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The introduction of competition and deregulation in electricity markets is not a 

simple change. Recent events around the world have highlighted the consequences 

of shortcomings in the operation of electricity markets. 

Markets for electrical energy thus tend to be much more complex than other 

commodities market.  Their analysis therefore does not lend itself to simple models. 

The aim of this thesis is to present a feasible approach to their analysis combining 

classical statistics with Data Mining techniques. That is the development of 

effective methodologies to transform huge amounts of shapeless and unstructured 

data into organised and understandable information.  

The England and Wales Electricity market provides the perfect framework for this 

thesis. The change from the centralised Pool to the New Electricity Trading 

Arrangements (NETA) created a wide range of challenges for all market 

participants, including the SO, to optimise their strategies in order to maintain or 

increase their revenues and profits. The changes resulted thus not only in new 

questions but also in the need to explore new ways to achieve their answers. 

This thesis contributes not only to the analysis of NETA but also to the 

development of new methodologies that can be applied later in date or for the 

analysis of other new structured electricity markets.  To achieve this, the thesis 

unfolds in two different directions: the modelling and forecast of the market 

volume, and the analysis and characterization of unusual market conditions.  
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Introduction  

1.1 Liberalising electricity markets 

Electrical energy is a dynamic and fundamental good. These two characteristics 

have marked the history of electricity markets since the establishment of the first 

power stations in the nineteenth century. From the initial open and brutal 

competition passing through regulated structures and vertically integrated 

monopolies, current approaches move towards liberalised markets designs. 

Electricity markets liberalisation combines the unbundling of vertically integrated 

utilities, the limitation of central and governmental control, and the introduction of 

competition at all levels. 

CHAPTER 1 
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The reasons behind this electricity industry reorganisation, which started in the 

1980s, are not completely manifest. To explain the ground for this reform, different 

arguments can be presented (Stoft, 2002, Banks, 1996, Moorhouse, 1995). Among 

those, one should mention the economic aim of marginal cost pricing, the 

technological developments in generation, transmission and information 

technology, the drastic slowdown in the growth of demand in developed countries, 

and the world-wide globalization and liberalization trend. 

Within the power market one must distinguish the physical structure from the 

architecture or design (Stoft, 2002, Hunt and Shuttleworth, 1996). The physical 

structure consists of three main parts: generation (producing electricity), 

transmission (transferring the power over the high voltage network) and distribution 

(delivering the power to the consumers). From a design perspective, the power 

market includes different submarkets such as forward markets, spot markets, 

transmission capacity markets and ancillary services markets. Each of these 

markets can be organised as a pool (centralised market), bilateral (customized 

contracts, brokered, and exchanges) and hybrid models. To complete the definition 

of the market architecture it is also necessary to include the links between the 

different submarkets. These linkages can be classified as implicit (i.e. transmission 

rights and bilateral market) or explicit (i.e. forwards and spot market prices), as 

well as temporal (i.e. submarkets temporal sequence) and spatial (i.e. transmission 

and distribution networks). 

From the early attempt in Chile in 1983, several countries around the world have 

undertaken regulatory reforms in their electricity industry. The broadness of the 

liberalisation and deregulation depends not only on the industry structure and 

infrastructure (generation portfolio, demand requirements) but also on the economic 

and institutional frameworks. Many restructuring moves can be performed towards 

a more competitive market.  Based on the models presented by Hunt et al. (Hunt 

and Shuttleworth, 1996), Figure 1.1 shows the double dimension of the 

restructuring process. The vertical axis shows the reforms dealing with ownership 

and management, and the horizontal axis displays the ones dealing with the market 

structure 
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Figure 1.1 Restructuring dimensions and  possibilities  

Any regulatory reform involves complex changes that are introduced as an ongoing 

process. Policies are gradually implemented to allow people and institutions time to 

adjust and to allow policies to be reviewed and refined as markets grow, technology 

changes and competition develops. To describe the different realizations of the 

reforms is not the goal of this thesis, but a brief discussion on the consequences of 

these reforms is included.  

1.2 Consequences of deregulation  

Energy, and more specifically electricity, has become a key issue in development 

plans, not only those involved in the essential service itself represents, but also it 

has an impact on environmental, economic and even international policy. 

Regulatory reforms have an effect on different aspects of the industry, and often 

involve a substantial long-term commitment to change. Therefore governments 

need to be convinced that the changes will be worthwhile. These consequences can 

be part of the reform objectives but also penalties derived from the imposed 

structural changes. Some of the impacts of deregulation are: 
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• Stranded costs. Stranded costs can be defined as the decline in the value of 

electricity-generating assets due to restructuring of the industry (VanDoren, 

2000, Stoft, 2002). Regulated markets allowed the capital cost of assets to be 

reflected in electricity rates. For example, in the US, State public utility 

commissions had different rules regarding those assets and also have different 

rules about recovering their cost. In a restructured industry, the options to deal 

with stranded costs of government-own utilities are wider than for private 

companies. In the US, some state regulators have continued to allow utilities to 

recover the cost of those facilities, whereas others have not.  

• Electricity prices.  Pricing is one of the main regulatory tools. In a regulated 

market, they allow wealth redistribution, and often cross-subsidies to take place. 

As presented by Pineau (Pineau, 2000), different pricing options can be defined 

(average cost, marginal cost, real time, time of use, Ramsey, non-linear and 

reliability), and each of them pursues different goals, from fixed cost recovery 

to energy saving promotion. Lowering electricity prices is one of the main goals 

of deregulation. In competitive environment, producers monitor their cost 

closely to all margins, and ideally offer electricity at its marginal cost. 

Competitive conditions also mean more complex pricing systems that can 

reflect reliability and time of usage conditions (Schweppe et al., 1988). 

• Risks. In electricity markets certain risks, such as demand variations, equipment 

failure, and input prices are independent of the market structure. However, in a 

regulated and vertically integrated industry all these risks are easily covered by 

carrying excess capacity. Deregulation does not only accentuate the inherent 

market risk but also produces additional sources of risk like complex pricing 

structures. Nevertheless, decentralised markets are also more flexible and 

provide several mechanisms to deal with risk. Particulary notable among those 

are spot contracts, futures, and options on futures (Werner, 2002, Collins, 2002, 

Mohr and Unger, 1999).  

• Investments. Investments are directly related with both system reliability and 

electricity prices (Hogan, 1998, Kirschen and Strbac, 2004). Before 
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deregulation, it was the utility’s responsibility, under centralised generation 

planning, to assure that enough generation capacity was available. In the 

restructured power industry, generally there is either no central planning for 

new generation capacity additions, or a guarantee of recovery of generation 

investment. On the other hand, generation companies do not have any 

obligation to ensure a sufficient supply of electricity. However, if there is not 

enough investment, capacity scarcity will occur, prices will increase, and 

reliability levels may decrease. 

  

1.3 Modelling Electricity Markets 

Unfortunately electricity markets modelling present several differences compared 

with any other traded commodity market (Pilipovic, 1998, Strickland, 2000, Ocana 

et al., 2001, OFGEM, 2000b, Cardell et al., 1997): 

• Electricity as an energy commodity cannot be treated as a purely financial 

investment. Energy commodities are inputs to the production processes. This 

makes many of the common models unsuitable for the case of electricity, since 

the basic rules are quite often broken. In the electricity markets the prices 

offered may in some cases drop to zero or even reach negative values. This free 

disposal is not normally represented in the traditional models. 

• Imperfect competition in electricity markets. There are strong interaction effects 

across different parts of the system due to the transmission constraints that limit 

the flow of power in an electricity network. Large participants can exercise 

market power by increasing their own production, lowering some prices, and 

exploiting the necessary feasibility constraints in the network to exclude 

competition from others (Alaywan et al., 2004). It is then necessary to consider 

a model of imperfect competition with strategic interactions in an electricity 

transmission network. This includes situations where a generator could exercise 

market power by increasing its production in order to block transmission of a 

disproportionate amount of competing generation. This example illustrates a 

possible exercise of market power that differs from the usual analysis of 
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imperfect competition in more familiar commodity markets where a firm would 

just exercises market power by restricting its own production without any 

network restriction.  

• Electricity parameters show a very high seasonality. This means a recurrence in 

the values and also in the volatility. These transient movements can be found in 

intra-month, intra-week, and intra-day values due to changes in the demand 

side. This creates a necessity for a forward modelling in order to look for 

changes in seasonality.  

• Electricity cannot be stored easily. This is an extreme condition not presented 

by any other commodity. Storage limitation in electricity affects volatility in 

both forward and spot market quantities and prices: while the spot prices 

display a very high volatility, the forward prices volatility increases as maturity 

approaches.  

• Energy markets are relatively young. This youth affects the historical 

information available on spot prices and reduces significantly the amount of 

present-day traded volumes. As a consequence electricity markets are still 

somewhat illiquid. This special characteristic makes the prices analysis more 

difficult. 

1.4 Approaches to Electricity Markets modelling  

Markets for electrical energy thus tend to be much more complex than other 

commodities market.  Their analysis therefore does not lend itself to simple models. 

Such an analysis, however, is extremely important to regulatory authorities because 

they will want to check that the market is operating efficiently and that some parties 

are not taking advantage of their market power.  

Market participants are also interested in analysing the market to understand the 

behaviour of their competitors and to optimise their bidding strategy.  

Different techniques can be applied in the study of electricity markets. Each of 

them looks at the market from a different perspective and tries to explain specific 
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areas of the market. The most important approaches are: financial econometric 

analysis, operational electricity models and data mining techniques. 

1.4.1 Financial Econometric Analysis  

This technique is based in the extensions of the Geometric Brownian Motion (see 

for example (Hunt and Shuttleworth, 1996)). The main techniques used in this 

approach are mean reversion, stochastic volatility and jumps. The obtained models 

are commonly applied in the study of spot and forward prices as well as sensitivity 

risk analysis for future contracts and options. One of the main difficulties of this 

approach is to adapt classical modelling techniques developed for purely financial 

markets to the complexity of the electricity market. Because many of the basic 

assumptions used for financial markets are not valid in electricity markets, ignoring 

the realities of the market could cause grave mistakes costing a great amount of 

money to a trading party. 

1.4.2 Operational electricity models 

These models combine the technical characteristics and limitations of the physical 

electricity system with a realistic modelling of the participants’ behaviour. 

According to their mathematical structure the different approaches can be classified 

as optimization models, equilibrium models and simulation models (Ventosa et al, 

2005). 

1.4.2.1 Optimization models 

These models focus either on the profit maximization of a single firm, or the cost 

minimization of the total cost of the whole system operation. Although they are 

formulated as a single optimization program, they capture both the operational 

constraints of the interested firm and the price clearing process.  

In the simplest market models the firms’ decisions are assumed to have no 

influence on the clearing price. This can be defined either in a deterministic or a 

stochastic manner. These approaches have been used to solve generation scheduling 

(Gross and Finlay, 1996)  and risk management problems (Fleten et al., 1997).  
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Another group of optimization models are the so-called leader-in-price models. 

They consider the influence of the firm’s production on the price by including the 

residual demand function (Garcia et al., 1999) when modelling the optimal output 

for the firm. These models have been used to solve unit commitment problems and 

to obtain optimal offer curves (Ventosa et al., 2005).   

1.4.2.2 Equilibrium Models 

These models present a wider perspective of the market operation, since they 

consider the competition among all the participants (Ventosa et al.,2005). These 

models are based on the Nash equilibrium concept (the market reaches its 

equilibrium when each player’s strategy maximizes its profit against the strategies 

of its competitors). Depending on the definitions of the firm’s strategy we can 

distinguish between Cournot equilibrium and Supply Function Equilibrium (SFE) 

models.   

In Cournot models the firms’ strategy is purely quantitative (Daughety, 1989). 

Hence, the representation of the firm’s optimum output is a set of algebraic 

equations. These models have been widely used in areas such as market power 

analysis (oligopoly models) (Borestein and Bushnell, 1999, Borestein and Kinittel, 

1995), hydrothermal coordination (Barquin et al., 2003), congestion pricing 

(Hogan, 1997) and risk analysis (Otero-Novas et al., 2000). The main drawback of 

the Cournot model is that equilibriums prices are high than what is actually 

observed and unrealistically sensitive to the demand representation. This arises 

from the fact that the firm’s output is defined in terms of quantities and directly 

linked to the demand conditions. 

SFE are more complex models where the firm’s strategy is based on offer curves 

(quantities and prices) (Kemplerer and Meyer, 1989). Their mathematical 

representation relies on a set of differential equations, which limits their numerical 

tractability. The main areas of applications include: market power analysis 

(asymmetric duopoly) (Green and Newbery, 1997), electricity price estimators 

(Rudkevich et al., 1998) and network modelling (Ferrero et al., 1997). The main 

limitations of these models reside in their complex mathematical structure, which 
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limits their ability to capture a realistic representation of the competition between 

participants and the system operation constraints. 

1.4.2.3 Simulation models 

Simulation models are an alternative to equilibrium models for the cases that 

require a more flexible representation. These models describe each firm’s strategic 

decisions dynamic by a set of sequential rules; the basic building blocks are stocks 

that flow within a structure of information feedback loops. In this way, the firms 

learnt from historic information and past decisions, react to competitors’ moves, 

and adapts to changes in the environment (Ventosa et al.,2005). 

The main type of simulation model is agent-based (Bunn and Oliveira, 2001). 

Agent-based modelling is applicable to a wide variety of business problems. It is 

also known as agent-based or bottom-up simulation. In these computer simulations, 

software agents represent the generating firms at a power plant level; suppliers can 

also be included as agents in order to model the demand side of the market. Agents 

are programmed to develop their own bidding strategies according to their own 

plant characteristics and the market rules. Agent-based simulation is normally used 

for price and market power analysis (Bower and Bunn, 2000) and as a possible tool 

for forecasting the market evolution or the possible effects that regulation changes 

may have on the participants (Bunn and Oliveira, 2001). One of the big difficulties 

with these models is the need create realistic and flexible agent operation rules. The 

model should also capture all the possible interactions between the participants to 

create an accurate market environment. Too many simplifications can lead to 

incorrect agents’ behaviour and false predictions.  

1.4.3 Data mining techniques 

Data mining (Figure 1.2) starts with the data, and seeks to discover novel patterns. 

A data mining project progresses in phases: understanding the market and the data, 

preparing the data, and analysing the data with the specific goals in mind. This 

creates an interactive process because when the patterns emerge, the initial goals 

may need to be redefined. As a result of this multi-step process it is possible to 

discover the useful patterns in the data that help understand the market drivers.  
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Figure 1.2 The Data Mining transformation: from raw data to knowledge 

 

With data mining the researcher does not rely on assumptions so as to study the 

market behaviour but analyses the real data and extracts the actual patterns from 

them. Data mining differs from the methods previously described in the fact that no 

simplifications of the market mechanisms are needed. Therefore, the market is 

analysed from a realistic bottom up approach where linear, non linear and highly 

dimensional conditions can be modelled. One of the big difficulties of the data 

mining approach is to select the correct data to explore. It is thus particularly 

important to understand the market rules and the interactions between the different 

market quantities. 

Data mining can be used to perform a wide variety of analysis from forecasting to a 

global analysis of the market drivers, or a more specific analysis of the strategies of 

the market participants and the possible interactions between them.  

The easy access to electronic communications networks has allowed a big change 

in every business environments. This change is mainly driven by the recent 

presence of computers that has allowed a beneficial use of more and more data. 

Power companies are also part of this development. Data management in electricity 

markets is getting complicated due to two events: 

 

• The possibility to gain access to a huge amount of operational data taken 

from improved communication channels. For instance, in the England and 
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Wales program all the different participants are required to be electronically 

linked and to submit their desired operation levels through these 

communication links; also the operation of the market on a rolling 48-half 

hour basis generates massive amounts of data that are now available on the 

internet (Garcia, 2001a). 

• The worldwide deregulation of electricity markets. The introduction of 

competition has introduced a new challenging perspective in the market 

participants. A deregulated market creates for the generators a self-dispatch 

perspective, which requires a strategic analysis of how to run the plants in 

the most cost-effective mode. On the demand side, they are able now to 

adjust their consumption level to the most economical one (Heslop, 1997).     

These two situations have resulted in the fact that the information required to make 

strategic decisions is hidden in complex and often badly structured databases.  The 

analysis of these data should produce a more realistic model of the market’s 

behaviour. 

1.5 Scope of the thesis 

Deregulated electricity markets are a gold mine of discovery, and the aim of this 

thesis is to present a feasible approach to their analysis combining classical 

statistics with Data Mining techniques. That is the development of effective 

methodologies to transform huge amounts of shapeless and unstructured data into 

organised and understandable information.  

The framework of the thesis is the England and Wales electricity market, which is 

detailed described in Chapter 2.  Within this broad context, the thesis focuses on 

two complimentary approaches for its study. The first is a modelling and forecast 

analysis of the market volume. The second approach is the analysis and 

characterization of unusual market conditions.  

Data mining techniques are introduced in Chapter 3, which first describes their 

different styles, purposes and domains, and then concludes with a detailed 

description of the organization and stages of the data mining process. 
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The first contribution of this thesis is to develop a new methodology to forecast the 

market volume or Net Imbalance Volume (NIV), a key variable for the system 

operator. Forecasting in power systems is necessary because decisions cannot be 

implemented immediately and because they need to be evaluated for a certain 

period of an activity. Wang et al. (Wang and McDowall, 1994), Dash et al.(Dash et 

al., 1995), Bunn (Bunn, 2000), Sfetsos (Sfetsos, 2003) and Kermanshahi et al. 

(Kermanshahi and Iwamiya, 2002) provide overviews of the progress that has been 

made recently in the broad field of forecasting in power systems. The introduction 

of competitive electricity markets has considerably increased not only the 

complexity of this task but also the breadth of this field (Garcia and Kirschen, 

2004): 

• Forecasting is no longer an activity performed only by the system 

operator. All market participants must do some forecasting to operate 

their systems more efficient and economically, thus maximizing their 

profitability and controlling their exposure to risk.  

• Load is no longer the only uncertain variable that must be forecasted. 

Market participants are interested in prices (Bastian et al., 1999, Crespo 

Cuaresma et al., 2004, Rodriguez and Anders, 2004, Wang et al., 2002, 

Nogales et al., 2002, Contreras et al., 2003) , traded volumes, and market 

length. 

• Market variables are much more “noisy” than the system load.  

• The values of these variables are driven in complex ways by many 

interacting factors. It is thus important to expand previous one-

dimensional approaches (see for example (Crespo Cuaresma et al., 2004)) 

to multidimensional inputs. 

• The amount of data to be considered is huge and involves not only the 

market clearing data but also the positions that the participants took prior 

to gate closure and synthetic indicators of market activity. 
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• Changes in market rules affect the way some variables are calculated and 

influence the behavior of market participants. These changes reduce the 

amount of historical data that can reliably be used for forecasting. 

The developed forecasting methodology for NIV analysis and forecast is presented 

in Chapters 4 and 5. In Chapter 4, the analysis and forecast of NIV is based on one-

dimensional techniques, and uses time series to first identify the “time structure” of 

the data and then to produce a medium term forecast (one week ahead) of this 

variable. This line of analysis combines both the adaptation of traditional 

techniques, used for forecasting the behavior of financial and other physical 

commodities, with the introduction of singular spectrum analysis, a recently 

developed technique. Chapter 5 expands the scope of the analysis to a 

multidimensional perspective. Other market variables are included to achieve an 

effective methodology for forecasting NIV in both the medium term (one week 

ahead) and long term (one month ahead). The first part of the chapter seeks to 

uncover the possible relations between NIV and the considered market variables. 

The relationships are analysed from a qualitative (i.e. linear, non-linear), 

quantitative (i.e. their statistical significance), and temporal (i.e. instantaneous, 

lagged) perspective. The second part of the chapter presents a forecasting 

methodology based on the relation between the past (seen) values of the balancing 

mechanism variables and the future (unseen) values of NIV. However, the relations 

linking the past and future values of these variables are neither simple nor linear. 

Data mining techniques, in particular neural networks, are shown to be able 

uncover these complex associations while maintaining the time structure of the 

analyzed series. 

The second main contribution of this thesis, arising from the second approach, is to 

develop a methodology for the analysis of unusual events a topic seldom considered 

in the analysis of electricity markets. Chapter 6 proposes a new line of analysis 

based on the relationships between causes and effects. This chapter first introduces 

the prior work in the area of unusual events. Then, it covers the analysis of the 

unusual events trigger variables (causes) considering not only their probability of 

occurrence but also their duration as well as the time between events. The last part 

of the chapter analyses the effects that these events have on the market behaviour. 
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The innovation of the proposed methodology is not only the combination of one-

dimensional and multidimensional techniques but also its capability to consider the 

simultaneous occurrences of events and the dynamic analysis of the market reaction 

to an event or combination of a combination of events. 

The final chapter (Chapter 7) brings together the general conclusions derived from 

the different analyses and suggests new directions both in the line of analysis 

presented and for future analysis in the context of the Great Britain electricity 

market analysis. 
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The New Electricity Trade Arrangements 

2.1 Introduction  

Despite electricity’s unusual characteristics, new market designs try to make its 

trading similar to the trading in any other commodity. The design of a competitive 

market is based on two simple principles: a competitive and efficient energy 

trading, and the reliable operation of the grid. However, there is no simple recipe 

when designing a power market. The existing generation resources, the demand 

requirements as well as the segmentation and ownership of the industry must be 

considered to successfully define the different market architecture, mechanisms and 

rules.  

With the establishment of the Electricity Pool in 1990, England and Wales became 

one of the first countries to introduce competition in the provision of electricity 

(Bourn, 2003, OFGEM, 1999c, OFGEM, 2000a). The Pool was a compulsory 

CHAPTER 2 
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market where generators (AES and British Energy, 2001) and suppliers traded 

according to a set of rules (the Pool rules). It had a centralised structure in which 

National Grid Company (NGC), as the system operator, was responsible for 

scheduling, dispatching and pricing. Each day generators submitted their bids to the 

Pool, declaring the amount of electricity that they were willing to generate and the 

minimum price that they were willing to accept for this production. Using a unit 

commitment program, NGC ranked all the generators bids in “merit order” starting 

with the cheapest until there was enough generation to meet the demand plus the 

reserve (unconstrained schedule) while satisfying the constraints. In each period, 

the most expensive accepted bid determined the price for all the generated 

electricity.  

In summary, the Pool was successful in maintaining the security of the supply, 

creating the half-hourly pricing structure and facilitating the entry of new 

generation into the market. However OFGEM and some other participants 

considered that it also failed on several major accounts (McClay et al., 2002, 

Hesmondhalgh, 2003, Bourn, 2003, Dettmer, 2002).  The complexity of bidding 

and price setting, the relative lack of both supplier pressure and demand-side 

participation, and the limitation of capacity payments resulted in a situation where 

consumers were facing higher prices than would have been feasible otherwise.   

OFGEM believed that there was no simple way to modify the Pool mechanisms so 

as to get more competitive and transparent prices so it was felt that new market 

design was needed (OFGEM, 2002, OFGEM, 2000a, OFGEM, 1999c, Neushloss 

and Woolf, 1999). In October 1997 a review of the electricity trading arrangements 

was initiated by the Minister of Science, Energy and Industry. In November 1998, 

the DGES published a framework document explaining how the new programme 

would be taken forward. This culminated in the publication of a two-volume report 

by OFGEM in July 1999 (OFGEM, 1999b, OFGEM, 1999a).  This report explained 

the reasons for the replacement of the Pool with what was called “New Electricity 

Trade Arrangements “(NETA). NETA went live replacing the Pool on the 27
th

 of 

March 2001. 
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2.2 Operation of the New Electricity Trade 

Arrangements (NETA) 

 The philosophy of NETA is not to dictate how the energy will be bought and sold 

but to provide mechanisms for almost real-time clearing and settlement of the 

imbalances between the contracts and the actual positions of the different parties 

involved in electricity trading (OFGEM, 2002, Electricity Asociation, 2002, Bourn, 

2003).  

The main difference between NETA and the Pool is that the new system is based 

and designed around bilateral trading between generators, suppliers, traders and 

consumers. In this way the participants can choose the way they want to trade and 

choose the related mechanism to do it. 

NETA, like the Pool, is based on half-hourly trading periods but incorporates the 

following features (Stephenson and Paun, 2001, OFGEM, 2000a): forward and 

futures markets, short-term power exchanges, a balancing mechanism, and a 

settlement process. The rules that govern these last two functions are set down in 

the Balancing and Settlement code. Figure 2.1 describes the timeline for NETA 

operation and the resulting market structure. 

 

 

Figure 2.1 The New Electricity Trade Arrangements (NETA) Timeline 
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2.2.1 Forwards and futures markets 

These markets are bilateral contract markets for firm delivery of electricity (Bunn 

and Oliveira, 2001, Stephenson and Paun, 2001, Bourn, 2003, OFGEM, 2002, 

Kirschen and Strbac, 2004). They operate from a year or more ahead of real time up 

to 24 hours ahead of real time and occasionally up to gate closure. These markets 

provide the opportunity for generators to enter into contracts to deliver a specified 

quantity of electricity on a specified date and at a specified price with suppliers and 

consumers. The freedom and bilateral pricing is expected to guarantee that prices 

better reflect generation costs (Hesmondhalgh, 2003). Bilateral trading also 

increases the market liquidity as traders (that do not produce or consume physical 

quantities of energy) also seek to enter the market (Bourn, 2003). 

 

2.2.2 Short term power exchange 

Power exchanges provide a wide variety of contracts. They can be done from 

months of delivery to half hourly intervals (Stephenson and Paun, 2001). Market 

trading includes not only over the counter trading but also electronic trading and 

other financial services. By trading in the spot markets participants can fine tune 

their contractual position reducing the risk of being exposed to real-time spot 

markets. These markets are open 24/7 with access available either through the 

internet or by leased line. In all these exchanges, offers and bids can be posted, 

modified or withdrawn at any point until they are accepted. Continuous trading 

helps participants to deal with unforeseen events and therefore gives stability to 

electricity prices. There are two main power exchanges in operation since the 

introduction of NETA: the UK Power Exchange (UKPX) and the UK Automated 

Power Exchange (UK APX).  

Forward, future and short term are the main wholesale markets where the bulk of 

electricity is traded under NETA. Approximately 95% is covered in bilateral 

contracts, a further 1-2% is traded in power exchanges (Bourn, 2003) . The UKPX 

is the exchange with largest traded volume. Throughout NETA operation, theses 

markets have developed naturally. Their activity has significantly increased 
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specially for forward contracts since participants try to secure their energy 

requirements in advance (Electricity Asociation, 2002). These non mandatory 

markets have not only increased NETA’s liquidity but also its transparency by 

making future prices available from different reporters (Hesmondhalgh, 2003).  

2.2.3 The Balancing mechanism 

Bilateral trading operation does not continue up to real time. At gate closure, 

(initially 3.5 hours and, since 2 July 2002, 1.0 hour ahead of real time) bilateral 

trading stops and the balancing mechanism starts (OFGEM, 1999c). The Balancing 

Mechanism is necessary because electricity is not a simply commodity. 

Under NETA, the different parties indicate to the SO the levels of output or 

consumption at which they want to operate. This creates the necessity of a 

mechanism to adjust, in real time, the levels of generation and demand. There are 

two main reasons for that: 

• First, it is likely that the total output of generation does not match the total 

consumption of consumers at any given time. This can be due to the fact that 

the parties have not exactly predicted their real operating level; factors like the 

weather can affect the expected demand, also some generation may not be 

available due to unexpected faults. 

• Second, the System operator may need to adjust the level of production and 

consumption away from the level the generator or the consumer wish to 

operate. These adjustments are due to technical reasons and to preserve the 

secure operation of the system (F.Li et al., 2002). 

 By gate closure all the different participants must notify their expected operation 

levels (final physical notifications) to the System Operator (SO), National Grid. 

They may also submit their willingness to deviate from these levels, in exchange 

for payment, by the mean of offers and bids (Figure 2.2). Offers indicate a 

willingness to increase the level of generation or to reduce the level of demand. 

Conversely, bids indicate a willingness to reduce the level of generation or increase 

the level of demand. Both bids and offers pairs have to include a bid/ offer price, 

expressed in £/MWh, and a quantity, expressed in MWh. Every offer and bid has to 
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include a complementary ‘undo’ bid or offer; they represent the price of cancelling 

the offer or bid. Participants can submit up to five bid/offers pairs above the final 

physical notification and five below. The Offer Price and Bid Price values must 

increase (or remain constant) as the Bid-Offer Pair Number increases (Garcia, 

2001b). 

Figure 2.2  Bid and offers submission 

 

After gate closure the SO is responsible for balancing the energy mismatch between 

generation and demand considering at the same time all the system physical 

constraints for transmission and distribution (OFGEM, 2000a, Stephenson and 

Paun, 2001, F.Li et al., 2002, Powell, 2001, Dettmer, 2002, Dyer et al., 2002, 

Clarke, 2002, National Grid Transco, 2003).  This means that:  

• If the system is short of generation the SO can accept offers from the 

generators to increase their production or accept offers from the suppliers 

(demand side) to reduce their consumption. 

• If the system is long of generation the SO can accept bids for the generation 

side to reduce their output or accept bids from the demand side to increase the 

demand. 
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Trades in the balancing mechanism are visible to all market participants. In this 

way every participant can see its competitors bid/offers acceptances and therefore 

choose to adjust their bids and offers for subsequent periods.  

Participants in the balancing mechanism are remunerated on a “pay as bid” basis 

for the volumes that they have been instructed to deliver by the SO. As presented in 

figure 2.3, in each Bid-Offer Acceptance the SO indicates the MW output levels at 

which it wishes the BM Unit to operate for certain times within the Balancing 

Mechanism Period.  

 

 

Figure 2.3 Bids and offers acceptances 

 

The System Operator also contracts in advance (OFGEM, 2000a, National Grid 

Transco, 2003, National Grid Transco, 2002) (sometimes up to a year or more 

ahead) for some balancing services such as reserve, frequency control and voltage 

support. Such contracts supplements the actions that the SO does through the 

Balancing Mechanism and enable it to balance physically the system second by 

second, thereby maintaining the quality and security of supply. 
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2.2.4 The settlement process 

After real time the settlements process starts. ELEXON, as the settlement system 

agent, compares the contractual positions (Final Physical Notifications (FPN) plus 

actions accepted through the balancing mechanism) of the participants with their 

real metered generation or consumption (OFGEM, 1999c). When there is a 

difference between these two values the participants are exposed to the imbalance 

settlement prices (Figure 2.4). The energy imbalance is based on a two-part cash-

out regime: buyers of imbalance energy through the settlement system will pay the 

System Buy Price (SBP); sellers of imbalance energy will be paid the System Sell 

Price (SSP) (ELEXON, 2003b). 

 

 

Figure 2.4 Imbalance settlement exposure 

 

Prior to the 11
th

 of March 2003, SBP and SSP were calculated from the balancing 

mechanism accepted offers and bids, respectively (OFGEM, 2000a). After that 

date, the dual cash out system is based on two prices: a main price and a reverse 

price. The main price reflects the cost of short term balancing actions, bids and 

offer acceptances in the balancing mechanism (ELEXON, 2003b). The reverse 

price (Market Index Data) is associated with the price of short term (i.e. three 

business days ahead of the corresponding period) energy trading in the UK-APX.  

The main and reverse price definitions depend on the market balance. When the 

market is long (i.e. the declared generation exceeds the declared demand at gate 
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closure), SSP is the main price and it is set according its previous definition, and 

SBP is the reverse price and consequently is defined as the market price. When the 

market is short (i.e. the declared demand exceeds the declared generation at gate 

closure) SBP is the main price and set according to the balancing activity, and SSP 

is the reverse price and is set to the market price.  

Figure 2.5 shows the six major classes of payments and charges included in the 

settlement process (ELEXON, 2004b). Five of them relate to the trading parties and 

arise from imbalance charges and BM cashflows derived from accepted offers and 

bids. The remaining one relates to the SO and represents the cost of the offers and 

bids that were accepted to operate the system. The sum of all these cashflows is the 

Total System Residual Cashflow (Cornwall, 2002).  When this amount is positive, 

the surplus is returned to the trading parties in proportion to their metered 

quantities. On the other hand, when this amount is negative, the direction reverses 

and the deficit is recovered through charges on these parties.  

 

Figure 2.5  The Settlement Process cashflow ( the arrows indicate the direction of 

payment) 
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2.3 Market participants and their role 

2.3.1 Trading Parties 

These market participants are required to sign the Balancing and Settlement Code 

(ELEXON, 2004d). They include:  

• Parties supplying and/or generating electricity: generators, suppliers and 

interconnectors users. The trading entity under NETA is based on Balancing 

Mechanism (BM) Units. A BM unit is a plant and apparatus, which exports 

electricity to, or import electricity from, the transmission grid. The minimum 

capacity for a BM Units to be considered is 50MW (OFGEM, 2000a). 

• Financial institutions trading in the electricity market without generating or 

supplying electricity. 

2.3.2 The System Operator 

As system operator, National Grid (NG) is required to operate the transmission 

system in an efficient, economic and coordinated manner (Stephenson and Paun, 

2001, National Grid Transco, 2003). Its activities can be separated into two main 

roles:  

• Energy balancing: the matching of generation and consumption on a minute-

by-minute basis 

• System balancing: ensuring that the frequency and voltage of the transmission 

system remain within statutory limits and handling of potential violations of 

transmission constraints. This may be considered to include energy trades not 

required simply to balance energy at the national level. 

