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Electrical and Computer Engineering

As the portfolio of energy resources serving the electric power system transitions from a low to

high percentage of stochastic energy resources, grid planners and operators must reevaluate

the conventional methods used to characterize resource adequacy and the ability of power

system generation sources to meet the modern electricity demand. This thesis reviews the

historical and state-of-the-art methods used to evaluate resource adequacy, and presents a

case study examining the reliability characteristics of a bulk power system with increasing

wind and solar penetration (commonly referred to as variable energy resources). The scope

of reliability in this thesis centers on probabilistic analysis of system resource adequacy. It

provides examples of the pitfalls of misrepresenting dependencies in power generation from

variable resources and proposes future work for further examination and extension of these

concepts. A case study using historical weather patterns and correlated wind and solar

generation in the WECC region of the U.S. is used to compare different reliability metric

analysis methods. Results show that neglecting the generation uncertainty dependence model

of variable energy resources significantly underestimates the risk of electric grid operation

served primarily by variable energy resources; this highlights a major disconnect with the

net load treatment of stochastic generation used prominently by system operators today.

The accuracy of probabilistic models that represent system generation are of increasing

importance in systems with high amounts of variable energy generation.
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Chapter 1

INTRODUCTION

Methods for integrating high levels of renewable energy resources into the power grid

are at a critical turning point in transitioning from thought experiments to reality. In

the United States, municipalities and electric utilities have set deadlines as early as 2040

to transition their entire electric power portfolios to renewable energy. States including

Washington, Wisconsin, California, Virginia, and New York have set goals of reaching 100%

renewable electricity portfolios by 2050 [37]. While lawmakers strive to ensure that those

new resource mix targets are met, electric utilities and ISOs are reevaluating their historical

operational methodology to ensure that the new portfolio of energy resources can still meet

the capacity needs of the system [25]. In 2019, state-by-state progress toward meeting

their legislated renewable portfolio targets varied widely [38]; Figure 1.1 demonstrates the

spread of annual electric generation mix by states with 100% renewable energy targets. A

significantly different paradigm shift is posed to the electric grid operators in states like

Wisconsin and Virginia, as compared to states like Maine and California which have already

begun integrating significant portions of stochastic energy resources into their bulk generation

mix. Consequentially, the probabilistic availability analysis of variable energy resources

(VERs) like wind and solar is a central to this renewable energy transition.

1.1 Market Indicators of Reliability Concern

Governing regulators—such as NERC and ENTSO-E—mandate and enforce power balanc-

ing standards to ensure that system operators reliably deliver power to consumers. In order

to meet these balancing standards and maintain grid stability, the system operator ensures
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Figure 1.1: Total energy generation mix by state in 2019. All states shown have targets to
reach 100% renewable energy by 2050. VERs (wind and utility-scale solar) shown in the
patterned bar portion (adapted from [38]).

that electricity markets clear1 with sufficient generating resources to continuously serve the

forecasted load demand. This periodic demand forecast (hourly) includes small intra-period

(five minute) load fluctuations and potential contingencies caused by large equipment out-

ages. Rolling hourly forecasts horizons are typically 24 and 48 hours in advance, and five

minute forecasts are typically made 4 hours and 1 hour in advance of real-time. The sched-

uled generators then provide enough power and reserve to maintain grid reliability and avoid

cascading blackouts. Clearing the market to meet the reliability needs of the system re-

quires a co-optimization of scheduled energy delivery and ancillary services. Following the

approach of traditional, vertically integrated utilities, many energy markets were introduced

with compulsory provision of frequency and voltage control for most generators intercon-

1Details on the electricity market clearing process and fundamentals of power system economics are
covered in depth by [13].
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necting and bidding into the market. Primary frequency control and basic voltage control

were compulsory interconnect requirements in PJM as of 2007 [33]. Under this compulsory

service structure, the system operator could take advantage of the standard droop curve and

high inertia of conventional generators and use those voltage and frequency control services

to manage power imbalances on the grid without necessarily compensating their service be-

yond energy delivery. As more stochastic generation resources enter the energy market, an

increased need for ancillary services should galvanize an evolution in the economic incentives

and general design of those services.

A stifling artifact of the conventional, compulsory method of acquiring ancillary services

is that it wraps the cost of providing reliability services into the energy market. Rather than

provide separate economic incentives for generators to reliably provide power, compulsory

ancillary service interconnect requirements force all generators to incur their individual cost

of providing the service capability without compensation for reliable dispatch. A genera-

tion resource pool with increased uncertainty (e.g. more stochastic generators) drives an

increased need for reserve generation, and disproportionately pushes the cost of providing

ancillary services to the dispatchable generators. This can increase the overall cost to the

consumers because of the operational need to purchase excess reserve in order to provide the

same amount of generation while maintaining reliability [33]. Further, without proper com-

pensation (e.g. a call option) to provide the reliability service, the generator has inadequate

incentive to deliver power reliably if called upon during an outage event. An ISO-NE Energy

Security Improvements discussion paper aptly describes an example of these misaligned in-

centives [10]. From the energy supplier’s perspective, the expected cost of acquiring adequate

fuel reserves to deliver energy during a contingency event is higher than the expected remu-

neration for their participation. The case demonstrates a clear lack of economic incentive

for unscheduled generators to bear the cost of maintaining fuel reserves despite the opera-

tor’s expectation that the supplier will fulfill system interconnect requirements. This market

design deficiency leaves the ISO at risk of failing to meet NERC’s reliability and efficiency

mandates; it increases the overall cost of supplying energy in an emergency situation and
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discourages generators from performing consistently.

In 2018, ISO-NE implemented Pay-for-Performance (PFP)2 in an attempt to alleviate

misaligned incentives and still meet regulatory mandates. The PFP market rule offers an

incentive for generators to ensure their Capacity Supply Obligation (CSO) is satisfied during

high load demand events. If a generator fails to meet its CSO during a “Performance

Event”, it incurs a charge based on the difference between the amount of supplied capacity

and the Forward Capacity Market obligation. Similarly, the generator may receive a bonus

payment for supplying additional power during the shortage event [9]. Under PFP rules,

the generator could incur a staggering fee for failing to meet capacity expectations during

a high demand event. However, if an unscheduled generator anticipates a low probability

of being called upon during a Capacity Scarcity Condition, their expected penalization for

underperforming will not outweigh the premium of purchasing advanced fuel reserves. ISO-

NE expressed concern that despite the intentions of the PFP, the rule fails to properly

incentivize generators to acquire adequate fuel reserves under realistic scarcity conditions

[10]. The PFP rule is an insufficient economic driver because it only compensates or penalizes

generator performance—it does not capture the ability to perform if called upon. This case

emphasizes the value of ancillary markets in reducing supply and demand side risk. ISO-NE’s

new proposal of voluntary ancillary services includes a call option to cover the generator’s cost

of obtaining fuel reserves and reduces the system operator’s risk of potentially failing to meet

load demand [10]. As a voluntary service market, the design change also improves upon costly

and technologically limiting restrictions of the compulsory ancillary service structure. System

operators must critically evaluate new market incentives to adequately value availability in

addition to performance in an effort to preserve reliability.

