∆t). Prices are obtained from

ERCOT [92] and temperatures from NOAA records for Austin, TX, USA [93] for July 1st,

2014; both the prices and temperatures are representative of weekdays in July. EVs are

assumed to have a maximum charge rate of 3.3 kW and an energy capacity of 24 kWh [59].

The initial state of charge for electric vehicles varied from 21-67%, with an average of 42%

and a standard deviation of 13%. The optimization problems are formulated as a mixed

integer linear program (MILP), implemented using GAMS [94], and solved using CPLEX
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Figure 2.5: Results of transformer consolidation: (a) Pre-consolidation, and (b) Post consol-
idation.

[95]. Finally, the HEMS load profiles were scaled to match the total daily energy of the

baseline load profiles, on a customer-by-customer basis. Scale factors for the HEMS load

profiles had an average of 0.77, with a standard deviation of 0.21.

Average load profiles for both cases are shown in Fig. 2.6. As can be seen, the HEMS

optimization results in increased power consumption during relatively low-priced periods and

decreased power consumption in the higher-price periods. This is enabled by the presence of

deferrable loads (i.e., washing machines, dryers, dishwashers, EV charging) and loads with

integrated thermal energy storage (i.e., water heaters, HVAC).

2.4 Results

The results from the trials are shown in Figs. 2.7 and 2.8 and Table 2.3. Fig. 2.7 shows the

range of daily transformer damage costs (over 10 trials) for varying HEMS penetration (0

to 100% in steps of 10%) under the randomized (a), even (b), greedy (c), and optimal (d)

strategies. Fig. 2.8 shows the mean damage for each strategy for varying HEMS penetration

(0 to 100% in steps of 1%). As can be seen in Fig. 2.8, at 0% HEMS penetration, the mean

daily transformer damage cost is approximately $8.21. By managing the rollout using the
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Table 2.2: Parameters used to generate HEMS load profiles

Appliance Max. Power Power Levels Availability Duration

Water Heater 3.5-5.5 kW 2 None None

HVAC 2-4 kW 2 None None

EV 3.3 kW Continuous Varied None

Dishwasher 1 kW 1 6:00-22:00 1 h

Washer 1 kW 1 6:00-22:00 1 h

Dryer 1 kW 1 6:00-22:00 1 h

Appliance Low Setpoint High Setpoint Initial Capacity

Water Heater 45-51 ◦C 51-58 ◦C 45-56 ◦C 20-105 g

HVAC 16-21 ◦C 20-30 ◦C 16-28 ◦C N/A

optimal strategy, the average daily transformer cost can be reduced to $1.00 by less than 5%

HEMS penetration, and can be reduced to $0.30 by 20% HEMS penetration. This is because

even a relatively small penetration of HEMSs reduces peak loading, which is responsible for

most transformer damage. Conversely, as HEMS penetration increases from 80% to 100%,

total transformer damage is greatly increased, since the clustering of demand in a few low-

priced periods creates new peaks of loading. The mean daily transformer damage cost in the

100% HEMS case is $403.69.

As can be seen in Figs. 2.7 and 2.8, the strategies are consistent with where they identify

the range of HEMS penetrations with minimum total transformer damage cost: typically

between 20 and 60%. Of the three heuristic strategies, the greedy strategy is typically the

best, followed by the even penetration, with the random transition typically the worst. From

Table 2.3 transformer damages found by these three strategies are on average 211%, 216%,

and 535% higher than optimal for the greedy, even, and random strategies, respectively. The

difference in damages between the greedy and the optimal strategy are due to the specificity of

transition targeting; the optimal strategy targets transitions by residence, while the greedy
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Figure 2.6: Average load profile for the base and HEMS case, along with the electrical tariff
πt.
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Figure 2.7: Distribution of transformer damage costs for 10 trials. (a) Distribution for random
transitions, (b) Distribution for even transition strategy, (c) Distribution for greedy transition
strategy, and (d) Distribution for optimal transition strategy.
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Figure 2.8: Mean transformer damage costs for 10 trials

Table 2.3: Average results from the various transition strategies

Strategy Minimum-Cost

Penetration

Minimum

Damage ($/day)

Penetrations within 10%

of Minimum Damage

Random 35% $1.38 35%

Even 57% $0.69 47-59%

Greedy 62% $0.68 23-82%

Optimal 55% $0.22 29-75%
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Figure 2.9: Distribution of transformer damages for a single trial: (a) 0% HEMS penetration,
(b) 100% HEMS penetration, and (c) Least cost penetration for each strategy. Bars represent
the individual damage cost form the most-damaged transformers, while lines represent the
cumulative damage. In each subfigure, bars represent the individual damage cost form the
most-damaged transformers, while lines represent the cumulative damage.

strategy targets transitions by transformer, with a random residence at that transformer

chosen for transition.

Fig. 2.7 shows that the variance of transformer damages costs across trials is highest

in the random strategy, and low in the greedy and optimal strategies. As shown in Table

2.3, the greedy and optimal strategies also identify a wider range of penetration levels whose

damages are within 10% of the strategy’s optimum: 59% and 46% for the greedy and optimal

strategies, respectively. This is because those strategies are better at targeting high-impact

transitions, so the transitions near the minimum damage are relatively low-impact.

Fig. 2.9 shows the distribution of damage costs for the 20 most damaged transformers
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in the network for: (a) the 0% HEMS penetration case, (b) the 100% HEMS penetration

case, and (c) the HEMS penetration with minimum total damage for each of the strategies.

In this particular system, the majority of the total transformer damage cost comes from

a small number of transformers, 10 transformers for the case with 0% HEMS penetration

case and 3 transformers in the 100% HEMS penetration case, as seen in Fig. 2.9(a) and

Fig. 2.9(b). Fig. 2.9(c) shows that at the HEMS penetration with minimal damage cost for

each strategy, the damages are more evenly distributed for the even strategy and the greedy

strategy, but still skewed for the random strategy, since there is no targeting of residences

by transformer. In the minimum cost solution found by the random strategy, as with the

0% and 100% penetration cases, a large share of the total transformer damage is derived

from one highly-damaged transformer. This sort of analysis can used by a DSO to identify

transformers which would benefit from up-sizing.

Since the HEMS optimization changes the schedule of residential loads, it also affects

losses in the network. This effect can be observed by looking at losses in the triplex lines

connecting each residence to the distribution transformer. In the test feeder, all of these lines

are specified as 30 feet long. In the baseline case, the losses in these lines add 0.20% (508

kWh) to the daily total energy demand from the homes. In the HEMS case, these losses are

increased to 0.26% (662 kWh). Since these losses are small compared to the overall energy

consumption (251 MWh), they are not considered in the HEMS rollout model.

In order to convince residential customers to transition to the use of a HEMS, a DSO

will likely have to provide monetary incentives, educational materials, outreach, or similar,

which will incur a cost. Therefore, the DSO needs to balance the objectives of minimizing

transformer damage costs and minimizing acquisition costs. One such approach involves

calculating the present cost of continued transformer damage in order to estimate a total

value of combining acquisition and damage.

Fig. 2.10 illustrates the impact of including these acquisition costs in the determining the

penetration level with total minimum cost. Fig. 2.10(a) shows the impact of varying acqui-

sition costs on the net-present cost (i.e. damage and acquisition) for each penetration level,
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given the optimal customer selection, and Fig. 2.10(b) shows the impact of the acquisition

costs on the net-present value of transitioning the residences to the optimum HEMS pene-

tration level. Net-present value of perpetual damage is calculated using a 5% discount rate

as described in [96]. For the sake of simplicity, it is assumed that there is a single average

acquisition cost, which incorporates the outreach and incentive payment given to customers

who accept it as well as the cost of outreach to customers who do not accept the incentive.

As shown by Fig. 2.10(b), even a modest acquisition cost drastically alters the HEMS

penetration with minimum total cost: an acquisition cost of $10 reduces the optimal pene-

tration from 55% to 11%, and an acquisition cost of $50 further reduces it to 4%. However,

even a high acquisition cost provides for some cost savings, as long as only a few residences

are transitioned and they are carefully selected. For example, at an acquisition cost of $1,000

per residence, it is still beneficial to transition 1% of residences to HEMS operation, and the

net-present value is greater than $20,000. On the other hand, if the penetration of HEMS is

high, and further penetration will increase operating costs, the DSO may offer residences an

incentive to not install a HEMS device. This is one option a DSO could take in order to avoid

the cost of reinforcing their network (other potential options are discussed in Section V). In

this case, the optimal penetration is higher than in the case where no incentives are present.

At an anti-HEMS incentive of $50 per residence, the optimal penetration is increased from

55% to 94%.

Of course, some residential customers may not be responsive to the desires of the DSO in

minimizing their transformer damage. They may install a HEMS despite its negative impact

on the distribution network, and they may not install a HEMS despite the positive impact

it would have. To model these customers, a share of the residences on the feeder can be

designated as ‘unresponsive’ residences which will ignore the desires of the DSO. The impact

of varying shares of these unresponsive residences is demonstrated in Fig. 2.11. With optimal

control the minimum damage cost is $0.22/day, with 10% unresponsive the minimum cost

is $0.33, with 25% unresponsive the minimum cost is $0.50, and with 50% unresponsive the

minimum cost is $0.88.
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Figure 2.10: Optimal penetration of HEMS given varying acquisition costs. (a) The impact
of acquisition costs on optimal penetration of HEMS. Optimal penetration levels for each
curve are shown by a star, and (b) The impact of acquisition costs on lifetime savings from
optimal HEMS rollout.

2.5 Considerations for Implementation

The random and even penetration algorithms are simple to implement, and can be solved in

O(n) time, where n is the number of residences in the system. The greedy algorithm is more

complex, and requires O(n ·m) time, where m is the number of transformers in the system.

The optimal algorithm has the highest complexity, requiring O(2r
max

) time, where rmax is the

maximum number of residences connected to a single transformer. The time required by the

optimal algorithm is dominated by the transformers with the highest number of residential

customers. However, the strategies with increased complexity yield substantial costs savings

when compared to the random strategy. As can be seen in Table 2.3, the greedy and optimal

strategies yield cost savings of 51% and 84%, respectively. A real-life implementation of

such methodologies by a DSO would require weighing the benefits of complicated strategies

against their additional benefits. Additionally, accurate modeling of customer load profiles

in the HEMS and no-HEMS cases control is crucial to generating meaningful results. The
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population of HEMS customers may also have a variety of HEMS algorithms, which could

make modeling more difficult.

For example: algorithms may minimize total electricity costs [59], total energy consump-

tion, peak load, demand limit violations [60], or load during certain time periods [62], may

maximize occupant comfort, or may consist of a multiobjective formulation balancing sev-

eral objectives [57, 58]. For a multiobjective formulation, several options are possible, such as

allowing customers to dynamically adjust individual objective weightings or controlling the

weightings of the separate objectives automatically using occupancy detection and supervised

learning of occupant preferences.

Though this paper focuses on the control of HEMS penetration by incentivizing customers

to install a HEMS, these strategies can only reduce costs when the penetration of HEMS is

below the value with minimum cost. If instead the penetration of HEMS is already above

the minimum-cost value, then alternate strategies must be implemented. For example, a

HEMS algorithm that considers both transformer aging and energy costs could be deployed,

as described in [74], the transformer could be replaced with a larger one to improve its

lifetime, the DSO could incorporate a real-time distribution charge [97], or the customers
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could be given an incentive payment by the DSO in exchange for not using a HEMS. The

latter approach is shown in Fig. 2.10(a).

2.6 Conclusion

An approach is developed and tested to determine the optimal penetration of HEMS in a

distribution system, and the cost savings available from this transition, using several methods

of managing HEMS rollout. If all residences are equipped with HEMSs, transformer damage

costs are estimated to be 1-2 orders of magnitude higher (in our case study, 49 times higher)

than they would be in the no-HEMS case. In this case, a centralized HEMS management

scheme may be beneficial. However, if the adoption of HEMS is managed using a heuristic

or optimal strategy, then transformer damage costs are reduced below their values in the

no-HEMS case by 1-2 orders of magnitude (in our case study, 38 times lower). These results

are however, highly system dependent.

The optimal penetration of HEMSs is highly dependent on the cost of incentivizing

residences to adopt HEMSs. Without incentive costs, the optimal penetration in the case

study was found to be 55%, but when incentivization costs are $50 per residence, the optimal

penetration drops to 4%. Conversely, a $50 cost to incentivize a residence to forgo HEMS

operation increases the optimal penetration to 94%. Substantial cost savings are also possible

even if not all customers are responsive to the desires of the DSO. Potential cost savings

are shown to persist even with high HEMS incentivization costs, as long as the residences

to incentivize are carefully targeted. This is because a majority of the total transformer

damages comes from a small number of overloaded transformers.

Nomenclature

Sets

M the set of transformers, indexed by j

N the set of residences, indexed by i



44

T the set of time periods, indexed by t

A the set of residential appliances, indexed by a

Transformer Model

Parameters

A a binary matrix, where aij = 1 if residence i is connected to transformer j, and 0
otherwise

dno-HEMS
i,t the demand of residence i at time t if residence i does not have a HEMS (kW)

dHEMS
i,t the demand of residence i at time t if residence i has a HEMS (kW)

rj the number of residences at transformer j

nj top-oil thermal parameter for transformer j (unitless)

mj hot-spot thermal parameter for transformer j (unitless)

Rj ratio of losses at rated load to losses at no load for transformer j (unitless)

αj the nameplate rating of transformer j (kVA)

βj rated lifetime of transformer j (hours)

τTO
j top-oil temperature time constant for transformer j (hours)

τHS
j hot-spot temperature time constant for transformer j (hours)

∆ΘTO,R
j ultimate top-oil rise over ambient temperature of transformer j at rated load (oC)

∆ΘHS,R
j ultimate hot-spot rise over top-oil temperature of transformer j at rated load (oC)
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Variables

FAAj,t the accelerated aging factor of transformer j at time t (unitless)

kj,t the loading ratio of transformer j at time t (unitless)

LoLj the cumulative loss-of-life for transformer j (%)

ΘHS
j,t winding hot-spot temperature of transformer j at time t (oC)

∆ΘTO
j,t top-oil rise over ambient temperature of transformer j at time t (oC)

∆ΘTO,U
j,t ultimate top-oil rise over ambient temperature of transformer j at time t (oC)

∆ΘHS
j,t hot-spot rise over top-oil temperature of transformer j at time t (oC)

∆ΘHS,U
j,t ultimate hot-spot rise over top-oil temperature of transformer j at time t (oC)

p a vector of binary variables where pi = 1 if customer i has a HEMS, and 0 otherwise

vj the number of residences at transformer j with HEMSs

HEMS Model

Parameters

πt electricity price for time period t ($/MWh)

P base
t base load power consumption at time t (kW)

Pa rated power of appliance a (kW)

La number of power levels for appliance a (for discrete-power appliances only)

Va,t availability of appliance a at time t (binary)

Da duration parameter for appliance a (number of periods)

PEV maximum charging power for electric vehicle (kW)

SoC minimum state-of-charge for electric vehicle battery (kWh)
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SoC maximum state-of-charge for electric vehicle battery (kWh)

η electric vehicle battery charging efficiency (unitless)

ξ electric vehicle daily energy requirement (kWh)

Mt electric vehicle motion schedule at time t (binary)

Θa minimum temperature for thermal appliance a (oC)

Θa maximum temperature for thermal appliance a (oC)

Qa coefficients of performance for thermal appliance a (oC/kW)

τHVAC HVAC thermal time constant (hours)

τWH water heater thermal time constant (hours)

Ht fraction of heated water withdrawn at time t (unitless)

Variables

δa,t status of appliance a at time t (for discrete-power appliances only)

PEV
t power consumption of electric vehicle charging at time t (kW)

SoCt state-of-charge for electric vehicle battery at time t (kWh)

Θroom
t temperature of HVAC-conditioned space at time t (oC)

Θtank
t temperature of water heater tank at time t (oC)

Θwater
t temperature of heated water at time t (oC)

Shared Parameters

ΘA
t ambient temperature at time t (oC)

∆t the time interval length (hours)



47

Chapter 3

OPTIMAL CARBON TAXES FOR EMISSIONS TARGETS IN
THE ELECTRICITY SECTOR

Published as:

Olsen, D. J., Dvorkin, Y., Fernández-Blanco, R., & Ortega-Vazquez, M. A. (2018). Optimal

carbon taxes for emissions targets in the electricity sector. IEEE Transactions on Power

Systems, 33(6), 5892-5901.

3.1 Introduction

3.1.1 Background

The risks posed by anthropogenic climate change are dire, and organized effort is required

in order to mitigate and eliminate, when possible, the effects [1]. Pricing the emissions of

greenhouse gases (GHGs) is a well-established approach to internalizing these negative ex-

ternalities and should result in shifting the supply-demand equilibrium to a socially optimal

point [8]. Since the true costs from climate change are uncertain and hard to quantify with

any precision (though attempts have been made, as in [98]), one approach to create a price

for emissions is to design policies that aim to reduce emissions to a level that is generally

accepted to avoid the worst effects. Unlike renewable portfolio standards or tax credits for

renewable energy investment or production, this approach is directly targeted toward reduc-

ing GHG emissions. As noted in [41], subsidies for production of renewable energy can lead

to negative bids by renewable generators, which may result in higher costs and emissions

than if they bid zero-cost. According to a 2019 study by the World Bank [19], there are 57

regional, national, and sub-national carbon pricing schemes implemented or scheduled for

implementation, ranging from $1-127/tCO2e and covering 15% of global emissions (soon to
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be approximately 20% once China’s pricing scheme becomes active in 2020).

The two main approaches to pricing emissions are a tax on GHG emissions (i.e. a carbon

tax) [99] and a cap-and-trade system [100]. A carbon tax sets a price directly with the

goal of implicitly reducing emissions, while a cap-and-trade system sets emissions reductions

explicitly, implicitly creating a price. Each system has pros and cons: a cap-and-trade system

can be more precise about the level of emissions reductions achieved, but requires complex

rules regarding distributing, auctioning, and trading of allowances. A carbon tax is simpler

and may be easier to implement, but impact on emissions is less certain [101], as the reactions

to such a tax by the broader market (e.g. generation and transmission investors, electricity

consumers, and generation manufacturers) are difficult to model.

Secondary policy considerations are similar between the two: entities may purchase car-

bon offsets to reduce net emissions, tariffs can maintain competitiveness with jurisdictions

without carbon pricing, and policies can be designed to be revenue-neutral. Such policy de-

sign considerations for a carbon tax are discussed in [102, 103]. Additionally, pricing of carbon

in either approach can lead to carbon ‘leakage’, i.e. the increased cost of producing goods in

a jurisdiction with a carbon tax can lead to a shift in production toward jurisdictions with

lower rates, or no tax at all [20].