Before the introduction of NETA, NG used for these purposes a combination of 

ancillary services contracts and the scheduling and dispatch of generators and 

demand-side bidders based on the bids that they submitted to the Pool. Under 

NETA, a similar range of options is available, including the rescheduling of plant 

through the acceptance of Balancing Mechanism bids and offers and the use of 

options contracts for balancing services from generation and demand purchased in 
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advance (OFGEM, 1999b, National Grid Transco, 2003, National Grid Transco, 

2002). 

In procuring balancing services, NG must apply the following procurement 

guidelines (National Grid Transco, 2002): 

a) NG will purchase from the most economical sources available considering 

the quality, quantity and nature of the services available for purchase at that 

time. 

b) NG will contract for balancing services on a non-discriminatory basis. 

c) When there is sufficient competition in the provision of balancing services, 

NG must purchase the services via an appropriate competitive process. 

d) When there is insufficient competition, NG will contract on a bilateral basis. 

NG may buy or sell energy-related contracts forward in order to: 

a) Meet its forecast requirement for balancing energy; 

b) Provide options to meet possible forecast variations; 

c) Reduce the total cost of balancing the system;  

Analysing the role of NG over a time scale we can distinguish different stages: 

• At the year-ahead stage, the activities of the System Operator (SO) will still be 

to plan the maintenance of the transmission system and to procure balancing 

services. Over these longer timescales, the SO’s plans incorporate the 

information it receives from the major generators concerning plant availability 

and planned maintenance schedules (AES and British Energy, 2001). 

• In the short term, meaning mainly from the day-ahead stage the SO will be 

responsible for: 

a) Collecting information about planned physical flows into and out of 

the network; 



 26 

b) Performing demand forecasting and system modelling to determine 

whether balancing actions are required to ensure safe and secure 

operation of the system; 

c) Dispatching such balancing actions; 

d) Submitting data to the Settlement Administrator. 

Balancing the transmission system has a cost, and this cost is passed first to the 

participants and finally to the consumers (Garcia and Kirschen, 2004). To ensure 

that the system is operated in the most economical way, NG is subject to incentive 

schemes for both internal and external costs. In this way, if NG keeps the total cost 

under the final target it is rewarded with a percentage of the savings. On the other 

hand, if the target is exceeded NG will share a percentage of the cost. Since 

NETA’s introduction there has been one scheme for internal costs and three 

different incentives schemes for external costs (OFGEM, 2003). Figure 2.6 shows 

the last scheme, it started in April 2004 and sets a target of £415m since NETA 

introduction OFGEM has reduced the incentive scheme target by around £70 

million (from approximately £485 million to £415 million for the current incentive 

scheme). 

 

Figure 2.6 National Grid Incentive scheme 
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2.3.3 OFGEM 

OFGEM is the Office of Gas and Electricity Markets. It is the regulator for the UK 

electricity markets. In its role as regulator it must both protect the consumers and 

promote efficient competition. 

OFGEM is governed by the Gas and Electricity Markets Authority which sets 

OFGEM’s rules of procedure. 

2.3.4 ELEXON 

ELEXON is the Balancing and Settlement Code (BSC) Company (an independent 

subsidiary company from NG) (ELEXON, 2004c). This code sets the rules and 

governance for the balancing and settlement process. Under NETA, generators and 

supply companies are obliged to sign the BSC, by doing so they take an active role 

in the BM and the following settlement process. Other parties may also choose to 

sign the code being therefore. Once they have done so, they are entitled to notify 

energy volumes but are then exposed to imbalance payments and charges 

(ELEXON, 2003a). 

A very important characteristic of NETA’s governance agreements is their 

flexibility and capability to evolve to meet new requirements (Cornwall, 2001, 

Bourn, 2003). Thus, any party and Energywatch (the consumer body) may sugest 

modifications to the BSC. These modifications are considered by the BSC panel, 

which consist of a chairman (appointed by OFGEM), industry members, a 

transmission company member (appointed by NG), consumer members and 

independent members. The final recommendations of this panel on the proposed 

modifications are passed to OFGEM. It is the Authority that makes the final 

decisions on the approval or rejection of the proposed changes. 

2.4 Experience with NETA and further developments 

In order to make a balanced assessment of the impact NETA has had in the UK 

electricity market it is necessary not only to review its achievements in the England 

and Wales electricity market, but also to analyse the main modifications that have 
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led NETA to be the blueprint for the establishment of the British Electricity 

Trading and Transmission Arrangements (BETTA).  

2.4.1 Impact of NETA  

NETA has had an impact on the following areas (Stephenson and Paun, 2001, 

Hesmondhalgh, 2003, Dettmer, 2002, Cornwall, 2002, Powell, 2001, Cornwall, 

2001, Bourn, 2003, OFGEM, 2002): 

• Market prices: one of the main achievements attributed to NETA is its 

contribution to the reduction of electricity prices. After one year of NETA 

operation, baseload and peak prices had fallen by 20% and 27% respectively. 

Over-the-counter prices had fallen also by 32%. However, some authors 

(Cornwall, 2001, Bourn, 2003) believe that NETA should not get the whole 

credit for this price reduction. They believe that plant divestments and the 

increase in the generation capacity margin played a role that was at least as 

important.  

Market liquidity: Forward trading has significantly increased: 98% of electricity is 

traded as any other commodity and only 2% is sold in the balancing mechanism. 

Market liquidity depends on the time scales over which electricity is traded. Short 

term markets appear to be less developed (1-2% of total electricity) and therefore 

less liquid. This is normally attributed to the lack of need of short term bilateral 

contracts due to the improvement of the forecasting capability of market 

participants.  

• Market transparency: Electricity prices are now published by price reporters 

for different time scales. 

• Demand side participation: One of the main challenges when trying to make 

trading of electricity similar to the trading of other commodities is the need to 

increase the role of the demand side. In this way, large industrial users, by 

providing balancing services, can help not only to balance the system but also 

to increase competition with the generators. “Under NETA demand side 
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balancing services are said to be between 5% and 30% of the total (Bourn, 

2003).” 

• Risk Management: As can be seen from its structure, NETA has represented 

new challenges and risks for all the market participants: 

o System Operator (SO): It is a big challenge to balance the system in 

real time and to meet the system constraints at minimum cost. To 

this end the SO can opt to enter into contracts, trade in the energy 

market before gate closure or use the Balancing Mechanism (BM). 

In the BM there is a combination of compulsory generation dispatch 

and a voluntary part of submitting bids and offers. 

o Participants: The exposure to imbalance prices is a big risk (McClay 

et al., 2002). Both generation and demand need reliable and 

accurate notifications. The accuracy of demand forecasting has been 

improved from 6 to 2-3 % (Bourn, 2003). Another risk management 

strategy adopted by generators is the use of part-loaded plants. This 

allows them not only to avoid the exposure to imbalance prices, in 

the case of plant failures and forecasting errors, but also to take the 

opportunities the BM can offer. While this approach is financially 

beneficial for the market participants, it is also considered as one of 

the most technically and economically inefficient aspects of NETA.    

2.4.2 NETA Modifications 

The BSC provides a clear framework for modifications and improvements. In the 

light of NETA experience, the rules have been changed several times. After over 

three years of its operation a total of 174 proposals for modifications have been 

submitted. Out of these 84 have been approved (ILEX, 2002). Several 

modifications groups have been established to assess specific areas or issues.  

The reduction of the gate closure from 3.5 to 1 hour, implemented on the 12
th

 of 

July 2002, was considered a major modification in the general market design due to 

the operational changes that it caused (ELEXON, 2002a). 
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The big spread between SBP and SSP as well as the strong volatility of SBP have 

been the cause for some of the most important changes in NETA. Pricing 

modifications arose almost as soon as NETA went live. The goal of these changes 

was to reduce the punitive nature of the dual cash out system while keeping the 

incentive on participants to remain in balance. 

As early as May 2001 the first modification (P10) (ELEXON, 2001c) was approved 

to reduce the high spikes of SBP. It resulted in the removal of bids and offers 

acceptances below a certain threshold (1 MWh) from the imbalance price 

calculation.  

On August 2001 proposal P18 introduced the concept of Continuous Acceptance 

Duration Limit to distinguish between system and energy balancing action 

(ELEXON, 2001b). This modification was aimed to reduce the spread between 

SBP and SSP by eliminating the cost associated with system balancing actions 

(frequency control) from the imbalance prices calculation since they should reflect 

the cost of long term energy balancing actions. This modification resulted in the 

exclusion from the imbalance prices determination of acceptances with duration of 

less than fifteen minutes.  

Dual energy pricing has been a widely debated topic and reached its more intense 

moment throughout the spring and summer of 2002 when two parallel 

modifications proposals were submitted, each supporting different definitions and 

calculations of imbalance prices. The first of these (P74) (Campbell Carr, 2002, 

ELEXON, 2002b) considered the introduction of a single imbalance price that 

would be defined over the market length. This proposal was rejected and instead the 

more conservative approach (P78) was approved. This proposal, as described in 

section 2.2.4, introduces a market price and keeps the dual pricing cash out 

established with a main price and a reverse price. 

The implementation of P78 has clearly reduced the risk for market participants and 

its effects can not only be seen in the prices behaviour but also in the market length. 

Since April 2001 imbalance prices definitions have thus been significantly 

modified. However this cannot be considered a closed topic and further 

modifications to the definition of SBP and SSP may be implemented in the future.  
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2.4.3 The BETTA project 

The next step in the evolution of NETA is the introduction in April 2005 of the 

British Electricity Trading and Transmission Arrangements (BETTA). BETTA will 

join the trading arrangements for England, Wales and Scotland, creating for the first 

time a British-wide wholesale electricity market (Ofgem, , Bourn, 2003, ELEXON, 

2004a, OFGEM and DTI, 2005). 

BETTA is meant to have a high impact on the use of the transmission system. 

Under NETA Scottish generators willing to participate in the England and Wales 

market must also acquire a share of the interconnector capacity. BETTA will 

change this situation and transfer the current NETA arrangements to Scotland, 

resulting in significant changes for the Scottish generators and consumers.  

The current BSC will also evolve into the Great Britain Balancing and Settlement 

Code. NG will be the provider of connection and use of the Great Britain 

transmission system. 
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Introduction to Data Mining Techniques 

 

“To model or not to model is not the question 

We all model when expressing causal relationships 

To simulate or not to simulate is not the question 

We all simulate when explaining the cause of a problem. 

To quantify or not to quantify is not the question 

We all quantify when making relative comparisons, judgements and choices. 

The real question is then how to model, how to simulate and how to quantify”. (Unknown) 

 

3.1 Introduction to Data Mining 

Data mining derives its name from the similarities between searching for valuable 

business information in a large database and mining a mountain for a small amount 

of valuable mineral.  

Data mining techniques began when business data was first stored on computers 

and are the result of a long process of research and product development. This 

evolution has continued with improvements in data access, and the incorporation of 
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technologies that allow users to retrieve and analyse data in real time (Han and 

Kamber, 2001). Many organizations have realized that the knowledge contained in 

their huge databases is the key to the support of various organizational decisions. 

Within the masses of data lies hidden information of strategic importance. 

Data mining differs from other research method in that it is intended to work on 

data without starting from a particular hypothesis, assumption or even a particular 

question. Essentially, it reverses the scientific method (Figure 3.1), starting from 

data and moving towards hypotheses instead of following the traditional order 

(Berry Michael and Linoff, 2000): 

 

 

Figure 3.1 Scientific vs .Data Mining methodology 

 

3.2 Data Mining Models 

Data mining techniques can create a wide range of models. These can be classified 

depending on the aim (direct or indirect) and the characteristics of the model (static 
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or continuous learning models) (Wehenkel, 1997, Han and Kamber, 2001, 

Kantardzic, 2002, Berry Michael and Linoff, 2000). 

3.2.1 Aims of data mining 

 Learning from data is a process that comes in two different flavours: directed 

(supervised) and undirected (unsupervised) data mining.  

Directed or supervised data mining directs the model towards a particular goal, 

which can be either to predict, to estimate, to classify or to characterize the 

behaviour of a variable. In other words, in supervised data mining, the model 

defines the effect that one set of observations, called inputs, has on another set of 

observations, called outputs. The variables under investigation can be divided into 

two groups: the targeted or dependent variables (one or more), and the explanatory 

variables.  

Undirected or unsupervised data mining is nearer to the exploratory spirit of data 

mining, since there are no targeted variables. Instead, the goal is to discover the 

structure in the data as a whole. In unsupervised learning models all variables are 

treated in the same way. There is thus no distinction between explanatory and 

dependent variables. 

The dividing line between supervised learning and unsupervised learning is 

basically set by the aim of the analysis, since the same tools can be used both for 

direct and undirected modelling. With unsupervised learning it is possible to create 

larger and more complex models than with supervised learning. This is because in 

supervised learning the aim is to find the connection between two sets of 

observations (input and output). In the cases where this causal relation between 

observations is complex, unsupervised learning can help to bridge the causal gap. 

3.2.2 Static and continuously learning models 

According to the dynamic characteristics of the problem the data mining models 

can be either static or continuously learning (Kantardzic, 2002). 

Static models are used to discover relationships that are drawn from historical data. 

In this way, the model produces its final answer in a fixed form, and it is not 



 36 

updated with new values. If any further investigation is needed new data need to be 

collected. 

Continuously learning models work in dynamic conditions. These are autonomous 

models with a number of primary internal set points that are externally specified. 

The system is self adaptive in evaluating incoming data and adjusting in real time 

its internal structure according to past experiences. When using a continuous 

learning model, it is possible that giving the same input at different times, the 

corresponding outputs may well be totally different, depending on what other data 

the model has been exposed to in the interim.   

3.3 Data Mining Tasks 

All data mining task involve extracting meaningful new information from the data 

(Kantardzic, 2002, Pyle, 1999, Cabena, 1998, Berry Michael and Linoff, 2000). 

The primary tasks of data mining are: 

• Classification: the aim is to train a function that assigns newly presented 

objects into one of several predefined classes 

• Prediction: the objective is to determine the future behaviour or the 

estimated future value for an unknown dependent variable given some input 

data. 

• Dependency Modelling consists in finding a model which describes 

significant dependencies between variables. Dependency models explain 

both the structural relation between variables (often graphically) and the 

strength of this dependency using a numerical scale.  

• Clustering: the goal of clustering is to identify the clusters, which can be 

considered as classes. Whereas in the classification problem the class (goal 

attribute) is given as input to the algorithm, the clustering algorithm must 

detect the classes by itself, creating the clusters of the dataset elements. 

• Summarization: it is a descriptive task that involves methods for finding a 

compact description for a subset of data.  
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• Change and deviation detection: the aim is to discover the most significant 

changes in the data set.  

3.4 Data Mining Domains 

The development of data mining techniques has led to the identification of different 

domains. Data mining methods are applicable basically to any problem that 

involves the use of new information; this extends through areas so disperse as web 

mining, text mining or data scoring (Hand et al., 2001). These domains try to group 

sets of problems with similar characteristics in their temporal or spatial component. 

Although similar models are used in different areas, the parameters signification 

and definition varies accordingly. 

The domains that best fit the characteristics of NETA data are (Roddick John et al., 

2001): 

• Temporal data mining deals with the analysis of events ordered by one or 

more dimensions of time. Multiple time dimensions can happen when 

referring to events according to different time-lines (for example day of the 

year, day of the week…). There are two important analysis areas in 

temporal data: 

o Time series analysis is focussed on the discovery of similar patterns 

within the same time line sequence or among different time line 

sequences. 

o Causal relations analysis directs the discovery of causal relationships 

among events that may be ordered in time and may be causally 

related.  

• Spatial data mining is the branch of data mining that deals with spatial 

(location) data. It handles very well numerical data and usually comes up 

with realistic models of spatial phenomena. The major disadvantage of this 

approach is the assumption of statistical independence among the spatially 

distributed data. 
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• Spatio-Temporal Data mining: this branch combines both of the 

characteristics specified above. Two main streams can be identified 

depending on how the dimensions are embedded: the first one incorporate 

temporal observation into spatial systems, and the second one incorporates 

space into temporal data mining systems.  

 

3.5 The Data Mining Process 

Data mining is only one of the necessary steps in the data exploration process. 

Many models have been developed to serve as schemes for how to organize the 

process of gathering data, analysing data, disseminating results, implementing 

results, and monitoring improvements. All of these models are concerned with the 

process of how to integrate data mining methodology into the process of 

transforming data into information. The different approaches to the problem are 

driven and adapted to the environment where they are going to be used (i.e. 

manufacturing, technical activities...). 

One of the most popular methodologies is the CRISP (CRoss-Industry Standard 

Process for data mining) model. It was proposed in the mid-90s by a European 

association of companies as a standard process model for data mining. According to 

this model the data exploration process can be summarised in six different phases 

(SPSS, 2000) (figure 3.2): 
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Figure 3.2 The data mining process 

 

Business understanding: the initial phase is focused on the project objectives and 

requirements. The main outcome from this stage will be the identification of the 

problems that need to be solved. 

Data understanding:  this phase starts with collecting the data and continues with 

the necessary tasks to get familiar with the data in order to understand their 

meaning and explore different aspects such as the quality of the data or possible 

hypotheses to detect a priory hidden information. 

Data preparation is one of the most important parts of the process and also one of 

the phases that require the most time to be completed (approximately 60% of the 

total time of the process). The old saying "garbage-in-garbage-out" is particularly 

applicable to the typical data mining projects where large data sets collected via 

some automatic methods serve as input to the analysis. Preparing the data also 

prepares the miner for the analysis phase. Different tasks are involved in order to 

transform the raw data into the final data set that will be used by the modelling 

tools. The tasks involved in this phase are: data selection, data cleaning, data 

construction, data integration and data formatting.  

Modelling: Various modelling techniques are applied in this phase and the 

corresponding parameters are adjusted to their optimal values. Normally more than 
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one modelling techniques is applied to the same data mining problem and this 

requires different data formats and data preparations.  

Evaluation: Once the model or models have been developed, it is necessary to 

review the steps executed to construct the model in order to confirm that it meets 

the business objectives. It also includes the revision for any important part that may 

not have been sufficiently considered in the modelling process. 

Deployment: The creation of a model is not normally the end of the process. The 

complexity  of the deployment phase depends on the project requirements and can 

vary from a project report (PhD thesis) to a real time specification of the data 

mining process across the enterprise (web-pages personalization). 

The phases are not necessarily completed in a sequential order. It is often necessary 

to move back and forth between them. The outcome of each phase determines 

which will be the next step to follow. 

The process is cyclical and it is often remarked in this method that the outputs of a 

data mining process can always be used as inputs in new and more business-

focused data mining processes. 
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The Net Imbalance Volume:  

One-dimensional analysis 

4.1 Introduction  

4.1.1 The Net Imbalance Volume as the System Imbalance 

Volume  

As described in Chapter 2, one of National Grid’s responsibilities is to keep the 

system in balance. Keeping the system in balance has a cost that is ultimately 

passed on to the consumers. To keep this cost under control, the regulator and the 

system operator (National Grid) agree each year on an annual target cost. If the 

system operator manages to operate the system for less than this target cost, it is 
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rewarded by being allowed to retain part of the difference. On the other hand, if it 

exceeds the target, it must pay part of the excess. This scheme gives the system 

operator a strong incentive to minimize the balancing cost. Being able to forecast 

accurately the amount of balancing energy that it will need to buy or sell during 

each half-hourly market period helps the system operator meet this goal. Instead of 

accepting some of the bids and offers that are made by market participants in the 

balancing mechanism, the system operator also has the option to buy or sell energy 

in the forward market. If the cost of the required balancing actions usually 

decreases with the lead time with which they are performed, advance trading in the 

forward market could save a significant amount of money as long as the forecast is 

sufficiently accurate. If the forecast is incorrect, the system operator might indeed 

have to compensate for excessive trades it made in the forward market by buying or 

selling more energy in the balancing mechanism. 

The system operator is thus very interested in analyzing and forecasting the Net 

Imbalance Volume (NIV), which is defined (equation 4.1) as the algebraic sum of 

the imbalances of all the individual market participants. This variable represents the 

system imbalance volume or the total energy that it must trade in the forward 

market or through the balancing mechanism.  

 NIV = ∑Accepted Offers + ∑Accepted bids + Interconnector trades + SO trades  

(4.1) 

4.1.2 Aims and structure of the analysis 

NIV’s one dimensional analysis is based on a time series analysis. One of the main 

and common characteristics of all the balancing mechanism quantities is their 

structure as series variables. This variable structure implies that each of them 

includes an embedded two-dimensional structure: the explicit variable and a time 

variable (displacement variable) that introduces an implicit distribution of the way 

the quantities are organized. 

Time series analysis provides a systematic approach to explore the dependence 

among the observed values in the sequence of time. 
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The main objective of NIV’s time series analysis is to extract the information 

carried in the ordering of the NIV values: 

• Identify NIV’s “within variable” time interaction. This involves the 

identification of NIV time structure (trend and seasonal components 

decomposition) and; 

• Forecast future values of NIV based only on its previous values 

To achieve this double objective two domains are considered: 

• The time domain: it is a record of what happens to a variable as a 

function of time. It is based on the assumption that the correlation in 

adjacent values is best explained in terms of a regression of the current 

value and past values.  

• Frequency domain: it sees time domain as a linear superposition of sine 

and cosine waves of different periods. 

These two ways of looking at NIV are interchangeable; that is, no information is 

lost in changing from one domain to another. 

These two double objectives and domains are discussed in the two main sections of 

this chapter: NIV’s structural analysis and NIV’s one-dimensional forecasting. The 

former analyses the structure and components of the series, and the later shows how 

to predict NIV’s future values combining different time series techniques. Each of 

these sections is presented accordingly to the CRIPS data mining methodology (see 

section 3.5). Therefore for each section, the first part describes the initial objectives, 

then the data selection and preparation processes are introduced followed by a 

description of the different modelling tools and techniques. The sections finish with 

the results and the conclusions that can be derived from analysis of these results. 
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4.2 NIV data structure analysis 

4.2.1 Objectives 

This is a descriptive analysis. While for non-time dependent variable a descriptive 

analysis mainly deals with the summary statistics of the data (i.e. mean and 

variance) in time series analysis the case is totally different. Moreover, as stated by 

(Chatfield, 2003) in some cases these basic statistics can be highly misleading and 

do not have their usual properties. Thus, this analysis focuses on understanding the 

typical time-series effects of NIV, which include: 

•  To describe the time structure of NIV in order to detect and separate (if 

applicable) its different components: trend, seasonality and noise.  

• To describe the characteristics of the series itself in order to identify the 

most suitable forecasting method. 

4.2.2 Data Selection and preparation 

The NIV data analysed covers the period from 1/04/01 to 30/05/02, with a half-hour 

resolution (i.e.48 daily observations). 

As for any time series analysis, the data preparation process must achieve two 

objectives: to transform the data into a form that exposes better the information to 

the modelling tool and to preserve the nature of the pattern that already exists.  

The first stage of the data preparation is a smoothing or filtering process. Different 

techniques can be used for this purpose such as moving averages, exponential 

weighted averages, 4253H filter, and moving medians. The first three techniques 

are based on the calculation of means of consecutive values, and differ mainly in 

the distribution of the weight that past observations have on the final smoothed 

value. A detailed description of these methods can be found in (StatSoft, 2004). 

Smoothing moving medians is the selected filtering technique for this analysis. The 

median value of a number of successive observations centred in the middle of the 

moving window is calculated. This value reflects the central tendency of the 

selected window in such a way that it is uninfluenced by extreme values. In this 
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analysis two different windows lengths were considered (8 and 48 periods) giving 

two series representing respectively the NIV moving median in EFA blocks and the 

NIV moving median on a daily basis (Figure 4.1).  

 

 
4.1 (a) Time frame for periods, EFA Blocks and Daily values 

 
4.1 (b) Detail of NIV Original and smoothed series using EFA Blocks and Daily medians 

Figure 4.1 Smoothing process 

 

The next stage in the process is to apply different transformation processes over 

each of the obtained series. The aim of these transformations is to normalise the 

values, remove the trend, and adjust the variance. Depending on the series structure 

different transformation techniques should be considered. The existing literature on 

time series  (Chatfield, 2003, Peña et al., 2000, Montgomery Douglas and Johnson 

Lynwood, 1976, Pankratz, 1983, Brockwell and Davis, 1996, Brillinger, 2001) 

presents a wide range of techniques including logarithm and squared roots 

transformations of the original series (Box-Cox transformation). However these 
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techniques are highly recommended for the cases where the variance or the 

seasonal components of the series increases proportionally with the mean. Figure 

4.2 shows the relation between NIV’s mean and its standard deviation. The lack of 

linearity between NIV’s mean and variance rules out this type of transformations. 

Thus the techniques used for NIV’s transformation are:    

• Mean subtracting: each value in the series is transformed using equation 

4.2; where M is the overall mean for the untransformed series. 

MxY −=       (4.2) 

• Standardization (Normalization): each value in the series is 

standardized: according to equation 4.3; where M and SD are the overall 

mean and standard deviation for the untransformed series. 

SD

Mx
Y

−
=       (4.3) 

• Linear trend subtraction: the values in the series are transformed to 

remove the trend over time. In equation 4.4, t refers to the observation’s 

position within the series (i.e. case number) and a and b are constants 

that are calculated from the data. 

)( tbaxY ⋅+−=     (4.4) 

• Autocorrelation correction: the values in the series are transformed to 

remove an autocorrelation of a particular lag. Equation 4.5 shows how 

this is done for the case the lag is one and the parameters a and b are 

constants estimated from the data. 

)( lagxbaxY ⋅+−=     (4.5) 
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Figure 4.2 NIV’s mean vs. variance scatterplot  

 

As a result of the transformation process, eight different series where obtained. 

Figure 4.3 shows the different transformed series for both EFA blocks (Figure 

4.3.a) and daily resolution (Figure 4.3.b). In both figures, the original NIV 

smoothed series is represented in blue, the transformed series are presented in red 

(subtracted mean), green (linear trend subtracted), grey (standardised series, y-right 

axis) and pink (autocorrelation correction). The similarities between the subtracted 

mean and the linear trend correction show how NIV’s linear trend is mainly driven 

by its mean. The autocorrelation corrected series is NIV’s low frequency filter and 

captures its noisy behaviour at higher frequencies. These processed series are the 

different inputs for the modelling process. 

Different statistical tests have been applied to check the sanity of the transformed 

data. These tests include: main statistical characteristics (mean, standard deviation, 

maximum and minimum values), values distribution and normality checks. The 

tests performed all yielded the answer that the transformed data has no errors and 

that the integrity of the data is maintained after the transformations. 
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Figure 4.3 (a) NIV EFA Blocks series transformations  

 
Figure 4.3(b)  NIV Daily series transformations 

Figure 4.3 NIV series transformations 
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4.2.3 Modelling tools 

In order to describe and understand the data structure different techniques have 

been used in the analysis. In most cases these modelling tools provide 

complementary results, however some of them were used to verify and check from 

different angles the coherence of the results obtained for NIV’s series 

characteristics. 

The applied modelling techniques are now described. 

4.2.3.1 Autocorrelation and partial correlation analysis 

Any correlation analysis measures how values of one variable change as values of 

another variable change. Autocorrelation describes how well one observation from 

a series correlates with others from the same series at different times. The distance 

between observations is the lag.  

Like the correlation coefficient for two different variables, the autocorrelation 

coefficient for a lag k is defined as:  
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Where x  is the overall mean and N is the total number of observations. 

The seasonal patterns of the data can be observed via correlograms. A correlogram 

(or an autocorrelogram) displays graphically and numerically the serial correlation 

coefficients (and their corresponding standard error) for consecutive lags in a 

determined range of lags. For the case of daily moving medians the considered 

range of lags is 1-30 in order to detect intra-week and intra month seasonality. For 

the case of EFA blocks data, the range of lags extends from 1 to 42 to detect 

intraday and intraweek seasonality.  

The partial autocorrelation is an extension of the autocorrelation function that 

clarifies the existence of seasonal effects by removing the effect of the correlation 

of the intermediate elements within a specific lag (e.g.. the partial correlation 
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coefficient of order two measures the excess correlation between observations two 

steps apart not accounted by the correlation at lag 1). 

4.2.3.2 Singular Spectrum (Fourier) Analysis 

This method can be seen as a mathematical prism that scatters the information of 

the series into its components parts. The purpose of the analysis is to detect the 

seasonal and cyclical components by decomposing the series into its sinusoidal 

(sine and cosine) waveforms. The analysis can be easily modelled as a multiple 

regression problem of the form: 

∑
=

⋅⋅+⋅⋅+=
q

k

kkkk tbtaa
1

0t )sin()cos(x λλ       (4.7) 

In this equation λ is the frequency expressed in terms of radians per unit of time. 

The cosine parameters ak and sine parameters bk are regression coefficients that 

define the degree to which the respective functions are correlated with the data. 

Overall there are q different sine and cosine functions; if there are N data points in 

the series, then there will be N/2+1 cosine functions and N/2-1 sine functions. In 

other words, there will be as many different sinusoidal waves as there are data 

points. 

To fit sine and cosine functions of different lengths to the data the explicit formulae 

requires solving a large number (N
2
) of complex multiplication which results in a 

very time consuming process. This computational problem is usually approached 

using the Fast Fourier Transform (FFT). This algorithm developed in the mid-60’s 

reduces significantly the time required as well as improves the accuracy of the 

results. For a detailed description of the procedure see (Chatfield, 2003).  

The spectrum created by the Fourier decomposition can be analysed depending on 

the three main characteristics of a sinusoidal wave: frequency, phase and amplitude. 

In this way the spectral analysis of NIV shows which are the important components 

of the series and its periodicity (length of the waveforms).   



CHAPTER 4: THE NET IMBALANCE VOLUME: ONE-DIMENSIONAL ANALYSIS            51 

 

4.2.3.3 Caterpillar decomposition 

This technique is also known as ‘singular-spectrum analysis’ (SSA). SSA is a very 

new method of time series analysis and its theory is based on multiple geometry 

rather than classical statistics. It is a model-free exploratory technique and can be 

used both for series decomposition and forecasting purposes (see section 4.3).  

The method transforms the one-dimensional series into a multidimensional 

problem. In this way, the original series is decomposed in independent time series 

such as a changing trend, oscillatory components and an unstructured noise, which 

are all additive components. 

A simple SSA consists of four steps (Golyandina et al., 2001): 

• Construction of the trajectory matrix. Considering the time series F (F= 

(f0,f1,…,fN-1)) of length N, and L the integer that defines the window 

length.  Setting K= N-L+1 and defining the L-lagged vectors Xj 

(equation 4.8) and the trajectory matrix X (equation 4.9) 

K j1    ,),...,( 21 ≤≤= −+−
T

Ljjj ffX      (4.8) 

[ ]K1

111

1432

321

1210

,

1,2 X:...:X)( =























==

−+−

+

−

+−+

NLLL

K

K

K

KL

jiji

ffff

ffff

ffff

ffff

f

�

�����

�

�

�

X  (4.9) 

• Singular value decomposition of the matrix X. By calculating 

eigenvalues and eigenvectors of the matrix S (S=XX
T
 of size L x L), we 

obtain L singular values. These are the square roots of the eigenvalues of 

the matrix S and the corresponding right and left singular vectors. We 

thus obtain a decomposition of X as a sum of rank one matrices Xi for 

i=1….d, with d (d≤ L)   the number of nonzero singular values of X 

• Grouping. The indexes I= {1, ... ,d} are split into several groups I1,…,Im. 

The matrixes Xi are added within each group. Equation 4.10 shows the 

result of this step, which is the reconstruction of the trajectory matrix: 
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• Series reconstruction. The last step consists in the averaging over the 

diagonals of the matrices XIk. This diagonalization transforms each 

matrix of the grouped decomposition (4.10) into a new series of length 

N. Thus the original series is decomposed in the form: 
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The SSA is a non parametric model that generates a decomposition with 

additive components that are both independent and identifiable (trend, 

oscillatory or noisy component).  The choice of the window length and the 

way of grouping the matrices Xi depends on the characteristics of the 

original series and the purpose of the analysis. 

4.2.4 Numerical results 

4.2.4.1 Autocorrelation and partial correlation analysis 

Figure 4.4 shows the autocorrelation and partial correlation values for NIV daily 

and EFA blocks for the period from 1/04/01 to 30/05/02. To help visualization, 

only 15 lags have been included. 
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4.4 (a) Autocorrelation coefficients for NIV daily 

smoothed series 

4.4 (b) Autocorrelation coefficients for NIV EFA blocks 

smoothed series 

  

4.4 (c)Partial autocorrelation coefficients for NIV daily 

smoothed series 

4.4 (d)Partial autocorrelation coefficients for NIV EFA 

blocks smoothed series  

Figure 4.4 Autocorrelagrams  for NIV daily and EFA blocks smoothed series 

 

The results in Figures 4.4 (a) and (b) show respectively for the daily and the EFA 

block smoothed series, a high correlation with the previous lag (lag 1) and a 

gradually decreasing correlation as the lag increases.  The intraday seasonality is 

also appreciated in Figure 4.4(b) for the EFA blocks series. From the second to the 

fourth lag, the correlation coefficients gradually decrease and then in for the fifth 

the correlation value starts increasing reaching a local maximum in the sixth lag.  