The challenge of designing and updating electrical energy markets to meet this changing

resource portfolio extends well beyond ISO-NE. Part of MISO’s short-term strategy for

2Pay-For-Performance began in 2018 and is being phased in over several years. By 2024, generators in
the ISO-NE Forward Capacity Market will be responsible for a $5,455/MWh Capacity Performance Rate
[9]
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managing their changing grid is an enhancement of their Automated Generation Control for

Fast Ramping resources. Starting in February of 2020, MISO altered their AGC system to

allow for more resource agnostic participation while maintaining system reliability standards.

Key components of the enhanced AGC program include a permissive charging mode3 and

an ancillary service clearing strategy that enables fast and slow responding resources to

complement each other, rather than compete against each other. The upgrade also penalizes

(and rewards) asset performance as a fast ramping device. MISO considers these regulation

service upgrades essential to managing the uncertainty of their future renewable energy

generation [19].

The authors in [7] examined the impact of revenue insufficiency, often termed the “missing

money” problem, in ERCOT. With market structures at the time of the study, their research

showed that generators face challenges in being adequately incentivized to invest in dispatch-

able capacity, particularly as the share of variable energy resources on the market grew. A

lack of incentive for capacity expansion further strains the system’s resource adequacy and

reliability. ERCOT has more recently taken steps to augment their ancillary services market

and address those revenue insufficiency issues. These changes come in response to increasing

renewable production on the system, particularly from wind farms. One method that ER-

COT has implemented is an “Under-generation Power Balance Penalty Curve” which applies

a penalty price to generators for an overproduction or a shortfall of power capacity delivery.

This penalty can also apply to the ramping capability of devices; five-minute up-ramp short-

age prices can reach $9,000/MWh. This type of scarcity pricing intends to alleviate parts

of the “missing money” problem faced by generators in energy markets with large amounts

of low marginal cost producers. It “creates opportunities for resources that can respond to

real-time shortages” with their fast ramping capabilities [29]. ERCOT has also revised their

Ancillary Services product set to include new Fast Frequency Response reserve service and

Contingency Reserve Service categories with the option for Load Resources to participate

3Permissive charging allows energy limited resources to recharge when the charging action helps return
the system to a neutral operating condition.
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in Under-frequency Reserve response. There are also performance-based awards for primary

frequency response [6]. The combination of these additional market features clearly point to

the need for grid operation mechanisms that can flexibly provide reliability to the changing

mix of resources on the system.

1.2 Summary

The electricity market changes highlighted here underscore the relevance of ongoing research

related to evaluating resource adequacy and reliability of power systems that are evolving to

meet renewable energy production goals. Structural changes to ancillary markets indicate

grid operators’ concern about the mechanisms available for maintaining system reliability

with high levels of variable energy resources in their generation mix. Grid operators not

only need a way to respond to rapid fluctuations of power generation–they also need an

appropriate measurement of uncertainty in the availability of generation resources. The

probabilistic measurement of generation uncertainty and its use in reliability metric analysis

is a fundamental part of managing this grid transition while maintaining reliability. As

such, the present methods used to measure reliability must be reexamined for their fitness

to evaluate bulk generation reliability with high VER penetration.

This thesis investigates the impact of various system assumptions when studying reli-

ability metrics. It studies a collection of time-based reliability metrics under varied levels

of renewable energy penetration and spatial correlation levels between renewable plants.

Most importantly, it incorporates renewable capacity availability as a multi-state generating

model based on the probabilistic forecast of power generation. This enables an analysis of

the overall system risk with high levels of variable resources. The accuracy of such models is

critical for both long-term system planning and reliable, short-term operations of day-ahead

and real-time markets. An analysis is presented with data from the RTS-GMLC [1] and

WWSIS-2 data from NREL [14].
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Chapter 2

LITERATURE REVIEW ON RESOURCE ADEQUACY

2.1 Review of Reliability Metrics

This section provides background information on the topic of power system reliability, re-

source adequacy, and related information.

NERC’s historical methodology recommendation for an ISO’s assessment of resource

adequacy is to evaluate the system’s annual Loss of Load Probability (LOLP) against the

system’s peak load [21]. More recently, the Probabilistic Assessment Working Group at

NERC has recommended that a collection of reliability metrics be applied to study resource

adequacy [25]. No single metric comprehensively captures the magnitude, duration, and

frequency of outage events, however an appropriate combination of reliability metrics can

characterize the expected reliability of a region given its resource mix.

NERC and probabilistic reliability experts provide metric definitions as follows [22], where

Ct is the capacity available at time t, and Lt is the load at time t:

• Loss of Load Probability (LOLP)

– Probability of load demand exceeding available generation capacity at time t.

P(Ct < Lt) =
C∑
c=0

P(c = Lt), where C = min[Cmax, Lt] (2.1)

• Expected Unserved Energy (EUE)

– Total expected energy loss (typically in MWh) over analysis period [t0, T ].

T∑
t=t0

P(Ct < Lt), where t steps in hours (2.2)
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– Normalized EUE (NEUE) gives a relative measure of EUE in parts per million.

This can be useful for comparing regions with different magnitude load profiles.

• Loss of Load Event (LOLEv)

– Count of load loss events, regardless of duration or magnitude of the event.

T∑
t=t0

1[0 < P(Ct < Lt)], where t steps in hours (2.3)

• Loss of Load Expectation (LOLE)

– Expected amount of time (e.g. hours, days, years) per analysis period that the

available generation capacity will fail to meet load demand.

T∑
t=t0

E[P(Ct < Lt)], where t steps in hours (2.4)

• Loss of Load Hours (LOLH)

– Count of expected hours of lost load, regardless of the magnitude of loss.

T∑
t=t0

1[0 < LOLE], where t steps in hours (2.5)

Reliability analysis experts emphasize the importance of comparing multiple metrics when

evaluating the annual reliability of a system [17]. An example system, shown in Table

2.1, highlights how a single metric comparison can misrepresent the overall reliability of a

system. In each scenario, the system under analysis experiences identical total EUE, but the

number of LOLEv’s and period-by-period metrics show drastically different day-to-day or

hour-to-hour power and energy delivery to customers. The cases require a system operator

to commit very different generation profiles of capacity and flexibility in order to meet the

system needs. For example, avoiding frequent but small magnitude outages, like in Case 3,

requires operators to commit more long duration and low capacity resources. Avoiding an
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outage scenario in Case 1, contrastingly, requires a short duration and high capacity resource

addition. Yet if the system was designed to meet only 1 standard (EUE or LOLEv), the

reliability analysis would inadequately characterize the system’s needs.

Table 2.1: Reliability metric comparison, adapted from [17]

Case 1 Case 2 Case 3

Period EUE LOLEv EUE LOLEv EUE LOLEv

1 20 1 10 1

2 10 1

3 20 1 10 1

4 20 1 10 1

5 10 1

6 10 1

7 20 1 10 1

8 100 1 10 1

9 20 1 10 1

10 10 1

Total 100 1 100 5 100 10

Milligan notes that a combination of these metrics can extend the understanding and

characterization of system reliability [17]. For example, LOLH
LOLEv

gives the average length of

loss of load events; EUE
LOLEv

gives the average energy lost during a loss of load event. Regardless

of the metric of choice, it’s challenging to directly quantify the accuracy of these system

reliability metric predictions because a potential outage event (i.e. high LOLP scenario)

will typically be avoided through precautionary system correction. However, the underlying

VER output model forecast accuracy can be evaluated with methods described in [30].