The impact of carbon taxes on the economy and the environment have been widely

studied, using various tax rates: the Brookings Institute in 2012 studied a tax which would

begin at $15/tCO2e with an annual escalator [104], the Congressional Budget Office in 2013

evaluated various rates between $15-29/tCO2e [105], and the Energy Information Agency in

2014 investigated rates of $10 & $25/tCO2e [106]. However, these studies do not address at

what rate carbon should be taxed.

This paper approaches the topic from a different angle. Instead of studying the impact of

a certain tax rate, we set a tax rate to achieve a certain environmental impact (e.g. pledges

from the Paris Agreement [107]) at minimal tax rate. Specifically, we present an approach for

setting the optimal carbon tax for a given power system such that the resulting minimum-cost

generator commitment and dispatch yields emissions that are at or below a specified target.
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The consequence of a tax rate that is too low is failure to meet emissions targets, and the

consequence of a rate too high is undue economic burden. Minimizing the tax rate also has

practical motivations: lower tax rates are often more politically palatable (i.e. more likely to

be enacted, less likely to be repealed), and generally reduce rates of tax evasion [108].

Some carbon taxing systems are designed to ‘recycle’ the revenue received, either by

investing in clean generation technologies or by reducing tax rates on other sectors of the

economy to achieve revenue ‘neutrality’. However, care must be taken to account for the

uncertainty in future carbon consumption, especially as carbon pricing tends to reduce con-

sumption.

3.1.2 Literature Survey

Work including emissions into generator dispatch began in the 1970s with the concepts of

minimum emissions dispatch [26], pricing of emissions to include their impact in economic

dispatch [27], and varying emissions prices to investigate the tradeoffs between fuel costs and

emissions [28]. However, these studies focused on local effects of NOx and SOx.

The concepts of ‘pseudo fuel prices’ and algorithms for setting them are explored in [30],

and expanded in [31] to include periodic price adaptation in order to meet long-term fuel

consumption targets as realizations differ from projections. Similar algorithms are used to set

weights based on emissions targets in [109] for economic dispatch problems. Several methods

for coordinating long-term targets for emissions and short-term operations are discussed in

[32, 110], but explicit emission pricing is absent, to the best of the authors’ knowledge.

Explicit GHG pricing and its impact on optimal power flow problems are discussed in

[111]. [112] presents a bi-level approach for setting a tax rate to achieve a GHG emissions

target with minimal tax burden, but intertemporal constraints (e.g. ramp rates, start-ups)

are ignored. Without considering these constraints, the determined tax rate may not meet

the desired target. ‘Optimal’ tradeoffs between GHG emissions and cost according to a Nash

bargaining process are developed in [113, 114].

All of the above approaches contain deficiencies when it comes to setting a carbon tax
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rate with an eye on scheduling algorithms (i.e. unit commitment models). In short, one or

more of the following is missing:

1. Intertemporal variables and constraints (e.g. ramp rate limitations, minimum up- and

down-times).

2. Explicit carbon pricing in dispatch/commitment.

3. A method for setting an optimal carbon price.

By contrast, in this work we propose a Weighted Sum Bisection (WSB) method, a com-

putationally efficient approach, to set the minimal carbon tax rate that results in a power

system meeting emissions targets while incorporating unit commitment, ramp rate limita-

tions, and system flexibility and contingency reserve requirements.

3.1.3 Contributions

This work makes the following contributions:

1. A bi-level planning model including unit commitment based on cyclic representative

days, avoiding the need for assumptions about initial conditions.

2. An efficient method for determining the minimal carbon tax rate which achieves emis-

sions reductions targets.

3. A demonstration of the computational efficiency of the proposed method and of the

reciprocal relationship between tax rates for emissions targets and investment decisions.

The rest of this chapter is organized as follows: Section 3.2 describes the problem formu-

lation, Section 3.3 discusses potential solution techniques, Section 3.4 describes a case study,

Section 3.5 presents the results, and Section 3.6 concludes. A nomenclature section follows

at the end of the chapter.
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3.2 Problem Formulation

The problem is formulated as a bi-level planning problem, with the regulator’s tax rate

(PCO2) optimization in the upper level (3.1)-(3.2) and the system operator’s unit commitment

with carbon tax (UCCT), over a set of representative days, in the lower level (3.3)-(3.21).

The UCCT includes the dc power flow approximation of the system power flows, penalties for

shedding load and renewable generation, and reserve and ramping adequacy requirements.

We assume an electricity market based on a unit commitment in which bids represent true

fuel and tax costs.

minPCO2 (3.1)

subject to:

Etotal ≤ Emax (3.2)

Etotal ∈ arg min

{
Cshed + Cgen + PCO2Etotal (3.3)

Cshed :=
∑
a∈A

πa
∑
t∈T

∑
b∈B

(
P loadsload

b,t,a +
∑
i∈R

P rensren
i,t,a

)
(3.4)

Cgen :=
∑
a∈A

πa
∑
t∈T

∑
i∈I

(
Cmin
i ui,t,a + Csu

i vi,t,a +
∑
s∈S

bi,sgi,s,t,a

)
(3.5)

Etotal :=
∑
a∈A

πa
∑
i∈I

∑
t∈T

(
Emin
i ui,t,a + Esu

i vi,t,a +
∑
s∈S

hi,sgi,s,t,a

)
(3.6)

subject to:

gi,t,a = gmin
i ui,t,a +

∑
s∈S

gi,s,t,a ; ∀i ∈ I, t ∈ T, a ∈ A (3.7)

0 ≤ gi,s,t,a ≤ gmax
i,s ui,t,a ∀i ∈ I, s ∈ S, t ∈ T, a ∈ A (3.8)

vi,t,a + zi,t,a ≤ 1 ; ∀i ∈ I, t ∈ T, a ∈ A (3.9)

vi,t,a − zi,t,a = ui,t,a − ui,t−1,a ; ∀i ∈ I, t ∈ T, a ∈ A (3.10)

t∑
τ=t−gupi +1

vi,τ,a ≤ ui,t,a ; ∀t ∈ T, i ∈ I, a ∈ A (3.11)
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t∑
τ=t−gdown

i +1

zi,τ,a ≤ 1− ui,t,a ; ∀t ∈ T, i ∈ I, a ∈ A (3.12)

−rdown
i ≤ gi,t,a − gi,t−1,a ≤ rup

i ; ∀t ∈ T, i ∈ I, a ∈ A (3.13)∑
i∈I

munit
i,b gi,t,a −

∑
l∈L

mline
l,b fl,t,a − sren

b,t,a = db,t,a − sload
b,t,a ; ∀b ∈ B, t ∈ T, a ∈ A (3.14)

−fmax
l ≤ fl,t,a ≤ fmax

l ; ∀l ∈ L, t ∈ T, a ∈ A (3.15)

fl,t,a =
1

xl

∑
b∈B

mline
l,b θb,t,a, ; ∀l ∈ L, t ∈ T, a ∈ A (3.16)

∑
i∈I\R

ui,t,a(g
max
i − gi,t,a) ≥ 3%

∑
b∈B

db,t,a + 5%
∑
i∈R

gi,t,a + max
i∈I

gmax
i ; ∀t ∈ T, a ∈ A (3.17)

∑
i∈I

min (rup
i ui,t,a, (g

max
i − gi,t,a)) ≥ wup

t,a + dramp
t,a ;∀t ∈ T, a ∈ A (3.18)

∑
i∈I

min
(
rdown
i ui,t,a, gi,t,a − gmin

i ui,t,a
)
≥ wdown

t,a + dramp
t,a ;∀t ∈ T, a ∈ A (3.19)

0 ≤ sload
b,t,a ≤ db,t,a ; ∀b ∈ B, t ∈ T, a ∈ A (3.20)

0 ≤ sren
b,t,a ≤

∑
i∈R

munit
i,b gi,t,a ; ∀b ∈ B, t ∈ T, a ∈ A

}
(3.21)

The regulator’s objective is given in (3.1), and constrained by the emission limit (3.2)

and the lower-level problem (3.3)-(3.21). The system operator’s objective is given in (3.3)-

(3.6). Generator costs curves are piecewise linear (3.7)-(3.8). Binary commitment variables

are defined in (3.9)-(3.10) and generator minimum up- and down-times are constrained using

(3.11)-(3.12). Generator ramp rate constraints are given in (3.13). Power balance is given by

(3.14). Line flow limits are given by (3.15)-(3.16). Operating reserve requirements based on

the 3+5% and N -1 policies are ensured using (3.17) with flexibility requirements ensured in

(3.18)-(3.19). Load and renewable generation shedding is constrained by physical limits in

(3.20)-(3.21).

For the intertemporal constraints (3.10)-(3.13), time periods before the first are treated

cyclically. For instance, t = 24 is substituted for t = 0, and t = 23 for t = −1. This en-

sures that end-of-day commitments are feasible and that initial conditions are representative,
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assuming that the days surrounding the representative day are substantially similar. Consid-

ering constraints (3.17)-(3.19), the ideal quantity of regulation and load-following reserves is

an active research topic [115, 116]; for simplicity, we use the heuristic 3+5% rule originally

proposed in [117]. This formulation assumes a perfectly competitive market; otherwise, the

impact of the carbon tax on emissions may vary, as shown in [118].

3.3 Solution Techniques

One approach to finding the optimal tax rate would be to solve a standard unit commitment

over the set of representative days, with a constraint on total emissions, and to take the

marginal value of the emissions constraint as the tax rate:

minCgen + Cshed (3.22)

Equations (3.4)-(3.21) (3.23)

Etotal ≤ Emax : λ (3.24)

where λ denotes the marginal value of the constraint.

We call such an approach “Constrained Emission Marginal Value (CEMV)” method.

However, due to the non-convexity of the UCCT problem (due to binary variables), this

approach is liable to produce sub-optimal solutions. Varying Emax will find solutions on the

Pareto frontier of the feasible cost/emissions space, but the resulting λ, when used as PCO2

in the UCCT, may find different solutions. This is because concave portions of the Pareto

frontier may not be found by the linearly weighted UCCT formulation, since the optima only

exist on the convex hull of the Pareto frontier [119]. This undesirable outcome is illustrated

in Fig. 3.1 and demonstrated for the test system in Section 3.5. Depending on where in the

convex region Emax falls, the value of λ (i.e. the slope of the curve) when input as PCO2

into the UCCT problem may find: a) a solution with emissions which are greater than the

target (A→ A’ in the figure), b) a solution in which emissions are lower than the target, but

the production cost is higher than necessary (B → B’), c) the optimal cost/emissions point,
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but at a PCO2 that is larger than necessary, or d) the minimum PCO2 which results in the

optimal cost/emissions point. Therefore, it should not be assumed that the CEMV method

can find (d) reliably.
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Figure 3.1: The marginal values at points {A,B}, when used as tax rates, result in the
solutions at {A’,B’}.

By contrast, the WSB method finds the optimal tax rate by iteratively guessing a PCO2

value, solving the UCCT problem, and tuning PCO2 using the bisection method. Briefly, if

a zero of a continuous function is known to be in a certain interval, it can be reliably found

by repeatedly bisecting the interval and selecting the sub-interval in which the root must lie,

based on the sign of the function value at the midpoint. Since the goal is to find the tax rate

resulting in emissions at or below a certain target, the function is f(PCO2) =Etotal(PCO2)−

Emax, and its zero-crossing is at the value of the optimal tax rate, where Etotal(PCO2) is

found for a given value of PCO2 by solving the UCCT. For a given value of PCO2 , the UCCT

can be solved independently for each representative day, aiding computation. For a non-

convex Pareto frontier such as ours, the values of the individual objectives as a function
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of the weighting factor are noncontinuous but monotonic. Therefore, the WSB method is

guaranteed to find the smallest tax rate resulting in emissions at or below the target, if

this target is feasible. A very high tax rate (e.g. $1,000/ton) can be used to estimate the

maximum feasible emissions reduction and set the upper bound of the tax range. Since

precision is doubled with each iteration, convergence is linear [120]. This approach is shown

in Fig. 3.2.

Ptest = (Pmax+Pmin)/2

Pmin = PtestYes
Pmax = Ptest No

No Yes

Etotal ≤ Emax?

Pmax – Pmin < ε ?

Begin with 
Pmin=0, Pmax

large

P* = Ptest

Solve UCCT with Ptest

Figure 3.2: Flowchart for finding optimal PCO2 using the Weighted Sum Bisection method.

3.4 Case Study

The electrical system for this case study is a modified ISO New England (NE) test system

[121]. Data from the Energy Information Administration (EIA) are used for fuel prices [122]

and for per-MMBTu CO2e emissions by fuel [123]. Though variability from renewable gen-

eration can induce additional CO2 emissions from thermal generators [124], this effect was

not modeled in the case study. Five representative days are chosen using a hierarchical clus-

tering algorithm [125] and run at a one-hour time resolution. The load shed penalty is set
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at $10,000/MWh and the renewable spillage penalty is $20/MWh. Ramping requirements

are set such that the system has the capacity to react to 1%/hour load ramps and all wind

farms ramping their production ± 20% over one hour, based on analysis of Bonneville Power

Administration wind power production data in [126]. This case study was implemented using

GAMS v24.0 and solved using CPLEX v12.5 with a 0.1% optimality gap on an Intel Xenon

2.55 GHz processor with at least 32 GB RAM.

3.5 Results

3.5.1 System Characteristics
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Figure 3.3: The cost/emissions Pareto frontier. The line is points found by constraining
emissions, the crosses are points found by varying PCO2 .

Fig. 3.3 shows the Pareto frontier of the trade-off between emissions and production costs

(i.e. fuel and shed costs). The full Pareto frontier is sampled at 100 equally-spaced points

by constraining emissions and varying Emax, and the convex hull of the cost/emissions space

is sampled by using the UCCT and varying PCO2 , with and without load-shedding. Load

shedding is only economically justified under very high tax rates and results in very high

costs, so load-shedding solutions are omitted in all following figures for the sake of clarity.
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Though the Pareto frontier may at first glance appear convex, there are many small concave

regions. This can be seen by plotting the marginal value at the sample points, as shown

in Fig. 3.4; since the marginal values do not increase monotonically, the frontier must be

non-convex [127].
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Figure 3.4: Marginal value found at 100 sample points on the Pareto frontier.

3.5.2 Determining a Tax Rate to Meet Policy Goals

If the CEMV method were used to set a tax rate, there is no guarantee that the solution to

the UCCT problem would meet the desired emissions reduction. This is illustrated in Fig.

3.5, which uses the same set of sample points as Figs. 3.3 and 3.4. As shown, values of PCO2

derived from the CEMV method do not reliably meet their desired emissions reductions when

used in the UCCT. By comparison, the WSB method is guaranteed to meet or exceed the

emissions reduction target. Convergence of the WSB method to its final values is shown in

Fig. 3.6 for a target emissions reduction of 15%. The WSB method, given an emissions target,

reliably converges to an optimal tax rate within 1¢ from an initial range of $0-$100/ton in 14

iterations of the UCCT problem. Though the tax rate which is converged upon may not be

the true optimum, it can be shown that the solution exceeds the true optimum by no more
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than a specified tolerance, and this tolerance can be halved with each additional iteration of

the UCCT problem. By comparison, naively finding the tax rate by solving for each possible

rate in 1¢ increments would require 10,000 solves. The wider the range of potential solutions,

and the greater the desired accuracy, the more efficiently the WSB performs.
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Figure 3.5: Comparison of results using the CEMV method and the WSB method.

The importance of including binary variables is illustrated in Fig. 3.7. For this figure,

the UCCT formulation is transformed into a transmission-constrained economic dispatch

(TCED) problem by ignoring intertemporal constraints (3.10)-(3.13) and setting {gmin
i , Cmin

i ,

Emin
i } = 0 for all generators. By using the WSB method to find the required tax rate for a

given desired emissions reduction for the TCED problem, and inputting that resulting tax

rate into the UCCT problem, it can be seen that the realized emissions reductions fail to

meet the targets. Factors which can contribute to this outcome include: the requirement to

burn fuel to synchronize generators on start-up, and the requirement to commit additional

generators to prepare for large ramps in net load, which occur more commonly and with

greater magnitude with the introduction of large quantities of renewables.



59

1 3 5 7 9 11 13 15
Iteration number

0.97

0.98

0.99

1.00

1.01

1.02

1.03
R

el
at

iv
e 

va
lu

e
Target reduction: 15%

emissions
cost

1 3 5 7 9 11 13 15
Iteration number

101

102

Ta
x 

ra
te

 ($
/to

n)

62.5 31.25

15.62

23.44

19.53

21.48

22.46

22.95

23.19

23.32

23.38

23.41

23.42

23.43

23.44

penalty

Figure 3.6: Convergence of WSB method to final value.

3.5.3 Handling Uncertainty

Since this formulation requires estimating the distribution of representative days in a future

year, there is some uncertainty in the actual realization. The variance in annual realized

emissions, based on this sampling probability, is given by (3.25). If policy-makers desire to

achieve emissions reductions with a specified level of certainty, tax rates can be set such that

the likelihood of achieving such reduction happens with the desired probability using (3.26)

due to the Central Limit Theorem [128].

Var[Etotal] = σ2
E = 365

∑
a∈A

πa(Ea − Etotal)2 (3.25)

Prob[Etotal ≤ Emax] = Φ

(
Emax − Etotal

σEtotal

)
(3.26)
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Figure 3.7: Comparison of WSB results when ignoring binary variables and intertemportal
constraints (TCED problem) vs. including them (UCCT method).

where Φ(·) is the cumulative distribution function of the standard normal distribution.

The choice of increasing or decreasing the tax rate in the WSB method is then based on

whether this likelihood meets the desired level of certainty. Fig. 3.8 illustrates the uncertainty

range around the expected cost and emissions, and Fig. 3.9 illustrates the tax rate required to

achieve a desired emissions reduction for various values of certainty. As shown, the required

tax rate to meet a given emissions target increases with the level of certainty required, and

some emissions reductions targets which are achievable on average are not able to be met

with much certainty, no matter the tax rate.

A similar process can be used in order to handle the uncertainty of fuel prices. Currently

in the United States, abundant shale gas makes gas-fired power plants more competitive,

but these low prices may not persist. If there is a desire to set a tax rate to be robust to

fluctuations in the price of natural gas, the tax-setting process can be run using the highest

gas price that can be reasonably expected.
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Figure 3.8: Fuel cost and emissions as a function of tax rate, incorporating weather uncer-
tainty. Bands represent 95% certainty range.