Figures 4.4 (c) and (d) show the results for the partial autocorrelation. They present 

a clearer picture of the previous results because the correlation factors within the 

lag window have been removed for different values of the lag. In both figures, the 
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most significant partial autocorrelation correspond to lag of 1 (i.e. the previous 

observation). Note that the partial autocorrelation and the autocorrelation values are 

the same for a lag of 1. The partial correlation for higher lags is non significant.  

4.2.4.2 Singular Spectrum (Fourier) Analysis 

This method is applied over the different daily and EFA blocks of the original 

series and the transformed series described in section 4.2.2. 

Figures 4.5 and 4.6 show the spectral density (y axis) for the corresponding 

frequencies (x axis in number of cycles per unit), for the different series. 

 

 
4.5 (a) Spectral analysis for the original NIV EFA blocks smoothed series 

 

 
4.5 (b) Spectral analysis for NIV EFA blocks subtracted mean  series 
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4.5 (c) Spectral analysis for NIV EFA blocks standardized  series 

 

 

4.5 (d) Spectral analysis for NIV EFA blocks subtracted linear trend series 

 

 

4.5 (e) Spectral analysis for NIV EFA blocks autocorrelation corrected series 

 

Figure 4.5 Spectral Analysis for NIV’s series in EFA blocks resolution 
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4.6 (a) Spectral analysis for the original NIV daily smoothed series 

 

 
4.6 (b) Spectral analysis for NIV daily subtracted mean  series 

 

 

4.6 (c) Spectral analysis for NIV daily standardized  series 
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4.6 (d) Spectral analysis for NIV daily subtracted linear trend series 

 

 

 

4.6 (e) Spectral analysis for NIV daily autocorrelation corrected series 

 

Figure 4.6  Spectral Analysis for NIV’s series in daily resolution 

 

The results in Figures 4.5 (a) and 4.6 (a) show that for the non transformed 

smoothed series the spectral density presents a clear maximum for a cycle of 200 

days, which can be attributed to the strong effect of the trend. These results are also 

consistent with the previous autocorrelation results shown in figure 4.4 where the 

previous lag showed the highest autocorrelation. This serial dependency is 

corrected and removed with the series transformations. In this way, the transformed 

series spectral density (figures 4.5 and 4.6 (b) to (d)) show significant peaks for 

cycles of 21 (3 weeks) and 100 days. Despite these results are consistent for all the 

analysed series in daily and EFA blocks resolution, they do not correspond to any 

physical seasonality.  
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For the autocorrelation corrected series, there are a significant number of high 

frequency components (Figures 4.5 (d) and 4.6(d)) with a significant spectral 

density that are closely related with NIV’s noisy component.  

When evaluating a smaller selection of cases it is possible to detect weekly and 

daily cyclical components. However these results are quite unstable and keep on 

changing for the different sections of data analysed. 

4.2.4.3 Caterpillar decomposition 

The analysis is performed in two different stages over the daily moving median 

values of NIV (Figure 4.6): 

• In the first stage all the data from 01/05/2001 to 30/06/2002 are 

considered 

• The results for the series decomposition show a big change in the 

behaviour of the data starting in November 2001. Different events 

occurred during the end of the year 2001 that made the market 

extremely long. Among these events, one should note in particular the 

Enron collapse that increased market uncertainty and mild weather 

conditions. To discard these external effects over the market length, a 

new data set is analysed. This corresponds to the period from 

01/01/2002 to 30/06/2002. 

 

 

Figure 4.7  NIV (MW) from 1/04/01 to 30/06/02 
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Figure 4.8 presents the decomposition for the second input data. In all the graphs, 

the NIV values in MW are plotted along the y-axis. Each of these graphs represents 

the corresponding series for each of the eigenvalues calculated from the original 

series. 

Figure 4.8 NIV Caterpillar decomposition 
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In order to reduce the number of series component to be considered. These 

components were grouped manually based on their behaviour, their weight on the 

overall value of the series and the correlation values between the different series. 

Figure 4.9 shows the results for the series reconstruction. 

 

  
Original Series Reconstructed Series  [1],[2-3],[4],[5-6],[7] 

  
Reconstructed Series  [9-10],[11 to 20] Reconstructed Series  [21 to 60], [61 to 70] 

Figure 4.9  NIV original smoothed and reconstructed  series  

 

Table 4.1 shows a brief statistical analysis of the original NIV and each of the 

reconstructed series. Figure 4.10 shows the contribution in percentage to the total 

value of NIV of each component. 
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Table 4.1 Statistics for NIV original and reconstructed series: 

 MEAN STD.DV. MIN MAX 

NIV  -1077.79 663.59 -2536.6 569.7 

1 -1175.61 94.90 -1346.9 -983.5 

2,3 -0.93 421.29 -715.2 721.4 

4 109.95 232.43 -177.7 709.4 

5,6 -0.90 163.88 -310.6 360.8 

7,8 -0.05 101.71 -209.5 215.7 

9,10 -2.11 137.20 -509.3 413.6 

11,20 -13.10 193.28 -525.5 481.9 

21,60 4.67 257.40 -696.2 649.3 

61,70 0.89 58.31 -147.1 176.3 

 

 

Figure 4.10 Contribution of the reconstructed series  to the original NIV series 

 

In order to analyse the time structure of the reconstructed series, autocorrelation 

and spectrum analysis are combined. These results show the following 

characteristics for NIV’s caterpillar decomposition: 

• The trend is determined by eigenvalues 1 and 4, which comprise a 

77.166% share of the decomposition. 

• Seasonal components: 

o Eigenvalues 2 and 3 make up a strong cyclical trimester and monthly 

component. Together, they represent a 10% share of the total value.  
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o Eigenvalues 5 and 6 make up a strong cyclical component with a 20-

day period. They have a 2% share of the total value. 

o Eigenvalues 7 and 8 make up a strong cyclical weekly component 

and a decreasing monthly cyclical component. They have a 1% share 

to the total value. 

o Eigenvalues 9 and 11 make up present a strong cyclical weekly 

component. They have approximately a 1% share of the total value. 

o Eigenvalues 12 to 40: present strong intraweek and daily variation 

with approximated 4% share to the total value. 

• The noise is driven by eigenvalues 40 to 70 with a total contribution of 

less than 5% of the decomposition. 

 

4.2.5 Conclusions 

From the results obtained in the autocorrelation and partial correlation analysis it is 

observed that the NIV series exhibits the behaviour of a random walk model where 

its value is mostly similar to the previous observation plus a random shock.   

The singular spectrum analysis shows consistent mathematical results for the 

analysis of the different transformed series. However these results just demonstrate 

a seasonal component (i.e. daily variation) known a priory and the noisy behaviour 

of NIV.  

The caterpillar methodology confirms the results of the autocorrelation and Fourier 

decomposition since it does not detect any strong seasonal components with stable 

amplitude. However it can be used as a filter to reduce the effect of noise on NIV.     
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4.3 NIV one dimensional forecasting 

4.3.1 Objectives 

Forecasting is a common exercise in different science domains. It is the process of 

predicting an uncertain output variable given a set of input data that normally 

correspond to past values of either the output variable (one-dimensional 

forecasting) or other related input variables (multidimensional forecasting). 

Assuming that f is the unknown function that relates the current value of yt with the 

input data, three types of forecasting methods can be used: 

Subjective forecasting: these methods also called implicit, informal, or experience 

based use subjective knowledge and information. They transform objective and 

subjective inputs into forecast using techniques that range from extrapolation to the 

more refined  Delphi methodology (Weeby and O'Connor, 1996). 

One-dimensional forecasting: yt=f(yt-1,yt-2,…,yt-k), where yt-i corresponds to the i
th

 

lagged value of the series for i Є (1,k). 

Multidimensional forecasting:  yt=f(yt-1,yt-2,…,yt-k, ut-1,ut-2,…,ut-k,…,vt-1,vt-2,…,vt-

k),where yt-i , ut-i  and vt-i correspond to the different variables i
th

 lagged values of 

the series for i Є (1,k). 

In this chapter one-dimensional techniques are used to forecast NIV. The accuracy 

of different methods is compared and the effect of the amount of seen data on the 

quality of the forecast is analysed.  

Throughout this chapter, YN(k) refers the forecast of yN+k made at time t=N for k 

steps ahead. 

4.3.2 Data selection 

The analysis is based on NIV values smoothed in EFA blocks resolution. The data 

is organised in “seen” and “unseen” blocks: 

 



64 

 

Unseen data: 

The unseen data sets correspond to a one-week period in EFA blocks observations 

(42 unseen points).  

 

In this analysis, two different forecast starting points (corresponding to an 

increasing and a decreasing trend periods) have been selected (Figure 4.11): 

• From 28/02/02 to 07/03/02: this period corresponds to an increasing 

trend  

• From 08/01/02 to 15/01/02: this period corresponds to a decreasing 

trend 

 

 
NIV decreasing trend data set 

 

NIV increasing trend data set 

Figure 4.11 NIV unseen data sets 
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Seen data: 

The seen data are used by the different techniques to create the forecasting bases. 

From each starting point three different sets of seen data have been created (Figure 

4.12): 

• Case 1: 500 observations from the starting forecast point 

• Case 2: 1000 observations from the starting forecast point 

• Case 3: 1500 observations from the starting forecast point 

 

Seen data sets for decreasing trend forecasting period 

 
Seen data sets for increasing trend forecasting period 

Figure 4.12 NIV seen data sets 
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4.3.3 Modelling techniques 

Different techniques are applied over the created seen data sets to compare the 

methods performance when forecasting NIV. 

4.3.3.1 Autoregressive Integrated Moving Average (ARIMA) 

The autoregressive integrated moving average (ARIMA) is usually known as the 

Box-Jenkins approach. In 1970 Box and Jenkins built a general forecasting method 

with the assumption that time series (after transformations and differencing) arise 

from a stationary autoregressive moving average process.  

 An autoregressive process is one where each observation is made up of a random 

error component (random shock, ε) and a linear combination of prior observations 

(equation 4.12): 

εφφξ ++++= −− �2211 ttt yyy      (4.12) 

Where ξ  is a constant and φ1,φ2 are the autoregressive model parameters. 

A moving average process is one where each observation is made up of a random 

error component (random shock ε) and a linear combination of prior random shocks 

(equation 4.13): 

 �++++= −− 2211 ttty εθεθεµ      (4.13) 

Where µ is a constant and θ1,θ2 are the moving average model parameters. 

Combining 4.12 and 4.13, an autoregressive moving average model with p 

autoregressive terms and q moving average terms is defined as: 

qtqttptpttt yyyy −−−−−− +++++++++= εθεθεθεφφφγ �� 22112211   (4.14) 

The Box-Jenkins model explicitly includes differentiation. This is used to stabilize 

a time series until it meets the series stationarity requirement (i.e. constant mean, 

standard deviation, and autocovariance).   
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In brief, the main stages of the ARIMA modelling are: 

• Model identification: The ARIMA model is defined by three types of 

parameters: the autoregressive parameters (p), the number of 

differencing passes (d), and moving average parameters (q). The plot of 

the data and autocorrelogram are examined to determine the necessary 

level of differencing (d). The series is differentiated until the 

correlograms converge fast to zero.  The parameters p and q are not 

usually greater than 2 but their determination is not straightforward. In 

this case we followed the practical recommendations suggested by 

Pankratz (Pankratz, 1983)  

• Estimation: at the next step the autoregressive and moving average 

coefficients, are estimated using function minimization procedures 

(Chatfield, 2003, Brillinger, 2001, Shumway Robert and Stoffer David, 

2000), so that the sum of the squared residuals is minimized.  

• Forecasting: new values of the series are calculated using the estimates 

of the parameters from the previous stage. Since the estimation process 

is performed on transformed (differenced) data before the forecasts are 

generated, the series needs to be integrated (integration is the inverse of 

differencing) so that the forecasts are expressed in values compatible 

with the input data. This automatic integration represents the letter I in 

the ARIMA methodology. 

4.3.3.2 Exponential smoothing 

This technique differs from ARIMA and other polynomial extrapolations in the 

influence that past observations have on the forecast.  

Given a series y1,y2,…,yN , the forecast for yN+1 can be computed as a weighted sum 

of past observations: 

∑
−

=
−−− =+++=

1

0

22110 ...)(
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j

jNjNNNN ywywywywkY    (4.15) 
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Where the coefficients wj are the weights, ∑
−

=

=
1

0

1
N

j

jw  and w0 ≥…≥ wN. In this way 

recent observations have more weight than observations from further in the past. If 

the weights decrease exponentially (i.e geometrically, with a constant ratio for 

every unit increase in the lag) one gets: 

10for      )1( ≤≤−= ααα j

jw       (4.16) 

The value of  α (the smoothing constant) depends on the characteristics of the time 

series. The smaller its value the more the forecast depends on past observations. If 

α =1 the forecast is equal to the most recent observation. Substituting (4.16) in 

equation (4.15) gives: 
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Equation (4.17) can be used to calculate the forecast recursively. 

Exponential smoothing can also be generalised to deal with series that include trend 

and seasonal variations. The general idea is that forecasts are not only computed 

from consecutive previous observations (as in simple exponential smoothing), but 

an independent (smoothed) trend and seasonal component are added.  The trend 

and/or the seasonal component can then be modelled as linear, exponential, damped 

or omitted completely. 
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Nonseasonal, no trend Additive Season, no trend 
Multiplicative Season, no 

trend 

 
 

 

Nonseasonal, linear trend Additive Season, linear trend 
Multiplicative Season, linear 

trend 

   

Nonseasonal, exponential 

trend 

Additive Season, exponential 

trend 

Multiplicative Season, 

exponential trend 

   

Nonseasonal, damped trend 
Additive Season, damped 

trend 

Multiplicative Season, damped 

trend  

Figure 4.13 Exponential Forecasting Models 

 

4.3.3.3 Caterpillar  

The Caterpillar decomposition allows both the extraction of the components and the 

development of the corresponding linear recurrent formula. In this way it is 

possible to forecast some periodic components or the trend ignoring noise and all 

oscillatory components.  

Consider the series the series YN=YN
(1)

+ YN
(2)

. If YN
(2) 

can be considered as noise, 

the problem is to forecast the series YN
(1)

 in the presence of this noise. 
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This implies not only the need of a window of length L that allows the series 

separability (see equation 4.11), but also that the series YN can be forecasted using 

a linear recurrent formula of the form:  

dNdNNN ywywywkY −−− +++= ...)( 2211
  (4.18)  

In this way, YN+1(k) which is the extension of the known data y1,…yN, is 

constructed. In turn, extrapolation to k points forward is reduced to the application 

of k times of the prediction procedure for one point. The basic idea of the 

computation of the point YN+1(1) is the following: 

Consider the sequence y1,…yN and construct a sample in the form of the trajectory 

matrix X.  From all the vectors that form the matrix S, a leading sample of r vectors 

V1,V2,…,Vr is chosen as a basis of S. In this way the main components of the series 

are filtered from its noise and unwanted oscillatory terms. The resulting parametric 

equation of the sample is: 

∑
=

=
r

i

iip
1

V S(P)        (4.19) 

Where the set of parameters pi corresponds to the value S(P) which is a column of 

L (L = window length) elements. In this case the set of parameters 

),,,( 21

k

r

kkk pppP �= corresponds to the k-th, (k=1,2,…n) column of the trajectory 

matrix X. Therefore: 
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To predict the value of YN+1(1) it is necessary to find the (N+1) column X
N+1

 which 

also fits the parameters ),,,( 11

2

1

1

1 ++++ = N

r

NNN pppP �  Using the data y1,…yN  these 

parameters can be obtained using equation 4.19, and the predicting column is 

written as: 

 )( 11 ++ = NN PSX       (4.20) 
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Thus, this methodology first relies on a vector forecasting and then returns to the 

time series representation. The SSA algorithm must therefore be repeated for each 

new forecasted point.  For an in depth explanation and full matricial development 

refer to  (Golyandina et al., 2001). Further examples of the application of this 

technique can be found in (Loskutov et al., 2000, Ghil and Allen, 2002, Loskutov 

and Istomin, 2001)  

 4.3.4 Post-analytical techniques 

Each of the methods previously described generates both a forecasting base and 

forecasted values. Different post-analysis are performed on each of the obtained 

values: 

o Forecasting base: Sanity checks are performed over the data analysing the 

statistical characteristics of the obtained values. This includes the 

calculation of statistical parameters (i.e. maximum, minimum, mean, 

standard deviation) and normality checks. 

o Forecasted values: This analysis involves the calculation of different error 

measurements. These error values have been used to compare the results 

obtained with the different methods. The errors used are : 

o Maximum absolute error (maxae): the absolute value of largest 

difference between a forecasted value and an actual value (obtained 

from the unseen data): 

N

jjj forecastedactual
YYMaxMaxae 1)( =−=      (4.21) 

o Mean absolute error (mae): the average magnitude of difference 

between a forecasted value and an actual value from the unseen data: 

∑
=

−=
N

j

jj forecastedactual
YY

N
Mae

1

1
     (4.22) 

o Root mean squared error (rmse): the error magnitude. It is defined as the 

square root of the squares of the sum of the differences between the 

actual and the forecasted values. It penalises very large deviations in the 

forecast: 
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    (4.23) 

o Mean error (Bias): the average value of the difference between the 

actual and the forecasted values. It can have positive or negative values 

to reflect the average position of the forecasted results (higher/lower) 

over the real ones. 

( )∑
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YY

N
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1

1
     (4.24) 

o Percentage of signs correct: the percentage of times that the signs of the 

forecasted and the actual values are the equal.  

∑
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4.3.5 Numerical results 

4.3.5.1 Increasing trend NIV forecasting period 

As described in section 4.3.2, three different cases are considered which include 

respectively 500, 1000 and 1500 observations in the seen data set. Figures 4.14, 

4.15 and 4.16 present for each case the last values of the forecasting bases and the 

predicted values obtained with the different methodologies. The corresponding 

errors for each forecast are given in Tables 4.2, 4.3 and 4.4. 

 

 



CHAPTER 4: THE NET IMBALANCE VOLUME: ONE-DIMENSIONAL ANALYSIS            73 

 

Figure 4.14 NIV Forecasting base and forecasted results for 500 cases in the seen data set 

 

Table 4.2 Forecasted Errors for NIV increasing trend and 500 cases in the seen data 

set: 

 
ARIMA 

EXPONENTIAL 

SMOOTHING 
CATERPILLAR 

Maximum Error (MW) 825.64 1667.00 637.80 

Mean Absolute Error (MW) 444.01 574.80 524.94 

Root mean squared error (MW) 552.61 687.439 777.65 

Mean Error (MW) -43.88 252.910 -524.30 

% of signs 100 100 100 

 

 

 

 

 

Forecasting Base Forecasted Values 
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Figure 4.15 NIV Forecasting base and forecasted results for 1000 cases in the seen data set 

 

Table 4.3 Forecasted Errors for NIV increasing trend and 1000 cases in the seen 

data set: 

 
ARIMA 

EXPONENTIAL 

SMOOTHING 
CATERPILLAR 

Maximum Error (MW) 973.67 1684.75 622.47 

Mean Absolute Error (MW) 453.99 600.62 492.37 

Root mean squared error (MW) 573.51 726.35 770.12 

Mean Error (MW) 140 286.21 -481.61 

% of signs 100 100 100 

 

 

 

 

 

Forecasting Base Forecasted Values 
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Figure 4.16 NIV Forecasting base and forecasted results for 1500 cases in the seen data set 

 

Table 4.4 Forecasted Errors for NIV increasing trend and 1500 cases in the seen 

data set: 

 
ARIMA 

EXPONENTIAL 

SMOOTHING 
CATERPILLAR 

Maximum Error (MW) 850 1110.95 623.65 

Mean Absolute Error (MW) 450.69 533.10 513.05 

Root mean squared error (MW) 558.46 657.68 763.94 

Mean Error (MW) -12.39 -179.04 -476 

% of signs 100 100 100 

 

For the increasing trend data set, Figures 4.14 to 4.16 present NIV’s actual value (in 

blue) and the results for the different applied forecasting techniques. The output of 

the forecasting techniques includes both the modelling of the seen data (forecasting 

base) and the forecasted solutions. For all the considered cases, it can be noticed 

that the modelling of the seen data is closer to NIV’s behaviour than the forecasting 

of the unseen data. The forecasted solutions quickly converge to a constant value 

(ARIMA) or to a constant slope (exponential smoothing) only the caterpillar 

Forecasting Base Forecasted Values 
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method is capable of forecasting some oscillatory behaviour. The comparison of 

these figures also shows how the increase in the forecasting base does not improve 

the outputs but it rather smoothes them. 

4.3.5.2 Decreasing trend NIV forecasting period 

Similarly to the increasing trend period, three different cases are considered which 

include respectively 500, 1000 and 1500 observations in the seen data set. Figures 

4.16, 4.17 and 4.18 each present for each case the last values of the forecasting 

bases and the predicted values obtained with the different methodologies. The 

corresponding errors for each forecast are given in Tables 4.3, 4.4 and 4.5. 

 

Figure 4.17 NIV Forecasting base and forecasted results for 500 cases in the seen data set 

 

 

 

 

 

 

Forecasting Base Forecasted Values 
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Table 4.5 Forecasted Errors for NIV decreasing trend and 500 cases in the seen data 

set: 

 
ARIMA 

EXPONENTIAL 

SMOOTHING 
CATERPILLAR 

Maximum Error (MW) 1443.41 1254.33 975.29 

Mean Absolute Error (MW) 573.66 359.28 496.45 

Root mean squared error (MW) 658.22 425.84 562.32 

Mean Error (MW) 542.99 173.20 -131.99 

% of signs 95.24 95.25 92.86 

 

Figure 4.18 NIV Forecasting base and forecasted results for 1000 cases in the seen data set 

Table 4.6 Forecasted Errors for NIV decreasing trend and 1000 cases in the seen 

data set: 

 
ARIMA 

EXPONENTIAL 

SMOOTHING 
CATERPILLAR 

Maximum Error (MW) 1290.44 1254.33 724.37 

Mean Absolute Error (MW) 459.92 360.31 596.51 

Root mean squared error (MW) 545.57 425.33 755.03 

Mean Error (MW) 370.68 159.79 -416.92 

% of signs 95.35 95.35 69.77 

 

Forecasting Base Forecasted Values 
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Figure 4.19 NIV Forecasting base and forecasted results for 1500 cases in the seen data set 

 

Table 4.7 Forecasted Errors for NIV decreasing trend and 1500 cases in the seen 

data set: 

 
ARIMA 

EXPONENTIAL 

SMOOTHING 
CATERPILLAR 

Maximum Error (MW) 1222.27 1254.33 694.99 

Mean Absolute Error (MW) 415.20 360.31 518.05 

Root mean squared error (MW) 503.31 425.33 696.07 

Mean Error (MW) 304.49 159.79 -381.83 

% of signs 95.35 95.35 83.72 

 

For the decreasing trend data set, Figures 4.17 to 4.19 present NIV’s actual value 

(in blue) and the results for the different applied forecasting techniques. The output 

of the forecasting techniques includes both the modelling of the seen data 

(forecasting base) and the forecasted solutions. As in section 4.3.5.1, it can be 

noticed that the modelling of the seen data is closer to NIV’s behaviour than the 

forecasting of the unseen data. The forecasted solutions quickly converge to a 

Forecasting Base Forecasted Values 



CHAPTER 4: THE NET IMBALANCE VOLUME: ONE-DIMENSIONAL ANALYSIS            79 

 

constant value (ARIMA) or to a constant slope (exponential smoothing) only the 

caterpillar method is capable of forecasting some oscillatory behaviour. The 

comparison of these figures also shows how the increase in the forecasting base 

does not have any noticeable effect on the ARIMA and the exponential solutions. 

However, the Caterpillar results are pricklier as the number of cases in the 

forecasting bases increases. 

 

4.3.6 Conclusions   

The presented methods do not provide a good accuracy in their forecast. Moreover, 

the characteristics of their results do not reflect NIV actual behaviour. Forecasted 

solutions converge quickly to a constant value (ARIMA) or to a constant slope 

(Exponential Smoothing). Only the Caterpillar forecasting method is capable of 

predicting an oscillatory behaviour. 

The obtained error measurements do not show any consistent advantage of one 

method over the others.  

The number of observations included in the seen data has different effects for each 

case and for each method: 

• Considering the patterns of the forecast: 

o Exponential and ARIMA: it only affects the permanent value or the 

final slope. 

o Caterpillar: increasing the number of observations affects the series 

decomposition and the reconstruction on which the forecast is 

based. For the increasing trend period the forecast results are 

smoother as the number of seen data is increased. For the 

decreasing trend period increasing the number of observations 

creates the opposite effect over the forecasted results. 

• Increasing the number of observations used to create the forecasting base does 

not necessary lead to an increase in the accuracy of the forecast. Figure 4.20 

presents the rmse and the mae for all the analysed cases. It illustrates how for 

some cases (ARIMA and Caterpillar for NIV increasing trend period and Exp. 
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Smoothing for NIV decreasing trend period) the errors remain constant 

despite an increase in the number of seen observations, while for some other 

cases the errors gradually decrease (ARIMA for NIV decreasing trend) or 

even spike (exp. smoothing for NIV increasing trend and caterpillar for NIV 

decreasing trend).  

4.20 (a) NIV increasing trend 

4.20 (b) NIV decreasing trend 

Figure 4.20 RMSE and MAE error comparison 

Based on the results presented above it is possible to conclude that: 

• None of the presented methods can be considered as a feasible solution for 

NIV forecasting for time periods longer than 1 day ahead.  
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• The Caterpillar method is the only methodology that provides more adaptable 

and realistic results.  

• NIV series are not a good predictor of themselves. Their noisy, unstructured, 

changing, and normal-orientated behaviour leads to see NIV as a clear 

example of the central limit theorem
1
 were NIV is the result of several actions 

in the BM process. 

It is thus necessary to expand NIV’s analysis to a multidimensional perspective 

where NIV’s behaviour can be analysed as a function of other market variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                

1
 The distribution of an average tends to be Normal, even when the distribution from which the 

average is computed is decidedly non-Normal. 
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The Net Imbalance Volume:  

Multidimensional Analysis 

5.1 Introduction 

The results and the conclusions of all the analysis presented in Chapter 4 suggest 

expanding the analysis of NIV to a multidimensional scale. By doing so, NIV’s 

forecast does not rely only on the information contained in the series itself; in 

contrast NIV’s behaviour is explained in terms of other variables, and its 

observations are related to some structural rules of this behaviour.  

In this way, a connection is established between the market volume (NIV) and the 

rest of the Balancing Mechanism variables that will be used as explicative and 

predictor variables for NIV.  

CHAPTER 5 
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The multidimensional analysis of NIV aims two main objectives that differentiate 

its two main elements (Rencher, 1995, Hair et al., 1984, Kachigan, 1991). The first 

part is an exploratory analysis focused on understanding the behaviour of the 

Balancing Mechanism’s drivers as well as relating how these drivers are captured in 

the behaviour of NIV. This is also a discriminatory step since the information 

obtained allows a systematic and rational selection of the variables used as input in 

the following part of the study. This second part consists on a multidimensional 

forecast of NIV where non-linear techniques are used to predict NIV values from 

past values of the selected BM variables.  

As in the previous chapter the exploratory multidimensional analysis is presented 

according to the different stages of the CRISP methodology.  The multidimensional 

forecasting, due to the particularities of neural networks techniques, alters slightly 

the previous structure. In section 5.3.2, the neural networks (NN) methodology is 

introduced along with the proposed structure of the analysis. The following sections 

deal with data selection and preparation, the numerical results and a sensitivity 

analysis of the input variables. A methodology deployment is also described before 

the final conclusions.  

 

5.2 Multidimensional exploratory analysis 

5.2.1 Objectives 

This multidimensional analysis is aimed at understanding the possible interactions 

between the different variables of the Balancing Mechanism (BM) and NIV. This 

will allow us to determine the variables that could be included in the forecast as 

well as to describe, when applicable, the nature and characteristics of these 

interactions. 

Three types of analysis uncover the different aspects of variables interactions. 

Qualitative analyses identify any interaction between variables. Quantitative 

analyses measure the strength of these influences. Both qualitative and quantitative 

analyses are purely descriptive or “correlational”. Therefore, to analyse the 
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causality and to determine the moment in time when the interactions take place, 

multivariate time-series analyses are applied. 

5.2.2 Data selection 

The BM quantities considered in these analyses are divided in two groups 

according to the moment in time they correspond.  

Tables 5.1 and 5.2 provide respectively a full description (ELEXON, 2001a) of the 

pre-gate closure and post-gate closure variables considered in this analysis. Pre-gate 

closure variables refer to actions that occur prior or up to gate closure and post-gate 

closure variables refer to actions that occur after gate closure.  In each table, the 

first column gives the variable name followed by its acronym, when appropriate, 

the second the variable definition and, when appropriate, its mathematical equation 

is included in the third column. 

Table 5.1 Pre-gate closure variables description 

NAME DEFINITION  EQUATION 

Demand forecast 
The estimate of the demand for 

electricity (in MW)  
 

Submitted Offer 

Volume (SOV) 

The sum of all the available offers 

submitted by all the BM for a certain 

period (in MW)  

 

Submitted Bid 

Volume (SBV) 

The sum of all the available bids 

submitted by all the BM for a certain 

period (in MW)  

 

Indicated Generation 

(INDGEN) 

The sum of all the FPN submitted by 

the generation units (in MW) 
 

Indicated Demand 

(INDDEM) 

The sum of all the FPN submitted by 

the demand (in MW) 
 

Capped Physical 

Notification (CPN) 

The aggregation for all the units of the 

minimum between the final physical 

notifications (FPN) and the maximum 

export limit (MEL) submitted in each 

period (in MW) 

∑= ),( FPNMELMinCPN  

Gate Closure 

Imbalance Volume 

(GCIV) 

The difference between the demand 

forecast and the capped physical 

notification (in MW) 
CPNDFGCIV −=  

Market Imbalance 

Volume (MIV) 

the pre-trade market position as seen at 

gate closure (in MW) ∑+= TradesSOGCIVMIV  

UKPX 
The UK Power Exchange reference 

price (in £/MW) 
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Table 5.2 Post-gate closure variables description 

NAME DEFINITION  EQUATION 

Demand 
The actual value of the system load for 

each period (in MW) 
 

Demand forecast 

error (DFE) 

The difference between the demand 

forecast and the demand (in MW) 
DFE DF Demand= −  

Accepted Offer 

Volumes (AOV) 

The aggregated volume of offers 

accepted by the System Operator (SO) 

(in MW)  

 

Accepted Bid 

Volumes (ABV) 

The aggregated volume of bids accepted 

by the System Operator (SO) (in MW) 
 

Accepted Offer 

Cashflows (AOC) 

The total cash-flow resulting from all 

the offer acceptances (in £MWh) 
 

Accepted Bid 

Cashflows (ABC) 

The total cash-flow resulting from all 

the bids acceptances (in £MWh)  
 

Balancing Mechanism 

Imbalance Volume 

(BMIV) 

The sum of the actions taken by the 

system operator to balance the system 

between GC and real time (in MW) trades

BMIV AOV ABV

French

= + +

+

∑ ∑
∑

 

Post Gate Closure 

Effects (PCGE) 

The net volume of post GC changes in 

demand and generation (in MW) 

PGCE NIV MIV

BMIV GCIV

= − =

= −
 

Remaining Effects 

(REM) 

The composite of any post-gate closure 

effect not included in the DFE (in MW) 
REM PGCE DFE= −  

System Buy Price 

(SBP) 

The weighted average of the accepted 

offers (in £/MW) 
 

System Sell Price 

(SSP) 

The weighted average of the accepted 

bids (in £/MW) 
 

 

Note that the definitions presented for the imbalance prices are the original ones. As 

described in section 2.4.2, the calculation of SBP and SSP was drastically modified 

on the 28/02/2003 with the implementation of P78. However the analysed period 

goes from 01/06/01 to 30/06/02 so the initial definitions are still valid. 
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5.2.3 Data preparation 

The first stage of the data preparation is a filtering process (Pyle, 1999); smoothing 

moving medians have been applied with a window length of 48 periods. The 

resulting series represent the daily moving median for each of the analysed 

variables. 

The next stage is the standardization or normalization: each value in the series is 

standardised using equation 4.3. This step makes it possible to bring together 

observations that follow similar trends but are differently valued (Gavrilov et al., 

2000). 

The final step includes the differentiation of the variables. Differentiating a series 

provides important information about the rate of change and also serves as a high-

pass filter (i.e. amplifying the high-frequency variations and attenuating the lower 

frequency ones). As described in table 5.3, the combination of standardised and 

standardised differentiated series of the dependent (NIV series) and independent 

(BM quantities) variables provides a deeper analysis of the interactions and 

relations between variables. 

 

Table 5.3 Combination of variables transformations 

NIV SERIES BM QUANTITIES OUTPUT 

Standardised series Standardised series 
Interactions between NIV and 

the different variables 

Standardised Differentiated 

series 
Standardised series 

Effect of the BM variables on 

NIV changes 

Standardised series 
Standardised Differentiated 

series 

Effect of the changes of BM 

variables on NIV 

Standardised Differentiated 

series 

Standardised Differentiated 

series 

Effect of the changes of BM 

variables on NIV changes 
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5.2.4 Modelling techniques and numerical results 

Both time series analysis and multivariate exploratory techniques are applied in this 

study. The time series analyses are aimed at uncovering the relationship between 

the different variables and NIV at different points in time. The multivariate 

exploratory techniques are aimed at identifying relationships between the BM 

quantities and NIV and the statistical significance of these relationships. 

