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The increase in distributed energy resources (DERs) in power systems presents society with

both opportunities and challenges. On the one hand, DERs tend to reduce carbon emissions,

introduce competition, and increase the flexibility to power systems. On the other hand,

DERs fundamentally disrupt the technical and economic nature of power systems. As a

result, they raise challenges such as less predictable load, more complex control of resources,

disruption of power flow patterns, and obsolescence of market designs.

This dissertation addresses five of those challenges: i) the need for models of building load

flexibility and ii) models of interaction between DERs and their aggregator, iii) the problem

of coordination among DERs, iv) the risk of market power abuse, and v) the long-term DERs

planning problem.

Regarding i), we present a data-driven and statistically robust model that describes the

flexibility of thermostatically controlled loads in buildings. The model’s simplicity makes it

suitable for a wide-range of power system applications such as economic dispatch, optimal

power flow, and reserve allocation problems.

Regarding ii), we present an interaction model for DERs and their aggregator that pre-

dicts their long-term equilibrium. Predicting the eventual equilibrium is valuable because



it predicts the aggregator’s behavior in the electricity market and profit allocation among

players.

Regarding iii), we present a mixed-integer linear program adaptation of the Datzing-

Wolfe decomposition algorithm for decentralized coordination of a building and a fleet of

electric vehicles (EVs). This algorithm is suitable for buildings and EVs whose operation is

coupled (e.g., by common infrastructure) and cannot formulate a joint problem due to data

privacy concerns or software impediments.

Regarding iv), we present a pricing mechanism that mitigates the market power of a

generic firm (e.g., a generator, a demand-side bidder, or an aggregator of DERs). The pricing

mechanism is attractive because it incentivizes socially optimal bids by the firm, requires no

private information to be formulated, and provides an instrument for the regulation of the

firm’s profit.

Finally, regarding v), we present a DER planning problem for deferral of capacity ex-

pansion (i.e., a non-wire alternatives planning problem) and an algorithm to solve it. Our

contributions in this domain are twofold. We explicitly model deferral of capacity expansion

an additional value stream of DERs and provide a scalable and tractable algorithm to solve

this non-convex, large-scale problem.
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Chapter 1

INTRODUCTION

1.1 A motivating example

Brooklyn, Queens, and other boroughs of New York City have experienced a booming popu-

lation during the past couple of decades. A consequence of fast growth is a sharp increase in

electric load. Con Edison, the local utility, has seen overloads in sub-transmission feeders in

Brooklyn since 2013. By the end of 2018, the utility expects overloads of circa 70 MW dur-

ing peak summer days [75] (see Fig. 1.1). Traditional upgrades to alleviate overloads (e.g.,

reinforcing the overloaded feeders or rerouting flows) are estimated to cost approximately $1

billion1 [53].

As an alternative to distribution system upgrades, Con Edison has proposed a blend

of DERs as “non-wire” alternatives (NWAs). The proposal includes distributed generation

(DG), demand response (DR), energy efficiency (EE), fuel cells, battery storage, etc. The

basic idea is simple: shaping the load to keep it below capacity limits using DERs.

At a cost of $200 million, Con Edison hopes to defer the $1 billion in traditional in-

frastructure upgrades for up to 10 years. Con Edison asserts that the time-value of money

resulting from deferred investment, environmental, and social benefits of clean DG [19] jus-

tify the $200 million investment. While some of the NWAs are planned to be utility-owned

and operated (e.g., utility-size energy storage), Con Edison anticipates that many would by

customer ownership and control, i.e., “behind the meter2”.

On its surface, the difference of Con Edison’s non-wire approach and traditional solutions

1This relatively high number is due to the difficulties of upgrading a complex underground distribution
system located in one of the densest urban areas in North America.

2“Behind-the-meter” resources are devices that are connected downstream from a customer meter.
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Figure 1.1: Forecasted demand in the Brooklyn-Queens area. (Image: Own elaboration.
Data: courtesy of Con Edison.)

seems innovative yet relatively inconsequential on the grand scheme of things. Traditional

solutions increase the system’s capacity (i.e., push up the capacity limit in Fig 1.1). Alterna-

tively, a non-wire approach shapes the load to keep it below the capacity limit. However, a

closer look raises questions about the simplicity of the trade-offs. The adoption of customer-

owned, distribution-level DERs is leading to profound technical, regulatory, and economic

changes in the utilities we conceive, plan, and operate electric power systems. These changes

motivate this dissertation.

1.2 The trend of decentralization of electric power systems

The presence of “behind-the-meter,” customer-owned resources in Con Edison’s service ter-

ritory is just a single example of a broader trend of decentralization and increasing adoption

of DERs in electric power systems [38]. As shown in Fig. 1.2, new installations of DERs

are expected to be about 80 GW for 2019 and just shy of 140 GW during the year 2024.

A couple of macro-trends drive the increasing adoption of DERs: evolution preferences (by

both the public and the government [150]) and technological improvements.

The evolution of preferences driving DER adoption manifests itself in a few ways. For

instance, increased environmental concerns by governments have resulted in incentives for
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Figure 1.2: Forecast of annual DER installations in the U.S. (Image courtesy of Navigant
Research Distributed Energy Resources Global Forecast, Q4 2015).

clean DG (e.g., the famously generous solar feed-in tariffs in Germany [18]) There is also

data that suggests that younger generations are more interested in adopting clean DG than

older ones are [83]. Another trend is the increasing interest among consumers in purchasing

local goods [24]. In the electric industry, this trend has emerged in the form of increased

peer-to-peer energy trading by DER owners, e.g., in [195]. The evolution of environmental

preferences and attitudes towards locally produced goods are not the only ones that directly

impact the propensity of the public to adopt DERs. According to a report by the consulting

firm PwC, 75% of the consumers interested in smart home devices are motivated by perceived

“enhanced security features” while 66% are motivated by “enhanced functionality [16]”.

The second macro-trend is improvements in DER technologies. The improvements lead to

cost reduction, better performance, and financial innovations. Reduction of DER production

and installation costs have occurred across virtually all technologies. For instance, as shown
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Figure 1.3: Median installed price of ≤ 10 kW residential PV solar systems.(Image: own
elaboration. Data: [28].)

in Fig. 1.3 , the median cost of a ≤ 10 kW residential PV solar system decreased from $8.4/W

in 2008 to $5.1/W in 2012 [28]. The cost of battery energy storage (ES) has also plummeted.

In less than ten years, the cost of ES decreased from $2,000/kWh in 2009 [12] to about

$350/kWh in 2016 [15]. Technological improvements have also yielded increased performance

(e.g., PV cell efficiency has improved by roughly a factor of 3 for most technologies [12]) and

convenience (e.g., the energy density of lithium-ion batteries has increased more than three-

fold since the 1990’s [12]). Financial innovation plays no minor role in the deployment

of DERs. New financial instruments such as power purchase agreements for small solar or

demand charge savings agreements for distributed storage make DERs attractive by reducing

complexity, risk, and upfront costs for customers [203].

Although macro-trends encourage DER adoption, the decision to buy an EV or install

a solar panel ultimately rests in the hands of customers. The transfer of decision-making

power from the utility to the customer is a pivotal change to the current utility model.
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1.3 DERs as disruptors of the old utility model

The electric industry faces a profound question [160]: what is the role of the modern utility?

Traditionally, a utility’s core job was to forecast and plan for changes in load and replace

equipment at the end of its useful life [136]. In the recent past, utilities have treated mild

penetration levels of DERs as passive load and have not changed their practices in meaningful

ways [160]. However, as projections show, future utilities will face higher levels of DER

penetration. The question then becomes: does the utility’s role include efficiently managing

large penetrations of DERs?

Some experts propose the creation of distribution system operators (DSOs). DSOs, simi-

lar to Independent System Operators (ISOs), their transmission-level counterparts, would be

responsible for efficiently managing DG, flexible loads, and other DERs [121]. Other experts

avoid the restructuring distribution-level operations and instead propose aggregators that

intervene between DERs and the wholesale electricity markets [43]. These two proposals,

DSOs and aggregators, are not mutually exclusive and are not the only ones under discus-

sion, e.g., fully decentralized peer-to-peer markets [195]. However the ultimate solution (or

mix of solutions) may look, the existing approach for managing distributions systems must

change to unlock the benefits and avoid the drawbacks of DERs [160].

1.4 Potential benefits and challenges of DER adoption

Although there is no single definition of the term DER, the New York Independent System

Operator (NYISO) defines DERs as:

“ ...“behind-the-meter” power generation and storage resources typically located

on the customers premises and operated for the purpose of supplying all or a por-

tion of the customers electric load. Such resources may also be capable of injecting

power into the transmission and/or distribution system, or into a non-utility local

network in parallel with the utility grid. These DERs include such technologies

as solar photovoltaic, combined heat and power (CHP) or co-generation systems,
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microgrids, wind turbines, microturbines, backup generators, and ES [12].”

In this dissertation, and in line with the New York Public Service Commission, we consider a

wider definition that includes DR, EE, and EVs [54]. In this section, we provide an extensive

(although non-exhaustive) list of the previously alluded to potential benefits and challenges

brought about by the adoption of DERs.

1.4.1 Potential benefits from adoption of distributed energy resources

In general, the benefits of adopting DERs can be either private or system-wide. However,

the magnitude and beneficiaries of the benefits are case-dependent. For instance, private

benefits are dependent on local incentive structures, utility rates, DER cost, etc. System-

wide benefits, on the other hand, can depend on the generation mix of the system, the degree

of DER control by the SO, among others. Some of the private benefits of DER adoption are:

• Customer electric bill reduction [12]. The means of reducing a customer’s electric

bill vary depending on the characteristics of the DER in question and on the environ-

ment at which they operate. Some DERs (e.g., ES, DR) are effective at reducing peak

demand charges [95, 115] while others (e.g., solar PV, EE) reduce the energy portion

of the bill, e.g., in [31]. Of course, decisions of how to invest on and operate DERs are

dependent on tariff structure, DER cost, etc [182].

• Increases in resiliency and reliability [12]. In fact, using small generators to main-

tain service during disruption of service is perhaps the oldest and most common appli-

cation of DERs [85]. Regarding newer technologies, ES (and even EVs [192]) is often

proposed to serve as backup generation. For example, Tesla3 heavily markets its home

ES device, the Powerwall, as a backup source of power during outages [6].

• Improving power quality. Many DERs interact with the grid via power electronic-

based inverters which can be controlled to improve power quality. For instance, the

authors of [20,26] show how power electronic converters can be used to mitigate various

3Tesla is a Palo Alto-based company that specializes in electric vehicles, solar energy, and energy storage.
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power quality problems such as harmonic distortion and voltage fluctuations.

• Remuneration for the provision of goods and services on wholesale or local markets.

For instance, Ortega-Vazquez et al. propose an aggregator-based framework whereby

EV owners are compensated for providing services in the wholesale electricity mar-

ket [156]. In [57], we show how a building can receive remuneration for wind-balancing

services.

• Private entities can take advantage of regulatory incentives of DERs. For instance,

thousands of German customers have taken advantage of solar incentives in the form

of generous feed-in tariffs [18]. In the United States, the federal government provides

up to $7,500 in tax credits for EV purchases [3].

• Finally, new business opportunities. Tesla’s solar division (formerly SolarCity),

provides various solar-related services including financing, integration, and PV panel

design [7]. Furthermore, aggregator/energy services/energy analytics companies such

as Drift [2], Centrica [1], EnerNOC [4], and others have recently emerged to fulfill

formerly inexistent (or unidentified) gaps in the electric energy industry.

Even when DERs are installed and controlled in pursuit of private benefits, they may

produce secondary system-wide benefits. For instance, locally, DR allows customers to reduce

peak demand charges. From a system-level point of view, DR can increase the efficiency of

a power system by introducing elasticity to the demand side. In other cases, however, the

benefits may be more exclusive to the power system-level, e.g., increased renewable hosting

capacity. Some system-wide benefits of DER adoption are:

• Increased economic efficiency. At its core, the business of being a utility is to sell

energy and capacity at an acceptable level of reliability. Some experts argue that DERs

will slowly permeate the market, erode the natural monopoly of the utility, and ulti-

mately compete with utilities [62] to bring down electricity prices. Additionally, DERs

introduce elasticity and price-responsiveness to the electricity demand. Evidence sug-

gests that price-responsive demand helps mitigate the risk of market power [172,223].

DERs such as DR and ES can also reduce the need for expensive peaking generation
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by “flattening” the load.

• Reduced greenhouse gas emissions via decreased transmission and distribution

losses4, increased efficiency (e.g., through CHP technologies), cleaner generation (e.g.,

rooftop solar and wind), among others [12] .

• Increased power system flexibility5. From an economic point of view, some DERs

introduce elasticity and price-responsiveness to the demand. However, from a technical

point of view, they introduce flexibility to the power system. Flexibility is crucial to

increase the system’s capacity to host renewable energy resources.

• Increased reliability, resiliency, and power quality. For instance, microgrids

with DG have been proposed to increase the reliability and resiliency of service to

customers in distribution systems [51, 126]. Furthermore, under proper coordination

techniques, DERs contribute to improved power quality in distribution systems, e.g.,

in [194].

• Ability to substitute traditional infrastructure projects. As discussed in depth

in Chapter 7, DERs can serve as NWAs to capacity expansion projects. In essence,

DERs can curb peak load growth to avoid or defer expensive projects.

• DERs can spur economic growth and job creation in economically depressed areas.

The New York Times article [167] points out that while current President Donald “Don

the Con” Trump, focuses on making America great again by sending people back to

the coal mines, the wind and solar industry employ three times as many Americans as

coal. Furthermore, renewable energy jobs tend to be relatively high-paying (e.g., solar

panel installers) while coal mining jobs are notoriously dangerous.

• National security. Distributed renewable generation can contribute to national se-

curity by lessening the nation’s dependence on foreign fuels [217].

4DG tends to reduce flows in the transmission and distribution system because it tends to be closer to
the load.

5Power system flexibility is the ability of the system to respond to changes in demand or supply within
a given time frame [52].
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Figure 1.4: Illustration of the “duck curve” (left) and ramp requirements (right) in Califor-
nia ISO (image courtesy of Greentech Media and data from the U.S. Energy Information
Administration).

1.4.2 Challenges of increased penetration of distributed energy resources

The many potential benefits of DERs are accompanied by just as many challenges. Some of

the challenges include:

• Changes to load patterns and increased uncertainty. A well-known example is

the so-called California “duck curve” which is caused by large injections of solar power

at midday (see Fig. 1.4). The duck curve is a challenge to both operators and planners.

Operators now must schedule more ramping and reserves to cover rapid and uncertain

changes in net load. From a long-term standpoint, a new load pattern likely obsoletes

California’s current generation mix.

• Changes in the nature of the load. Traditionally, load composition, individual

(or business) preferences, and weather dictate load patterns. Except for load-shedding

events, state of the power system does not affect the load [76]. However, customer
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g exposure to power system variables (e.g., prices, direct load control signals [22])

increasingly makes the load behave in a closed loop-like fashion.

• Complex planning for utilities. One traditionally job squarely in the hands of a

utility is to decide when to expand the distribution system and generation capacity to

meet growing load [86, 173]. However, the decision to adopt DERs often rests in the

hands of the customers. The decentralized nature of DER adoption poses significant

changes to the utility planning process: uncertainty on the characteristics of the distri-

bution network, impact of the changing behavior of the downstream distribution grid,

new interconnection studies and procedures, etc [109].

• The evolving nature of the utility-customer relationship and the emergence

of new players. The load and customers are traditionally passive actors. Nowadays,

the demand is becoming more active [160], to the point that some are envisioning a

widespread emergence of “prosumers [170]”. Furthermore, new players in the distribu-

tion system are emerging as a result of widespread adoption of DERs, e.g., aggregators.

Chapter 4 explores how these changes and new players influence the customer-utility

relationship.

• More complex coordination processes. For instance, absent two-way power flow

capabilities, DG must be coordinated to ensure that no reverse flows occur in distribu-

tion systems. Furthermore, some of the system-wide benefits of DER adoption (e.g.,

improved power quality) involve DER coordination. Without proper coordination, in-

tended benefits can become disadvantages. For instance, Olsen et al. argue that the

roll-out of home energy management systems (HEMS) must be coordinated to avoid

damages to distribution infrastructure [153]. Similarly, but from an operational point

of view, Sarker et al. show that without coordination of HEMS and EVs, distribution

transformers risk an accelerated loss of life [181].

• Financial regulation and utility incentives. Two major incentives drive much of

the decision-making of regulated utilities: 1) capital investments (to set rates as high

as possible) and 2) the sale of as much energy as possible (to maximize revenue) [161].
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These incentives are in direct contradiction to the adoption of DERs because 1) DERs

are usually installed not by the utility but by private or third parties, and 2) most

DERs decrease the amount of energy sold by the utility (e.g., EE, DG). Regulation

and utility incentives must be modified to achieve a socially desirable number of DERs.

• Obsolete market designs. Current markets must be modified to properly value

DERs and mitigate undesirable side-effects of their adoption. For instance, Negash

et al. identify cases where conventional cost allocation techniques for DR are “un-

fair [145].” An example of an undesirable side-effect of DER adoption is that gen-

erators in the U.S. faced a $2 billion revenue shortfall in 2015 due to rooftop PV

generation [204]. Furthermore, without proper DER compensation schemes, socially

unjust cross-subsidies can emerge [74] and the infamous “utility death spiral” [63] can

negatively affect utilities. Another problem is that strategic actions by DER aggrega-

tors can negatively affect system welfare [58,151,178], e.g., by exerting market power.

Of the many challenges and potential benefits that come alongside DERs, this dissertation

investigates five of them:

1. One promising DER is DR. According to the Federal Energy Regulatory Commission

(FERC), is defined as “Changes in electric usage by demand-side resources from their

normal consumption patterns...” Heating, ventilation, and air conditioning (HVAC)

systems are widely considered as some of the most promising sources of DR. However,

to attain effective DR control strategies, one must understand the capabilities of flex-

ible HVAC systems. Chapter 3 presents a data-driven methodology to estimate the

flexibility of HVAC systems in buildings.

2. DERs are almost always too small to participate in wholesale markets. A common way

to enable DERs to participate in the market is through aggregators who amass enough

capacity and then act as middlemen between the DERs and the market. Chapter 4

presents a model of the interactions between the aggregator and its constituent DERs.

We show that although short-term of this relationship can be inefficient, Pareto-optimal

cooperative outcomes are achievable when DERs and aggregators interact continuously
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(which it is likely to occur in practice). Sound models of the aggregator-DER relation-

ship are indispensable to predict their effects on the rest of the power system.

3. In some cases, multiple DERs may need to coordinate to achieve a goal, satisfy common

operating constraints, bid into the market as a single block, etc. However, privacy

concerns or software incompatibilities may make it impossible to formulate a joint

optimization problem to achieve optimal coordination. In Chapter 5, we propose a

mixed-integer linear programming adaptation of the Dantzing-Wolfe Decomposition

Algorithm (DWDA) that solves the joint problem of an EV aggregator and an energy

management system of a building. The algorithm is guaranteed to reach the optimal

solution6, preserves the privacy of both entities, and is shown to be scalable.

4. A notorious problem of imperfect markets is market power – the ability to act strate-

gically (in a market) for private gains at the expense of social welfare. Up to now,

most work focuses on the market power of generators. While some partial mitigation

techniques exist, no definitive solution exists. As we show in Chapter 4, aggregators

can achieve cooperation with a large number of DERs, making them potentially large

players in the energy market. Furthermore, a heterogeneous composition of their con-

stituent DERs make the aggregator’s behavior completely different from that of large

generators, e.g., aggregators could be net producers, consumers of energy, or both.

Chapter 6 proposes a pricing mechanism that mitigates the market power of an ar-

bitrary firm (e.g., large generator, flexible demand, ES, etc.) acting strategically in

an electricity market. Under the assumptions outlined in the chapter, we show that

the proposed pricing mechanism incentivizes socially optimal bids, requires no private

information to be formulated, and allows for the regulation of the firm’s profit.

5. Finally, Chapter 7 addresses the NWAs planning problem. We propose a long-term

planning problem of NWAs for deferment of traditional capacity expansion. Because we

consider both investment and operation cost over planning-length horizons (decades),

6In a finite number of iterations. Every iteration delivers a feasible solution.



13

the problem is very high-dimensional. Furthermore, the time-value of money of tradi-

tional capacity expansion makes the problem non-convex. We tackle the dimensionality

issue by decomposing the problem using the DWDA. We tackle the non-convexities by

decomposing the DWDA master problem. All in all, the contributions of Chapter 7 are

from a modeling perspective (because we consider delaying traditional investments as

an additional value stream) and computational perspective (for the solving algorithm).
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Chapter 2

CONTRIBUTIONS OF THIS DISSERTATION

This chapter provides background to each of the problems addressed in each chapter and

summarizes our contributions.

2.1 Chapter 3: Modeling the Flexibility of Building Loads

The increasing presence of control and communication equipment in the demand-side has

allowed it to take part in the vital task of balancing supply and demand. For instance,

controllable electric vehicle (EV) chargers [108], grid-connected thermostats [111], and other

“smart” appliances [171] could receive signals from an operator (e.g., building manager,

utility, or system operator) and modify their behavior to match the electricity supply.

However, the system operator (SO) must have predict which load profiles are attainable

to formulate effective load control policies. That is, the operator would like to know the set

P of feasible load profiles from which to choose the “best” one1.

For instance, on its most basic form, the economic dispatch (ED) problem is typically

formulated as the convex, linearly constrained optimization problem [118]

min
gi

∑
i∈G

Ci(gi) (2.1a)

s.t.
∑
i∈G

gi = p (2.1b)

where the objective is to minimize the dispatch cost of the set of generators G while satisfying

a total hourly fixed load of p. The variable gi is a vector of hourly output of generator i and

1The best load profile could be, for instance, the one that achieves the lowest system cost or the higher
renewable energy utilization.
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Ci is its cost function.

In the classical ED problem described by Eqs. (2.1), only the supply-side of the problem

can be adjusted to minimize costs. In the old days, when hand-operation of loads by end

users was the only way to adjust the demand-side of the power balance equation, it made

sense to focus on optimizing the supply-side of the problem and treat the hard-to-control

demand side as a fixed parameter. However, with controllable demand, we could reformulate

the classical ED problem as

min
gi,p

∑
i∈G

Ci(gi) (2.2a)

s.t.
∑
i∈G

gi = p (2.2b)

p ∈ P (2.2c)

where p are decision variables constrained by P . Under this reformulation, the operator now

has the ability to choose the p that achieves a lower cost.

2.1.1 Problem

Unfortunately, knowing P is practically impossible. The set P may depend on hard-to-

predict factors like building occupancy, ever-changing characteristics like appliance perfor-

mance, or hard-to-quantify physical processes such as thermal dynamics. Moreover, create a

perfect model of P , its complexity may be an impediment to common power system frame-

works like the ED problem.

Then it is reasonable to use a simpler model of P for decision-making purposes. The

model P̂ must have two important properties: tractability and robustness. What we mean by

the former is that the model must be computationally tractable when used in typical power

system applications. For instance, since the traditional ED problem described by Eqs. (2.1)

is a linearly constrained convex optimization problem, P̂ needs to be described using linear

constraints. What we mean by robustness is that a load profile p contained in P̂ must also
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Figure 2.1: Illustration of the feasible region of the load and a (hypothetical) thermal dynam-
ics function. With a complicated non-linear dynamics function such as the one illustrated
here, P is too complex for common power system frameworks.

be included in P to an α-degree of confidence. Tractability is an important property because

we want P̂ to be usable. Robustness is important because we do not want to choose load

profiles not contained in P . When p∗ is /∈ P two things may happen:

1. p∗ is not realized in operation, causing a deviation in the operator’s plan or

2. p∗ is “forced” by violating some of the constraints that describe P , e.g., by violating

indoor temperature requirements.

2.1.2 Proposed solution

In Chapter 3, we consider buildings whose source of flexibility is their HVAC load and

propose a data-driven methodology to find a tractable and robust model of their load. Besides

tractability and robustness, the methodology requires only easy-to-gather and coarse data

(e.g., building load and average indoor temperature). This last quality makes our method

widely applicable and not exclusive to buildings equipped with sophisticated data-gathering

equipment.

One of the reasons P for HVAC loads may be complicated is the complexity of the load-

indoor temperature relationship (see Fig. 2.1). This relationship is relevant the building load

is constrained to be in the set of load profiles that deliver acceptable indoor temperatures. We
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achieve tractability by describing the model P̂ as a polyhedron, i.e., using exclusively linear

constraints. Then, we can reformulate Problem (2.2) by using P̂ in lieu of the complicated

P :

min
gi,p

∑
i∈G

Ci(gi) (2.3a)

s.t.
∑
i∈G

gi = p (2.3b)

p ∈ P̂ . (2.3c)

The simplicity of P̂ makes the transition from the classical formulation shown in Prob-

lem (2.1) to the controllable-demand formulation of Eqs. (2.3) straightforward. Like the

former, the latter is a linearly-constrained problem. Our method stands in contrast to works

like those in [48,93] which employ complicated neural network functions to describe P̂ .

We achieve robustness by estimating the load-indoor temperature relationship (an exam-

ple is shown in Fig. 2.1) of a building via a prediction band. The prediction band stands in

contrast to the well-known resistance-capacitance (RC) circuit model which provides a cen-

tral prediction [89,96,133,169]. As illustrated in Fig. 2.2, a central prediction risks scheduling

load profiles that are not feasible during operation. A prediction band, on the other hand,

provides higher confidence that the planned load is attainable during operation.

2.2 Chapter 4: Modeling an Aggregator

Individual DERs are typically too small to participate in wholesale electricity markets [14,

166]. The DERs’ inability to participate in the market is unfortunate for both the DERs and

the power system. On the one hand, DERs are deprived of potential revenue streams. On the

other hand, the power system misses out on potentially more efficient providers of energy and

services. However, DERs can indirectly participate in the market by joining an aggregator.

The aggregator amasses enough capacity and participates on the DERs’ behalf [43]. Fig. 2.3

illustrates the framework whereby DERs participate in the market through an aggregator.
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Figure 2.2: Illustration of the robust approximation of the feasible region of the load (plot a)
and the feasible region based on the RC circuit model (plot b). In the proposed approxima-
tion, the upper temperature estimate is upper bounded by the maximum temperature limit.
Similarly, the lower temperature estimate is lower bounded by the minimum temperature
limit. The RC circuit model, on the other hand, limits a central estimate to be within the
minimum and maximum temperatures. Note that the RC circuit model may overestimate
the feasible region and lead to load profiles that are infeasible during operation.
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Figure 2.3: Illustration of the market-aggregator-DERs relationship.

2.2.1 Research question

Modeling a traditional power plant’s bid into the market is relatively straightforward. For

instance, if we assume that the market is reasonably close to perfect competition, it is

reasonable to assume that generator will bid close to their marginal cost. In the case of

an oligopolistic market, one can model generators as strategic and self-interested players.

Modeling how an aggregator bids into a market, however, more complicated. An aggregator’s

bids result from n DERs and at least one aggregator taking strategic actions. The central

question of Chapter 4 is:

Q1: How do we model an aggregator’s market bids?
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2.2.2 Our answer

The answer to Q1 depends on a second question:

Q2: What relationship does the aggregator (the bidder) have with its DERs (the energy

providers/consumers )?

IFor a traditional generator, the answer to Q2 is trivial: the bidder and the energy

provider are the same. However, this is not the case for aggregators and DERs. In Chapter 4

we start with the reasonable assumption that the DERs and aggregator are rational players.

Under this assumption, we quickly find out that their short-term relationship is “adversarial.”

We illustrate the adversarial nature of the relationship between the aggregator and its

DERs using a small example. Suppose a market price of λ = 2 and a small, behind-the-meter

generator with a production cost function of c(x) = 1
2
x2. If the generator sells directly into

the market, the first order conditions of its profit maximization problem2, λ−x = 0, dictates

that it should bid 2 units of energy into the market. In this case, the generator’s profit is

generator profit 1 = 2.

Suppose, on the other hand, that the generator does not have access to the market and has

to participate through an aggregator who offers the generator a price τ . If we assume perfect

information, the aggregator knows that the generator’s best move is to bid the energy price.