0.0% 2.5% 5.0% 7.5% 10.0% 12.5% 15.0% 17.5%
Desired emissions reduction (relative to zero-tax solution)

100

101

102

R
eq

ui
re

d 
pe

na
lty

 v
al

ue
 ($

/to
n) 99% certainty

95% certainty
90% certainty
50% certainty
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Figure 3.10: Sensitivities of Pareto frontier to (a) wind penetration, (b) coal plant retirement,
(c) natural gas price, and (d) gas supply limit.
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Figure 3.11: Sensitivities of required tax rate to (a) wind penetration, (b) coal plant retire-
ment, (c) natural gas price, and (d) gas supply limit.
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3.5.4 Sensitivity Analyses

Sensitivity analyses to changes in the system’s wind penetration, coal plant retirement, gas

prices, and gas supply limitations on UCCT solutions are shown in Figs. 3.10(a)-(d), respec-

tively, and the impact on the tax rates required to achieve desired emissions reductions are

shown in Figs. 3.11(a)-(d). Additional scenarios are also run for specific emissions reductions

targets and shown in Fig. 3.12:

• Wind Penetration: Wind penetration, initially at 8% of total energy, is increased by

10, 20, or 50%.

• Coal Retirement: Coal generation is retired, either one or two highest-cost generators

(15% or 30% of the coal-generating capacity), consistent with estimates in [129].

• New Gas Generator: One new 250 MW gas generator is added at the bus with

highest average locational marginal price (LMP), bus 8, increasing the gas capacity by

2.4%.

• Gas Price: The price of natural gas generation is increased by either 50 or 100%.

• Gas Limit: For each day, gas generators are limited in the amount of energy that

they can supply, at either 30 or 35% of daily total energy. This is intended to simulate

constraints in gas availability due to increased demand from gas generators as a result

of carbon pricing [130] or regional gas shortages such as those experienced in New

England [131] and Southern California [132] in 2014.

• Load Increase/Decrease: The demand for electricity at each hour is scaled up or

down by 2%.

• Transmission Capacity: The capacity of all transmission corridors is increased by

20%.
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Several of these scenarios have similar effects: increases in wind penetration, gas gener-

ation capacity, or transmission capacity, or decreases in load. For all of these scenarios, the

zero-tax solutions have lower costs and emissions than the base case, a given emissions target

can be met with a lower tax rate, and the maximum emissions reduction is increased. These

effects can be seen in Figs. 3.10(a) and 3.11(a) for the wind penetration case and in Fig 3.12

for the other cases.

Other scenarios have differing effects. For the coal plant retirement case, the zero-tax

solution has lower emissions than the base case but is more expensive, since the retired

coal generation is replaced by more-expensive gas generation. However, despite the higher

zero-tax cost, a desired emissions reduction can be met with a lower tax rate, as shown in

Figs. 3.10(b) and 3.11(b), and some targets can be met at a lower total cost. For example,

a 15% GHG reduction target in the base case requires a tax rate of $23/ton and a total

cost of increase of 71%, but the same target can be met with a $17/ton tax rate and 56%

cost increase in the 30% coal retirement case, as shown in Fig. 3.12. For the gas price

increase cases, the zero-tax solution is both more expensive and higher-emitting than the

base case, and a desired emissions reduction requires a higher tax rate, but the range of

possible emissions reductions is not affected, as shown in Figs. 3.10(c) and 3.11(c). For the

case where there are limitations on the energy supplied by gas generators, the effect is highly

dependent on the limit values and emissions targets, as shown in Figs. 3.10(d) and 3.11(d).

When gas generators are limited to providing no more than 35% of total energy, there is

minimal impact for emissions reductions less than 10%, but past this point there is limited

ability to reduce emissions, and reductions require a higher tax rate. At a limit of 30%, the

zero-tax solution is 7.6% more expensive and emits 7.6% more GHGs when compared to the

base case, and only a very modest reduction in emissions (1.5%) is possible. This illustrates

the impact that gas system constraints can have on emission reductions goals.

The impact of relaxing the system flexibility constraints (3.18)-(3.19) is also investigated.

For this system, the greatest impact is seen at lower tax rates, where relaxing the ramping

capability requirement results in slightly higher emissions at slightly lower production cost, as
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Figure 3.13: Impact of relaxing system ramp requirement constraint on (a) cost/emissions
Pareto frontier, and (b) tax rate required to achieve emissions reductions.

shown in Fig. 3.13(a). At zero tax rate, emissions are 0.4% higher and production cost is 0.1%

lower as compared to the base case. The impact on the tax rate required for a given emission

reduction is similar, as shown in Fig. 3.13(b): greater impact at low emissions reductions

targets, with differences diminishing at more aggressive emissions reductions targets. The

converse is true when observing the impact on profit by generation technology: low tax rates

have minimal impact, while higher tax rates have more significant impacts. At tax rates of

$0-10/ton, the average impact on profit is within 1.5% for all generation technologies, while

for tax rates of $10-100/ton, relaxing the flexibility constraints results in profits on average

102% higher for coal generators, and 5-6% lower for all other generation technologies.

3.5.5 Impact on Investment Decisions

As can be seen in Fig. 3.14(a), larger emissions reduction targets lead to higher average LMPs,

which translates to a better value proposition for investing in new non-coal generation (as

shown in Fig. 3.14(b), the carbon tax reduces profit by coal generators). For example, at a

target emissions reduction of 5%, the profit for wind generators is 17% higher as compared to

the zero-tax solution; at a target of 10%, the profit is 33% higher. In the New Gas Generator
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Figure 3.14: (a) Average LMPs for buses b1-b8 as a function of desired emissions reduction,
and (b) Profit by fuel as a function of desired emissions reduction.

scenario, the new generator makes 12% more profit at an emissions reduction target of 10%;

at a target reduction of 5%, no tax is required.

Along with higher LMPs, emission reduction targets also result in increased congestion

surplus, improving the value proposition for investments in new transmission. At a target

GHG reduction of 5%, the congestion surplus is increased by 9.5%; at a 10% target the

surplus is increased by 16.1%. Congestion surplus as a share of total cost remains relatively

constant, however: 20.6% in the zero-tax case, 20.4% in the 5% target case, and 19.6% in

the 10% target case.

In addition to higher average LMPs, there is also an increase in the variability of LMPs,

which improves the value proposition for grid-scale energy storage devices, consistent with

findings in [133]. At a 5% emissions reduction target, the average LMP for each bus is 35-
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Figure 3.15: Energy by fuel as a function of tax rate.

60% higher (average of 46%), while the standard deviation of LMPs for each bus is 101-113%

higher. However, while investments in wind and gas generation tend to reduce emissions (and

therefore the tax rate required to meet emissions targets), the impact of energy storage is

much less clear [134].

3.5.6 Coal Generators and Market Share

As would be expected, as the desired emissions reduction and the tax rate required to achieve

this reduction both increase, the share of energy which is provided by coal and the profit

made by coal generators both decrease, as can be seen in Figs. 3.14(b) and 3.15. These

reduced profits may lead to earlier coal generation retirement and reductions in coal mining

employment [135]. However, strategic investments in new wind generation and transmission

network expansion both allow emissions targets to be met with a lower tax rate compared

to the base case, and increase the profit of coal-powered generators, as shown in Table 3.1.

Additionally, emissions taxes which are set based on emissions targets increase the incentive

for owners of coal-powered generation to invest in renewable generation, since the increased

profits for coal generators caused by a lower tax rate provides an ‘extra’ revenue stream.
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Table 3.1: Coal profit dependence on investments, 5% reduction target, given increases in
wind penetration or transmission capacity

Scenario Additional Coal

Profit ($)

Additional Wind

Profit ($)

% Increase

(coal/wind)

+10% Wind 24,212 77,336 31.3%

+20% Wind 62,170 140,276 44.3%

+10% Trans. 22,835 N/A N/A

+20% Trans. 131,112 N/A N/A

3.6 Conclusion

The Weighted Sum Bisection method can be efficiently applied to the problem of determining

the optimal tax rate to meet a given emissions target, and has been shown to be compatible

with uncertainty in weather, demand, fuel prices, and generation fleet. In addition to changing

short-term generator commitment and dispatch, pricing carbon for emissions targets is also

associated with several longer-term effects.

Higher prices for electricity reduce overall demand and increase the value proposition for

investment in new cleaner generation, transmission, and grid-scale energy storage, as well

as technologies which generate or consume electricity more efficiently. Carbon capture and

sequestration projects also become more attractive. Conversely, investment in these resources

reduces the tax rate required to achieve certain emissions targets.

In addition, carbon pricing collects revenue which can be used to invest in projects to

reduce GHG emissions, adapt to climate change, and/or provide economic relief to commu-

nities which are negatively impacted by taxation of carbon, such as those heavily reliant on

coal-mining. This revenue stream could also be used to offset tax reductions elsewhere to

obtain revenue neutrality.



69

3.7 Subsequent Work

Subsequent work which has built on the approach presented in this chapter includes:

• Milyani and Kirschen [136], that extends the tax-setting methods in this chapter to

include both a tax rate and targeted subsidies; this paper shows that the revenue-

neutral combination of taxes and subsidies can achieve given emissions reductions at

drastically lower tax rates, compared to tax rates alone.

• Pereira et al. [137], that extends the tax setting methods in this chapter to include

tax rate trajectories and generation and transmission expansion planning; this paper

shows that near-term tax rates improve the capacity of power systems to operate with

lower emissions in future years, by incentivizing the construction of additional lower-

emissions equipment.

Nomenclature

Sets and Indices

A Set of representative days, indexed by a.

B Set of transmission network buses, indexed by b.

I Set of generating units, indexed by i.

L Set of transmission lines, indexed by l.

R Subset of renewable generators (R ⊂ I).

S Set of generator power output blocks, indexed by s.

T Set of time intervals, indexed by t or τ .
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Parameters

bi,s Marginal cost of block s of generator i ($/MWh).

Cmin
i Minimum cost of generator i ($/h).

Csu
i Start-up cost of generator i ($).

db,t,a Demand at bus b, time t, day a (MW).

dramp
t,a Load ramp requirement at time t, day a (MW/h).

Emax Regulator’s GHG emission target (tons).

Emin
i Minimum GHG emissions of generator i (tons/h).

Esu
i Start-up GHG emissions of generator i (tons).

fmax
l Capacity of transmission line l (MW).

gmax
i Maximum power output of generator i (MW).

gmin
i Minimum power output of generator i (MW).

gmax
i,s Maximum power output of block s, generator i (MW).

gdown
i Minimum down-time of generator i (h).

gup
i Minimum up-time of generator i (h).

hi,s Marginal GHG emissions of block s, generator i (tons/MWh).

mline
l,b Line connection map. mline

lb = 1 if line l starts at bus b, = −1 if line l ends in bus b,
0 otherwise.

munit
i,b Unit map. munit

i,b = 1 if generator i is located at bus b, 0 otherwise.

PCO2 GHG emissions tax rate ($/ton-CO2e).

P load Load shed penalty ($/MWh).

P ren Renewable generation shed penalty ($/MWh).
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rdown
i Maximum down-ramp rate of generator i (MW/h).

rup
i Maximum up-ramp rate of generator i (MW/h).

wdown
t,a Wind down-ramp requirements at time t, day a (MW/h).

wup
t,a Wind up-ramp requirements at time t, day a (MW/h).

xl Reactance of line l (Ω).

πa Probability of day a.

Variables

Cgen System operator’s generation cost ($).

Cshed System operator’s shed cost ($).

Ea GHG Emissions for day a (tons).

Etotal Total GHG emissions (tons).

fl,t,a Power flow on line l, time t, day a (MW).

gi,t,a Power output of generator i, time t, day a (MW).

gi,s,t,a Power output of generator i, block s, time t, day a (MW).

sload
b,t,a Load shed at bus b, time t, day a (MWh).

sren
b,t,a Renewable generation shed at bus b, time t, day a (MWh).

ui,t,a Binary variable for the commitment status of generator i, time t, day a.

vi,t,a Binary variable for the start-up of generator i, time t, day a.

zi,t,a Binary variable for the shut-down of generator i, time t, day a.

θb,t,a Voltage phase angle of bus b, time t, day a (rad).
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Chapter 4

PLANNING LOW-CARBON CAMPUS ENERGY HUBS

Published as:

Olsen, D. J., Zhang, N., Kang, C., Ortega-Vazquez, M. A., & Kirschen, D. S. (2018). Planning

Low-Carbon Campus Energy Hubs. IEEE Transactions on Power Systems, 34(3), 1895-1907.

4.1 Introduction

Buildings and their occupants require several forms of energy (e.g. electrical, thermal, ki-

netic), each of which can often be supplied via several means. For example, thermal energy

can be delivered via district heating or via conversion from electricity or natural gas. By con-

sidering all energy requirements and equipment of a multiple-energy system simultaneously,

overall operation can be improved; this modeling approach is often referred to as using energy

hubs [138], which create algebraic representations of energy flows into, out of, and within a

system for the purpose of optimization. Operational improvements can be measured in terms

of cost, reliability, environmental impact, or other metrics. For example, an energy hub may

have electricity and natural gas as inputs, require electricity and heat as output, and have

a heat pump and a combined-heat-and-power (CHP) unit as energy conversion equipment.

An optimization for cost may result in sourcing heat primarily from natural gas via the CHP

unit, while an optimization for local air-quality may result sourcing heat primarily form

electricity via the heat pump. Optimization of energy hub scheduling considering the Pareto

frontier of cost/emissions tradeoffs is presented in [139].

Because energy flows in an energy hub are constrained by planning and construction

decisions as well as the selection of equipment type and capacity, these decisions have a long-

lasting impact. The design of an entirely new multiple-energy system is sometimes known
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as greenfield design. Energy hub models for the optimization of planning and operation of

multiple-energy systems have been developed at the building [140, 141, 142, 143], district [144,

145, 146], and regional [147] scales. An energy hub framework which incorporates building

equipment and plug-in hybrid electric vehicle charging to respond to frequency control is

presented in [148]. A review of energy hub models and other related modeling frameworks

(e.g. microgrids) can be found in [149].

Several papers have investigated simultaneous optimization of planning and operation

in energy hubs while considering carbon emissions. Considering carbon emissions as an ad-

ditional objective to be minimized creates a Pareto frontier of solutions which trade off

emissions reductions for cost increases, and vice versa. The full Pareto frontier of cost and

emissions can be sampled using the ε-constraint method [142, 144, 145], or if the set of

potential technologies is small, the results for all combinations can be explicitly calculated

[143]. Evins [141] presents a multi-level model where building and energy hub variables are

optimized in the upper-level while operation variables (including binary variables for fuel cell

status) are optimized in the lower level. Solutions are found using a non-dominated sorting

genetic algorithm in order to trace out the Pareto frontier.

Another approach to sampling the Pareto frontier is a linear weighting factor, which can

find points on the convex hull of the frontier. In this context, the weighting factor is a price

for carbon emissions. Regulatory imposition of a price on externalities improves overall social

welfare [8], and is one approach to avoiding a ‘tragedy of the commons’ outcome where indi-

vidually rational decisions result in a socially-suboptimal solution compared to a cooperative

approach [150]. Carbon pricing is increasingly common [19], and can be implemented via a

real price (a tax or an emissions-trading scheme) or a mandate to consider the social cost of

carbon (SCoC) in planning decisions [151, 152, 153].

The motivation for this paper is to bridge perceived gaps in the existing literature: a),

a mixed-inter linear program (MILP) model for planning and incentivizing low-carbon en-

ergy hubs, considering an independent operator that may not share the low-carbon goals

of planners, and b) incentivization of low-carbon goals via an optimized price for carbon.
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Picard and Helsen [143] evaluate only a limited number of possible equipment combinations

in order to be able to evaluate all of their costs and emissions. Several authors [142, 144, 145]

build MILP models, but without an independent operator. Therefore the derived solutions

could satisfy the emissions constraints, but may not in practice. Evins [141] incorporates an

independent, emissions-indifferent operator, but their approach utilizes an external building

simulation (EnergyPlus) and candidate solutions are found via a genetic algorithm, so the

quality of the best currently-found solution relative to the true optimum is unknown.

This paper extends the analysis of low-carbon energy hub design to include two strategic

considerations. The first makes investment decisions while accounting for a hub operator

that may ignore emissions-reduction goals, and the second decides carbon prices to induce

lower-emission investment and operation decisions. The underlying greenfield energy hub

model is also enhanced. Specifically, this paper makes the following contributions:

• The formulation of four different frameworks for optimizing low-carbon energy hub in-

vestment and operation, to account for differences in policy and market structures: Sin-

gle Builder-Operator, Bi-level Regulator/Builder-Operator, Bi-level Builder/Operator,

and Tri-level Regulator/Builder/Operator.

• An expanded investment optimization problem, including on-site renewable generation,

grid capacity costs, and storage for each energy type.

• A new formulation of the greenfield energy hub operation model using the concept of

energy buses. This formulation simplifies the investment optimization problem without

loss of accuracy.

The rest of this chapter is organized as follows: Section 4.2 describes the various opti-

mization perspectives present in each framework, Section 4.3 describes the formulation of the

energy hub model, Section 4.4 describes the techniques used to reformulate the multi-level

frameworks into more tractable forms, Section 4.5 describes a case study, Section 4.6 presents
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results, Section 4.7 discusses implications, and Section 4.8 concludes. A nomenclature section

follows at the end of the chapter.

4.2 Low-Carbon Design Frameworks

A strategy for controlling operational carbon emissions when planning equipment invest-

ments for a greenfield energy hub depends on the answers to two fundamental questions:

1. Does the hub operator share the hub builder’s goal to reduce carbon emissions?

2. Are carbon emissions controlled via an explicit constraint or a carbon price set to meet

a given target?

The answers to these questions determine the four possible frameworks defined below and

illustrated in Fig. 4.1.

• Framework 1: Single Builder-Operator, Emission-Constrained: A single entity

designs and operates the hub at or below a given emissions target.

• Framework 2: Bi-Level Regulator/Builder-Operator, Carbon Tax: A regu-

latory agency sets a carbon tax rate, such that a builder-operator’s minimum-cost

investment and operation solution results in emissions at or below a given emissions

target.

• Framework 3: Bi-Level Builder/Operator, Emission Constrained: A builder

makes hub investment decisions, considering the overall cost of constructing and oper-

ating the hub, such that the minimum-cost operation results in emissions at or below

a given emissions target.