5.2.4.1 Multidimensional correlation analysis  

The multidimensional correlation or cross-correlation analysis is a standard 

approach to feature detection in the time domain. It gives a measure of the relation 

between NIV and the rest of the BM variables. In this case the relationship between 

NIV and each of the BM variables is treated as a bivariate process. The outputs of 

the analysis are the matrix scatter plots and the value of the samples cross-

correlation coefficient r for each pair of variables (NIV and the independent BM 

variable). 

The cross-correlation coefficient (Chatfield, 2003) for a sample of N pairs of 

observations is defined as  

YX

XY

ss

kc
yxr

⋅
=

)(
),(       (5.1) 

Where YX ss ,  are the sample standard deviations for xt and yt respectively, and 

)(kcXY  is the sample cross-variance 

 1,,1,0for      /))(()(
1

−=−−= ∑
−

−=
+ NkNyyxxkc

kN

kt

kttXY …   

Application to Pre-gate closure variables 

Figure 5.1 shows the values of the cross-correlation coefficient r (y-axis) defined in 

equation 5.1 for the BM pre-gate closure variables (x-axis) standardised (5.3(a)) 

and standardised differentiated (5.3(b)). In addition to the BM pre-gate closure 

variables Figure 5.3(a) also includes the correlation coefficient between NIV and 

pure time variables such as day of the year, day of the week (Mon-Sun) and type of 

day (working and non working) 



CHAPTER 5: THE NET IMBALANCE VOLUME: MULTIDIMENSIONAL ANALYSIS       89 

 

 

5.1 (a) Cross-correlation coefficients for NIV and standardised BM variables 

 

5.1 (b) Cross-correlation coefficients for NIV and standardised differentiated BM variables 

Figure 5.1 Cross-correlation coefficients NIV and BM pre-gate closure variables 
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The cross-correlation results presented in figure 5.1 show how NIV has no 

significant linear correlation with most of the pre-gate closure variables. Only the 

variables which are physically connected with NIV (i.e GCIV and MIV) show 

significant results. The cross-correlation between similarly processed variables is 

higher than between variables with different transformation processes. In this way, 

there is higher correlation between BM pre-gate closure standardised variables and 

standardised NIV than between BM pre-gate closure standardised variables and 

NIV standardised and differentiated (Figure 5.1 (a)). In the same way the cross-

correlation is higher between BM pre-gate closure standardised and differentiated 

variables and standardised and differentiated NIV than between BM pre-gate 

closure standardised differentiated variables and standardised NIV (Figure 5.1 (b)). 

This is due to the fact that NIV is more correlated with the actual BM variables than 

with their rate of change. Similarly NIV’s rate of change is higher correlated with 

the rate of change of the pre-gate closure variables than with their actual values. 

Figure 5.2 shows the matricial two-dimensional scatterplots used to visualize 

relationship between variables. The first column of each matrix represents the 

histograms for NIV standardised and NIV standardised differentiated. The first row 

of each matrix includes the histograms for the pre-gate closure variables 

standardised (Figure 5.2(a)) and standardised differentiated (Figure 5.2(b)). For the 

rest of the matrix components the y-axis represents NIV standardised, in the second 

row, and NIV standardised differentiated, in the third row; the x-axis represents the 

BM pre-gate closure variables with their corresponding transformations. 

Figure 5.2 complements the results of Figure 5.1 showing clearly the lack of 

linearity between NIV and the BM pre-gate closure variables except from GCIV 

and MIV which are clearly connected with NIV physical meaning. 
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5.2 (a) Scatterplot matrix for NIV and standardised BM variables 

 

5.2 (b) Scatterplot matrix for NIV and standardised differentiated BM variables 

Figure 5.2  Scatterplot matrix NIV and BM pre-gate closure variables 
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Application to post-gate closure variables 

Figure 5.3 shows the values of the correlation coefficient r (y-axis) for the BM 

post-gate closure variables (x-axis) standardised (5.2(a)) and standardised 

differentiated (5.2(b)). 

 

 

5.3 (a) Cross-correlation coefficients for NIV and standardised BM variables 
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5.3 (b) Cross-correlation coefficients for NIV and standardised differentiated BM variables 

Figure 5.3 Cross-correlation coefficients NIV and BM post-gate closure variables 

 

The results of Figure 5.3 present a very high cross-correlation between NIV and the 

acceptances of bids as well as with the cashflow derived from these bid 

acceptances. The cross-correlation is also very high between NIV and the BMIV, 

which is a priory known result since NIV can be obtained by adding the SO trades 

to the BMIV. The lowest cross-correlation values are those related with the 

demand. When considering prices, SBP presents a higher linear cross correlation 

with NIV than the SSP or the UKPX. As for the BM pre-gate closure variables, 

there is higher correlation between BM post-gate closure standardised variables and 

standardised NIV than between BM post-gate closure standardised variables and 

NIV standardised and differentiated (Figure 5.3 (a)). In the same way the cross-

correlation is higher between BM post-gate closure standardised and differentiated 

variables and standardised and differentiated NIV than between BM post-gate 

closure standardised differentiated variables and standardised NIV (Figure 5.3 (b)). 

Figure 5.4 shows the matricial two-dimensional scatterplot for the post-gate closure 

variables. The first column of each matrix represents the histograms for NIV 
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standardised and NIV standardised differentiated. The firs row of each matrix 

includes the histograms for the pre-gate closure variables standardised (Figure 

5.4(a)) and standardised differentiated (Figure 5.4(b)). For the rest of the matrix 

components the y-axis represents NIV standardised, in the second row, and NIV 

standardised differentiated, in the third row; the x-axis represents the BM post-gate 

closure variables with their corresponding transformations. 

 

 

5.4(a) Scatterplot matrix for NIV and standardised differentiated BM variables 
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5.4 (b) Scatterplot matrix for NIV and standardised differentiated BM variables 

Figure 5.4  Scatterplot matrix NIV and BM pre-gate closure variables 

 

Figure 5.4 complements the results of Figure 5.3 showing the strong linear relation 

between NIV and the bid acceptances as well as their derived cashflow and BMIV. 

It is also clear the lack of linearity between NIV and Demand and DFE. 

 

5.2.4.2 Cross spectrum analysis  

The cross-spectrum is the complementary function to the cross-correlation in the 

frequency domain (Diggle, 1990, Kendall, 1976). This technique allows uncovering 

the seasonal relations between NIV and the rest of the BM variables by measuring 

the linear correlation between series at different frequencies.   It is analogous to the 

spectrum analysis performed in the one-dimensional NIV analysis; the cross 

spectrum between two series is defined as 
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The spectral density has both a real and an imaginary component. The quantity 

)(αc  is called the co-spectrum or co-spectral density while )(αq  is called the 

quadrature spectrum or quadrature spectral density.  The cross-amplitude, which is 

calculated as the sum of squares of the real and imaginary parts )()( 22 αα qc + , 

represents a measure of the covariance between the respective frequency 

components in the two series.  

Application to NIV analysis 

Figures 5.5 and 5.6 show the cross spectrum results for the pre-gate and post-gate 

closure variables respectively. In each graph the y-axis represents the cross 

amplitude values and the x-axis the frequencies range (considering values are 

considering in daily resolution frequencies refer to fractions of 11.57 µHz). Cross 

amplitude values are always positive, since it measures the covariance between 

aligned frequency components (Diggle, 1990). Peak values of the cross amplitude 

denote interdependence between the two series at the specific frequency where the 

local maximum occurs.  Each graph includes four cases:  

o The blue line represents the cross amplitude for NIV and the corresponding 

BM variable standardised. In this case the correlations at different 

frequencies between the two series are considered. 

o The red line represents the cross amplitude for NIV standardised and 

differentiated and the corresponding BM variable standardised. In this case 

the correlations at different frequencies between the changes in NIV and the 

BM variables are considered. 
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o The green line represents the cross amplitude for NIV standardised and the 

corresponding BM variable standardised and differentiated. In this case the 

correlations at different frequencies between the NIV and the changes in 

BM variables are considered. 

o The pink line represents the cross amplitude for NIV standardised and 

differentiated and the corresponding BM variable standardised and 

differentiated. In this case the correlations at different frequencies between 

the changes in NIV and the changes in BM variables are considered. 

Pre-gate closure variables 

 
5.5 (a) Cross amplitude for NIV and Submitted Offer Volume 

 

 
5.5(b) Cross amplitude for NIV and Submitted Bid Volume 
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5.5 (c) Cross amplitude for NIV and Demand Forecast 

 

 
5.5(d) Cross amplitude for NIV and Capped Physical Notification  

 

 
5.5 (e) Cross amplitude for NIV and Gate Closure Imbalance Volume 
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5.5 (f) Cross amplitude for NIV and Market Imbalance Volume 

 

 
5.5 (g) Cross amplitude for NIV and Indicated Demand 

 

 
5.5 (h) Cross amplitude for NIV and Indicated Generation 

Figure 5.5  Cross Spectrum analysis results for NIV (dependent variable) and pre-gate closure BM 

variables (independent variables) 

 

“Figure 5.5 shows the linear relation, measured by the cross amplitude, between 

NIV and the pre-gate closure variables when considering the series decomposition 

at different frequencies. For the pre-gate closure variables not related with the 
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demand the graphs show a common patter. The highest cross amplitude between 

standardised variables is for a period of 334 days, which corresponds with the data 

sample length. This means that the strongest linear relation between variables is 

actually related with their trend and no seasonal correlation is detected. For demand 

related variables (demand forecast, indicated demand and CPN) it can be observed 

some peak values for the series corresponding to 7.2 and 3.5 days (weekly and mid 

week seasonality) mainly related with the strong seasonal component of these 

variables. The cross amplitude results between standardised and differentiated 

variables increase their significance as the cycle lengths decreases. This is due to 

the fact that changes in NIV are more correlated with changes in the BM pre-gate 

closure variables. These results also agree with those obtained in figure 5.1 and 

5.2.” 

 

Post-gate closure variables 

 
5.6 (a) Cross amplitude for NIV and Accepted Offer Volume 

 

 
5.6 (b) Cross amplitude for NIV and Accepted Bid Volume 
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5.6 (c) Cross amplitude for NIV and Accepted Offer Cashflows 

 

 
5.6 (d) Cross amplitude for NIV and Accepted Bids Cashflows 

 

 
5.6 (e) Cross amplitude for NIV and Balancing Mechanism Imbalance Volume 
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5.6 (f) Cross amplitude for NIV and Demand 

 

 
5.6 (g) Cross amplitude for NIV and Demand Forecast Errors 

 

 
5.6 (h) Cross amplitude for NIV and Post-gate Closure Effect 
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5.6 (i) Cross amplitude for NIV and System Buy Price 

 

 
5.6 (j) Cross amplitude for NIV and System Sell Price 

 
5.6 (k) Cross amplitude for NIV and UKPX 

Figure 5.6 Cross Spectrum analysis results for NIV (dependent variable) and post-gate closure BM 

variables (independent variables) 
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Figure 5.6 shows the linear relation, measured by the cross amplitude, between NIV 

and the post-gate closure variables when considering the series decomposition at 

different frequencies. Similarly with the pre-gate closure variables, the post-gate 

closure variables not related with the demand the graphs show a common patter. 

The peak cross amplitude between standardised variables is for a period of 334 

days, which corresponds with the data sample length. This mean that the strongest 

linear relation between variables is actually related with their trend and no seasonal 

correlation is detected. Also the highest cross amplitude values are obtained for the 

accepted bid volume, accepted bid cashflow and the BMIV, which also were the 

variables showing the highest cross-correlation coefficients when considering the 

whole series. For the demand, it can be observed some peak values for the series 

corresponding to 7.2 and 3.5 days (weekly and mid week seasonality) mainly 

related with the demand strong seasonal component. The cross amplitude results 

between standardised and differentiated variables increase their significance as the 

cycle lengths decreases. This is due to the fact that changes in NIV are higher 

correlated with changes in the BM pre-gate closure variables. This behaviour is 

especially remarkable for the differentiated DFE variable, where high frequency 

(smaller cycle lengths) components present significant cross amplitude with the 

differentiated NIV series. Therefore, these results indicate a synchronous behaviour 

at high frequencies between the rate of change of these variables.  

 

5.2.4.3 Distributed lag analysis 

This technique is used to analyse relationships between variables that may involve 

some delay (i.e. to analyse the lagged effect on NIV of different BM quantities). 

Time-lagged correlations are particularly common in econometrics (Koyck, 1954, 

Almon, 1965, Kiviet and Dufour, 1997). In power systems analysis they can also be 

applied to demand analysis (Bentzen and Engsted, 2001).  

One of the possible ways of explaining these time lagged relationships would be 

through a linear regression (Shumway and Stoffer, 2000, Kendall, 1976)  

εβ +=∑ −itit XY         (5.4) 
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Although equation 5.4 seems a simple linear regression, a common problem that 

often arises when computing the weights for the model shown above is that the 

values of time-adjacent values of the independent variables are highly correlated. In 

extreme cases, this makes the values of β impossible to compute. It is also usual for 

the error term to be autocorrelated which makes it a non-standard model. 

Furthermore, depending on the characteristics of the problem it may not be possible 

to control the values of the independent variable or there may even be a non-

apparent feedback between X and Y. 

In this way it may be easier to model the open-loop causal relationship according to 

a transfer function model  

εαβ +=∑ −itt XY )(       (5.5) 

where each of the coefficients of the backward shift operator is expressed as a 

polynomial function of α and avoids the multicollinearity problem (Almon, 1965)  

q

qii ααααβ +++= �10)(     (5.6) 

Note that, disregarding the error (ε), the regression coefficients in distributed lags 

analysis do not allow for an intercept in the equation. As with many econometric 

models, the intercept of the regression line is assumed to be zero.  

Figures 5.7 and 5.8 show the results of the distributed lags analysis. The x-axis 

represents the different lags in daily scale and the y-axis is the corresponding t-

statistic for the two series at different lags. The t-statistic assesses how significantly 

a coefficient differs from 0. In other words, whether the expected range of 

coefficients contains the value of 0 at a given level of confidence. 

 
statistic

 

Reggresion Coefficient
t

Standard error
− =    (5.7) 

where the standard error is similar to the standard deviation and denotes the 

expected range of coefficients across multiple samples of the data. Therefore the 

smaller the standard error the more reliable is the value of the coefficient. 

If the t value is greater than its critical value then the null hypothesis 0 value for the 

corresponding coefficient can be rejected. The t-critical value is obtained referring 
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to the t distribution with n-1 degrees of freedom at a specified α level (significance 

level).  

It is important to observe that the results of the distributed lags analysis should 

always be considered within the framework of the multiple correlation analysis. 

This means that the correlation (associated in this case to the t-value) of the 

variables at different lags is linked to the residual correlation between variables 

when considering the whole series. 

Pre-gate closure variables 

 
5.7 (a) Distributed lags for NIV and Submitted Offer Volume 

 
5.7(b) Distributed lags for NIV and Submitted Bid Volume 
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5.7 (c) Distributed lags for NIV and Demand Forecast 

 

 

 

 

 
5.7(d) Distributed lags for NIV and Capped Physical Notification  

 

 

 

 

 

 

 



108 

 

 

 

 

 

 
5.7 (e) Distributed lags for NIV and Gate Closure Imbalance Volume 

 

 

 

 

 
5.7 (f) Distributed lags for NIV and Market Imbalance Volume 
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5.7 (g) Distributed lags for NIV and Indicated Demand 

 

 

 

 

 
5.7 (h) Distributed lags for NIV and Indicated Generation 

Figure 5.7  Distributed lags analysis results for NIV (dependent variable) and pre-gate closure BM 

variables (independent variables) 
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Figure 5.7 shows the results of the distributed lags analysis. These results refer to 

the analysis of the contribution of the different lags of the explanatory variables 

(BM pre-gate closure variables) to the linear relation with the independent variable 

(NIV). This is therefore a linked analysis with the cross-correlation analysis that 

will determine how much of the linear cross-correlation can be attributed to the 

previous values of the pre-gate closure variables. In this figure, the blue line refers 

to the analysis of NIV standardised and BM pre-gate closure variables standardised; 

the red line refers to the analysis of NIV standardised and differentiated and BM 

pre-gate closure variables standardised; the green line refers to the analysis of NIV 

standardised and BM pre-gate closure variables standardised and differentiated; the 

pink line refers to the analysis of both NIV and the BM pre-gate closure variables 

standardised and differentiated. 

 In Figure 5.7 it is shown that in most of the cases there is no clear significant lag 

that contributes to the residual linear relation between NIV and the BM pre-gate 

closure variables for any of the considered transformations and variables 

combinations. Only in the case of GCIV and MIV, which are highly correlated with 

NIV, the contribution at lag 0 is significantly remarkable. These results also fit the 

ones of the cross spectrum analysis where NIV is highly correlated with the trend 

(lag 0) of these variables (Figures 5.5 (e) and 5.5 (f)). No seasonal linear relation is 

therefore detected between NIV and the BM pre-gate closure variables. 
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Post-gate closure variables 

 
5.8(a) Distributed Lags for NIV and Accepted Offer Volume 

 

 

 

 

 
5.8(b) Distributed Lags for NIV and Accepted Bid Volume 
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5.8(c) Distributed Lags for NIV and Accepted Offer Cashflows 

 

 

 

 

 
5.8(d) Distributed Lags for NIV and Accepted Bids Cashflows 

 

 

 

 



CHAPTER 5: THE NET IMBALANCE VOLUME: MULTIDIMENSIONAL ANALYSIS       113 

 

 

 

 

 

 

 

 
5.8(e) Distributed Lags for NIV and Balancing Mechanism Imbalance Volume 

 

 

 

 

 
5.8(f) Distributed Lags for NIV and Demand 
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5.8(g) Distributed Lags for NIV and Demand Forecast Errors 

 

 

 

 

 
5.8(h) Distributed Lags for NIV and Post-gate Closure Effect 
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5.8(i) Distributed Lags for NIV and System Buy Price 

 

 

 

 

 
5.8(j) Distributed Lags for NIV and System Sell Price 
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5.8(k) Distributed Lags for NIV and UKPX 

Figure 5.8 Distributed Lags analysis results for NIV (dependent variable) and post-gate closure BM 

variables (independent variables) 

 

Figure 5.8 shows the results of the distributed lags analysis for the post gate closure 

variables. These results refer to the analysis of the contribution of the different lags 

of the explanatory variables (BM post-gate closure variables) to the linear relation 

with the independent variable (NIV). This is therefore a linked analysis with the 

cross-correlation analysis that will determine how much of the linear cross-

correlation can be attributed to the previous values of the pre-gate closure variables. 

In this figure, the blue line refers to the analysis of NIV standardised and BM post-

gate closure variables standardised; the red line refers to the analysis of NIV 

standardised and differentiated and BM post-gate closure variables standardised; 

the green line refers to the analysis of NIV standardised and BM post-gate closure 

variables standardised and differentiated; the pink line refers to the analysis of both 

NIV and the BM post-gate closure variables standardised and differentiated. 

For the variables showing a strong linear relation with NIV (i.e. ABV, ABC and 

BMIV) only the significance of lag 0 is remarkable. These results also fit the ones 

of the cross spectrum analysis where NIV is highly correlated with the trend (lag 0) 

of these variables. For the demand residual linear contribution (max. ρ= 0.04), there 

is no clear significant lag for any of the considered transformations and variables 
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combinations.  For the DFE despite the low linear relation between these variables 

the contribution of lags 0 and 1 is significantly remarkable. It is therefore possible 

to consider, as for the cross-spectrum results, the existence of a sequential 

behaviour of NIV and the DFE. For the analysis of the prices there is no seasonal 

linear relation is detected between NIV and the BM pre-gate closure variables since 

no lag different from 0 presents a clear significance over the rest. 

 

5.2.4.4 Kohonen Networks 

Kohonen networks or Self Organising Maps (SOM) are a widely used data mining 

methodology for the analysis and visualization of multidimensional data (Dillon 

and Niebur, 1996, Haykin, 1994, Wehenkel, 1998). It is a neural network technique 

that transforms complex and non-linear relationships into geometric relationships. 

(See section 5.3.2 for a detailed description of neural networks). SOM is a 

clustering tool that uses the spatial organization of the neurons to provide a two-

dimensional output where existing similarities in the inputs are revealed. The 

topology exposed with these networks does not need to correspond to a physical 

arrangement but to a statistical feature of the input set.   

Application areas include, for instance, image processing and speech recognition, 

process control, economical analysis, and diagnostics in industry and in medicine. 

In engineering their most common applications are identification and monitoring of 

complex machine states, control functions and signal mapping in 

telecommunications (Kohonen and Simula, 1996). More specifically in the area of 

power systems their applications include transformer fault diagnosis (Dillon and 

Niebur, 1996) as well as load forecasting (Baumann and Germond, 1993).  

Figure 5.9 illustrates the Kohonen network structure where the input units (xi) are a 

set of feature vectors (number of observations) in n-space (number of BM 

variables). The input units are fully connected to a two-dimensional grid of units 

usually known as the Kohonen layer. Each link between an input and a Kohonen 

layer node has an associated weight (wij). The net input to each neuron in the 

Kohonen layer is equal to the weighted sum of the inputs. 
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Figure 5.9 Two-dimensional Kohonen Neural network representation (connections are shown 

partially) 

  

Unlike most neural networks, Kohonen networks use the Euclidean distance 

between input and weights as the basic operation to calculate the output for each 

neuron 

∑
=

−==
N

i

iiEucledian wxDY
1

)(       (5.9) 

Once the Euclidean distance is calculated for each neuron, the neuron with the 

smallest distance is the winner (or active neuron). The associated weight is 

therefore the nearest to the input vector. Only the wining neuron generates an 

output signal from the Kohonen layer. The learning process continues by modifying 

the weights of the neurons within a neighbourhood of the wining neuron. In the first 

iterations the extensions of the neighbourhood is approximately half of the network 

size but it decreases in each learning step until it reaches zero. As described in 

Figure 5.10, the feedback between connections is restricted to lateral connections. 
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Figure 5.10 Winning neuron and its neighbourhood 

 

After the training process, input vectors close in the input space stimulate neurons 

which are close to each other on the grid. Other neurons may not be stimulated by 

any input vector. The final clusters represented by yi output classes are obtained 

from the regrouping of the neurons stimulated by the same group of input vectors.  

Figures 5.11 and 5.12 represent respectively the contour maps for the pre-gate and 

post-gate closure variables obtained from the Kohonen Neural network cluster 

analysis. In each figure the graph located in the upper left hand corner corresponds 

to the cluster solution considering all the variables. The next graphs represent the 

distribution for each of the variables. The areas corresponding to high demand 

forecast, high NIV and low NIV values have been indicated to highlight the 

behaviour of the other variables under these conditions. 
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Pre-gate closure variables 

   
Total cluster representation DATE SUBMITED OFFERS 

   
SUBMITED BIDS FORECAST DEMAND GC_CPN (SUM (Min  FPN, MEL)) 

   
GCIV MIV NIV 

Figure 5.11 Kohonen’s Maps BM Pre-gate closure variables and NIV 
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Post-gate closure variables 

   
Total cluster representation ACCEPTED OFFERS VOLUME ACCEPTED BIDS VOLUME 

   
ACC.OFFERS CASHFLOWS ACCEPTED BIDS CASHFLOWS DEMAND 

   
DFE BMIV NIV 
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SBP SSP UKPX 

Figure 5.12 Kohonen’s Maps BM Post-gate closure variables and NIV 

  

Figures 5.11 and 12 show respectively for pre-gate and post-gate closure variables 

the distribution of the different variables values in the obtained cluster maps. The 

observation and cross-comparison of these results allow exploring the behaviour of 

different variables for a specific range of value of other variable(s). In this way it is 

possible to detect that the highest submission of bids volume usually corresponds to 

high demand values. Also for NIV’s case large values of DFE are usually next to 

large DFE values. The physical relation between NIV and other market variables 

such as BMIV and GCIV is exposed by similar value distributions across all the 

clusters. 

 

5.2.5 Conclusions 

As general remarks for all the analysed variables it is important to notice that:  

o Due to NIV’s noisy behaviour, all the analysed relations are stronger in the 

case of NIV than for NIV differentiated. NIV differentiated series can be 

consider as the result of a filtering process for NIV’s lowest frequency 

component. Therefore, the resulting differentiated series resumes NIV’s 

erratic and random high frequency components and any possible linear 

relation with other BM variables is weaker than in the original series.  

o Linear relations are only significant for the variables with a physical 

connection with NIV (e.g. AOV, ABV).  
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o Despite their strong seasonality, all variables related with or driven by the 

demand present low or no linear correlation with NIV. 

o There is a common pattern in the cross spectrum results for the analysed 

series (Figures 5.5 and 5.6). For NIV standardised and BM standardised the 

cross amplitude decreases as the frequency increases, which means that 

global variables present a higher correlation when considering longer 

periods or global trends. However for non-demand related variables, and 

due to their volatile behaviour, rates of changes of NIV and BM variables 

are highly correlated as the frequency increases (i.e. the periods decrease).  

o Pre-gate closure variables are not a good forecasting base to predict NIV.  

Only the physical relation between GCIV, MIV and NIV value have been 

confirmed throughout the obtained results of all the performed analysis (e.g. 

cross-correlation values of 0.84 and 0.86 for GCIV and MIV respectively). 

o Post-gate closure variables seem to be better input variables for forecasting 

NIV. The delayed time relation found between NIV and the DFE and PGCE 

show that it is necessary to perform a more detailed analysis of the effect of 

unusual market situations (outages and demand forecast error) over the rest 

of the market quantities. 

  

A more detailed analysis of the results for each of the BM variables is:  

 

Demand Forecast, GC-CPN, INDGEN, INDDEM: 

All these variables present very similar results in their interaction with NIV. 

There is no significant correlation between these variables and NIV. This is also 

apparent from the results of the Kohonen contour maps and can be explained by 

observing that the highest imbalance in the system does not necessary correspond to 

a high demand situation. 

The clusters obtained for these variables and the ones of Submitted Offer and Bid 

Volumes present a similar behaviour especially in the high demand areas. This can 

be an indicator of different bidding strategies of the participant throughout the day. 



124 

 

There is a strong weekly correlation (associated with the cross amplitude value at 

the frequency 1.61µHz, see Figures 5.5(c), (d), (g), and (f)) between these variables 

and NIV that is mainly due to the strong cyclical characteristic of the demand 

forecast and associated variables.  

 

Market Imbalance Volume (MIV), Gate Closure Imbalance Volume (GCIV): 

There is a strong conceptual relation in the market representation of these variables 

and NIV. GCIV is the market volume (difference between demand forecast and 

generation declaration) at gate closure. MIV is the total obtained from adding the 

SO forward trades to the GCIV, so it represents the market volume compensated by 

NG trading activity. NIV is the result of all the actions taken in the BM to 

compensate the mismatch between generation and demand and in the absence of 

any PGCE it is equal to the MIV.  This strong relation between variables is also 

obtained in the analysis performed: significant linear correlation, similar clusters 

distribution and strong relation in temporal analysis (remarkable effect of present 

and adjacent value –lags 0 and 1– of these variables over NIV).   

 

Accepted Offers and Bids Volumes: 

Considering the structure of NIV (NIV= ∑Accepted Offers +∑ Accepted bids + 

Interconnector trades + SO trades ) the correlation between NIV and the accepted 

offers is relatively low (r = 0.6) compared with the correlation with the accepted 

bids (r =0.9). The reason for this can be found in the fact that the market was 

usually long during the analysed period. The market has remained long for most of 

the time and this has marked the balancing mechanism activity with the acceptance 

of bids. The contour maps of the Kohonen clustering also show how the distribution 

of NIV is more similar to the accepted bids than it is to the accepted offers.  

Figure 5.13 shows a detail of the offers acceptances bid acceptance and NIV for the 

period between 6/05/02 and 10/05/02. The x-axis represents the time and the y-axis 

represent the accepted offers, the accepted bids and NIV.  The linear relation of the 

offer acceptances can be easily appreciated. The range for the offer acceptances is 
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wider for the different NIV’s value and seems to correspond more to reactions in 

the BM to meet voltage and frequency requirements.  

 

 

Figure 5.13 Bids  and  Offers Accepted Volumes and NIV’s values 

 

The time series analysis reflects a high correlation between the accepted offer 

volumes and NIV in weekly frequency. This can be explained as a “synchronous” 

behaviour between NIV and offer acceptances on a weekly basis.  

 

Demand and Demand Forecast Error (DFE): 

The relation between NIV and the demand is similar to the one obtained for the 

demand forecast.  

The analysis results show a relation between DFE and NIV. The correlation 

between these two variables is very low (reaching as low as 0.07). One could 

therefore conclude that these two variables are disconnected. However the cross 

spectrum and the distributed lags analysis present consistent results about the 
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influence of DFE on NIV. As can be seen in Figure 5.6(g), the influence of the DFE 

over NIV is strong for lag 0 and decreases for higher lags. This results and also the 

distribution of the clusters for these variables in the Kohonen contour maps 

indicates a sequential influence of these variables. Therefore, despite no long term 

relation between NIV and the DFE there is a short term influence (higher 

frequencies) between them. In the market context this can be explained from the 

fact the demand forecast errors are compensated by the BM actions (offer and bid 

acceptances).  

 

Balancing Mechanism Imbalance Volume: 

As could be expected from the definition of NIV (NIV= BMIV + SO Trades), all 

the results point to a very strong relation between this variable and NIV. In 

particular, the correlation coefficient is equal to 0.96. However this strong 

similarity is also a symptom of low trading activity by the system operator during 

the period considered. Figure 5.14 illustrates the fact that the average contribution 

of trading by the system operator to NIV is only 19%.  

 

 

Figure 5.14 NIV’s break down NIV= BMIV + Trades 
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Imbalance Prices (System Buy Price and System Sell Price) 

These variables present very different results as can be observed in the contour 

Kohonen maps.  

The distributed lags analysis gives consistent results for the influence of these two 

variables over NIV with a 0 lag for all the different periods analysed. These results, 

as happened with the DFE, may be a symptom of a sequential relation between 

these variables and NIV. 

However it may occur because of a non linear interaction between the imbalance 

prices and NIV, since NIV reflects the balancing activity and imbalance price are a 

weighted average of offers and bids acceptances.  Figure 5.15 shows the scatter plot 

of NIV and imbalance prices for different lengths of the market. The x-axis 

represents the SBP, the y-axis represents SSP and the z-axis represents NIV. 

 

Figure 5.15 Scatter plots: x: SBP(£/MWh), y: SSP(£/MWh) and z: NIV(MW) 
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When the length of the market increases the SBP decreases; SSP follows a similar 

pattern but larger lengths are required to create this decreasing trend. Short market 

conditions increase both imbalance prices and their spread. Short market conditions 

present a higher imbalance risk (uncertainty and price) for the different market 

participants. 

 

5.3 Multidimensional NIV forecasting 

5.3.1 Objectives 

The results obtained in the previous analysis lead to expand NIV’s analysis to a 

multidimensional domain in order to forecast NIV in a more effective way. 

The main objective of this analysis is to forecast NIV in different time frames. This 

forecast is based on the relations between the past or seen values of the balancing 

mechanism variables and the future or unseen values of NIV. However the relations 

linking the past and future values of these variables are neither simple nor linear. 

Neural networks provide a powerful tool to uncover these complex associations 

while maintaining the time structure of the analysed series. 

5.3.2 Modelling techniques 

5.3.2.1 Neural Networks overview 

Neural Network (NN) techniques have been enhanced by improvements in 

computational performance and in the flexibility of the software used for their 

implementation (Veelenturf, 1995, Kolarik and Rudorfer, 2004, Kim, 2004, Zoran 

Vojinovic, 2001, Wehenkel, 1998). Needless to say, not every problem can be 

solved by a neural network. Therefore, an important requirement for their use is to 

know (or at least strongly suspect) that there is a relationship between the proposed 

known inputs and unknown outputs. This relationship may be noisy but it must 

exist. In general, when using NN, the exact nature of the relationship between 

inputs and outputs is unknown. 
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The successful application and performance is generally attributed to NN main 

characteristics: 

• NN are powerful analytical techniques. They can model complicated non-

linear relations keeping in check the dimensionality problem when dealing 

with a large number of variables. 

• NN are adaptable techniques. They have a built-in capability to adapt their 

interconnections weights to changes in conditions. In particular a NN 

trained to operate in a specific environment can be easily retrained to deal 

with changes in its environment. 

• NN are relatively easy to use. NN learn from example transforming a 

trained network into an “expert” on the input information. They are capable 

of producing outputs for conditions not encountered during the learning 

process.  

Neural network techniques are inspired by the biological learning process of the 

brain neurons. They are network structures consisting of a number of nodes 

connected through directional links. Each node (neuron) represents a processing 

unit and the links between them relate the causal relation between connected nodes. 

All the nodes are adaptive which means that their output depend on flexible 

parameters associated with them. 

The basic unit of a NN is the artificial neuron. The model of the artificial neuron 

described in Figure 5.16 includes the basic elements: 

• A group of connecting links. Each of the neurons of the network receives a 

number of inputs that can proceed either from original data, or from the 

output of other neurons in the network. Each input comes via a connection 

that has a strength (or weight) wki. The first index refers to the specific 

neuron and the second one to the input of the synapse from where it comes 

from. 