Then, if the aggregator offers a price of τ to the generator, the aggregator’s profit is

π(τ, x) = (λ− τ) · x = (λ− τ) · τ

where the second equality follows from the generator’s first order optimality condition. Then,

the aggregator’s profit-maximizing price is τ = 1 and the generator’s best move is to offer

2The generators profit is λ · x− 1
2x

2.
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the aggregator 1 unit of energy. In this case, the generator’s profit is

generator profit 2 =
1

2

and the aggregator’s profit is

aggregator profit 2 = 1

with a combined profit (generator profit 2 + aggregator profit 2) of 11
2
.

Notice that the combined profit is smaller than the generator’s profit were it able to bid

into the wholesale market. The smaller profit is the result of an adversarial relationship of

sorts in which an increase in τ results in gains for the aggregator but losses for the generator.

A natural question is, could the aggregator and the generator agree on an arrangement

that is better on a Pareto-sense? For instance, a generator offer of 2 units of energy a

τ = 1.5 would result in a Pareto-superior generator profit of 1 and an aggregator profit of

1. Unfortunately, the answer to this question is no. A better arrangement is not compatible

with rational players in the short term. The generator would see the price τ = 1.5, and

instead of offering the agreed 2 units of energy, it would maximize its profit by offering 1.5

units of energy.

In Chapter 4, however, we take a long-term view of the aggregator-DER relationship

and show that better strategies are compatible with rational players when they interact

continuously. This feature of continuous interaction is, we believe, more reasonable than

the single-game setting: aggregators and DERs are likely to interact for extended periods of

time. Then, using Nash Bargaining Theory [144], we show that the aggregator and DERs

are inclined to agree on a Pareto-efficient strategy and cooperate in the long term.

The results presented in Chapter 4 have a few implications:

1. We can model a cooperative aggregator and its DERs as a single entity that adopts the

Pareto-efficient strategy. This result is convenient from a modeling and a computational

point of view: modeling 1 player is easier than modeling n+ 1.

2. The statement above implies that many DERs acting as a single entity could, in theory,
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50 kVA

Figure 2.4: Illustration of DERs sharing infrastructure. In this case, a building and an
electric vehicle share a transformer.

exert market power. We explore this implication further in Chapter 6.

3. They serve as the starting point of a theoretical justification for the existence of direct

load control programs. These programs implicitly assume cooperation by loads and an

aggregator or utility.

2.3 Chapter 5: Coordination of Buildings and Electric Vehicles

As described in [141], multiple DERs can form energy collectives or microgrids and interact

with an aggregator, the system operator (SO), and/or the electricity market as if it were a

single DER. While a microgrid may interact with the “outside world” as a single entity, its

internal components may not be willing nor able to fully share information with each other.

The unwillingness or inability to share information can be a major impediment to centrally

formulate a coherent and optimal strategy to interact with the aggregator, SO, or electricity

market. This impediment is especially true if the DERs share common constraints. For

instance, Fig. 2.4 illustrates a case where an EV and a building share a transformer. Thus,

any feasible strategy needs to observe the transformer limit.

2.3.1 Problem

In Chapter 5, we consider a building and an EV fleet that face a problem with the structure

illustrated in Fig. 2.5. The building and EV fleet face a shared objective and share a set of

constraints, both functions of the building load, db
t , and EV load, dev

t . However, they also
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Figure 2.5: Visual representation of the building-EV demand scheduling problem. The
function f(db

t , d
ev
t ) represents the common objective. Equations Abxb = bb and xb ≥

0 represent the building constraints while Aevxev = bb and xev ≥ 0 represent the EV
constraints. Function g

(
db
t , d

ev
t

)
= 0 represents the coupling constraints.

have internal variables (xb and xev) and data (Ab, bb, Aev, and bev) that might encode

data that is private to either party. Furthermore, even if the building and EV fleet could

share private information, their algorithms, databases, or software may be incompatible or

hard to consolidate. Therefore, building and solving the problem illustrated in Fig. 2.5 in a

centralized manner may not be possible.

2.3.2 Solution

We propose a mixed-integer linear programming (MILP) adaptation of the Dantzig-Wolfe

Decomposition Algorithm (DWDA) to solve the problem depicted in Fig. 2.5. The solution

method allows us to treat the building and the EV constraints independently. The coupling

constraints, g, are handled by an independent master problem.

Our solution method addresses the following.

• Privacy concerns. Only essential information to build the coupling constraints needs

to be shared with the master problem solver. Thus, it is not necessary to share internal

variables/parameters such as appliance-level loads or individual EV charge/discharge

rates.

• Incompatibility of software, data, and algorithms. One of the virtues of the DWDA
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is that it allows us to deal with Abxb = bb and Aevxev = bev independently. Thus,

databases containing relevant data do not have to be merged. Furthermore, our method

allows us to solve each subproblem using algorithms and software of choice.

Furthermore, the DWDA has the following advantages.

• It delivers a feasible solution at each iteration (unlike Lagrangian-based approaches).

• It is a well-known algorithm. Computational [80, 98, 101] and privacy-related [77, 102]

enhancements are readily available.

• Its convergence is guaranteed3 in a finite number of iterations [66].

2.4 Chapter 6: Market Power

One of the most notable phenomena that can arise in non-ideal markets is market power.

Market power can take on a few different forms (see Section 6.1 for a brief overview). How-

ever, we consider firms bidding strategically to alter market prices for short-term gains.

Most of the studies, metrics, and solutions that concern to market power are aimed at

the generation side of the power system. For instance, CAISO uses the correlation of the

Residual Supply Index (RSI) with above-competitive-rates-markups by generators to detect

abuses in market power [190]. The focus on generation as a source of market power is

reasonable since generators have historically been the largest players in electricity markets.

However, market power from aggregators of DERs may become an issue as some re-

searchers have pointed out, e.g., in [58, 151, 178]. Notably, our work in Chapter 4 shows

how a robust DER-aggregator coalition can arise even from self-interested agents in non-

cooperative settings. Thus, in theory, an aggregator could amass enough DERs to rival the

size of a large power plant and exercise market power.

3For the LP case.
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2.4.1 Problem statement

We consider a single profit-maximizing strategic bidder (the “firm”) under a perfect infor-

mation setting and a market operator that maximizes social welfare as revealed by the bids.

By definition, strategic bidding increases (or at worst, does not decrease) the short-term

profit of the firm. However, society as a whole suffers, i.e., the social welfare is lower than

the social optimum. We model the two cases as the following optimization problems.

Strategic bidding

max {utility− q · λ} (2.4a)

s.t. (2.4b)

MC:

 λ, q = max {
∑

i utilityi}

s.t. system constraints

(2.4c)

Social optimum

max

{∑
i

utilityi

}
(2.5a)

s.t. system constraints. (2.5b)

Under strategic bidding, the firm’s objective is to maximize its utility minus costs. The

cleared quantity, q, and price, λ, are outcomes of the market clearing (MC) process. The

MC process is an optimization problem whose objective is to maximize the social welfare

as revealed by each player’s bid. In contrast, the socially optimal case maximizes the true

social welfare, i.e., when every player bids according to its real utility function.

2.4.2 Main contribution

The efficiency gap that results from strategic bids (i.e., the difference in social welfare for the

two cases) motivates the central contribution of this chapter: our market power mitigating

price (MPMP). In a nutshell, the MPMP is a pricing mechanism that induces the firm to

bid the social optimum.

The MPMP has the following characteristics:
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1. it induces the firm to bid according to its true utility function,

2. its formulation requires no private information,

3. it is firm-agnostic, i.e., it applies to firms that are producers, consumers, or prosumers,

4. it allows for the regulation of the firm’s profit.

The key insight that allows us to formulate the MPMP is that Problems (2.4) and (2.5)

can be recast as follows.

Strategic bid (1-level equivalent)

max {utility− q · λ}

s.t. system constraints (primal feasibility)

stationarity condition of MC

dual feasibility of MC

complimentary slackness of MC

Social optimum

(with redundant optimality conditions)

max

{∑
i

utilityi

}
s.t. system constraints (primal feasibility)

stationarity condition of MC

dual feasibility of MC

complimentary slackness of MC.

Both of the problems above are equivalent to their counterparts from (2.4) and (2.5). We

recast the strategic bidding problem as a single-level equivalent by replacing the lower-level

problem by its Karush-Kuhn-Tucker (KKT) optimality conditions. For Problem (2.5) we

included its own KKT conditions as redundant constraints. Notice that the strategic bid

and the social optimum problems above have the same feasible solution space, but their

objectives differ. The MPMP equalizes both objectives when substituted for λ.

2.5 Chapter 7: Non-wire Alternatives to Capacity Expansion

Electric utility distribution systems are typically built for peak load which usually happens

for a small number of hours per year. When the system load reaches capacity, the traditional

solution is to install more wires or reinforce existing ones [187]. While decades of experience

make this solution reliable and safe, it is often associated with enormous capital costs, hostile
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public opinion, and time-consuming legal issues [196].

However, planners today are increasingly considering DERs to reduce peak load and avoid

or defer traditional investments. In a long-term planning context, DERs are often referred

to as NWAs. For instance, the Bonneville Power Power Administration (BPA) is considering

DR, EE, and distributed roof-top solar as alternatives to a billion dollar transmission line

along the I-5 corridor [112]. At the distribution level, Con Edison deferred a 1.2 billion

dollar substation in Brooklyn, NY by contracting 52 MW of demand reduction and 17 MW

of distributed resources [212].

There are several reasons why NWAs are becoming more popular. The first that the

cost of technologies such as solar photovoltaics (PV) and ES is now at a point where they

can compete with traditional capacity expansion solutions. The second is that some DER

technologies are not new anymore and are slowly gaining the trust of system operators. Third,

the time-value of money makes deferring substantial traditional investments economically

attractive. The fourth reason is that delaying investments can mitigate risks of expected load

growth not materializing. The fifth and last reason is that projects like new transmission

lines are often politically infeasible. It is worth noting that these reasons are not exhaustive

and that each case has its own particularities.

2.5.1 Problem

The traditional capacity expansion problem at a single point in a radial network is relatively

simple: expand capacity as late as possible but in time to handle peak load. In contrast,

planning NWAs is significantly more complicated: one needs to determine both investment

decisions and operating decisions to predict their impact on peak load. Then, we decide

whether and when to expand capacity. Note the emphasis on the “when” question. We

explicitly model the present cost of capacity expansion to account for the benefits of deferring

infrastructure investment.

The NWA approach considers load shape, not just the peak load like the traditional

problem. We must recognize load shape in part because the operation of some NWAs like
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Table 2.1: Description of planning and operating variables for a planning problem that
considers four NWAs and a planning horizon of 20 years.

NWA planning variables operating vars./hr approx. # of variables

ES • energy capacity
• charge
• discharge
• state-of-charge

≈ 3× 20× 24× 365
≈ 525, 600

solar PV • installed capacity • solar output
≈ 20× 24× 365
≈ 175, 200

DR • DR capacity
• DR deployment
• demand rebound

≈ 2× 20× 24× 365
≈ 350, 400

EE • increased efficiency (%) • load reduction
≈ 20× 24× 365
≈ 175, 200

total ≈ 1, 226, 400

ES is coupled across time periods. Also, most NWAs have additional value streams that

traditional expansion does not. For example, solar generation reduces energy purchases from

the utility, DR may reduce the peak demand charge, and on-site dispatchable generation may

improve reliability, and so on. Therefore, a good plan must consider the multiple benefits of

NWAs and their operation over long periods of time (e.g., a few decades).

Simulating the operation of various DERs over a long-term planning horizon leads to a

large problem. For instance table, Table 2.1 approximates the dimension of a problem that

considers four NWAs (ES, PV, DR, and EE) and a planning horizon of 20 years. The planning

variables refer to investment decisions such as: is ES a viable option? If so, how big should

the system be? Or, should we invest in EE measures? The operating variables, on the other

hand, concern the short-term operation of each NWA and are typically made on an hourly

basis4. Note from Table 2.1 that even a problem that considers a small number of relatively

simple NWAs can be significantly large (more than 1× 106-dimensional). Additionally, the

variables and constraints that describe the timing of capacity expansion introduce further

difficulties in the form of non-convexities to the feasible solution space of the problem.

4For simplicity we consider hourly operating time-steps. In some cases, however, longer or shorter (e.g.,
15 minutes) time-steps may be desirable.
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2.5.2 Solution

The NWAs planning problem is hard to solve because it is large and non-convex. We tackle

the size issue be decomposing it into n subproblems and a master problem using the DWDA.

Each of the subproblems handles the investment and operating decisions of a NWA. The

master problem manages the timing of capacity expansion and is small because its variables

and constraints are in the order of years. Unfortunately, however, the master problem is

non-convex. Chapter 7 presents an algorithm to solve the master problem by decomposing

it into a small number or small linear problems.

2.6 Organization of this dissertation

The rest of this dissertation is organized as follows. Chapter 3 presents a tractable and

robust model of the flexibility of a building. Chapter 4 presents a model of the relationship

between an aggregator and its constituent DERs. We show how a self-interested DERs and

aggregators could end up engaging in a cooperative relationship. Chapter 5 presents a MILP

adaptation of the DWDA that can be used to coordinate a building and an EV fleet. Chap-

ter 6 presents a pricing mechanism that mitigates the market power of a strategic actor in

power system. Chapter (7) presents a NWA planning problem that minimizes the investment

and operating costs of NWAs and the present cost of traditional capacity expansion. We

also present an algorithm to solve this large-scale non-convex problem. Finally, Chapter 8

concludes this dissertation and provides suggestions for future extension of our work.
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Chapter 3

MODELING THE FLEXIBILITY OF BUILDINGS

3.1 Introduction

Power system flexibility is the ability to respond to changes in demand or supply within a

given time frame [52]. Traditionally, the primary (and usually sole) source of flexibility in

power systems is flexible generation resources, e.g., simple and combined cycle gas turbines.

Meanwhile, the load is treated as a fixed quantity to be followed by a flexible supply-side.

However, thermostatically-controlled loads in buildings (e.g., heating, ventilation, and air-

conditioning units, refrigerators, and water heaters) have the potential to provide flexibility

from the demand-side by altering their consumption to accommodate power variations [128,

133].

Benefits of increased power system flexibility include: infrastructure investment defer-

ral [22,60], increased renewable energy hosting capacity [130], higher economic efficiency [90],

and others (see, e.g., [30,179] and the references therein). However, to fully harvest the flex-

ibility of TCLs, challenges still exist. For example, the need for building models, data

privacy issues, and state estimation of flexible loads, [8,30,164]. The central contribution of

this chapter is a method that uses easy-to-collect data find tractable and robust building

models of load flexibility.

The concepts in bold font in the previous paragraph seem simple but are loaded with

meaning. We start by introducing the concept of load flexibility. Similar to [143], we

define load flexibility, or equivalently, the feasible region of the load P , as the collection of

load profiles that satisfy the user requirements, e.g., thermal comfort, technical limits.

We then turn to the concept of robustness. A model of P , denoted by P̂ , is said to be

robust if an arbitrary element (i.e., a load profile) of P̂ is also contained in P to a degree
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of certainty. Robustness is important because it ensures, to said degree of certainty, that a

load profile in the model is attainable by the physical building.

In this work, a model P̂ is said to be tractable if is easily incorporated into a desired

power system analysis frameworks. For instance, a model is said to be tractable with respect

to a mixed-integer linear program (MILP)-based unit commitment (UC) problem if it is

described by linear constraints. Other typical power system analysis frameworks include

optimal power flow (OPF), economic dispatch (ED), etc. [52,213,214].

3.1.1 Flexibility of heating, ventilation, and air-conditioning (HVAC) loads

We consider buildings whose source of flexibility is their HVAC loads1 and indoor temperature

is the only controllable comfort index. Since indoor temperature is typically allowed to be in

an allowable range, e.g., from 20◦C to 25◦C, it is possible that multiple HVAC load profiles

achieve proper indoor temperatures. Then, the building operator could choose a load profile

among the set of possibilities that accomplishes a power system-level objective, e.g., demand

response (DR), and satisfies indoor temperature requirements. However, the relationship

between indoor temperature and the electrical power consumption can be complex [27], and

finding the set of load profiles that map to appropriate temperatures is nontrivial.

This chapter presents a data-driven approach to appropriately model the feasible region

of a building load. We develop a model of demand-side flexibility that i) is computationally

tractable, ii) does not compromise occupant comfort, and iii) requires relatively simple and

easy-to-obtain sets of data. The model is easy to incorporate into common power system

analysis frameworks because it is described by a set of linear constraints and continuous

variables. The model is robust in the sense that it ensures (to a degree of confidence) that

a feasible load profile does not violate temperature limits. Finally, the approach uses small

amounts of relatively coarse data2: average indoor temperatures rather than zone-specific

1We consider heating and cooling loads because they are the most significant component of commercial
loads [207].

2Gathering fine-grained data may be expensive or not viable.
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temperatures and total building load rather than individual appliance loads. Not needing

fine-grained data makes the approach attractive to model buildings without instrumentation

at the appliance level (which is still the mostly the case). Our data-driven approach does

not rely on human inputs of architectural parameters.

3.1.2 Related works

Perhaps the most popular model of the relation between indoor temperature and HVAC load

is the resistance-capacitance (RC) circuit model (or RC model) [89, 96, 133, 169]. The RC

parameters are typically calculated from building specifications such as volume, insulation,

wall area, etc. The RC model is an easy-to-use linear representation of a building’s thermal

dynamics but its form is restrictive and calculating it may be costly and labor intensive. In

contrast, our method identifies the model using building-level metered data.

The works in [27, 91, 93, 105, 177] use metered data to identify building models. The

authors of [27] propose a maximum likelihood estimation of the RC parameters. Reference

[105] proposes an identification method of a “virtual battery” building model for system-

wide frequency regulation. Both models in [27] and [105] are well-suited for short prediction

horizons, e.g., 5 minutes. However, we are interested in longer prediction horizons, e.g., 24

hours. The authors of [91] present a model of internal building thermal dynamics identified

with room-level temperature data. In contrast, our model uses coarser data (e.g., average

zonal temperature rather than individual room temperature) that are easier to obtain.

Furthermore, models are mathematically simple and can be readily adopted in a wide

range of power system frameworks, unlike the artificial neural network models in [48, 93].

Our model is mathematically simple because exclusively employs linear relations. Thus it

can be easily embedded in most power system optimization and control frameworks. The

work in [177] is closely related to ours because it identifies a coarse (e.g., facility-level) model

of thermal dynamics that provides a single indoor temperature estimate. In contrast, our

approach offers robustness by modeling upper and lower indoor temperature estimates.
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Figure 3.1: High-level illustration of the method presented in this chapter. First (green
blocks), we cluster the training data. Each cluster identifies a model of the feasible region.
Then (red block), explanatory variables and training data clusters train the parameter of
a “model selecting function.” Finally (blue block), we use expected explanatory variable
values to select an appropriate feasible region model. The first two steps (green and red
blocks) are the training stages. The last step is performed during operation.

3.1.3 Overview of the proposed method

We divide our method into three tasks: data clustering, model fitting, and model selection.

First, we group similar training data points into a number of clusters. Clustering segregates

the training data by classes of thermal behaviors. Each data cluster fits a model of the

feasible region.

Each training data point is associated with a set of explanatory variables (e.g., outdoor

temperature, solar irradiation, or day of the week). The explanatory variables and the

training data clusters train a “model selecting function” that maps the explanatory variables

to feasible region models. During operation, the expected value of the explanatory variables

determines the feasible region model to use. Fig. 3.1 illustrates these three major tasks.

The major contributions of our work are:

• A method that describes the feasible region of a building’s load. First, we group the
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training data into C clusters of similar days. Then, we C train models of building

thermal dynamics using a technique we call bounded least squares estimation (BLSE).

Rather than providing a central indoor temperature prediction, the BLSE provides a

prediction band, i.e., upper and lower estimates of indoor temperatures.

• Validation of our models using EnergyPlus building data [64].

• A demonstration of how the proposed model can be used to mitigate discrepancies

between expected and actual wind power generation.

3.1.4 Organization of this chapter

This Chapter is organized as follows. Section 3.2 describes the model of a generic building

and defines the feasible region of the load. Section 3.3 introduces the tractable and robust

model of the feasible region. Section 3.4 describes the data and outlines the procedure

to estimate the feasible regions. Section 3.5 validates the model and compares it to the

traditional RC circuit model. Section 3.6 shows how our model can be used to mitigate

discrepancies between expected and actual wind power generation.. Section 3.7 summarizes

this chapter.

3.2 Preliminaries

We define the feasible region of the load as the set load profiles that meet power and indoor

temperature limits. The maximum power limit is the non-HVAC building load (or base

load) plus the installed capacity of the HVAC system. The minimum power limit is the base

load plus the minimum power of the HVAC system. The temperature limits are predefined

comfort limits.

3.2.1 Building thermal dynamics

The building thermal dynamics model describes the behavior of indoor temperatures of

as functions of the heating, cooling, and internal/external disturbances. There are two



35

quantities of interest per thermal zone: the stored energy and the temperature. The stored

energy, denoted by x, represents the thermal state of the building. The temperature of each

zone is denoted by θ and is constrained by comfort preferences of users. The thermal input

is denoted by u and represents actions of the HVAC system (energy is injected when heating

and withdrawn when cooling). The state x evolves as:

xt = gt(xt−1,ut−1),

where g is the state transition function. The indoor temperature at time t is a function of

the state and the input at the current time, i.e., θt(xt,ut).

We express the total building load, pt, as the sum of the HVAC load and the base load

pt = phvac
t + pbase

t . Then, ut a function of the total building load pt. Thus, we express the

indoor temperature at time t as a function of the load at t, the load at t− 1 and the state at

t− 1, written as θt(xt−1, pt−1, pt). Rolling out this relationship backward in time until t = 0,

we eliminate the dependencies on x1, . . . ,xT , and write θt as function of x0 and p0, p1, . . . , pt,

θt(x0,p0:t),

where p0:t =
[
p0 . . . pt

]>
.
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Figure 3.2: Illustration of the feasible region of the load and a (hypothetical) thermal dynam-
ics function. With a complicated non-linear dynamics function such as the one illustrated
here, the feasible region described by Eqs. (3.1) is too complex to be used in typical power
system frameworks.

3.2.2 Feasible region of the load

Given that the building operation is constrained by load and temperature limits, the feasible

set of load profiles is

P = {p | pmin
t ≤ pt ≤ pmax

t ∀ t = 1, . . . , T (3.1a)

θt(x0,p0:t) ≥ θmin
t ∀ t = 1, . . . , T (3.1b)

θt(x0,p0:t) ≤ θmax
t ∀ t = 1, . . . , T (3.1c)

p0:t =
[
p0 . . . pt

]>
∀ t = 1, . . . , T (3.1d)

p = p1:T}. (3.1e)

The symbol P describes set of load profiles that are within the minimum and maximum

load limits (pmin and pmax) and whose associated indoor temperatures are within comfort

limits (θmin
t and θmax

t ).

The set P is hard to characterize primarily due to the function θt (Fig. 3.2 for an

example). Finding a good approximation P motivates this work.
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Figure 3.3: Illustration of the robust approximation of the feasible region (plot a) and RC
approximation (plot b). In (a), the maximum temperature limits the upper temperature
estimate. Similarly, the minimum temperature limits the lower temperature estimate. The
RC approximation, on the other hand, bounds a central estimate to be between the minimum
and maximum temperatures. Note that the RC model may overestimate the feasible region.

3.3 A tractable and robust approximation of P

We look for two features of an approximation: robustness and tractability. The former is

important because the primary purpose of the HVAC system is to meet comfort levels while

servicing the grid is of secondary priority (if at all). The latter is important because a model

of P should be tractable in grid-related optimization and control problems.

An indoor temperature prediction band of arbitrary confidence achieves model robustness.

We limit an upper estimate to be under the maximum allowable temperature and a lower

estimate to be over the minimum. Our method stands in contrast to an central estimate

from the RC model [59, 89, 96, 133, 169]. Thus, the maximum temperature limit could be

violated when the RC model underestimates the indoor temperature. Similarly, the minimum
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temperature limit could be violated when the temperature is overestimated.

Incidentally, a prediction band is that it allows handling a diverse set of temperature

dynamics functions. Rather than linearly fit a potentially complicated thermal dynamics

function, we upper and lower bound the function. Fig. 3.3 illustrates how a linear prediction

band handles a complex function.

Tractability is essential to seamlessly incorporate our model of flexibility into existing

power system frameworks, e.g., the UC problem, OPF, among others. For instance, the

PJM Interconnection and California ISO implement their UC problems using MILPs [157,

175]. Similarly, most European market models are MILPs [46]. We achieve tractability

by a polyhedral approximating the feasible region of the load, P ( i.e., described linear

relations). Furthermore, the approximation is low-dimensional because we model average

indoor temperatures and building-level load.

Remark 1. In this work, we weigh zonal temperature by volume to determine the average

indoor temperature.

The mathematical simplicity of our model stands in contrast to neural network-based

models like the ones in [48,93]. While such models are useful for applications like local load

control, their non-linearities ill-suites them for MILPs.

Let the robust approximation feasible region be denoted by

P̂ = {p | p̂min
t ≤ pt ≤ p̂max

t ∀ t = 1, . . . , T (3.2a)

θ̂U
t (φin

0 , φ
out
t ,p1:t) ≤ θ̂max

t ∀ t = 1, . . . , T (3.2b)

θ̂L
t (φin

0 , φ
out
t ,p1:t) ≥ θ̂min

t ∀ t = 1, . . . , T (3.2c)

p1:t =
[
p1 p2 . . . pt

]>
(3.2d)

p = p1:T}. (3.2e)

The approximation has a similar structure to the set described by Eqs. (3.1). In (3.2),

however, the load p is constrained by load limit approximations (p̂min and p̂max). A more
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consequential difference is that upper and lower estimates describe indoor temperatures (θ̂U
t

and θ̂L
t ). The approximations of the maximum and minimum temperature limits (θ̂max

t and

θ̂min
t ) constraint the upper and lower indoor temperature estimates, respectively Fig. 3.3(a)

illustrates the approximation of P in one load dimension.

We achieve tractability by modeling θ̂U
t and θ̂L

t as affine functions of the initial indoor

temperature φin
0 , outdoor temperature φout

t , and load from 1 to t:

θ̂U
t (φin

0 , φ
out
t ,p1:t) = a>t p1:t + b

>
t

[
φin

0 φout
t 1

]>
(3.3a)

θ̂L
t (φin

0 , φ
out
t ,p1:t) = a>t p1:t + b>t

[
φin

0 φout
t 1

]>
. (3.3b)

The vectors at, at ∈ Rt relate the building load from time 1 to t, p1:t, to upper and lower

estimates of indoor temperature at time t, respectively. The vectors bt, bt ∈ R3 relate outside

ambient temperature and the initial indoor temperature to upper and lower approximations

indoor temperature at time t, respectively. The last element of bt and bt is the offset.

For each time period, the feasible region is described by the 6-tuple

Φt =
(
p̂min
t , p̂max

t , θ̂min
t , θ̂max

t , θ̂L
t , θ̂

U
t

)
and the collection of all Φt’s from t = 1 to t = T describe P̂ . The next section shows how

to find Φt from data.

3.4 Estimating the feasible region

We use time-series data of total building load, indoor temperature, and outdoor temperature

to find P̂ . The source of the data is EnergyPlus3 simulations of typical U.S. commercial

buildings [70]. While the data itself is simulated, the underlying data to construct the

models is real and characteristic of buildings in the U.S.

3EnergyPlus is widely used instead of building measurements that are rarely available to academic re-
searchers, e.g., in References [35,177,224]
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Figure 3.4: Load and indoor temperature time-series simulated data of a small office building.
Plot a shows load data for 300 summer days and plot b shows indoor temperature.

Fig. 3.4 shows simulated load and indoor temperature data for a small office build-

ing. In our work, we find that using 300 training days is sufficient to identify most of the

behaviors. Since buildings are typically designed to operate for years without significant

renovations [107], lack of data should not be a problem after a few months of operation.

While there are other pieces of information that could help to better approximate P , we

are interested in using small amounts of data. For instance, HVAC rather than total load

could result in more accurate approximations of the thermal dynamics. However, HVAC

data may not be readily available or gathering it may be costly [119].

3.4.1 Clustering

Each one of the training days is different from each other. For instance, the outdoor tem-

peratures of two days are never exactly the same. Therefore, each day k is associated with a

different Pk ∀ k ∈ K where K is the set of K training days. However, fitting one model per

day is difficult and of little use since no future day is exactly like any previous one. Instead,

we fit Ct different values of the Φt to capture the characteristics of distinct types of days. In

general, Ct is significantly smaller than K.