• Framework 4: Tri-Level Regulator/Builder/Operator, Social Cost of Car-

bon: A regulatory agency sets a Social Cost of Carbon (SCoC) rate, to reduce emissions

to or below a certain target. The builder makes hub investment decisions considering
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the overall cost of constructing and operating the hub as well as the social cost of carbon

emissions. The hub is independently operated based on a minimum cost-solution.

builder & operator

singular distinct

carbon constrained Framework 1 Framework 3

carbon tax Framework 2 Framework 4

Figure 4.1: Taxonomy of low-carbon investment and design frameworks

Each framework represents a different policy strategy that a regulator may have available

for controlling carbon emissions. Each framework results in a distinct optimization formu-

lation, with a distinct Pareto frontier of cost/emissions tradeoffs. Framework 1 represents

the most efficient scenario, where a regulator can set an emissions limit and the builder and

operator will work together to achieve it. Framework 2 represents the case where the reg-

ulator cannot dictate an emissions limit to the hub builder, but can set a carbon tax rate.

Generally, higher tax rates are politically unpopular and increase the rate of tax evasion

[108]. Therefore for the purposes of this framework, the regulator wants to minimize the tax

rate (maximum likelihood of political feasibility), subject to the constraint that the chosen

tax rate, if implemented, will result in meeting the emissions target. Framework 3 represents

the case where the regulator sets an emissions limit and mandates that the builder chooses

equipment such that the emissions constraint is robust to an operator that may decide to

ignore emissions in favor of cost savings. Framework 4 is similar to Framework 3, except that

the regulator cannot dictate an emissions limit to the hub operator, but can mandate that

the builder consider a SCoC rate when deciding equipment investments. Each framework is

further discussed in the following subsections.
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4.2.1 Common Framework Definitions

Common between all framework formulations are the energy hub network constraints de-

scribed in Section 4.3, as well as the definitions of the investment cost, operating cost,

revenue, and emissions given in (4.1)-(4.4), respectively. Eq. (4.1) defines the total invest-

ment cost C invest in terms of the investment quantity variables multiplied by each variable’s

per-unit cost. The annual operating cost Coperate
y depends on the grid power purchases and

the fuel prices in each time period (4.2). The annual operating revenue Roperate
y depends on

the grid power exports and the feed-in prices in each time period (4.3). Finally, the annual

carbon emissions Eoperate
y depend on the grid power purchases and the carbon intensity of

each fuel in each time period (4.4).

C invest :=
∑
m∈M

Ccap
m Pmax

m +
∑
g∈GC

Cunit
g Ig

+
∑
g∈GS

(
Cpower
g Dmax

g + Cenergy
g Qmax

g

)
(4.1)

Coperate
y := 365

∑
s∈S

πs
∑
t∈T

∑
m∈M

fm,s,t,yPm,s,t,y∆t (4.2)

Roperate
y := 365

∑
s∈S

πs
∑
t∈T

∑
m∈M

hm,s,t,yrm,s,t,y∆t (4.3)

Eoperate
y := 365

∑
s∈S

πs
∑
t∈T

∑
m∈M

em,s,t,yPm,s,t,y∆t (4.4)

4.2.2 Framework 1: Single Builder-Operator

The single builder-operator model features builder-operator coordination and an explicit

carbon constraint, as shown in Fig. 4.2(a). The objective function is the net-present cost of

building and operating the hub (4.5); Eqs. (4.5)-(4.7) formalize this problem.
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Builder-Operator’s Problem

Min. equipment and operate cost
subject to:

Operating constraints

Regulator’s Problem

Minimize tax rate
subject to:

Emissions constraint

Tax rate Emissions

(b)

Operator’s Problem

Minimize operating cost
subject to:

Operating constraints

Builder’s Problem
Min. equipment and operate cost
subject to:

Emissions constraint
Operations from lower level

Equipment Emissions

(c)

Operator’s Problem
Min. operating cost

subject to: Operating constraints

Regulator’s Problem
Min. Social Cost of Carbon rate

subject to: Emissions constraint

SCoC

Builder’s Problem
Min. equipment, operation, and 

emissions cost
subject to: Operating constraints

Equipment Emissions

(d)

Builder-Operator’s Problem

Min. equipment and operate cost

subject to:
Operating constraints
Emissions constraint

(a)

Emissions

Figure 4.2: Low-carbon design frameworks: (a) Single Builder-Operator, (b) Bi-level
Regulator/Builder-Operator, (c) Bi-level Builder/Operator, and (d) Tri-level Regula-
tor/Builder/Operator.

minC invest +
Y∑
y=1

(
Coperate
y −Roperate

y

)(
1 + i

)y (4.5)

subject to:

Network constraints: (4.22)-(4.30) (4.6)

Eoperate
y ≤ Emax ∀y ∈ Y (4.7)

4.2.3 Framework 2: Bi-Level, Regulator/Builder-Operator

The bi-level regulator/builder-operator problem features builder-operator coordination and

a carbon price set by an upper-level regulator, as shown in Fig. 4.2(b). Eqs. (4.8)-(4.12)

formalize this problem. In this framework, the regulator’s objective is to find the minimum

tax-rate PCO2 (4.8) such that emissions are at or below a target (4.9) when the builder-

operator independently minimizes its net-present cost of building and operating the hub

(4.10)-(4.12) based on the tax-rate.
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minPCO2 (4.8)

subject to:

Eoperate
y ≤ Emax ∀y ∈ Y (4.9)

Eoperate
y ∈ arg min

I,Pmax,Dmax,Qmax,V ,Q,r

{
C invest +

Y∑
y=1

(
Coperate
y −Roperate

y + T operate
y

)(
1 + i

)y (4.10)

subject to:

T operate
y = max

(
PCO2Eoperate

y , 0
)
∀y ∈ Y (4.11)

Network constraints: (4.22)-(4.30)
}

(4.12)

The annual tax bill for carbon emissions T operate
y is constrained to be non-negative in

(4.11); otherwise, at high tax rates the lower-level problem can become unbounded. This can

occur if there is at least one time period with negative marginal emissions of electricity, a

condition that can be caused by transmission grid congestion.

4.2.4 Framework 3: Bi-Level, Builder/Operator

The bi-level builder/operator problem features no builder-operator coordination and an ex-

plicit carbon constraint, as shown in Fig. 4.2(c). Eqs. (4.13)-(4.16) formalize this problem.

The builder’s objective is to minimize the overall construction and operating cost (4.13) such

that the emissions are at or below a target (4.14) when the operator independently minimizes

its operating cost (4.15) subject to hub constraints (4.16).
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min
I,Pmax,Dmax,Qmax

C invest +
Y∑
y=1

(
Coperate
y −Roperate

y

)(
1 + i

)y (4.13)

subject to:∑
s∈S

πsE
operate
s,y ≤ Emax ∀y ∈ Y (4.14)

Coperate
s,y , Eoperate

s,y , Roperate
s,y ∈ arg min

V ,Q,r

{
Coperate
s,y −Roperate

s,y (4.15)

subject to:

Network constraints: (4.22)-(4.30)
}
∀s ∈ S, y ∈ Y (4.16)

4.2.5 Framework 4: Tri-Level, Regulator/Builder/Operator

The tri-level Regulator/Builder/Operator problem features no builder-operator coordination

and a price to be set for the Social Cost of Carbon, SCoC (Y/ton), as shown in Fig. 4.2(d).

Eqs. (4.17)-(4.21) formalize this problem. The regulator’s objective is to minimize the SCoC

(4.17) such that the builder, when minimizing the combined cost of investment, operation,

and carbon (4.19), and the operator, minimizing its operating cost (4.20) subject to energy

hub constraints (4.21), result in annual emissions below a given target (4.18). Note that

the SCoC is not a cost that necessarily needs to be paid, as long as it is considered in the

builder’s objective function.
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minSCoC (4.17)

subject to:∑
s∈S

πsE
operate
s,y ≤ Emax ∀y ∈ Y (4.18)

Eoperate
s,y ∈ arg min

I,Pmax,Dmax,Qmax

{
C invest +

Y∑
y=1

[(
Coperate
y −Roperate

y

)(
1 + i

)y + SCoC · Eoperate
y

]
(4.19)

subject to:

Coperate
s,y , Eoperate

s,y , Roperate
s,y ∈ arg min

V ,Q,r

{
Coperate
s,y −Roperate

s,y (4.20)

subject to:

Network constraints: (4.22)-(4.30)
}
∀s ∈ S, y ∈ Y

}
(4.21)

4.3 Energy Hub Model Formulation

The energy hub operational model assumes a greenfield design, where the topology of the

network is not predefined [146], with enhancements to reduce dimensionality and include

additional investment decisions. In the greenfield model in [146], there is a branch between

every combination of device output port and device input port which handle the same energy

type. For that formulation, the number of branch flow variables grows with the number of

devices at a rate of O(n2).

By contrast, this formulation introduces the concept of energy buses. Each energy bus is

positioned such that any sources of this energy (i.e., from hub input ports and from converters

and storage devices) flow directly into this bus, and any sinks of this energy (to hub output

ports and to converters and storage devices) are fed directly from this bus. Therefore, the

number of branch flow variables is reduced when compared to a formulation where every

source can connect to every sink; O(n) vs. O(n2). Fig. 4.3 shows the resulting network
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Natural
Gas

District
Heat

Electricity

PV

Heat

Electricity

Cooling

bus
bus

bus

bus

storage

storage

storage

storage

AB

CERG

WARGCHP

HP

EB

PTG

Figure 4.3: Network topology. Abbreviations: auxiliary boiler (AB), compression expansion
refrigeration group (CERG), combined heat and power (CHP), electric boiler (EB), heat
pump (HP), power-to-gas (PTG), water absorption refrigeration group (WARG).

topology.

In addition to the converters in [146], investment decisions include on-site distributed

renewable generation, the provision of grid import/export capacity, storage for all energy

types, and the inclusion of power-to-gas equipment [154]. Since CO2 is an input to the

power-to-gas process, gas which is created using this process and burned is CO2-neutral,

though the electricity used during the conversion process may not be. For the considered

devices, connecting all compatible input and output ports for electricity flows would require

23 branches, while introducing energy buses enables the same functionality with only 10

branches.

For a given energy hub, the operating decision variables are the branch flows V t, the state

of charge for the storage devices Qt, and the grid export rt. Eqs. (4.22)-(4.30) constrain the

values of these decision variables. The dual variable associated with each constraint is shown

in parentheses.
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ZV t = 0 ∀t ∈ T (αp,t) (4.22)

Qg,t = Qg,t−1 − JgAgV t∆t ∀g ∈ GS, t ∈ T (βg,t) (4.23)

0 ≤ Qg,t ≤ Qmax
g ∀g ∈ GS, t ∈ T (γ

g,t
, γg,t) (4.24)

JgAgV t ≤ Dmax
g Ig ∀g ∈ GC, t ∈ T (ζg,t) (4.25)

−Dmax
g ≤ JgAgV t ≤ Dmax

g ∀g ∈ GS, t ∈ T (κg,t, κg,t) (4.26)

Pm,t := UV t ≤ Bm,tP
max
m ∀m ∈M, t ∈ T (ρm,t) (4.27)

WV t = Lm,t + rm,t ∀m ∈M, t ∈ T (µm,t) (4.28)

0 ≤ rm,t ≤ Pmax
m ∀m ∈M, t ∈ T (φ

m,t
, φm,t) (4.29)

0 ≤ KlVl,t ∀t ∈ T, l ∈ L (σl,t) (4.30)

∀s ∈ S, y ∈ Y

Eq. (4.22) expresses the conservation of power in all converters, storage devices, and

energy buses using a connection and efficiency matrix Z [146]. The state of charge for these

storage devices is tracked in (4.23) and bounded by energy capacities in (4.24). Power flows

through each converter are constrained by (4.25) and through each storage device by (4.26).

Eq. (4.27) constrains hub input flows based on grid connection capacity and time-varying

power availability, while (4.28) relates hub output flows to end-use power demand and power

exports and (4.29) ensures that power exports do not exceed the grid connection capacity.

Eq. (4.30) ensures that the directionality of branch flows is maintained, except for state of

charge branches which are bi-directional.

Eqs. (4.22)-(4.30) apply for each representative day, during each year. Therefore an ad-

ditional two dimensions (s and y) are added to variables V t, Qt, and rt and to parameters

Bm,t and Lm,t; Eqs. (4.22)-(4.30) then apply ∀s ∈ S, y ∈ Y .
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4.4 Multi-Level Reformulation Techniques

Two techniques are used to solve the multi-level optimization problems presented in Sec-

tion 4.2. The first technique constructs a single-level equivalent MILP from the bi-level

Builder/Operator problems of Frameworks 3 and 4. There are two steps to this technique:

first a non-linear single-level equivalent is constructed (Section 4.4.1), and then it is approx-

imated by a MILP formulation (Section 4.4.2).

The second technique solves the minimum carbon-price problem with an upper-level

regulator and a lower-level non-convex builder-operator using the bisection method (Section

4.4.3). This technique is used in Framework 2 and Framework 4, after a single-level equivalent

is constructed.

For each framework, since the operation problems for each day are independent, the

problem can be decomposed using Benders’ Decomposition [155]: the investment variables are

solved in the master problem and each day’s operational variables are solved in a subproblem.

4.4.1 Constructing a Single-Level Equivalent for the Distinct Builder and Operator Case

An independent cost-minimization problem for the operator must be solved for each repre-

sentative day s of each representative year y. For investment problem formulations where

the builder and the operator are distinct, the builder must anticipate the emissions resulting

from these cost-minimization decisions to make its investment decisions; this ensures that

the emissions constraints can be satisfied or the social cost of GHG emissions can be appro-

priately considered in the objective. Since the operator’s cost minimization problem is linear

and therefore convex, the strong duality theorem can be used to constrain the variables in

the operator’s problem (the most relevant of which are the resulting cost and emissions) to

only the set of cost-minimizing values [127].

The dual problem is defined in terms of the dual variables of the constraints (4.22)-(4.30)

and the parameters of the original primal problem. The dual objective is given in (4.31) with

feasibility constraints corresponding to each primal variable given in (4.32) for Qt, (4.33) for
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rt, and (4.34) for V t, with dual variable domains given in (4.35).

max
α,β,γ,ζ,κ,ρ,µ,φ,σ

ĈDLL :=
∑
t∈T

{ ∑
g∈GC

(
−DgIgζg,t

)
+
∑
g∈GS

(
−Qmax

g γg,t −Dmax
g

(
κg,t + κg,t

))
+
∑
m∈M

(
−Lm,tµm,t − Pmax

m

(
Bm,tρm,t + φm,t

))}
(4.31)

subject to:

βg,t − βg,t+1 + γg,t − γg,t = 0 ∀g ∈ GS, t ∈ T (4.32)

φm,t − φm,t − hm,t∆t− µm,t = 0 ∀m ∈M, t ∈ T (4.33)∑
m∈M

[
Um,l

(
fm,t∆t+ ρm,t

)
+Wm,lµm,t

]
+
∑
p∈P

{∑
g∈GS

[
Jg,pAp,l

(
∆tβg,t + κg,t − κg,t

)]
+
∑
g∈GC

Jg,pAp,lζg,t

}
+
∑
p∈P out

(
Zl,pαp,t

)
−Klσl,t = 0

∀l ∈ L, t ∈ T (4.34)

γ, γ, ζ, κ, κ, ρ, φ, φ, σ ≥ 0 (4.35)

Therefore, the power flows within the energy hub on a given day can be constrained

to the values that would result from a hub operator’s cost minimization using the primal

feasibility constraints (4.36), the dual feasibility constraints (4.37), and the strong duality

constraint (4.38), and the problem can simultaneously consider the upper-level objective and

constraints of the regulator.

Eqs. (4.22)-(4.30) (PLL feasibility) (4.36)

Eqs. (4.32)-(4.35) (DLL feasibility) (4.37)

ĈPLL := Coperate −Roperate = ĈDLL (Strong duality) (4.38)
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4.4.2 MILP Approximation of Non-Linear Strong Duality Constraint

Although the hub operator’s cost-minimization problem, its dual problem, and the strong

duality constraint are all linear in terms of the lower-level primal and dual variables, the

strong duality constraints are non-linear when the equipment capacities are included as

decision variables. To avoid the difficulty of solving a Mixed Integer Non-Linear Problem

(MINLP), these equipment capacity variables can be discretized in order to convert the

problem to a more tractable MILP version.

The continuous variables Pmax
g , Qmax

g , Dmax
g , and the integer variables Imax

g are approx-

imated by a series of binary variables using (4.39)-(4.42). Rather than having each binary

variable represent a single unit of capacity, a binary counting approach is used, where each

binary variable represents one digit of a binary representation of an integer number, as shown

in Fig. 4.4. In this way, a relative step size of 1/2n is possible with only n binary variables

for each continuous variable (e.g., a step size of 0.1% for 10 binaries). This method im-

plicitly creates bounds on the approximated continuous variables, since each approximated

value can only range from the value represented by {0, 0, . . . , 0} to the value represented by

{1, 1, . . . , 1}. Therefore, the values of the step sizes must be chosen carefully.

Pmax
g ≈

N∑
n=0

2nxa
m,n∆Pg ∀m ∈M (4.39)

Qmax
g ≈

N∑
n=0

2nxb
g,n∆Qg ∀g ∈ GS (4.40)

Dmax
g ≈

N∑
n=0

2nxc
g,n∆Dg ∀g ∈ GS (4.41)

Imax
g ≈

N∑
n=0

2nxd
g,n ∀g ∈ GC (4.42)

Using (4.39)-(4.42), the non-linearity in the strong duality constraint is therefore reduced

to only products of binary and continuous variables. These non-linear products are approxi-

mated using the big-M technique [156], resulting in strong duality constraints that are MILP
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681 = 29 + 27 + 25 + 23 + 20

= 1 0 1 0 1 0 1 0 0 1

Figure 4.4: Binary representation of 681. 10 bits can represent 1024 values.

rather than MINLP. For computational performance, it is standard practice to choose the

values of M such that they are as small as possible while still allowing for the full range of

values for the continuous variables [95]. Since the dual variables for the network constraints

are related to the price of input energy flows, scaling energy prices (and therefore big-M

values) may improve performance.

4.4.3 Determining a Minimum Carbon Tax using the Bisection Method

Incorporating a carbon price in the lower-level builder-operator problem is an instance of

using a linear weighting factor to optimize trade-offs between multiple competing objectives.

In this case, these objectives are the operating emissions and the sum of investment and

operating costs. By varying the carbon price (PCO2 or SCoC), the Pareto frontier is sampled

at points which lie on the convex hull of the cost/emissions solution space [119]. Since the

lower-level builder-operator problem is non-convex due to the inclusion of binary variables,

the minimum-carbon-price solution which satisfies an emissions constraint may result in a

total investment and operating cost that is higher than could be found using an ε-constraint

method (Frameworks 1 & 3). However, the resulting emissions would also be lower.