• An adder that sums the input signals xi multiplied by their corresponding 

weights wki  
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• A single threshold value. The sum of the weighted inputs is formed, and the 

threshold subtracted, to compose the activation of the neuron.  

• An activation function. The activation signal is passed through the neuron 

transfer function to produce the corresponding output. Several forms of 

activation functions can be used (Kantardzic, 2002, Wehenkel, 1998). Table 

5.4 gives some of the most commonly used. 

There are three main kinds of neurons defined by their position in the network and 

these are: input neurons, hidden neurons and output neurons. 

 

 

Simplified configuration of an organic neuron 

 

Artificial Neuron 

Figure 5.16 Model of an artificial neuron 
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Table 5.4 Neurons activation function 

ACTIVATION FUNCTION INPUT/OUTPUT RELATION GRAPH 
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5.3.2.2 The Neural network learning process  

One of the most significant properties of a NN is its capability to learn from its 

environment and to improve its performance through the learning process 

(Wehenkel, 1998, Azoff, 1994, Sarle, 1997, Bishop, 1995). The learning process 

can be defined as the process by which the network’s free parameters (i.e. weights 
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and thresholds) are adapted through a simulation process so as to minimize the 

prediction error made by the network. In this way, the historical cases are used to fit 

the model represented by the network. The error of the network for a particular 

configuration of its parameters is determined by running the historical cases and 

comparing the output given by the network with the actual outputs. The differences 

between real and computed outputs are combined together using an error function 

to summarise the error over the entire training set. In this analysis the applied error 

functions are the mean absolute error and the root mean square error (equations 

4.22 and 4.23). 

In linear models it is possible to determine the model configuration that minimises 

the error. However, due to their non linear characteristics, NNs can be adjusted to 

minimize their error but it is impossible to determine if this is the global minimum 

(Veelenturf, 1995, StatSoft, 2004). 

The objective of the network learning can also be defined using the concept of the 

error surface (StatSoft, 2004). The error surface is formed with the N free 

parameters of the network and the network error. Therefore the error surface is N+1 

dimensional. The network training is an exploration of this surface with the ideal 

objective of finding its lowest point. Since it is impossible to analytically determine 

where the global minimum is, the training algorithms start from an initial 

configuration of weights and thresholds (a random point in the error surface). Then, 

the gradient of the surface is calculated and used to make a downhill move while 

incrementally seeking for a local minimum. This process is repeated at each point 

until the algorithm stops in a low point that is either the global or a local minimum. 

The different types of learning algorithms are determined by the way the free 

parameters change. The best know example of neural network training algorithm is 

back propagation. Other second order algorithms are conjugate gradient descent, 

quasi-Newton and Levenberg-Marquat. 

Back propagation algorithm 

The basic idea of this algorithm is to calculate the gradient vector of the error 

surface in a layer by layer function, starting with weights in the output layer and 

finishing with the ones in the first layer of hidden neurons. 
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To express the general formulation for this algorithm let us consider a feed-forward 

structure (see section 5.3.2.3), where the neurons are ordered in sequential order 1 

to K.  The net input of the neuron j is nj 

∑
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=
1,1

, )()(
ji

ijij zxwzn         

 (5.10) 

Where jiw ,  is the weight for the connection between neurons i to j, and )(zxi  the 

output of neuron i for the object z. Since each neuron j has an associated activation 

function the output of neuron j is 

))(()( znfzx jjj =        (5.11) 

In this way the algorithm progresses iteratively through a number of passes. In each 

of them the learning cases are each processed through the network and real and 

computed outputs are compared and the error function is calculated. This error 

together with the error surface gradient is used to adjust the weights. The general 

error function associated with the learning data set LS is 
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Where h(.) is a differentiable error function for the neuron output vector )(zx   and 

the real output )(zy .  The mean absolute error and the root mean square error are 

examples of this error function.  

The components of the gradient vector of the error are calculated as follows 
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In this case the partial derivatives  
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∂
 are back propagated. In this way, the error 

of the lower order neurons is calculated from the error in the higher order neurons 

according to the following equation 
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Where jδ  is obtained using the following backward recursion: 
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The proof of this equations is omitted but the interested reader can refer to (Haykin, 

1994, Bishop, 1995) and to (Wehenkel, 1998, Veelenturf, 1995) for explanatory 

examples. Since the calculated gradient vector points in the direction of the steepest 

descent on the error surface, by moving along this line a distance proportional to 

the learning rate (Haykin, 1994, StatSoft, 2004) the error is decreased. 

Figure 5.17 shows, for a feed-forward network, the general network computation 

structure and the information flow in the back propagation algorithm.  

 

Figure 5.17 Computational and information flow in a back propagated training algorithm 

 

Conjugate gradient descent and quasi-Newton algorithms 

Both of these algorithms, as well as the back propagation, are included in the line 

search algorithm (White, 1992, Bishop, 1995). The basic principle of their 

behaviour is first to identify a direction on the error surface, then project a line in 
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that direction, locate the minimum on that line, move to that point and repeat. 

Different approaches to select the appropriate direction result in the different 

algorithms. 

As explained before, in the back propagation algorithm the line of direction is the 

steepest descent. In the gradient descent algorithm the idea is to select conjugate 

directions to avoid possible interferences (StatSoft, 2004). This means that after the 

algorithm has found an initial appropriate direction, this direction must stay 

minimized. In this way and depending of the shape of its vicinity, the minimum is 

reached in far fewer steps than would be the case using the method of steepest 

descent. 

The quasi-Newton training algorithm does not need the calculation of second 

derivatives (StatSoft, 2004, White, 1992). It directly calculates the Newton 

direction which is exactly the direction pointing towards the minimum. This 

algorithm requires more computation and more memory requirements per iteration 

than the conjugate gradient methods, but it generally converges in fewer iterations.  

Levenberg-Marquardt algorithm 

This is a model-trust region algorithm. In this case the minimum is not assumed to 

be in a specific direction but is deemed to have a simple shape that allows direct 

access.  

This algorithm is extensively described in (Hagan and Menhaj, 1994) and is usually 

faster than the ones presented above. However it can only be used in networks with 

a single output neuron. Moreover, its memory requirements are proportional to the 

square of the number of weights. Therefore, this algorithm is discarded from this 

analysis since it only performs well with small networks. 

5.3.2.3 Neural networks architectures 

The architecture of an artificial neural network is defined by the characteristics of 

its nodes and the way the different neurons are connected. Typically the 

specification of a NN consists of the number of inputs, the number of outputs, the 

total number of nodes that are equal to the total processing elements of the entire 

network, and their organization and interconnections.  
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Depending on the way the neurons are interconnected the networks can be 

classified into feed-forward and recurrent. A feed-forward network propagates the 

processing from the input side to the output without any loops or feedback. In this 

networks there are no connections between nodes in the same layer; the output of a 

node in each layer is always the input of the nodes in the following layer. A 

recurrent network contains feedback links that creates circular paths. Figure 5.18 

gives an example of both types of networks. 

 
 

5.18 (a) Feedforward network 5.18 (b) Recurrent network 

5.18  Categories of neural networks interconnections 

 

One important characteristic of NIV forecasting is the structure of the time series of 

both the input variables and the forecasted output. This transforms the problem of 

forecasting NIV into a specialized form of regression. As such, it can be tackled by 

any structure of neural network suitable for regression purposes, providing that the 

data set is suitably pre-processed into the correct form. Choosing the optimal NN 

structure is thus an important task. The architectures that have been used in this 

analysis are (Bishop, 1995, Haykin, 1994, Sarle, 1997, Han and Kamber, 2001, 

White, 1992, StatSoft, 2004): 

• Linear network (LN): This is the simplest of all the possible networks. The 

network has no hidden layers and a linear output activation function. When 

computing the network, it effectively multiplies the input by the weights 

matrix then adds the bias vector. 

• Multilayer perceptron (MLP): This is one of the most popular network 

architectures. The units are layered in a feedforward topology. The network 
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has a simple interpretation as a form of input-output model, where the 

number of input and output neurons is determined by the problem. The 

weights and thresholds are the free parameters of the model. Such networks 

can model functions of any complexity; the number of layers and the 

number of units in each layer determines the complexity of the function. 

• Radial Basis Function (RBF): These networks are characterized by one or 

more layers of hidden units. The activation function for each of the units is 

defined by a sigmoid which allows them to model non-linear functions even 

with only one layer of hidden units. The output is obtained as a linear 

function of the hidden units’ response. These networks can be trained very 

quickly. 

• Probabilistic Neural Networks (PNN): These networks have been 

extensively used for classification problems where each output gives the 

probability that the input is member of a particular class. However a similar 

approach can be used in regression and forecasting problems considering 

the output as the expected value for the model given certain input 

conditions. They are defined by at least three layers: input, radial, and 

output layers. The greatest disadvantage is the network size since each of 

them contains the entire set of training cases. These networks are therefore 

space-consuming and slow to execute. 

• Generalised Regression Networks (GRNN): They are similar to the 

Probabilistic Neural Networks but they only perform the regression task. 

These networks are defined by a first hidden layer that contains the radial 

units. A second hidden layer contains units that help estimate the weighted 

average. A GRNN trains almost instantly but tends to be large and slow. 

Figure 5.19 shows a representation of these different architectures. In this figure the 

shape of the neurons denotes their characteristics. Triangular neurons pointing to 

the right indicate input neurons. These neurons perform no processing, and simply 

introduce the input values to the network. Square neurons indicate dot product 

synaptic function units. Circular neurons refer to radial synaptic function units. 
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Input and output variables are illustrated using a small open circle joined to the 

corresponding input or output neuron.  

 

 

 

Multilayer Perceptron Radial Basis Function 

 
 

Probabilistic Neural Networks Generalised Regression Networks 

Figure 5.19 Neural networks architectures 

 

5.3.3 Analysis structure 

The main stages in the development of the neural networks used to forecast NIV 

follow the standard procedure (JingTao YAO, 2001, StatSoft, 2004):  

o Data selection: The selection of variables is guided by the physical quantity 

that they represent and by the results of the multivariable exploratory 

analysis. Experience demonstrated that the choice of variables has a strong 

influence on the quality of the results. Including too many variables or the 

wrong variables can lead to dimensionality problems. 

• Cases selection: Three different data sets are required to develop a neural 

network for forecasting. The training data set is used to train various 

candidate networks. The selection data set is used to select the best trained 

network among these candidates. Finally the test data set (containing only 

unseen data) is used to measure the performance of the networks. The 

number of cases needed for both the training and the selection data sets 
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depends on the number of connections and the complexity of the function to 

be modelled. However over-fitting problems can arise if excessively large 

sets are used. It is important to keep in mind that the future is not the past so 

that if the circumstances captured by the training data set have change these 

relations may not be valid. On the other hand neural networks only learn 

from the cases and conditions included in the training data set. Care should 

therefore be taken to include various types of cases and situations in the 

training data set. Since the network minimizes the overall error the 

proportion of cases is critical and should always reflect the actual 

conditions. For example, a network trained with 300 cases of long market 

conditions and 50 cases of short market conditions will always bias its 

prediction towards the long market conditions. 

o Data preparation: Neural networks usually require pre- and post- 

processing of the data to adapt first the input variables to the characteristics 

of the neurons’ activation functions and second to transform the output to 

the normal data range.  

o Training: This process consists of a progressive adaptation of the NN 

parameters to learn the desired behaviour. Several networks of different 

architectures are trained using the training data set. Each network produces 

its own prediction for the unseen data set. 

o Assessment: Once the different networks have been created, several 

measures of performance are obtained (error measurements, training 

performance, sensitivity analysis and residuals analysis). These results can 

also be used as a feedback to modify the parameters of the networks. The 

best architecture is selected based on performance over the selection data 

set. 

This development process does not produce a unique network that can be used in all 

cases. Various architectures may produce optimal results for different forecasting 

conditions. A different optimal network therefore must be created for each 

forecasting scenario. The parameters of the networks also need to be adjusted to the 

timeframe considered. 
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Two forecasting scenarios were considered: 

• CASE 1: One month ahead forecast performed on a daily basis. Each 

forecast value represents the median NIV value for a whole day. 

• CASE 2: One week ahead forecast. In this case working and non-working 

days have been considered independently. This forecast is made on the basis 

of EFA blocks. Each forecasted value corresponds to the median NIV value 

for the corresponding EFA block. 

5.3.4 Data selection and preparation 

5.3.4.1 Variables selection  

According to the results obtained in the multidimensional exploratory analysis the  

variables that have been included in this analysis are:  

• Demand forecast. Despite the exploratory analysis shows no linear 

correlation between NIV and demand forecast this variable is included since 

it is one of the main variables to define the market conditions. 

• Capped Physical Notification (CPN). This variable is included because of 

its relevance in the description of the participants’ position at gate closure. 

• Submitted Offer Volume (SOV) and  Submitted Bid Volume (SBV). These 

two variables are included because together with the CPN they inform about 

the system increasing (offers) and decreasing (bids) flexibility. 

• Balancing Mechanism Imbalance Volume and Gate Closure Imbalance 

Volume. These variables are included since they are a strongly related with 

NIV.  

• Demand forecast error, REM. These two variables are the components of 

the PGCE and are included in the analysis due to the influence between 

them and NIV detected by the time series exploratory analysis. 

• Imbalance Prices (SBP & SSP). These variables are included in the 

forecasting base since they provide representative information of the 

balancing mechanism activity. 
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• Type of day (Monday, Tuesday,…) and EFA Block Number (if required). 

These variables provide the temporal information to the forecasting base. 

Other variables are also included in the forecasting base. Their purpose is to 

highlight the effect of the balancing mechanism actions (MINAOAB) and include 

the effect of changes in generation declaration (from day-ahead to gate closure) 

(∆MEL) are: 

• Min (|Accepted Offers, Accepted Bids|) (MINAOAB). This variable reflects 

the system balance actions for each period. Figure 5.20 represents this 

variable for long and short market conditions. 

 

Figure 5.20 MINAOAB variable representation 

 

• Gate closure MEL on bars (GCMELOB). It is the MEL of all the units on bars 

for each period. 

• ∆MEL. It is the difference between day ahead MEL and GCMELOB. 

The rest of the variables presented in section 5.2.2 are excluded from the 

forecasting base. Variables can be excluded either for negative results in the 

exploratory analysis (e.g. accepted offers and bids cash-flows) or because their 

conceptual representation is included in other variables (e.g demand is not included 

since demand forecast and DFE are considered in the forecasting base). 
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5.3.4.2 Variables preparation  

All variables are filtered using smoothing moving medians with windows of 48 and 

8 periods for the forecasting scenarios CASE 1 and CASE 2 respectively. The 

series are then normalized as shown by equation 4.3. Finally the time relation 

between the input and output variables is transformed to expose the information in 

such a way that the present values of the input variables can predict future values of 

NIV.  In order to achieve this, the training and selection cases are formulated as 

follows: 

Let Ki, be an input case of the known (training) data set. It is defined as a vector: 

),,...,,( 1

21

+= ii

m

ii

i XVVVK
 

where: i: is a time index (e.g. i=1 corresponds to day one or the first EFA block) 

iV1 : is the value of the first input variable of the balancing mechanism in the 

corresponding time (i) 

1+iX : is the value of NIV (output) at time i+1 

In the training and selection data sets, all the components of the vectors (input and 

output) are known values.  

The unknown or test data set is composed of vectors UN defined as: 

),,...,,( 1

21

+= NN

m

NN

N XVVVU
 

where: N: is a time index  

NV1 : corresponds to the value of the first input variable of the balancing 

mechanism in the corresponding time (N) 

1+NX : corresponds to the NIV (output) value at time N+1 

In the test data set, known values of the BM variables (input) allow us to compare 

forecasted values of NIV with the known values. 
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5.3.4.3 Cases Selection  

The analysed data correspond to the period from May 2001 to November 2002. 

For case 1 six different sub-cases have been studied. Each of them corresponds to a 

four weeks period of data. The training, selection and test data sets for each sub-

case are defined in table 5.5. 

Table 5.5 Definition of the training, selection and test data sets for case 1 

Forecasting Scenarios BM variables 

input Case 1.1 Case 1.2 Case 1.3 Case 1.4 Case 1.5 Case 1.6 

Forecasting 

NIV 

May-01 Selection      

Jun-01  Selection     

Jul-01   Selection    

Aug-01    Selection   

Sep-01     Selection  

Oct-01      Selection 

Feb-02 Training      

Mar-02 Training Training     

Apr-02 Training Training Training    

 

May-02 Test Training Training Training   Jun-02 

Jun-02  Test Training Training Training  Jul-02 

Jul-02   Test Training Training Training Aug-02 

Aug-02    Test Training Training Sep-02 

Sep-02     Test Training Oct-02 

Oct-02      Test Nov-02 

 

Case 2 consists of twelve different sub-cases, each of them corresponding to a 

week’s worth of data. The forecasted period correspond to twelve consecutive 

weeks (weeks 17 to 29 in 2002) divided in working and non-working days. The 

training, selection and test data sets were selected as follows: 

• Working days: The selection data set consists of the week preceding the test 

data. The training data set consists of the four-week period finishing two 

weeks prior to the test data set. 

• Non-working days: The selection data set consists of the non-working days 

of the previous week. The training data set correspond to a two week period 

finishing two weeks prior to the test data set.  
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5.3.5 Numerical results 

5.3.5.1 Case 1: One-Month forecast 

Table 5.4 shows the architectures and the performance of the five best networks for 

each sub-case. These “best” networks have been selected using a compromise 

criterion that balances the error in the selection data set and the diversity of the 

trained networks. This criterion will preserve networks with a range of 

architectures, complexity and performance trade-offs. In this way the group of best 

selected networks should try to keep diversity, not only when considering the 

network’s architecture but also difference sizes, and minimise the error 

performance. In this table the first column refers to the forecast solutions and the 

first row to the analyzed case. For each month the first column corresponds to the 

network architecture; the numbers following the network names indicate the 

number of units in the input, hidden and output layers. The second and third rows 

are the root mean squared error (RMSE) and the mean absolute error (MAE) in 

MW respectively. They are defined in equations 4.22 and 4.23. For each month, the 

optimal solution (with minimum errors) appears in bold.  

Table 5.6 Five best neural networks for each sub-case of case 1 

  JUNE  JULY 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN 14:92-93-2-1:1 1052.9 903.4  RBF 14:72-23-1:1 316.3 240.3 

For 2  RBF  14:80-23-1:1 778.5 650.6  GRNN 14:46-93-2-1:1 428.5 348.9 

For 3  LINEAR 14:46-1:1 1127.3 839.1  LINEAR 14:46-1:1 863.2 709.2 

For 4  MLP 14:72-5-1:1 679.8 556.6  MLP 12:80-4-1:1 394.6 314.0 

For 5  MLP  14:36-5-1:1 1005.8 847.6  MLP 14:36-5-1:1 423.0 340.3 
         

  AUGUST  SEPTEMBER 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN 14:92-93-2-1:1 1052.9 903.4  RBF 14:72-23-1:1 316.3 240.3 

For 2  RBF  14:80-23-1:1 778.5 650.6  GRNN 14:46-93-2-1:1 428.5 348.9 

For 3  LINEAR 14:46-1:1 1127.3 839.1  LINEAR 14:46-1:1 863.2 709.2 

For 4  MLP 14:72-5-1:1 679.8 556.6  MLP 12:80-4-1:1 394.6 314.0 

For 5  MLP  14:36-5-1:1 1005.8 847.6  MLP 14:36-5-1:1 423.0 340.3 
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  OCTOBER  NOVEMBER 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN 14:92-93-2-1:1 1052.9 903.4  RBF 14:72-23-1:1 316.3 240.3 

For 2  RBF  14:80-23-1:1 778.5 650.6  GRNN 14:46-93-2-1:1 428.5 348.9 

For 3  LINEAR 14:46-1:1 1127.3 839.1  LINEAR 14:46-1:1 863.2 709.2 

For 4  MLP 14:72-5-1:1 679.8 556.6  MLP 12:80-4-1:1 394.6 314.0 

For 5  MLP  14:36-5-1:1 1005.8 847.6  MLP 14:36-5-1:1 423.0 340.3 
 

These results show that the optimum network architectures are multilayer 

perceptron and radial basis function. Linear networks perform badly in all cases. 

Figure 5.21 shows the actual values of NIV in MW, and the forecasts produced by 

each of the networks described in Table 5.6. 
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Figure 5.21 Actual and forecasted values of NIV for the month-ahead forecasts using the five best 

networks 

 

5.3.5.2 Case 2: One-week forecast 

Tables 5.7 and 5.8 show, respectively for working and non working days, the 

architectures of the five best networks for each sub-case and their corresponding 

errors. For each week, similarly to the monthly forecast, the first column 

corresponds to the network architecture; the numbers following the network names 

indicate the number of units in the input, hidden and output layers. The second and 

third rows are the root mean squared error (RMSE) and the mean absolute error 

(MAE) (in MW) respectively. The optimum solution appears in bold. 

 

Table 5.7 Five best neural networks for each sub-case of case 2 (working days) 

  WEEK 1  WEEK 2 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN 15:64-79-2-1:1 612.9 507.3  RBF  15:78-14-1:1 2326.5 2008.7 

For 2  RBF  15:43-14-1:1 755.5 599.1  GRNN  15:88-10-2-1:1 1526.3 1130.9 

For 3  RBF  15:43-28-1:1 679.0 558.0  GRNN  15:43-12-2-1:1 1494.2 1112.5 

For 4  MLP  15:43-4-1:1 737.6 570.0  MLP  15:90-2-1:1 1293.1 971.1 

For 5  MLP 15:43-14-9-1:1 739.5 595.3  MLP  15:25-4-1:1 1562.0 1281.8 
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  WEEK 3  WEEK 4 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN  15:64-96-2-1:1 986.8 820.9  GRNN  15:56-12-2-1:1 1156.2 985.2 

For 2  RBF  15:41-7-1:1 1226.2 1035.2  GRNN  15:32-10-2-1:1 1159.5 983.4 

For 3  RBF  15:41-14-1:1 663.3 481.0  RBF  15:78-28-1:1 992.2 857.3 

For 4  MLP  15:90-2-1:1 1473.1 1211.3  MLP  15:34-14-10-1:1 1019.4 898.8 

For 5  MLP  15:32-3-1:1 2098.0 1612.6  MLP 15:26-14-7-1:1 766.6 648.1 
         

  WEEK 5  WEEK 6 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN  15:97-12-2-1:1 944.0 778.3  GRNN  15:64-81-2-1:1 945.1 779.8 

For 2  RBF  15:86-3-1:1 435.6 338.7  RBF  15:43-14-1:1 706.1 581.2 

For 3  RBF  15:86-7-1:1 586.0 465.0  RBF  15:43-18-1:1 844.7 750.7 

For 4  MLP  15:162-9-1:1 671.3 506.1  MLP  15:44-14-10-1:1 535.2 440.1 

For 5  MLP  15:90-3-1:1 579.8 477.7  MLP  15:18-5-1:1 795.3 697.4 

         
  WEEK 7  WEEK 8 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  RBF  15:43-28-1:1 1288.9 1160.6  GRNN  15:88-20-2-1:1 1001.9 796.8 

For 2  GRNN  15:46-12-2-1:1 1072.5 825.6  RBF  15:43-7-1:1 534.8 412.7 

For 3  GRNN  15:43-10-2-1:1 1072.3 824.5  RBF  15:43-3-1:1 529.9 419.0 

For 4  MLP  15:43-4-1:1 815.0 648.4  MLP  15:43-6-1:1 464.2 382.3 

For 5  MLP  15:43-14-4-1:1 671.2 527.4  MLP  15:43-14-1:1 545.6 461.9 
         

  WEEK 9  WEEK 10 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN  15:64-10-2-1:1 595.0 487.3  GRNN  15:28-10-2-1:1 514.9 415.6 

For 2  RBF  15:43-7-1:1 450.6 370.3  RBF  15:32-28-1:1 642.9 554.9 

For 3  RBF  15:43-3-1:1 457.0 376.4  RBF  15:43-43-1:1 597.6 513.9 

For 4  MLP  15:32-14-1:1 369.9 314.8  MLP  15:42-1-1:1 607.4 477.3 

For 5  MLP  15:32-11-5-1:1 358.9 302.2  MLP  15:43-14-3-1:1 584.5 453.5 
         

  WEEK 11  WEEK 12 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN  15:28-20-2-1:1 565.1 445.8  GRNN  15:56-20-2-1:1 646.1 442.6 

For 2  GRNN  15:64-12-2-1:1 551.5 438.5  RBF  15:44-7-1:1 633.3 418.8 

For 3  RBF  15:39-28-1:1 1056.6 786.9  RBF  15:44-3-1:1 704.8 629.7 

For 4  MLP  15:90-6-1:1 381.2 310.7  MLP  15:62-10-5-1:1 662.0 478.3 

For 5  MLP  15:18-13-11-1:1 536.5 437.7  MLP  15:18-8-1:1 656.4 473.7 
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Table 5.8 Five best neural networks for each sub-case of case 2 (non-working days) 

  WEEK 1  WEEK 2 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  RBF  15:62-14-1:1 201.0 249.9  MLP  15:62-14-6-1:1 627.3 820.7 

For 2  RBF  15:53-9-1:1 583.3 806.2  GRNN 15:38-24-2-1:1 671.9 894.8 

For 3  RBF  15:71-15-1:1 344.7 432.2  Linear  15:20-1:1 805.8 1046.2 

For 4  RBF  15:71-14-1:1 214.6 273.5  MLP  15:68-14-3-1:1 612.7 782.3 

For 5  RBF  15:71-16-1:1 345.3 471.1  MLP  15:35-13-2-1:1 786.0 948.2 
         

  WEEK 3  WEEK 4 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  RBF  15:44-4-1:1 4163.8 6309.3  GRNN 15:12-24-2-1:1 321.3 403.8 

For 2  RBF  15:44-9-1:1 3080.3 4523.3  RBF  15:71-2-1:1 445.5 533.3 

For 3  GRNN  15:80-24-2-1:1 738.6 997.9  RBF  15:71-4-1:1 602.9 733.1 

For 4  MLP  15:71-9-1:1 1568.0 1998.4  MLP  15:19-1-1:1 241.8 295.8 

For 5  MLP  15:9-1-1:1 256.9 284.8  MLP  15:9-8-1-1:1 233.9 308.3 
         

  WEEK 5  WEEK 6 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN  15:207-24-2-1:1 428.1 598.0  GRNN 15:138-24-2-1:1 517.7 639.5 

For 2  RBF  15:207-2-1:1 296.1 375.1  RBF  15:207-4-1:1 548.5 713.5 

For 3  RBF  15:207-4-1:1 292.6 373.8  RBF  15:207-9-1:1 549.8 706.5 

For 4  MLP  15:144-4-1:1 242.2 306.4  MLP  15:36-2-1:1 307.3 406.3 

For 5  MLP  15:108-7-5-1:1 269.9 323.2  MLP  15:153-10-4-1:1 418.5 509.2 

         
  WEEK 7  WEEK 8 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN  15:40-24-2-1:1 394.5 442.4  RBF  15:44-4-1:1 996.9 947.5 

For 2  RBF  15:71-9-1:1 320.3 403.0  GRNN  15:20-24-2-1:1 531.7 528.7 

For 3  RBF  15:71-14-1:1 433.8 555.9  RBF  15:44-9-1:1 533.1 555.9 

For 4  MLP  15:18-4-1:1 248.1 316.5  MLP  15:19-2-1:1 465.9 458.5 

For 5  MLP  15:53-13-3-1:1 465.6 618.4  MLP  15:17-3-1:1 564.7 377.7 
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  WEEK 9  WEEK 10 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN 15:40-24-2-1:1 396.1 556.6  GRNN 15:23-24-2-1:1 398.7 479.3 

For 2  GRNN  15:20-24-2-1:1 259.6 369.4  RBF  15:89-2-1:1 359.5 484.8 

For 3  RBF  15:80-1-1:1 291.0 422.2  RBF  15:89-1-1:1 261.3 384.8 

For 4  MLP  15:27-5-1:1 224.1 297.6  MLP  15:27-4-1:1 228.3 301.5 

For 5  MLP  15:19-1-1:1 456.1 502.5  MLP  15:80-15-10-1:1 297.2 354.5 
         

  WEEK 11  WEEK 12 

  Error Error 

  
Network design 

RMSE MAE 
 Network design 

RMSE MAE 

For 1  GRNN  15:27-24-2-1:1 159.7 218.3  RBF  15:18-1-1:1 278.8 400.3 

For 2  RBF  15:71-4-1:1 603.0 801.1  GRNN  15:18-24-2-1:1 306.5 423.8 

For 3  RBF  15:71-5-1:1 559.9 781.6  GRNN 15:40-24-2-1:1 327.5 483.8 

For 4  MLP  15:72-8-1:1 202.9 265.5  MLP  11:44-14-3-1:1 452.1 672.6 

For 5  MLP  15:15-2-1:1 232.9 285.6  MLP  14:19-4-1:1 337.1 502.6 

 

Tables 5.7 and 5.8 show that, for forecasts over a one-week period, the multilayer 

perceptron is the network architecture that provides optimum solutions for most of 

the analyzed cases and for both working and non working days. 

Table 5.9 shows the minimum errors for working and non-working days separately 

and a weighted average for the weekly error. This table shows that there is a big 

difference between the forecasting accuracy for working and non-working days. 

Forecasts for non-working days are more accurate than for working day. Possible 

reasons for this difference include: 

• The number of cases considered: for working days the forecast is based on 

30 cases while for non-working days it is based on 12 cases only. 

• The difference in input data: NIV is less volatile for non-working days than 

it is for working days. The standard deviation of NIV for working days is 

835.47 MW while it is only 721.11 MW for non-working days. 
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Table 5.9: Minimum error measures for case 2 (weekly forecasting) (in MW) 

WORKING  NON-WORKING  TOTAL 

RMSE MAE  RMSE MAE  RMSE MAE 

Week 1 May 612.9 507.3  201.0 249.9  495.1 433.7 

Week 2 June 1293.1 971.1  612.7 782.3  1098.5 917.1 

Week 3 June 658.9 481.0  256.9 284.8  544.0 424.9 

Week 4 June 765.0 648.1  233.9 295.8  613.1 547.4 

Week 5 June 435.6 338.7  242.2 306.4  380.3 329.4 

Week 6 July 535.2 440.1  307.3 406.3  470.0 430.5 

Week 7 July 671.2 527.4  248.1 316.5  550.1 467.1 

Week 8 July 464.2 382.3  465.9 377.7  464.7 380.9 

Week 9 July 358.9 302.2  223.3 297.6  320.1 300.9 

Week 10 August 514.9 415.6  228.3 301.5  432.9 383.0 

Week 11 August 381.2 310.7  159.7 218.3  317.9 284.3 

Week 12 August 563.1 379.9  278.8 400.3  481.8 385.7 

Average 604.5 475.4  288.2 353.1  514.0 440.4 

 

5.3.6 Model assessment 

5.3.6.1 Model robustness 

This analysis is intended to check the robustness of the presented methodology to 

changes in the input variables conditions. More specifically it focuses on the effect 

that linearly dependent variables have over the final forecast. For this purpose two 

different sets of input variables have been created:  

CASE A: Considering all the market variables as defined in section 5.3.4.1 except 

for the Balancing Mechanism Imbalance Volume that have been decomposed in 

Accepted Bid Volumes, the Accepted Offer Volumes and the System Operator 

Trades. 

CASE B: Considering all market variables as defined in section 5.3.4.1.  

The analysis is based on the monthly forecast conditions: four week forecast cases 

with one median value forecasted for each day. Only the optimum networks 

architectures will be considered, according to the results obtained in the first 

approach to monthly forecast. Table 5.10 shows the architectures considered for 

each of the analysed months:  
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Table 5.10 Optimal network architectures for each month 

June Multilayer 

Perceptron 

July Radial Basis 

Function 

August Multilayer 

Perceptron 

September Radial Basis 

Function 

October Multilayer 

Perceptron 

November Radial Basis 

Function 

Table 5.11 shows the errors for the optimum solutions in each of the analysed cases 

Table 5.11 Error measurements for cases A and B (monthly forecast) (in MW) 

JUNE JULY 

For 1 For 2 For 3 For 4 For 5 For 1 For 2 For 3 For 4 For 5 

RMSE 971.7 783.9 598.7 847.3 943.8 474.8 629.7 934.1 448.5 940.6 
Case A 

MAE 804.7 636.9 472.9 700.6 833.1 294.3 471.0 704.8 377.5 677.2 

RMSE 1103.0 822.9 1338.1 907.5 862.8 373.8 496.7 295.4 458.7 344.6 
Case B 

MAE 919.6 639.5 977.2 804.4 745.4 296.7 423.4 237.2 378.7 274.8 

AUGUST SEPTEMBER 

For 1 For 2 For 3 For 4 For 5 For 1 For 2 For 3 For 4 For 5 

RMSE 425.4 443.7 368.4 376.1 348.2 428.1 423.8 431.0 430.7 433.7 
Case A 

MAE 343.9 350.4 308.6 311.9 288.2 375.5 371.6 379.8 380.2 382.6 

RMSE 397.0 365.9 412.3 397.3 373.4 514.1 454.2 613.0 425.9 383.3 
Case B 

MAE 335.5 304.1 329.6 334.2 300.9 445.2 403.9 543.0 364.3 299.1 

OCTOBER NOVEMBER 

For 1 For 2 For 3 For 4 For 5 For 1 For 2 For 3 For 4 For 5 

RMSE 741.3 696.2 734.5 806.5 663.9 475.0 476.6 476.0 474.9 481.9 
Case A 

MAE 655.4 598.2 576.5 640.7 574.1 360.2 366.6 363.2 361.8 367.0 

RMSE 745.4 670.6 864.4 862.1 832.4 434.6 461.6 461.1 458.2 458.2 
Case B 

MAE 595.1 571.0 735.7 721.5 700.0 313.3 368.8 364.5 362.2 362.2 

 

These results show that Case A provides optimum solution in all the MLP networks 

and that Case B provides an optimum solution in all the RBF networks. 

