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Abstract

Data Mining is a broad term for a variety of data analysis techniques applied to the
problem of extracting meaningful knowledge from large, noisy databases. An important
feature present in most of these techniques is an ability to adapt to the local characteris-
tics of the data. Such techniques are applied to electric load profiling tasks; load profiling
consists of modelling the way in which daily load shape (load profile) relates to various
factors such as weather, time and customer characteristics. An implementation of an
adaptive load profiling methodology is presented.

An atom is defined as a set of load profiles for which certain predictor attributes take
identical values. Weather-dependent loads are recovered from the raw data by subtract-
ing certain atomic profiles, and weather dependency modelled by the method of Multi-
variate Adaptive Regression Splines.

Nominally weather-free load profiles are constructed from this model, and aggregat-
ed into new atoms. These atoms are subjected to adaptive clustering algorithms, with the
objective of condensing the vast amount of data in the original database into a small
number of representativer{d profiles each pertaining to a particular subset of the do-
main of the database. The clustering of individual customers’ profiles (rather than atoms)
Is investigated as an extension to clustering of atoms.

Various possible extensions to and alternatives to the methodology are discussed.
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Chapter 1 — Why Data Mining?

‘Computers have promised us a fountain of wisdom but deliv-
ered a flood of data’ - A frustrated MIS executive, quoted in

[1].
1.1 The Need For Data Mining

All manner of businesses and research organisations have vast collections of data
stored in databases and flat files. As the cost of data storage becomes lower and lower,
and the means for collecting data continue to multiply, the volume of data accessible to
researchers can only be expected to increase further and further; inevitably, an ever in-
creasing proportion of this data is never seen by human eyes. Outcomes of database que-
ries, and the statistics and graphics produced by statistical software, are capable of
answering some of the questions that the proprietors of databases may have about their
data. However the sheer bulk of that data may be such that important underlying struc-
tures in the data may never be discovered: there are so many potentially ‘good’ questions
we might ask about the data that only a tiny fraction of such questions are ever posed,
less answered.

The term Data Mining (nearly synonymous with the term Knowledge Discovery in
Databases) is a blanket term which describes the many ways in which statisticians and
data engineers are attempting to automate the process by which intelligible knowledge
can be derived from large databases. Frawley, Piatetsky-Shapiro and Matheus give a def-
inition,

‘The non-trivial extraction of implicit, previously unknown, and
potentially useful information from data’
in their thorough overview of data mining in [1]. Another good introductory paper on the

subject is found in [2].

1.2 \blume \ersus Interpretability

It is common sense that a small volume of information (such as a concise set of rules
about some data, or a well conceived graphical display representing features of the data)
convey more meaning (whether to a data engineer, a field expert, or a lay person), than
disks or reams filled with raw data. However it is equally obvious that the total amount

of information contained in a large database is greater than that contained in any at-a-
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glance distillation of the database; that is, we gain insight only at the expense of detail.
We can regard data mining, in part, as the search for representations of data which strike
the best compromise between volume and interpretability. Exactly how much volume re-
duction is desirable will vary enormously according to the intended use of the reduced

data.

1.3 Specificity \érsus Generality

In any relational data, the two extreme representations of the data are to present the
entire database (so that every record in the database has a unique description); and to
present a single ‘average’ data record (so that every record in the database is associated
with some global modal or mean description). In between these extremes are represen-
tations of the data which agglomerate records by some criteria, so that every record has
a description common to all records in the same agglomeration. Many data mining tasks
can be seen as searches for the codatet resolutionthat is, searches for partitions of
records which are coarse enough that the number of cells is not overwhelming, but fine
enough that all the records in a cell comply well with any generalisation we might make
about them. A crucial feature of most data mining techniques is their ability to represent
different regions in the total data spacéeiétrent resolutionswhere data are more di-
verse finer partitions are sought, with the objective that the subset of records in any cell
are of comparable homogeneity to the subset of records in any other cell (see section
4.1).

1.4 Concepts of Informativeness and Utility

In the preceding three sections we have touched on ideas of informativeness and use-
fulness of data representations. A set of rules or generalisations derived from a database
has less utility if very bulky, but carries less information if the representation is too
coarse or indiscriminate.