As the technical characteristics of generation resources serving the grid evolves (e.g.

flexibility for ramping, duration of power availability), a rigorous evaluation of the reliability
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impact of the system’s generating capacity mix is critical. For example, the impact of adding

a new solar plant compared to an energy storage facility influences metrics such as EUE and

LOLH differently. These relationships will be examined in Section 3.1.

2.2 Methods for calculating System Generating Capacity

A variety of metrics are valuable for evaluating power system reliability, but the probability

of system capacity availability (or, complementary, the capacity outage probability) is cen-

tral to the calculation of all the reliability metrics mentioned in Section 2.1. This section

describes common methodologies used to calculate the system capacity outage probabil-

ity and emphasizes the importance of accurately capturing the spatio-temporal correlations

associated with integrating variable energy resources into the bulk power system.

2.2.1 Classic Methodology: Recursive Convolution of System Capacity Availability

The fundamental method for calculating the Capacity Outage Probability is described in [4].

This system outage probability represents the likelihood that generating capacity Ci will be

unavailable to the system given the joint probability of N individual generators g1, g2, ..., gN

having unexpected outages totaling Ci. The textbook method represents this probability as

a discrete distribution. The sum of independent random variables can be calculated through

convolution. In this case, the sum represents the total capacity outage (or total capacity

availability), and the probability density function given by the convolution of individual

generator Forced Outage Rates (FORs) returns the Capacity Outage Probability of the

system. The characteristic of independence between power generation units enables the use

of convolution because the joint distribution of generation can be replaced with the marginal

probability distributions of each individual generator [35]. This independence characteristic

enables the capacity outage probability (or capacity availability probability) of the system

to be calculated in a recursive manner using the method provided in [4].

Neglecting transmission constraints, the joint capacity availability of a system with N

generators g1, g2, ..., gN with corresponding discrete availability distributions f1, f2, ..., fN can
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be found by recursively convolving the capacity availability of each generator into the total

system capacity [42]:

fα+β(Ci) =

Cimax∑
j=Cimin

fα(j)fβ(Ci − j), Ci ∈ [gα + gβ, gα + gβ] (2.6)

Equation 2.6 is initialized with generators g1 and g2 and repeated through gN , giving the

complete system capacity availability fg1+g2+...+gN (Ci).

The following examples demonstrate characteristics of these capacity availability proba-

bility distributions which will be applied to case studies in Section 3.1.

Example of Independent Generators with varied availability

In this basic example, 30 generic generators rated at 50MW with identical availability rates

λ are convolved to assess their joint probability of capacity availability. As the uncertainty

of generation increases (i.e. availability rates decrease), the joint capacity availability curve

exhibits a wider probability spread. As uncertainty of availability is reduced, the curve

steepens. This relationship is demonstrated in Figure 2.1.

Figure 2.1: Joint capacity of (30) 50MW independent generators at varied levels of availabil-
ity. Trends represent availability rates λ ranging from 85% - 99.9%.
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In power systems with primarily conventional energy resources, the spread of the avail-

ability curve remains relatively constant over time1, indicating that the reliability risk of an

X MWh EUE is equivalent across all points in time. However, the relative risk of X MWh

EUE varies based on the spread of the capacity availability curve. Following the example

shown in Figure 2.1, the relative risk of an outage in a system with availability λ = 0.85 is

lower than the relative risk in a system with availability λ = 0.99 because an incremental

load increase results in a higher MWh EUE on the system with a steeper availability curve.

The concept of using reliability metrics as an indicator of real-time risk is explored in [12].

For systems with uncurtailed, low levels of VERs, the capacity availability of the VERs

are often treated as a net load [22] [32]. This methodology is straightforward, where the net

load Nt at time t,

Nt =
∑

Lt −
∑

VERt (2.7)

for load Lt and total variable resource output VERt.

By treating renewable generation as a simple load reduction, the contribution of VER

is only approximately included in a classic reliability index calculation because the VER

output at any time t strictly shifts the capacity availability curve in one dimension along the

capacity axis.

While the net load and VER assumption enables computational convenience, the accuracy

of this assumption should be examined as proportions of VER grow.

Example of COPT on RTS-GMLC

An example of the cumulative distribution of capacity availability is shown in Figure 2.2.

This distribution is effectively the complement to the classic Capacity Outage Probability

Table from [4], where a point on the shown curve represents the probability that the system

capacity will be below x MW. In traditional loss of load probability analysis, the load is

1FORs do change seasonally, but they are constant relative to the temporal rate of capacity availability
change for VER.
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subtracted from this capacity availability curve, effectively shifting the curve to the left

along the x-axis. Figure 2.2 shows an example of the capacity curve net load, with a typical

mix of conventional, independent generators with 2-state outage rates.

Figure 2.2: Loss of load probability distribution (generation capacity net load) example of
the conventional generation from the IEEE RTS-GMLC data set. Sample taken from system
load on July 26 at 21:00.

While it is common to use a simple 2-state FOR to calculate the availability of con-

ventional generation, the recursive convolution method is not limited by 2-state availability

models. Using the recursive convolution method from Equation 2.6, the LOLP at any point

in time is found by subtracting the load from the capacity availability distribution (as shown

in Equation 2.1).

2.2.2 Adaptations of System Generating Capacity Probability

Incorporating variable energy resources into the calculation of capacity availability presents

a unique challenge because of the spatial and temporal dependencies that constrain the

intermittent resource outputs. Defining a rigorous and tractable method to calculate the

probability of capacity availability for a system with mixed independent, conventional gen-

eration and variable energy resources is an active area of research [24] [2]. The prominent
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techniques for capturing the capacity availability of systems with VER are discussed in this

section.

Transformation of Point Forecasts to Density Forecasts

The capacity availability of individual VERs is inherently captured in the generation density

forecast of each VER. The topic of forecasting variable resource outputs is beyond the scope

of this thesis, but the distinction between point forecasts and density forecasts is key to this

area of research. A density forecast is a probability distribution that describes the likelihood

of all event scenarios; a point forecast is a single value that describes the expected outcome

of an event. When using historical data to calculate the capacity availability of VER, it

is common that only the time-series point forecast data will be accessible. In this case,

the point forecast must be transformed into a density forecast before further analysis on

capacity availability can be completed. For a more rigorous analysis, the original density

forecast used by the system operator should be applied. Pinson provides a VER adapted

method for transforming existing point forecasts into density forecasts [30]. The method is an

extension of statistical bootstrapping, where historical error samples ε are transformed into a

density forecast based on confidence intervals of the error probability. The error samples are

found from the historical data ε = y − ŷ, where y and ŷ are the time-aligned actual outputs

and forecast outputs respectively. Using this method, the point forecast at each time t is

transformed into a distribution of outputs and corresponding probabilities.