Denote the Ct different parameters of the load-indoor temperature relation, load, and
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temperature limits as {Φ1,t,Φ2,t, . . . ,ΦCt,t} where

Φc,t =
(
p̂min
c,t , p̂

max
c,t , θ̂

min
c,t , θ̂

max
c,t , θ̂

L
c,t, θ̂

U
c,t

)
.

Intuitively, one would like each set of parameters to model days that are similar to each other.

Thus, we cluster days that exhibit similar load-indoor temperature-outdoor temperature

relationships.

Specifically, we use the K-means clustering algorithm to partition the training set

Dt =
{(
pk,1:t, φ

in
k,0, φ

in
k,t, φ

out
k,t

)}
k∈K

into subsets used to train the different models. The training set contains data in different

units (temperature and power units) and likely different magnitudes. To accommodate the

magnitude differences, we normalize the training set to have an `2 norm of 1. We denote the

clusters of Dt that result from the K-means algorithm as {D1,t,D2,t, . . . ,DCt,t} where each

set Dc,t is associated with a subset of K denoted as Kc,t. The functions
(
θ̂L
c,t, θ̂

U
c,t

)
and the

rest of the parameters in Φc,t are trained from the data in Dc,t. The clustering method is

detailed in Appendix B.

3.4.2 Robust model of the load-indoor temperature relationship

The inputs of this portion of the algorithm are the training dataDt, the number of clusters Ct,

and the robustness tuning parameter α ∈ (0, 1). The robustness parameter α represents the

proportion of temperature observations allowed outside the prediction band. Thus, a smaller

alpha leads to a wider, more robust band. Conversely, a larger alpha leads to a tighter band.

The Case Study demonstrates how a small α leads to more aggressive provision of flexibility

but also to a higher risk of violating temperature limits. Appendix D details the mechanism

whereby α influences the robustness of the prediction band.

We use the data subsetDc,t to learn the parameters Φc,t (Fig. 3.5 provides an illustration).
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Figure 3.5: Illustration of the clustering and training algorithm. Each cluster of training
data Dc,t trains a corresponding set Φc,t.
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Figure 3.6: Illustration of (a) the BLSE and (b) traditional LSE. The former provides upper
and a lower predictions that minimize two weighted objectives: 1) the area between the
predictions and 2) the MSE of the points outside the prediction band. The latter provides a
central maximum likelihood estimator (MLE).
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Figure 3.7: Measured indoor temperature, indoor mean temperature estimate, and prediction
bounds for a sample day.

We use a least squares estimation (LSE)-inspired algorithm called “bounded least squares

estimation (BLSE)” to train the parameters parameters ac,t, ac,t, bc,t, and bc,t.

The classic LSE calculates a line that minimizes the prediction mean squared error (MSE).

The BLSE finds two lines (an upper and a lower prediction) that minimize two objectives:

1) the squared error of the points outside of the prediction band and 2) a measure of the

band area. The robustness tuning parameter α determines the weight of each objective and

influences the tightness of the prediction band. The tightness of the predictions affects the

outcomes of the model: overly tight predictions may overestimate the building flexibility

while looser predictions may deliver an overly conservative P̂ . Figure 3.6 illustrates the

classical LSE and contrasts it with the BLSE. Figure 3.7 shows measured indoor temperature,

mean indoor temperature estimate, and prediction bounds for a sample day. Appendix D

details the BLSE algorithm. .

3.4.3 Estimates of the temperature and load limits

In some ways, estimating the parameters of the functions θ̂U
c,t and θ̂L

c,t is easier than estimating

the temperature and load limits. The former is a supervised learning problem, while the

latter is unsupervised (since we do not directly observe the limits). We approximate the
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Figure 3.8: Illustration of the data and algorithm to train ξ̂t, an approximation of ξt. The
function ξ̂t selects the best set of feasible region parameters given the expected values of a
set of explanatory variables (e.g., outdoor temperature, day of the week).

temperature and load limits of cluster c as the highest/lowest observed values during days

in Kc,t. See Appendix C for details.

3.4.4 Model selection

Suppose we would like to estimate the building’s flexibility during day K + 1, i.e., during

a day outside the training set. The first question is: for each time period t, which set of

parameters in {Φ1,t,Φ2,t, . . . ,ΦCt,t} should constitute P̂K+1?

Recall that we use load, indoor temperatures, and outdoor temperature relationships to

group the elements of the training dataset. Naturally, we have no load nor indoor temperature

data before the new day. However, each data point in the training set is associated with the

explanatory variables Ψt = {ψ1,t, . . . ,ψK,t}. The information encoded in ψk,t is anything

that might influence the feasible region of the load during day k. For instance, ψk,t may

include information on whether k is a weekday, weekend, or a holiday, outdoor temperature

during time t, solar irradiation levels, or building occupancy. In this work, explanatory

variables are hourly outdoor temperatures, solar radiation, and day of the week. Considering

a different set of explanatory variables might be appropriate in some cases.

We use expected values of the explanatory variables of day K + 1 to select which Φc,t’s
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Figure 3.9: Training data grouped into three clusters. Each point in the plot represents a
training data point.

to use. We assume there exists a function

ξt : ψk,t → {Φ1,t,Φ2,t, . . . ,ΦCt,t}

that maps the set of explanatory variables ψk,t to its associated set of parameters. Here,

ξt(ψk,t) = Φc,t when k belongs in the set Dc,t (recall that Dc,t is used to train Φc,t). We

estimate ξt using a classification tree [127]. Fig. 3.8 illustrates the training algorithm of an

approximation of ξt, denoted by ξ̂t.

Let {ψK+1,1, ψK+1,2, . . . , ψK+1,T} denote the set of explanatory variables for each time

period of day K + 1 and the predicted model to use is Φĉt,t = ξ̂t(ψK+1,t). Then, the set

{Φĉ1,1,Φĉ2,2, . . . ,ΦĉT ,T}

describes the building’s flexibility model during day K + 1.

Take the data in Fig. 3.9 as an example. In this case, the explanatory variables are the

day of the week and mean outside temperature. Notice training data points in cluster 2

come exclusively from weekends. Training data points in clusters 1 and 3 come from colder

and warmer weekdays, respectively. Thus, a reasonable decision rule is: use the parameters
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Figure 3.10: Decision tree trained using points in Fig. 3.9.

Φ2,t if day K + 1 is a weekend; use Φ1,t if K + 1 is a weekday and if the daily mean

temperature is expected to be under 15◦C; and use Φ3,t otherwise. Fig. 3.10 illustrates the

the aforementioned decision rule.

3.5 Model validation

We test the proposed method using data from EnergyPlus simulation of three different

buildings [70]. Table 3.1 provides a brief summary of important characteristics of each

building: peak load, average load, and thermal mass (the amount of electric energy needed

to cool the building by 1◦C).

Table 3.1: Summary of building characteristics.

Type Peak / avg. load Thermal mass
Office 1 27/ 10 kW 2.7 kWh/ ◦C
Office 2 15/ 6.7 kW 7.7 kWh/ ◦C

Supermarket 140/ 86 kW 77 kWh/ ◦C

The sizes of the training, cross-validation, and test datasets for each building are 300,

100, and 100, respectively. The explanatory variables for the model selection stage are the
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Figure 3.11: The left-hand plot shows mean square error (for the cross-validation dataset)
of the indoor temperature prediction for the three buildings at period t = 19 as a function
of the number of training data clusters. In this case, the optimal number of clusters is for
office 1, office 2 and the supermarket are 3, 3, and 1, respectively. The right-hand plot shows
the accuracy of the decision tree as a function of the number of clusters.

day of the week (e.g., Monday), outdoor temperature, and solar irradiation.

3.5.1 Test error and the optimal number of clusters

There is a trade-off in the number of training data clusters Ct. On the one hand, a small Ct

implies that more training data is available for each approximation. On the other hand, a

large Ct means that each approximation models days that are more like each other. Similar

to references [82,202] and as a special case of the hyperparameter tuning problem in machine

learning, we define the optimal number clusters C∗t as the number that minimizes the tem-

perature prediction MSE over the cross-validation dataset. Then, we use the test dataset

to measure the actual prediction performance. For instance, the cross-validation error of

temperature prediction for Office 1 is at a minimum when the number of clusters is C∗t = 2

(see the left-hand plot of Fig. 3.11). .
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Figure 3.12: Percentage of measurements out of bounds, test error of the temperature predic-
tion, and average bound width for each building type. These statistics are computed using
test set data.

The cross-validation initially decreases error with the number of clusters because, as we

divide the training data into more groups, each data cluster approximates functions that

are more like each other. However, at some point, increasing the number of data clusters

increases the cross-validation error (see the left-hand plot in Fig. 3.11). There are two main

reasons for this phenomenon. The first one is that a higher number of clusters decreases the

number of data points in each cluster and increases the risk of over-fitting. The second reason

is that as the number of clusters increases, the accuracy of the decision tree ξ̂t decreases (see

the right-hand plot in Fig. 3.11).
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3.5.2 Error analysis on the test set

Fig. 3.12 shows the percentage of indoor temperature measurements outside the prediction

band, the temperature prediction error, and tightness of the band (all for the test set). The

percentage of measurements outside the band is closely linked to the robustness parameter α.

Recall that an α-level of robustness restricts the percentage of training data points outside

the prediction band to be less than 100 · α %.

We define the error of each measurement used to compute the root-mean-squared error

(RMSE), as zero if the measurement is inside the prediction band and as the distance to the

nearest band if the measurement otherwise (see Fig. 3.6 for an illustration and Appendix D

for details). The RMSE of our model is lower than the error given by the RC circuit model

(we compare our approach against the RC circuit model in greater detail in Sec. 3.5.3).

However, the lower error of our model is not free. It comes at the cost of more conservative

models of building flexibility, (we explore this further in Sec. 3.6).

3.5.3 Comparison against the RC circuit model

The most widely adopted alternative to our method is the RC circuit model. The RC

model expresses the indoor temperature change from time t to t + 1 as a linear function

of the indoor-outdoor temperature difference, HVAC power4, and an independent thermal

disturbance [59,89,96,133,169] and is written as

φin
t+1 − φin

t = At · (φin
t − φout

t ) +Bt · phvac
t +Dt

where At and Bt relate indoor-outdoor temperature difference and HVAC power, respectively,

to change in indoor temperature from t to t + 1 and Dt is a thermal disturbance [59, 133].

We estimate At, Bt, and Dt via a linear regression where the dependent variable is the

temperature change φin
t+1 − φin

t and the regressors are φin
t − φout

t and phvac
t .

4In some cases, HVAC cooling/heating load is used instead of HVAC power, e.g. [133].
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Figure 3.13: Test set RMSE for three different models: the RC circuit model, our model
(central prediction), (α = 1) and our model with α = 0.05.
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Figure 3.14: Wind scenarios used in the case study.

Fig. 3.13 shows the test set RMSE for three different models: the RC model, and our

approach with α = 1 and with α = 0.05. It is natural that the α = 0.05 model RMSE

is orders of magnitude smaller: by definition, close to 95% of the predictions fall in the

prediction band. Less intuitive is the fact that our model with α = 1, equivalent to a

central estimate, also outperforms the RC model. There are two reasons why our model

outperforms the alternative. The first is that we cluster our data to model several, rather

than one, thermal models. The second is that the traditional RC circuit model fails to use

phvac
t at time t to predict indoor temperature during that same time period [59,133,169].

3.6 Case study: building flexibility for wind power balancing

We consider a setting where a wind power producer contracts an aggregator of buildings

to use the flexibility of its loads to compensate deviations from expected production. Let

Ωw represent the set of scenarios and each generation scenario be denoted by the vector

νωw ∈ RT
+. The tth entry of νωw represents wind power at time t in scenario ωw. Then, the

expected wind production is given by E[νωw ] and the wind production deviation of scenario

ω by ∆ωw = νωw − E[νωw ]. Fig. 3.14 shows 100 wind scenarios from [42,165].

Additionally, we consider uncertainty in the building load. We model the stochastic load

component of building i via a T -dimensional normally distributed parameter εi ∼N (0,Σi).
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We assume that the stochastic components of the N buildings are independen. Then, the

aggregate stochastic load component is
∑N

i εi = ε ∼ N (0,
∑N

i Σi). We represent ε via

scenarios {εωb}ωb∈Ωb .

The aggregator’s problem is as follows. In the first stage, e.g., in the day-ahead market,

the aggregator schedules an aggregate base load pb ∈ RT
+ at an energy price τ ∈ RT . When

the uncertainty in wind production materializes in the second stage, e.g., in the real-time, the

aggregator can deviate from the base load to accommodate deviations and be remunerated

by v per unit energy. For instance, suppose that the wind production for a particular hour is

expected to be 10 kWh, but the actual output is 12 kWh. Then, the buildings deviate from

their base load of 50 kWh to 51 kWh to partially accommodate the 2 kWh surplus. In this

case, the building pays 50 · τt for day-ahead energy and receives 1 · v for balancing services.

The aggregator’s problem is written as:

min
pbi ,pi,ωw

pb,p
ωw,ωb

τ>pb + E[v · |pb − pωw,ωb + ∆ωw |] (3.4a)

s.t.

pb =
N∑
i=1

pb
i (3.4b)

pωw,ωb =
N∑
i=1

pi,ωw + εωb ∀ ωw ∈ Ωw, ωb ∈ Ωb (3.4c)

pb
i ∈ P̂ i ∀ i = 1, . . . , N (3.4d)

pi,ωw ∈ P̂ i ∀ i = 1, . . . , N, ωw ∈ Ωw. (3.4e)

The objective function (3.4a) has two components: the cost of energy, τ>pb, and the expected

foregone revenue from balancing wind power deviations E[v · |pb−pωw,ωb +∆ω|]. The second

stage variable pωw,ωb is the aggregate building load for wind scenario ωw and load uncertainty

scenario ωb. Eq. (3.4b) defines the aggregate base load (first stage) as the sum of the base

loads of each building. Similarly, Eq. (3.4c) defines the aggregate load when scenarios ωw and
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Figure 3.15: Expected forecast error mitigation by all three buildings as a function of com-
pensation v.
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Figure 3.16: Base load at different wind balancing compensation levels.

ωb materialize (second stage). Finally, Eqs. (3.4d) and (3.4e) restrict the first and second

stage load of each building, respectively, to be within their respective approximate feasible

region. The feasible regions P̂ i are defined by Eqs. (3.2) and (3.3).

We formulate Problem (3.4) as a stochastic linear program (LP) and modeled using Julia’s

JuMP environment [71]. We use Gurobi Optimizer [94] on a desktop computer running on a

Intel(R) Xenon(R) CPU E3-1220 v3 @ 3.10 GHz with 16 GB of RAM to solve the problem.
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3.6.1 Wind forecast error mitigation and balancing compensation

Let the cost of energy be 1 throughout the day and the installed wind capacity be one-third

of peak load. Depending on the wind balancing compensation, the three buildings mitigate

around 25–30 % of the wind forecast errors. As expected, and as shown in Fig. 3.15, the

amount of error mitigation increases as with compensation. This result can be explained

as follows. When the compensation is low, the base load tends to be low to minimize

energy costs (see the lighter shades in Fig. 3.16). Low base load is poorly positioned to

compensate wind shortages by further decreasing load in the real-time. As compensation

increases, however, it becomes economically attractive to position base load at higher levels

and increase the ability to accommodate wind shortages.

3.6.2 Demonstration of robustness and tractability

Robustness and tractability of are the two central characteristics of P̂ . The former claims

that a building load profile in P̂ does not violate temperature limits during building operation

(to a degree of confidence determined by α). The latter claims that our model is easily, and

without significant computational burden, incorporated into typical power system analysis

frameworks (such as the one presented in this case study).

First, we analyze the effect of the parameter α on the building operation. As shown

in Fig. 3.17(a), the expected forecast error mitigation increases with α. That is, as the

robustness of the model decreases, it allows a more aggressive operation to compensate

forecast errors. However, less robust models such as the RC circuit model, risk scheduling

load profiles that are not feasible during operation (see an illustration of this phenomenon

in Fig. 3.3). As shown in Fig. 3.17(b), as the robustness parameters α increases so does

the expected indoor temperature limits violations. All in all, the user faces a trade-off when

tuning the robustness parameter: a larger α leads to higher error mitigation but also increases

the risk of indoor temperature limit violations.

We demonstrate that the proposed model is tractable by increasing the number of build-
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Figure 3.17: Plot a shows the expected forecast error mitigation by all three buildings and
plot b shows expected temperature violation by each building as a function of the robustness
parameter α. Notice that there is a trade-off between error mitigation and robustness to
indoor temperature prediction errors.
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Figure 3.18: Time required to solve Problem (3.4) under different number of buildings. Note
that each building is represented by 101 scenarios : one base load, pb

i , and one for each wind
power scenario, pi,ωw .
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ings in Problem (3.4). We show that computational burden remains manageable even with a

large number of buildings (see Fig. 3.18). It is worth noting that each building is represented

by 101 scenarios: one base load, pb
i , and one for each wind power scenario, pi,ωw . Thus,

Problem (3.4) with N = 10, for instance, is equivalent to a deterministic problem with 1010

buildings.

3.7 Summary

In this chapter, we propose a method to estimate a robust feasible region of the building

load using simple linear relations. Our approach ensures that a building HVAC system

maintains acceptable occupant comfort while providing flexibility to the power system. Our

model is mathematically simple and tractable because it can be easily incorporated into

common power system optimization and control environments. For instance, our model

can be seamlessly incorporated into problems such as the ED, DR scheduling and control,

OPF, and UC, among others. Furthermore, the model training algorithm requires coarse

and generic data and can be applied to many kinds of buildings. We compare our model’s

performance to the RC circuit model and demonstrate its use in a practical application.
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Chapter 4

MODELING AN AGGREGATOR

4.1 Introduction

A prominent trend in power systems is the increase of “behind-the-meter,” customer-owned

and controlled distributed energy resources (DERs) such as distributed solar photovoltaic

(PV), dispatchable generation, electric vehicles (EVs) [38]. These DERs are typically in-

stalled to accomplish local objectives like reducing electric bills [182] or improving local

reliability [122]. While DERs have the potential to contribute to the operation of the grid

by participating in wholesale markets [69,156], they are not able for two main reasons: their

capacities are typically smaller than the required minimum [14,166]; and the large number of

DERs would make their management difficult [183]. The exclusion of DERs from electricity

markets is of detriment to both their owners and society as a whole. On the one hand, DERs

miss potentially profitable revenue streams (e.g., reserve provisions or energy arbitrage). On

the other hand, society is unable to tap into assets that potentially provide services more

efficiently than market incumbents. A commonly proposed solution is aggregators that act

as mediators between DERs and the power system [43]. See Fig. 4.1 for an illustration of

the market-aggregator-DER relationships.

A proper understanding of DER-aggregator relationship is fundamental to explain an

aggregator’s market behavior. One the one hand, an aggregator participates in the market

on behalf of its constituent DERs. On the other hand, however, the aggregator does not

own and may not have direct control of the resources. This dynamic is unlike traditional

generators where the bidder and the resource are a single entity. In this chapter, we study

the relationship between an aggregator and its constituent DERs. We assume that all players

are rational and use game theoretic tools to explain their relationship. The result is a sound
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Figure 4.1: Market-aggregator-DERs framework.

model of the aggregator’s market behavior and the profit split between aggregator and DERs.

4.1.1 Related works

One can find many studies of the operation and market strategies of aggregators in the

literature. For instance, [156,183] studies the aggregation and market participation of a fleet

of electric vehicles. Chen et al. study the problem of coordination of residential consumers

for demand response [47]. The studies above focus on the short-term interactions between

aggregator and grid. However, they pay little attention to the interactions between the

aggregator and its constituents.

On a topic closely related to our work [148] uses Nash Bargaining Theory to determine
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the compensation of reactive power providers. In [140], the authors focus on the distributed

optimization problem of an EV aggregator. The authors of [209, 216] study the problem

subjected to power flow constraints. The work in [218] studies the interactions of an EV

aggregator and its EVs when providing frequency regulation. However, these studies do

not address how profits the aggregator and its DERs share profits. The problem of profit

allocation is not trivial since neither party can participate in the market alone: the aggregator

has no physical assets, and the individual DERs are too small to participate. In this work,

we use Nash Bargaining Theory to derive a profit-split model between the aggregator and

DERs.

In contrast, we take a closer look at the relationship between DERs and an aggregator

operating in a market environment. Not only we consider the aggregator as a strategic and

profit-maximizing actor, but we also assume that each DER is rational and autonomous.

More concretely, the aggregator decides how to bid into the market and the prices to offer

each DER while the DERs react to the aggregator prices. Furthermore, we study the long-

term relationship between DER and aggregator since this is reasonable to assume that their

interactions are sustained over time. Studying the longterm is essential because the short-

term relationship may be a lousy predictor of the aggregator and DER actions.

4.1.2 Contributions

In summary, the contributions of this work are:

i) A model of interactions between an aggregator, its DERs, and the electricity market.

First, we introduce the short-term interaction DER-aggregator interaction model: they

play a single-leader, multi-follower Stackelberg Game. We show that the outcome of

this non-cooperative game can be Pareto-inefficient (see Fig. 4.2). In practice, how-

ever, the aggregator and DERs are likely to interact repeatedly. We demonstrate the

existence of profit-splitting schemes in which cooperation by rational agents is stable

in the long-term. Finally, we use Nash Bargaining Theory to show that the aggregator

and DERs split a Pareto-optimal profit and cooperate in the long term.
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Figure 4.2: Aggregator/storage unit (SU) Stackelberg and a Pareto-superior profits. The
blue bars are the SU and the aggregator profits under the parameters defined in Example 1.
These profits are Pareto-inefficient because we can find operating points where both parties
receive higher profits (yellow bars).

ii) A simplified model of DERs managed by an aggregator. The Pareto-optimal agreement

permits replacing a complicated system composed of many agents (i.e., the aggregator

and DERs) with a simpler aggregate profit maximization problem. The benefits of

the simplified model are two-fold. First, it provides a model of the aggregator market

participation strategy. Second, it provides a computationally tractable model of the

actions of many DERs under an aggregator.

4.1.3 Organization of this chapter

This chapter is organized as follows. Section 4.2 introduces the market, DER, and aggregator

models. Section 4.3 introduces the short-term interaction model between the aggregator

and the DERs. Section 4.4 introduces model long-term interaction model between. In

Section 4.5, we use Nash Bargaining to model aggregator market bids and determine the

long-term equilibrium. Section 4.6 summarizes and concludes the chapter.
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4.2 Models

This section introduces the models used in this chapter: the market structure, the DERs, and

the aggregator. We assume that DERs do not participate directly in the market. Instead,

they interact with an aggregator that participates in the wholesale market. The structure of

these interactions is illustrated in Fig. 4.1.

4.2.1 The market structure

We consider a locational marginal price (LMP)-based electricity market that balances supply

and demand at the minimum cost over multiple time periods. We the set of time periods as

T . We assume that the supply at each node b and time t is an increasing function known

by all participants. The SO dispatches generation to minimize cost, and the market clears

at prices λt. Then, a participant that supplies x amount of energy during period t at node

b is paid x · λb,t and a participant consuming y amount of energy is charged y · λb,t.

4.2.2 The distributed energy resources

Let I denote the set of n DERs. Let x+
i,t (x−i,t) denote the energy produced (consumed) by

DER i at time t. We define the net production as xi,t = x+
i,t−x−i,t, that is, positive xi,t implies

power injection while a negative xi,t implies power absorption.

Let τi,t denote the aggregator price that DER i faces at time t. Then, DER i’s profit is:

πder
i (xi; τ i) =

∑
t∈T

τi,t · xi,t − ci(xi), (4.1)

where xi = {x+
i,t, x

−
i,t}t∈T and τ i = {τi,t}t∈T . The function ci(·) models the cost of DER i. For

instance, ci(·) may represent the production cost of distributed generation or the discomfort

cost due to demand-response deployment [87]. In this work, ci(·) is a non-negative and

strictly convex function of xi.

The actions xi DER i are limited by a set of operating constraints that constitute a
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feasible operating region X der
i . Finally, the profit maximization problem DER i is expressed

as

max
xi∈Xder

i

πder
i (xi; τ i). (4.2)

We focus on energy exchange between DERs, the aggregator, and the wholesale mar-

ket and consider additional revenue streams (e.g., payments for frequency regulation and

reserves [220]), or benefits delivered by DERs (e.g., improvement of power quality [186])

as high-priority tasks modeled by constraints on the DER operation. For instance, a stor-

age unit (SU) a can reserve some of its capacity for frequency regulation and contract the

remainder for market participation through the aggregator.

4.2.3 The aggregator

Let the vector xbus
t denote net nodal energy injections/absorptions by the DERs and be

defined as

xbus
t =

∑
i∈I

mi · xi,t.

Here, the bth element of the vector mi is 1 if DER i is connected to bus b and 0 otherwise.

The bth element of xbus
t denotes net injection (if positive) or absorption (if negative) of the

DERs connected to node b. Then, the aggregator’s net revenue from market participation is

∑
t∈T

λ>t x
bus
t .

In this work, we assume that an aggregator is a profit-maximizing agent and has the ability

to select the prices τ i accordingly.

4.3 Single-shot game

In this section, we present a single-shot Stackelberg Game used to model the aggregator-

DERs short-term interaction and show that the equilibria could be unsatisfactory for all

parties.
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4.3.1 Aggregator-DERs Stackelberg Game

We model the interaction between the aggregator and DERs as a single leader multi-follower

game with perfect information [65]. The aggregator leads by announcing prices τ i, and the

DERs respond by deciding their actions xi.

For a price schedule τ i chosen by the aggregator, each DER chooses a production/con-

sumption schedule

xSE
i = arg max

xi∈Xder
i

πder
i (xi; τ i) (4.3)

that maximizes its profit1.

The aggregator’s objective is to choose a set of prices τ = {τ i}i∈I that maximize its

profit given by

πa (τ ;x) =
∑
i∈I

∑
t∈T

{
λ>t mi · xi,t − τi,t · xi,t

}
(4.4)

where x = {xi}i∈I . That is, it chooses

τ SE = arg max
0≤τ≤M

πa(τ ; {xSE
i }i∈I).

For technical convenience, we assume that aggregator can set prices within a range [0,M ].

Then, there exists a (price , storage action) pair that constitutes the Stackelberg Equilibrium

for the single-shot game [65].

A natural question about the Stackelberg Equilibrium is how efficient it is. In this work,

we measure efficiency via the notion of Pareto optimality.

Definition 1. A strategy A is Pareto-superior to B if at least one player is strictly better

off with A and no one is worst-off. We say a strategy is Pareto-inefficient if there exists a

Pareto-superior strategy.

The following example shows that the equilibrium can be Pareto-inefficient. For simplic-

ity, we consider a single SU under an aggregator.

1The equilibrium xSE
i is a unique maximizer because the DER objective is strictly concave.
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Example 1. In this and the rest of the examples in this chapter, we assume that an aggre-

gator interacts with one SU (n = 1) in a single-node system and that the time horizon is

composed by two time periods (nt = 2). The round-trip efficiency of the SU is η = 0.95, its

charge and discharge limits are 1, its SoC must be in [0, 1] at all times, and its cost function

is

c(d) =
1

2
·

2∑
t=1

x2
t .

Naturally for a SU, the energy purchased must be equal to the energy sold plus losses. The

price at each time period is given by λt(qt) = qt ∀ t = 1, 2 where qt is the net load at time

t. The net load is −x1 when t = 1 and 5 − x2 when t = 2. We consider a single SU and a

single node to reduce notational clutter and suppress the indices i and b.

The single-shot game proceeds as follows. The aggregator sends a price schedule such that

∆τ SE = τ SE
1 − η · τ SE

2 = −1.19. The SU, on the other hand, charges 0.62 units of energy

during the first period. Because of the energy neutrality, the SU discharges 0.95 · 0.62 units

of energy during the second period. These strategies constitute the Stackelberg Equilibrium.

The Stackelberg profits are πa SE = 1.48 and πder SE
= 0.37, respectively.

However, suppose that the aggregator and SU agree to the following: The SU charges

0.7 units of energy during the first period, and the aggregator sets a price schedule ∆τ =

τ1−η ·τ2 = −1.25. In this case, the both the SU’s and the aggregator’s profits are higher than

the Stackelberg profits (see Fig. 4.2). This agreement is a Pareto-superior to the Stackelberg

Equilibrium: both the aggregator and SU are better off as compared to the single-shot game

outcome.