By whatever method knowledge is to be ‘mined’ from data, it is important to estab-
lish measures for the utility and informativeness of discovered knowledge. Formal meas-
ures, such as statistical significance of derived rules; the amount of total variance
explained by a model; and measures for the information content of data representations
(deriving frominformation theory, can be used to guide searches through data. It may

be equally important that informal criteria of utility and informativeness play a part in
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the design and application of a data mining technique.

A practitioner of data mining who has a good understanding of the scientific or social
scientific field from which the data derives (and in which discovered knowledge might
be applied) has a much better chance of finding useful and informative representations
of the data than a practitioner who sees the data as just tables of numbers and symbols.
Domain heuristics, and intuition about the nature of hidden structures, should be utilised
at every stage in the data analysis. Furthermore, if formal measures indicate that a par-
ticular representation is maximally informative, but a human with understanding of the
problem domain find some modified representation more informative, the second repre-

sentation is likely to be preferable.

1. An exception might arise where the mined representation is to be used as input to another computer
program, such as a knowledge based system or forecasting program, so that human interpretability of

representations is not paramount.
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Chapter 2 — The Scope of Data Mining

This chapter briefly describes the variety of approaches to the extraction of intelligi-
ble knowledge from large noisy databases, which fall under the umbrella of ‘Data Min-
ing’. The large variation in the nature and quality of data in databases is also covered and
some notation introduced. Chapters 3-5 describe concepts which recur in several data
mining methods (information theory; hierarchical partitioning and decision trees; varia-
ble reduction) and chapters 6-8 describe some important data mining techniques in some
detail. Some techniques of only limited relevance to the task and methodology eventu-

ally selected are dealt with more scantly.

2.1 The Bradth of the Term ‘Data Mining’

Data Mining (abbreviateDM) is currently a fashionable term, and seems to be gain-
ing slight favour over its near synonym Knowledge Discovery in Datal{&$s3).

Since there is no unique definition, it is not possible to set rigid boundaries upon what is
and is not a data mining technique; the definition proffered in section 1.1 could conceiv-
ably cover virtually the entire body of statistics and of knowledge based systems, and a
good deal of current research in database technology and machine learning. In this tract
we shall somewhat limit the scope of the terraxoludetechniques whose principal do-

main is intermediate or small databases which contain little or no discrepancies, anom-
alies, omissions or noise in the datBurther, it is convenient for us to discriminate
between ‘data mining’ and ‘classical’ statistical methods (like analysis of variance and
parametric regression, which operate globally on a set of variables), although such tech-
nigues often have ‘walk-on parts’ in what we shall call data mining.

We are primarily concerned with techniques which seek to extract important features
from large, noisy, real-world databases which may have many missing entries and in-
consistencies. Real-world databases are characterised by the fact that unlike data derived
from controlled experiments, such data tend to be sparse in most regions of the variable
space — records or events which are less common usually have less representation in the
database. Accordingly we seek methods which are capable of adapting well to varying

levels of data density and noiselaptivemethods automatically search and analyse the

1. This type of problem is often termed ‘learning from examples’ in Artificial Intelligence and Knowl-

edge Based Systems literature.
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denser and more heterogeneous regions of variable space more thoroughly.
The principal areas of data mining, as it has been described above, might be broken

down into
1. Exploratory data analysis and variable reduction
2. Visualisation techniques

3. Regression — particularly non-parametric regression, adaptive regression, hierarchi-

cal regression
4. Classification (aka supervised learning)
5. Clustering (aka unsupervised learning)

6. Hybrids of any of the above.

2.2 Types and Qualities of Data

2.2.1 Pedictors and Responses

Let the variables (attributes) in the data set be denoted by

X ,Xj, e X3, o, Yo ooy Y Where ther;(lsj <J) arepredictor(independ-

1reee
ent) variables and thé,; (1< k< K) areresponsgdependent) variables. The selection

of this division is not always trivial, and is part of the task definition in a data mining
exercise. Moreover, there may be tasks in which some or all of the variables are to be

considered as both predictors and responses.

2.2.2 Types of Domain

Let thecaseswhich we will sometimes refer to eescordsor observationsbe denot-

edC,, ...,C, ..., Cy and let theth case1<i <N, have associated attribute values
Xy = % 0%
X5 = XJ| 0%,
Y =y 0
Yi = yK. DYy
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Where)~(1, Y, are the domain sets domainsof the respective(j, Y,.. The domains gen-
erally fall into one of four categories; consider some predD&}o(ranalogous descrip-

tions apply to responses ):

1. Categorical. Categorical variables take one of a finite nurrmﬂeof unordered dis-

crete valuesg; 0 X = {Xjy, Xjp s X} -

2. Ordered. Ordered variables take one of a number (possibly infinite) of discrete val-

ues x; X = {Xp <X, <. }. Often X is a finite set of contiguous inte-

< X.
i
gers.