After the density forecasts of VER are obtained, it is tempting to consider the capacity

distributions as conventional generators and convolve the distributions recursively into the

overall system capacity availability distribution (as in Equation 2.6). While this appears

computationally convenient on the surface, consideration must be given to the correlation

and dependencies between each VER capacity availability.
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Capturing Correlation

Spatial and temporal correlations between the outputs of solar and wind plants have been

studied extensively [24] [8] [31] [34] [15] [40].

A simple test for this correlation can be executed by computing the rank correlation

between the historical outputs of variable energy resources. The rank correlation is used in

preference to the product moment correlation because it better expresses the dependence

structure of non-Gaussian distributions [26].

In [27], Papaefthymiou and Kurowicka demonstrate significant correlation between spa-

tially diverse renewable plant output forecasts. Their research asserts that even across large

geographic distances, the effects of uncertainty correlation are present. Most importantly,

they demonstrate the significant error that results from modeling renewable resources as

independent generators rather than dependent sources of power. They present a founda-

tional method for modeling this dependence using Sklar’s theorem and copula functions to

link renewable generators. Papaefthymiou and Pinson similarly provide evidence for the

importance of accurately modeling renewable dependence in [28]; the authors model spatial

dependence in wind forecasts and produce similar results.

A model of statistically dependent time-varying outputs is examined by Borges and Dias

in [5] to capture the influence of different dependence assumptions on reliability metric

calculations. The results emphasize that inaccurate capacity availability modeling at low

renewable penetration is masked by the higher portion of independent, conventional gener-

ation sources. At high renewable penetration levels, the independent capacity availability

model falsely appears to have much better reliability than the statistically dependent model

of resource generation.

The impact of correlation between wind regions on calculating LOLP and EUE is exam-

ined by Tomasson and Soder in [36]. The authors found similar results to Papaefthymiou

and Pinson [28], indicating that wind output correlation is statistically significant, even with

large spatial diversity. In their study of Denmark–with wind farms and weather forecast



16

regions spanning 43, 000 km2–even the furthest regions regions exhibited an average rank

correlation over 0.3 at a 24-hour look ahead forecast.

Mathematically, the joint probability of two or more random variables can only be repre-

sented by the product of their marginal probability distributions if the random variables are

independent [35]. Given the extensive evidence of nonzero correlation between generation

profiles of VER, the application of recursive convolution is not a valid method for calculating

the joint probability of total VER generation. VER forecasts are dependent and should be

treated that way when being incorporated into capacity availability models. In other words,

the joint distribution of total VER output forecast is required to find the accurate probability

distribution of total system capacity availability.

Copula Theory

Obtaining the joint distribution of dependent random variables has been studied extensively

in probability theory [20]. Copula theory can be applied to define the relationship between

unknown joint or marginal distributions. According to Sklar’s theorem, the joint CDF

H(X, Y ) of any two dependent functions G(X) and F (Y ) can be represented through a

unique copula function C:

H(X, Y ) = C(F (X), G(Y )) (2.8)

The joint probability density function h(x, y) can similarly be represented through the

copula density function:

h(x, y) = c(F (X), G(Y ))f(x)g(y) (2.9)

This theory extends to the joint pdf of any n marginal, dependent pdfs:

h(x1, x2, ..., xn) = c(F1(X1), F2(X2), ..., Fn(Xn))f1(x1)f2(x2)...fn(xn) (2.10)
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where h represents the joint distribution of the random variables X1...Xn. A detailed

introduction to the study of copula functions is provided by Nelsen in [20].

Copula theory can be applied to study the joint distribution between VER capacity avail-

ability when only the marginal distributions (i.e. density forecasts) of capacity availability

are known. The copula function, commonly referred to as a copula, links the dependencies

of the marginal distributions; the resulting joint distribution can then be appropriately con-

volved with the independent generator capacity availability distributions to obtain a complete

system capacity availability distribution.

Sklar’s theorem shows that a copula can be used to represent the joint distribution of

any two functions, however, the selection of an appropriate copula presents mathematical

challenges. In the case of representing the output of variable energy resources, the non-

parametric, asymmetrical nature of joint VER capacity availability unfortunately limits the

use of common copulas, like the widely prevalent Gaussian distribution and normal density

copula. The applicability of the Gaussian copula relies on the underlying marginal distri-

butions having symmetrical joint dependencies. Archemedian copulas have asymmetrical

properties that are better suited for representing the joint dependencies of variable resource

output distributions without losing the dependence characteristics at the tail ends of the

distributions.

The application of copulas to wind power models is investigated in further detail by Louie

in [16]. In particular, it is found that while the use of Gaussian copula functions is convenient

for multivariate distribution modeling, statistical testing shows that a Gaussian model fails

to adequately capture the dependence characteristics of wind outputs. Louie provides a

reference table for appropriate copula selection based on the rank correlation of the system

under study. The Gumbel copula family appears to be most widely applicable, however the

author cautions that variations may exist for site specific circumstances, and that statistical

tests should be applied to evaluate the best copula for reliability analysis and other studies.

Papaefthymiou also provides guidance on evaluating the fitness of specific copulas to data

for wind systems in [26].
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Dependent Discrete Convolution

Given the importance of accurately capturing dependence in joint probability models, the

next challenge is including those models in the system joint capacity availability formulation.

This is a necessary input to the calculation of various reliability indices. The Dependent

Discrete Convolution method is generalized by Zhang et al. in [42], which intends to address

this issue. The authors provide a mathematical formulation of the convolution necessary to

calculate a system capacity availability while maintaining the dependence between generation

resource uncertainty.

One clear limitation of the formulation in [42] is the two-variable factor–the derivation for

Dependent Discrete Convolution given in [42] only extends to 2 dependent generation sources.

In a power system with tens or hundreds of dependent variable generation plants, an efficient

multivariate dependent discrete convolution method is necessary. In [41], Wang et al. provide

a generalized method for N variables. As the authors note, this problem quickly encounters

the curse of dimensionality. With N dependent variable resources modeled and each model

containing K discrete steps, the computational complexity is KN . In [41], the authors

propose a method to reduce the complexity of the problem by creating subgroups of the N

variable resources based on their correlation structure. A threshold of dependence is used

to then treat each subgroup as an independent generation resource. Then, the independent

subgroups can be more quickly convolved into an overall joint availability distribution using

the classic recursive method for evaluating system generation availability. There are trade-

offs between computational speed and model accuracy when determining the appropriate

dependence threshold as well as the number of discrete steps K to use in representing the

marginal capacity distribution of each renewable generation plant.

2.3 Applications and Analysis of Metrics in Literature

In 1992, Billinton et. al. proposed methods for incorporating renewable resources in system

reliability and resource adequacy, particularly for wind energy [3]. The study provides a
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basic method for combining the capacity of Wind Energy Conversion Systems (WECS) with

conventional generating capacity resource adequacy assessments. It includes a multi-state

capacity availability approach for wind power plants and compares the expected unserved

energy metric with the “classic” method of considering renewables as net load. The results

of the paper primarily show that adding system capacity increases system reliability.