Any strategy other than a Stackelberg Equilibrium, however, is necessarily unstable.

Thus, cooperation during a single-shot game is not necessarily compatible with rational

players. It is also important to note that the overall system cost may suffer from the adver-

sarial relationships between aggregators and DERs.

However, it is unlikely that the aggregator and DERs interact only once. In fact, it

is reasonable to assume that aggregators maintain longterm relationships with its DERs.
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The DER-aggregator situation is not unlike the long-term relationship between utilities and

their rate-payers. Int he context of a longterm relationship, aggregators and DERs may be

induced to cooperate and adopt equilibria that are at least Pareto-superior to the Stackelberg

Equilibrium.

4.4 Longterm cooperation

The previous section shows that the Stackelberg Equilibrium may not be Pareto-efficient

and that other solutions are not stable. In practice, this view may be pessimistic and not

necessarily reasonable: most aggregators and DERs do not play a single-shot game. Instead,

we assume that the aggregator repeatedly interacts with its DERs. Thus, the totality of the

single-shot outcomes determines the longterm outcome.

In this section, we show that the aggregator and DERs may reach a cooperative equi-

librium that is stable and Pareto-superior to the Stackelberg Equilibrium. Furthermore, we

establish the conditions that lead to stable cooperative equilibria.

Remark 2. It is trivial to show that all cooperative equilibria are Pareto-superior to the

Stackelberg Equilibrium since a worst-off player could repeatedly play the Stackelberg Equi-

librium.

4.4.1 Repeated game model

For simplicity, we assume that the exact same single-shot game is played repeatedly and

define the longterm profit as the discounted sum of the single-shot profits. The longterm

profit of the aggregator is denoted by

πa,∞ =
∞∑
k=0

δk · πa(τ (k);x(k))
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where δ ∈ (0, 1) is the discount rate2. The symbols τ (k) and x(k) denote strategy decisions

for the kth time the single-shot game is played. Similarly, the longterm profit of DER i is

denoted by

πder,∞
i =

∞∑
k=0

δkπder
i (x

(k)
i ; τ

(k)
i ).

We reduce the dimensionality of the repeated game strategy space by defining only two

strategies: cooperation and defection. Under cooperation, each DER plays an agreed action

if the aggregator has honored previous commitments. Otherwise, the DER reverts to the

Stackelberg Equilibrium. The same is true for the aggregator. It cooperates (i.e., plays

the agreed action) if the DER honored previous commitments. Otherwise, the aggregator

reverts to the Stackelberg Equilibrium. At every step, each player has the opportunity to

defect (i.e., play an action that differs from the previously agreed action).

Cooperation strategies

In the cooperation strategy,

τ
(k)
i =

τ̂ i if x
(m)
i = x̂i ∀ m < k

τD
i otherwise

∀ i ∈ I, (4.5)

the aggregator sends DER i previously agreed prices τ̂ i if the DER has played agreed actions

x̂i during all previous times. If the DER failed to uphold its commitment during previous

games, the aggregator plays the defection strategy τD
i (defined shortly).

Likewise,

x
(k)
i =

x̂i if τ
(m)
i = τ̂ i ∀ m ≤ k

xD
i otherwise

(4.6)

2The discount rate reflects the time value of money. It can also encode the probability that the repeated
game ends.
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describes the cooperation strategy of DER i. The DER plays agreed actions x̂i if the aggre-

gator upheld its commitment to send agreed prices τ̂ i during previous times the game was

played. Otherwise, the DER i plays the defection strategy xD
i .

Defection strategies

We assume that a player defects by maximizing the single-shot profit. This assumption is

reasonable since cooperation stops regardless of how the player defects. The DER’s defection

strategy is given by

xD
i = arg max

di∈Xder
i

πder
i (xi; τ̂ i).

. Similarly, the aggregator maximizes the profit derived from DER i by playing

τD
i = arg max

0≤τ i≤M
πa({τ i, τ̂−i}; x̂)

where the subscript −i represents all DERs except i.

Defection equilibrium

From the strategies defined by (4.6) and (4.5), if and when the aggregator deviates from

agreed prices to DER i, the DER defects from cooperation. Similarly, if and when the DER

deviates from agreed actions, the aggregator defects from cooperation.

Both players defect by maximizing their single-shot profits. Thus, they fall into playing

a single leader, single follower sequential game while the actions of the rest of the DERs

remain fixed. The Stackelberg Equilibrium of this single leader, single follower game is given

by

x′i = arg max
di∈Xder

i

πder
i (xi; τ i) and τ ′i = arg max

0≤τ i≤M
πa({τ i, τ−i}; {x′i,x−i}).

Denote the defection equilibrium profit of the aggregator as πa
i
′ and the defection equilibrium

profit of the DER as πder
i
′
.
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4.4.2 Cooperation in an infinitely repeated game

Here, we characterize the strategies that ensure long-term cooperation by a rational aggrega-

tor and DERs. Then, we use the Nash Bargaining Model to conclude that the profit split is

Pareto-efficient (i.e., the aggregator and DERs cooperate to maximize their aggregate profit)

and to predict the profit allocation among all players.

A set of agreed prices τ̂ i and storage actions x̂i is a cooperative equilibrium in the

infinitely repeated game if they incentivize both the aggregator and DERs to never defect.

Given a set of agreed prices and storage actions, all players decide whether (and when) to

defect by following the strategy defined by (4.6) and (4.5). A player cooperates if no finite

time of defection maximizes its long-term profit.

Lemma 1. The aggregator cooperates with DER i if its profit is greater than its defection

equilibrium profit πa
i
′. DER i cooperates with the aggregator when its agreed profit is greater

than

(1− δ) · πder
i (xD

i ; τ i) + δ · πder
i

′
.

The set of agreed profits that incentivize both the DER and the aggregator to cooperate define

the cooperative equilibria.

The proof of Lemma 1 is included in Appendix E.1. As shown in the proof, there

are infinitely many cooperative equilibria. Thus, there are infinitely many profits splitting

schemes that foster long-term cooperation by both parties.

Section 4.5 shows how the Nash Bargaining Model predicts the profit allocation among

all players and the actions agreed by the DERs. Predicting the profit allocation is interesting

for the aggregator and DERs. However, profit allocation does not have clear repercussions in

the wholesale market. Predicting the actions of the DERs, however, has strong repercussions

on the electricity market since it affects the aggregator bidding behavior.
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Example 2. This continues the previous example. Let the discount rate be δ = 0.98 and let

αa(∆̂τ , x̂1) = πa (τ̂ ; x̂)− πa′.

From Lemma 1, the aggregator cooperates when αa(∆̂τ , x̂1) ≥ 0. Similarly, let

αder(x̂1, ∆̂τ) = πder (x̂; τ̂ )− (1− δ) · πder
i (xD

i ; τ̂ i)− δ · πder′

Also from Lemma 1, the SU cooperates when αder(x̂1, ∆̂τ) ≥ 0.

Let the sets

Ader = {(x̂1, ∆̂τ)|αder(x̂1, ∆̂τ) ≥ 0}

and

Aa = {(x̂1, ∆̂τ)|αa(∆̂τ , x̂1) ≥ 0}

denote the SU cooperation region and the aggregator cooperation region, respectively. The set

As represents all the charge/price pairs that incentivize the DER to never fall back to the

Stackelberg Equilibrium and uphold its cooperation agreement with the aggregator. The same

is true for the set Aa with respect to the aggregator. The region where both players cooperate

is denoted by A = Ader ∩ Aa. The sets Ader, Aa, and A are illustrated in Fig. 4.3.

4.5 Profit split via Nash Bargaining

Lemma 1 shows that there are infinitely many strategies that ensure long-term cooperation

(i.e., there are many cooperative equilibria). In practice, one of these equilibria is chosen.

Knowing the equilibrium strategy is crucial to predicting the aggregator’s market partici-

pation strategy. This section presents the Nash Bargaining Model [144] that predicts the

long-term equilibrium.

Let Bi = X der
i ×X a

i denote the set of possible outcomes of a bargaining process between

the aggregator and DER i. Denote the outcome as (x̂∗i , τ̂
∗
i ) = ξ (Bi) where function ξ(·)
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Figure 4.3: Cooperation regions. The x-axis shows the price set by the aggregator and the
y-axis shows the charge amount. If the agreement is in the region As, the SU never defects.
If the agreement is in Aa, the aggregator never defects. If the actions are in A = As ∩ Aa,
both players cooperate indefinitely. spelling mistake in plot. Fix the A regions too.

maps a set of possible outcomes to the Nash Bargaining Solution [144]. Here, X a
i = {τ i|0 ≤

τ i ≤M}.

The Nash Bargaining Solution is a single point in a set of possible outcomes that satisfies

the following axioms:

• Pareto efficiency : If a, b ∈ Bi, πa(a) > πa(b), and πder
i (a) > πder

i (b) then b 6= ξ (Bi).

• Independence of irrelevant alternatives : If B̃i ⊆ Bi and ξ (Bi) ∈ B̃i, then ξ(B̃i) = ξ (Bi).

Lemma 2. Assume that the aggregator engages in bilateral negotiations with each DER and

that all players are risk neutral3. The aggregator and DERs split the maximum aggregate

profit given by:

π(x∗) = max
x∈Xder

{πa(τ ;x) +
∑
i∈I

πder
i (xi; τ i)}. (4.7)

3As shown by [34], if one of the players is more risk adverse than the other, its share of the profit decreases.
Conversely, if a player is more risk-loving than the other, its share of the profit increases.
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where X der = X der
1 × . . .×X der

n . The Nash Bargaining Solution is given by:

∀i : (x̂∗i , τ̂
∗
i ) = arg max

0≤τ i≤M
xi=x

∗
i

(τ i,xi)∈Ai

(
πder
i − πder

i

′
) (
πa − πa

i
′) (4.8)

where πa ≡ πa({τ i, τ̂ ∗i−}; {xi, x̂
∗
i−}) and πder

i ≡ πder
i (xi; τ i). The set of agreed prices and

storage actions that deliver profits in the cooperative equilibria is denoted by Ai.

The proof of Lemma 2 is available in Appendix E.2. The result in Lemma 2 is important

because for a few reasons. It predicts that the aggregator bids according to the Nash Bar-

gaining Solution. This prediction allows us to replace the complex aggregator-DER model

with an entity that bids x∗. Notice from (4.7), that the DER actions from the bargaining

solution x∗ deliver the maximum possible aggregate profit. Thus, x∗ is how the aggregator

would operate the DERs if it had their full control. Thus, the Nash Bargaining Solution

could be a theoretical justification of the existence of direct load control programs.

Example 3. This continues the previous example. Suppose that the aggregator engages in

negotiations with the SU. By the Pareto-efficiency axiom, the aggregator and SU agree to

x̂1
∗ = x∗1 = −0.83 which yield the maximum aggregate profit. Also by Pareto-efficiency,

the agreed price schedule ∆̂τ
∗

fosters long-term cooperation. From the previous example,

long-term cooperation is possible when

αa(∆̂τ ,−0.83) ≥ 0 and αs(−0.83, ∆̂τ) ≥ 0

or equivalently, when −1.23 ≤ ∆̂τ ≤ −1.37.

From reference [34], the bargaining outcome is the solution to the quadratic optimization

problem

max
−1.23≤∆̂τ≤−1.37

(
πder(−0.83; ∆̂τ)− πder′

)(
πa(∆̂τ ;−0.83)− πa′

)
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Figure 4.4: The symbol B denotes the set of possible bargaining outcomes. Each point inside
this area represents a realizable profit split between the aggregator and SU. The green line
represents all possible Pareto-optimal profit allocations. The portion of B that overlaps the
green line represents the Pareto front. The red line is the line of symmetry. The intersection
of these two lines is the bargaining solution.

which is ∆̂τ
∗

= −1.31.

Since (x̂1
∗, ∆̂τ

∗
) lies on the interior of A, the solution to the Nash Bargaining Problem

is the solution to the system of equations πder = −πa + π(x∗1) and πder = πa + πder′ − πa′ as

shown in [144]. This concludes the example.

For larger aggregator defection equilibrium profits πa′, the bargaining solution delivers a

larger aggregator profit π̂a∗. Since πa′ is the “outside option” profit of the aggregator (i.e.,

profit of the aggregator in case the negotiations fall apart), a larger outside option profit

can be interpreted as the aggregator having greater bargaining power or “leverage.” The

same can be said for the relationship between the DER profit π̂der∗ and the DER defection

equilibrium profit πder′.



73

4.6 Summary

In this chapter, we study the interactions between a distributed energy resources (DERs)

aggregator, its DERs, and the wholesale electricity market. First, we model the aggregator-

DER interactions and show that while the short-term relationship can be Pareto-inefficient,

long-term cooperative equilibria exist. Then, we use Nash Bargaining Theory to predict

the cooperative equilibrium. The equilibrium, determined by the Nash Bargaining Solu-

tion, is Pareto-optimal. The Pareto-optimality of the equilibrium, allows us to simplify

the relationship between the aggregator and its DERs by replacing it with an aggregate

profit maximization problem. Moreover, our results serve as a theoretical justification for

instances (e.g., direct-load control) in which aggregators cooperate with their constituents

and vice versa.
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Chapter 5

COORDINATION OF BUILDINGS AND ELECTRIC
VEHICLES

5.1 Introduction

Integrating renewable energy sources (RESs) such as wind and solar to the power grid is

challenging because of their variability and uncertainty [25]. Researchers and practitioners

propose demand-side resources (DSRs) as means to accommodate the variability and uncer-

tainty of renewable generation [29, 117, 174, 206, 219]. Two kinds of DSRs are of particular

importance:

1. Buildings are responsible for over 70% of the total electricity consumption in the

United States [9]. As building controls, sensors, and algorithms become more sophisti-

cated; buildings are increasingly capable of providing services to the grid. For instance,

the work in [97] studies the use of building-level demand response for frequency regula-

tion in a microgrid. In [87] the authors propose a framework where a retailer controls

thermal loads to minimize imbalance costs while considering the cost of user’s discom-

fort. Reference [159] proposes an integrated model of the supply and demand sides of

the electric grid to determine appropriate demand response actions.

2. The global electric vehicle (EV) stock is projected to increase from 180,000 units

in 2012 to more than 20 million in 2020 [11]. The increasing number of EVs has two

significant effects on the power grid. On the one hand, higher energy demand by EVs

stresses the power system. On the other hand, EVs can help to integrate RESs by

providing the necessary services to the grid [142,156,176,205].
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5.1.1 Problem and proposed solution

Buildings and EV charging stations often share infrastructure (e.g., a transformer) or may

be coupled financially (e.g., by a tariff structure that penalizes aggregate peak load). Thus,

common constraints couple the building and EV operation. In such cases, it is more useful to

think of the building(s) and EVs as components of a larger system rather than two separate

entities. For instance, individually scheduling load consumption may result in transformer

overloads or an unnecessarily high peak load. Often, however, the building and EVs cannot

be integrated into a single system due to software compatibility, privacy, cybersecurity, or

other practical reasons.

We adopt the Dantzig-Wolfe Decomposition Algorithm (DWDA) to solve the building-

EV demand scheduling problem in a decentralized fashion. The DWDA eliminates the need

for sharing private data among the two entities. Our algorithm requires each entity to share

only information essential to the coupling constraints.

5.1.2 Previous works

References [116, 147, 185, 225] study the joint optimization/scheduling of building loads and

EVs. The authors of [185] study monetary incentives when used to induce desired behav-

iors of house appliances and EVs. The work in [147] studies the scheduling of residential

loads and EVs considering the cost of energy and discomfort. In [225], the authors propose

a model predictive control strategy for a home energy management system (EMS) that in-

cludes heating, ventilation, and air conditioning (HVAC) systems, EVs, and deferrable loads.

Finally, [116] studies the use of HVAC systems and EVs in commercial buildings to provide

ancillary services. The previously mentioned works assume central scheduling of the building

appliances and EVs.

In practice, however, centrally scheduling building loads and EVs may not be possi-

ble. For instance, the building manager and EV aggregator may be unable to share the

internal data (e.g., EV trip information, battery state-of-charge (SOC), building occupancy,
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temperature preferences, among others) because of privacy or cybersecurity concerns [102].

Furthermore, even if internal data were allowed to be shared, centrally storing or maintaining

it may be difficult [39]. This chapter proposes a privacy-friendly and distributed approach

to solve the building-EV demand scheduling problem.

Distributed optimization is studied in both mathematics, e.g., [66], and power engineer-

ing, e.g., [23, 55, 188, 222]. In [66], the authors propose a decomposition principle for lin-

ear programs (LPs), now known as the Dantzig-Wolfe Decomposition. Dantzig’s technique

breaks down a LP into subproblems and reaches the global optimum in a decentralized fash-

ion via column generation. The authors of [188] optimize interconnected subsystems using

the DWDA. In [23], the authors use the DWDA to delegate the global task of energy man-

agement in a microgrid to local controllers. Lastly, the authors of [222] schedule appliances

and batteries using Bender’s Decomposition and Lagrangian relaxation.

5.1.3 Contributions

The main contributions of this chapter are:

• A decentralized and scalable approach for optimal scheduling of building loads and EV

charging/discharging using a mixed-integer linear program (MILP) adaptation of the

DWDA.

• Identification and modeling of three instances in which constraints couple the building

and EV operation. The coupling constraints in each of the three instances are the

product of:

1. A shared demand limit.

2. A demand charge to the aggregate building and EV peak demand.

3. An itemized billing scheme1.

• A demonstration of the effectiveness and scalability of the approach.

• An assessment of the impacts of the coupling constraints on the building operation,

1Under an itemized billing scheme, the price of energy bought from the grid is different than the price of
energy sold to the grid
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EV operation, and the power grid.

5.2 Organization of this chapter

This chapter is organized as follows. Sections 5.3 and 5.4 describe the building model and

EV aggregator model, respectively. Section 5.5 describes the building-EV demand scheduling

problem and offers a high-level overview of the DWDA. Section 5.6 discusses three case

studies and the scalability of the proposed method. Section 5.7 concludes and summarizes

this chapter.

5.3 Building model

Similar to [185, 198], we consider a commercial building whose EMS minimizes electricity

cost by operating various loads and actuators. Additionally, the EMS must enforce physi-

cal and comfort constraints. The model assumes that perfect parameter forecasts (e.g., for

ambient temperature, electricity prices, zone occupancy, hot water demand) and perfect vari-

able measurements (e.g., temperatures, light levels). While these parameters are stochastic,

managing uncertainty is beyond the scope of this chapter. Refer to section 5.5 for further

discussion of uncertainty.

5.3.1 Objective function

The EMS’s objective is to minimize total cost of electricity over an optimization horizon T .

We express the objective as

min ∆t ·
∑
t∈T

τt · db
t

where τt is the electricity price. The total electricity demand of the building is given by

db
t = pfix

t + phc
t + pwh

t +
∑
z∈Z

plight
t,z + pdl

t ,
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where pfix
t represents the fixed load of the building; phc

t and pwh
t represent the heating/cooling

load and water heater load, respectively; plight
t,z represents the artificial lighting load of each

zone; and pdl
t is the total non-interruptible discrete load. The length of a time period t is

∆t. The objective function of the EMS is subject to constraints (5.2) - (5.13).

5.3.2 Temperature dynamics

We model the temperature dynamics of a hot water tank via resistance-capacitance (RC)

circuit analogy [134]

c · θ̇wh = qwh − qhwd +
θamb − θwh

r
, (5.1)

where c is the thermal capacitance of the hot water tank; the symbols θwh and θamb represent

the temperature of the water inside the tank and ambient temperature, respectively; the

heat input from the water heater and the demand for hot water by the building occupants

are denoted by qwh and qhwd, respectively; finally, the parameter r represents the thermal

resistance of the hot water tank. Equation (5.1) is represented in discrete time as

θwh
t+1 = a · θwh

t + b · qwh
t + εwh

t ∀ t ∈ T (5.2)

where a = 1− ∆t
r·c , b = ∆t

c
, and εwh

t = ∆t ·
(
θamb
t

r·c −
qhwd
t

c

)
.

Similarly to (5.2), the temperature dynamics of the building zones are expressed as

θt+1 = Atθt +Bqheat
t −Cqcool

t +Dplight
t +Etu

b
t + εt ∀ t ∈ T (5.3)

where θt is a vector of zone temperatures; the vector qheat
t (qcool

t ) denotes the heat input (heat

removal) by the heating (cooling) system to (from) each zone; the vector plight
t represents

the artificial lighting power consumption; ub
t represents the position of the blinds in each

zone; and vector εt represents the disturbances to each zone’s temperature and is a function

of a number of parameters that include occupancy, exterior temperature, wall temperatures,
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and electric equipment heat emissions. The matrices At, B, C, D, and Et in describe the

thermal dynamics model of the building zones. The matrixAt relates the temperature of each

zone to the other zones and is a function of zone thermal capacitance, air flows, and thermal

insulation between zones. Matrices B and C are analogous to the term b from equation

(5.2) and contain thermal capacitance and linear approximations of convective and radiative

heat transfer coefficients. Matrix D relates the artificial lighting power consumption in each

zone to its heat input to the zone. The matrix Et relates the position of blinds in each zone

to heat gains in the respective zones. It also contains data of solar irradiance as well as

convective and radiative heat transfer coefficients. We refer to [159] for further details.

We ensure that all the energy used for heating or cooling is bought during the optimization

horizon by enforcing

θ0 = θ|T | and θwh
0 = θwh

|T |. (5.4)

Constraint (5.4) requires the temperatures of the hot water and each zone at the end of the

optimization horizon to be the same as the initial temperatures.

5.3.3 Technical constraints

The power limits of the heating and cooling systems are described by

0 ≤ 1

COP j
t

·
∑
z∈Z

qjt,z ≤ pj ∀ t ∈ T , j ∈ {cool, heat} (5.5)

where COP heat
t and COP cool

t are the coefficients of performance (COP) of the heating and

cooling systems, respectively. The power limit of the heating and cooling systems are pheat

and pcool, respectively.

The artificial lighting power limits are enforced by

0 ≤ plight
t,z ≤ plight

z ∀ t ∈ T , z ∈ Z, (5.6)
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where artificial lighting capacity each zone is denoted by plight
z .

The position of the blinds in each zone ub
t,z ∈ [0, 1] are expressed as the proportion of

natural light that is let in (e.g., 0 if the blinds are completely shut and 1 if the blinds are

open). Thus, the positions of the blinds in each zone are constrained between 0 and 1.

5.3.4 Comfort constraints

Arguably, the most crucial role of a building manager is to maintain a comfortable environ-

ment for the occupants. In our model, the comfort indices that must be within limits are air

quality, ambient temperature, hot water temperature, and light levels [45,227].

We assume that the operation of the ventilation system maintains acceptable air quality

levels. We take the operation rules of the ventilation system from EnergyPlus simulations [70]

and model the rest of the indices as decision variables.

The temperature limits in each zone are expressed by

θz ≤ θt,z ≤ θz ∀ t ∈ T occ
z , z ∈ Z (5.7)

and enforce minimum and maximum temperatures for each zone when occupants are present.

The symbols θz and θz represent minimum and maximum zone temperature limits. The set

T occ
z is the subset of elements in T in which zone z has at least one occupant. Similarly, the

constraints

θwh ≤ θwh
t ≤ θ

wh ∀ t ∈ T occ (5.8)

enforce minimum and maximum temperatures of the water in the tank during the subset

of T in which the building has at least one occupant T occ. The parameters θwh and θ
wh

represent minimum and maximum water temperature limits, respectively.
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The constraints

l ≤ γt,z · ub
t,z + βz · plight

t,z ≤ l ∀ t ∈ T occ
z , z ∈ Z (5.9)

enforce minimum and maximum light levels in each zone when occupants are present. The

minimum and maximum light levels in each zone are represented by l and l, respectively.

The parameter γt,z, in lumens, is the natural light that is let in when the blinds are the fully

open. The parameter βz relates the electric power used by artificial lights in each zone to

illumination.

The position of the blinds in each zone have a lower bound expressed by

ub
z ≤ ub

t,z ∀ t ∈ T occ
z , z ∈ Z. (5.10)

Constraints (5.10) reflect the fact that occupants might not be comfortable in a room with

the blinds completely closed [37]. The blind position lower limit is denoted by ub
z .

Finally, occupants might feel discomfort if the window blinds and artificial lights contin-

uously change positions and light levels. We reflect the preference for steady source of light

via the constraint

−∆u
b ≤ ub

t+1,z − ub
t,z ≤ ∆u

b ∀ t ∈ T occ
z , z ∈ Z (5.11)

−∆p
light ≤ plight

t+1,z − p
light
t,z ≤ ∆p

light ∀ t ∈ T occ
z , z ∈ Z (5.12)

where ∆u
b

and ∆p
light

are the maximum rates of change of blind position and artificial light

levels, respectively.
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5.3.5 Shiftable, non-interruptible discrete power loads

Shiftable, non-interruptible discrete power loads (e.g., dishwashers or computer batch pro-

cesses) are modeled as in [185]. The constraints

∑
t∈Ti

δt,i = CTi ∀i ∈ I (5.13)

δt,i ∈ {0, 1} ∀ t ∈ T , i ∈ I (5.14)

ensure that discrete load i completes its duty cycle CTi. The binary decision variable δt,i is

1 if the discrete power load i is on and 0 if it is off. The set of time periods discrete power

load i is allowed to run is denoted by Ti. The set of discrete loads is denoted by I.

Constraint

t+CTi∑
t′=t+1

δt′,i ≥ CTi · (δt+1,i − δt,i) ∀t ∈ T , i ∈ I (5.15)

ensures that the operation of discrete load i is not interrupted before its duty cycle is com-

plete. The total power from the discrete loads at time t is defined by

pdl
t =

∑
i∈I

P r
i · δt,i

where P r
i is the power rating of discrete power load i.

5.4 Electric vehicles

In this work, the EVs hand over control of the charge/discharge schedule to an aggregator.

The primary goal of the aggregator is to satisfy each EV’s transportation energy require-

ments. Additionally, the aggregator can discharge energy from the EV battery if doing so is

viable.

We assume that EV arrival and departure times, initial SOC, and transportation energy



83

requirement are known with certainty. While these parameters are stochastic, managing

uncertainty is beyond the scope of this work. Refer to Section 5.6 for further discussion on

uncertainty.

5.4.1 Objective function

The objective of the EV aggregator is to

minimize

{
∆t ·

∑
t∈T

τt · dev
t + ccyc

}

where dev
t =

∑
v∈V

{
pchg
t,v − ηdsg

v · p
dsg
t,v

}
represents the electricity demand of the EVs. The

constant ηdsg
v denotes the EV’s discharging efficiency. The variables pchg

t,v and pdsg
t,v are the

charging and discharging rates, respectively. The cost of cycling (degradation) for all EVs

during the optimization horizon is denoted by ccyc. The objective function of the EV aggre-

gator is subject to Constraints (5.16) - (5.20).

5.4.2 Cycling costs

In this work, we approximate the cost of cycling using the linear function

ccyc = ∆t · φ · CB
v ·
∑
t∈T

∑
v∈V

pdsg
t,v

as proposed in [154]. The parameters φ and CB are the slope of the linear approximation of

the battery life as a function of the cycles2 and the battery cost per unit energy, respectively.

2The parameter φ can be estimated using battery manufacture data sheets [154].
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5.4.3 State-of-charge dynamics

The SOC of an EV battery is a measure of the amount of energy stored in a battery and is

a function of the SOC at the previous time step and the energy inflows and outflows:

soct+1,v = soct,v + ∆t ·
(
ηchg
v · p

chg
t,v − p

dsg
t,v

)
− ξv · St,v∑

t′∈T St′,v
∀ t ∈ T v ∈ V . (5.16)

The charging efficiency, the power obtained from the grid, and the power injected to the grid

are denoted by ηchg
v , pchg

t,v , and pdsg
t,v , respectively. The total energy required for transportation

is denoted by ξv while the motion schedule by St,v. The parameter St,v = 1 if the EV is in

motion in period t, otherwise St,v = 0.

The constraints

soc|T |,v = soc0,v ∀ v ∈ V (5.17)

ensure that the total energy available in the battery at the end of the time horizon is the

same as it is at the beginning of the horizon. The constraints in (5.17) ensure that energy

used is during the optimization horizon.