3. Hierarchical. Hierarchical variables are categorical variables whose categories are

arranged in some hierarghysually arlis-a’ (i.e. transitive) hierarchyror example,

if Xj records the type of animal in a vetinary database, taking values {bentes;

cat, dog, iguana, mammal, reptile}, it admitsisfa hierarchy including relation-

ships like {terrieris-a dog, cais-amammal, terrieis-a mammal,...}.

4. Continuous. Real variables, whose domain is a (possibly infinite) range of real num-

bers, [iji”, Xfmax] .

2.2.3 Noisy Data

There are principally two sources of noise which arise in databases (although they
are generally treated alike). First, some or all of the attribute values for any given obser-
vation might be of dubious accuracy: if they are measurements they may be imperfect or
may be inexact due to rounding (continuous quantities cannot be measured exactly); if
they are derived from questionnaires, they may be subjective responses to questions and
hence not wholly reliable.

Second (and generally more importantly) the attribute values, particularly for re-
sponse variables, are often samples drawn from populations of random variables. To
make matters worse, the underlying probability distribution for these random variables
Is almost never known in real-world databases.

For a single continuous response variablee might propose a model

Applications of Data Mining &chniques to Electric Load Profiling 12



Applications of Data Mining &chniques to Electric Load Profiling

Y, = Y, +gM +£(9;(1<i<N) (EQ1)

whereY; is the value observed; the expectation of; (the population mean, condi-
tional on the values oX;, ..., X;).

g(M is the (additive) error due to measuremef®, the (additive) error due to sam-
pling (i.e. the deviation off; from Y, +ei(m) due to the inherent randomnessYof
Since thee's cannot (usually) be separated, we wgjt89) = &(™ +¢(9 , and make
some assumption about the distributiorsl((ﬂ"s) , often that it has zero-mean Gaussian
distribution of unknown variance? (which may be approximated from the sample var-
iance 3?).

Where there are multiple continuous response variables, the situation becomes far
more complicated, since we are concerned with jbmt distribution of

Y = (Y ..., Y ) T. We might write

Y, =Y +eM);(1<i<N, 1<k<K) (EQ 2)

on caseC; (with gi(ms) ak-vector of errors due to measurement and sampling). However
Y is now the multivariate population mean conditional on the values of
X

deviationsgi(ms) have a certain multivariate probability distribution is likely to be the-

IR, S TR ST Y(k_l)i, Y(k+1)i, ..., Yy;, and any assumption that the observed

oretically tenuous, and demonstrable only empirically.

Where noise (due to measurement and sampling) is appreciable, any rules and/or rep-
resentations which we may derive for the datastbe ‘fuzzy’ (inexact) in some sense.
We can associate confidence intervals with estimators of continuous variables; we can
give measures of confidence for rules which assert exact logical truths; allow fuzzy
membership of any discovered groupings of cases; and allow discrete probability distri-
butions for class memberships (rather than a uniquely determined class) where cases are
to be classified.

Noise in data can be reduced by at least three means:

5. Data Smoothing. This includes exponential smoothing of time series and the fitting

of smoothing curves/surfaces/hypersurfaces to noisy data.
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6. Data Aggregation. &/ aggregate cases which have the same or similar values
amongst their predictors. Their aggregate response(s) should be determined in a sen-
sible mannersuch as taking mean or modal value(s). Conversely we may aggregate
those cases which have the same or similar values amongst their response variables.
In this case the aggregate predictor variables should be determined in a sensible
manney often by partitioning the predictors’ domains (e.g. values {Mare, T\ed,

Thu, Fri, Sat, Sun} replaced by {workdeyat, Sun}, for a day-of-week variable). A
further option is to aggregate those cases which are similar in the values taken by

both their predictorandresponses.