Since the upper-level price-setting problem minimizes a single continuous variable (the

tax rate), and the resulting emissions from the lower-level problem are monotonically non-

increasing with respect to an increasing tax rate, the problem can be solved to within a

specified tolerance by the bisection method, as shown in [53].
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4.4.4 Computational Complexity

Since the performance of MILP solvers depends on the number of variables and constraints

in a model, the number of variables of each type are listen in Table 4.1, where set names

are used to represent the number of elements in the set. These expressions can be used to

balance the accuracy of different model elements when computation time and/or available

memory are an issue.

Table 4.1: Computational Complexity

# of integer variables M + 2GS +GC

# of binary variables NAM +GS
(
NB +NC

)
+NDGC

# of continuous variables STY
[
2L+ 6GS + 5M + P out +GC

+2MNA + 2GS
(
NB +NC

)
+GCND

]
# of constraints STY

[
2L+ 6GS + 5M + P out +GC

+6MNA + 6GS
(
NB +NC

)
+ 3GCND

]

4.5 Case Study

4.5.1 Parameters

This case study considers the construction of a new subsidiary administrative center in the

Tongzhou region of Beijing. Fuel prices and converter parameters are taken from [146], with

electricity being bought-back at 85% of the off-peak price. A power-to-gas converter is added,

with an assumed capacity of 100 MW at a cost of 40 MY [157]. Increased prices of electricity

during peak periods are in force from June 1st to September 31st. District heating is assumed

to be available only from November 15th to March 15th each year. Heating, cooling, and

electricity demand patterns as a function of outdoor temperature are adapted from [158].

Solar generation profiles and temperatures for Beijing are obtained from NREL’s Typical

Meteorological Year dataset [159]. The optimization horizon is 20 years, with fuel prices
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increasing at 2% per year, energy demands at 4%, and a 10% discount rate. All investments

are made at year zero.

Input capacity is assumed to cost 100 kY/MW for each fuel, and PV capacity is assumed

to cost 5 MY/MW. Electricity storage capacity is assumed to cost $1000/kW and $50/kWh

[160]. Thermal storage capacity is assumed to cost $25/kW and $25/kWh [161]. Bulk LNG

storage capacity costs approximately $250/MWh [162] and $20,000/MW [163] (converted

from tons, and tons/year). Since a campus-scale LNG facility is smaller than the export-

scale facilities in [162, 163], specific costs are assumed to be greater by a factor of 10. All

calculations are conducted in Y, at a rate of 6.6 Y/$.

The carbon intensity of the district heating system is assumed to be 0.3 t/MWh [164]. The

carbon intensity of natural gas is taken as 0.181 t/MWh, based on the chemical composition

of methane. The carbon intensity of grid power is time-varying, based on the characteristics

of the marginal generators [165]. For this case study, a range of marginal emission rates is

obtained by running unit commitment problems for a modified ISO-NE test system [121],

with wind generation providing 15% of the annual energy consumption.

Since solving the planning problem while modeling operations for each day of the year

entails an excessively high amount of computation, a subset of representative days are selected

using a modified k-means algorithm, where discrete variables are preserved and distances

from clusters are evaluated based on the Z-score for each time-varying parameter. For this

case study, a k value of 10 was chosen because it appears to balance computational complexity

with descriptiveness, with at least one time period of negative marginal emissions. Short-

term marginal emissions can be zero due to renewable spillage, or even negative due to

transmission congestion.

4.5.2 Solution Methods

The model is implemented in GAMS 25.0 [94] and solved using CPLEX 12.8 [95] on machines

with at least 16 cores, each running at at least 2 GHz, with at least 64 GB of RAM.

Using this combination of hardware and software, progress on closing the optimality
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gap can be slow for the distinct builder/operator frameworks (Frameworks 3 and 4), as

these problems are in general NP-hard [166]. Progress of branch and cut (B&C) solvers can

generally be improved by providing the solver with a feasible warm start, to provide an

upper limit for pruning branches and as a starting point for relaxation induced neighbor

search heuristics [167]. A feasible solution for a problem with a given Emax can be used as a

warm start for a problem with any greater value of Emax (a relatively relaxed problem).

Due to the binary representation of integer variables described in Section 4.4.2, solutions

representing ‘adjacent’ integer values can be very different in terms of their binary compo-

nents, and vice versa, which may hinder the effectiveness of neighbor-search heuristics built

into B&C solvers. Therefore, a branch-and-cut-and-heuristic [168] process is implemented,

in which incumbent solutions are periodically output to an accompanying heuristic which

attempts to find a better feasible candidate to return to the B&C solver.

For a candidate solution with Eoperate < Emax, the set of adjacent solutions are first

enumerated by perturbing the value of integer investment variables by one capacity step

and then calculating the binary variable representation a priori. These candidate adjacent

solutions (‘neighbors’) are then evaluated for network feasibility, emissions-constraint feasi-

bility, and cost reduction by running the networks constraints (4.22)-(4.30) with investment

variables fixed (an LP). If there are no adjacent solutions which meet the network feasibility

constraint and emissions constraint at lower-cost, the heuristic halts. Otherwise, the feasible

and lower-cost solutions are ranked in terms of their cost reduction per emissions-increase

(neighbors with greater cost-reduction per emissions-increase are deemed ‘better’). From this

subset of neighbors, the ‘best’ candidate is chosen and the heuristic is repeated using that

candidate as a starting point until a candidate is found for which there are no neighbors

which meet the emissions and network feasibility constraints at lower cost. The lowest-cost

emissions-feasible candidate is then returned to the B&C solver as a new incumbent solution.

The computational complexity of these neighbor searches depends on the definition of

‘adjacent’ solutions. If only one investment variable at a time is perturbed, the required

number of LP solves will grow with O(n · ∆E), where n is the number of integer invest-
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ment variables (|M | + |G|) and ∆E is the difference between the emissions at the current

candidate and the emissions target. If instead, neighbors are enumerated by perturbing two

investment variables simultaneously (e.g. the quantity of a particular type of converter is re-

duced while the capacity of a storage device is increased), the number of LP solves will grow

with O(n2 ·∆E); more neighbors are evaluated per heuristic iteration, providing potentially

better performance per iteration at the expense of increased time per iteration.

4.5.3 Sampling the Pareto Frontier

In order to sample the Pareto frontier for the frameworks with direct emissions constraints

(i.e. Frameworks 1 and 3), the minimum cost emissions-unconstrained solution can first be

obtained to determine the baseline emissions, and then a set of emissions-limits can be cal-

culated for a specified resolution (e.g. 100 points for 1% Emax resolution); these independent

emissions-limit problems can then be solved in parallel.

Information from ‘nearby’ solutions can be used to improve knowledge about the op-

timality gap of the best known solution. For a given emissions target problem (A), if a

solution for a tighter emissions-limit problem (B) is found with a lower cost than the cur-

rently best-known solution for problem (A), the cheaper solution from (B) be substituted

for the currently best-known solution for (A), since a solution for a tighter problem (B) is

always valid for a relaxed problem (A). Conversely, for a given emissions target problem (C),

if a better lower bound is found for a more relaxed emissions-limit problem (D) is found, the

lower bound from (D) can be substituted for the lower bound in (C), since the true optimum

for a tightened problem (C) can only be greater than or equal to that of the relaxed problem

(D).

In order to sample the Pareto frontier of the weighted-sum frameworks (i.e. Frameworks

2 and 4), the optimization problem can be solved for a range of carbon prices, i.e. the carbon

tax rate in Framework 2 or the SCoC rate for Framework 4. For a given carbon price, the

best warm start from the set of previously found solutions can be evaluated by calculating

the total cost (investment + operation + total carbon penalty) for the set of currently-known
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solutions, and providing the solver with the lowest total cost solution as a warm start.

Several other solution techniques for bi-objective mixed-integer optimization problems

also exist; [169] presents one based on the ε-Tabu-constraint method and also provides a

review of several others.

4.5.4 Computational Performance

Frameworks 1 and 2 are solved to optimality for all emissions targets. When solving Frame-

work 3, the performance of the MILP solver with the neighbor-search heuristic varies depends

on the specified emissions target. For low emissions reductions targets, the problem can be

solved to optimality; however, for moderate to aggressive targets CPLEX is found to stall

in its progress in closing the optimality gap. For emissions reductions targets of up to 25%,

CPLEX can solve to within 1% optimality gap. For emissions reductions targets of up to

50%, CPLEX can solve to within 6% optimality gap. The worst performance was found at

an emissions reduction target of 72%: progress stalls with an optimality gap of 17%. Sample

optimality gap trajectories are shown in Figure 4.5. Since the solution method for Framework

4 involves iterative solves of Framework 3, it suffers from the same computational challenges.

To reduce the optimality gap further, the complexity of the case study must be reduced

(see Table 4.1), more processing power must be applied to the model, or more time must

be allowed for solver convergence (the latter two of which are typically available to policy

makers).

4.6 Results

Fig. 4.6 shows the total costs of the optimal energy hubs chosen by Frameworks 1-4 as a

function of emissions target. Framework 1 results in the cheapest operating costs for a given

emissions target, because the investment and operational variables are optimized simultane-

ously and there is no cost for emissions. Framework 2 can be significantly more expensive

than Framework 1 for mid-range emissions reduction targets, but at very high emissions

reductions targets this gap approaches zero as the high tax rate incentivizes the lower-level
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Figure 4.5: Optimality gap trajectories for selected emissions targets, Framework 3.

builder-operator to make investment and operating decisions with very low (or zero) carbon

emissions. Framework 3 is not significantly more expensive than Framework 1 at modest

emissions-reduction targets, but at aggressive emissions-reduction targets it is more expen-

sive than both Framework 1 or Framework 2. In order to ensure that emissions decided by

the lower-level operator do not exceed the target, the energy hub infrastructure must be

‘overbuilt’: built to be able to satisfy end-use demands while giving the operator few to

no opportunities to use cheap but carbon-intensive energy sources. For a given emissions

target, Framework 4 is as expensive or more expensive than Framework 3, since all of the

constraints of the distinct Builder/Operator formulation still exist, but the upper-level regu-

lator can only influence the investment decisions indirectly using the SCoC. This also creates

large gaps between adjacent solutions. For example, no solutions are found with maximum

annual emissions between 136 and 186 kilo-tons per year; any emissions target in this range

must be met by imposing a high enough SCoC to result in the (more expensive) 136 kilo-ton

solution.
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Figure 4.6: Comparison of cost/emissions Pareto frontiers for Frameworks 1-4.

4.6.1 Results for Framework 1: Single Builder-Operator

In the single builder-operator framework, the total cost of building and operating the hub

grows from 3.49 BY when emissions are unconstrained (the ‘base case’) to 6.80 BY for a

100% emissions reduction target. Cost components for several milestone emissions targets

are shown in Table 4.2. Much of the change in total cost occurs with aggressive emissions

reductions targets, and consequently moderate emissions reductions targets are possible with

only modest increases in total cost.

Fig. 4.7 shows the lifetime quantity of fuels flowing into the energy hub as a function of

the emissions target. As the emission reduction target increases, the share of energy provided

by electricity and district heat steadily declines. The changes in the costs components and

in the fuel mix are significantly smaller in the 0% to 50% target range than in the 50%

to 100% range. For moderate emissions reductions targets (up to approximately 65%) gas

consumption increases. On the other hand, past this point gas consumption drops quickly, to

virtually zero in the zero-net-emissions case. PV generation increases by only 23% between
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Table 4.2: Framework 1: Costs of solutions as a function of emissions targets

Emissions reduction

target

Total cost

(BY)

Investment cost

(BY)

Net operational

cost (BY)

None 3.49 1.64 1.85

25% 3.52 1.62 1.90

50% 3.62 2.13 1.50

75% 4.35 4.12 0.23

100% 6.80 8.39 -1.59

the base case and a 50% target reduction, but grows by 337% for a 100% target reduction.

Fig. 4.8 shows how the choice of equipment varies as a function of the emissions reduction

target. No matter the desired emissions reduction target, the optimal investment decisions

include at least one 40 MW compression-expansion refrigeration group (CERG), one 100

MW combined-heat-and-power unit (CHP), one 40 MW heat pump (HP), and two 20 MW

water-absorption refrigeration groups (WARG). The investment in CHP peaks at 3 units at

emission reduction targets of 55-65%, as the emissions created by burning gas are less than

the emissions due to importing electricity and heat from the grid. Past this peak, the use of

CHP declines and is replaced by electricity from PV generation and heat from heat pumps.

The combination of HPs and WARGs is less efficient at converting electricity into cooling

than CERGs, but the conversion to heat allows the use of intermediate thermal storage

which is significantly cheaper than electricity storage. Storage allows end-use demands to be

met with lower investments in input capacity and conversion equipment. Electric boilers are

never chosen, and auxiliary boilers and power-to-gas units are only chosen for a few very

aggressive emissions reduction targets.
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Figure 4.9: Costs and emissions as a function of carbon tax rate for Framework 2.

4.6.2 Results for Framework 2: Regulator / Builder-Operator

Fig. 4.9 shows the cost of each objective component and the resulting maximum emissions as

a function of the carbon tax rate for the bi-level regulator/builder-operator framework. The

majority of the emissions reductions are achieved at tax rates between 100 and 10,000 Y/ton

(15-1,500 $/ton). Table 4.3 indicates the tax rates required to achieve selected milestones.

4.6.3 Results for Framework 3: Builder / Operator

Fig. 4.6 and Table 4.4 show that when the hub operator cannot be trusted to cooperate to

achieve emission reduction targets, the hub must be ‘overbuilt’ as compared to the cooper-

ative scenario of Framework 1. For example, a target reduction of 50% in Framework 1 is

achievable with a total cost of 3.62 BY, of which 2.13 BY is for equipment purchases. On the

other hand, when an operator who cares only about operating costs uses these equipment, the

resulting emissions only decrease by 28.5%. To achieve the 50% reduction in Framework 3,
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Table 4.3: Framework 2: Tax rates required to meet emissions goals

Emissions

reduction

target

Tax rate

(Y/ton)

Total

cost

(BY)

Investment

cost (BY)

Net operate

cost (BY)

Emissions

cost (BY)

None N/A 3.49 1.64 1.85 0

5% 52 3.61 1.75 1.85 0.110

10% 112 3.73 1.87 1.86 0.217

25% 358 4.15 2.28 1.88 0.548

50% 842 4.74 3.10 1.64 0.753

75% 2,109 5.35 4.59 0.763 0.548

90% 9,988 6.10 6.21 -0.106 0.408

equipment costing 3.07 BY are needed, with a resulting total cost of 3.89 BY. In effect, lack

of cooperation between the builder and operator are responsible for an overall cost increase

of 7% and an increase of 45% in construction costs.

4.6.4 Results for Framework 4: Regulator / Builder / Operator Framework

When an energy hub builder is forced to consider a social cost of carbon when designing

an energy hub, more money is invested in more-expensive but less-polluting equipment.

Table 4.5 shows the results for several emissions reductions benchmarks. When results from

this emissions pricing framework are compared against results from the regulator/builder-

operator framework (Table 4.3), it can be seen that emissions targets up to 50% can be

realized at a lower total cost. This is due in part to the fact that the builder selects equipment

as if emissions were taxed, but the operator doesn’t actually have to pay the price for their

emissions. At emissions reduction targets of 75% and higher, however, Framework 4 results

in higher costs than Framework 2. Since the operator does not see the price of emissions,

the hub must be ‘overbuilt’ to account for the operator’s indifference toward emissions. The
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Table 4.4: Comparing costs for equivalent targets in Frameworks 1 and 3

Emissions

reduction

target

Framework 1

cost (BY)

Framework 3

cost (BY)

Total cost

increase

Investment

cost increase

25% 3.52 3.57 1.3% 27.5%

50% 3.62 3.89 7.3% 44.6%

75% 4.35 5.30 21.8% 35.7%

100% 6.80 8.14 19.6% 33.8%

result is a hub with high PV capacity and no connection to the district heat or gas networks.

4.7 Discussion

The applicability of a policy framework to reduce carbon emissions from one or more green-

field energy hubs depends on the political-economic structure of the jurisdiction where the

energy hubs are to be built. Framework 1 is the cheapest way to reach a given emissions

target, but relies on the builder and operator’s dedication to meeting the emissions tar-

get, during both construction and operation, when alternative investment and operation

decisions are cheaper. Framework 2 is more effective at economically incentivizing the con-

struction and operation of a hub able to meet emissions targets, because the cost of emissions

is internalized. However, implementing carbon taxes can be politically risky and the total

cost of construction and operation can be significantly higher than with Framework 1, es-

pecially for mid-range emissions reduction targets. Framework 3 is able to achieve emissions

targets without the use of carbon taxes, even when the operator only pursues minimum cost

operation, but the overall cost can be significantly higher for aggressive emissions reduction

targets. Framework 4 is the most complex, but it enables a mandate that a carbon price be

considered in investment decisions without requiring a politically sensitive carbon price to

be paid during operation.
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Table 4.5: Tax rates required to meet emissions goals in Framework 4

Emissions

reduction

target

SCoC

rate

(Y/ton)

Total

cost

(BY)

Investment

cost (BY)

Net operate

cost (BY)

Total SCoC

(BY)

None N/A 3.49 1.64 1.85 0

5% 5 3.50 1.79 1.71 0.034

10% 66 3.55 1.86 1.69 0.363

25% 87 3.58 2.12 1.45 0.448

50% 346 3.92 3.20 0.722 1.242

75% 794 5.49 6.39 -0.896 0.584

90% 2,754 6.31 7.76 -1.44 0.572

Carbon emissions targets are usually pledged on a per-year basis. A constraint on the

maximum annual emissions (whether via an explicit constraint or via a strategic tax) may

only bind against the emissions in a single year. However, the decisions made in order to

meet commitments for the critical year (either infrastructure investment or tax rate) will

also reduce emissions in all other years. Optimizing to constrain lifetime emissions is an

alternate approach that would result in different investment and operation decisions, but is

less compatible with the annual emissions pledges which are most common today.

4.8 Conclusion

This paper describes and illustrates four low-carbon energy hub design frameworks, using a

new formulation of the network constraints for the greenfield energy hub problem. The single-

actor cooperative framework results in the lowest overall cost for any given carbon emissions

target, while the bi- and tri-level problems are more expensive due to the lack of cooperation

from lower-level actors. Using these frameworks, the impact of various policy decisions on

the construction and operation of energy hubs can be investigated. Policy questions which
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can be aided by these frameworks include:

• How should campuses be compensated for electricity exported to the grid, based on

their contributions of energy as well as reductions in grid emissions?