5.4.4 Power and energy limits

The charging and discharging behavior of the EVs needs to be within the maximum power

pv, as denoted by the constraints

0 ≤ pchg
t,v ≤ αt,v · pv ∀ t ∈ T , v ∈ V (5.18)

0 ≤ pdsg
t,v ≤ αt,v · pv ∀ t ∈ T , v ∈ V . (5.19)

In addition, an EV can only charge or discharge if it is connected to a charging point. The

availability is determined by the parameter αt,v (αt,v = 1 if connected, αt,v = 0 otherwise).

We assume that an EV is available as soon as it arrives in the building and before it leaves.
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Figure 5.1: Visual representation of the building-EV demand scheduling problem structure.
The function f(db

t , d
ev
t ) is the objective. Equations Abxb = bb and xb ≥ 0 represent the

building constraints while Aevxev = bb and xev ≥ 0 represent the EV constraints. The
function g

(
db
t , d

ev
t

)
= 0 represents the coupling constraints.

Finally, the SOC must be within the minimum and maximum limits as expressed by

socv ≤ soct,v ≤ socv ∀ t ∈ T , v ∈ V . (5.20)

5.5 The building-EV demand scheduling problem

There might be cases where the building EMS and EV problems are two parts of a larger

scheduling problem, i.e., the building-EV demand scheduling problem. For instance, the

building and EVs may be connected to the grid through the same transformer or substation

that may impose power limits; or they may want to coordinate to reduce peak consumption.

Fig. 5.1 shows a representation of the building-EV demand scheduling problem.

Solving the building-EV demand scheduling problem as a single problem, however, may

not be possible. We propose a MILP adaptation of the DWDA to solve the problem without

requiring each entity to disclose private information and with the software/algorithms of

choice.
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5.5.1 The Dantzig-Wolfe Decomposition Algorithm

The DWDA is a method to solve LPs in a decentralized manner at the cost of iterations [66].

The building manager and the EV aggregator handle their respective subproblems while the

master problem solver handles the coupling constraints. Additionally, the master problem

broadcasts the dual variables associated with the coupling constraints. The building EMS

and EV aggregator use the dual variables to penalize the variables in the coupling constraints.

A technical description of the algorithm is given in Appendix A. For further information

refer to [55] and for implementation of the algorithm refer to [113].

While many decomposition algorithms (e.g., Bender’s decomposition, Lagrangian meth-

ods) are available, we choose to base our method on the DWDA for the following reasons

• The DWDA is well-suited for problems coupled by constraints. Other methods such

as Bender’s decomposition are well-suited for problems linked by variables.

• The DWDA is a well-known technique that has been improved and enhanced over the

years. For instance, some of the available enhancements and improvements are:

– Computational enhancements proposed by references [80,98,101] improve the com-

putational performance of the DWDA for some classes of LPs.

– Privacy-related enhancements proposed by references [77, 102] prevent sensitive

information from being revealed.

– A generalization of the DWDA to include MILPs was proposed by [208].

• Unlike the Lagrangian relaxation method, the DWDA provides a feasible primal solu-

tion at each iteration [106].

5.5.2 Information sharing

A major advantage of the DWDA is that it does not require sharing of private information

among parties. The master problem solver only requires aggregate data essential to the

coupling constraints and integrality of the solution. For instance, if the coupling constraint is

a limit on aggregate demand, the master problem only needs the proposed EV and building
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demands. Additionally, the master problem needs information on the integer variables to

find an integer-feasible solution. Conveniently, sharing demand of individual loads or EVs

is not needed. The master problem solver broadcasts values of the coupling and convexity

constraints to the building EMS and the EV aggregator.

5.5.3 Privacy of sensitive information

The aggregate data shared with the master problem could still carry sensitive information.

For instance, aggregate consumption of the EVs may encode information such as arrival

and departure times and energy needs of EVs. However, communication and encoding pro-

tocols can prevent others from learning about internal (private) constraints and data. For

instance, Hong et al. show that using a simple communication protocol, the privacy of in-

ternal data (i.e., constraints and cost functions of the subproblems) can not be learned by

solving the problem using the DWDA [102]. The communication protocol in [102] does not

add complexity because it uses simple linear transformations as encoding tools.

5.5.4 Optimality and convergence properties

The DWDA for LPs is guaranteed to converge in a finite number of iterations [66]. However,

MILPs are hard to solve [33] in general and finding the optimal solution in polynomial time

is not guaranteed. For both LPs and MILPs, a trade-off exists between optimality and

computational effort [208].

5.6 Case studies

We test the proposed method with three case studies. All cases consider a typical small

office building and 10 EVs under an aggregator. In the first case, the coupling constraint is

an aggregate demand limit. In the second one, the coupling constraints are the result of a

peak demand charge. In the third case, the coupling constraint arise from an itemized billing

tariff where the buying energy price is different to the selling energy price.
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Figure 5.2: Visual representation of the DWDA implementation information flow.

Summary of data

We base the building model on data (e.g., building zone areas, wall areas, U-values, window

areas, hot water tank capacity, COP, ventilation schedule, exterior lights schedules, airflow

schedules, electrical equipment, weather parameters) from the U.S. Department of Energy

Commercial Building Models small office building [70]. We simulate one typical cooling

weekday in Seattle, WA, USA.

The EV aggregator model is based on [185]. The arrival, departure, and energy needed

by the EVs for transportation purposes were generated using methodology from [199] .

Sources of uncertainty

The demand scheduling problem contains stochastic parameters. In particular, the potential

sources of uncertainty are

• Building occupancy: arrival, departure, and presence of occupants. Implicitly, this

translates uncertain availability of EVs and occupant thermal disturbances.

• Weather parameters: ambient temperatures and solar irradiation.

• EV transportation parameters: initial SOC and transportation energy require-

ments.

• Measurements: we assume that the SOC of the EVs, water temperatures, light levels,
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Figure 5.3: Southern California Edison hourly RTP schedule.

among other variables and parameters, can be measured accurately.

We assume that good predictions of uncertain parameters are available. As shown in [92,

221], good predictions allows a deterministic formulation to yield solutions that perform

well against solutions obtained using stochastic approaches. Developing such predictions

is beyond the scope of our work. However, more complex uncertainty models can be in

incorporated on top our framework as long as the subproblems remain tractable. We refer

the interested reader to [132,134,152,198,211,225] for tractable methods for uncertainty.

5.6.1 Coupling constraints: demand limits

In this case study, demand limits couple the building and EV aggregator problems. The limits

could be imposed by transformer, circuit breaker, feeder or safety limits. Problem (5.21)

describes the optimization problem where the building manager and EV aggregator minimize

energy and cycling costs. We write the problem as

min

{
∆t ·

∑
t∈T

τt ·
(
db
t + dev

t

)
+ ccyc

}
(5.21a)

subject to :

constraints (5.2)− (5.20)

d ≤ db
t + dev

t ≤ d ∀ t ∈ T . (5.21b)
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Figure 5.4: Case Study: demand limits. Aggregate building and EV demand for three
different strategies: a) uncoordinated strategy, b) rule-based coordination, and c) optimal
coordination.

The objective function (5.21a) represents the total energy cost. The price τt is the Southern

California Edison hourly real-time price (RTP) schedule [13] shown in Fig. 5.3. Constraints

(5.2) - (5.20) are the building and EV constraints. The coupling constraint (5.21b) limits

the total demand to a maximum of d = 17.5 kW and a minimum of d = −17.5 kW.

Fig. 5.4 shows the aggregate demand three different strategies. The strategy in Fig. 5.4(a)

is the uncoordinated strategy: the building and EV aggregator pursue their objective func-

tions and ignore the coupling constraints. Naturally, the objective value of the uncoordinated

strategy is “lower” than the optimal coordination objective because i) this problem is a re-
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laxed version of (5.21) and ii) real costs associated with violating the coupling constraints

are ignored (e.g., transformer damage costs).

Fig. 5.4(b) shows the aggregate demand for a rule-based coordination strategy in which

each party pursues its objective independently but agree on ad hoc rules to satisfy the

coupling constraints. In this particular case, the building manager agrees to restrict its

demand to ±12 kW and the EV aggregator to ±5.5 kW. The limits allow both parties

to find solutions that do not violate the coupling constraints without the need for further

coordination. However, the rule-based solution is suboptimal.

Fig. 5.4(c) shows the optimal coordination strategy (using the DWDA). Compared to

the non-optimal coordination strategy, optimal coordination allows the EV aggregator (and

the building manager to a lesser extent) to shift its load to lower priced hours.

5.6.2 Coupling constraints: peak demand charge

In this case, a peak demand charge couples the building and EV aggregator problems Problem

(5.22) describes an optimization problem where both parties minimize their power, energy,

and cycling costs.

min

{
∆t ·

∑
t∈T

τt ·
(
db
t + dev

t

)
+ Ω · dmax + ccyc

}
(5.22a)

subject to :

constraints (5.2)− (5.20)

db
t + dev

t ≤ dmax ∀ t ∈ T (5.22b)

The objective function (5.22a) has three components: the energy cost given (first term), a

peak demand charge (second term), and the cycling costs. The demand charge in $/kW

is represented by Ω and the peak demand value by the variable dmax. Constraint (5.22b)

defines the peak demand.

The tariff used in this case study is as follows: an energy charge τt of 6.38 ¢ for each
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Figure 5.5: Case Study: peak demand charge. Aggregate building and EV demand for two
different strategies: a) uncoordinated strategy b) optimal coordination.

kWh consumed during peak hours (between 0600 and 2200 h) and 4.32 ¢ for each kWh

consumed at off-peak hours. Additionally, a 98 ¢ charge is levied for every kW of maximum

demand [10].

We define the uncoordinated strategy for this case as follows: each entity minimizes its

own cost of energy and penalizes its individual peak demand. Post-operation of the building

and EVs, we calculate the peak demand charge by solving dmax = maxt∈T (dev
t + db

t ). Fig.

5.5(a) shows the building and EV demand for the uncoordinated strategy.

Fig. 5.5(b) shows the coordinated strategy building and EV demand. In the uncoordi-

nated case, both parties avoid high energy prices and reduce their peak demands indepen-

dently. However, the total peak demand is suboptimal as energy could be shifted from peak

times to the “valley” between the early morning and early evening peaks. On the other hand,

when the parties coordinate, the EVs obtain energy without contributing to peak demand.

Optimal coordination allows the building manager and the EV aggregator to reduce their

peak demand by 3.3 kW.
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5.6.3 Coupling constraints: itemized billing

In this final case, different buying and selling energy prices couple the building and EV

aggregator problems. This phenomenon can happen when a utility bills the consumer a $ per

kWh charge that includes energy, demand, and fixed costs as described in [146]. However,

the consumer only receives the energy portion when selling back to the grid. This tariff

structure is referred to as itemized billing.

The building manager and EV aggregator seek to

minimize

{
∆t ·

∑
t∈T

([
τ e
t + τ other

t

]
· d+

t − τ e
t · d−t

)}
(5.23a)

subject to :

constraints (5.2)− (5.20)

db
t + dev

t = d+
t − d−t ∀ t ∈ T (5.23b)

d−t ≥ 0 ∀ t ∈ T (5.23c)

d+
t ≥ 0 ∀ t ∈ T (5.23d)

under itemized billing. We denote the energy component of the tariff as τ e
t and the demand

and customer related components of the tariff as τ other
t . The energy bought and the energy

sold is d+
t and d−t , respectively. In this case study, we neglect EV battery cycling costs3.

The energy buying price is the real-time price described in Subsection 5.6.1. We assume

that the energy component of the tariff is 53% of the price [146].

Figs. 5.6(a) and 5.6(b) show the uncoordinated and coordinated strategies, respectively.

In the uncoordinated strategy, the EV aggregator does not have a price incentive to sell

energy to the grid (i.e., the buy-back price is too low). However, under a coordinated

strategy, the EVs discharge to offset 19.3 kWh during high price hours.

3We do so because we wish to study the non-trivial case where the EVs perform Vehicle-to-Grid (V2G)
or Vehicle-to-Building (V2B). The cost of cycling discourages V2B and V2G under this particular price
schedule.
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Figure 5.6: Case Study: itemized billing. Aggregate building and EV demand for two
different strategies: a) uncoordinated strategy b) optimal coordination.

5.6.4 Computational analysis

The case studies were implemented on a desktop computer running on an Intel(R) Xeon(R)

CPU E3-1220 v3 @ 3.10 GHz with 16 GB of RAM. The MILPs in the case studies (the

building subproblem and the master problem) were modeled using GAMS and solved using

CPLEX with an optimality tolerance of 1%. The LPs were modeled and solved using GAMS

and CPLEX, respectively, and solved to optimality. The DWDA tolerance4 is 1%.

Figs. 5.7(a), 5.7(b), and 5.7(c) show the iteration number and total cost for case stud-

ies 5.6.1 (demand limit), 5.6.2 (peak demand charge), and 5.6.3 (itemized billing), respec-

tively. In Fig. 5.7(a), the algorithm starts by searching for a feasible solution (known as

phase I of DWDA) from iterations 1 through 3. Once a feasible solution is found, the algo-

rithm switches to phase II where the master problem solver adjusts the dual values of the

coupling constraints to reach the optimal solution. Because of the structure of the coupling

constraints, phase I is only performed during the first iteration in cases 5.6.2 and 5.6.3. In

4See Appendix (A) for further details on termination of the DWDA.
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Figure 5.7: Objective function value vs number of iterations for each case study. Plots (a),
(b), and (c) refer to cases 5.6.1, 5.6.2, and 5.6.3, respectively.

other words, it is trivial for the phase I master problem to find a feasible solution. See the

Appendix for a detailed discussion of the Phase I/II Algorithm.

The convergence rate of the DWDA is closely related to the structure of the coupling con-

straints and their relationship with each subproblem. It has been reported that the DWDA

can exhibit slow convergence due to unstable dual variable behavior (this phenomenon is

known as the tailing-off effect) [129].

A simple way of improving the convergence rate is to bound the initial proposals. We

bound the initial proposals of case study 5.6.2 to ±20% from the optimal values since it is

the slowest one to converge. Bounding the initial proposals to ±20% is not unreasonable
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Table 5.1: Computational performance for the three Case Studies.

Avg. solve time of problem:

Case EVi Buildinga Mastera Total time # iter.

(a) 0.03 6.56 0.06 53.16 8

(b) 0.03 3.19 0.07 238.63 73

(b)ii 0.03 2.53 0.07 127.3 49

(c) 0.04 7.47 0.06 22.61 3
iSolve times are measured in CPU seconds
ii Using a ±20% forecast of EV and building demand

since it is equivalent to having a relatively inaccurate ±20% forecast. As shown in Table 5.1,

the ±20% bounds on the initial proposals decreases the number of iterations required to 49

and cuts the solve time by almost half.

5.6.5 Scalability

We test the scalability of the proposed method by increasing i) the number of buildings and

ii) the number of EV fleets. The coupling constraints are upper and lower demand limits

as in test case 5.6.1 but scaled to the number of buildings and EV fleets. For instance, for

one building and one EV fleet, the demand limits are ±17.5 kW. For n buildings and n EV

fleets, the demand limits are ±n · 17.5 kW.

The time devoted to solving the building subproblem is the most substantial portion of

the total algorithm run time. As shown in Table 5.2, the average solve time for the EV

subproblem grows approximately linearly with the number of EV fleets. The number of

iterations to convergence is 8 for all cases. However, the building subproblem solve time

increases faster than linear with the number of buildings.

The solve time of building subproblem can be sped up by solving each building in parallel.

In fact, even a single building - and certainly the EV fleet - could be decomposed in several
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Table 5.2: Computational performance for Case Study 1 with an increased number of build-
ings and EVs.

Avg. solve time (CPU sec.) of problem Total solve time (CPU sec.)

Na EV Buildingb Master Sb Pc # iter.

1 0.03 6.56 0.06 53.16 53.16 8

2 0.04 21.67 0.03 173.6 56.56 8

5 0.10 104.9 0.06 840.2 57.28 8

10 0.21 326.8 0.07 2614 58.24 8

20 0.45 1067 0.06 7474 60.11 8
aNumber of buildings and EV fleets
b Simultaneous solving of the buildings subproblem
c Parallel solving of the buildings subproblem

subsystems5 to further speed up the algorithm. As shown in Table 5.2, the sensitivity of

the total solve time to the number of buildings and EV fleets is small when the building

problems are parallelized.

5.7 Summary

This chapter presents a method to optimally schedule loads in a commercial building and the

charging/discharging of an electric vehicle (EV) fleet in a decentralized fashion. The building

and EV aggregator schedule their power consumption to meet a common goal (e.g., minimize

the operation costs) while observing a set of constraints that are functions of both building

and EV variables, i.e., the coupling constraints. We implement the proposed method via

a MILP adaptation of the Dantzig-Wolfe Decomposition Algorithm in which only variables

essential to the coupling constraints and the integrality of the solution are shared with the

master problem solver.

We study three classes of constraints that couple the building and EV aggregator prob-

5This decomposition could be carried out internally to preserve privacy.
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lems: i) demand limits, ii) a peak demand charge, and iii) itemized billing where the price of

energy bought differs from the price of energy sold. For each of these cases, we show that the

coordinated strategy optimally schedules building appliances and EV charging/discharging.

Finally, we test the scalability of the proposed method by increasing the number of buildings

and EV fleets.
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Chapter 6

MARKET POWER

6.1 Introduction

Prior to the 1990s, the majority of electricity customers in the United States were served

by vertically integrated monopolies that controlled every stage of the electric industry, from

production all the way to billing [36]. During the 1990s and early 2000s, however, electric

industries in places such as the United States, the United Kingdom, Argentina, and Chile

underwent major restructuring or “liberalization.” Under this transformation, the generation,

transmission, and delivery portions of the business were split, and vertical coordination was

(in part) replaced by market-based mechanisms.

Despite the increased role of markets in the electricity industry, restructuring seldom

means full deregulation [191]. For one, electricity is unlike any other commodity: its trans-

portation (transmission) is dictated by the laws of physics, it is not easily traceable, its safe

and reliably supply requires a number of intertwined products and services (e.g., energy,

voltage support, reserves), storing it is hard, etc. Moreover, electricity is an indispensable

product for which the public demands and expects extraordinarily high levels of reliability.

These quirks of electricity require, for now, a coordinating entity (e.g., a system operator

or “SO”) to manage power flows, coordinate grid services, ensure reliability and resource

adequacy, etc. The presence of such an invasive coordinator inevitably interferes with purely

free-market outcomes. Furthermore, the electricity industry deviates from ideal markets in

more classical ways: high entry barriers and market concentration, inelastic demand, market

segmentation, etc [67].

One of the most notable phenomena that can arise in non-ideal markets is market power.

In the most general sense, refers to the practice (illegal under some circumstances) of devi-
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ating from the fair pricing of goods and services for private gains at the expense of reduced

social welfare. Market power can take on a few different forms. For instance, firms could

dump products at below-cost prices to starve more fragile competitors and drive them out of

the market for longterm gains [79]. Or, suppliers can withhold otherwise available capacity

to increase prices and short-term profits (e.g., during the California energy crisis [44]). In

this chapter, we consider the second form of market power: when firms bid strategically and

alter market prices for short-term gains.

6.1.1 Problem statement and contributions

We consider a single profit-maximizing strategic bidder (the “firm”) under a perfect infor-

mation setting. The firm can be a supplier, consumer, or both, e.g., a prosumer or an

energy storage system (ESS). A market operator maximizes social welfare as revealed by the

participants’ bids.

By definition, strategic bids by the firm increases (or at worst, does not decrease) its short-

term profit with respect to the socially optimum1. Also by definition, the social welfare under

strategic bidding is lower than the optimum. The efficiency gap that results from strategic

bids motivates the central contribution of this chapter: our market power mitigating price

(MPMP), a pricing mechanism that induces the firm to bid the social optimum.

The MPMP has the following characteristics:

1. when the firm is exposed to it (e.g., in lieu of traditional marginal pricing) its profit-

maximizing bid equals the social-welfare maximizing bid,

2. its formulation requires no private information about the firm,

3. it is firm-agnostic, i.e., it is applicable to firms that are producers, consumers, or

prosumers, and

4. it allows the SO or regulator to regulate the firm’s profit.

In addition to the MPMP, the rest of the contributions of this chapter are:

1In the social optimum, the firm bids according to its true cost or utility.



101

• An analysis of the social and private impacts of strategic bidding by an ESS.

• An analysis of the performance of the MPMP.

The analyses listed above are performed in the IEEE 24 bus reliability test system (RTS).

6.1.2 Literature review

Market power in practice

The Federal Energy Regulatory Commission (FERC), state regulators, and SOs perform

market monitoring functions to detect, remedy, and prevent abuse of market power [190].

Detecting market power with certainty is virtually impossible because most drivers of bidding

behavior (e.g., operating costs or equipment status) are opaque to regulators. However,

regulators often use indices and heuristics designed to detect market power in a probabilistic

fashion. For instance, California ISO (CAISO) uses the Residual Supply Index (RSI), which

is correlated with above-competitive-rates-markup, to detect likely market power cases [190].

FERC, on the other hand, relies on the Herfindahl-Hirschman Index (HHI) as a measure of

market concentration [67]. The aforementioned indices were developed when only large

conventional generators could realistically exercise market power. Nowadays, however, it is

increasingly unclear how to apply those metrics to atypical participants such as large-scale

energy storage or aggregators controlling a heterogeneous mix of resources.

Several techniques to mitigate or prevent the effects of market power exist. For instance:

• FERC limits the market share of any single supplier to 20% [67]. Limiting market

share reduces the likelihood of price-making capabilities by large suppliers.

• Another technique is to increase the connectivity of the electric network (e.g., with

transmission infrastructure) to avoid market segmentation. A segmented electricity

market (e.g., a system with a significant number of congested lines) may leave some

nodes at the mercy of a few suppliers with price-making capabilities [67].

• Longterm contracts are also known to reduce market power as they reduce the amount

of capacity that could be taken off-line during operation [114].
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• There is evidence that demand-side bidding reduces the market power of suppliers,

e.g., in [172,223].

• And finally, a popular, but often criticized by free marketeers, technique to prevent

market power are price caps [61].

The aforementioned market power mitigation and prevention techniques are approximately

lead to more desirable market outcomes from society’s point of view. In contrast, our pro-

posed MPMP is an exact technique to mitigate the market power, in the sense that it creates

optimal, not just more desirable, market outcomes.

Market power in academic works

In the realm of academia, most works deal with the market power of generating units (e.g.,

see [114, 189]). The focus on generation is understandable since large-scale penetration of

more diverse market participants is a relatively new phenomenon. Our MPMP, however,

allows for it to be applied to generic market participants: whether these are suppliers,

demand, or both.

References [137, 200] study the issue of market power by ESSs. However, the problem

is seen from the perspective of the ESS. The social point of view is not fully addressed.

Moreover, to the best of our knowledge, a market power mitigation mechanism for ESSs or

generic firms is not yet available.

6.1.3 Where do distributed energy resources fit in the context of market power?

A commonly proposed way of allowing distributed energy resources (DERs) to participate

in electricity markets is through aggregators [43]. Under this paradigm, aggregators gather

enough capacity to participate in wholesale markets and bid on behalf of their constituent

DERs.

While incorporating DERs into electricity markets unlocks their potential to provide

system-wide benefits [43], some researchers have pointed out their potential to act strategi-

cally for private gains, e.g., in [58, 151, 178]. Notably, our work in Chapter 4 shows how a
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strong DER-aggregator coalition can arise even from selfish agents and bid as a single block.

Thus, at least in theory, an aggregator could potentially amass enough DERs to rival the

size of any single large-scale power plant and exercise unacceptable levels of market power.

As previously mentioned, most practical and academic work on market power detec-

tion and mitigation has been focused on traditional suppliers (e.g., large power plants). It

is unclear how regulators would apply market concentration indices like the HHI to large

ensembles of heterogeneous DERs, or cost-based indices like the (PCMI) to non-suppliers.

Similarly, it is unclear how traditional market power mitigation approaches could be adapted

to DER aggregators. In contrast to traditional approaches, our MPMP is firm-agnostic and

is applicable to ensembles of producers, consumers, prosumers, or a combination of thereof.

6.1.4 Organization of this chapter

This chapter is organized as follows. Sections 6.2 and 6.3 describes the strategic firm and the

market model, respectively. Section 6.4 identifies the two market outcomes that we consider:

the social optimum and the outcome under strategic bidding by the firm. Section 6.5 presents

the MPMP, Section 6.6 presents a case study on the IEEE 24 bus RTS, and Section 6.7

concludes the chapter.

6.2 Strategic participant model

We consider a single strategic player participating in an electricity market and assume that

all other market participants are non-strategic. Non-strategic participants reveal their true

preferences through their bids2, i.e., they bid their true cost or utility function. The strategic

player can be a consumer, producer, or prosumer and participate by offering or bidding at

any number of nodes of a power system. Hereinafter we refer to the strategic player as the

firm.

2The truthfulness assumption of the rest of the market participants can be relaxed without loss of gen-
erality, i.e., they are not required to reveal true preferences. However, the crucial assumption here is that
they do not modify their bids in response to the strategic player.
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The firm is characterized by a concave utility function ũ : R|T |·|N | → R and can represent

a consumer, producer, or prosumer. For consumers, the function ũ takes on positive values

maps consumption at each time period t ∈ T and node n ∈ N to utility. For the case of

producers, ũ takes on negative values and represents a disutility or cost. Prosumers can act

as net producers of electricity during some time periods and at some nodes and act as net

consumers during other periods and nodes [170].

Additionally, the firm is characterized by a convex setX ⊂ R|T |·|N | that defines admissible

consumption/production schedules x = {xt}t∈T . The symbol xt denotes nodal consumption

(when negative) or production (when positive) of the firm at time t and x is simply the

collection of all xt’s. To simplify notation, we embed X in the firms utility function as

follows

u(x) =

ũ(x) if x ∈ X

−∞ otherwise

.

6.2.1 Market participation

The firm participates in a day-ahead market by submitting inverse supply and/or demand

curves, s−1
t : R|N |+ → R|N | and/or d−1

t : R|N |+ → R|N |. The function s−1
t maps the supply

quantity during period t at each of the |N | nodes to prices and is required to be non-

decreasing. Similarly, the inverse demand curve d−1
t is required to be non-increasing and

maps energy demanded at each node to nodal prices.

6.3 Market model

We consider a market in which the market operator receives supply/demand bids from the

firm, supply bids form the rest of the players, and covers a fixed demand by the load. Then,

the market operator clears the market by maximizing the social welfare as revealed by the

collection of bids from all players. The following definitions introduce the precise meaning

of social welfare and details the market clearing mechanism.
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Definition 2. Let f = {f t = d−1
t − s−1

t }t∈T . Given a set inverse supply {s−1
t }t∈T and

demand curves {d−1
t }t∈T , of the system welfare is defined as

SW(f) = u(x(f))−
∑
t∈T

1>cgen
t (gt(f)) (6.1)

where cgen
t : R|N |+ → R|N |+ is a function that maps hourly generation (by generators not owned

by the firm) at each node to generation cost at each node. The dispatch of the generators at

time t is denoted by gt.The nth entry of vector gt represents generation from node n at time

t. We write gt as a function of f to emphasize the bid’s impact on the generation dispatch.

The dispatch of the firm is denoted by x and is a function of the firm’s bids.

The dispatch values of gt(f) and x(f), denoted by g∗t (f) and x∗(f), are determined by

the market clearing process, which maximizes the “apparent” social welfare as revealed by

the bids. The following definition formalizes the market-clearing process.

Definition 3. The dispatch values g∗t (f) and x∗(f) are a product of the market clearing

problem given by

{g∗t (f),x∗(f)} = arg max
gt,xt

∑
t∈T

∫ xt

0

f(y)dy −
∑
t∈T

1>cgen
t (gt(f)) (6.2a)

s.t.

1>gt + 1>x = 1>qt ∀ t ∈ T (6.2b)

H(gt + xt − qt) ≤ l ∀ t ∈ T (6.2c)

x = {xt}t∈T (6.2d)

where the objective (6.2a) is to maximize the social welfare as revealed by the firm’s and other

player’s bids during T . The nodal demand at time t are given by qt. Equations (6.2b), (6.2c),

represent the system power balance constraints and represent the system transmission con-

straints, respectively. The symbol H represents the transmission shift factor matrix and l

represents line limits.
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The dispatch quantities are crucial in calculating the social welfare, a measure of efficiency.