7. ldentification and Exclusion of Outliers. Outliers may be ‘good’ or ‘bad’ outliers. A
bad outlier contains erroneous (severely mismeasured) daygeALgood outlier
has been recorded with fafent fidelity, but due to the inherent randomness in the
data, has response values which are exceptional given the values taken by its predic-
tors. Atype-2 good outliels a case which has exceptional values in its predictor var-
lables— the values taken by its predictors are not *rtbase of the other cases.
Type 2 good outliers may be discarded (since one cannot reliably make inferences on

the basis of a unique case) or retained according to discretion.

Type 1 good outliers can be particularly instructive, whereas we would usually
prefer to identify and exclude bad outliers from consideration. Unfortunately they are
usually very difficult to distinguish from one another, although a series of exceptional
cases, say, over a certain time period, might point to faulty measuring equipment.
Outliers of any type are often excluded or given reduced weight whilst building mod-

els, but then analysed in relation to the constructed model.

Any form of noise reduction may take place wholly in advance of other data analysis,
but is often an ongoing and integral part of the data mining process. Noise reduction, and
the production of inexact rules and representations, are both crucial to the analysis of

noisy data.

2.2.4 Incomplete Data

Large real-world databases more often than not contain missing values for some cas-
es in some attributes. The simplest way to deal with such cases is to discard them, but

this might ‘throw out the baby with the bathwater’ and is infeasible when many or most
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of the cases have a missing value. Seeking good ways to deal with missing values is an
important area of data mining research, and certain techniques are capable of coping with
very substantial numbers of missing entries. Where only a few data are missing, it is
common practice to replace each missing datum with the variable value which is mean
or modal for the variable in questiagiven the values of the known attribytesich

may be variously determined. Other schemes allow fuzzy values for missing entries, so

that a case may fall partly into one part of the model, and partly into another or others.

2.2.5 Inconclusive Data

Due to the local sparsity of the data, the randomness of some attributes, and the ran-
dom manner in which the cases in the database are selected from all possible cases, the
data may be inherently inconclusive: there may be parts of the attribute space for which
no reliable rules apply. A further and very important source of inconclusiveness in data
is the absence of certain predictors which would be necessary to fully describe the vari-
ation in the responses. Typically there are practically limitless numbers of predictor var-
iables which might possibly affect responses, only a fraction of which can feasibly be
recorded.

Inconclusive data is commonly handled by the use of inexact rules, and data aggre-
gation (as with noisy data, section 2.2.3). It may sometimes be necessary to accept the
inconclusiveness of the data, particularly in the sparsest parts of the domain, and to avoid
making any assertions about parts of the data where no assertions can be relied upon.
‘Giving up’ on part of the data can still be instructive if we can use the results of data
mining to guide future database design— particularly, identifying regions of data space
in which records are too sparse to draw conclusions, so that more data of that ilk can be

collected.

Applications of Data Mining &chniques to Electric Load Profiling 15



Applications of Data Mining &chniques to Electric Load Profiling

Chapter 3 —A Crash Course in Information Theory for Data
Mining

3.1 Introduction

Most of the statistics used to describe data in this tract are widely known: means,
modes, variances, Euclidean distances, and so on. Information Theory is an area of study
which was initiated by theorists studying the communication and coding of signals, and
accordingly the nomenclature (sources, receivers, messages, channels, codes, and so on)
may be less familiar. Information theory seeks to measure the amount of information in
amessage—a sample of a random variable, or a time series of a random variable; the
amount of information preserved in the presence of noise; and the amount of information
conveyed by one random variabs®rcg about another random variabteceive). In-
formation theoretic measures appear frequently in data mining literature, particularly in
the construction of decision trees (chapter 4). This chapter is primarily inspired by [4]
and [5].

Consider, by way of example, a digitally stored data file. Such data files are frequent-
ly compressed (aroded before being electronically mailed, in order to lessen transmis-
sion time. It is possible to compress data files (by factors of ten or more in extreme cases)
because there is redundancy in the manner in which the uncompressed file is stored. For
example, digital images may contain large areas with little spacial variation in shading;
a database of customer records is likely to contain many groups of conceptually similar
customers, whose recorded data differ only in a few variables, or only by a small margin
in some variables.

Commercial data compression programs are generally ignorant of the precise nature
and meaning of the data sets they are employed on. When certain information is known
about the nature of the data (in particular, information about the statistical distributions
of variables, and certain measures of correlation between variables), it is generally pos-
sible to compress the data much further. Loosely speakingptéthénformationcontent
in a data set can be thought of as the size (in bits) of the most efficient coding possible—
various theorems (known as fundamental coding theorems) state that codinys exist

which can compress data sets to within an arbitrarily small margin of their theoretical

1. These theorems do not construct the actual codings, which are generally unknown.
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total information contents.