• What secondary effects can be anticipated in response to investments in new grid-scale

electricity and district heat assets, which will change the price and carbon intensity of

grid-sourced energy?

• To what extent do limitations in regional energy transmission reduce the ability of

energy hubs to meet emissions targets, or increase their cost of doing so?

Holistically investigating questions such as these can bring society closer to affordable,

sustainable power systems.

Nomenclature

Abbreviations and Symbols

tCO2e Metric tons of greenhouse gases (GHG) converted to CO2 equivalent.

Y Chinese yuan (RMB).

Sets and indices

G Set of equipment (power conversion and storage devices), indexed by g.

GC Set of power conversion devices (GC ⊂ G).

GS Set of storage devices (GS ⊂ G).

L Set of branch flows, indexed by l.

M Set of energy types, indexed by m.

NA Set of input power capacity discretization binaries, indexed by na.

NB Set of storage energy discretization binaries, indexed by nb.
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NC Set of storage power discretization binaries, indexed by nc.

ND Set of converter count discretization binaries, indexed by nd.

P Set of equipment ports, indexed by p.

P out Set of equipment output ports (P out ⊂ P ).

Pg Set of ports of equipment g (Pg ⊂ P ).

S Set of representative days, indexed by s.

T Set of time periods, indexed by t.

Y Set of years, indexed by y.

Topology Matrices

A Network topology matrix, dimension (P × L). When subscripted, Ag refers to the
rows of the matrix corresponding to the ports of equipment g.

H Converter efficiency matrix, dimension (P out × P ). When subscripted, Hg refers to
the rows of the matrix corresponding to the output ports of equipment g.

J ‘Limiting’ port matrix, dimension (G× P ).

K Branch directionality vector, dimension (L).

U Input port matrix, dimension (M × L).

W Output port matrix, dimension (M × L).

Z Network efficiency matrix, dimension (P out × L).

Topology matrix values are defined in Appendix A.
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Fixed Parameters

Cunit
g Cost of one piece of equipment of energy conversion device g (Y).

Cpower
g Per-unit cost of power for storage device g (Y/MW).

Cenergy
g Per-unit cost of energy for storage device g (Y/MWh).

Ccap
m Cost of input capacity for energy m (Y/MW).

Emax Annual GHG emissions limit (tCO2e).

i Discount rate for calculating net-present value.

∆t Time interval length (hours).

πs Probability of representative day s.

Time-Varying Energy Parameters

Subscripted m,s,t,y for energy m at time t on day s in year y.

B Power availability of input energy relative to its input capacity. For electricity gen-
erated by renewable sources, 0 ≤ Bm,s,t,y ≤ 1. For seasonally available energy flows
(e.g. district heating), Bm,s,t,y ∈ {0, 1}. For all other energy flows, Bm,s,t,y = 1.

e Marginal emissions rate (tCO2e/MWh).

f Input energy price (Y/MWh).

h Grid energy feed-in price (Y/MWh).

L End-use power demand (MW).

Carbon Pricing Variables

PCO2 Tax rate for GHG emissions (Y/tCO2e).

SCoC Social cost of carbon rate (Y/tCO2e).
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Investment Variables

C invest Total investment cost (Y).

Dmax
g Rated power for equipment g, for one piece of equipment for conversion devices, or

total capacity for storage devices (MW).

Ig Number of pieces of equipment purchased for energy conversion device g.

Pmax
m Purchased input power capacity for energy m (Y).

Qmax
g Purchased energy capacity for storage device g (MWh).

Operational Variables

Hub operations during each representative day s in each year y are independent, so these

indices are omitted when possible for brevity.

Coperate Hub operating cost (Y).

Eoperate GHG emissions from hub operation (tCO2e).

Pm,t Power flow into the energy hub from the grid for energy m at time t (MW).

Qg,t State of charge of storage device g at time t (MWh).

rm,t Power flow out of the energy hub to the grid for energy m at time t (MW).

T operate Tax bill for GHG emissions (Y).

Vl,t Power flow within the energy hub for branch l at time t (MW).

Dual Variables

αp,t Dual variable for network power balance constraints at port p during time t.

βg,t Dual variable for conservation of energy constraints for storage device g at time
t.

γ
g,t
, γg,t Dual variables for {lower, upper} state of charge constraint for storage device g

at time t.
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ζg,t Dual variable for maximum power constraints for converter g at time t.

κg,t, κg,t Dual variables for {lower, upper} power constraint for storage device g at time t.

ρm,t Dual variable for input capacity constraints for energy flow m at time t.

µm,t Dual variable for hub outflow constraints for energy flow m at time t.

φ
m,t
, φm,t Dual variables for {lower, upper} grid sales constraint for energy flow m at time

t.

σl,t Dual variable for branch flow non-negativity constraint for branch l at time t.



106

Chapter 5

PROFITABLE EMISSIONS-REDUCING ENERGY STORAGE

5.1 Introduction

Increasing the penetration of renewable energy is a popular solution to decarbonization

of power systems; for example, many jurisdictions have renewable portfolio standards, and

pricing of greenhouse gas (GHG) emissions incentivizes more installation of renewable gener-

ation. However, the most abundant sources of cost-effective renewable energy–wind and solar

photovoltaic–suffer from uncertainty and variability in their power production. Grid-scale en-

ergy storage is often seen as a promising solution for the intermittency of renewable resources,

and therefore a valuable contribution towards broader decarbonization efforts (in combina-

tion with other approaches such as demand response). Unfortunately, while storage can be

used to reduce the carbon intensity of power system operations, studies have shown that

under current market structures and generation mixes the use of energy storage can increase

overall GHG emissions. In the absence of a price on GHG emissions, estimates of the im-

pact include a range of 104-407 kg/MWh for grid-scale storage [170] and 75-270 kg/MWh for

behind-the-meter storage [171]. This paper investigates the impact of an emissions-neutrality

constraint on investment in storage and the resulting power system emissions.

The modeling of energy storage operation and its impact on grid emissions has been stud-

ied using a wide variety of power systems models and modes of energy storage participation;

consequently, findings on emissions impacts are varied as well.

Energy storage has been modeled as providing energy [172, 173, 174, 175, 176, 170, 177,

178, 179], reserves [180, 181, 182], or both energy and reserves [183, 184, 185, 171, 186, 187].

Storage providing energy has been shown to be capable of increasing emissions [172, 173, 174,

175], or can either increase or decrease emissions depending on charge-scheduling heuristics
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[178, 177, 176] and generation mixture [178, 177, 170, 179]. In [173], higher penetrations of

renewables amplify this emission-increasing effect. Storage providing reserves has been shown

to be capable of increasing emissions [181], decreasing emissions [180], or can either increase or

decrease emissions depending on reserve quantity, storage quantity, and reserve scheduling

rules [182]. Storage providing both energy and reserves has been shown to be capable of

increasing emissions [187, 171], decreasing emissions [183, 185, 184], or can either increase

or decrease emissions depending on changing generation mixes [186]. In [187], emissions are

increased even in the presence of a 30 e/ton price on GHG emissions, although increasing

wind penetration mitigates this effect.

When modeling storage’s participation in power systems, many studies have treated the

system’s marginal emissions rate as fixed, and determined exogenously [178, 180, 174, 170,

171, 179, 175, 176]. This may be a reasonable approximation for small-scale energy storage,

but larger quantities of energy storage will have the ability to change the marginal unit(s) of

generation. More sophisticated approaches use an economic dispatch model [177, 173, 182] or

a unit commitment [185, 187, 184, 186, 181, 183, 172]. Inclusions of the transmission network

as in [184, 182, 181, 183, 172] is also significant, as locationality affects storage operations in

a transmission-constrained system.

Previous work has investigated the emissions impact of storage participating in a market

environment, but hasn’t looked at how a daily emissions-neutrality constraint can impact

storage investment decisions and resulting emissions. Lin et al. [182] introduces an emissions-

neutrality constraint for storage providing reserves, but only considers single-period economic

dispatch, and do not assess the impact on storage profitability. Several papers have inves-

tigated storage expansion planning for low-carbon emissions goals [188, 189, 190], but they

do not address the emissions impact of adding storage to current market environments or

storage profitability. A comprehensive review of storage expansion planning for low-carbon

power systems is given in [191].

By contrast, this paper investigates the impact of an emissions-neutrality constraint

(ENC) on the profitability of various quantities of storage, and therefore the optimal quantity
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of storage to invest in, and finally the resulting GHG emissions impact. Profitability is as-

sessed from two merchant storage perspectives: a profit-maximizing storage investor (PMSI)

or a ‘philanthropic’ investor (PhSI) who only requires a specified minimum return on invest-

ment to cover installation costs. An example of an entity which may want to participate as

a philanthropic storage investor would be a government with an interest in reducing costs

and/or emissions from the power system in its jurisdiction while participating in a compet-

itive energy market. Alternatively, a philanthropic emissions-neutral storage investor may

be a public-private partnership; a governmental organization may offer low-cost financing,

tax incentives, or other cost-reducing measure to a private storage investor in exchange for

a commitment to offer storage dispatch control to the system operator with an ENC. These

merchant energy storage perspectives are compared with a vertically-integrated utility (VIU)

perspective, concerned only with overall costs and not storage profitability.

Though investments in energy storage by a system operator or a PMSI have reciprocal

impacts on profitability [192], in this framework we look at just one or the other in order to

more clearly see the impact of the ENC. Although storage may earn revenue by participating

in reserves, including reserves in power systems modeling introduces sensitivity to required

reserves quantity and scheduling rules [182]. Therefore, reserves are omitted in order to focus

on how an ENC impacts a system where energy participation can increase emissions.

The specific contributions of this paper are:

• The formulation of two bi-level models (‘philanthropic’ and ‘profit-maximizing’) to

optimize merchant storage investments in light of emissions-neutrality constraints in

commitment and dispatch.

• Development of a heuristic to quickly obtain good feasible solutions to this inherently

non-convex and computationally difficult problem.

• Analysis of solution quality of the ‘philanthropic’ problem using a relaxation that allows

the evaluation of solution quality with reduced computational burden.
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• Demonstration of these methods on a detailed case study.

• Sensitivity analysis showing the effect of governmental incentives or taxes on the opti-

mal quantity of energy storage and the resulting operational impacts.

5.1.1 Organization

The rest of this chapter is organized as follows: Section 5.2 describes the power system

model, Section 5.3 describes the various storage investor optimization perspectives, Sec-

tion 5.4 presents heuristics to find good solutions to these computationally difficult bi-level

problems, Section 5.6 describes a test system used to evaluate the impact of the emissions-

neutrality constraint, Section 5.7 presents the results, and 5.8 concludes. Appendix A pro-

vides the formulation of the dual problem of transmission-constrained economic dispatch,

and a nomenclature section follows at the end of the chapter.

5.2 Power System Model

A transmission-constrained unit commitment formulation is used to model a system oper-

ator’s choice of online generators, the dispatch quantities of generators and energy storage,

and the resulting prices. This formulation is embedded into a multi-level optimization model

used by an energy storage investor to decide the quantities and locations to install storage.

5.2.1 System Operational Constraints

Operational constraints for the system operator’s unit commitment problem are given in

(5.1)-(5.13). The constraints in this section apply for each representative day a ∈ A, however

the index a is omitted for brevity. Dual variables for each dispatch constraint are given in

parentheses to the right of the equation.

vi,t − zi,t = ui,t − ui,t−1 ; ∀i ∈ I, t ∈ T (5.1)
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t∑
τ=t−gupi +1

vi,τ ≤ ui,t ; ∀t ∈ T, i ∈ I (5.2)

t∑
τ=t−gdown

i +1

zi,τ ≤ 1− ui,t ; ∀t ∈ T, i ∈ I (5.3)

0 ≤ gi,s,t ≤ gmax
i,s ui,t ∀i ∈ I, s ∈ S, t ∈ T

(
δ, δ
)

(5.4)

0 ≤ sren
b,t ≤ wb,t

(
φ, φ

)
(5.5)

Qb,t = Qb,t−1 + ηJchg
b,t −

1

η
Jdis
b,t ∀b ∈ B, t ∈ T (κ) (5.6)

0 ≤ Qb,t ≤ Qmax
b ∀b ∈ B, t ∈ T

(
ξ, ξ
)

(5.7)

0 ≤ Jchg
b,t ≤ Jmax

b ∀b ∈ B, t ∈ T
(
ρchg, ρchg

)
(5.8)

0 ≤ Jdis
b,t ≤ Jmax

b ∀b ∈ B, t ∈ T
(
ρdis, ρdis

)
(5.9)∑

i∈I

munit
i,b gi,t + Jdis

b,t −
∑
l∈L

mline
l,b fl,t + wb,t − sren

b,t =

db,t + Jchg
b,t ; ∀b ∈ B, t ∈ T (λ) (5.10)

fl,t = yl
∑
b∈B

mline
l,b θb,t ; ∀l ∈ L, t ∈ T (β) (5.11)

−fmax
l ≤ fl,t ≤ fmax

l ; ∀l ∈ L, t ∈ T
(
γ, γ
)

(5.12)

Etotal ≤ χEbaseline (α) (5.13)

gi,t := gmin
i ui,t +

∑
s∈S

gi,s,t ; ∀i ∈ I, t ∈ T

Etotal :=
∑
i∈I

∑
t∈T

(
Emin
i ui,t + Esu

i vi,t +
∑
s∈S

hi,sgi,s,t

)
Eqs. (5.1)-(5.3) constrain the generator commitment variables. Eq. (5.1) relates status,

startup, and shutdown variables (ui,t, vi,t, zi,t, respectively). Eq. (5.2) ensures that minimum

up-times are respected, while (5.3) ensures that minimum down-times are respected. Gen-

erator heat rate curves are represented by piecewise-linear segments. Eq. (5.4) constrains

the power in each segment gi,s,t to its segment capacity limit gmax
i,s . Renewable spillage sren

b,t

is constrained in (5.5) to be non-negative and not more than the maximum renewable gen-

eration available wb,t. Energy storage charging Jchg
b,t and discharging Jdis

b,t are constrained in
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(5.6)-(5.9), where (5.6) tracks the state-of-charge of energy storage Qb,t, (5.7) constrains the

state-of-charge based on energy capacity Qmax
b , and (5.8)-(5.9) constrain charging and dis-

charging based on power capacity Jmax
b . Storage charge and discharge efficiency are given

by η. The transmission network is represented by the DC power flow model in (5.10)-(5.12).

Network topology is defined by matrices munit
i,b for generators and mline

l,b for transmission lines.

Eq. (5.10) ensures power balance at each node in the network, (5.11) relates flows fl,t to bus

angles θb,t via line admittances yl, and (5.12) constrains each line’s power flow to its maxi-

mum magnitude fmax
l . Finally, (5.13) represents the emissions-neutrality constraint (ENC),

ensuring that GHG emissions Etotal (based on generator emissions at minimum power Emin
i ,

startup emissions Esu
i , and marginal emissions rates hi,s) are not increased, relative to the

emissions of the baseline (no-storage) solution Ebaseline. To solve with a non-binding ENC,

the value of χ is set to a large constant.

5.2.2 System Operator’s Problem

The goal of the system operator is to minimize the total cost of supplying the demand of

the system Cgen (based on generator cost at minimum power Cmin
i , startup costs Csu

i , and

marginal costs bi,s), subject to the operational constraints; this problem is formalized in

(5.14)-(5.15).

min
ΩC,ΩD

Cgen (5.14)

Cgen :=
∑
t∈T

∑
i∈I

(
Cmin
i ui,t + Csu

i vi,t +
∑
s∈S

bi,sgi,s,t

)
subject to:

Eqs. (5.1)-(5.13) (5.15)
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5.3 Investment Models

The question of how much storage is ‘optimal’ to install depends on the perspective taken.

The simplest case is for a vertically-integrated utility (VIU), whose only objective is mini-

mizing overall social cost. This perspective is simplest as decisions on storage investment ΩS,

generator commitment ΩC, and dispatch ΩD are conducted simultaneously. This perspective

is formalized in (5.16)-(5.17). Storage investment costs are determined by the amoritized

per-MWh storage energy cost cQ and per-MW storage power cost cJ for a given storage

quantity, while πa represents the frequency of each representative day.

min
ΩC,ΩD,ΩS

Cbatt +
∑
a∈A

πaC
gen
a (5.16)

subject to:

Eqs. (5.1)-(5.13) (5.17)

Cbatt :=
∑
b∈B

(
cQQmax

b + cJJmax
b

)
This is contrasted with a centralized power market structure, in which a storage investor

earns revenue based on locational marginal prices (LMPs), obtained from the commitment

and dispatch solution determined by the system operator. A storage owner’s net profit is

determined by LMPs λb,t,a, power dispatch, and storage investment costs Cbatt, as in (5.18).

Profit :=
∑
a∈A

[
πa
∑
b∈B

∑
t∈T

λb,t,a

(
Jdis
b,t,a − J

chg
b,t,a

)]
− Cbatt (5.18)

A purely self-interested storage investor would have the sole objective of choosing storage

investments to maximize their net profit, while LMPs are determined by a lower-level system

operator determining unit commitment and dispatch. This perspective is formalized in (5.19)-

(5.20), and is referred to as the profit-maximizing storage investor (PMSI). Although owners

of large geographically-dispersed storage installations may coordinate bids to maximize their

energy-market profit [193], the PMSI formulation assumes that once the storage investments
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are made, the energy market is competitive enough to be modeled with a cost-minimization

problem.

max
ΩS

Profit (5.19)

subject to:

λ ∈ arg min
ΩC,ΩD

{
Cgen; subject to: Eqs. (5.1)-(5.13)

}
(5.20)

By contrast, there may be a storage investor who is less concerned with maximizing

net profit than with lowering the overall social cost, subject to the constraint that enough

energy market revenue is collected to cover the annualized investment cost [194]. We refer

to this perspective as a ‘philanthropic’ storage investor (PhSI). Entities which may take

this perspective include governmental or not-for-profit entities participating in a competitive

energy market. This perspective is formalized in (5.21)-(5.23). Both the PMSI and PhSI are

bi-level optimization problems, and are illustrated in Fig. 5.1.

min
ΩS

Cbatt +
∑
a∈A

πaC
gen
a (5.21)

subject to:

Profit ≥ 0 (5.22)

Cgen,λ ∈ arg min
ΩC,ΩD

{
Cgen; subject to: Eqs. (5.1)-(5.13)

}
(5.23)

5.4 Solution Method

Solving the VIU perspective is a relatively straightforward MILP problem, since all decisions

are made in a single level. However, the inclusion of energy market profit in the bi-level

models complicates the solution process, since storage investment decisions influence energy

market prices and energy market prices influence storage investment decisions. Bi-level op-

timization problems are inherently non-convex and NP-hard, even with a linear lower level
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Maximize net storage profit
Subject to:

Profit from lower level

Minimize system operation cost
Subject to:

Operational constraints
Emissions constraint

Storage 
investments LMPs

(a)

Minimize storage + operational costs
Subject to:

Profit constraint
Profit from lower level

Operational costs from lower level

Minimize system operation cost
Subject to:

Operational constraints
Emissions constraint

(b)

Storage 
investments LMPs

Figure 5.1: Bi-level formulations of merchant energy storage: (a) a profit-maximizing storage
investor, (b) a ‘philanthropic’ storage investor.