Considering the average error for all the forecasted solutions for each case: 

Average error Case A:  477.5 MW 

Average error Case B:  481.8 MW 

        Difference:     4.3 MW 

Considering the average of the minimum errors for each month for each case: 
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Average Min. error Case A:  393 MW 

Average Min. error Case B:  394 MW 

               Difference:      1 MW 

Therefore, the results from this analysis show not only that NN methodology is 

robust, but also that each network architecture performs optimally for different 

characteristics of input variables. 

 

5.3.6.2 Sensitivity analysis 

As part of the assessment process, a sensitivity analysis was performed to evaluate 

the relative importance of the input variables on the accuracy of the forecast. This 

evaluation was based on the effect that omitting a predictor from the development 

of the neural network has on the accuracy of the forecast. Predictors were then 

ranked on the basis of the deterioration that their omission causes (Hunter et al., 

2000). In this way to define the sensitivity of a particular variable, X, the network is 

first run, using the test data set, considering all the input variables, the error 

(RMSE) is calculated. Then the network is run again using the same cases, but this 

time replacing the observed values of X with the missing value, and again the 

network error is calculated. The ratio between the two obtained errors correspond to 

the deterioration of the model and therefore the importance of the input variable X. 

Sensitivities are calculated for all the input variables, and they are ranked in order. 

This process was repeated for six separate monthly forecasts and for twelve 

separate weekly forecasts for working days. Tables 5.12 and 5.13 show, for the 

monthly and weekly cases respectively, the relative importance of each predictor 

based on this sample. It also shows the range of the rankings (1 for most important, 

15 for least important) and a raw cumulative score. These results suggest that some 

variables are better predictors than others but that the relative importance varies 

from month to month or week to week. In no case does the suppression of a 

predictor improves the accuracy of the forecast. 
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Table 5.12: Sensitivity Analysis for monthly forecast  

Predictor Overall rank Min rank Max rank Cumulative rank 

BMIV 1 2 11 36 

GCMELOB 2 2 12 37 

REM 3 3 12 39 

SBV 4 4 10 39 

∆MEL 5 4 9 40 

SOV 6 2 14 43 

GCIV 7 1 13 46 

DFE 8 4 14 48 

CPN 9 1 13 49 

DF 10 1 12 52 

SSP 11 1 14 53 

Day Type 12 1 14 64 

SBP 13 6 14 66 

MINAOAB 14 9 14 69 

 

Table 5.13: Sensitivity Analysis for weekly forecast (working days) 

Predictor Overall rank Min rank Max rank Cumulative rank 

SBP 1 1 12 67 

MINAOAB 2 1 14 74 

DF 3 2 12 78 

CPN 4 1 13 86 

EFA Block 5 1 14 90 

GCMELOB 6 1 14 90 

SSP 7 1 15 93 

REM 8 4 14 98 

GCIV 9 3 15 101 

SOV 10 1 15 105 

BIMV 11 5 13 106 

DFE 12 4 15 111 

SBV  13 1 14 112 

Day Type 14 1 15 113 

∆MEL 15 2 15 116 
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5.3.7 Comparison with linear methods  

Multi-dimensional forecasting using neural networks gives a better accuracy than 

one-dimensional linear methods. Neural networks outperform methods based on 

linear regression even when the time horizon is larger than the one considered in 

the one-dimensional forecasting.  

Table 5.14 compares the monthly forecast obtained with neural networks and with a 

production-grade program based on linear regression methods. Table 5.15 presents 

a similar comparison for weekly forecast grouped monthly and Table 5.16 

summarises the results for working and non-working days in the weekly scenario.  

In all the cases neural networks outperform methods based on linear regression 

even when the time horizon is larger than the one considered in the one-

dimensional forecasting. 

Table 5.14 Error comparison for monthly forecast 
 

LINEAR  METHOD NN FORECAST ERROR REDUCTION 
 

RMSE (MW) MAE (MW) RMSE (MW) MAE (MW) RMSE (MW) MAE (MW) 

June 738 577.0 598 472.9 139 104.1 

July 666 540.0 295 237.2 370 302.8 

August 555 439.0 348 288.2 206 150.8 

September 685 541.0 383 299.1 301 241.9 

October 971 787.0 663 574.1 307 213.9 

November 867 690.0 434 313.3 432 376.7 

 

Table 5.15 Error comparison for weekly forecast 

LINEAR  METHOD NN FORECAST ERROR REDUCTION 
 

RMSE (MW) MAE (MW) RMSE (MW) MAE (MW) RMSE (MW) MAE (MW) 

June 738.0 577.0 658.96 554.70 79.0 22.3 

July 666.0 540.0 451.25 394.84 214.8 145.2 

August 555.0 439.0 410.86 351.01 144.1 88.0 

 

Table 5.16 Error comparison for working and non working days 

LINEAR  METHOD NN FORECAST ERROR REDUCTION 
 

RMSE (MW) MAE (MW) RMSE (MW) MAE (MW) RMSE (MW) MAE (MW) 

Working 834 654 698.3 552 135 102 

Non-working 1073 848 648.52 537 424 311 
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5.3.8 Model implementation 

The presented analyses demonstrate that NN is a feasible technique for NIV 

forecasting. However it is important to remark that there is not a unique network 

that can be considered the solution for all the analysed conditions. A different 

network must be created for each forecasting scenario. The basic steps involved in 

the development of monthly/weekly NNs are: 

• Data transformation. This involves the transformation of the data according to 

the forecasting conditions (i.e. smoothing process in EFA blocks or daily 

resolution). In this case moving medians have been used but other possibilities 

include moving averages or simple exponential (see section 4.2.2).  

• Cases selection. The training, selection and unseen data set are then created. 

The conditions presented in this analysis can be used as a guideline but further 

adjustments can be done when more data becomes available. The more updated 

information the network can use for learning, the better the forecast becomes. 

However it is important to avoid overtraining since that would lead to an 

inflexible network and inaccurate results.  

• Variables selection. The analysis presented shows the effect of different input 

variables in different networks architectures. However future market or 

forecasting conditions may require the introduction or the exclusion of some of 

the analysed variables. 

• Initial training approach. This first simulation will indicate the most appropriate 

architecture for the analysed case. It should  consider: 

o All networks architectures 

o As a training algorithm it is recommended to use the back-propagation 

algorithm since it provides a quick solution and handles well both long and 

small data sets. Second order algorithms can easily prone to stick to local 

minima in the early training stages. 

o Automatic selection of subset variables. This allows the creation of a subset 

of input variables according to the sensitivity analysis included in the 

training process 
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o The optimum networks are obtained with a compromised criterion between 

lowest error in the selection data sets and networks diversity 

o Analysis of the networks performance and selection of the best network 

architecture. The error measurements will be based on the selection data set. 

• Refining network training process considering: 

o Best (and second best if appropriate) network architecture 

o Optimum networks are retained based on the minimum error of the selection 

data set 

o Network reconfiguration. On each case if under-learning occurs more 

neurons are added to the hidden layers or even a complete hidden layer. 

Whereas, if over learning occurs neurons or even layers should be removed 

o All variables are included 

o Although back-propagation can be used as a fine tuning algorithm other 

second order algorithms, such us the conjugate gradient descent and quasi-

Newton algorithms, can also be considered.  

• Results analysis. Based on both the networks performance and the sensitivity 

analysis of the input variables. As a result the optimum network(s) design 

(number of neurons, thresholds, weights) and input variables are selected. Input 

unseen data set into the optimum network to obtain the final forecast. 

Due to the complexity of the analysed variable and the constant artificial changes 

imposed by market rules and modifications, the long term forecast the obtained 

results may be revised according to real-time values. This must be done 

independently of the training and selection data sets performance. 
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5.3.9 Conclusions 

While the neural networks that have been developed are able to predict NIV for 

both weekly and monthly horizons, each forecasting situation requires the creation 

of a new network. No single network architecture provides optimal results for all 

market conditions. 

Comparing the results obtained for cases 1 and 2 shows that increasing the 

frequency of observations does not improve the accuracy of the results. A more 

accurate forecast is obtained on a monthly basis (average MAE: 363 MW) than on a 

weekly basis (average MAE: 440 MW). This can be explained by the nature of the 

data: a daily aggregation of NIV is less scattered than an aggregation in six blocks 

of four hours per day (i.e. aggregated in so-called EFA blocks). 

The number of cases and their selection for the required data sets can be modified 

as more data becomes available. Different forecasting scenarios may require 

different number of cases to be included in the data sets.  The more updated 

information the network can use for learning, the better the forecast becomes. 

However it is important to avoid overtraining since that would lead to an inflexible 

network and erroneous results.  

Multidimensional forecasting using neural networks gives a better accuracy than 

the one-dimensional method described in chapter 4. Neural networks outperform 

methods based on linear regression even when the time horizon is larger than the 

one considered in the one-dimensional forecasting. 
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Analysis of unusual market conditions 

6.1 Introduction 

Any extreme natural event such as floods, earthquakes or hurricanes has an intense 

impact on the affected area’s economy. Historically the analysis of extreme events 

has focused on the analysis of the frequency of floods. The purpose of these 

analyses is the estimation of the so called T-year flood discharge, which is the 

discharge once exceeded on average in a period of T-years. In recent years extreme 

events have also been of interest in areas such as actuarial and financial analysis.  In 

both cases, extreme events are linked by the analysis of the risk that their 

consequences represent. In the first case, the risk associated with very large claims 

associated with a catastrophic event must be considered to calculate the appropriate 

premium. Risk analysis in finance is driven by the parameters Value-at-Risk and 

CHAPTER 6 



 160 

 

Capital-at-Risk that deal with the upper tail of loss and gain distributions. Further 

areas of analysis include corrosion analysis, telecommucations, materials analysis, 

ecology and the longevity of human life.   

In electricity markets, extreme events are defined as unscheduled or abnormal 

market conditions. Due to the complexity of market mechanisms and the relevance 

of risk exposure for the financial activities related with market behaviour, it is more 

than within reason to evaluate the impact that abnormal events may have on the 

different market variables. Despite its relevance, the analysis of unusual conditions 

research is still an unexplored area in power systems. The existing approaches 

follow two main threads; the first one is focused of the effects of extreme weather 

conditions over the system assets. Don Koval (Don Koval and Shen, 1999) 

considers the problem of assessing the impact that extreme weather conditions have 

on outages in the Canadian transmission. The second thread is the analysis of 

electricity price spikes. Bystrom (Bystrom, 2003) applies extreme values theory to 

investigate the tails of price change distributions. Guan (Guan et al., 2001), 

provides useful information about the effect of market power and strategic bidding 

on the Californian price spikes. A broader theoretical perspective to the price spikes 

is given by Hughes (Hughes and Parece, 2002) who discusses the effect that 

capacity constraints, demand factors, and market organizations have on the 

occurrence of extreme prices.  

This analysis also makes an important contribution to the existing methodology. 

The classical techniques applied when modelling extreme events are complemented 

with other analytical methods that were not specifically designed for this purpose. 

Moreover, quantitative exploratory analyses are combined with time-based 

techniques to cover the different aspects involved in the occurrence of an unusual 

event.  Another innovative aspect is the multidimensional approach that has been 

adopted. This analysis cover the fact that several events can disturb the market and 

some of them could coexist in time. Likewise the market reaction is not measured 

by a unique index. Instead, the effect of an event is evaluated over several passive 

variables.  
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The organisation of this chapter is as follows. First the objectives and structure of 

the analysis are presented. Then the data and case selection criteria are discussed. 

The next part describes the initial quantitative approach. The characterisation of 

unusual events and the consequences analysis follow. Finally conclusions are 

drawn from this analysis of unusual events. 

6.2 Objectives and analysis structure 

The many studies developed to evaluate the impact of unusual events provide 

useful information in some specific aspects such as event detection, distribution 

modelling, and long term market reaction (Lui, 2003, Palutikof et al.). However, 

they fail to provide a global perspective on unusual events, their effects and the 

dynamics of both the event and it consequences. The analysis carried out in this 

chapter comprises both the study and description of unusual events as well as their 

consequences. The analysis of the trigger events aims to detect them and 

characterise them. The first step is to identify what are the possible conditions that 

disturb the market (variables and cases). Then it is necessary to characterise them. 

This characterisation includes: 

• Modelling their likelihood of occurrence by obtaining the parameters of 

their probability distribution 

• Analysing the duration of the events 

• Calculating the return period, i.e. the time between events. The possibility 

that different events might happen simultaneously is also considered 

When analysing the consequences of unusual conditions, the specific aims are to 

analyse the market reaction after the events happen and to analyse incremental 

changes over time in the market under these unusual conditions. For each this of 

these objectives a double perspective is considered: 

• Global deviation of variables: evaluate the differences between normal and 

unusual conditions 

• Deviation from moving averages: calculate the relative change of the 

variables over their trends  
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The market reaction is also separately monitored for the case of a unique event and, 

when appropriate, for the case of multiple coexistent events. 

Figure 6.1 summarises this strategy. 

 

Figure 6.1 The analysis of unusual events 

 

As a general objective this analysis does not only identify and analyse the 

occurrence of unusual events but, by doing so, it also checks the robustness of the 

market design, and the market mechanisms affected by a disturbance. Moreover the 

analysis of unusual events highlights any possible difference between theoretical 

and practical market responses. 

6.3 Data description 

The variables included in this analysis can be classified as trigger (active or input) 

variables and passive (output) variables. Within the first group trigger variables can 

be further divided into continuous and instant, as well as plain and ratio variables.  

The active variables define the occurrence of an event. They refer mainly to 

demand forecast errors, sudden big demand variations, available capacity changes 

(continuous variables) and generation loss data (instant variable). The passive 

variables refer to balancing mechanism variables and imbalance prices.   

Other time-related variables are also included, such as month, day (Sunday, 

Monday…) and day period (1 to 48). The time resolution of the data is the half-
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hour market period and the analysis stretches from 1
 
April 2001 until 30 November 

2002.   

Tables 6.1 and 6.2 provide respectively a full description of the trigger and passive 

variables considered in this analysis. In each table, the first column gives the 

variable name followed by its acronym, when appropriate, the second the variable 

definition and, when appropriate, its mathematical equation is included in the third 

column. 

Table 6.1 Trigger Variables description 

NAME DEFINITION  EQUATION 

Demand forecast 

error (DFE) 

The difference between the demand 

forecast and the demand (in MW) 
DFE DF Demand= −  

MEL day change 
The difference between MEL day ahead 

(DAMEL) and GCMELOB (in MW) 
day change =MEL

DAMEL GCMELOB= −
 

Remaining Effects 

(REM) 

The composite of any post gate closure 

effect not included in the DFE (in MW) 
REM PGCE DFE= −  

GCIV

DFE
 

Ratio between the demand forecast 

error and the gate closure  imbalance 

volume 

 

Demand

DFE
 

Ratio between the demand forecast 

error and the demand 
 

Demand

MEL

∆

∆
 Incremental ratio of MEL and demand 

1

1

t t

t t

MEL MEL

Demand Deamand

−

−

−

−
 

Plant loss 

The aggregated value of total loss of 

generated output identified by a 

redeclaration of MEL to zero (in MW) 

 

 

Table 6.2 Passive Variables description 

NAME DEFINITION  EQUATION 

Demand forecast 
the estimate of the demand for 

electricity (MW)  
 

Demand 
The actual value of the system load for 

each period (MW) 
 

Submitted Offer 

Volume (SOV) 

The sum of all the available offers 

submitted by all the BM units for a 

certain period (in MW) 

 

Submitted Bid 

Volume (SOV) 
The sum of all the available bids 

submitted by all the BM units for a 
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NAME DEFINITION  EQUATION 

certain period (in MW) 

Accepted Offer 

Volumes (AOV) 

The aggregated volume of offers 

accepted by the System Operator (SO) 

(MW)  

 

Accepted Bid 

Volumes (ABV) 

The aggregated volume of bids accepted 

by the System Operator (SO) (MW) 
 

Accepted Offer 

Cashflows (AOC) 

The total cash-flow resulting from all 

the offer acceptances (in £MWh) 
 

Accepted Bid 

Cashflows (ABC) 

The total cash-flow resulting from all 

the bids acceptances (in £MWh)  
 

Capped Physical 

Notification (CPN) 

The aggregation for all the units of the 

minimum between the final physical 

notifications (FPN) and the maximum 

export limit (MEL) submitted in each 

period (in MW) 

∑= ),( FPNMELMinCPN  

Gate Closure 

Imbalance Volume 

(GCIV) 

The difference between the demand 

forecast and the capped physical 

notification (in MW) 
CPNDFGCIV −=  

Net imbalance 

volume (NIV) 

The sun of all offer acceptances, bid 

acceptances, French interconnector 

trades and SO forward trades (n MW) 
trades trades

NIV AOV ABV

French NGC

= + +

+ +

∑ ∑
∑ ∑

 

System Buy Price 

(SBP) 

The weighted average of the accepted 

offers (in £/MW) 
 

System Sell Price 

(SSP) 

The weighted average of the accepted 

bids (in £/MW) 
 

UKPX 
The UK Power Exchange reference 

price (in £/MW) 
 

 

6.4 Selection of unusual events 

6.4.1 Selection criteria  

One of the first steps to analyse unusual events is to identify how they manifest 

themselves in the data. This means that a criteria must be developed to select when 

an event stops being usual.  

Classic extreme value theory considers two methodologies to detect and select the 

extreme (unusual) values in the data. These are the block maxima/minima and the 

peaks-over-threshold (POT) methods. 
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6.4.1.1 The block maxima/minima  

There is an extent theory behind the block maxima/minima method and its 

extension for the generalised method for fitting the Generalised Extreme Value 

distribution (GEV). This widely exceeds the scope of our analysis and only a brief 

description of its basis is included in this chapter but the interested reader can refer 

to (Embrechts et al., 1997, Reiss and Thomas, 2001) for a detailed description of 

the methodology.  

The main idea is to divide the data into n consecutive blocks of length s. 
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These blocks are considered to be independently identically distributed (iid), but 

within each vector the various components are likely to be dependent. The length of 

the blocks should be chosen according to the conditions. From each of these blocks 

the maximum and minimum values are filtered to finally obtain two series of length 

n containing the maximum and minimum values.  

( ) ( )
1

( ) ( )
1

max( , , )

min( , , )

i i
i s
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X X X
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…

…
  ni ,,1…=  

Figure 6.2 describes block maxima criteria for the creation of the maxima series.   
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Figure 6.2 The block maxima method 

 

The main advantage of this approach is that it is simple and easy to implement. 

However it has also an important drawback since there is a high risk of loosing 

unusual observations within the same block that can contribute to the understanding 

of unusual conditions. 

6.4.1.2 The Peak-Over-Threshold Method 

This is an alternative to the block maxima method for selecting unusual conditions 

(Bystrom, 2003, Embrechts et al., 1997, Reiss and Thomas, 2001). In this case, 

rather than analysing an isolated maximum value, a threshold u is set. All the values 

exceeding the threshold in the series are considered unusual observations (figure 

6.3). Thus the number of unusual conditions is determined by the magnitude of the 

threshold u. 

 

Figure 6.3 Peaks-Over-Threshold selection criteria 
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The selection of the threshold is the critical step of the analysis. On the one hand, 

the threshold must be high enough to select only truly unusual events, while on the 

other hand it should be low enough to ensure that enough data are selected. 

Threshold selection does not have a unique solution. Its determination includes 

some trial and error as well as the application of common sense.  In our analysis, 

the compromise is found to set the minimum and maximum thresholds for each 

trigger variable to the values corresponding to its 5 and 95 percentiles (figure 6.4).  

 

 

Figure 6.4 Threshold selection criteria 

 

6.4.2 Application to trigger variables 

The previous section presented the existing methodologies for cases selection. 

However the characteristics of the data need to be taken into account in the 

selection of the unusual conditions: 

• Continuous plain variables: the POT criteria can be directly applied.  

• Non-continuous plain variable (plant loss): every occurrence is considered 

an event. 

• Ratio variables: the application of the POT criteria does not cover all the 

conditions of interest for this analysis. Each variable requires a specific 

analysis:  
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o 
GCIV

DFE
 : If 

GCIV

DFE
>0 with DFE >0 (DF>Demand) and GCIV>0 

(short market conditions), then the POT criteria can be applied to 

select unusual cases. 

If 
GCIV

DFE
 >0 with DFE <0 (Demand>DF) and GCIV<0 

(long market conditions). These cases do not represent any risk for 

the market operation. 

If 
GCIV

DFE
<0 with DFE<0 (Demand>DF) and GCIV >0 

(short market conditions). All these cases are included in the 

analysis. 

If 
GCIV

DFE
<0 with DFE >0 (DF>Demand) and GCIV <0 

(long market conditions). These cases mean a safe market condition 

operation and are not included in the analysis. 

o 
Demand

DFE
: Unusual cases are selected using the POT criteria 

o 
Demand

MEL

∆

∆
: If 

Demand

MEL

∆

∆
>0 then both rates of change follow the 

same trend and unusual cases can be selected using the POT criteria. 

         If 
Demand

MEL

∆

∆
< 0 with ∆MEL>0 and ∆Demand<0. 

These cases represent no risk for the market operation and are 

not included in the analysis. 

         If 
Demand

MEL

∆

∆
< 0 with ∆MEL<0 and ∆Demand>0. In 

these cases there is a decrease of the available capacity and 

an increase in the demand. All these cases are considered 

unusual conditions. 
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Table 6.3 presents a summary of the thresholds defining the unusual cases for all 

the trigger variables. 

Table 6.3 Unusual conditions thresholds 

VARIABLE LOWER THRESHOLD UPPER THRESHOLD 

DFE (MW) -644 750 

MEL Day Change  

(MW) 
-2146 836 

REM (MW) -1489 1574 

GCIV

DFE
 <0; when DFE<0 and GCIV >0 1.5 

Demand

DFE  -0.019 0.021 

Demand

MEL

∆

∆  <0;  when ∆MEL<0 and 

∆Demand>0 
3.486 

 

6.5 Quantitative analysis 

6.5.1 Objectives 

The aim of this study is to detect and filter non-meaningful variables and cases 

initially considered as unusual conditions. It also provides a base of information 

and a broad view of the behaviour of the market in the case of an event. 

6.5.2 Methodology 

The analysis is based on the observation of statistical indexes such as mean, 

standard deviation, maximum and minimum, and the time location of the event 

occurrences (month, day type and period).   

The study considers separately the occurrence of each event, and both trigger and 

passive variables are included.  

The global, initial and broad nature of the analysis does not make it possible to 

draw any definite conclusions about the variables reaction. However, as a filtering 

technique it can help us select meaningful events. 
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 6.5.3 Results and conclusions 

Table 6.4 presents the statistical indicators for each variable when all the cases are 

included. For the trigger variables the upper and lower thresholds are also included. 

In the following sections the same statistical indexes are calculated for the specific 

case as well as the indexes difference between events and general conditions. 

Tables for each case can be found in Appendix 1.  

The global nature of the data creates a further complication of measuring the 

indirect impacts since some local effects can be masked within the overall market 

reaction.  

Table 6.4 Descriptive statistics for all cases included. 

     THRESHOLDS 

VARIABLE MEAN STD.DEV. MIN MAX UPPER LOWER 

DFE (MW) 40.7 432.31 -2790 2585.0 -644 750 

MEL day change (MW) -420.8 998.32 -8252 4741.4 -2146 836 

REM (MW) 77.56 950.80 -16743 4912.0 -1489 1574 

DFE/Dem 0.001 0.01 -0.079 0.1 -0.019 0.021 

∆Mel/∆Demand 0.4 19.64 -1324 1240.2 <0* 3.848 

DFE/GCIV -0.9 116.30 -14125 2752.4 <0** 1.5 

DF (MW) 34192.0 6259.36 20242 53093.0   

DEMAND (MW) 34151.3 6234.47 20576 52889.0   

PGCE (MW) 118.3 688.13 -17169 3781.6   

∆Demand  (MW) 0.1 964.27 -2435 4320.0   

∆MEL  (MW) 0.1 790.63 -18968 11778.0   

SBP (£/MW) 34.5 71.91 0 5003.3   

SSP (£/MW) 9.6 7.97 -500 206.8   

AOV  (MW) 316.5 388.52 0 3033.3   

ABV (MW) -1089.9 699.07 -4864 0.0   

SOV  ( MW) 69166.1 10854 34335 130917   

SBV  (MW) -74106.9 10559 -160214 -40894   

AOC (£MWh) 7302.1 16554.29 -591 846374.9   

ABC (£MWh) -3696.4 5941.55 -34898 343691.7   

GCIV (MW) -891.7 927.17 -4538 16844.1   

NIV (MW) -1057.6 872.55 -4681 2643.6   

NGC TRADES (MW) -240.6 323.79 -2689 1009.1   

FRENCH TRADES 

(MW) 
-44.0 179.94 -1755 1116.8   
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     THRESHOLDS 

VARIABLE MEAN STD.DEV. MIN MAX UPPER LOWER 

CPN (MW) 35090.5 6340.98 15457 53656.1   

UKPX 13.3 8.66 1 134.5   

(*when ∆MEL<0 and ∆Demand>0, ** when DFE<0 and GCIV >0) 

It is important to notice that the comments given below do not try to explain the 

market reaction but rather to identify the conditions that require further study and  

those which are not worth to carry forward. Since only the statistical indexes for the 

averages and std. deviations are considered, there is no solid ground to make any 

further conclusions about the events characteristics or the market reaction  A 

detailed analysis for each case is presented in the following sections. 

DFE below the lower threshold 

In these conditions the demand is larger than its forecast. The market variables are 

considerably affected especially the offer acceptances that should compensate the 

deviation of the demand. The overall market length (NIV) is affected by an average 

decrease of 45%. However the market participants do not modify their patterns 

under these circumstances and at gate closure the market is longer than normal 

(GCIV 36% average increase). 

DFE above the higher threshold 

In these conditions the demand is lower than its forecast. As in the previous case 

the market is affected by these circumstances. There is an increase in the 

acceptance of bids and a consequent increase in the market length (NIV increases 

by 45% in absolute value from its average).   

MEL day change below the lower threshold 

These cases refer to a large increase in generation declaration from the day ahead to 

gate closure. The statistical indexes show no significant effect on the market 

conditions. However, the time occurrence of these values (figure 6.5) is highly 

concentrated on Monday (day 2) which indicates that the unusual values are not due 

to any physical event but rather to an information delay from the market 

participants to the system operator, from Sunday to Monday. These cases are, 

therefore, no longer considered for further analysis. 
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Figure 6.5 Time distribution of MEL day change ( below the lower threshold) occurrences 

 

MEL day change above the higher threshold 

These cases refer to the conditions where there is a large decrease in declared 

generation from the day ahead to gate closure. As in the previous case, there is no 

significant impact on the market. Figure 6.6 shows that these values are highly 

concentrated during the summer periods when plant commissioning is more 

frequent. These abnormal values can be treated as an information event, with no 

significant consequences on the market behaviour, rather than an indicator of a 

physical event. These cases are excluded from further analysis. 
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Figure 6.6 Time distribution of MEL day change (above the higher threshold) occurrences  

 

REM below the lower threshold 

These cases consider the conditions where there is a post gate closure event (not 

due to DFE) of large over-generation. These conditions alter the market variables 

normal values (bid/offer acceptances, CGIV and NIV) and are considered for 

further analysis. 

REM above the higher threshold 

These cases indicate a post gate closure event of large under-generation. Market 

variables, such as bids and offer acceptances and market volumes, are affected. A 

further analysis of such market conditions is presented below. 

Negative 
GCIV

DFE
 , with negative DFE and short market at gate closure 

Under these conditions the demand is larger than its forecast and the market is short 

at gate closure. Most of the market variables are highly affected by these 

conditions: acceptances of offers increase to 193% of its average value and the 

acceptances of bids decrease significantly. Market volumes and imbalance prices 

are also considerably affected and these conditions are clearly identified as 

significant events. 
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GCIV

DFE
 above the higher threshold 

These conditions can either refer to a positive DFE and short market conditions at 

gate closure (i.e. GCIV>0) or to a demand that exceeds its forecast (i.e. DFE<0) 

combined with long market conditions at gate closure (i.e. GCIV<0). The average 

values for DFE (126 MW) and GCIV (27.3MW) reveal that most of the cases refer 

to the first scenario. Since the error in the demand forecast is large and the declared 

generation covers the actual demand, the market behaviour does not reflect any 

significant change. Therefore these events are not analysed further. 

 

Demand

DFE  below the lower threshold 

This conditions refer to the cases when there is a large forecast error (the demand is 

greater that its forecast) relative to the demand value. This cases are directly related 

with large DFE, as shown in figure 6.7 over 80% of these cases are included in the 

DFE below the lower threshold. The market reaction is therefore similar to the one 

described for that scenario.  

Demand

DFE  above the higher threshold 

In this cases there is a large forecast error (demand forecast exceeds its actual 

value) relative to the demand value. As with the previous case, these cases are 

directly related to large DFE. As shown in figure 6.7, 82% of cases 
Demand

DFE  above 

the higher threshold correspond to cases with DFE above the higher threshold. The 

market reaction is therefore similar to the one described for large DFE errors.  

Both of these market conditions can be considered represented when looking at 

extreme values of DFE and the trigger variable 
Demand

DFE  is not carried forward for 

further analysis. 
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Figure 6.7 
Demand

DFE
  and DFE drill down analysis 

Negative
Demand

MEL

∆

∆ with negative increment of MEL and positive increment of 

demand 

These cases refer to the conditions where there is a significant decrease in the 

maximum declared capacity from one period to the next together with an increase 

in the demand. These market conditions can be problematic especially when the 

market is already short but under normal conditions they can just reflect a 

forecasting mistake on the participants’ side.  

Market variables are not affected by these conditions. A clear example is the effect 

that these conditions have over the market length, represented by NIV. Figure 6.8 

shows on the x-axis NIV’s values, on the left y-axis NIV’s probability distribution 

for normal (blue line), and these specific unusual (red line) conditions. On the right 

y-axis the green line shows the difference in probability between the normal and the 

unusual conditions. By observing this figure one can notice an increase in the 

probability of short market conditions. However, the highest probability increase is 

just 0.02 and corresponds to the smallest values of short market conditions.  

These market conditions are therefore not carried forward for further analysis. 
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Figure 6.8  NIV’s probability distribution for usual and unusual cases 

 

Demand

MEL

∆

∆  above the higher threshold 

In this context there is a large increase in the available capacity along with an 

increase in the demand.   However the declared capacity increase is larger than the 

increase in the demand. These conditions are more likely to happen on Mondays 

5:30 am (period 11) and they not have any significant impact on the market 

variables. These cases are thus not considered as unusual events worthy of further 

analysis.  

 

6.6 Characterization of unusual events 

6.6.1 Objectives 

In the previous section we have selected the meaningful variables and cases that 

trigger unusual market conditions. The next step, and the aim of this analysis, is to 

describe these unusual conditions using probability theory and statistical modelling. 

The scope of the analysis is therefore to determine the likelihood of these unusual 

events, their duration and the mean waiting time between specific events.  

LONG MARKET SHORT MARKET 
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6.6.2 Analysis of trigger variables under unusual conditions 

The main goal of this analysis is to find an independent probability distribution 

which is a good model for each trigger variable.  

Non-parametric robust techniques are applied to obtain a parametric model that 

provides the likelihood of occurrence for each event. Non-parametric techniques 

are used because they do not rely on a specific distributional assumption. They are 

robust because they perform well under different distribution consideration. 

The distributions considered are: normal, log-normal, exponential, gamma, beta, 

Weibull, log-normal, extreme value and Rayleigh. Table 6.5 briefly describes the 

main characteristics of each of these distributions. 

 

 

Table 6.5 Probability distributions 

NAME PROBABILITY DENSITY FUNCTION EXAMPLE 
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2

2

2

)(

2

1
)( σ

µ

σπ
⋅

−
−

⋅
=

x

exf  

Where: µ is the mean 

            σ is the standard deviation and shape 

parameter 

µ

σ

 

Log-Normal 







<

≥⋅
⋅⋅

=
⋅

−
−

0,0

0,
)(2

1
)(

22

2))(ln(

x

xe
x

xf

x

σ

µ

σπ
 

Where σ is the shape parameter 
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Where β is the shape parameter  
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NAME PROBABILITY DENSITY FUNCTION EXAMPLE 
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Where α is the scale parameter 

            β is the shape parameter 
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Where α and β are the shape parameters 
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Where γ is the location parameter 

            β is the shape parameter 

            η is the scale parameter 
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Where β is the shape parameter 
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The first step is to determine the location and shape parameters for each of the 

considered distributions. Non-parametric quantile (Q-Q) and probability (P-P) 

graphs are used for this purpose. A goodness-of-fit test is then applied to determine 

which of the distributions has the optimum fit. There is a wide range of goodness-

of-fit tests ((Embrechts et al., 1997, Palutikof et al., 2001). They can be based on a 

test statistic that determines the probability of the null hypothesis (i.e. that the 

population distribution of the data sample is the same as the hypothesized 
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distribution) like the chi-squared, the Anderson-Darling and the Kolmogorov-

Smirnov test; or they can be based on probability plots like the L-moment diagrams 

((Zafirakou-Koulouris et al., 1998). In our analysis the Kolmogorov-Smirnov test is 

used since it can be used for all probability distributions, and its performance does 

not depend on the sample size (it is an exact test). 