In [12], Kirschen et al. contend that real-time security assessments should be approached

probabilistically instead of deterministically. There is an emphasis on the need for a continu-

ous risk measurement that can be calculated during real-time operations. This is particularly

important for low probability contingencies with high potential for damage. The paper seeks

to provide a measure of the probability of involuntary load disconnects necessary to im-

prove system security. It computes a linear reference scale of expected unserved energy then

uses the scale for faster computation and comparison of relative risk during real-time op-

erations. Using a linear indicator is valuable because it can better warn system operators

about worsening conditions. The load to available generation capacity ratio of the system

is a non-linear indication of system stress. If an operator was focused primarily on system

loading conditions, it would be very difficult to discriminate between an extremely high risk

and lower risk scenario—small changes to loading suddenly have severe changes to outage

probabilities. Alternatively, by using a relative, linear scale that indicates real-time risk,

operators can take more informed action as system conditions worsen.

Extensive studies on increasing renewable energy resource integration have been com-

pleted [14]. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) inves-

tigates the build-out of a significant amount of wind and solar generation in the Western

Energy Interconnect. Interested readers are encouraged to review the results of the study in

detail, but a couple of key modeling decisions influenced the research in this paper. First, the

authors use historical solar and wind data from Western U.S. system operators, plus detailed

Numerical Weather Prediction (NWP) models and advanced data synthesis tools. The error

distributions of the VER forecasts spanning various look-ahead timescales were examined by

Hodge and Milligan in [8] and incorporated into the day-ahead and 4-hour-ahead forecast
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models used in the WWSIS-2. Dependency between individual wind and solar generation

sites was captured implicitly through the NWP used to create their production forecasts. In

the study’s scheduling model, the hourly system reserves were set to compensate forecast

errors at 95% confidence intervals.

A summary of strategies applied to evaluating the risk of cascading outages is provided by

the IEEE PES Task Force on Understanding, Prediction, Mitigation, and Restoration of Cas-

cading Failures and in [39]. The authors evaluate various risk assessment methods and tools

on their accuracy, computation speed, and adaptability to new test scenarios. A weakness

identified in the general “Probabilistic Simulation” approach is the trade-off made between

modeling approximation and simulation speed. Selecting an assessment methodology with

appropriate level of detail for the intended application was highlighted as important.

Pinson et al. utilize their model of dependence between wind generation plants to opti-

mize bidding strategies for wind farms in [31]. In this case, the dependence model informs the

generation bid strategy for each wind farm to minimize revenue losses, particularly weighting

shortage penalizations.

An exploration of research on resource adequacy and reliability metrics is discussed by

Milligan in [17]. The industry need to focus on “energy first” planning is emphasized,

meaning that system operators should focus on taking full advantage of the energy pro-

vided by variable resources (e.g. wind and solar), then fill in the uncertainty gaps with

fast-dispatchable resources. This is counter to the historical focus on peak-load-centered

capacity planning. Resource planning in the past has heavily focused on planning reserve

margins, which Milligan cautions are becoming ever more useless with growing variable en-

ergy penetrations. The problem with using calculated planning reserve margins is that they

focus on peak system demand which doesn’t necessarily align with periods of high uncer-

tainty from variable resources. If the reserve is planned on peak demand, the probability of

failing to have enough reserves to compensate for generation variability increases.

The importance of increasing the time step resolution of probabilistic reliability analysis

to more accurately capture the loss of load probability when higher levels of VER are used
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to meet load demand is examined by Milligan et al. in [18]. The “diminishing returns”

on the Effective Load Carrying Capability (ELCC) of VER capacity as it delivers a higher

percentage of the peak load is highlighted. The paper also includes a discussion on the

ELCC “shifting” the load carrying capacity of the system. The authors also offer evidence of

significant differences between ELCCs based on their method of calculation. Approximation

accuracy can vary significantly based on the selection of peak load hours and other factors.

The importance of using multiple years worth of historical data is also emphasized; this is

because the ELCC needs to capture the seasonal and annual weather pattern changes that

impact electricity demand and are correlated with renewable production—particularly wind

power. However, multi-year data can also contain demand changes driven by economic or

other factors that are uncorrelated with VER production.

2.4 Summary

A vast amount of research exists on the topic of resource adequacy and reliability metrics

for bulk power system analysis. Methods for quantifying the real-time operational reliability

impact of variable energy resources do exist, however the application of mathematically

rigorous probabilistic analysis methods is limited. As the capacity of VER on the grid

continues to grow, researchers should critically examine the method(s) applied to evaluate

power system reliability.
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Chapter 3

RELIABILITY CASE STUDY

A combination of point forecast transformation, discrete dependent convolution, and

empirical estimation are used to calculate the joint capacity availability probability of spatio-

temporally correlated VERs (as described in Section 2.2.2). These methods were selected

as a combination of a state-of-the-art approach (discrete dependent convolution) with a

computationally tractable approach (empirical estimation). This adapted method is applied

to a test system to evaluate the impact of neglecting VER correlation in capacity availability

models on reliability metrics. The joint capacity availability model is considered under varied

spatial regions and VER penetration levels. The resulting reliability metrics are compared

with reliability metrics calculated using conventional capacity availability assumptions.

3.1 Test System Description

The study represented here uses the Reliability Test System Grid Modernization Lab Con-

sortium (RTS-GMLC) data set; this power system data is a modernized version of the classic

IEEE Reliability Test System [1]. The variable energy resource data in the RTS-GMLC is

based geographically and temporally on a roughly 250x250 mile region in the Southwestern

United States. Additional wind and solar data from the WWSIS-2 database [14] was added

to the system to study wider geographic diversity while maintaining correlated temporal and

weather patterns. Transmission parameters and constraints are defined in the RTS-GMLC,

however, a copperplate model1 is assumed here to isolate the reliability impact of correlated

VER production uncertainty from the impact of transmission constraints and potential for

1Copperplate transmission models assume economic dispatch of generation resources and no overloading
of transmission lines. Research on modeling and addressing transmission constraints is explored in [11]
and [14].
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cascading outages from sympathetic protection tripping.

A joint probability model of the total VER output is generated by the following process:

1. Apply a joint density estimation to the historical VER forecast distributions2.

2. Condition the joint probability distribution to the density forecast of VER production.

3. Convolve the statistically estimated, joint conditional probability model of VER ca-

pacity availability with the independent capacity availability model of the conventional

generation resources in the test system.

The resulting correlated system capacity availability model is referred to as the “Joint”

model in the remainder of this section.

Two probability models based on the assumption of independent VER generation were

created as comparisons to the Joint model. These models follow the classic “net VER”

convolution method described in [32]. In this approach, only independent, conventional

generation is considered in the capacity availability probability model, and the time series

wind and solar generation are subtracted from the load profile at each time step t. The

first “net VER” model is created using the day-ahead wind and solar forecasts at time

t; the second “net VER” model is created using the actual wind and solar production at

time t. These models are respectively referred to as the “Day-Ahead Forecast” and “Perfect

Forecast” models in the remainder of the thesis. Although the “net VER” model may appear

to be an overly simplistic alternative to the Joint model, its pervasive use in both industry

and state-of-the-art research justifies its application for this study3.

2Totalized wind and solar curves are generated using nonparametric frequency estimation to avoid mis-
representing the resource behavior from an application of a generic probability distribution that fails to
capture the actual dependencies of the system. This gives the modeling process used here more flexibility
for applications to other systems which may have different underlying probabilistic characteristics.