[166]; problems where the lower level is non-convex (e.g. unit commitment) are even more

challenging. For the purpose of this paper, we develop an iterative heuristic (Alg. 1) in order

to determine good candidate solutions to both bi-level problems in a reasonable amount of

time. The quality of these solutions is evaluated in Section 5.5.

All storage quantities between zero and the optimal VIU quantity are evaluated, and

the resulting net storage profit and social cost for each quantity are evaluated once the

unit commitment is solved. Finally, the profitable storage quantity with lowest social cost is

chosen as the best candidate for the PhSI case, and the storage quantity with greatest net

profit is chosen as the best candidate for the PMSI case.
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Algorithm 1 Heuristic solution algorithm

1: Define(VIU model, Lower-level model)

2: qmax ←∞ . q is the system’s total storage quanta

3: Solve(VIU model)

4: Record(q, NetStorageProfit, SocialCost)

5: qmax ← (q − 1)

6: for i← 1 to qmax do

7: Fix(q = i)

8: Solve(Lower-level model)

9: Record(q, NetStorageProfit, SocialCost)

10: end for

11: qphilanthropic ←Select(q)

q ∈ {argmin SocialCost(q),NetStorageProfit(q) ≥ 0}

12: qprofit-max ←Select(q | q ∈ argmax NetStorageProfit(q))

5.5 Assessing Solution Quality

As the PhSI and PMSI problems are inherently non-linear and non-convex, evaluating the

quality of candidate solutions (relative to a global lower bound) is not straightforward.

However, there are two MILP relaxations of the PhSI problem, which can be used to find

an upper bound for the optimality gap of candidate solutions. The first is the simply the

VIU, since the profit constraint and the lower-level optimality constraint are both relaxed.

The second relaxes the lower-level optimality constraint on the unit commitment variables to

create a formulation which can be transformed into a profit-constrained single-level equivalent

(PCSLE).
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5.5.1 Creating a Profit-Constrained Single-Level Equivalent

Though the PhSI objective (5.21) and operational constraints (5.1)-(5.13) can be formulated

as a single-level MILP problem, the profit definition (5.18) contains both primal and dual

decision variables; therefore, these variables must be optimized simultaneously. The system

operator’s unit commitment problem is necessarily non-convex due to binary commitment

variables; strong duality does not in general hold for non-convex problems. However, if the

binary variables and constraints are moved to the upper-level of the bi-level formulations de-

scribed in Section 5.4, the lower level becomes a transmission-constrained economic dispatch

(TCED) problem, which can be represented linearly using the DC power flow approximation.

A linear (and therefore convex) lower-level problem can be replaced by a series of constraints

in an upper-level problem, creating a single-level equivalent of the profit-constrained storage

investment problem [194].

Moving the binary variables and constraints from the lower-level to the upper-level rep-

resents a relaxation of the original bi-level problem, since the values of the binary variables

are no longer constrained by the lower-level unit commitment problem, and no additional

constraints are introduced. Therefore, the best lower bound on the relaxed problem provides

a lower bound for the best value of the original PhSI problem.

Since the original TCED problem is linear, strong duality is guaranteed, so the value of

the primal and dual objective functions are equal for a set of primal and dual variables (Ωλ)

that are primal and dual optimal, respectively. The dual problem of the TCED is described in

Appendix A. The strong duality constraint for the TCED problem is given in (5.24). Although

this single-level equivalent contains bi-linear terms, Section 5.5.2 demonstrates how a MILP

approximation can be obtained, which can provide a lower-bound on the optimum.

Ĉdual = Ĉprimal :=
∑
i∈I

∑
s∈S

∑
t∈T

bi,sgi,s,t (5.24)

Therefore, the profit-constrained single-level equivalent of the relaxed PhSI problem is

given by the original objective function (5.25), the upper-level profit constraint (5.26), unit
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commitment constraints (5.27), and lower-level constraints (5.28)-(5.30).

min
ΩC,ΩD,ΩS,Ωλ

Cbatt +
∑
a∈A

Cgen
a (5.25)

subject to:

Equation (5.22) (5.26)

Equations (5.1)-(5.3) ∀a ∈ A (5.27)

Equations (5.4)-(5.13) ∀a ∈ A (5.28)

Equation (5.24) ∀a ∈ A (5.29)

Equations (5.35)-(5.41) ∀a ∈ A (5.30)

5.5.2 Creating a MILP Approximation

The profit-constrained single-level equivalent presented in (5.25)-(5.30) contains several non-

linear terms. The profit definition (5.18) contains the product of continuous lower-level dual

variables (λ) and primal variables (J chg,Jdis), while the strong duality constraint contains

products of continuous lower-level dual variables and upper-level binary and continuous vari-

ables. First, the profit constraint can be converted from a product of lower-level primal and

dual variables to a product of lower-level dual and upper-level variables using complementary

slackness conditions, as shown in (5.31) [194].

∑
b∈B

∑
t∈T

λb,t,a

(
Jdis
b,t,a − J

chg
b,t,a

)
=

∑
b∈B

∑
t∈T

[
Qmax
b ξb,t + Jmax

b

(
ρdis
b,t + ρchg

b,t

) ]
(5.31)

Next, the continuous upper-level variables Qmax
b and Jmax

b can be approximated by integer

variables representing discrete storage quantities. These integer variables can be equivalently

represented by a summation of binary variables in order to convert the products of integer and
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continuous variables to the products of binary and continuous variables. A binary expansion

is used in (5.32)-(5.33) to reduce dimensionality as compared to a unary expansion. Although

the representation of integer variables by a binary expansion is not in general more efficient

than an integer representation [195], this allows the use of the big-M method, and has been

shown to be more effective than non-linear solvers or the use of McCormick envelopes in

solving bi-linear problems containing the product of continuous and integer variables in

constraints [196].

Qmax
b ≈

∑
n

2nxab,n∆Q (5.32)

Jmax
b ≈

∑
n

2nxbb,n∆J (5.33)

After discretization and binary expansions of the storage variables, the only non-linear

terms remaining are products of continuous lower-level dual variables and upper-level binary

variables. These products are linearized using the big-M approximation method, and the

problem reduces to a MILP approximation of the original non-linear problem.

5.5.3 Limitations of the Single-Level MILP Approximation

Although the MILP approximation of the original bi-level problem provides a relaxation

which can assess the quality of the heuristic-found solutions, this formulation is not without

its drawbacks: first and foremost is computational tractability. As mentioned in Section

5.4, single-level equivalents of bi-level problems are inherently NP-hard. In practice, solving

problems with big-M approximations can be challenging, as the values of M must be large

enough to capture the full range of the continuous variables, but values which are too large

cause difficulties for MILP solvers.

Second, as the MILP formulation is a relaxation, it may include integral solutions which

are cheaper than the heuristic-found solution, but are not valid solutions to the original bi-

level problem. A storage quantity which is not found to be profitable in the original bi-level
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problem may be profitable in this single-level relaxation, since unit commitment variables

are no longer constrained to be part of the minimum-cost solution of the original lower-level

problem. In essence, the single-level equivalent assumes that all decisions (storage quantity,

unit commitments) are made simultaneously, and so a storage quantity which would lower

total costs but otherwise be unprofitable can be made profitable by selection of a sub-optimal

unit commitment solution. Therefore, the true optimum of the original bi-level problem

may be greater than than the best lower-bound found by the single-level equivalent, and

therefore the optimality gap for a given heuristic-found solution can only overestimate the

true optimality gap.

5.6 Case Study

A case study is conducted using the Reliability Test System of the Grid Modernization

Laboratory Consortium (RTS-GMLC) [197]. The RTS-GMLC is based on the 1996 IEEE

Reliability Test System, with an updated generation fleet, the addition of renewable gener-

ation, and 365 days of hourly profiles for load and renewable generation. This system has a

high penetration of renewables: over the course of the year, hydro represents 10.8% of total

energy demand, utility-scale solar PV 10.0%, rooftop PV 5.7%, and wind 19.0%.

For the planning problem, a set of five representative days is developed by using a k-

means clustering algorithm on the 365 daily profiles, after their dimension was reduced by

principal component analysis [198]: 95% of variance is captured via 13 principal components.

When transforming the representative days back to full dimension, negative values of load

or renewable generation are clipped to 0. Multi-period constraints in the system operator’s

problem (i.e. (5.1)-(5.3), (5.6)) are enforced cyclically; initial conditions are not assumed a

priori, but assumed to reflect the end of the current day [53], and the net load in the first

and last hours of the day are smoothed to avoid introducing unrealistic midnight ramps.

Dimensionality of the storage investment problem is reduced by fixing the storage power

and energy ratios at a 4-hour duration, and by limiting storage investment to 10 candidate

buses (out of the original 72); these candidate buses were selected by collecting a pool of
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candidate solutions to the VIU planning problem, and selecting all buses which had storage

investment in any candidate solution. Each optimization problem was solved to an optimality

gap of 0.1% or better, and the heuristic algorithm typically completed within 4 hours.

5.7 Results
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Figure 5.2: Optimal storage power as a function of investment perspective and emissions
constraint. Rows: emissions unconstrained (a), (b), (c); emissions constrained (d), (e), (f);
emissions constraint impact (g), (h), (i). Columns: vertically-integrated utility (a), (d), (g);
philanthropic storage investor (b), (e), (h), profit-maximizing storage investor (c), (f), (h).

Fig. 5.2 shows the optimal storage quantities found by a vertically integrated utility, a
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philanthropic storage investor, and a profit-maximizing storage investor, with sensitivity to

both the effective price of energy storage (amoritized, per MW) and the price of carbon emis-

sions. The first row shows the storage quantity without the emissions-neutrality constraint

(ENC), the second row shows the storage quantity with the ENC, and the third row shows

the difference from the ENC.

Decreasing storage quantities and increasing carbon price quantities both tend to increase

the optimal storage quantity, for all perspectives, both with and without an ENC. On average,

the PhSI installs nearly as much storage as the VIU (97.8% without the ENC, 97.3% with

the ENC), but the PMSI installs significantly less (74.1% without the ENC, 73.9% with the

ENC). The ENC does not have a strong impact on the quantity of storage installed by a

VIU or PhSI (<0.5% on average for both), but tends to increase the quantity of storage

purchased by a PMSI by an average of 5.0%, as shown in Table 5.1. This seemingly counter-

intuitive results is due to the fact that storage dispatch and generator unit commitment

are considered simultaneously, so the emissions constraint applies to the unit commitment

variables which, once-fixed, define the time- and location-varying generator supply curves.

The optimal storage quantity is ultimately a function of these supply curves, and in these case

studies the ENC seems to result in supply curves which offer maximum PMSI profitability

at greater storage quantities.

Although the ENC tends to increase the optimal storage quantity of a PMSI on average,

there is significant variance for specific combinations of storage quantity and carbon price

under all perspectives. In the VIU and PhSI cases, the constraint can alter the optimal storage

quantity by >23% in both directions (with standard deviations of >4.8%), while in the PMSI

case the impact ranges from -68% to +167% (standard deviation of 36.3%). This illustrates

the non-convex nature of the storage investment problem, and shows the importance of

conducting sensitivity analyses to illustrate the ‘true’ impact of this constraint on storage

investment quantities.

Fig. 5.3 shows the emissions impact of the storage quantities shown in Fig. 5.2. Although

the emissions impact of storage is generally beneficial (reducing emissions), in the case of un-
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Table 5.1: Impact of Emissions-Neutrality Constraint on optimal investment quantity

Investment perspective Average

change

Worst case Best case Standard

deviation

VIU +0.46% -23% +31% 5.2%

PhSI -0.08% -23% +34% 4.8%

PMSI +5.0% -68% +167% 36%

priced GHG emissions the impact is only weakly beneficial or even detrimental, as shown in

Figs. 5.3(a), 5.3(b), and 5.3(c). The impact of the ENC is to significantly reduce the system

emissions in the un-priced GHG cases (on average 2.6% for the VIU, 3.1% for the PhSI,

3.0% for the PMSI), while having little effect on the emissions in the priced GHG cases (on

average ≤0.1% change in all perspectives), as shown in Figs. 5.3(g), 5.3(h), and 5.3(i). This

emissions reduction in the un-priced GHG case is achieved with minor cost increases: on

average 0.12% for the VIU, 0.14% for the PhSI, 0.19% for PMSI, and no significant change

in the priced GHG cases (on average ≤0.05% change in all perspectives).

The ENC can have a detrimental effect on emissions in some price scenarios by resulting

in solutions with storage quantities and/or unit commitment variables such that although

emissions in each day are not worse than the baseline, they are not reduced by as much as

in the emissions-unconstrained investment-and-operation case. A binding ENC in just one

representative day can impact the optimal storage quantity, and therefore operations in all

days. As with the storage quantity, this demonstrates the non-convexity of the investment

problems, caused by integer variables in all perspectives and bi-level structures in the PhSI

and PMSI.

The quality of the PhSI solutions can be evaluated by investigating the lower bound of the

two relaxations described in Section 5.5. The solutions found by the heuristic in Algorithm 1

are typically within 0.1% of the best lower bound found by the VIU relaxation. Although the

PCSLE formulation is a tighter relaxation of the PhSI problem, in practice the progress of the
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best lower-bound is relatively slow; the best lower bound found by the PCSLE formulation

after 24 hours is still below the best lower bound of the VIU, which typically solves to 0

optimality gap within one hour.

5.8 Conclusion

Without a price on GHG emissions, the operation of energy storage can have a minimally

beneficial or even detrimental effect on system emissions, even in power systems with very

high penetrations of renewable resources. This effect persists over a wide range of energy

storage prices, suggesting that policies which subsidize energy storage installation may not

result in lowered emissions. If pricing GHG emissions is not feasible (e.g. due to political

obstacles), then adding an emissions-neutrality constraint to the operation of energy storage

can have a significant beneficial effect on system emissions, while not significantly impact-

ing overall social costs or dissuading investment in merchant energy storage in either the

philanthropic (PhSI) or profit-maximizing storage investment (PMSI) cases. In fact, the

emissions-neutrality constraint tends to increase storage investment in the PMSI case. A

philanthropic storage investor tends to invest in significantly more energy storage than a

profit-maximizing storage investor, illustrating the benefits that a socially-minded storage

investment entity can provide, even in the presence of profitability and emissions-neutrality

constraints.

An efficient heuristic for this inherently non-convex problem is demonstrated, and an

assessment of the PhSI solution quality using two MILP relaxations is demonstrated. Al-

though the relaxation that moves commitment variables into the investment problem (a

profit-constrained single-level equivalent, as in [194]) is tighter than the vertically-integrated

utility (VIU) relaxation, the best lower bound found via the VIU relaxation shows that the

heuristic finds solutions which are very close to the true optimum, and shows this with much

less computational effort than the PCSLE relaxation.

While these effects have been shown in this particular case study, future work can examine

the sensitivity of these results to more general cases. Factors which may contribute to different
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outcomes in terms of storage investment and emissions may include:

• differences in market design, such as participation of energy storage in the reserves

market(s),

• varying total penetrations of non-emitting resources, or varying ratios of solar, wind,

and nuclear generation, and

• consideration of different storage durations, or of investment in a mixture of storage

with varying durations.
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Figure 5.3: Emissions impact from storage as a function of investment perspective and emis-
sions constraint. Rows: emissions unconstrained (a), (b), (c); emissions constrained (d), (e),
(f); emissions constraint impact (g), (h), (i). Columns: vertically-integrated utility (a), (d),
(g); philanthropic storage investor (b), (e), (h), profit-maximizing storage investor (c), (f),
(h).
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Nomenclature

Sets and Indices

A Set of representative days, indexed by a.

B Set of transmission network buses, indexed by b.

I Set of generating units, indexed by i.

L Set of transmission lines, indexed by l.

S Set of generator power output blocks, indexed by s.

T Set of time intervals, indexed by t or τ .

Parameters

bi,s Marginal cost of block s of generator i ($/MWh).

Cmin
i Minimum cost of generator i ($/h).

Csu
i Start-up cost of generator i ($).

db,t,a Demand at bus b, time t, day a (MW).

Emax Regulator’s GHG emission target (tons).

Emin
i Minimum GHG emissions of generator i (tons/h).

Esu
i Start-up GHG emissions of generator i (tons).

fmax
l Capacity of transmission line l (MW).

gmax
i Maximum power output of generator i (MW).

gmin
i Minimum power output of generator i (MW).

gmax
i,s Maximum power output of block s, generator i (MW).

gdown
i Minimum down-time of generator i (h).



127

gup
i Minimum up-time of generator i (h).

hi,s Marginal GHG emissions of block s, generator i (tons/MWh).

mline
l,b Line connection map. mline

lb = 1 if line l starts at bus b, = −1 if line l ends in bus b,
0 otherwise.

munit
i,b Unit map. munit

i,b = 1 if generator i is located at bus b, 0 otherwise.

PCO2 GHG emissions tax rate ($/ton-CO2e).

P load Load shed penalty ($/MWh).

P ren Renewable generation shed penalty ($/MWh).

wb,t Renewable generation at bus b, time t (MW).

xl Reactance of line l (Ω).

πa Probability of day a.

Primal Variables

Cgen System operator’s generation cost ($).

Cshed System operator’s shed cost ($).

Ea GHG Emissions for day a (tons).

Etotal Total GHG emissions (tons).

fl,t,a Power flow on line l, time t, day a (MW).

gi,t,a Power output of generator i, time t, day a (MW).

gi,s,t,a Power output of generator i, block s, time t, day a (MW).

sload
b,t,a Load shed at bus b, time t, day a (MWh).

sren
b,t,a Renewable generation shed at bus b, time t, day a (MWh).

ui,t,a Binary variable for the commitment status of generator i, time t, day a.
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vi,t,a Binary variable for the start-up of generator i, time t, day a.

zi,t,a Binary variable for the shut-down of generator i, time t, day a.