Additionally, the market clearing mechanism determines the prices of electricity at which

the firm and the rest of the market participants transact. A common pricing mechanism is

locational marginal pricing [118]. Under locational marginal pricing, the price of electricity

(potentially) fluctuates both in time and location.

Definition 4. The locational marginal prices (LMP) at time t are defined as the gradient

of the Lagrangian of problem (6.2) with respect to the nodal demands at time t: λt(f) =

∇qtL [118].

Throughout this chapter, we illustrate relevant models and results via simple and easy-

to-follow numerical examples.

Example 4. Consider a firm that owns generation and operates in a uni-node and uni-period

electricity market. The firm is characterized by the quadratic cost function ũ(x) = −1
2
x2

generation limits given by X = {x|0 ≤ x ≤ 10}. Then, u(x) = ũ(x) if x ∈ X and u(x) = −∞

otherwise. The market is characterized by a demand of 10, the supply from the firm, and a

cost function for the rest of the generation in the system given by cgen(g) = 1
2
g2. The demand

derives 5 units of utility per unit energy consumed.

Suppose that the SO accepts bids by the firm in the form f(y, a) = −a · y. Then, the

market clears by solving the problem

maxx,g

∫ x

0

f(y, a)dy − cgen(g) + 5 · 10 (6.3a)

s.t.

x+ g = 10. (6.3b)

The first term of the objective represents the firm’s reported generation costs, the second

represents the cost of generation for the rest of the market participants, and the last one the

utility derived by the load. The price of electricity is given by the dual variable of the power

balance constraint.
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6.4 Market outcomes

In this section, we introduce two market outcomes. The first one is the strategic bidding

outcome. In this case, the firm formulates bids f to maximize its profit. In the second

outcome, the socially optimal case, the bids maximize social welfare. The first case models

a situation where the firm has the potential to exercises market power, that is, the firm

is a price maker. The second case models an ideal scenario that would arise if the firm is

controlled by a social welfare-maximizing entity, e.g., the state, if the market is perfectly

competitive, or if the firm’s strategy is to reveal its true preferences to the SO.

6.4.1 Strategic bidding

For the strategic bidding case, we assume that

1. the firm maximizes short-term profits,

2. the market operator determines dispatch values and prices by solving Problem (6.2),

3. the rest of the market participants bid truthfully, and

4. a perfect information setting where the firm knows the parameters of Problem (6.2).

Under the aforementioned assumptions, the firm formulates bids f ∗ by solving

f ∗ = arg max
f

u(x(f)) +
∑
t∈T

λt(f)>xt(f). (6.4)

The value of x and λt are determined by the market clearing process, that is, by the solution

to Problem (6.2) and by Definition 4. Note that we model strategic bidding by the firm as

a Stackelberg Game where the firm moves first by submitting bids to the SO and the SO

responds by clearing the market.

Example 5. This continues the previous example. Under strategic bidding, the firm chooses

the value of a ∈ R+ in its bid f(y, a) = −a · y that delivers the highest profit. That is, it

chooses a by solving

a∗ = arg max
a∈R+

u(x) + x · λ
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where both and x and λ are implicit functions of a and result of the market clearing process

described in the previous example. Analyzing the Karush-Kuhn-Tucker (KKT) conditions of

Problem (6.3), we find that x and λ as functions of a are

x =
10

a+ 1
and λ =

a · 10

a+ 1
.

Then, the profit maximizing bid, dispatch values, and market-clearing price are given by

a∗ = 2, x∗ =
10

3
, and λ∗ =

20

3

and the optimal profit by

u(x∗) + x∗ · λ∗ =
50

3
≈ 16.33.

continue here

6.4.2 Social optimum

While the social optimum may be hard to realize in practice, we are interested in it because

it is an outcome to “strive” for. Also, the social optimum can serve as a benchmark to

compare non-ideal outcomes against. We define socially optimal bids f social as those that

maximize social welfare:

f social = arg max
f

SW(f). (6.5)

By definition, SW(f social) ≥ SW(f ∗). The magnitude of the difference, however, is

dependent on the market characteristics that include the size and spatial dispersion of the

firm, the composition of the supply, and the demand’s elasticity.

An important goal of regulators (including FERC in the United States) market efficiency,

i.e., outcomes close to SW(f social). In the next section, we propose a pricing mechanism that
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a regulator or system operator (SO) could implement if she deems the gap between the

optimum and the actual outcome is too large to bear.

Example 6. This continues the previous example. The socially optimal is, from the KKT

conditions to of Problem (6.3), given by

asocial =
10

xsocial
− 1

where xsocial is given by the solution to

maxx,gu(x)− cgen(g) + 5 · 10 (6.6a)

s.t.

x+ g = 10. (6.6b)

Problem (6.6) is similar to (6.3) except that the stated preferences of the firm, i.e., its bids,

are replaced by its true preferences, i.e., its utility function. Thus, the socially optimal bid is

asocial = 1. In this case, the social welfare is

SWsocial = u(xsocial)− cgen(gsocial) + 5 · 10 = 25.

In the strategic bid case, on the other hand, the social welfare is

SW∗ = u(x∗)− cgen(g∗) + 5 · 10 ≈ 22.22. (6.7)

Strategic bidding represents a social welfare loss of ≈ 2.77 or about 11%. The load is noto-

riously affected as their payments increase by ≈ 16.6 units. Table 6.1 shows the profits and

welfare for each of the two market outcomes. A curious result is that the rest of the gener-

ators in the system benefit from the firm’s strategic bid even more than the firm itself. The

reason for this is that the rest of the generators enjoy the higher price and higher dispatch.
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Table 6.1: Welfare and profits for each market outcome: strategic bid and social optimum.

market outcome firm profit generator profits1 Load payments SW
strategic bid 16.33 22.22 66 22.22

social optimum 12.5 12.5 50 25
difference 3.83 9.72 −16 −2.78

1For participants other than the firm

6.5 Market power mitigation

As shown in the previous example, social welfare and consumers can suffer the consequence

of the firm’s strategic bids. This section proposes a non-uniform pricing mechanism designed

to mitigate the adverse effects of strategic bidding.

6.5.1 Market clearing with market power mitigating price

If the SO or regulator could expose a firm that exercises market power to the market power

mitigating price (MPMP) proposed in the following theorem The MPMP aligns the profit-

seeking behavior of the firm with the goal of maximizing social welfare. That is, under the

MPMP, the firm bids the social optimum.

Theorem 1. If the firm is exposed to the MPMP given by

pt(f) = −diag(xt(f))−1 · (cgen
t (gt(f))− γt) t ∈ T

the market clears at the social optimum. The function diag(a) takes the vector a ∈ RN and

outputs a N × N diagonal matrix whose (i, i) entry is the ith element of a. The constant

vector γt can be set arbitrarily and used to regulate the firm’s profit. The dispatch values

xt(f) and gt(f) are product of the market clearing.

The proof of Theorem 1 can be found in Appendix E. The proposed MPMP has three key

properties. First, it is compatible with both rational behavior of the firm and the regulator’s

desire to maximize social welfare: by maximizing profits, the firm bids the social optimum.
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Second, the terms γt allows for regulation of the firm’s profit. Third, it is firm-agnostic: it

is applicable to producers, consumers, or prosumers. And finally, its formulation requires no

private information: the characteristics (i.e., operating constraints and cost functions) of the

firm do not need to be disclosed.

6.5.2 Regulated profit of the firm

The proposed MPMP allows for the regulation of the firm’s profit by selecting constants γt

such that it receives a desired (and arbitrary) amount of profit. The profit must come from

charges to other players in the system. The profit allocation decision is a problem to be

solved by the regulator, the SO, market operator, and/or other stakeholders. This, however,

is a decision that is system, market structure, and regulatory environment-dependent and is

outside the scope of this dissertation.

The amount of regulated profit does not affect the short-term operation of the firm as

the γt’s are constants in the objective of the firm’s profit maximization problem. However,

selecting a proper amount of regulated profit is crucial. Assigning too much or too little

profit to the firm may induce an undesirable long-term evolution of the system.

Example 7. This continues the previous example. As previously noted, the clearing price

as a function of the bid parameter a is

λ =
a · 10

a+ 1
.

Also as previously discussed, under λ, the firm has the ability to bid strategically to increase

its profits at the expense of the load’s welfare. However, if the firm is exposed to the MPMP

of the form

p =
−cgen(g) + γ

x
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the it’s profit maximization problem becomes

max
a∈R+

u(x) + x · p = u(x)− cgen(g) + γ. (6.8)

As with traditional pricing, x and g are products of the market clearing process and implicitly

functions of a. Notice that the profit maximization problem (6.8) under MPMP and the social

welfare maximization problem (6.7).

6.5.3 How does the MPMP fit in current market designs?

The MPMP has three major features that relate to the design of modern electricity markets.

First, it encourages a monopolist to bid the social optimum. Second, through its γt constants,

it allows the regulator to assign the firm an arbitrary amount of profit. Last, as consequence

of the profit regulation property, the MPMP could serve as a welfare allocation tool to

accomplish regulatory goals, subsidize, or tax certain technologies in the power system. These

three properties are compatible with current market designs and practices as discussed in

the rest of this section.

Market power mitigation

One of the responsibilities of the FERC is to oversee wholesale electricity markets. FERC

Order 888 [78] states that

“The Commission’s goal is to remove impediments to competition in the whole-

sale bulk power marketplace and to bring more efficient, lower cost power to the

Nation’s electricity consumers.”

Aligned to FERC Order 888, Independent System Operators throughout the country (e.g.,

CAISO, NE-ISO) have established departments dedicated to monitoring market activity and

countering abuses of market power. Understandably, in both academia and in practice, such

efforts have typically been focused on the market power of generators. Nevertheless, the
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proposed MPMP is in line with the goal of fomenting market efficiency and discouraging

monopolistic behaviors.

Profit regulation

The MPMP also has the ability to regulate the profit of the monopolist firm. Regulating

profits of monopolies is a fairly common practice in many sectors of the economy, including

the electricity sector. In fact, one of the most prominent examples of this is the profit

regulation of electric and gas utilities [201]. A common way of regulating the profit of

electric utilities is through cost-plus schemes where the utilities are allowed to cover their

costs plus an administratively designated rate of return.

Welfare allocation

The MPMP can also play alongside and assist features of modern electricity markets. For

instance, some systems use uplift payments to mitigate market failures [100]. The MPMP

could serve as an additional tool to collect and deliver uplift payments. Additionally, the

MPMP could be used as a collection mechanism to subsidize desirable technologies in the

power system (e.g., energy storage, flexible resources, or clean generation) and penalize

undesirable ones (e.g., dirty generation). The question of whether a welfare allocation is

good or evil is outside the scope of this work.

6.5.4 Limitations and practicality of the MPMP

Under our assumptions, the MPMP is a perfect solution to market power. The pricing

scheme is easy to formulate, transparent, requires no private information, and delivers the

social optimum. However, some of the assumptions may not hold in practice.

A perfect information setting is the first assumption that is unlikely to hold in reality.

Empiric studies such as the one in [103] show that observed behaviors do not fully match

the theory. Furthermore, assuming that the firm has full knowledge of the market clearing
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problem is likely unreasonable. Firms that formulate strategic bids are likely to use simpler

models, e.g., residual-demand based ones [210]. Thus, a practical implementation of the

MPMP should probably be based on bidding models that are observed in practice.

The second assumption that may not hold in practice is the unique strategic bidder as-

sumption. In some cases, more than one firm may act strategically - each one potentially

with different levels of sophistication. As discussed in references [138,139,168], markets with

multiple strategic players can be analyzed as equilibrium problems with equilibrium con-

straints (EPECs). Thus, when appropriate the MPMP should be adapted to accommodate

multiple strategic players.

A potential difficulty of implementing of the MPMP is the sensitivity of the outcomes of

interest (e.g., prices, social welfare, or welfare distribution) to the mismatch between models

and reality (e.g., the difference between the bidding model and actual strategy, network model

and actual network, etc.). It would be undesirable if normal levels of model misspecification

lead to severely bad outcomes. Thus, an implementation of the MPMP should be robust to

differences between models and assumptions and their reality. Ideally, an implementation

of the MPMP should guarantee outcomes that are not worse than the status quo pricing

mechanism.

Finally, the longterm implications of profit regulation and welfare redistribution (via

selecting the constants γt and arranging side-payment schemes) must be explored. It is well-

known how perfectly competitive markets not only deliver efficient short-term allocation

of resources but also incentivize efficient allocation of production capacity and longterm

consumption patterns. The MPMP allows the regulator, to some extent, to determine welfare

allocation throughout the system - an admittedly difficult task.

6.6 Case study: the market power of an ESS in the IEEE 24 bus RTS

In this section, we study the effects of market power and the MPMP on a larger instance.

We analyze the welfare and performance of the participants in a multi-period, multi-node

market. Furthermore, compared to the previous numerical examples, we consider a more
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complex firm: an ESS operator. This case study is based on on [56].

We consider the two entities that participate actively: i) the SO, who is responsible for

maximizing social welfare while observing the power system constraints of the IEEE 24 bus

RTS; and ii) the ESS operator who strives to maximize profits derived from energy arbitrage.

Additionally, we consider three passive market participants and stakeholders: the load, the

generation, and the transmission system.

6.6.1 Power system model

We consider a setting where the SO has perfect forecasts of demand, generation, and trans-

mission availability. The network is modeled using DC power flows.

The SO ensures that four technical limits are observed. The first one is related to each

generator: the power output of each generator, gi,t, must be within the operating limits. g
i

and gi, as shown by constraints (6.9a). The rest of the technical limits concern the entire

power system: the power produced must equal the demand (6.9b); each line flow must be

within limits, −l̄k and l̄k, at all times as expressed by equations (6.9c); and the bus voltage

angles, θn,t must be within stability limits, as expressed by equations (6.9d). The following

equations state these constraints:

g
i
≤ gi,t ≤ gi, ∀ i ∈ I, ∀ t ∈ T (6.9a)

gbus
n,t + xbus

n,t = qn,t +
∑
l∈L

mL
k,n

θs(k),t − θe(k),t

Xk

, ∀ n ∈ N ,∀ t ∈ T (6.9b)

− l̄k ≤
θs(k),t − θe(k),t

Xk

≤ l̄k, ∀ k ∈ K,∀ t ∈ T (6.9c)

− π ≤ θn,t ≤ π, ∀ n ∈ N , ∀ t ∈ T (6.9d)

θn,t = 0, n = ref, ∀ t ∈ T (6.9e)

where the set of all generators, buses, energy storage units, lines, and time periods are

denoted by I, N , H, K, and T , respectively.

The power injected (when positive) or extracted (when negative) at time t by the storage
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units connected to bus b is denoted by xbus
n,t =

∑
h∈Hm

ES
h,n(xdh,t − xch,t) where rate of charge

and discharge of storage unit h at time t are denoted by xch,t and xdh,t, respectively. The

power injected at time t by generators connected to bus n is denoted by gbus
n,t =

∑
i∈Im

G
i,ngi,t.

The parameters mG
i,n and mES

h,n are elements of the generator and ESS incidence matrices,

respectively. The constant mG
i,n/m

ES
h,n is 1 if generator i/ storage unit h is connected to bus

b and 0 otherwise. The load at bus b at time t is denoted by qn,t. The constant mL
k,n is an

element of the line map matrix and its value is 1 if line l starts at node n, −1 is it ends at

node n, and 0 otherwise. The power flow on a line from bus s(k) to bus e(k) is a function

of the difference between the voltage angle at bus s(k) and the voltage angle at bus e(k),

and the line reactance Xk [197]. Finally, the voltage angle at the reference bus is set by

constraints (6.9e).

Constraints (6.9a)-(6.9e) define the feasible set of the power system. Now we characterize

the feasible operating regimes of the ESS.

6.6.2 Energy storage system

In this case study, we focus on when the ESS is used for energy arbitrage. Energy arbitrage

is an important revenue stream for an energy storage system and can help justify investment

costs [68].

The ESS operator owns and operates a set of storage units distributed throughout the

grid. The rate of charge, xch,t, and discharge, xdh,t, must be within bounds, xch and xdh, as

expressed by constraints (6.10a) and (6.10b), respectively. The amount of stored energy,

SoCh,t, must be within bounds, SoCh and SoCh, at all times as expressed by constraints

(6.10c). Constraints (6.10d) describe the state-of-charge (SOC) dynamics. The SOC of

storage unit h at time t, SoCh,t, is equals its SOC at t−1 plus the energy inflows, ∆xch,t−1 η
c
h

and outflows ∆xdh,t−1/η
d
h at t−1. The length of each time step is denoted by ∆. The charging

and discharging efficiencies are characterized by ηch ∈ (0, 1] and ηdh ∈ (0, 1], respectively.

Additionally, the initial energy stored by each storage unit must equal their final energy

stored as expressed by constraint (6.10e). This ensures that energy sold during the time
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horizon is paid for during the time horizon. The following equations describe technical limits

of the ESS:

0 ≤ xch,t ≤ xch, ∀h ∈ H, ∀t ∈ T (6.10a)

0 ≤ xdh,t ≤ xdh, ∀h ∈ H, ∀t ∈ T (6.10b)

SoCh ≤ SoCh,t ≤ SoCh, ∀h ∈ H, ∀t ∈ T (6.10c)

SoCh,t = SoCh,t−1 + ∆xch,t−1η
c
h −∆qdh,t−1/η

d
h,∀h ∈ H, ∀t ∈ T (6.10d)

SoCh,|T | = SoCh,0, ∀h ∈ H. (6.10e)

Finally, it is known that charging/discharging affects the useful lifetime of chemistry-

based ESSs [155]. The cost of utilizing the ESS is characterized by the linear cost function

CES =
∑

h∈H, t∈T

αh∆(xdh,t + xch,t).

where the coefficient αh is related to the degradation and operation costs of unit h.

The aforementioned constraints characterize the feasible set of ESS operating regimes.

The following section introduces the problem that the ESS solves to maximize its profit.

Rather than bidding according to its true cost, the ESS determines profit-maximizing bids.

6.6.3 Bidding strategy

In this section, we introduce the market setting in which the ESS operates and formulates

its profit maximization problem. If the ESS is large enough, its bids might significantly

affect the market clearing prices. In this case, the ESS’s best strategy is to treat the market

clearing prices as endogenous to its profit maximization problem. The problem of ESS profit

maximization under endogenous prices is typically modeled as a bilevel optimization problem

where the upper-level objective is to maximize the ESS’s profit subject to the market clearing

process in the lower level [137,158,215].
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Price-quantity bids from the ESS

We consider a market setting that allows the ESS to submit price-quantity demand bids

(for energy purchases) and price-quantity supply bids (for energy sells) as in [215]. For each

storage unit and time period, it bids ∆xsupply
h,t units of energy (for injection) at the price ρsupply

h,t

or bids for ∆xdemand
h,t units of energy (for extraction) at the price ρdemand

h,t . The objective of

the ESS operator is to formulate supply and demand bids such that its profit, given by

JESS(y,λ) =
∑

n∈N , t∈T

λn,t∆x
bus
n,t − CES,

is maximized. The price paid to (when selling) or paid for (when buying) by the ESS

operator for withdrawals/injection at bus n is the LMP, λn,t. The ESS-exclusive variables

are denoted by y =
{
xch,t, x

d
h,t, SoCh,t, ρ

supply
h,t , ρdemand

h,t

}
h∈H,y∈T

. The set of all LMPs is

denoted by λ = {λn,t}n∈N ,t∈T . The LMPs λ are the dual variables of the nodal power

balance constraints (6.9b) obtained from the market clearing process.

Market clearing

The ESS determines its bids while assuming that the load bids its true utility and that the

generators bid their true cost. The market clearing process is modeled as an optimization

problem in which the SO maximizes the social welfare as revealed by the participant’s bids.

The SO maximizes

JSO,bid(x, z) =
∑

h∈H, t∈T

(ρch,t∆x
c
h,t − ρdh,t∆xdh,t)−

∑
i∈I, t∈T

cgen
i (gi,t),

where the function cgen
i (·) represents the piece-wise linear price-quantity bid (and true cost)

of generator i. The clearing charging/discharging quantities ∆xch,t/∆xdh,t should be smaller

than or equal to the bid quantities ∆xdemand
h,t /∆xsupply

h,t . It is assumed that the load price bid

is high enough for all its quantity to be cleared. This last assumption allows ignoring the
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load’s utility term in the SO’s objective function.

Bilevel optimization model of strategic bidding

The prices paid by/for the ESS derive from the social welfare maximization problem. Thus,

bidding problem of the ESS operator can be formulated as the following bilevel optimization

problem:

max
x,z,λ

JESS(y,λ) (6.11a)

s.t. y ∈ YESS (6.11b)

{z,λ} ∈ arg max
z∈ZSO

JSO,bid(z,y) (6.11c)

where the power system-exclusive variables are denoted by

z = {{gi,t}i∈I , {θb,t}n∈N}t∈T .

The feasible operating region of the electric network described by equations (6.9a)-(6.9e) is

denoted by ZSO. Similarly, the feasible operating region of the ESS described by equations

(6.10a) - (6.10e) is denoted by YESS. Here, the upper-level objective, (6.11a), is to maximize

the ESS profit subject to the ESS constraints (6.11b) and the market clearing process (6.11c).

In the upper level, the ESS determines its supply/demand price-quantity bids. In the lower

level, the SO schedules generation and charging/discharging of the ESS in order to maximize

the social welfare.

Solution approach

The bilevel problem described by equations (6.11) is recast as a single-level optimization

problem by replacing the lower level problem (6.11c) with its KKT optimality conditions.

The resulting single-level problem, however, is hard to solve as it is non-linear (the upper-level

objective, JESS, is a product of variables) and non-convex (the lower-level complementary



120

slackness conditions are equalities and product of variables). However, the upper-level objec-

tive is linearized by invoking the strong duality theorem on the convex lower-level problem.

The lower-level complementary slackness conditions are linearized using the Fortuny-Amat

and McCarl transformations. The resulting problem is a mixed-integer linear program that

can be efficiently solved using commercial solvers (e.g., CPLEX). We skip the detailed de-

scription and refer interested readers to [73,215].

6.6.4 Social welfare

In this section we define i) how the welfare/profits are allocated among participants and

ii) the problem that the SO solves in the ideal case. Ideally, each participant would bid

according to its true cost/utility. In this case, the market clearing process maximizes the

true social welfare of the system.

Social welfare distribution

In order to know who “wins” and who “looses” due to the ESS strategic bid, it is useful to

define how the social welfare is allocated among four actors in the system: i) the producers

and ii) ESS whose welfare is their profit, iii) the load whose welfare is the utility derived from

consuming electricity minus electricity payments, and iv) the transmission system owner

whose welfare is the transmission surplus. All in all, the system welfare is given by the

following definition.

Definition 5. The social welfare, SW, of the system is equivalently defined as i) the sum

of the welfare of the four aforementioned actors or ii) the benefit that the load derives from
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consuming electricity minus the cost of operating the power system and the ESS:

SW = JG + JESS + JD + JTS

=
∑

n∈N ,t∈T

U∆dt −
∑

i∈I,t∈T

cgen
i (gi,t)− CES (6.12)

(6.13)

where

JG =
∑

i∈I,t∈T

[λn(i),t∆gi,t − cgen
i (pi,t)],

JD =
∑

n∈N ,t∈T

(U − λn,t)∆qn,t

JTS =
∑

n∈N ,t∈T

λn,t∆(qn,t − xbus
n,t − gbus

n,t ).

The load’s benefit per MWh is denoted by U . The symbol JD denotes the load’s surplus.

The producer’s profit is denoted by JG and λn(i),t, is the locational marginal price (LMP)

at time t at the bus generator i is connected to. The bus that generator i is connected to is

denoted by n(i). The transmission surplus as defined in [99] is denoted by JTS.

Social optimum

Ideally, the SO would operate the system by maximizing the social welfare as defined by

(6.12) while observing all technical constraints. Then, the socially optimal operation of the

system is given by the following definition.
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Definition 6. The solution to the problem

max
z,y

SW (6.14a)

s.t. {z,y} ∈ ZSO (6.14b)

y ∈ YESS, (6.14c)

denoted by z∗ and y∗, defines the socially optimal operation of the system.

6.6.5 Simulation results

Numerical simulations are performed using the one area IEEE 24 bus RTS found in [5]. The

system is composed of 37 generators, 38 transmission lines, and load at 17 buses. The ESS

owner operates five energy storage units at buses 114, 119, 117, 120, and 123. The power and

energy capacities of the ESS are varied throughout the simulations but always at a constant

SoCh
xch

= 200
3

. The system is modeled using GAMS and solved using CPLEX.

Effects of strategic bidding on the social welfare

By definition, strategic bidding decreases the social welfare with respect to the social opti-

mum. The magnitude of such decrease depends on a number of factors including load shape

and magnitude, the location and size of the storage units, topology of the transmission sys-

tem, market set-up, among others. In this work we use the simulations to draw qualitative

insights and conclusions.

For instance, as shown in Fig. 6.1, the number of piece-wise linear segments used to

model the generator’s cost curve has a significant impact on the estimation of welfare loss.

The loss of welfare with respect to the social optimum is largest when modeling the generator

cost curves using 5 segments. Even though the magnitude of the loss of welfare is modest

(it tops at roughly $600 per day, which amounts to roughly 0.75% of the system cost) it is

not possible to conclude that the welfare loss will be as small for a generic power system. In
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Figure 6.1: Social cost increase (with respect to the social optimum) due to strategic bidding
of the ESS.

the rest of this section, we model the generator costs using 5 piece-wise segments.

It is important to note that even though strategic bidding has an adverse effect on social

welfare, results suggest that it is better to have an ESS bidding strategically than no energy

storage at all. As shown in Table 6.2, the social cost with no storage is $90.3× 103 while the

cost under strategic bidding is $86.8× 103.

Social welfare distribution

As shown in Fig. 6.1, there is always a non-negative welfare loss due to the strategic bid by

the ESS. In other words, the system as a whole is never better-off compared to the social

optimum. However, some players do benefit from the bidding behavior of the ESS. Naturally,

the ESS benefits from its own profit-maximizing behavior but as shown in Fig. 6.2 the other

players benefit at some energy storage penetration levels and suffer at other levels.

Interestingly, the only other participant who provides arbitrage besides the ESS, the

transmission system (who arbitrages energy in space), experiences profit gains that are re-

markably similar to those of the ESS (see Fig. 6.1). The load and generation, on the other

hand, experience losses and gains, respectively, that mirror each other.
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Figure 6.2: Surplus difference (with respect to the social optimum) due to the ESS’s strategic
bid for each power system actors. Positive differences denote gains while negative differences
denote losses with respect to the social optimum.

6.6.6 Profit regulation and side payments

In this section, we study the welfare/profit allocation among the participants. The question

of whether a welfare/profit allocation is good or evil is outside the scope of this work.

Suppose that the system has an energy storage penetration of 3,900 MWh and that the

SO deems the welfare distribution given by the social optimum as a desirable distribution

of the social welfare. Then the SO could set the profit regulation constants such that the

ESS has a profit of $1.82 × 103 per day and transfer $17 × 103 per day to the load. These

funds would have to come from the generation and transmission who, compared to the social

optimum, are better off with the τ pricing scheme (see Table 6.2 for details).

If the SO deems that a fair distribution of the welfare is such that everyone is at least as

well-off as in the strategic bidding case. In that case, the SO could set up a side-payment

scheme that redistributes the welfare such that everyone is better-off compared to the strate-

gic bidding case. Note that since the social welfare is $500 per day higher using the MPMP

scheme, it is possible to make every player strictly better-off compared to the strategic bid-

ding case.



125

Table 6.2: Surplus distribution among th four power system actors and social cost for four
cases: no energy storage case, social optimum, strategic bidding case, and market clearing
under MPMP .

Surplus (k$)
Model ESS Gen. Trans. Load Social cost (k$)

No energy storage 0 193 10.7 807 90.3
Social optimum 1.82 178 7.06 829 86.3

Strategic bid 3.63 197 8.46 805 86.8
MPMP reg. 181 14.34 820 86.3

For the last 3 cases, the energy storage penetration is 3,900 MWh.