6.6.2.1 Quantile and probability plots 

Quantile-Quantile plots 

Quantile-quantile (Q-Q) plots are used to determine the location and scale 

parameters for a family of distributions, as well as to check for the fit of a 

theoretical distribution to the observed data. 

Given the set of data x1,..,xn, supposed these are governed by a distribution function 

, ( ) (( ) / )F x F xµ σ µ σ= −  where µ and σ are the location and shape parameters. Thus 

F=F0,1 is the standardised form of this distribution. 

To produce a Q-Q plot the N observed data points are sorted into ascending order 

(x1 ≤ x2 ≤ ... ≤ xn). These observed values, which correspond to 1ˆ ( )nF q− , are plotted 

in one axis of the graph against 1( )nF q− : 

( 1( )n iF q− , 1ˆ ( )n iF q− ) =( 1( )n iF q− , :i nx ),  for i= 1,..n ;  with /( 1)iq i n= +  

The Q-Q plot is presented as a scatterplot with a linear interpolation, the intercept 

and slope of which provide the location and shape parameters. This can be 

explained from the relation ship between 1ˆ ( )nF q−  and 1( )nF q− so that: 

1 1 1
,

ˆ ( ) ( ) ( )n i i iF q F q F qµ σ µ σ− − −≈ = +     (6.1) 

If the scatterplot differs consistently from the linear approximation then the initial 

hypothesis for the distribution function has to be rejected. 

Probability-Probability  plots 

Probability-probability (P-P) plots are used to determine whether a specific 

frequency distribution, with defined location and shape parameters, fits the 

frequency distribution of a set of data  x1,..,xn.  
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The observed cumulative distribution function is plotted in a scatterplot against the 

theoretical cumulative distribution function, so that each point corresponds to: 

( ( )iF x , ˆ ( )iF x )  for i= 1,..n 

If the theoretical cumulative distribution models well the observed distribution, 

then all points in this plot fall onto the diagonal line. 

6.6.2.2 The Kolmogorov-Smirnov test  

The Kolmogorov-Smirnov (K-S) test is used to decide if a sample comes from a 

population with a specific distribution (Conover, 1999). 

Considering a data sample (x1,…,xn) consisting of n events with a cumulative 

distribution Sn(x) and the hypothesis of a cumulative distribution function F(x), the 

value Dn is calculated:  

)()(max
1

iin
ni

n xFxSD −=
<<

     (6.2) 

The hypothesis regarding the distributional form is rejected if the test statistic, Dn, 

is greater than the critical value. There are several variations of these critical values 

in the literature that use somewhat different scaling for the K-S test statistic and 

confidence intervals. The software used to perform the K-S test provides the 

relevant critical values. 

6.6.2.3 Results 

The presented modelling techniques are applied to the trigger variables selected in 

section 6.4.3 in order to obtain the equations for their probability density function.  

First the Q-Q graphs (included in appendix 2) provide the scale and shape 

parameters for all the considered distributions; among those, the ones showing a 

better fit are selected and plotted in P-P graphs (figures 6.9, 6.11 6.13, 6.15, 6.17 

and 6.19). In each graph the x-axis represent the theoretical cumulative distribution 

and the y-axis the actual cumulative distribution. The numbers that follow the 

distribution name represent the location and shape parameters for that case.  

Then the Kolmogorov-Smirnov test is used to select the distribution that provides 

the optimum fitting. These results are included for each case in tables 6.6 to 6.11.  
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The expressions of the fitted probability distributions are presented in equations 6.3 

to 6.8. 

Finally, the fitted probability density function is used to compare the observed and 

expected probability of the different variable values. These results are presented in 

figures 6.10, 6.12, 6.14, 6.16 and 6.18. 

 

DFE below the lower threshold 

 

Figure 6.9 Probability-Probability graphs for DFE below the lower threshold 
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Table 6.6 Kolmogorov-Smirnov test 

DISTRIBUTIONS 

(PARAM.1,PARAM.2) 

PARAMETER 

1 

PARAMETER 

2 

KOLMOGOROV-

SMIRNOV D 

Exponential (threshold, scale) 644 265.9336 0.020483 

Weibull (scale, shape) 267.0461 1.0098 0.023182 

Gamma (scale, shape) 258.2903 1.0296 0.024474 

Log-Normal (scale, shape) 5.0246 1.2270 0.061039 

Extreme Value (location, scale) 801.6470 163.5832 0.094964 

Normal (location, scale) 909.9336 267.3657 0.160866 

Rayleigh (threshold, scale) 644 266.6101 0.307780 
 

The Kolmogorov-Smirnov test shows that DFE below the lower threshold events 

are best modelled by an exponential distribution.  From the considered distributions 

the one giving the worst fit is the Rayleigh distribution.  

Therefore the fitted probability density function for DFE events below the lower 

threshold is given by the equation: 

644

265.91
( ) ,    644

265.93

x

f x e x

− − 
− 
 = < −      (6.3) 

Using equation 6.3, the following figure shows the difference between the observed 

and the obtained probability for the different DFE values. 

 

 

Figure 6.10 Obtained and observed probability  
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DFE above the higher threshold 

 

Figure 6.11  Probability-Probability graphs for DFE above the higher threshold 

 

Table 6.7 Kolmogorov-Smirnov test 

DISTRIBUTIONS 

(PARAM.1,PARAM.2) 

PARAMETER 

1 

PARAMETER 

2 

KOLMOGOROV-

SMIRNOV D 

Exponential (threshold, scale) 750 286.798 0.014451 

Gamma (scale, shape) 288.984 0.9924 0.015035 

Weibull (scale, shape) 285.463 0.9893 0.017093 

Log-Normal (scale, shape) 5.077 1.2819 0.075873 

Extreme Value (location, scale) 920.511 176.6925 0.089657 

Normal (location, scale) 1036.798 308.3887 0.177030 

Rayleigh (threshold, scale) 750 297.740 0.300036 
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The Kolmogorov-Smirnov test shows that, as in the previous case, DFE above the 

higher threshold events are best modelled by an exponential distribution.  From the 

considered distributions the one giving the worst fit is the Rayleigh distribution.  

Therefore the fitted probability density function for DFE events above the higher 

threshold is given by the equation: 

750

286.81
( ) ,    750

286.8

x

f x e x

− 
− 
 = >      (6.4) 

Using equation 6.4, the following figure shows the difference between the observed 

and the obtained probability for the different DFE values. 

 

 

Figure 6.12  Obtained and observed probability 
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Plant loss 

 

Figure 6.13 Probability-Probability graphs for plant loss 

 

Table 6.8 Kolmogorov-Smirnov test 

DISTRIBUTIONS 

(PARAM.1,PARAM.2) 

PARAMETER 

1 

PARAMETER 

2 

KOLMOGOROV-

SMIRNOV D 

Extreme Value (location, scale) 326.1587 156.8665 0.087073 

Gamma (scale, shape) 95.2305 4.3650 0.091621 

Log-Normal (scale, shape) 5.9110 0.5125 0.104594 

Rayleigh (threshold, scale) 0 326.7363 0.112589 

Weibull (scale, shape) 469.6052 2.1563 0.120783 

Normal (location, scale) 415.6856 201.9032 0.140618 

Exponential (threshold, scale) 0 415.6856 0.284301 
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According to the results of the Kolmogorov Smirnov test plant loss events are best 

modelled by the extreme value distribution. In this case is the exponential 

distribution the one that offers the worst fit. The results for the D statistic are in this 

case significantly greater than in the previous ones, indicating a worse quality of the 

fitting. 

The fitted probability density function for plant loss events is given by the equation: 

326326
156156

1
( )

156

xx

e
f x e e

−−
−= ⋅       (6.5) 

Using equation 6.5, figure 6.14 shows the difference between the observed and the 

obtained probability for the different values of plant loss events. 

 

 

Figure 6.14  Obtained and observed probability 
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REM below the lower threshold 

 

 

Figure 6.15 Probability-Probability graphs for REM below the lower threshold  (<-1489MW) 

 

Table 6.9 Kolmogorov-Smirnov test 

DISTRIBUTIONS 

(PARAM.1,PARAM.2) 

PARAMETER 

1 

PARAMETER 

2 

KOLMOGOROV-

SMIRNOV D 

Weibull (scale, shape) 678.870 0.839 0.037298 

Gamma (scale, shape) 940.256 0.804 0.051453 

Log-Normal (scale, shape) 5.890 1.370 0.065495 

Exponential (threshold, scale) 1489 755.849 0.066489 

Extreme Value (location, scale) 1895.530 488.675 0.111850 

Normal (location, scale) 2244.849 1316.706 0.283027 

Rayleigh (threshold, scale) 1489 1073.275 0.476506 
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The Kolmogorov-Smirnov test shows that REM below the lower threshold events 

are best modelled by a Weibull distribution.  From the considered distributions the 

one giving the worst fit is the Rayleigh distribution.  

Therefore the fitted probability density function for REM events below the lower 

threshold is given by the equation: 

0.839
14891.839

3 678.81489
( ) 1.23 10    , 1489

678.8

x
x

f x e x

− − − − −  − − 
= ⋅ ⋅ < − 

 
   (6.6) 

Using equation 6.6, figure 6.16 shows the difference between the observed and the 

obtained probability for the different REM values. 

 

 

Figure 6.16  Obtained and observed probability 
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REM above the higher threshold 

 

 

Figure 6.17 Probability-Probability graphs for REM above the higher threshold (>1574MW) 

 

Table 6.10 Kolmogorov-Smirnov test 

DISTRIBUTIONS 

(PARAM.1,PARAM.2) 

PARAMETER 

1 

PARAMETER 

2 

KOLMOGOROV-

SMIRNOV D 

Exponential (threshold, scale) 1574 521.2175 0.016683 

Weibull (scale, shape) 521.3613 1.0006 0.016684 

Gamma (scale, shape) 518.1445 1.0059 0.017216 

Log-Normal (scale, shape) 5.6828 1.2655 0.083138 

Extreme Value (location, scale) 1883.038 322.1674 0.085596 

Normal (location, scale) 2095.218 522.8088 0.159486 

Rayleigh (threshold, scale) 1574 521.9244 0.299005 
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The Kolmogorov-Smirnov test results show that the exponential distribution is the 

one that gives the best fit for REM events above the higher threshold. Weibull 

distribution also offers a similar goodness of fit and as in previous cases the 

Rayleigh distribution is the worst fitting distribution. 

The expression of the Weibull probability density function for REM events above 

the higher threshold is given by: 

1574

521.211
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− 
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According to equation 6.7, figure 6.18 shows the difference between the observed 

and the obtained probability for the different REM values. 

 

 

Figure 6.18  Obtained and observed probability 
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GCIV

DFE
 with negative DFE and short market at gate closure 

 

 

Figure 6.19 Probability-Probability graphs for 
GCIV

DFE
  with negative DFE and short market at 

gate closure 

 

Table 6.11 Kolmogorov-Smirnov test 

DISTRIBUTIONS 

(PARAM.1,PARAM.2) 

PARAMETER 

1 

PARAMETER 

2 

KOLMOGOROV-

SMIRNOV D 

Weibull (scale, shape) 1.002636 0.887399 0.046199 

Log-Normal (scale, shape) -0.628593 1.350036 0.050270 

Gamma (scale, shape) 1.253432 0.850378 0.055375 

Exponential (threshold, scale) 0 1.065891 0.077503 

Extreme Value (location, scale) 0.583505 0.696890 0.131355 

Normal (location, scale) 1.065891 1.219037 0.198037 

Rayleigh (threshold, scale) 0 1.144737 0.383224 
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The Kolmogorov-Smirnov test results show that the Weibull distribution is the one 

that gives the best fit for events defined by a negative 
GCIV

DFE
 with negative DFE 

and short market at gate closure. Normal and Rayleigh distribution are the worst 

fitting distributions. The fitted probability density function for 
GCIV

DFE
 with negative 

DFE and short market at gate closure is given by: 

0.887
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1.002( ) 0.87 , 0
1.002

x
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f x e x

− − − 
 − 

= ⋅ < 
 

    (6.8) 

Using equation 6.8, figure 6.20 shows the observed and expected probability values 

for the different values of 
GCIV

DFE
 events. 

 

 

Figure 6.20  Obtained and observed probability 
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6.6.2.4 Conclusions  

The main conclusion derived from these results is that unusual market events do not 

present a common behaviour. This is reflects the diversity of the events considered 

in this analysis (plant loss, large DFE errors…). There is not a unique probability 

distribution that fits all the considered conditions but the nature and the parameters 

of the fitted probability distributions vary from one case to another. Moreover, the 

goodness of fit differs from one case to another. 

While exponential and Weibull distribution are the ones that best model continuous 

variables (DFE, REM and 
DFE

GCIV
), the extreme value distribution is the best choice 

for the non-continuous plant loss variable. However it is also the plant loss event 

the one that gives the worst fit with a 0.08 value for the D Kolmogorov-Smirnov 

statistic (compared with a D= 0.014 in the DFE above the higher threshold case). 

A common feature for all the continuous variables is that the probability peaks for 

values close to the threshold and decreases as the variable increases. However, the 

plant loss follows a different pattern: its probability increases until it reaches a 

maximum around 500MW (which can be considered the size of a large coal typical 

unit (National Grid Transco et al., 2004, ELEXON, 2005)) and decreases thereafter. 

Despite these differences in the probability distributions, all the results show the 

rarity of extremely large events. 

 

6.6.3 Events duration  

6.6.3.1 Duration criteria 

This part of the analysis is concerned with the length of the sequence of consecutive 

events, that is, the duration of the events. The mathematical analysis of the duration 

of an event is defined as follows.  

Consider a variable X, being (x1,…,xn)  a series of observations over time, and define 

xmax as the threshold value that defines the occurrence of the event. A new auxiliary 

binary variable Y is defined as: 
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= < =
    (6.9) 

An event of duration j in X is defined as a subsequence of (xi+1,…,xi+j) of (x1,…,xn)  

such that 

1 10,     1,   0i i i j i jy y y y+ + + += = = = =�     (6.10) 

where  0i ny y= = .The same criteria can be defined for xmin . Figure 6.21 illustrates 

the concept of the auxiliary variable y as well as the duration criteria. 

 

 

Figure 6.21  Events duration criteria 

 

This definition refers to the case of a unique event. However this analysis considers 

a multidimensional scenario were different events can occur simultaneously (DFE 

and REM, DFE and plant loss, REM and GCIV/DFE and so on). For this case, we 

consider X
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The corresponding thresholds for each variable are 1 2
max max max, ..., mx x x .The auxiliary 

binary variable Y is defined as: 
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An event of duration j is defined by the variable Y according to equation 6.10. For 

the sake of simplicity, the events refer only to those defined by a maximum 

threshold; nevertheless, there is an analogous definition for the duration of the 

events identified by a minimum threshold. Figure 6.22 presents the concept of event 

duration for a multidimensional scenario with 2 variables X and Z. 

 

 

Figure 6.22 Events duration criteria for multidimensional scenario 

 

6.6.3.2 Results  

In this case only continuous variables are included. Since there is no available data 

to determine a plant recovery, plant loss is considered as an instant event with no 

duration.  

First each event is independently considered. The following figure shows, for each 

variable, its duration histogram. The x-axis represents the duration, expressed in 

periods resolution, and the y-axis the frequency (i.e. the number of observances). 
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Figure 6.23 Event duration for continuous variables (note 
(1)

 DFE<0 and GCIV>0) 

 

The mean duration as well as the 10 and 90 percentiles of the duration distribution 

for each event are presented in Table 6.12 

Table 6.12 Event duration description 

VARIABLE MEAN DURATION  10 PERCENTILE 90 PERCENTILE 

DFE<-644MW 2.96 1 7 

DFE>750MW 3.06 1 7 

REM<-1487MW 2.58 1 5 

REM>1574MW 3.02 1 7 

DFE/GCIV<0 2.09 1 4 

 

In a multidimensional scenario an event is defined is a case when either DFE or 

REM are above or below their corresponding lower or higher thresholds or 

DFE/GCIV is negative. The results for the duration under these conditions are 

presented in Figure 6.24 and Table 6.13. 
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Figure 6.24 Event duration for multidimensional scenario 

 

Table 6.13 Event duration description 

MEAN DURATION  10 PERCENTILE 90 PERCENTILE 

2.84 1 6 

 

6.6.3.3 Conclusions  

The results for the independent events show that these conditions have an 

approximate duration of 1.5 hours (3 periods). The cases where the demand forecast 

greatly exceeds the actual demand are the conditions that have a longer duration.  

Another important observation, for the case of the DFE and REM, events is the 

consideration of the total energy that they represent (i.e. the average excess over the 

threshold times the duration of the event). Figure 6.25 shows, for each case, the 

histogram where the x-axis is the magnitude of the event in MWh and the y-axis the 

number of observations. This figure shows that events that exceed 1000MWh are 

extremely rare in any case. 
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Figure 6.25 Events total magnitude 

   

The duration of events in the multidimensional scenarios, does not differ greatly 

from the independent event consideration. This reflects how events of different 

nature usually are not linked in time but they happen either simultaneously or 

separately by at least one unit of time.   

6.6.4 Time between events 

6.6.4.1 The return period 

The return period, also called recurrence interval, is the mean waiting time between 

events. The reciprocal of the return period is the exceedance probability of the 

event, that is, the probability that the event (set by a threshold u) is equaled or 

exceeded in any defined period of time. The return period is usually found in 

hydrologic frequency analysis to estimate how often events of a given magnitude 

will occur.  

However, the return period does not determine when an event will occur, but it just 

informs about the likelihood of an event. In this way, a T-hour event is an event that 
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over a long period of time (longer than T hours) has an average time of occurrence 

of T hours.  

For engineering applications (Castillo, 1988), where the failure of a component is 

associated with the occurrence of an event, the return period can also be understood 

as the mean lifetime of this component. 

Following the structure of the events duration analysis, this analysis considers first 

each event independently, and then analyses the return period considering the 

possible occurrence of all the events. Figure 6.26 describes the multidimensional 

approach for the calculation of the mean time between events. 

In this analysis all events are examined, including not only continuous variables but 

also the plant loss which is treated as an instantaneous event. 

 

 

Figure 6.26 Time between events for multidimensional analysis 

  

6.6.4.2 Results 

The following figure presents the histograms for the time between events 

independently for each of the cases. The x-axis represent time between events in 

periods resolution and the y-axis is the frequency or number of observances. 
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Figure 6.27 Time between events (singular events).  

 

The statistical analysis of the time between events determines the mean time 

between events and therefore the T-hour return period. In this analysis the T-hour 

period is just half the value of the mean time between events expressed in market 

periods resolution.  

Table 6.14 shows for each variable, its return period (T-hour), its mean, minimum 

and maximum times between event, as well as the standard deviation (in market 

periods resolution). 
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Table 6.14 Return period and time between events (TBE) for each event. 

 T-HOUR  MEAN TBE MIN. TBE MAX. TBE STD DEVIATION 

DFE<-644 MW 24.7 49.38 1 619 74.28 

DFE >750MW 26.23 51.46 1 699 81.09 

Plant loss 16.5 33.1 1 259 40.82 

REM<-1486 29.4 58.81 1 740 99.23 

REM>1574 24.4 48.85 1 509 69.38 

DFE/GCIV 14.89 29.78 1 263 37.25 

 

For the multidimensional scenario, where the occurrence of all the events is 

considered, Figure 6.28 shows the histogram of the time between events with time 

between events in period resolution (x-axis), and number of observations (y-axis). 

Table 6.15 presents similar results to Table 6.14 but for the multidimensional case. 

 

 

Figure 6.28 Time between events for multidimensional scenario. 

 

Table 6.15 Return period and time between event (TBE) multidimensional scenario. 

 T-HOUR  MEAN TBE MIN. TBE MAX. TBE STD DEVIATION 

ALL 4.42 8.82 1 120 10.46 
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6.6.4.3 Conclusions 

When considering each event independently we can notice significant differences 

between the different return periods. According to this, DFE/GCIV events are most 

likely to happen followed by plant loss events; REM events are the most unlikely to 

occur (less than a daily event). These results complement with the previous event 

duration results. In this way the combination of duration and time between events 

helps to determine an average time sequence of the events.  

The multidimensional scenario clearly differs from the single event conditions. The 

time between events decreases significantly to 4.42 hours. This result is partly due 

to the consideration of outages (not included in the duration analysis) and also due 

to the already mentioned characteristic two or more events do not occur in a 

consecutive manner. 

 As a general conclusion, it is observed that the multidimensional perspective 

transforms unusual events into “frequent” events. On average more than 5 events of 

a different nature happen in the market every day.  However, the duration results 

for the multidimensional context do not greatly differ from those obtained for single 

events which also suggest that events occurrences are not consecutive.  

 

6.7 Consequences analysis 

6.7.1 Objectives 

Up to this point, this study of unusual events has been focussed on their probability, 

frequency and duration. This section establishes the link between the causes and 

effects. In this way, the analysis of unusual events is expanded to define their 

consequences in the market. The market reaction is documented by considering the 

effect that unusual conditions have over balancing mechanism variables and 

imbalance prices.  

This study is designed to give a global perspective on the effect of unusual events: 

• The analysis considers that an event can have an impact on several variables 

and combines one-dimensional and multidimensional perspectives. The 
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market reaction is evaluated using multiple variables, and considers first the 

impact of a single event and then, if possible, a combination of events. 

• The response is evaluated in both its total magnitude (i.e. actual value of the 

variables) and also its relative value (i.e. deviation from moving averages). 

• The analysis of consequences covers not only the static reaction of the 

market at the time of the event but also the dynamic behaviour of the 

variables prior and after the event.  

The analysis of consequences of unusual events under NETA is difficult because of 

their relatively high frequency due to their way they have been defined, and the 

global nature (i.e. a unique value for the whole market) of the passive variables. 

The events proximity presents a complication for the dynamic analysis, since it is 

difficult to determine if the reaction of the market is still driven by a previous event. 

Moreover, the aggregated characteristic of the analysed variables can mask, in 

some cases, a local reaction to an event. 

Input-output analysis has been applied to evaluate the economic impact of 

unscheduled events (Cochrane, 1999). However, this approach is linear and static; 

moreover it is based on the relation between production and demand, which is not 

applicable in the context of NETA and its data structure. Dynamic analyses are 

based on ARIMA time series techniques (ARIMA interrupted time series analysis)  

(McDowall et al., 1987); they analyse if an unscheduled event has an impact on the 

behaviour of the time series. This technique distinguishes the possible impacts of 

three major types of events: permanent abrupt, permanent gradual and abrupt 

temporary. The events causing the impact on the series are represented in the first 

two cases by a step function, and in the third one by a pulse function.  The 

frequency and duration characteristics of most of the events considered in this 

analysis do not fall into any of these categories (only plant loss events can be 

modelled as a pulse). The fact that some of the affected passive (e.g. NIV) variables 

cannot be modelled by ARIMA also precludes the use of this technique.  

Another major problem in the development of an effective line of analysis is the 

lack of extensive historical records. 
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To overcome these problems the analysis of the consequences uses 

ANOVA/MANOVA techniques. These techniques allow identifying if the 

differences between groups are significant. In this analysis, the groups are defined 

by the trigger values (usual or event conditions) and the effect of this imposed 

cluster are analysed in the passive (dependant) variables. 

6.7.2 ANOVA/MANOVA analysis 

The purpose of the ANalysis Of VAriance (ANOVA) technique and its multivariate 

extension MANOVA is to test differences between groups. ANOVA is a univariate 

procedure used to assess group differences on a single metric dependent variable 

(for example the sales of a product (metric variable) between customer groups (non 

metric variable)). MANOVA is a multivariate procedure that assesses group 

differences between two or more metric variables simultaneously (e.g. the sales in a 

range of products (metric variables) between customer groups). 

The analysis of differences between groups is achieved by analyzing the variance, 

that is, by segmenting the total variance into the component that is due to true 

random error (i.e., within-group variability) and the components that are due to 

differences between means (i.e. between group variability). These variance 

components are then tested for statistical significance, and, if significant, the null 

hypothesis of no differences between means is rejected, and the alternative 

hypothesis (that the means of the population are different from each other) is 

accepted. 

6.7.2.1 ANOVA  

The variability analysis in the univariate case, with k groups and 

1 2 ...total kn n n n= + + +  observations, is based on the calculation of the F statistic. 

This is the ratio between the within groups estimate of variance ( WMS ) and the 

between groups estimate of the variance ( BMS ). 

statistic B

W

MS
F

MS
− =      (6.12) 
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The WMS  is also known as the error variance, and it is based on the deviations of 

individual records from their group mean. It is comparable to the standard error of 

the t-statistic (equation 5.7). 

The BMS  is based on the deviations of the group means over the overall mean. 

Under the null hypothesis all group means are equal (i.e. 1 2 ... kµ µ µ= = = ). The 

greater the differences between groups the higher the value of BMS . 

If the value of the F statistic exceeds its critical value then the null hypothesis is 

rejected and we can conclude that there is a significant difference between groups. 

The Fcrit is determined from the F distribution with (k-1) and (ntotal-k) degrees of 

freedom at a specified level of significance α.   

ANOVA designs are based on the analysis of a unique measured variable 

(dependent variable). However, there can be one or more independent variables or 

factors with different groups defined among them. For instance, in the analysis of 

the sales volume of a product possible differentiating factors could include 

costumers’ gender (male, female); costumers’ age (under 30, over 30 years old), 

and costumers’ incomes (lower than £20K, between £20K and £40K and over 

£40K). Multifactor ANOVA analysis makes it possible to check the relevance of 

each factor including the variability that each of them represent (e.g. one could 

determine if the sales volumes of the product differ significantly between males, 

under 30 years old with an income lower than £20K, and  females over 30 years old 

with an income lower than £20K). Figure 6.29 describes the difference between one 

factor analysis and multifactor analysis for the volumes of sales example. 

In all the analysis described to this point the observations of the dependent variable 

belong to different groups of subjects (e.g. males and females, under 30 years old, 

over 30 years old, etc.). In this case the independent variable is considered a 

between-groups factor. However, it is possible to have repeated measurements of 

the same variable (e.g. sales in winter, spring, summer and autumn) on the same 

subject. In this case, the factor is a repeated measures factor or within-subjects 

factor. ANOVA repeated measures analysis allows a dynamic analysis of the 

dependent variable.  



 206 

 

 

 

Figure 6.29 One factor and multifactor ANOVA 

 

Further complex multifactor analysis can include of between-groups and repeated 

measures factors (i.e. between and within factors). 

 6.7.2.2 MANOVA  

The multivariate analysis of the variance is used to determine differences between 

groups in multiple dependent variables (e.g. the volumes of sales of a range of 

products). Thus the null hypothesis is the equality of vectors of means on multiple 

dependent variables. The unique aspect of MANOVA analysis is the combination 
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of the multidimensional measurements for statistical differences between groups 

into a unique value that maximizes the differences across groups. 

As ANOVA could be considered an extension of the t-statistic, MANOVA can be 

considered an extension of the Hotelling’s T
2
. 

Hotelling’s T
2
 provides a statistical test of the combination of the dependent 

variables that produces the greatest group difference. Considering a two-group case 

with n dependant variables, C is defined as a combination of the dependent 

variables of the form 

1 1 2 2 n nC W Y W Y W Y= + + +�      (6.13) 

where Yi is the the i
th

 dependent variable and Wi  its corresponding weight. For any 

set of weights the t-statistic can be calculated. From all the possible weights 

combinations there is one that maximizes the value of the t-statistic. The value of 

Hotelling’s T
2
 is the square of the maximum t-statistic. In other words, if there is a 

discriminant function for the two groups that produces a T
2
 over its critical value, 

then the two groups are considered different across the mean vector. 

The critical value of T
2
 is determined from an F distribution with n and 

1 2 2 1N N+ − −  degrees of freedom (where n is the number of dependent variables 

and 1 2,N N  the number of observations in each group). The tabulated value for Fcrit 

is obtained at a specified level of significance α. Then the value of 2
critT   is 

calculated as follows: 

   2 1 2

1 2

( 2)

1
crit crit

n N N
T F

N N p

+ −
= ×

+ − −
     (6.14) 

Following the described approach, MANOVA analysis can be considered as 

multivariate analysis of ANOVA. Thus, the objective is to find the set of weights 

that maximizes the ANOVA F value of the combination of dependent variables for 

all the (k) groups defined by the factor variable. From this maximum F value, the 

greatest characteristic root (gcr) is computed 

max( 1)k F
gcr

N k

−
=

−
      (6.15) 
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If the value of the gcr exceeds its critical value then the null hypothesis of 

equivalent group mean vectors can be rejected.  

Other commonly used parameter to test overall significance in MANOVA is the 

Wilk’s lambda. Wilk’s lambda examines if groups differ without considering their 

linear combination and therefore is easier to calculate. A more detailed description 

of the MANOVA analysis formulas falls out of the scope of this thesis, but for a 

detailed description of the matricial equations the interested reader can refer to 

(Milliken and Johnson, 1992, Milliken and Johnson, 2000, Harris, 2001).  

As described for ANOVA, complex designs with multiple factor variables can also 

be considered in MANOVA analysis. Moreover, between and within groups (i.e. 

repeated measures) multifactor MANOVA can also be defined.  

6.7.2.3 ANOVA/MANOVA for unusual events analysis 

ANOVA and MANOVA analysis have been applied for the consequences analysis 

of unusual events. The adaptation of these techniques is achieved by the variables 

selection and transformation. In this way ANOVA and MANOVA analysis can 

determine if the variables’ behaviour differs between normal and event conditions. 

These techniques can also be understood as an imposed cluster analysis; the clusters 

do not originate from the similarities between values of the dependent variables, but 

an external variable (i.e. the trigger variable) defines the clusters membership. 

Therefore cases are assigned to groups according to the events condition (i.e. event 

or no event) and the goodness of the artificial cluster is confirmed with the rejection 

of the nulls hypothesis. 

In this way, the ANOVA/MANOVA factors, independent or grouping variables are 

the trigger variables and the dependent variables are the passive variables. 

MANOVA analysis provides a univariate measurement of the event significance for 

the whole set of passive variables that represent the market activity.  

ANOVA/MANOVA repeated measures structure allows analysing the dynamic 

reaction of the passive variables to an event by considering the increments and 

decrements of each dependent variable before and after an event.  
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Another important aspect to validate the use of ANOVA/MANOVA is to verify 

that the main assumptions of the analysis are met by the considered data structure. 

The main assumptions are (Harris, 2001, Lindman, 1974, Hair et al., 1984, StatSoft, 

2004): 

• Normality assumption. The dependent variable should be normally 

distributed within groups. Overall, the F-test is remarkably robust to 

deviations from normality (Hair et al., 1984, StatSoft, 2004). 

• Homogeneity of variances. The variances in the different groups are 

assumed to be identical. However, Lindman (Lindman, 1974) shows that 

the F statistic is quite robust against violations of this assumption. There is 

a special case where the F statistic is very misleading. This is when the 

means are correlated with variances across cells of the design. This is usual 

in the presence of outliers. It is important to remark that our analysis 

conditions are not affected by this condition. Although the existence of an 

event is, for some variables, determined by its extreme values, these are 

only defining the group creation (independent variable). Therefore, the 

dependent variable, where the F statistic is calculated, is not affected by the 

presence of outliers. 

 

6.7.3 Data preparation and transformation 

6.7.3.1 Dependent variables 

The dependent passive variables are selected using a criterion that strikes a 

compromise between a precise market representation and dimensionality issues. 

From the initial quantitative approach the variables carried forward in the variance 

analysis are: Accepted Offer Volume (AOV), Accepted Bid Volume (ABV), 

Demand, GCIV, NIV, SBP and SSP. Note that demand values are not expected to 

be affected by the unusual conditions considered in this analysis, rather they can be 

used to define the usual conditions when the events occur.  

Each of these variables is transformed to produce other related dependent variables: 
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• Deviation from moving average. The moving average is computed over a 

window of 8 periods ( 7 6( . ( )) ( ) / 8i i i i ix Mov average x x x x− −= = + + +… ). 

The variable is transformed as follows 

1t
i i ix x x= −       (6.16) 

• Period to period variable change. For each variable value and each period, 

the period-to-period increment and decrements are calculated for two 

periods before that period and two periods after that period. In this way, not 

only the future impacts of an event are considered but also backward 

impacts to the past (before the event). This process is illustrated in Figure 

6.30. Four dependent variables are generated: 
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     (6.17) 

Therefore each variable produces 5 more dependent variables that added to the 

actual (non transformed) variable value make a total of 42 dependent variables to 

be considered. 

 

Figure 6.30. Dependent variable period to period transformation 
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6.7.3.2 Independent (factor) variables 

The independent factor variables are the trigger variables as well as time for the 

MANOVA repeated measures analysis. 

The coding factors defined for these variables are show in Table 6.16. 