3Borges and Dias include a comparison of independent VER and joint VER probability distributions in
a similar study [5]. Their results indicate that the independent VER models produce reliability metrics
with an order of magnitude higher error than the joint model and require double the computational time.
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All three discrete, nonparametric capacity availability probability distributions (Joint,

Day-Ahead Forecast, and Perfect Forecast) are evaluated over 1 full year of new VER pro-

duction data. Hourly LOLP and EUE are calculated for each model with PRAS4 using the

temporally aligned load, wind, and solar production data from the test system. Additional

reliability metrics were generated from the hourly LOLP and EUE data using equations from

Section 2.1. Statistical measures of skewness and kurtosis of the resulting distributions are

also calculated to compare the characteristics of the three models.

3.2 Test Scenarios, Results, and Discussion

3.2.1 Scenario Overview

Using the data and capacity availability models from the system described in section 3.1,

15 subsets of the system generation data were selected to evaluate and compare reliabil-

ity metrics calculated with the Joint, Day-Ahead, and Perfect Forecast models. The 15

subset scenarios represent Low, Medium, and High VER penetration levels across 5 nested

geographic regions. The increasingly larger geographic regions act as a control for differing

levels of spatial correlation between VER in the system; as noted in 2.2.2, smaller geographic

regions tend to have higher VER correlation. The nested geographic regions used to test

spatial correlation are shown in Figure 3.1. Details on the locations of individual solar and

wind generation locations are shown in Figure A.1 in Appendix A.

4Probability Resource Adequacy Suite, an open-source reliability analysis tool from NREL [23]
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Figure 3.1: Approximate geographic locations used to select VER resources for each region
in the spatial correlation study.

Total nameplate capacities by resource type selected for each test scenario are shown in

Figure 3.2; details are provided in Tables A.1−A.3 in Appendix A. The “Conventional”

resource category consists of:

• (1) 400MW nuclear plant; FOR = 0.12

• (#) 50MW generic generators5; FOR = 0.02

5An adjusted number of generic, dispatchable generators are used in the model to maintain a consistent
load to generation capacity ratio and present comparable availability of the resource. Extended discussion
on this model choice is covered in Section 4.1.1
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Figure 3.2: Proportions of installed capacity by resource type for Low, Medium, and High
VER scenario studies. Peak system load shown for reference.

Computation Information

The system model was built in the programming language Julia version 1.3 and ran on a

machine with an i7 CPU with 16GB of RAM. A complete reliability metric analysis run for

1 of the 15 subset systems (e.g. Medium VER in Region 2) required between 43 - 67 seconds

to execute.
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3.2.2 Results

Impact of VER proportion and spatial correlation

The resulting reliability metrics from each scenario evaluation exhibit a few trends. Regard-

less of the underlying capacity availability model, the calculated reliability metrics worsen

with increased VER level in every scenario. This is evident from the annual LOLE and

EUE reliability metrics calculated for each scenario, shown in Tables 3.1−3.6. Despite the

perhaps obvious simplifications behind the net VER models, the order of magnitude dif-

ference between the net VER reliability metrics and the Joint model metrics is noteworthy.

Additionally, increasing the spatial region of the selected wind and solar generation sites (i.e.

moving from sub-systems in Region 1 to Region 5) showed improved reliability metrics for all

underlying capacity models. This indicates that increasing the geographic diversity of VERs

can improve system reliability. However, the return on reliability improvement diminishes at

spatial Region 3 and beyond. These trends support previous research (as highlighted in sec-

tion 2.3) showing that spatio-temporal correlation and VER availability modeling both play

a critical role in power system reliability analysis. A sample of the Loss of Load Probability

distributions for a single hourly period is shown in Figure 3.3.

A few characteristics of the resulting LOLP distributions are noteworthy. The spread

of the Joint model is clearly much wider than that of the Perfect and Day-Ahead VER

models; this results in the significantly higher EUE and LOLE metrics seen by the Joint

model because the tail of the distribution crosses the 0 MW available capacity threshold

more frequently. The time snapshot shown in Figure 3.3 highlights a common case where

the aggregate VER forecast differs from the actual aggregate VER output; the Day-Ahead

VER Forecast model sees nearly 0% LOLP, but perfect foresight indicates that the net VER

LOLP is over 10% (a concerning amount compared to average, reliable conditions). The

Joint VER model manages to capture the uncertainty of VER production through the wider

spread of its distribution at this moment in time.

Using temporally aligned VER output profiles and load profiles to conduct the reliability
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Figure 3.3: Loss of Load Probability snapshot during a July night from Region 5, High
VER system. The 0MW axis crossing indicates the LOLP of each model distribution at the
sampled t step.

metric analysis provides valuable insight into the temporal frequency of outage events. Figure

3.4 highlights why the conventional notion that credible loss of load events only occur during

peak load conditions must evolve. As the proportion of VERs serving system load grows,

so does the likelihood that load loss events occur during medium and light system load

conditions.

Impact of underlying reliability model

The resulting reliability metrics from each capacity availability model (Joint, Day-Ahead

Forecast, Perfect Forecast) capture important information for future modeling. A failure to

account for spatial correlation of totalized VER forecast errors drastically underestimates

the loss of load probability, particularly in tightly spatially coupled regions.

The gap in calculated reliability metrics between the joint model and the “net VER”

models reduces as the spatial region increases. This again indicates that the spatial cor-

relation of forecast errors and total capacity availability is more important when analyzing

smaller regions supplied by VER. Sample plots of the resulting Loss of Load Probability dis-
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(a) High VER, Region 1 (b) High VER, Region 5

(c) Low VER, Region 1 (d) Low VER, Region 5

Figure 3.4: Histogram of events where (LOLP > 0.001) at respective hourly system load.

tributions (cumulative availability net load) for the models are shown in figures 3.5 and 3.3.

Appendix A shows additional plots. When reviewing the resulting LOLP curves, the sim-

plicity of the Net VER models is clear. The shape of the Net VER model (its skewness and

kurtosis) remains constant and shifts along the x-axis as the VER output and load changes.

Thus, the Perfect VER and Day-Ahead VER models always have the same shape. The Joint

VER model, on the other hand, clearly changes its shape at each instant in time (due to

the changing VER availability at the given instant). The spread of uncertainty captured by

the Joint model also spans a wider range of potential capacity outputs (i.e. the distribution
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support) because of the multi-state VER availability distribution.

Figure 3.5: Loss of Load Probability snapshot during a July night from Region 3, Medium
VER system. The 0MW axis crossing indicates the LOLP of each model distribution at the
sampled t step.

Figures 3.6 and 3.7 highlight the differences between the Joint and Net VER models,

particularly at the high VER penetration level. For the Low VER system cases, the Joint

model curve exhibits similar skewness and kurtosis to the Net VER curves, and all LOLP

distributions show 0% probability of load loss. However, at the High VER case, the curves

have clearly shifted to a LOLP level that would be concerning to an operator. The Joint

model shape also significantly changes, capturing the uncertainty of the increased amount

of VER on the system. The Net VER models retain their shape and at the high VER level

and mask the uncertainty of the wind and solar outputs.