6.7 Summary

In this chapter, we study the adverse effects of the market power of a single strategic firm on

the social welfare. We propose a pricing mechanism, the MPMP, that incentivizes the firm to

bid according to the social optimum. Additionally, the formulation of the MPMP does not

require private information from any party and provides an instrument for profit regulation

of the firm. We showcase the performance of the MPMP via small numerical examples and

a larger study on the IEEE 24 bus RTS.
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Chapter 7

NON-WIRE ALTERNATIVES TO CAPACITY EXPANSION

7.1 Introduction

Electric utility distribution systems are typically designed for the peak load, which happens

a small number of hours per year. When the load reaches capacity, the traditional solution

is to install more wires or reinforce existing ones [187]. While decades of experience makes

this “wires” solution reliable and safe, it often carries enormous capital costs, results in

hostile public opinion, and can experience time-consuming legal issues (e.g., eminent domain

questions) [196].

Lately, planners have shown increased interest in distributed energy resources (DERs)

such as energy storage (ES), energy efficiency (EE), demand response (DR), and distributed

generation (DG) as alternatives to the traditional “wires” solution. For example, the I-5

corridor project in the Pacific Northwest of the United States [112] explores alternatives

to transmission capacity and the Brooklyn-Queens Demand Management Program in New

York [53] focuses on distribution-level capacity issues. In the planning community, DER-

based approaches to long-term planning problems are often referred to as non-wire alterna-

tives (NWAs). The basic premise is that NWAs can manage load to avoid or at least delay

the need for capacity expansion.

The values of delaying investment are two-fold. Economically, the reason for deferring

is the time-value of money, which states that a dollar spent now is more valuable than a

dollar spent later [124]. Policy-wise, the benefits of delaying capital-intensive projects are

reducing the risk of the expected load not materializing and avoiding politically unpopular

projects [196]. In this chapter, we focus on the economic question and ask: is delaying

traditional expansion investments worth the costs of NWAs?
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The answer to the this question is not trivial. For one, the cost and benefits of NWAs

are not only a function of their installed capacities but also of their operations. Thus, one

must co-optimize investment and operation of NWAs. This co-optimization leads to a large

problem that can be computationally difficult to solve, especially if we consider uncertainty

from renewable resources such as wind and solar. Furthermore, considering the time-value

of delaying investments introduces non-linearities that result in a non-convex problem even

when integer variables are not present.

7.1.1 Contributions

In this work, we tackle the resulting large-scale non-convex problem. Specifically, we make

the following contributions:

1. A formulation of the NWAs planning problem that determines 1) the investment, 2)

the operation of NWAs and 3) the timing of the capacity expansion. We manage load,

solar generation, and EE performance uncertainty via robust optimization [32,104].

2. Tractable algorithms for the NWAs planning problem. This problem contains (on the

order of) millions of variables because the modeling of the operation of the NWAs

over a decades-long investment horizon. The variables and constraints that model the

timing of capacity expansion introduce the non-convexities. We present two solution

techniques. The first technique is through the Dantzig-Wolfe Decomposition Algorithm

(DWDA). We deal with the scale of the NWAs planning problem by decomposing it into

smaller subproblems. The non-convexities end up confined to a small master problem

(in the order of tens to hundreds of variables). We deal with the non-convexities of the

master problem by decomposing it and solving a small number of linear programs. In

the second technique, we fix the timing of capacity expansion to eliminate the problem’s

non-convexities. We sequentially solve the convex problem one time for each year in

the optimization horizon and pick the solution that produces the minimum objective

value.

Both techniques have pros and cons. The DWDA is scalable because of its decom-
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position properties. However, sometimes it can exhibit slow convergence rates1. The

second technique can provide faster convergence but has limited scalability. In practice,

a utility can chose their preferred solution method according to the specific planning

problem at hand.

3. A case study where NWAs may be used to defer substation and feeder upgrades at

the University of Washington Seattle Campus using real data. We estimate the per-

formance of the NWAs planning solution via Monte Carlo simulations.

7.1.2 Related works

The idea of delaying infrastructure investment by curbing load was first introduced in [125].

The work in [125] quantifies the effects of load reduction on avoided infrastructure costs

but does not find the optimal amount of reduction or the appropriate technologies to do so.

On a similar note, the authors of [84] and [162] quantify the value of capacity deferral by

explicitly modeling DR as the mechanism to reduce net load. However, they also do not

address the problem of finding optimal DG investment nor consider other types of DERs.

In [180], the authors determine optimal investments in DG considering the value of network

investment deferral. However, their non-linear mixed-integer formulation is intractable for

large systems. In contrast, we consider a broader set of NWAs and tackle the problem by

solving a series of smaller convex problems.

Beyond the above cited works, there is relatively little literature on holistic DER planning.

Most consider a narrow definition of the term DER that only includes DG, e.g., [21,226], or

only ES and DR [72]. Instead, we consider a generic definition of DERs and present a case

that considers solar photovoltaic (PV) generation, DR, EE, and ES.

1In practice, slow convergence rates are a minor issue because the planning problem only has to be solved
a limited number of times in an off-line setting.
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7.1.3 Chapter organization

This chapter is organized as follows. Section 7.2 states the capacity expansion problem and

formulates it as an optimization problem. Section 7.3 formulates a generic NWA model and

four specific technologies: EE, PV, DR, and ES. Section 7.4 describes the NWAs planning

problem and uncertainty modeling. Section 5.5.1 provides two solution techniques for the

planning problem. Section 7.6 presents a case study of load-growth at the University of

Washington. Section 7.7 concludes the chapter.

7.2 The capacity expansion problem

System planners typically like to expand capacity at the latest possible time that meets the

expected load growth [193]. The main economical reason to delay capacity expansion as

much as possible is the time-value of money: we would like to spend a dollar later rather

than now. Let lpa denote expected peak load2 during year a and the pre-expansion capacity

as l. The vector of expected peaks in the planning horizon is denoted as lp. After expansion,

we assume that any reasonable load can be accommodated during the planning horizon.

Then, the decision rule for choosing a year to expand capacity is

CapEx(lp) = a | lpa+1 > l, lpk ≤ l ∀ k ≤ a. (7.1)

The decision rule CapEx states that the planner expands capacity at a future year a imme-

diately before the limit l is first reached by the load. In this chapter, we analyze capacity

expansion at a single point in a radial system (e.g., a feeder or substation) and assume that

the downstream network is non-congested. Since most distribution systems are (approxi-

mately) radial, if a point in the downstream network is congested, the same technique in this

chapter can be applied to the subnetwork.

Let I denote the inflation-adjusted cost of capacity expansion. Here, we assume that the

2The expected peak load lp is typically forecasted using a variety of inputs such as population growth
projections, planned construction projects, weather forecasts, gross domestic product, etc [187].
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inflation-adjusted cost of capacity expansion is constant throughout the planning horizon.

Then, if system capacity is expanded at year CapEx(lp), the present cost of the investment

is

Ĩ(lp) =
I

(1 + ρ)CapEx(lp)
(7.2)

where ρ is the annual discount rate, a quantity closely related to the interest rate [124,187].

Our goal would be to minimize Ĩ(lp) via the variable CapEx(lp). However, since CapEx(lp)

itself is given by a decision rule in (7.1), it is more convenient to write the present cost Ĩ(lp)

itself as an minimization problem:

Lemma 3. Let the planning horizon be denoted as A. The function Ĩ from (7.2) can be

reformulated as the optimization problem

Ĩ(lp) = min
δ

I

(1 + ρ)δ
(7.3a)

s.t. 0 ≤ δ ≤ |A| (7.3b)

lpa ≤ l ∀ a < δ. (7.3c)

The reformulation of Ĩ allows us to embedded it in an optimization problem without the

need of including conditionals in (7.1). The proof of Lemma 3 is found in Appendix E.4.

Note that for any given set of yearly peak loads lp, (7.3) is convex. However, if we treat the

peak load as a function of NWAs operation, and therefore as an optimization variable, (7.3)

becomes non-convex.

While it is unfortunate that (7.3) is non-convex in lp, Section 5.5.1 shows how to handle

its non-convexities by solving at most |A| small-scale linear problems. This is because the

length of the planning horizon, |A|, is in the order tens of years. These small problems can

be reliably solved using off-the-shelf solvers (e.g., Gurobi). In the next section, we introduce

the generic models of an NWA and instantiate it.
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7.3 Non-wire alternatives

Let the index i denote an NWA technology. A generic NWA is characterized by six elements:

1. investment (or sizing) decision variables φi,

• e.g., the energy capacity of an ES system;

2. operating decision variables xi,

• e.g., ES hourly charging and discharging decisions;

3. a set of feasible investment decisions Φi ,

• e.g., the set of ES systems that physically fit in a site;

4. a set of feasible operating regimes X i(φi),

• e.g., the set of hourly charging and discharging decisions that comply with charge,

discharge, and state-of-charge limits;

5. a set of functions lia,t(xi) that map operating decisions onto load at time t of year a,

• e.g., for an ES system at time a, t the load is defined as charge minus discharge;

and

6. an investment cost function INW
i (φi),

• e.g., the investment cost of an ES system is the energy capacity times the per

kWh cost of storage.

While investment decisions are made once in the planning horizon, operating decisions

are made frequently on significantly shorter horizons. In this work, the operating decision

time intervals length is ∆t hours and T denotes the set of operating intervals in one year.

We assume that Φi and X i(φi) are convex, INW
i (φi) is a convex function, and that

the load functions lia,t(xi) are linear in xi. These assumptions allow us to guarantee the

algorithms proposed in Section 5.5.1 converge. Now, we describe each of the six elements

that characterizes a NWA for the four technologies that we consider in this work: EE, PV,

DR, and ES.
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Energy Efficiency (EE) For EE, the investment decision is to choose a percentage base

load reduction that translates into a rEE
a,t reduction at every time period. We model the

investment cost, INW
EE , as a convex piece-wise linear function of load reduction [41]. The

slope of each of the BEE segments, CEE
b , represents the marginal cost of load reduction. The

six parameters that define DR as a NWA are

φEE =
{
εEE
b

}
b=1,...,BEE

xEE = {rEE
a,t }a∈A, t∈T

ΦEE =
{
εEE
b | εEE

b ∈
[
0, εEE

b

]
∀ b = 1 . . . , BEE

}
X EE(φEE) =

rEE
a,t |rEE

a,t = αEE
a,t · lb0,t ·

BEE∑
b=1

εEEb ∀a ∈ A, t ∈ T


lEE
a,t (xEE) = −rEE

a,t

INW
EE (φEE) =

BEE∑
b=1

CEE
b · εEE

b

where εEE
b is the projected percentage reduction for each piece-wise linear segment of INW

EE , εEE
b

is the size of each segment, and lbase
0,t is the base load (i.e., the pre-EE load). The parameter

αEE
a,t represents error on the projected load reduction. For instance, αEE

a,t = 1 represents no

error while αEE
a,t = 0.9 represents a 10% underestimation.

Solar photovoltaic generation (PP) The PV investment decision is the installed ca-

pacity gPV
CAP. The solar energy generation at time t, a is gPV

a,t = αPV
a,t · gPV

CAP where αPV
a,t ∈ [0, 1]

is solar generation per unit of PV installed capacity and is related to solar irradiation. For

instance, at night, when solar irradiation is zero, αPV
a,t = 0 and if the PV system is outputing



133

its capacity, αPV
a,t = 1. The parameters that define solar PV as a NWA are

φPV = gPV
CAP

xPV = {gPV
a,t }a∈A, t∈T

ΦPV =
{
gPV

CAP | gPV
CAP ∈

[
0, gPV

CAP

]}
X PV (φPV) = {gPV

a,t | gPV
a,t = αPV

a,t · gPV
CAP ∀ a ∈ A, t ∈ T }

lPV
a,t (xPV) = −gPV

a,t

INW
PV (φPV) = CPV · gPV

CAP

where CPV is the per-unit PV capacity cost and gPV
CAP is the PV capacity limit.

Demand response (DR) We consider investments in DR communication and control

infrastructure that enable shifting a portion of the load. The investment decision is the

amount DR-enabled load rDR
CAP which limits the demand reduction rDR

a,t deployed during year

a, operating period t. A load reduction rDR
a,t causes a demand rebound of αDR · rDR

a,t during

time period t + 1. The coefficient αDR is a number ≥ 1 and is related to efficiency losses

caused by DR deployment [131]. More sophisticated rebound models such as the ones in [131]

are admissible in our framework. The parameters that define DR are

φDR = rDR
CAP

xDR = {rDR
a,t }a∈A, t∈T

ΦDR =
{
rDR

CAP | rDR
CAP ∈

[
0, rDR

CAP

]}
XDR (φDR) = {rDR

a,t |rDR
a,t ∈

[
0, rDR

CAP

]
∀ a ∈ A, t ∈ T }

lDR
a,t (xDR) = αDRrDR

a,t−1 − rDR
a,t

INW
DR (φDR) = CDRrDR

CAP
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where CDR is the per-unit cost of DR. In our work, we ignore binary variables that arise

from fixed DR costs or customer enrollment costs.

Lithium-ion energy storage The ES investment decision is the initial (e.g., name-plate

capacity) energy capacity smax
0 of the storage system. The operating variables are the charge

ca,t, discharge da,t and the state-of-charge sa,t. In addition, we consider energy capacity

as an operating variable since smax
a may be different than smax

0 because we model battery

degradation. The feasible operating region of the ES system is defined by (7.7c)-(7.7f)

and include the usual charge, discharge, and state-of-charge limits [184]. Additionally, as

expressed in (7.7e), the storage capacity degrades by βESD per-unit charge/discharge [184].

The parameters that define ES are

φES = smax
0 , xES = {ca,t, da,t, sa,t, smax

a }a∈A, t∈T (7.7a)

ΦES = {smax
0 | smax

0 ∈ [0, smax
0 ]} (7.7b)

X ES (φES) =

{
ca,t, da,t, sa,t, s

max
a | (7.7c)

sa,t+1 = sa,t + ∆t ·
(
ηc · ca,t −

da,t
ηd

)
∀ a ∈ A, t ∈ T (7.7d)

smax
a = smax − βESD ·

a−1∑
k=1

∑
t∈T

(ck,t + dk,t) ∀ a ∈ A (7.7e)

sa,t ∈ [0, smax
a ] , ca,t, da,t ∈

[
0,
smax

αEPR

]
∀ a ∈ A, t ∈ T

}
(7.7f)

lES
a,t(xES) = ca,t − da,t (7.7g)

INW
ES (φES) = CES · smax

0 (7.7h)

where ηc (ηd) is the charge (discharge) efficiency, αEPR is the energy-to-power ratio of the ES

system, and CES is the dollar per-unit energy cost of ES capacity. We consider investments

in lithium-ion ES in this work because of their ubiquity although other chemistries are

compatible with the proposed framework.
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Our framework allows for other NWAs to be included, for example, electric vehicles,

diverse range of storage technologies, dispatchable DG, etc. In this work, we limit our

consideration to the four technologies described above because they are the most mature and

readily deployable in an urban environment, which fits our case study about the University

of Washington.

7.3.1 The capacity expansion problem revisited

Let the total load including a set N of NWAs be denoted by la,t(x) = lba,t +
∑

i∈N lia,t(xi)

where x = {xi}i∈N . Then, the yearly peak load as a function of NWA operation is lpa(x) =

maxt∈T {la,t(x)} where x denote the operating decisions of all the NWAs.

The only decision to be made in the traditional capacity expansion problem is when to

expand capacity. With NWAs, however, the present cost of expansion

Ĩ(lp(x)) (7.8)

is a function of the NWAs operation and gives the planner the opportunity to invest in and

operate a set of NWAs that minimizes (7.8). However, a good plan should consider additional

NWAs costs and benefits (e.g., demand charge reductions, DR rebound costs, etc.). In the

next Section, we present a holistic NWAs planning problem that decides the investment and

operation of NWAs, and the timing of capacity expansion.

7.4 The non-wire alternatives planning problem

7.4.1 Deterministic formulation

The NWA planning problem in (7.9) minimizes 1) operating costs
∑

i∈N CO
i (xi), 2) NWA

investment costs
∑

i∈N INW
i (φi), 3) a peak demand charge CD(lp(x)), and 4) the present
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cost of capacity expansion Ĩ(lp(x)):

min
φi∈Φi

xi∈X i(φi)

{∑
i∈N

[
CO
i (xi)+INW

i (φi)
]
+ CD(lp(x)) + Ĩ(lp(x))

}
. (7.9)

From (7.2), Ĩ contains the condition-based function CapEx. The presence of CapEx

makes incorporating Ĩ in large-scale optimization problems difficult and (7.9) intractable.

Using Lemma 3, Theorem 2 shows a more convenient formulation of the planning problem.

Theorem 2. The problem in (7.9) is equivalent to

min
∑
i∈N

[
CO
i (xi) + INW

i (φi)
]

+ CD(lp) +
I

(1 + ρ)δ
(7.10a)

s.t.φi ∈ Φi ∀ i ∈N (7.10b)

xi ∈ X i(φi) ∀ i ∈N (7.10c)

lba,t +
∑
i∈N

lia,t(xi) ≤ lpa ∀ a ∈ A, t ∈ T (7.10d)

lpa ≤ l ∀ a < δ (7.10e)

0 ≤ δ ≤ |A| (7.10f)

lp = {lpa}a∈A. (7.10g)

The proof of Theorem 2 is given in the Appendix. The objective of (7.10) is convex

because we assume that CO
i (xi), I

NW
i (φi) and CD(lp) are convex, and I

(1+ρ)δ
is also convex.

Constraint (7.10e), however, introduces non-convexities to the feasible solution space. Sec-

tion 5.5.1 shows how we decompose (7.10) and deal with the large-scale and non-convex

nature of the problem. In the rest of this section, we present how uncertainties are treated

in the planning problem.
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7.4.2 Uncertainty modeling

In this work we consider three major sources of uncertainty: solar irradiation (αPV
a,t ), base

load (lba,t), and projected load reduction from EE measures (αEE
a,t ). We formulate the NWAs

planning problem as a robust problem because it is less computationally-intensive than its

stochastic counterpart and it does not require the underlying density function of the uncertain

parameters (we only need the maximum and minimum possible values) [32,104]. Furthermore

and perhaps most importantly, utility planning practices typically focus on the worst-case

realization. Thus, a robust approach to NWAs planning is likely more attractive to engineers

at utilities.

We write Problem 7.10 in compact form as

min
x

c>x (7.11a)

s.t. Ax ≤ b. (7.11b)

In Problem 7.10, A and b contain the uncertain parameters. We implement uncertainty in

b by replacing the inequality with Ãx̃ ≤ 0 where Ã = [A,−b], x̃ = [x, y]>, and y = 1.

Let ai,j denote the i, j element of A. Suppose that ai,j is a randomly distributed parameter

with an unknown distribution that takes on values in [āij − âij, āij + âij]. Then, as detailed
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in [32], the robust counterpart of (7.11) is

min
x, pi,j
zi, yj

c>x

s.t.
∑
j

ai,jxj + zi · Γi + pi,j ≤ bi ∀i

zi + pi,j ≥ âi,j · yj ∀i, j ∈ Ji

− yj ≤ xj ≤ yj ∀j

pi,j ≥ 0 ∀i, j ∈ Ji

yj ≥ 0 ∀j

zi ≥ 0 ∀i.

Here, the set Ji = {j|âi,j > 0} and Γi is allowed to take on values in [0, |Ji|]. The parameter

Γi adjusts the robustness of the solution and is known as the protection level of the ith

constraint (Γi = |Ji| produces the most robust solution).

Although our robust formulation does not need scenarios of uncertain parameters, we

use them for two reasons. First, the scenarios allow us to estimate the maximum and

minimum values of an uncertain parameter ai,j that are required to formulate the robust

NWAs planning problem. And second, it allows us to evaluate the performance of a NWAs

planning solution (e.g., via Monte Carlo simulation as in the case study in this chapter).

We adopt the scenario generation technique introduced in [49] to produce load and solar

irradiation scenarios. The technique relies on Generative Adversarial Networks (GANs), a

machine learning-based generative model [88]. We base the GANs on a game theory setup

between two deep neural networks, the generator and the discriminator. The generator G

transforms input from a known distribution PZ (e.g., Gaussian) to an output distribution

PG. On the other hand, the discriminator D discerns historical data PX from the output

distribution PG. In the case study, we use UW campus load data and solar data from

NREL [149].
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7.5 Solution techniques

The non-convexity and high-dimensionality of (7.10) present computational challenges that

existing solvers cannot directly handle. Consider that for a time step length of 1 hour and

a planning horizon of 20 years, the dimensionality of the sets X i(φi) ranges from roughly

175, 000 for the simplest cases (e.g., solar PV or EE) to more than half a million for the

more complex ES case. Considering all four NWAs and the robust formulation, the problem

in (7.10) has roughly 2, 000, 000 variables and constraints.

We decompose (7.10) into |N | subproblems using the Dantzig-Wolfe Decomposition Al-

gorithm to handle the dimensionality issue. Each NWA falls into a subproblem while a

low-dimensional master problem handles the demand charge and the present cost of capac-

ity expansion.

In our case studies, every subproblem is tractable. However, subproblem tractability is

not necessarily true for more complex NWAs. Bender’s decomposition is a suitable technique

to solve non-tractable subproblems since it is designed for problems coupled by variables [55].

For a NWAs subproblem, the investment variables φi would be the couple the problems

defined by the operation variables and constraints during a sufficiently small time horizon

(e.g., a year or a month).

The master problem inherits the non-convexities of (7.10). We decompose the master

problem and find its solution be solving a small number of small-scale linear programs.

7.5.1 Technique 1: Dantzig-Wolfe Decomposition

The NWA subproblems are given by

min
φi∈Φi

xi∈X i(φi)

CO
i (xi) + INW

i (φi) +
∑
a∈A

∑
t∈T

π1
a,t · lia,t(xi)︸ ︷︷ ︸

penalty term
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for all i ∈ N . The objective of subproblem i is composed of the operation cost CO
i (xi),

investment cost INW
i (φi), and a term that penalizes the load lia,t(xi) by π1

a,t. The penalty co-

efficients π1
a,t are the dual variables of the coupling constraints (7.13b) in the master problem.

The operating and investment decisions must be in their respective set of feasible solutions.

We write the master problem as

min
δ,lp,λk

{
K∑
k=1

λk · Cprop
(k) + CD(lp)+

I

(1 + ρ)δ

}
(7.13a)

s.t. lba,t +
K∑
k=1

λk · lprop
a,t,(k) ≤ lpa (π1

a,t) ∀ a ∈ A, t ∈ T (7.13b)

lpa ≤ l ∀ a < δ (7.13c)

0 ≤ δ ≤ |A| (7.13d)

lp = {lpa}a∈A (7.13e)

K∑
k=1

λk = 1 (π2) (7.13f)

λk ≥ 0 ∀ k = 1, . . . , K (7.13g)

(7.13h)

and its objective is to minimize the sum of three terms: a convex combination of K cost

proposals, peak demand charges, and the present cost of capacity expansion. The kth cost

proposal is

Cprop
(k) =

∑
i∈N

CO
i (xi,(k)) + INW

i (φi,(k))

where xi,(k) and φi,(k) represent optimal operating and investment decisions, respectively,

for the kth iteration. The positive variables λk are the weights of each cost proposal. The

coupling constraints are (7.13b). We define the load proposals as

lprop
a,t,(k) =

∑
i∈N

lia,t(xi,(k)).
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Constraints (7.13c), (7.13d), and (7.13e) originate from (7.10e), (7.10f), and (7.10g), respec-

tively. Finally, (7.13f) and (7.13g) ensure that the sum of all λk’s equals one and that they

are all non-negative. We skip the detailed description of the well-known Dantzig-Wolfe De-

composition. The interested reader is referred to [55] for an in-depth description and an

implementation of the DWDA.

When decomposing (7.10), the non-convex Constraint (7.10e) lies in master problem. We

solve the master problem by solving at most |A| + 1 linear problems. Let P(j) represent a

function that sets δ = j in (7.13) and solves for lp and λk. A concrete interpretation of P(j)

is that capacity expansion happens at year j and the peak load limit l is enforced from year

1 through j. Note that the function P involves solving a small-scale linear problem. The

number of variables in P is K + |A| where K is in the order of a few hundred and |A| is

close to 20.

The master problem-solving algorithm is as follows. We solve P(j) for starting with j = 0

and increasing j by one after each iteration. If P(j) > P(j − 1), P(j) is the optimal solution

to the master problem3. If P(j) is infeasible, i.e., capacity expansion cannot be delayed

further than year j − 1, P(j − 1) is the optimal solution. Algorithm 1 describes the master

problem-solving algorithm.

7.5.2 Technique 2

The standard implementation of the DWDA may exhibit slow convergence rates due to a

phenomenon called the “tailing-off effect” [129]. In practice, the slow convergence of a long-

term planning problem is not an issue. In contrast, a fast convergence of control and short-

term planning problems is critical since the delivery of solutions is time-sensitive. Therefore,

we provide an alternative solution technique that may converge faster than the DWDA in

some instances. Technique 2 is applicable only if (7.10) is tractable when we we fix δ = j.

Technique 2 consists of replacing P in Algorithm 1 with the NWAs planning prob-

3Since the master objective is convex, if P(j) > P(j − 1), then P(j + a) > P(j) ∀ ∈ Z+.
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Input: P, |A|
Output: objective value
j ← 0
while j ≤ |A| and objective value = ∅ do

if P(j) is feasible then
if j > 0 and P(j) < P(j − 1) then

objective value← P(j − 1)
end
else if j = |A| then

objective value← P(j)
end

end
else

objective value← P(j − 1)
end
j ← j + 1

end
Algorithm 1: Master-problem solving algorithm.

lem (7.10). Similar to the master problem-solving algorithm, we fix δ = j to convexify (7.10).

While this alternative may converge faster, it is not as scalable as the DWDA approach. Tech-

nique 1 handles each NWA separately while technique 2 solves a large-scale linear problem.

7.6 Case study: non-wire alternatives for the University of Washington

The University of Washington (UW) expects to add 6 million square feet of new buildings

(e.g., labs, classrooms, office space) to its Seattle Campus during the next ten years [17].

The additional load from new buildings will likely require an expansion of the capacity to

serve the campus.

Seattle City Light (SCL) and the UW are considering several traditional solutions to

manage the expected load increase. The traditional solutions include building a new feeder to

campus or increasing the service voltage to sub-transmission levels. However, these solutions

are hard to implement in Seattle’s dense urban environment and come at an estimated cost in

the order of $100 million. Moreover, there is an increasing appetite by SCL, the Washington
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Table 7.1: Non-wire alternatives parameters

Parameter Value Source

Energy Efficiency

Investment cost function piece-wise linear [41]4

Demand response

Investment cost $200/kW [163]

Efficiency coefficient 1.1 modeling assumption

Energy Storage

Investment cost $250/kWh [110]

Ch./dis. efficiency 0.97/0.95 [184]

Degradation coefficient 0.028 kWh/kW [184]

Energy-to-power ratio 4 [15]

Solar photovoltaics

Investment cost $2/W [81]

Production profile - [149]

State government, and the UW to explore novel approaches such as NWAs.

7.6.1 Data

Table 7.1 summarizes the main parameters of the NWAs. We assume that the cost of

substation upgrades is $100 million and adhere to a standard SCL planning horizon of 20

years. We assume a yearly discount rate of 7% and rates based on the high-demand customer

rates for the City of Seattle [10].

We use National Renewable Energy Lab (NREL) PV output data from a site near Seattle

to generate PV scenarios [149]. Seattle City Light (SCL) campus load data from the years

2011 to 2016 to generate load scenarios. Furthermore, we incorporate SCL’s projected load

growth of 1.5% to 3.5% with respect to 2016 load to the scenario-generation algorithm.
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Figure 7.1: Campus peak load scenarios.

Fig. 7.1 shows the yearly peak load of each scenario. We solve this case study using Algorithm

2.

7.6.2 Long-term planning results

The main “knob” available to tune the results of the NWAs planning problem is the uncer-

tainty protection level Γi. In this case study, we vary a single protection parameter Γ ∈ [0, 1]

and set all Γi’s equals to it , i.e., Γ = Γi ∀ i.

We interpret Γ as follows. Suppose that we expect the load at point in time to be within

50± 5 MW. Then, with a protection level of Γ, we optimize for the worst-case realization in

the range 50±5·Γ MW. For instance, with a protection level of 0.5, the optimization problem

considers load realizations within 50±2.5 MW. With higher Γ’s we consider a broader range

of possibilities and thus produce more robust solutions.

However, more robust solutions represent higher costs. As shown in Fig. 7.2, higher

values of Γ produce more expensive solutions to the NWAs planning problem. The solutions

are more expensive in part because, as shown in Fig.7.3, expanding capacity earlier (at a

higher present cost) produces more robust solutions.