 

Table 6.16 Independent variable factor codes 

VARIABLE EVENT CODE 

>750 MW 1a 

<-644 MW 1b DFE 

-644MW<DFE<750 MW 0 

>0 2 
Plant loss 

=0 0 

>1574 MW 3a 

<-1489 MW 3b REM 

-1489<REM<1574 MW 0 

GCIV

DFE
<0; when DFE<0 and GCIV >0 4 

GCIV

DFE
 

Any other case 0 

 

6.7.3.3 Analysis structure 

The analysed scenarios are determined by the independent variables. In addition to 

the one-factor analyses it is possible to consider the consequences of multiple 

events (e.g. DFE above the higher threshold combined with Plant loss events). This 

is achieved through multifactor between groups analyses. Table 6.17 shows the 

feasible factors combinations with the symbol “�” and those that could not be 

computed, due to lack of data for those conditions, with the symbol “�”. A 

maximum of two factors are combined since the available data does not allow 

further complex designs (e.g. there are not enough cases in which simultaneously 

occur plant loss, DFE value above its higher threshold and REM value below its 

lower threshold to establish any significant conclusion of the market reaction to 

those conditions). 
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Table 6.17 Feasible factors combinations 

 DFE (0,1a,1b) 

Plant loss (0,2) � Plant loss (0,2) 

REM (0,3a, 3b) � � REM (0,3a, 3b) 

GCIV

DFE (0,4) � � � 

 

 

Each of these one factors and multifactor are considered for the following analysis: 

• MANOVA of actual values for AOV, ABV, Demand, GCIV, NIV, SBP 

and SSP. 

• MANOVA of deviation of moving average variables including AOV, 

ABV, Demand, GCIV, NIV, SBP and SSP. 

• Repeated measurements ANOVA for AOV, ABV, Demand, GCIV, NIV, 

SBP and SSP. 

For multidimensional MANOVA analysis, the STATISTICA™ software used in 

this analysis calculates not only the multidimensional significance (significance of 

the overall market reaction) but also carries out the one dimensional analysis for 

each of the dependent variables and determines the statistical significance of the 

results. 

6.7.4 Results 

The results are presented separately for each event or combination of events 

(described in Table 6.17). This chapter includes the results with tables and graphs 

only for the DFE events and the combination of DFE with plant loss. For the rest of 

the events, only the conclusions derived from the results are included in this 

chapter. The whole set of tables are included in Appendix 3.  
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6.7.4.1 DFE Events 

The Table 6.18 presents the results that quantify the significance of the market 

reaction to the conditions defined by a trigger variable(s). This is defined by the 

overall multivariate significance test for both the analysis of the actual variable 

values and the analysis of the variables’ deviations from their moving averages. 

These significance tests refer to two different estimation coefficients: the Roy´s gcr 

and the Wilk´s lambda. For each test the coefficient value, its corresponding F and 

its significance when compared with the critical value are included. “�” indicates 

that the value is significant, and “�” indicates that the value is not significant. For 

all the cases the higher the value of the coefficients the more pronounced the 

differences between the groups. Therefore, the more significant is the market 

reaction. It is important to note that the market reaction is evaluated as a whole so a 

unique value is obtained for all the dependent variables and all the groups defined 

in the specific event (e.g. a unique value for DFE event for all the dependent 

variables).  

 

Table 6.18 Multivariate test of significance for DFE events 

MULTIVARIATE  RESULTS 

ACTUAL VALUES  DEVIATION FROM MOV. AVERAGE 
TEST NAME 

 Value F (Fcrit=2,9) Sig.   Value F (Fcrit=2,9) Sig. 

Roy´s gcr  0.19647 820.30 �   0.063581 265.3952 � 

Wilk´s Lamdba  0.80846 468.31 �   0.930615 152.8060 � 

 

The following table presents the significance of the separate reaction of each 

dependent variable to a DFE trigger event. This is the univariate test of significance 

for each dependent variable. The table contains parallel results for the actual 

variable values and their deviation from moving averages. The table shows for each 

variable the within groups estimate of variance ( WMS ), the between groups 

estimate of the variance ( BMS ), and the F- statistics with its significance. As in the 

previous high values of the F coefficient are interpreted as significant differences 

between event and no event conditions.   
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Table 6.19 Univariate results of significance for DFE events 

 UNIVARIATE F RESULTS 

 ACTUAL VALUES  DEVIATION FROM MOV. AVERAGE 
DEPENDENT 

VARIABLE  BMS
 WMS

 
F 

(Fcrit=2,9) 
Sig.  BMS

 WMS
 

F 
(Fcrit=2,9) 

Sig. 

AOV  52871726 147343 358.8 �  6857029 62687 109.4 � 

ABV  2.39E+08 4.72E+05 506.3 �  4.54E+07 142815 318.5 � 

Demand  1.21E+10 3.80E+07 318.3 �  3.28E+06 6.92E+06 47.5 � 

GCIV  1.19E+08 8.51E+05 140.1 �  16422101 240744 68.2 � 

NIV  4.04E+08 7.33E+05 551.0 �  6. 36E+07 194497 327.1 � 

SBP  68093 5167 13.1 �  71792.7 4025.6 17.8 � 

SSP  2354.7 63.3 37.2 �  84.0 39.2 2.1 � 

 

The next two tables (Tables 6.20 and 6.21) unfold the dependent variables statistics 

for each trigger variable conditions (e.g. usual conditions, DFE below the lower 

threshold and DFE above the higher threshold). The first table refers to actual 

values of the passive variables and the second to the deviation from their moving 

averages. 

Table 6.20 Market variables (actual values) group statistics for DFE events 

 ACTUAL VALUES MARKET CONDITIONS  

 Usual conditions (0)  DFE<-644 MW (1b)  DFE>750 MW (1a) DEPENDENT 

VARIABLE 
 Mean Std Error  Mean Std Error  Mean Std Error 

AOV  308.68 2.32  546.03 13.82  215.68 7.31 

ABV  -1079.31 4.18  -803.84 17.58  -1544.49 20.98 

Demand  33829.41 38.71  36320.53 139.99  37041.62 136.33 

GCIV  -897.59 5.55  -1108.60 29.58  -579.93 25.59 

NIV  -1061.22 5.17  -537.18 25.84  -1525.24 24.22 

SBP  33.75 0.45  39.97 1.12  41.12 1.81 

SSP  9.45 0.04  11.02 0.35  10.312 0.14 

 

Table 6.21 Market variables (deviation from moving average) group statistics for 

DFE events 

 DEVIATION FROM MOVING AVERAGE  MARKET CONDITIONS  

 Usual conditions (0)  DFE<-644 MW (1b)  DFE>750 MW (1a) DEPENDENT 

VARIABLE 
 Mean Std Error  Mean Std Error  Mean Std Error 

AOV  -4.22 1.55  86.86 6.16  -21.70 6.17 

ABV  7.39 2.35  94.77 9.29  -213.09 9.32 
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 DEVIATION FROM MOVING AVERAGE  MARKET CONDITIONS  

 Usual conditions (0)  DFE<-644 MW (1b)  DFE>750 MW (1a) DEPENDENT 

VARIABLE 
 Mean Std Error  Mean Std Error  Mean Std Error 

Demand  -53.15 16.34  427.40 64.70  414.00 64.88 

GCIV  2.63 3.05  -118.19 12.06  76.23 12.10 

NIV  1.05 2.74  185.49 10.84  -206.75 10.87 

SBP  -0.71 0.39  2.62 1.56  8.51 1.56 

SSP  0.03 0.04  -0.09 0.15  -0.29 0.15 

 

The significance of the difference in the variable dynamics for the events conditions 

when compared with the normal conditions is presented in Table 6.23. For this 

purpose, the table contains, for each dependent variable, the f-statistics for the 

increments and decrements between the two periods before the event and the two 

periods after the event.  As in previous cases, a high value of the f-statistics mean a 

significant difference between normal and event conditions in the variable 

dynamics for that corresponding period.  

 

Table 6.22 Repeated measurements univariate significance results 

 REPEATED MEASUREMENTS UNIVARIATE SIGNIFICANCE RESULTS  

 (t-2)-(t-1)  (t-1)-t  t-(t+1)  (t+1)-(t+2) DEPENDEN

T VARIABLE 
 

F 
(Fcrit=2,9) 

Sig.  
F 

(Fcrit=2,9) 
Sig.  

F 
(Fcrit=2,9) 

Sig.  
F 

(Fcrit=2,9) 
Sig. 

AOV  16.77 �  13.40 �  9.21 �  15.34 � 

ABV  81.49 �  63.79 �  9.48 �  35.49 � 

Demand  26.26 �  46.57 �  62.08 �  23.92 � 

GCIV  23.82 �  19.83 �  58.55 �  49.38 � 

NIV  67.33 �  60.27 �  19.81 �  38.20 � 

SBP  2.39 �  0.65 �  0.17 �  1.02 � 

SSP  1.85 �  2.94 �  0.17 �  0.17 � 

 

The results show that DFE events have an impact on the considered market 

variables. Both the overall significance test and the univariate test show a 

significant difference between the dependent variables values under normal 

conditions, events with DFE over the higher threshold and events with the DFE 

under the lower threshold.  
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For the events where the demand largely exceeds its forecast, there is a significant 

decrease of the ABV and a increase of the AOV. These events also have an effect 

over the market length both at GC (the market is longer due to the misleading value 

of the demand forecast) and after the BM (the overall market length becomes 

shorter than in normal periods). Imbalance prices are also affected by these events. 

SBP increases due to the increase of offer acceptances. SSP also increases despite 

the decrease in the accepted bids. A possible reason for this is that the total volume 

of accepted bids decreases but the ones which are accepted seem to have high 

acceptances prices.  

For the events where the demand forecast largely exceeds its actual value, there is a 

decrease in the AOV and a very significant increase of the ABV. These events also 

affect the market length both at GC and even more significantly after the BM. In 

this last case the market length (NIV) increases to and average value of -1525MW 

(1.5 times the length in normal conditions). Imbalance prices also increase under 

these DFE conditions. Particularly significant is the increase of SBP (8.51 £/MWh 

increased from its moving average). As in the previous case, this may be due to the 

combination of a decrease in the total volume that weights the accepted offers, with 

very high prices of those accepted offers. 

The BM variables dynamic analysis shows that the evolution of most of the 

variables over time is also affected by DFE events. Imbalance price dynamics are 

the only variables that do not present significant differences between normal and 

event conditions.  

Figure 6.31 shows the dynamic evolution of those variables with significant results. 

In each graph the x-axis represent time increments and the y-axis the increments 

and decrements of the dependent variable. Therefore, positive values mean an 

average increasing variable behaviour and negative values a decreasing trend in the 

variable for that period. For all the graphs vertical bars denote 0.95 confidence 

intervals. For each graph, the blue line represents normal conditions, the red line 

conditions with DFE below its lower threshold, and the blue line conditions with 

DFE above its higher threshold. 
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Figure 6.31 Variables dynamics for DFE events 
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6.7.4.2 Plant loss Events 

The results for plant loss events are presented in Appendix 3 following a similar 

format to the one described for DFE events.  

The results presented in Tables A3.1 to A3.5 show that plant loss events do not 

have a significant impact on most of the market variables included in this analysis. 

Only demand values are significantly affected by these events. Plant loss events 

register higher average demand than normal conditions. This may easily be due to 

the fact that in high demand conditions there are more units committed, so there is a 

higher probability of a plant loss event.   

The lack of impact of plant loss events can also be explained from the combination 

of nature of the events together with the characteristics of the analysed data. Plant 

loss events are local events and the actions to remedy these conditions are in most 

cases local. Therefore, the local reaction can easily be masked in the global 

variables values used in this analysis. Moreover, the size of the plant loss events is 

relatively small, since its maximum value does not exceed 3% of the average 

demand.  

6.7.4.3 REM Events 

The results for REM events are presented in Appendix 3 following a similar format 

to the one described for DFE events.  

The results presented in Tables A3.6 to A3.10 show that REM events have a 

significant impact on all the market variables. 

REM events below the lower threshold refer to any PGCE not included in the DFE 

that creates an excess of over 1489MW in the system. Under these conditions there 

is a consequent decrease of the accepted offers, an increase of the accepted bids, 

and an increase of the Net Imbalance Volume (the market is even longer than under 

normal conditions). As for DFE, REM events also have an impact over imbalance 

prices.   

REM events above the higher threshold refer to any PGCE not included in the DFE 

that creates a deficit of over 1574MW in the system. The consequent market 

reaction is an increase of the accepted offers, a decrease not only of the accepted 
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bids but also in the market length represented by NIV. Imbalance prices also 

increase under event conditions. 

The repeated measures analysis shows that the variables dynamics are also affected 

under REM events. Figure 6.32 shows the dynamics for those variables 

significantly impacted by REM events, with a similar structure that the one of 

Figure 6.31. 
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NIV 

 

Figure 6.32 Variables dynamics for REM  events 

 

6.7.4.4 DFE/GCIV Events 

The results for DFE/GCIV events are presented in Appendix 3 following a similar 

format to the one for the plant loss events.  

DFE/GCIV events refer to condition when the demand exceeds its forecast and this 

one exceeds the declared generation at GC (short market conditions). As presented 

in Tables A3.11 to A3.15, these events significantly affect the market conditions. 

The volume of accepted offers significantly increases to an average value of 

936MW (over 3 times the value of normal conditions), to compensate the error in 

the demand forecast. The volume of accepted bids is also reduced since, under 

these events, the need to decrease generation levels is significantly less. It is 

important to notice that the unusual long market conditions at GC are also 

maintained after the BM. In this way, NIV reaches a maximum average value of 

222.2MW. 

Figure 6.33 highlights the results obtained for these events conditions over the 

actual values of the dependent variables AOV, ABV, GCVI and NIV. In each graph 

the x-axis represents the event and no event conditions (following the coding 

described in Table 6.16) and the y-axis represent for each variable their means 

actual values.  For all the graphs vertical bars denote 0.95 confidence intervals. 
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Accepted Offers Volume Accepted Bids Volume 

  

GCIV NIV 

  

Figure 6.33 Actual mean variables 
GCIV

DFE
  events 

 

The dynamics of AOV, ABV, GCIV and NIV are significantly affected by 
GCIV

DFE
 

events. However, unlike previous events, the variables’ dynamic is only 

significantly affected for the periods after the event.  
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6.7.4.5 DFE & Plant loss Events 

The Table 6.23 presents the results that quantify the significance of the market 

reaction to the conditions defined by the combination of DFE and Plant loss events. 

 

Table 6.23 Multivariate test of significance for the combination of DFE and plant 

loss events 

MULTIVARIATE  RESULTS 

ACTUAL VALUES  DEVIATION FROM MOV. AVERAGE 
TEST NAME 

 Value F (Fcrit=2,9) Sig.   Value F (Fcrit=2,9) Sig. 

Roy´s gcr  0.000174 0.725 �   0.000182 0.76038 � 

Wilk´s Lamdba  0.999763 0.496 �   0.999743 0.53600 � 

 

The following table shows for each variable the within groups estimate of variance 

( WMS ), the between groups estimate of the variance ( BMS ), and the F- statistics 

with its significance. As in previous cases high values of the F coefficient are 

interpreted as significant differences between event and no event conditions.   

 

Table 6.24 Univariate results of significance for the combination of DFE and plant 

loss events 

 UNIVARIATE F RESULTS 

 ACTUAL VALUES  DEVIATION FROM MOV. AVERAGE 
DEPENDENT 

VARIABLE 
  

MS
B

 
 
MS

W
 F 

(Fcrit=2.2) 
Sig.  

 
MS

B
 

 
MS

W
 

F 
(Fcrit=2.2) 

Sig. 

AOV  5.80E+04 28977 0.20 �  1.14E+05 57065 0.91 � 

ABV  3.14E+05 1.57E+05 0.33 �  1.51E+05 75330 0.53 � 

Demand  1.04E+08 5.21E+07 1.37 �  2.13E+07 1.06E+07 1.54 � 

GCIV  3.28E+05 164091 0.19 �  3.42E+05 171198 0.71 � 

NIV  3.38E+05 168815 0.23 �  1.57E+05 78441 0.40 � 

SBP  4636 2318 0.45 �  4317 2159 0.54 � 

SSP  20 9.79 0.15 �  11 6 0.14 � 

 

The next two tables (Tables 6.25 and 6.26) unfold the dependent variables statistics 

for all the possible each trigger variable conditions. Each table is divided in two 
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parts. The first part corresponds to usual conditions of plant loss events and the 

three possible conditions of DFE events (e.g. usual conditions, DFE below the 

lower threshold and DFE above the higher threshold). The second part of the tables 

corresponds to usual conditions of plant loos events and the three possible 

conditions of DFE events. The first table refers to actual values of the passive 

variables and the second to the deviation from their moving averages. 

 

Table 6.25 Market variables (actual values) group statistics for the combination of 

DFE and plant loss events 

 ACTUAL VALUES MARKET CONDITIONS  

 Plant loss usual conditions (0) 

 Usual conditions (0)  DFE<-644 MW (1b)  DFE>750 MW (1a) 
DEPENDENT 

VARIABLE 

 Mean Std Error  Mean Std Error  Mean Std Error 

AOV  308.3 2.4  547.0 14.0  215.2 7.4 

ABV  -1080.6 4.2  -802.8 17.7  -1546.7 21.2 

Demand  33766.9 39.3  36285.2 142.7  37017.7 138.6 

GCIV  -897.8 5.7  -1107.1 29.7  -578.3 26.0 

NIV  -1062.7 5.3  -536.4 26.2  -1528.1 24.4 

SBP  33.6 0.5  39.9 1.1  40.7 1.8 

SSP  9.4 0.0  11.0 0.4  10.3 0.1 

 

 ACTUAL VALUES MARKET CONDITIONS  

 Plant loss  (2) 

 Usual conditions (0)  DFE<-644 MW (1b)  DFE>750 MW (1a) 
DEPENDENT 

VARIABLE 

 Mean Std Error  Mean Std Error  Mean Std Error 

AOV  306.7 12.8  513.1 80.1  229.5 48.4 

ABV  -1036.8 24.8  -840.4 125.9  -1478.5 131.6 

Demand  35837.8 219.8  37586.9 657.8  37760.4 757.5 

GCIV  -889.7 29.1  -1163.6 242.4  -630.3 154.7 

NIV  -1013.3 30.9  -564.0 159.0  -1439.1 163.4 

SBP  38.7 2.8  43.9 5.6  55.5 12.2 

SSP  10.6 0.4  11.7 0.6  11.0 0.9 
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Table 6.26 Market variables (deviation from moving average) group statistics for 

the combination of DFE and plant loss events 

 DEVIATION FROM MOVING AVERAGE  MARKET CONDITIONS 

 Plant loss usual conditions (0) 

 Usual conditions (0)  DFE<-644 MW (1b)  DFE>750 MW (1a) 
DEPENDENT 

VARIABLE 

 Mean Std Error  Mean Std Error  Mean Std Error 

AOV  -3.66 1.6  86.67 8.0  -22.53 5.3 

ABV  6.94 2.3  93.04 9.3  -212.59 11.2 

Demand  -88.01 16.7  409.94 63.1  392.67 58.8 

GCIV  3.37 3.0  -119.96 14.5  76.33 13.1 

NIV  0.63 2.7  183.45 12.4  -207.05 12.1 

SBP  -0.79 0.4  2.65 1.0  8.15 1.5 

SSP  0.00 0.0  -0.10 0.3  -0.30 0.1 

 

 DEVIATION FROM MOVING AVERAGE  MARKET CONDITIONS 

 Plant loss  (2) 

 Usual conditions (0)  DFE<-644 MW (1b)  DFE>750 MW (1a) 
DEPENDENT 

VARIABLE 

 Mean Std Error  Mean Std Error  Mean Std Error 

AOV  -21.98 9.1  93.76 50.5  3.13 30.2 

ABV  21.86 14.3  156.58 65.4  -228.12 64.5 

Demand  1066.36 101.0  1051.79 345.7  1054.74 355.0 

GCIV  -21.10 16.6  -55.21 86.6  73.11 67.3 

NIV  14.46 16.3  258.25 86.8  -197.79 66.5 

SBP  1.74 2.5  1.71 4.5  19.38 6.9 

SSP  0.78 0.3  0.27 0.9  0.15 0.5 

 

The significance of the difference in the variable dynamics for the combination of 

plant loss and DFE events is presented in Table 6.27. As in previous cases, the table 

contains for each dependent variable the f-statistics for the increments and 

decrements between the two periods before the event and the two periods after the 

event. 
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Table 6.27 Repeated measurements univariate significance results 

 REPEATED MEASUREMENTS UNIVARIATE SIGNIFICANCE RESULTS  

 (t-2)-(t-1)  (t-1)-t  t-(t+1)  (t+1)-(t+2) DEPENDEN

T VARIABLE 
 

F 
(Fcrit=3,84) 

Sig.  
F 

(Fcrit=3,84) 
Sig.  

F 
(Fcrit=3,84) 

Sig.  
F 

(Fcrit=3,84) 
Sig. 

AOV  0.06 �  0.32 �  5.18 �  6.7 � 

ABV  0.28 �  0.52 �  0.94 �  0.14 � 

Demand  0.046 �  0.03 �  0.71 �  1.15 � 

GCIV  0.13 �  0.13 �  0.81 �  0.17 � 

NIV  0.5 �  0.45 �  6.16 �  1.9 � 

SBP  1.22 �  0.014 �  1.7 �  0.86 � 

SSP  0.38 �  0.05 �  0.82 �  0.62 � 

 

All the results show that the combination of DFE and plant loss events does not 

have any significant impact on the market conditions. It is possible to attribute these 

results to the lack of market reaction to the plant loss event. It is important to 

mention that these results refer only to the multiple combination of events and they 

do not contradict those obtained for DFE or plant loss when considered 

independently. 

 

6.7.4.6 REM & Plant loss Events 

The results for the combination of REM and plant loss events are presented in 

Appendix 3 following a similar format to the one described for the combination of 

DFE and plant loss events.  

The results presented in Tables A3.16 to A3.20 show that this combination of 

events does not have a significant impact on the dependent market variables. 

As for the DFE and plant loss events combination this can be due to the lack of 

market reaction to plant loss events. 
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6.7.4.7 DFE & REM Events 

The results for the combination of DFE and REM are presented in Appendix 3 

following a similar format to the one described for the combination of DFE and 

plant loss events.  

Despite of the strong effect that each of these events has over the market condition, 

the results presented in tables A3.21 to A3.25 show that their combination 

significantly reduces their effect over the market variables. 

The overall significant test exceeds the threshold value of Fcritical showing that these 

conditions have an overall impact on the market conditions. However, the 

univariate results show a non significant reaction of NIV and SBP for the actual 

variable values, and also present a reduction in the significance of the reaction of 

ABV and the GCIV variables for the deviation from moving average analysis. 

These results can be explained from two different perspectives. The first one is the 

compensating effect that the simultaneous combination of these events may have in 

some particular cases. For instance, the market reaction to DFE events below the 

lower DFE threshold is compensated with the market reaction to REM events 

below REM lower threshold. Another similar case is the combination of to DFE 

events above the higher DFE threshold with REM events above REM higher 

threshold. The second reason to explain the reduced significance of the events 

combination is the number of cases that verify the imposed conditions. In this way 

the number of cases that simultaneously combined DFE and REM events is 

significantly less than when considering each event independently. This can be 

observed in the high values obtained for the standard errors for this case. Low 

number of observances with high standard errors results in less significant 

differences between groups. 
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6.8 Conclusions 

ANOVA/MANOVA techniques prove to be effective, flexible and customisable 

tools for the analysis of unusual events. The results allow evaluating not only the 

instant actual market reaction in absolute variables values, but also the market 

relative reaction in the form of variables deviations from their moving average. 

Moreover, the repeated measures analysis provides an insight of the variables 

evolution before and after the events. 

When considering the effect over actual variable values, DFE events are the ones 

with the most significant impact over the market variables. However for the 

deviation of the variables from their moving average, both DFE and REM have 

similar significant results. Plant loss events are the event with less impact over the 

market variables.  

The long market conditions have an effect over the market reaction and even 

modify what could be considered theoretical market reactions. For instance, in the 

event of demand greatly exceeding its forecast, under ideal 0MW market length 

conditions, accepted offers would be the variable that would counterbalance this 

forecast error. However, the long market conditions result in a market reaction 

driven by a more significant decrease in the bid acceptances than the increase in the 

offer acceptances. Therefore, ABV is the more affected variable for the events 

conditions.  

The results also show that the BM provides the market with the mechanisms needed 

to correct unusual events. Therefore, a general conclusion of this analysis is the 

robustness of NETA. 
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Conclusions and Future work 

7.1 Conclusions 

The introduction of competition and deregulation in electricity markets is not a simple 

change. In England and Wales the market shifted from a centralised Pool to NETA 

which was designed to encourage bilateral trading and to minimize centralised actions.  

This change created a wide range of challenges for all market participants, including the 

SO, to optimise their strategies in order to maintain or increase their revenues and 

profits. The changes resulted thus not only in new questions but also in the need to 

explore new ways to achieve their answers. 

CHAPTER 7 
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Another important characteristic of NETA was its prolific data generation. The analysis 

of this data provides the possibility of gaining better insight into the market behaviour. 

NETA is thus the perfect environment to test the combined application of data mining 

techniques and classical techniques to the analysis of electricity markets.   

This thesis contributes to the development of new methodologies for the analysis of   

new structured electricity markets.  To achieve this, the thesis unfolds in two different 

directions: the modelling and forecast of the market volume, and the analysis and 

characterization of unusual market conditions.  

7.1.1 Forecasting the Net Imbalance Volume 

The Net Imbalance Volume (NIV) represents the total net energy that the SO must buy 

or sell in the forward market or through the balancing mechanism to keep the system 

balanced. From the perspective of a system operator, it is a key market variable to 

forecast since knowing in advance NIV values allows the SO to purchase this energy on 

the forward market. This approach usually helps minimize the total balancing cost. 

From the participants’ perspective, it is also a very important variable since its forecast 

can help them plan a competitive market position for the balancing mechanism. 

The one-dimensional approach, described in Chapter 4, shows that traditional 

forecasting techniques do not provide a feasible solution for forecasting horizons longer 

than one-day ahead. However, the techniques used for the analysis of the series help 

uncover NIV’s complex structure.  

The introduction of other market variables expands the analysis of NIV to a 

multidimensional perspective. Exploratory classical techniques in combination with 

data mining provide the necessary tools to uncover non-linear relations between these 

variables and identify the best predictors for the variables to be forecast. The application 

of recently developed data mining techniques based on neural networks offers a much 

better performance than conventional forecasting techniques. However, to maintain a 

reasonable accuracy, these networks must be updated on a regular basis. 

While the results presented in Chapter 5 demonstrate that the proposed approach yields 

forecasts that are useful, it is clear that the accuracy of forecasts of market variables is 

still much lower than the accuracy that one can achieve when trying to predict daily or 
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weekly load profiles. However, the true measure of improvement when forecasting 

market imbalance volumes is not an abstract error index but the savings in balancing 

costs that this improvement makes possible. With a one-month-ahead time scale in 

particular, the 20% error reduction in the forecasted volume that the proposed method 

achieves makes possible a significant increase in the amount of energy that can be the 

traded in the forward market. 

The analysis of unusual events in the England and Wales balancing mechanism opens a 

new line in the analysis of electricity markets. The analysis of unusual events is a 

complete analysis of both the causes that create the unusual conditions as well as the 

effects they have on the market operation.  

From a methodological point of view, this thesis does not only presents a systematic 

approach for single events analysis but it also introduces a multidimensional 

perspective, considering multiple unusual market conditions that can coexist in time, 

and the effect that these conditions have over multiple market variables. 

The analysis of the events has taken three different perspectives to define and 

characterise the events, to determine their duration and to calculate their average return 

period: 

• The event characterisation results highlight the differences between possible 

events occurring in the market.  

• The duration analysis results indicate that single events do not extend in average 

for more than 1.5 hours (3 periods); the extension of the duration analysis to the 

possible occurrence of multiple events reflect that events do not occur in a 

consecutive manner but they happen either simultaneously or separately by at 

least one unit of time. 

• The return period analysis shows that unusual values of market variables, in the 

more realistic multiple event scenario, are not infrequent; in fact, during an 

average day 5 or more events of different natures can happen.    

The first challenge of the consequences analysis is to find appropriate techniques to 

develop a well-founded and flexible methodology which considers single and multiple 

events as well as multiple dependent variables, and combines both the instantaneous and 

dynamic performance of the market variables. The second challenge is to overcome the 
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practical restrictions that are imposed by the data sets. Due to young market conditions, 

there are not enough data to create a highly reliable reference model; also the existing 

data imposed simplifications on the analysis such as, the consideration of plant loss 

events as instantaneous events due to the unavailability of information regarding the 

units’ back to service time.  

All these difficulties are overcome by the adaptation of ANOVA/MANOVA analysis. 

This technique defines not only the market status for event conditions and its dynamics 

but also measures their significance when compared with normal market situations. The 

results prove that unusual market conditions affect the balancing mechanism variables 

that refer to the actions involved in counterbalancing the event’s conditions. Moreover 

the prevalent and non-ideal long market usual conditions modify the theoretical reaction 

one could anticipate under balanced conditions.  Nevertheless, the market design is 

robust  and can absorb unusual events at least to the extent of the magnitude found in 

our data.  

Finally as overall view, the newly developed techniques provide answers to some of the 

new questions that arise from the complex operation of liberalised electricity markets. 

Moreover, these techniques can also be adapted to other areas of market research. 

7.2 Suggestions for future work 

The recommendations for future work can be divided into groups: general 

recommendations and recommendations for other areas of analysis. The former presents 

possible ideas for the enhancement of the developed techniques and the later extends 

their use and application. 

The first group of recommendations provides ideas for further research in the line of 

NIV forecasting and events analysis: 

• The forecasting analysis has followed a point approach to NIV’s forecast. This 

point forecast combines the deterministic and probabilistic approaches since it 

estimates the median value of NIV. However the probabilistic approach could be 

expanded to provide complementary probabilistic output and include 

consideration of probabilistic inputs. The former approach would estimate the 

uncertainty of the forecast with lower and upper boundaries as well with a 
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prediction density. The latter would consider the uncertainties on the input 

variables. 

• The presented forecasting analysis has been focused on the forecast of actual 

values of NIV.  Combining the proposed multidimensional non-linear approach 

of this thesis with the line of analysis suggested by Zhou et al. (Zhou et al., 

2004) for electricity prices modelling, a possible expansion of NIV forecast 

could include the residual analysis. Besides forecasting NIV volumes, it could 

be possible to predict the errors and to modify the forecast to improve the 

accuracy. However it is important to keep in mind that NIV is much more 

changing and noisy than other variables like electricity demand and prices. In 

the case of NIV, it remains to be shown how much the forecast can be iteratively 

updated using the error and how much the error volatility can have a positive 

impact on the final forecast. 

• The next step in the events analysis would be to develop a methodology to 

forecast them. In events forecasting the aim is not to predict the value of a 

certain variable but to predict whether a certain event might take place in the 

future. In this way, point prediction techniques cannot be presented as an 

alternative since their performance is based on how well the prediction adapt to 

its real value, but in events forecast the objective is to detect the events and 

accurately locate them in time. Some work has been developed for univariate 

series for linear one-dimensional series to develop on-line alarm systems 

(Antunes and Turkman, 2002). However their possible application to a 

multidimensional non-linear framework opens a new path for analysis. 

The second group of recommendations provides ideas for further research under the 

new BETTA framework: 

• Expansion to participants’ analysis behaviour. Differences in bidding strategies 

between participants can be analysed in terms of their generating portfolio, 

vertical integration, geographic location and other discriminant factors. 

Unsupervised clustering learning techniques can be used to analyse the bidding 

pattern of the market participants. This analysis would also allow discovering 

possible gaming strategies and detecting the exercise of market power. A further 
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extension of this analysis could include the temporal evolution of the different 

patterns, and how participants react to external factor such as market rules 

changes. 

• Risk analysis of bidding strategies. Following the line of analysis presented by 

McClay et al. ((McClay et al., 2002). The risk analysis would consider the 

different strategies that participants use to deal with volume uncertainty and 

imbalance prices. Instead of the contracting strategy simulation line proposed by 

McClay this analysis would follow a bottom up approach by examining the 

actual data derived from the participants’ activity in the market to build up 

separate models for different strategies.  

• Combination of global market and participants’ analysis. The participants’ 

analysis would provide a structured model of how they contribute to the creation 

of some global variables (e.g. NIV) and their possible strategies. This 

exploratory analysis could also help the understanding of this complex market 

variable from some of their own components. 

• Advice price analysis. The advice price is the suggested price for the SO to trade 

volumes in the forward market. It is thus one of the components required to 

perform the trading advice, together with the advised volume (NIV forecast). 

The advice price is a function of the offers price, the bids price and the 

probability of reversal (i.e. the probability of the future trades requiring 

reversing actions in the balancing market). This analysis could combine the 

analysis of the elements that form the advice price to obtain an accurate method 

to calculate it. Both offers and bids prices could be modelled in the previously 

described participant’s analysis. The probability of reversal is the random 

component of the advice price. The analysis of NIV residuals would give a 

better understanding of the reversal effect and would improve accuracy when 

calculating this probability of reversal. Being able to forecast the participants 

bidding strategies and a precise knowledge of the reversal probability value 

would improve the advice price assessment. 
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