31

Table 3.1: LOLE (in total annual hours) by region at low VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 38.622 26.298 21.543 20.710 20.619

Perfect Forecast 3.647 3.061 2.895 2.496 2.003

Day Ahead Forecast 5.770 8.744 8.574 6.023 6.277

Table 3.2: LOLE (in total annual hours) by region at medium VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 108.773 55.838 52.150 60.443 44.701

Perfect Forecast 12.493 7.160 6.526 4.481 2.443

Day Ahead Forecast 14.898 14.595 14.658 11.276 6.346

Table 3.3: LOLE (in total annual hours) by region at high VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 233.29 187.42 80.91 86.59 92.75

Perfect Forecast 59.03 66.70 12.23 7.06 11.79

Day Ahead Forecast 65.67 102.24 25.39 13.96 17.73
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Although not considered a standard reliability metric, the “average per event EUE”

EUE
LOLEv

was also calculated for each model. This metric captures the expected energy lost

during any “event” seen by the model. An “event” is counted as any single hour with a

non-zero loss of load probability. This is useful in comparing the magnitude of “events”

seen by each model. As evidenced in Tables 3.4−3.6, in every regional case the Joint model

captures a higher total energy (GWh) loss throughout the year of analysis. But the per

event energy loss (Tables 3.7−3.9) in the day-ahead and perfect forecast models is higher

than in the Joint model. This indicates that the relative risk captured by the net models

poses more significant reliability risk than the loss events captured by the joint model. From

an operator’s perspective, the actions needed to mitigate the risk presented in these models

is very different. The joint model indicates the need for more frequent, but small amounts

of additional reserve generation; the net models indicate a less frequent need for additional

reserves, but higher magnitude reserve requirements during higher risk event periods.

As [12] emphasizes, EUE can be used as a real-time indication of an oncoming high

risk scenario. Given the rate at which VER can ramp, it’s critical that an operator has

adequate warning to position the system into a lower risk operating condition. The “net

VER” approach to probabilistic modeling, even with perfect, real-time forecasts, fails to

capture the characteristic uncertainty risk throughout the analysis. Because the “net VER”

approach does not account for the spatially and temporally correlated uncertainty of the

VER forecast, the characteristic shape of the probability curve tends to underestimate the

loss of load likelihood. Further, an operator would be expected to take more significant

action in response to the “net VER” curve approaching a loss of load scenario. The Joint

model represents potentially more frequent, but lower magnitude need for spinning reserves.

Again, similar to [15], the increasing spatial diversity of VERs does smooth the output

uncertainty in certain conditions (an example snapshot is shown in Figures A.6 and A.7). But

there are diminishing returns on the correlation reduction; even in the largest regional spread

of VER, the joint model shows statistically significant correlation between VER output which

impacts the reliability metrics.
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Table 3.4: EUE (in annual GWh) by region at low VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 11.931 6.870 5.057 4.798 5.015

Perfect Forecast 0.963 0.510 0.448 0.359 0.302

Day Ahead Forecast 1.331 1.403 1.455 0.845 0.890

Table 3.5: EUE (in annual GWh) by region at medium VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 66.988 25.689 20.628 25.843 17.522

Perfect Forecast 6.289 2.389 1.165 0.925 0.457

Day Ahead Forecast 7.038 4.844 3.647 2.543 1.005

Table 3.6: EUE (in annual GWh) by region at high VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 207.723 142.266 41.381 48.155 52.077

Perfect Forecast 35.800 30.397 3.037 1.931 2.678

Day Ahead Forecast 37.464 49.682 7.046 3.878 4.997
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The statistical measures of skewness and kurtotis also provide insight into the character-

istics of the probability distributions in each model. Results are shown in Tables 3.10−3.12.

The high VER scenarios exhibit higher correlation, as evidenced by the lower kurtosis of the

joint distribution relative to each regional system. This relates to intermittent generation

patterns that are highly dependent on time and weather patterns. The low VER scenarios

reduce the uncertainty of generation availability; this appears in the higher average kurtosis

across all regions in the joint model. The opposite effect is seen in the Perfect Forecast and

Day-Ahead forecast models because their probability distributions are determined solely by

number of conventional generators in the system. This result is consistent with findings from

[15] [28] [24], but uniquely includes multiple types of VER (wind and solar) with spatial and

temporal correlations.

Tables 3.13 and 3.14 capture the variance of probability distribution shape for the joint

capacity model at low, medium, and high VER levels. The skewness and kurtosis variance of

the Perfect Forecast and Day-Ahead Forecast capacity models are zero in all instances, which

is expected because the shape of both models is independent of the time-varying, correlated

output distribution of VERs. No major trends appear from the variance tables, although this

might be due to the conflation of factors from increased spatial diversity and VER levels, plus

different compounding uncertainty from solar and wind resources. Generally, the High VER

system model has higher variance in skewness and kurtosis in the smallest spatial region;

the Low VER system model has higher kurtosis and skewness variance in the largest spatial

region.
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Table 3.7: Average EUE per Event (in MWh) by region at low VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 17.57 10.87 8.39 8.13 8.33

Perfect Forecast 11.88 4.72 3.59 2.90 2.72

Day Ahead Forecast 10.73 7.46 7.10 4.52 5.06

Table 3.8: Average EUE per Event (in MWh) by region at medium VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 64.66 32.60 28.22 35.45 27.08

Perfect Forecast 77.64 27.47 10.79 10.28 6.26

Day Ahead Forecast 75.68 40.70 23.53 19.27 9.85

Table 3.9: Average EUE per Event (in MWh) by region at high VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 118.02 90.10 46.34 55.16 56.61

Perfect Forecast 198.89 107.03 25.52 21.95 27.32

Day Ahead Forecast 179.25 133.20 40.50 30.53 35.95
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(a) Low VER, Region 3

(b) Medium VER, Region 3

(c) High VER, Region 3

Figure 3.6: Loss of Load Probability snapshot during a July night from Region 3. The 0MW
axis crossing indicates the LOLP of each model distribution at the sampled t step.
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(a) Low VER, Region 5

(b) Medium VER, Region 5

(c) High VER, Region 5

Figure 3.7: Loss of Load Probability distributions sample during a July evening from Region
5. The 0MW axis crossing indicates the LOLP of each model distribution at the sampled t
step.
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Table 3.10: Mean capacity distribution kurtosis by region at low VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 0.406 0.622 0.692 0.612 0.607

Perfect Forecast 2.027 2.027 2.027 2.036 2.036

Day Ahead Forecast 2.027 2.027 2.027 2.036 2.036

Table 3.11: Mean capacity distribution kurtosis by region at medium VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 0.124 0.081 0.270 0.202 0.227

Perfect Forecast 2.404 2.416 2.416 2.439 2.416

Day Ahead Forecast 2.404 2.416 2.416 2.439 2.416

Table 3.12: Mean capacity distribution kurtosis by region at high VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER 0.303 0.113 0.242 0.125 0.155

Perfect Forecast 2.742 2.916 2.688 2.728 2.742

Day Ahead Forecast 2.742 2.916 2.688 2.728 2.742
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Table 3.13: Joint Capacity Model kurtosis variance by region for all VER levels. The Net
Models have zero variance in all instances.