θb,t,a Voltage phase angle of bus b, time t, day a (rad).

Dual Variables

δi,s,t Dual variable for generator segment lower limit constraint.

δi,s,t Dual variable for generator segment upper limit constraint.

φ
i,t

Dual variable for renewable shedding lower limit constraint.

φi,t Dual variable for renewable shedding upper limit constraint.

κb,t Dual variable for storage state-of-charge tracking constraint.

ξ
b,t

Dual variable for storage state-of-charge lower limit constraint.

ξb,t Dual variable for storage state-of-charge upper limit constraint.

ρchg
b,t

Dual variable for storage charging power lower limit constraint.

ρchg
b,t Dual variable for storage charging power upper limit constraint.

ρdis
b,t

Dual variable for storage discharging power lower limit constraint.

ρdis
b,t Dual variable for storage discharging power upper limit constraint.

λb,t Dual variable for power balance constraint.

γ
l,t

Dual variable for line flow lower limit constraint.

γl,t Dual variable for line flow upper limit constraint.

βl,t Dual variable for DC power flow constraint.

α Dual variable for emissions constraint.
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Variable Sets

ΩC Set of binary commitment variables.

ΩD Set of dispatch variables.

Ωλ Set of dual dispatch variables.

ΩS Set of storage investment variables.

Appendix A: Dual problem of Transmission Constrained Economic Dispatch

The dual problem of the TCED is given in (5.34)-(5.41), with the primal variables to which

each dual constraint corresponds listed in parentheses.

max
ΩD

Ĉdual := α

[∑
t∈T

∑
i∈I

Emin
i ui,t + Esu

i vi,t − χEbaseline

]
−
∑
l∈L

∑
t∈T

[
fmax
l

(
γ
l,t

+ γl,t

)]
−
∑
i∈I

∑
s∈S

∑
t∈T

gmax
i,s ui,tδi,s,t

+
∑
b∈B

∑
t∈T

[
λb,t

(
db,t − wb,t −

∑
i∈I

munit
i,b g

min
i ui,t

)

−Qmax
b ξb,t − Jmax

b

(
ρchg
b,t + ρdis

b,t

)
− wb,tφb,t

]
(5.34)
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subject to:

αhi,s + bi,s −
∑
b∈B

[
munit
i,b λb,t

]
− δi,s,t + δi,s,t = 0 (gi,s,t) (5.35)

1

ηdis
κb,t + ρdis

b,t − ρdis

b,t
− λb,t = 0

(
Jdis
b,t

)
(5.36)

λb,t + ρchg
b,t − ρ

chg

b,t
− ηchgκb,t = 0

(
Jchg
b,t

)
(5.37)∑

l∈L

ylm
line
l,b βl,t = 0 (θb,t) (5.38)

∑
b∈B

(
mline
l,b λb,t

)
+ βl,t − γl,t + γl,t = 0 (fl,t) (5.39)

κb,t − κb,t+1 + ξb,t − ξb,t = 0 (Qb,t) (5.40)

λb,t + φb,t − φb,t = 0
(
sren
b,t

)
(5.41)

α, γ, δ, ζ, ξ, ρ, φ ≥ 0
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Chapter 6

FUTURE WORK

To complement the approaches presented in the preceding chapters, four additional low-

carbon planning and policy approaches are proposed. Each of these potential approaches is

categorized in Figure 6.1 based on the categorizations discussed in Section 1.6. These projects

are:

• Emissions-Aware Tariff Design

• Operation of a Closed-Loop Carbon Cycle Power System

• Planning Low-Carbon District Energy Systems

• Comparing a Carbon Tax with Emissions Trading in Power Systems Operation

Each is described at more length in the following sections of this chapter.

6.1 Emissions-Aware Tariff Design

Although many jurisdictions have implemented pricing of carbon emissions [19], in many

places these emissions are still un-priced. However, political will for carbon pricing is often

present in small pockets of larger regions in which this will does not exist. The utility compa-

nies in these small pockets therefore have an opportunity to offer an electricity tariff which

includes carbon pricing, in an effort to reduce induced carbon emissions from the wholesale

power market in which it buys energy. Tariff design can have a significant impact on emis-

sions induced by customer demand profiles, as shown in [199] by comparing customer load

shifting using energy storage system to respond to various types of retail tariffs.

If the marginal emissions from the wholesale generation/transmission network can be

reliably estimated in advance, then utility rates can have an added charge proportional to
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Figure 6.1: Proposed low-carbon power system design models, organized by method and
point(s) of application

these marginal emissions. This change in the price vector presented to customers will tend

to shift electricity consumption toward periods with lower marginal emissions, depending on

the rate of the emissions charge and the customer flexibility in load scheduling. The question

becomes: if a utility would like to reduce emissions by a certain quantity, how high should

the emissions charge be in order to reach an emissions target, anticipating the reaction of

utility customers to changes in the price vector?

This approach can be modeled as a bi-level problem, with the utility in the upper-level

aiming to minimize the emissions-charge, subject to achieving a certain level of emissions

reductions, as shown in Figure 6.2. The lower-levels represent the customers of this utility,

reacting to the price vector being presented to them (a linear function of the emissions

charge) [59], similarly to Chapter 2. If the behavior of the customers can be estimated
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accurately, then the utility can solve this multi-level problem using the bisection method,

iteratively guessing an emissions charge and comparing the induced emissions (resulting from

the demand vectors of the lower-level customers) to the emissions target. This can avoid

potential ‘braided cobweb’ effects of using historical data to set real-time prices without

anticipating customer reactions to these prices [200].

This approach can be made revenue-neutral for the utility by offering customers a ‘rebate’

on each kWh of electricity, equal to the total emissions charge revenue divided by the total

electricity consumption (an approach often referred to as a feebate). If the total energy

consumption of the customers is assumed to be inflexibile (i.e., customers will shift energy

through the day but will not reduce their overall consumption), then the solutions will be

equivalent, as the total rebate will be a fixed value and therefore not impact the optimization.

The end result of the charge and the rebate is that time periods with lower-than-average

marginal emissions would have lowered prices, and vice versa. Since the collected revenue

is re-distributed, the customers would see an increase in net cost only from the cost of

generating energy using more expensive (but lower-emitting) power plants, not from the

emissions charge itself.

If, on the other hand, the share of customers responding to this emissions-aware tariff is

large enough to impact the dispatch of the power system, then the marginal emissions rates

cannot be reliably estimated in advance and the dispatch of the power system in response to

the changing loads must also be modeled by the utility. This structure is shown in Figure 6.3.

To solve this more complicated structure, the customers’ reactions to price vectors and the

economic dispatch problems should both be modeled as linear approximations (assuming a

pre-defined unit commitment), and each lower-level optimization problem transformed into

a set of constraints based on strong duality. Then, the emissions charge can be selected

from a discrete set of values, allowing products of upper-level and lower-level variables to be

approximated using a MILP formulation.

Though revenue neutrality can easily be achieved for the customers participating in this

tariff via the same ‘rebate’ approach discussed earlier, the cost of supplying electricity to the
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Given: fixed generator dispatch
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Demand pattern from lower level

Customer Load Scheduling
Minimize operation cost

Subject to: 
Operational constraints

Time-varying prices

Demand

Figure 6.2: Bi-level model of emissions-aware tariff optimization, marginal penetration

remaining share of customers (not exposed to emissions pricing) may change. Additionally,

there may be a change in the emissions induced by this share of customers, since the load-

shifting by responsive customers will change which generators are being used to satisfy the

demand of the non-responsive customers. These potential shifts in costs and emissions must

be accounted for when considering the overall effects of such an emissions-aware tariff.

6.2 Operation of a Closed-Loop Carbon Cycle Power System

The current state of carbon capture and sequestration (CCS) technology and carbon pricing

is not resulting in large deployment of CCS for the power sector [201]. A few demonstration

projects have been implemented, but CCS in power generation is the exception rather than

the rule. However, given the increased awareness of climate change and political will to

combat it, a future with widespread use of CCS technologies may be possible. The prices of

solar and wind generation, as well as energy storage, continue to fall and these technologies
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Figure 6.3: Bi-level model of emissions-aware tariff optimization, larger penetration

will play an increasing role in our generation mixture, but fossil-fuel generation may still

play a role for some time due to its on-demand generation capabilities, absence of short-

to-medium-term energy limitations (unlike many energy storage technologies), and natural

inertial response [202].

Carbon-capture power plants (CCPPs) have additional power flexibility compared to the

same plants without carbon-capture [203, 204, 205]. This is because the net power generation

of the entire plant is the difference between the gross generation power and the power demand

for the exhaust scrubbing and solute stripping processes, the latter of which can be flexibly

scheduled based on the capabilities of on-site storage of both carbon-lean and carbon-rich

solute. However, eventually the captured CO2 must be stripped from the carbon-rich solute

and conveyed to a sequestration site. Given wider adoption of CCS technologies, these may

be a conveyance network to transport this CO2, captured from geographically dispersed ther-

mal generators, to a relatively smaller number of suitable sequestration points (or toward
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industrial usage). Therefore, planning for the operation of power systems with high penetra-

tion of CCS thermal generation must adequately model not only the flexibility of the CCS

side, but also the constraints of the CO2 network.

Coordination of the electricity and natural gas networks has been extensively studied [206,

207], and there has been some work done in optimal design of a CO2 network [208, 209],

but there has been no work on the design or operation of a combined electricity and post-

capture CO2 network. One significant difference between the modeling of this network and

similar modeling of combined natural gas and electricity networks is that the added flexibility

of CCPPs relies on the capacity of the downstream CO2 network, not the upstream fuel

network. Additionally, CCPPs have the technical capacity to continue operation when faced

with network constraints, bypassing carbon-capture processes and venting to the atmosphere,

while there is no alternative to the gas network for natural gas generators. These distinctions

add a different character to the operation of combined electricity and gas networks.

6.3 Planning Low-Carbon District Energy Systems

Chapter 4 explores the design of low-carbon campus energy hubs, but implicitly assumes that

the district-level energy systems have pre-defined energy conversion equipment (e.g. district

heat generation) and infinite distribution capacity (e.g. conveyance of electricity, natural gas,

and district heat). An optimization of the wider-scale district level energy system planning

could include non-idealities ignored in the campus energy hub model, including:

• the non-linear behavior of natural gas conveyance,

• losses present in conveyance of district heat, and

• the provision of adequate distribution capacity of electricity, natural gas, and district
heat.

Planning decisions can also be expanded from those in the model in Chapter 4 to include:

the selection of equipment for generating and distributing district heat, energy efficiency
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options for construction of new buildings, and investment in electrification of regional trans-

portation. The resulting model would be similar to that of [210], with the inclusion of a wider

variety of energy flows and conversion and storage equipment (e.g. power-to-gas conversion,

battery energy storage systems).

Once the underlying district energy system model is developed, it could be used to evalu-

ate the relative efficiency of various decarbonization policies, as is demonstrated in Chapter

4. Potential policies could include:

• improving the thermal efficiency of the built environment and the electrical efficiency

of loads which reside inside it,

• switching district heating boilers to equipment with lower carbon intensity,

• providing subsidies for decarbonization projects which would otherwise not be cost-

effective, and

• carbon pricing policies, which can be applied at various points in the district energy

network (e.g. to the customers, to the district network operators, or a mandate that a

social cost of carbon be considered during planning).

6.4 Comparing a Carbon Tax with Emissions Trading in Power Systems Op-
eration

In many respects, a tax on carbon emissions and an emissions trading scheme are very

similar, as both reduce overall emissions by creating a price on carbon. An emissions trading

scheme provides surety on overall emissions while implicitly creating a price, and a carbon tax

provides surety on price while implicitly reducing emissions (for a more thorough discussion

of commonalities and differences, see Section 1.3). One prominent drawback of emissions

trading schemes is that the future price of emissions allowances is unknown; even once a

market price has been established, that market price is subject to change as realizations of

future uncertainty (such as technological progress, and demand for carbon-intensive goods
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and services) differ from expectations. Given that the price of emissions allowances has an

uncertain trajectory, does this uncertainty meaningfully impact the cost of operating power

systems, as compared to operation under a fixed carbon tax?

The cost of operating a power system is a highly non-linear function of the price of carbon

emissions, even when ignoring the overall emissions bill, as shown in Chapter 3. Additionally,

operation of power systems is fairly ‘lumpy’ (non-convex) due to binary unit commitment

variables. Therefore, the cost of operating a power system experiencing a range of carbon

prices may be significantly different than the cost of operating at the average experienced

price. An investigation into the operational effects of different pricing schemes could include:

• trajectories of carbon prices that follow statistical properties observed in real carbon

allowance markets (for wide-ranging emissions trading schemes),

• feedback between power systems operations and price trajectories (for more narrow

emissions trading schemes, in which the rate of ‘consumption’ of allowances by a power

system can have a meaningful impact on prices), and

• investigating the relationship between emissions quotas and power systems dynamics

(as there may be a number of ‘break point’ prices which provide a large degree of

operational change relative to a small change in carbon price, as seen in Chapter 3).
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Chapter 7

CONCLUSION

This dissertation describes several approaches to developing policies and planning for

low-carbon power systems, and proposes several additional approaches for future study. Both

sets of approaches are mapped onto categorizations by domain and method in Figure 7.1, as

originally described in Section 1.6. In some cases these policies have no overlap, in other cases

there may be overlap in either method or domain or both. The relative economic efficiency

of these policies in achieving a given emission reduction target varies, but policy decisions in

democratic societies are often made for reasons besides just economic efficiency. By presenting

a full suite of policy options for power systems decarbonization to policy-makers, complete

with analyses of their anticipated effects, it is hoped that policy-makers can better weigh

the tradeoffs between efficiency, emissions, and likelihood of successfully implementing and

maintaining these policies.

7.1 Research Conclusions

For ‘adaptation’ approaches, power systems must plan to react to exogenous decarbonization

efforts. By contrast, designing regulatory policies to promote decarbonization by indepen-

dent stakeholders requires solving multi-level Stackelberg models. Though these structures

are more complex, and require regulators to approximate the perspectives of other stake-

holders who will react to policy decisions, for certain types of analyses these structures are

tractable and result in more accurate quantitative policy decisions for given emissions targets.

Specifically:

1. If a lower-level problem can be modeled linearly, it can be optimized within an upper-

level problem as a mixed-integer single-level equivalent using the strong duality theorem
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[127], using an integer approximation of continuous upper-level decision variables as

necessary, and

2. If a lower-level problem optimizes for cost minimization, while an upper-level problem

optimizes for carbon price minimization (subject to emissions from the lower-level

meeting an upper-level emissions target), the problem can be solved iteratively using

the bisection method. This approach is only as computationally complex as the lower-

level problem, e.g. if the lower-level problem is MILP, then solving the two problems
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together is an iterative method of successive MILP optimizations. Convergence of the

bisection method to a final solution is relatively slow (linear) compared to other root-

finding methods, but convergence is guaranteed.

In general, power systems designed and operated for lower carbon have higher opera-

tional costs than the case in which emissions are not considered. The cost increase depends

on both the strictness of the emissions target and on the structure of the emissions reduction

approach. For a given target, single-level frameworks are cheapest, while multi-level mod-

els result in higher costs because the upper-level regulator has only indirect control over

carbon emissions. However, multi-level models in which the distinct objectives of multiple

stakeholders are modeled are more representative of market environments. Using these sorts

of frameworks, regulator decisions can also be optimized considering multiple independent

lower-levels. For example:

• A carbon price can be optimized that will apply to multiple power systems in order to

meet a given combined emissions target (an extension of the work in Chapter 3). This

can be accomplished since the emissions from each power system are monotonically

non-increasing with respect to a carbon price, and the sum of multiple monotonically

non-increasing functions is also monotonically non-increasing.

• The design of energy infrastructure for multiple campus energy hubs can be considered

together, in light of a target for their combined emissions (an extension of the work in

Chapter 4). This can be accomplished because although investment decision variables

may be non-convex, they can be considered together as one master problem while the

linear operation problem of each energy hub can be still incorporated into a single-level

equivalent using the strong duality theorem.
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7.2 Broader Conclusions

Although adoption of emissions-reducing policies will likely result in increased costs to in-

vestors and operators of power systems, if the cost increases are outweighed by emissions

reductions valued at the social cost of carbon then the overall (planetary) social welfare is

still increased. Even policies which are estimated to be more expensive than the social cost

of carbon may be worthwhile, if there is a reasonable likelihood that their implementation

will induce further cooperation from regulators in other jurisdictions.

Higher prices for electricity reduce overall demand and increase the value proposition for

investment in new cleaner generation, transmission, and grid-scale energy storage, as well

as technologies that generate or consume electricity more efficiently. Carbon capture and

sequestration projects also become more attractive. Conversely, investment in equipment

and policies which reduce the grid’s carbon intensity reduce the strictness of subsequent

policies (e.g. clean energy mandates, carbon prices, or operational constraints) required to

achieve a given emissions target.

For policies involving carbon pricing, the carbon price collects revenue that can be used

to invest in projects to reduce GHG emissions, adapt to climate change, and/or provide

economic relief to communities which are negatively impacted by taxation of carbon, such

as those heavily reliant on coal-mining. This revenue stream could also be used to offset tax

reductions elsewhere to obtain revenue neutrality. However, the question of what should be

done with revenue from carbon pricing is a political one, not a technical one, and is outside

of the scope of this dissertation.

Alfred Marshall, who in 1890 described how society could improve social welfare by

inducing economic actors towards activities which would “add the most to the sum total of

happiness”, nevertheless also described how political forces could successfully impede these

changes, due to their relative advantage in this fight:
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A few people who have been strongly interested on one side have raised their
voices loudly, persistently, and all together; while little has been heard from the
great mass of people whose interests have lain in the opposite direction; for, even
if their attention has been fairly called to the matter, few have cared to exert
themselves much for a cause in which no one of them has more than a small stake.
The few therefore get their way, although if statistical measures of the interests
involved were available, it might prove that the aggregate of the interests of the
few was only a tenth or a hundredth part of the aggregate of the interests of the
silent many. (Marshall 1890, p. 470)

The transition to a low-carbon society, complete with low-carbon power systems, will

likely be messy. There is much rhetoric on both sides of the debate, and far-reaching fi-

nancial and equity impacts from just about every available policy option. Therefore, careful

understanding and design of policies is vital, in order to bring emissions to sustainable levels

with minimal disruption to the rest of society. Only by fully understanding the most cost-

efficient ways to reduce power system GHG emissions can we make the best choices about

our path forward, and successfully design a sustainable future.
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