The level of protection also impacts the optimal mix of NWAs. As shown in Fig. 7.4,
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Figure 7.2: NWAs planning problem objective value as a function of the protection level Γ.
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Figure 7.3: Year of expansion for traditional and NWAs-base planning as a function of the
protection level Γ.
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Figure 7.4: Installed NWAs capacities for three values of Γ: 0, 0.5, and 1.

solutions under large Γ favor dependable technologies such as DR and ES. Conversely, small

Γ = 1 ignores risks associated with uncertain PV production and thus favors the installation

of solar PV.

7.6.3 NWAs solution assessment via Monte Carlo simulations

Whether we plan with a large or small protection level does not impact the realization

of the uncertain parameters in the real-time. We perform Monte Carlo simulations on the

possible realization of load and solar scenarios to asses the performance of the NWAs planning

solution.

Perhaps the most dreaded consequence of planning a system without enough spare ca-

pacity, i.e., a non-robust system, is load-shedding. Fig. 7.5 shows the probability density of

shedding load as a function of the protection level of the NWAs planning problem solution.

For the most part and as expected, load shedding decreases with Γ.

Load-shedding at U.S. university campuses such as the University of Washington is unde-

sirable. Thus, the UW campus should plan for NWAs with a Γ guarantees no load shedding.

That is, the planning problem should be solved with Γ equal or close to 1.

However, not every load requires such a high level of reliability. The maximum price
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Figure 7.5: Load shed (as percentage of total load) as a function of Γ.

a load would be willing to pay not to be disconnected is known as the value of lost load

(VOLL). For instance, the study in [123] estimates that residential loads in Northern Ireland

are willing to pay up to 18e/kWh5 to avoid load disconnections.

7.6.4 How to select the level of protection?

Although Γ can be intuitively interpreted as in Section 7.6.2, we believe Γ is too abstract to

be readily determined by practitioners. Alternatively, a particular load could select a level of

robustness that corresponds to its VOLL. Thus, e propose that for a given VOLL, we select

the value of Γ that minimizes the sum of

1. investment costs (NWAs and capacity expansion),

2. expected energy costs,

3. expected peak demand charges,

4. and the expected cost of lost load

over the optimization horizon.

For instance Fig. 7.6 shows the total costs for two different VOLL. The left-hand plot

shows the probability density of the total cost for VOLL = 10/kWh and its expected value

5In 2007 e.
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Figure 7.6: Total as a function of Γ for two different values of lost load.
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Figure 7.7: Optimal protection level as a function of VOLL. We define the optimal protection
level Γ∗ for a given VOLL as the Γ that minimizes the expected total cost.



149

reaches a minimum at Γ ≈ 0.6. The right-hand plot, on the other hand, shows the probability

density of the total cost for VOLL = 50/kWh and its expected value reaches a minimum

at a Γ closer to 1. Thus, a customer whose VOLL is = 10/kWh would plan using Γ ≈ 0.6

while a customer with a VOLL of = 10/kWh would plan using Γ ≈ 1. We plot the value of

Γ that minimizes the expected total cost, Γ∗, as a function of VOLL in Fig. 7.6. Then, one

can graphically map its VOLL to the appropriate Γ to use in the NWAs planning problem.

One might ask, why not use the VOLL and minimize the expected total cost via stochastic

optimization? That would be a good approach except for the fact that stochastic optimiza-

tion is computationally more expensive than our robust optimization approach6. Thus, the

approach outlined in this chapter is friendly to limited computing resources.

7.7 Conclusion

We present a planning problem that determines investment and operation of distributed en-

ergy resources (DERs) and timing of capacity expansion. Considering the timing of capacity

expansion has two interesting implications. First, it allows DERs to manage load and act as

non-wire alternatives to capital-intensive capacity expansion. Second, it makes investments

in DERs more attractive by explicitly accounting for the benefit of delaying capacity expan-

sion investment. We formulate the problem as a large-scale non-convex robust optimization

problem. We tackle with the size of the problem by decomposing it using the Dantzig-Wolfe

Decomposition Algorithm. We deal with its non-convexity by further decomposing the mas-

ter problem into a small number of linear programs. Additionally, we present a case study

that considers solar photovoltaic generation, energy efficiency, energy storage, and demand

response as alternatives to substation/feeder upgrades at the University of Washington.

6The computational cost of an stochastic optimization problem increases with the number of scenarios.
On the other hand, the size of robust optimization problems remains constant with the number of scenarios.
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Chapter 8

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

This dissertation addresses five of the many challenges of distributed energy resources

(DERs) integration. The first one is the need for models of demand-side flexibility suitable

to typical power system optimization and control frameworks. In Chapter 3, we propose a

data-driven, mathematically and computationally simple (thus compatible in many power

system applications), and statistically robust (i.e., predictions are feasible during operation

with a degree of confidence). The main alternative to our model is the resistance-capacitance

(RC) model of thermal dynamics which may or may not be data-driven, is simple, but is

not robust. Robustness 3 is an essential characteristic for system operators (SOs) as non-

robust models may lead to control signals that are not attainable during operation and could

introduce uncertainty to the system operation.

The second challenge is the need for models of an aggregator’s relationship with its

constituent DERs. The relationship model is essential to predict the aggregator’s behavior

in electricity markets. In Chapter 4, we argue that it is reasonable to assume that the players

will settle on a long-term, Pareto-efficient, and cooperative equilibrium determined by Nash

Bargaining Theory. This result is significant because it justifies reducing a model composed

of many autonomous agents to a simpler one in which all DERs act as if they were owned

and operated by a single entity.

The third challenge is the need for DER coordination schemes. DERs often interact with

each other, e.g., in microgrids. In such cases, coordination between is needed to achieve

optimal decisions (e.g., reduce peak demand) or observe shared constraints (e.g., distribu-

tion system constraints). Ideally, a group of interacting DERs would follow instructions

from a central decision-maker. However, centralized control may not be possible due to pri-
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vacy of data and software/data incompatibilities. In Chapter 5, we present a mixed-integer

adaptation of the Dantzig-Wolfe Decomposition Algorithm (DWDA) for privacy-friendly co-

ordination of a building and a fleet of electric vehicles (EVs). We show three instances where

our coordination algorithm is useful and delivers optimal decisions.

Chapter 6 addresses the problem of market power, an issue not exclusive to DERs nor

even to the electric power industry. However, market power could, in theory, arise from an ag-

gregator controlling large amounts of DERs1. We propose a pricing scheme that incentivizes

a generic firm (i.e., the firm can be a producer, consumer, or a prosumer) to participate in

a market in accordance to the social optimum. Additionally, our pricing scheme does not

require private information and provides a transparent instrument for the regulation of the

firm’s profit.

The fifth and final challenge addressed by this dissertation is the non-wire alternatives

(NWAs) planning problem whose objective is to select DER investment and operation deci-

sions that minimize DER investment costs, operating costs, and the present cost of capacity

expansion. Typically, DER planning focuses on the first two costs while our NWA approach

accounts for the third cost as an additional value stream. Incorporating the present cost

of capacity expansion introduces non-convexities to an already high-dimensional problem.

We tackle the dimensionality issue by decomposing the problem along each DER using the

DWDA. Then, we decompose the non-convex but small master problem into a small number

of easy-to-solve linear problems.

Suggestions for future work

We are long ways from developing the algorithms, technologies, and processes needed to

incorporate as many DERs of as many kinds as we would like. Here we provide possible

extensions to the work presented in this dissertation.

As a general observation, I would encourage researchers to focus on practical application.

1Recall that, as shown in Chapter 4, even autonomous and self-interested DERs may settle at an equi-
librium that is equivalent to them being owned and controlled by a single entity.
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While theoretical results are and will continue to be valuable, I believe there is a more

imperative need for research and innovation that is closer to real-world applications.

Chapter 3: Modeling the Flexibility of Buildings

One of the obvious shortcomings of Chapter 3 is that we restrict ourselves to heating, ventila-

tion, and air conditioning (HVAC) systems. SOs would benefit from generalizing the kind of

data-driven modeling that we present to other types of flexible loads, e.g., database processes

and washing machines, chemistry-based energy storage, etc. Researchers could expand on

our work by validating and adapting the models with data from real buildings2.

Chapter 4: Modeling an Aggregator

The work in Chapter 4 could be expanded by refining the aggregator-DER model to better

reflect reality. Refinements could be towards an increase in generality of the model, e.g.,

the effect of market price uncertainty, imperfect information, competition among several

aggregators, or an expanded strategy space for the repeated game model. Alternatively,

the refinements could reflect specific instances of the problem, e.g., the effect of particular

regulations, the composition of the DERs population, or a specific business model. Another

valuable (but challenging) research direction is to validate the DER-aggregator relationship

model against empirical data.

Chapter 5: Coordination of Buildings and Electric Vehicles

In Chapter 5, we consider buildings and EVs that, although unwilling or unable to share

data, provide truthful information to the master problem. An interesting research direction

is to examine what happens when one or more of the players (or the communication channels)

are not reliable or cannot be trusted.

2In our work, we use EnergyPlus simulated data instead of real data.
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Chapter 6: Market Power

The market power model of Chapter 6 could be enhanced to make the strategic bidding

model better reflect reality. As it stands, Chapter 6 assumes a “controlled” environment,

e.g., the firm acts on perfect information, the regulator can properly set the profit-regulation

constants, etc. It is unclear how the market power mitigation price (MPMP) would perform

under incomplete information. Furthermore, the long-term impacts of the MPMP are unclear

and not guaranteed to be better than the presence of market power. Nonetheless, we believe

that the idea of a pricing mechanism that equates a situation of market power abuse to

the social optimum is a compelling idea that could be used to design incentives in other

(potentially very different) settings.

Chapter 7: non-wire alternatives to capacity expansion

One of the reasons why traditional capacity expansion is beloved by system planners is that

its performance is certain and, in a good way, “boring.” Absent a loss of distribution system

infrastructure we can be sure that the capacity of a feeder or substation is available. The

certainty of availability is not the case (or is not perceived to be the case) for NWAs. Thus,

a research direction is to further explore the uncertainty of the NWAs planning problem,

both at the investment stage and at the operation stage. I believe system planners would be

glad to embrace NWAs once their performance is as predictable and boring as the traditional

capacity expansion solutions.
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Appendix A

DANTZIG-WOLFE DECOMPOSITION FOR
MIXED-INTEGER LINEAR PROGRAMS

This appendix provides a brief overview of the Dantzing-Wolfe Decomposition Algorithm

(DWDA). Conejo et al. provide an in-depth analysis of the algorithm and [208] generalizes

it. Fig. A.1 shows a graphical representation of the algorithm.

We consider MILPs of the form

min cT0 x0 + c>1 x1 + c>2 x2 + . . .+ c>NxN

s.t.

B0 B1 B2, . . . BN

0 A1 0 . . . 0

0 0 A2 . . . 0

0 0 0
. . . 0

0 0 0 . . . AN
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...

xN
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=
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b1

b2

...

bN


0 ≤ xi ≤M ∀ i = 0, 1, . . . , N

xbin
i ∈ {0,1}ni,bin ∀ i = 1, 2, . . . , N.

Here variables x0 are not associated to any of the N subproblems. The vector xi ∀ i ≥ 1

represents variables of subproblem i. The the fist ni,c entries of ni,c xi, x
c
i , are continuous

variables and the last ni,bin, xbin
i , entries are binary variables. The portion of ci associated

to xbin
i is cbin

i . The portion of ci associated to xbin
i is cbin

i . Likewise, the columns pf Bi

associated to xc
i are Bc

i while the columns associated to xbin
i are Bbin

i . M is a sufficiently

large number.
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A.1 The master problem

The master problem

min

{
c>0 x0 +

K∑
k=1

N∑
i=1

λc
k,i · p

c(k)
i + λbin

k,i · p
bin(k)
i

}
(A.1a)

subject to :

B0x0 +
K∑
k=1

N∑
i=1

λc
k,i · v

c(k)
i + λbin

k,i · v
bin(k)
i = b0 (π1) (A.1b)

K∑
k=1

λ
c(k)
k,i = 1 (πc

i ) ∀ i = 1, 2, . . . , N (A.1c)

K∑
k=1

λ
bin(k)
k,i = 1

(
πbin
i

)
∀ i = 1, 2, . . . , N (A.1d)

0 ≤ x0 ≤M (A.1e)

λ
c(k)
k,i ≥ 0 ∀ k = 1, 2, . . . , K, i = 1, 2, . . . , N (A.1f)

λ
bin(k)
k,i ∈ {0, 1} ∀ k = 1, 2, . . . , K, i = 1, 2, . . . , N (A.1g)

handles the coupling constraints. The parameters p
c(k)
i = cc>

i x
c(k)
b , p

bin(k)
i = cbin>

i x
bin(k)
b

represent the kth cost proposals. The parameters v
c(k)
i = Bc

ix
c(k)
i , v

bin(k)
i = Bbin

i x
bin(k)
b repre-

sent the kth proposals. The decision variables λc
k,i, λ

bin
k,i assign weights to the kth subproblem

proposal. Constraints (A.1b) enforce the coupling constraints.

The number of times the master problem has been solved is K − 1 (e.g., K = n after the

nth iteration). Thus, the number of variables in the master problem increases linearly with

the number of iterations.
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A.2 The subproblems

The modified subproblem i is

min
{(
c>i − π>1Bi

)
xi − πc

i − πbin
i

}
(A.2a)

s.t. (A.2b)

Aixi = bi (A.2c)

0 ≤ xi ≤M (A.2d)

xbin
i ∈ {0,1}ni,bin (A.2e)

where the objective function is referred to as the reduced cost. The master problem solver

provides the parameters π1, πc
i , and πbin

i .

A.3 Initialization

We solve the subproblems with π1 = 0 and with random cost coefficients ci during initial-

ization. The purpose of the initialization phase is to obtain feasible initial proposals.

A.4 Phase I/II Algorithm

During phase I, we solve a modified version of the sub- and master problems to to find a

feasible solution of the coupled problem. We reach optimality in phase II.

A.4.1 Phase I master problem

We employ the method of artificial variables explained in [50,113] to find a feasible solution

of the coupled problem. We relax the coupling constraint in the master problem (A.1b) using

an artificial variable xa and replace the objective by min xa.
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A.4.2 Phase I subproblems

Phase I “steers” the solution of the subproblems to a feasible solution of the coupled problem

by solving the subproblems with c1 = c2 = . . . = cN = 0. Then, the only terms in the

objective function are π>1Bixi (plus constants).

A.4.3 Phase II

The algorithm switches to phase II when the convex combination of the phase I proposals

satisfy the coupling constraints with a tolerance level ε. Problems (A.1) and (A.2), describe

the phase II master problem and subproblems, respectively.

A.5 Terminating condition

The DWDA has the property of providing an upper-bound (solution of the master prob-

lem) and a lower-bound (solution of the subproblems) at every iteration. Thus, one might

terminate the algorithm when the difference between the upper and lower bounds reach a

tolerance level. In this work, for simplicity and to convey intuition, the DWDA terminates

when the solution is within 1% of the optimal as obtained with state-of-the-art solvers.
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Figure A.1: Flow chart describing the Dantzig-Wolfe decomposition algorithm.
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Appendix B

TRAINING DATA CLUSTERING

Let the the vector wk,t be defined ∀ k ∈ K and t = 1, . . . , T as wk,t =[
p>k,1:t φin

0,t φin
k,t φout

k,t

]>
. Since the vectors wk,t contain data on different units and po-

tentially different magnitudes, normalizing the data prevents the clustering algorithm from

unfairly assigning more importance to some of the elements of wk,t. Denote a normalized

matrix of horizontal concatenation of all wk,t’s as

W t = norm
([
w1,t w2,t . . . w|K|,t

])
.

The matrix W t is normalized such that the mean of each row is zero and the `2 norm of

each row is 1. We use the K-means algorithm [135] to group the columns of W t matrix into

Ct separate clusters. The indices of wk,t’s assigned to cluster c are denoted by Kc,t.
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Appendix C

ESTIMATE OF THE TEMPERATURE AND LOAD LIMITS

We estimate θmax
c,t as the maximum indoor temperature during time period t during days

in the set Kc,t, i.e., θ̂max
c,t = max({φin

k,t}k∈Kc,t). The minimum temperature limit, the upper

and lower load bounds for each cluster are estimated using an analogous procedure, i.e.,

θ̂min
c,t = min({φin

k,t}k∈Kc,t), p̂
min
c,t = min({pk,t}k∈Kc,t), p̂

max
c,t = max({pk,t}k∈Kc,t).
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Appendix D

BOUNDED LEAST SQUARES ESTIMATION

Let an estimate of upper bound of the indoor temperature at time t and day k be an

affine function of the initial temperature φk,0, the outdoor temperature at time t, φout
k,t , and

load form the first to the tth time period,

θ̂U
k,t(φ

in
k,0, φ

out
k,t ,pk,1:t) = a>c,tpk,1:t + b

>
c,t

[
φin
k,0 φout

k,t 1
]>
.

Similarly, the lower bound estimate of the indoor temperature at time t is

θ̂L
k,t(φ

in
k,0, φ

out
k,t ,pk,1:t) = a>c,tpk,1:t + b>c,t

[
φin
k,0 φout

k,t 1
]>
.

We cast the problem of finding values of ac,t, ac,t, bc,t, and bc,t such that the square

error and a measure of the tightness of the bounds are minimized as the following convex
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quadratic program:

arg min
ac,t,ac,t,bc,t,bc,t

θ̂Uk,t,θ̂
L
k,t

JU
k,t,J

L
k,t,J

A
t

βi ·
∑
k∈Kc

(
JU
k,t + JL

k,t

)2
+ (1− βi) · JA

t (D.1a)

s.t.

θ̂U
k,t = a>c,tpk,1:t + b

>
c,t

[
φin
k,0 φout

k,t 1
]>
∀ k ∈ Kc,t (D.1b)

θ̂L
k,t = a>c,tpk,1:t + b>c,t

[
φin
k,0 φout

k,t 1
]>
∀ k ∈ Kc,t (D.1c)

JU
k,t ≥ φin

k,t − θ̂U
k,t ∀ k ∈ Kc,t (D.1d)

JL
k,t ≥ θ̂L

k,t − φin
k,t ∀ k ∈ Kc,t (D.1e)

JA
t =

∑
k∈Kc,t

θ̂U
k,t − θ̂L

k,t (D.1f)

θ̂U
k,t ≥ θ̂L

k,t ∀ k ∈ Kc,t (D.1g)

ac,t ≤ 0 (D.1h)

ac,t ≤ 0 (D.1i)

JU
k,t ≥ 0 ∀ k ∈ Kc,t (D.1j)

JL
k,t ≥ 0 ∀ k ∈ Kc,t (D.1k)

The objective function of problem (D.1) is composed of two weighted components: 1) the

sum of squared errors and 2) a measure of the tightness of the upper and lower estimates.

The first component is weighted by βi while the second one is weighted by 1 − βi where

βi ∈ (0, 1). When as βi → 1, the bounds become wider and more points fall within them.

Conversely, when βi is small, the bounds are tighter.

Equations (D.1b) and (D.1c), define the estimates of the upper and lower estimates,

respectively. Eq. (D.1d) defines the upper estimate error JU
k,t to be the distance between

the upper estimation and the measurement if this quantity is positive and zero otherwise.

Similarly, Eq. (D.1e) defines the lower bound error JL
k,t to be the distance between the
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measurement and the lower bound estimation if this quantity is positive and zero otherwise.

The measure of the tightness of the prediction band JA
t is defined in Eq. (D.1f) as the sum

of the distance between the lower and upper estimates over all samples Kc,t. We restrict the

upper estimate to be higher than the lower bound in Eq. (D.1g) . Without loss of generality,

we assume that every training day is either cooling day. Then, everything else equal, higher

load must translate into lower temperature. Therefore ac,t and ac,t are restricted to be

negative as in Eqs. (D.1h) and (D.1i). If the training days are all heating days, the signs

in Eqs. (D.1h) and (D.1i) are reversed. Finally, we define the root mean square error of the

BLSE as

RMSEc,t =

√√√√∑k∈Kc,t

(
JU
k,t + JL

k,t

)2

|Kc,t|
. (D.2)

The BLSE algorithm

Let BLSEF(βi) denote a function that takes the scalar βi ∈ (0, 1) and solves problem (D.1)

and outputs the optimal values of ac,t ac,t,i, bc,t,i, bc,t,i, J
A
t,i, and calculates the percentage

of training measurements that are higher than the upper estimate or lower than the lower

estimate πout
t,i . The percentage of out of prediction band measurements is calculated as

πout
t,i =

∑
k∈Kc,t

I(θ̂U
k,t ≤ θk,t or θ̂L

k,t ≥ θk,t)

|Kc,t|

where I(·) is the indicator function.

Now we describe the BLSE algorithm (see Algorithm 2 below). Its inputs are: the

training data set, a maximum out of band percentage α (e.g., 5%), and a vector β =

{0, 1
M−1

, 2
M−1

, . . . , 1}. The parameter M is an integer greater than 1 to be selected by the

modeler1. The outputs of the BLSE algorithm are the trained parameters of θ̂L
k,t and θ̂U

k,t. For

each time t it does the following: it goes through each element of β, βi, it solves BLSEF(βi).

1A small M reduces the computation time of Algorithm 2 but might yield less accurate solutions. A large
M , on the other hand, increases the computation time but yields a more accurate solutions. In this work
we use M = 100
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Then, among the solutions that yield an out-of-band percentage smaller than α, it selects

the one that solution that yields tighter band, i.e., the smallest JA
t,i.

Input: {φin
k ,pk,φ

out
k , φin

0,k}k∈K, α , β = {0, 1
M−1

, 2
M−1

, . . . , 1}, {K1,t, . . . ,KCt,t}t=1,...,T

Output: {{a∗c,t,a∗c,t, b
∗
c,t, b

∗
c,t}c=1...,Ct}t=1,...,T

for t = {1, . . . , T} do
for i = {1, . . . ,M} do

for c = 1 · · · , Ct do

(ac,t,i, ac,t,i, bc,t,i, bc,t,i, J
A
t,i, π

out
t,i ) = BLSEF(βi)

end
i∗ = arg minπout

i,t ≤α
{JA

t,i}i=1,...,M

(a∗c,t, a
∗
c,t, b

∗
c,t, b

∗
c,t) = (ac,t,i∗ , ac,t,i∗ , bc,t,i∗ , bc,t,i∗)

end

end
Algorithm 2: The bounded least square estimation (BLSE) algorithm.

Note that a larger M will increase the computation time required to run Algorithm 2

but will produce a larger set {πout
i,t }1=1,...,M . A larger set of πout

i,t ’s makes it likelier that the

optimal πout
i∗,t is closer to the desired robustness parameter α.
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Appendix E

PROOFS

E.1 Proof of Lemma 1

The long-term profit made by the aggregator can be written as

πa,∞ =
∞∑
k=0

δk · πa
(
τ (k);x(k)

)
=

vi−1∑
k=0

δk · πa (τ̂ ; x̂) +
∞∑
k=vi

δk · πa
i
′ (E.1)

where the aggregator cooperates (plays τ̂ i) until it defects from cooperation with DER i by

playing τD
i at time vi. Note that the superscript (k) denotes the kth time the game is played.

The aggregator chooses vi such that its long-term profit is maximized. Both the aggregator

and the DER play their defection equilibrium for all subsequent time periods.

Using the identity
∑b−1

k=a+1 δ
k = δa+1−δb

1−δ , (E.1) can be rewritten as

πa,∞ =
πa (τ̂ ; x̂)

1− δ
− δvi · (πa

i (τ̂ ; x̂)− πa
i
′)

1− δ
.

Since δ is strictly less than 1 and strictly greater than zero δvi → 0 as vi → ∞. It follows

that the aggregator maximizes its profit by cooperating indefinitely (i.e., chooses v∗i =∞) if

πa (τ̂ ; x̂)− πa
i
′ (E.2)

is greater than zero. We assume that v∗i =∞ if (E.2) is equals to zero. It follows that for the

aggregator to cooperate indefinitely with DER i, the agreed DER actions and price schedule

must deliver a profit greater than πa
i
′.
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Similarly, DER i cooperates indefinitely if

πder
i (x̂i; τ̂ i)− (1− δ) · πder

i (xD
i ; τ̂ i)− δ · πder

i

′

is nonnegative. It follows that in order for DER i to cooperate indefinitely, the agreed DER

actions and price schedule must deliver a profit greater than

(1− δ) · πder
i (xD

i ; τ̂ i) + δ · πder
i

′
.

�
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E.2 Proof of Lemma 2

From [34], the Nash Bargaining Solution is given by

(τ̂ ∗i , x̂
∗
i ) = ξ (Bi) = arg max

(τ i,xi)∈Bi

(
πder
i − πder

i

′
)
·
(
πa − πa

i
′). (E.3)

By the Pareto-efficiency axiom, the aggregator reaches an agreement with every DER and

shares the maximum possible profit π(x∗) during every single-shot game [120].

Let

Ai = {(τ i,di)|πa(τ ;d) ≥ πa
i
′, πs

i (di; τ i) ≥ (1− δ)πs
i (d

D
i ; τ i) + δπs

i
′}.

By Pareto-efficiency, the agreed prices prices τ̂ ∗i will be such such that long-term cooperation

is sustained, i.e., (τ̂ ∗i , x̂
∗
i ) ∈ Ai ∀i ∈ I.

Denote the set of τ i and xi such that the maximum profit is split and that long-term

cooperation is sustained as

B̃i = {(xi, τ i)|xi = x∗i , (xi, τ i) ∈ Ai} .

By the independence of irrelevant alternatives axiom, ξ (Bi) = ξ(B̃i). Then, (E.3) can be

replaced by

ξ (Bi) = arg max
(τ i,xi)∈B̃i

(
πder
i − πder

i

′
)
·
(
πa − πa

i
′)

which is equivalent to problem (4.8). �
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E.3 Proof of Theorem 1

As stated in Eq. (6.4), the problem that the firm solves to formulate its strategic bids is

P1: f ∗ = arg max
f

u(x(f)) +
∑
t∈T

λt(f)>xt(f). (E.4)

The LMPs λt are a function of the market clearing process denoted by Problem (6.2) and

are defined in Definition 4. Thus, problem (4.7) is implicitly a bi-level problem: the firm

determines and submits its bid f ∗. Subsequently, the market clears and determines λt.

Denote this problem as P1.

Similarly, Problem (6.5), which defines the socially optimal bids, is technically a bi-level

problem: the system operator determines the optimal bids f social by maximizing the social

welfare function S(f) which is a function of Problem (6.2). Denote this problem as P2.

Note that P1 and P2 are similar problems: they have the same set of decision variables,

f (in the upper level) and {gt,xt}t∈T in (the lower level), and the same set of constraints.

Their objectives are different. The objective of P1 is to maximize the firm’s profit while the

objective of P2 is to maximize social welfare.

Replacing λt with the definition of pt(f) from Theorem 1 in (E.4) we get

u(x(f))−
∑
t∈T

1>cgen
t (gt(f)) +

∑
t∈T

1>γt

which is equivalent to the social welfare from Eq. (6.1) plus a constant term
∑

t∈T 1>γt.

We have shown that the objectives of P1 and P2 are equivalent when the aggregator is

exposed to the MPMP pt(f). Furthermore, we showed that P1 and P2 are subject to the

same set of constraints. Thus we conclude that when the firm is exposed to pt(f) rather

than to the LMP, P1 and P2 are equivalent problems. Thus, the market clears at the social

optimum when the firm is exposed to pt(f). �
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E.4 Proof of Theorem 2

Using (7.3), Problem (7.9) can be written as

min
φi∈Φi

xi∈X i(φi)

{
y + min

δ∈∆

IW

(1 + ρ)δ

}
(E.5)

where y =
∑

i∈N
[
CO
i (xi) + INW

i (φi)
]

+ CD(lp(x)) and ∆ denotes the set defined by the

constraints in (7.3). Problem (E.5) is equivalent to

min
φi∈Φi

xi∈X i(φi)

min
δ∈∆

{
y +

I

(1 + ρ)δ

}
. (E.6)

Problem (E.6) is a nested optimization problem that whose inner variable is δ and its outer

variables are xi and φi. As shown in [40] the inner and outer variables can be minimized

simultaneously in a single min function. Thus (7.9) is equivalent to (7.10) where (7.10d)

implement the functions lpa(x) = maxt∈T {la,t(x)} via half-planes. �
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