Region

Joint Capacity Model 1 2 3 4 5

Low VER 0.288 0.436 0.610 0.548 0.506

Medium VER 0.410 0.196 0.319 0.277 0.311

High VER 0.983 0.247 0.385 0.274 0.249

Table 3.14: Joint Capacity Model skewness variance by region for all VER levels. The Net
Models have zero variance in all instances.

Region

Joint Capacity Model 1 2 3 4 5

Low VER 0.165 0.134 0.199 0.158 0.176

Medium VER 0.166 0.133 0.116 0.094 0.097

High VER 0.257 0.170 0.207 0.126 0.090
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Chapter 4

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions and Topics for Future Research

The purpose of this research was to investigate the influence of variable energy resource gen-

eration on the reliability analysis of power systems. It challenges the assumptions frequently

applied in reliability analysis and advocates for more accurate representation of the genera-

tion characteristics of variable energy resources. In particular, it emphasizes the augmented

reliability impact of dependencies between the variable generation resources. As seen in the

results, if the influence of dependent output correlation from renewable energy sources is

neglected, the loss of load probability under high penetrations of VER will be underesti-

mated. It is critical that system operators understand the full implications of integrating

highly uncertain energy resources into the grid. Further, this work highlights the value that

uncertainty can play in reliability markets and ancillary services. Research into this topic,

along with the impact of transmission constraints, will be critical in aiding the electric grid

transition to 100% renewable resources.

4.1.1 Topics for Future Research

The following list of topics were simplified in the presented case study and should be explored

in more detail:

• Load is assumed perfectly known with 100% probability of occurring. No day ahead

load forecast is used and there is no conditional error or probabilistic outcome factored

into subtracting load from the capacity availability model. Of course, load is not

perfectly known and will follow a probabilistic curve much like the variable resources
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(and conventional resources). The impact of this load probability distribution should be

explored in more detail. In particular, the spatial and temporal uncertainty correlations

should be tied with the variable generator outputs.

• The load profile used here is taken exclusively from the GMLC data set which is spa-

tially correlated with the southwest region of the United States. The spatial correlation

study should be extended to adapt the load profile used in each “region” to better re-

flect a cumulative load profile of the area where the variable resources are being sourced

from.

• The impact of transmission constraints, probability of sympathetic tripping, and cas-

cading outages should be studied with a Monte Carlo model that incorporates the joint

probability of VER availability.

• Load is assumed inelastic with no mechanism for demand response. Modeling demand

response (including its appropriate probability model) in the loss of load probability is

a topic for future research.

• The generic group of conventional generation sources is assumed to have the same

availability. If Demand Response is considered part of that group (or some aggregated

form of storage), it will likely have a more complex availability probability curve.

• The “Conventional” generation category includes battery storage and other energy

limited resources. Those resources have state of charge management and energy ca-

pacity limitations that require various degrees of optimization and control to factor

into decisions. Further research could characterize those factors into the joint capacity

availability distribution.

• Consideration of Distributed Energy Resources: Arguably any resource on the dis-

tribution grid (Demand Response, rooftop solar, etc) do not belong in the capacity
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capability curve because they are not controlled by ISOs, NERC, bulk power system

operators, etc. However, if they are not considered in the probabilistic calculation

of the capacity availability curve, they should be accounted for as a contribution to

the load “availability” curve (where Demand Response and rooftop solar have some

likelihood of decreasing the load curve).

• The probability model trained here uses 1 year of data. A more comprehensive appli-

cation of this method should ideally use at least 5 years of data to generate a more

accurate model of the renewable output that takes better consideration of annually

changing weather patterns and other influential factors [18].

• The Joint model could be compared with various independent VER models (similar to

[5]) to further explore reliability metric model accuracy and evaluate potential trade-

offs between computation time and accuracy of system representation.
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Appendix A

EXTENDED RESULTS

Extended results from 3.1

Figure A.1: Regions used for Spatial Correlation study. Colors indicate subsets of increas-
ingly larger regions.
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Tables of installed capacity by resource type used for each test scenario. Values vary

slightly by scenario due to the discrete number and capacities of VER sites in the historical

data set. The “other dispatchable” category is adjusted per scenario to maintain a constant

total effective load carrying capacity for the system.

Table A.1: Low VER scenario - generation resource nameplate capacity (in GW) by region.

Nameplate Capacity (GW) by region

Resource 1 2 3 4 5

Wind 4.19 4.29 4.27 4.22 4.35

Solar 4.04 4.01 3.93 4.29 4.10

Other Dispatchable 5.85 5.85 5.85 5.80 5.80

Total 14.08 14.15 14.05 14.30 14.25

Table A.2: Medium VER scenario - generation resource nameplate capacity (in GW) by
region.

Nameplate Capacity (GW) by region

Resource 1 2 3 4 5

Wind 8.51 8.15 8.21 8.02 8.18

Solar 7.63 7.95 7.85 8.29 7.88

Other Dispatchable 3.95 3.90 3.90 3.80 3.90

Total 20.10 19.99 19.95 20.11 19.96
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Table A.3: High VER scenario - generation resource nameplate capacity (in GW) by region.

Nameplate Capacity (GW) by region

Resource 1 2 3 4 5

Wind 10.49 11.22 10.43 10.36 10.20

Solar 10.73 11.98 10.07 10.48 10.81

Other Dispatchable 2.60 2.00 2.80 2.65 2.60

Total 23.81 25.21 23.30 23.48 23.61

The following samples show detailed Joint distributions and Marginal distributions from

a selection of time stamps in the system data. The stacked bar chart represents actual

power production (in MW) at the time shown; the legend in the stacked bar shows installed

capacity of conventional generation, and total installed ELCC of Wind and Solar.
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Table A.4: Mean capacity distribution skewness by region at low VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER -0.236 -0.233 -0.318 -0.266 -0.293

Perfect Forecast -1.626 -1.626 -1.626 -1.631 -1.631

Day Ahead Forecast -1.626 -1.626 -1.626 -1.631 -1.631

Table A.5: Mean capacity distribution skewness by region at medium VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER -0.143 -0.167 -0.155 -0.189 -0.196

Perfect Forecast -1.824 -1.829 -1.829 -1.841 -1.829

Day Ahead Forecast -1.824 -1.829 -1.829 -1.841 -1.829

Table A.6: Mean capacity distribution skewness by region at high VER levels

Region

Capacity Model 1 2 3 4 5

Joint VER -0.196 -0.100 -0.208 -0.153 -0.177

Perfect Forecast -1.993 -2.077 -1.966 -1.986 -1.993

Day Ahead Forecast -1.993 -2.077 -1.966 -1.986 -1.993
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Figure A.2: Scenario summary from Region 1, high VER, spring morning
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Figure A.3: Scenario summary from Region 5, high VER, spring morning
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Figure A.4: Capacity Availability model sample from Region 1, low VER, summer late
evening

Figure A.5: Capacity Availability model sample from Region 5, low VER, summer late
evening
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Figure A.6: Capacity Availability model sample from Region 1, high VER, summer late
evening

Figure A.7: Capacity Availability model sample from Region 5, high VER, summer late
evening
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Figure A.8: Scenario summary from Region 1, high VER, spring morning

Figure A.9: Scenario summary from Region 5, high VER, spring morning