Whilst the data analyst is not generally interested in coding his or her data set for ef-
ficient transmission, the theoretical information can be of interest. In particular, when a
data set is simplified or represented in a new form, it is desirable that the new represen-

tation contains as much as possible of the information conveyed by the original data.

3.2 Disceete Memoriless Souces

Let a sourceS transmit a series of values of a discrete random vardaphehich
takes the valuegx,, ..., X, ..., X } with respective probabilitiesp,, ..., p;, ..., p } . If
these probabilities are independent of the values afready transmitted, thef is a
discrete memoriless source. Let the transmission of a particular vatubetalled an
eventE;;{1<l<L} .

Define theself-informationof an event to be

I(E) = —log,p;;(1<l<L) (EQ3)

and theentropy—the average (self) information— of the source variable to be

L
HX) = I(E) = -3 plog,p, (EQ4)
=1

Base 2 logarithms are used so that the information is measured in bits. We shall drop
the 2 in subsequent equations. The entropy of a memoriless source is entirely determined
by the probability distribution of the associated random varizble

The presence of the log in the definition of self information can be justified thus: sup-
pose an experiment witpossible outcomes, probabiliti§p;, ..., p;, ..., p, } is per-
formed twice, and the results transmitted to a third party. If the two outcomes are
independent, the information associated with transmitting the two results one by one
should be the same as the information associated with transmitting the outcome of a sin-
gle compound equivalent experiment with possible outcomes with probabilities
:plllz 1<l,l,<L}.We requireI(Elllz) = I(E,l) + |(E|2)' satisfied by (EQ 3). The en-
tropy measures the informativeness of the source as a whole, and accordingly weights
each of the self informations with their frequencies of occurret@s, ..., p;) is max-

imised wherp, = L-1 for 1<1 <L, i.e. for a uniform distribution.
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3.3 Discete Memoriless Channels

A discretechannelis defined by its joint probability structure for its discrete source
variableX and receiver variabl¥ (receiver random variables have the same associated
information properties as source random variables).

Let X take values{ x, ..., x,} with probabilities{ p,, ..., p,} and letY take val-
ues{yy, ..., Yt With probabilities{ p,, ..., p,} . Let {pij| (1<isn) (1<jsm)}
be the joint probabilities foX andY; if these are independent of previous transmissions,
the associated channel is a discrete memoriless channel. Such a channel is noise-free
only if P = Bé:: : : JJ , and we can think of the joint distribution as characterising the
noise properties of a channel, and vice versa. We associate five entropy measures with a

communications scheme:

n rm |:| m D’
H(X) = _z Z pijloggz pij% (EQ5)
i=1Lj=1 ]=1 -
m  n |:| n D’
H(Y) = —.Z z pijloggz Py (EQ6)
j=1Li=1 =1 _
n m
HYX) = =% > pylogp{y;|x} (EQ7)
i=1j=1
n m
HXIY) = =% > pylogp{x|y;} (EQ8)
i=1j=1
n m
H(X, Y) = _Z z pij|09pij (EQ9)
i=1j=1

These are, respectively, the source and receiver entropies (or marginal entropies); the
entropy ofY conditional onX (the average information per event received, given we
know the event transmitted); the entropyafonditional oY (vice versa); and the joint
entropy—the average informati@er pair of transmitted/received events: i.e. the aver-

age uncertainty (noise) of the channel. The entropies are related by

H(X|Y) + H(Y)
H(Y|X) + H(X)

H(X,Y)

H(X, V) (EQ 10)
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H(X) 2 H(X|Y)

HY) = HOY)X) EQi

For a noise-free channel, the conditional entropies are zero, and the marginal entro-
pies and the joint entropy are all equal. Faradomchannel X andY independent) the
inequalities in (EQ 11) become equalities.

Finally define thanutual informatiorbetween an event pah‘rij as

I(x;;y.) = Iog%ﬂg (EQ 12)
e PP, 0
and themutual information between X anch¥
1(X | c 5 | Ep” E
Y) = I(x:y.) = log—- EQ 13
XY) = 1(x:y;) i;j;p., gDpiij (EQ 13)
and note that
I(X}Y) = H(X) + H(Y) =H(X, Y) (EQ 14)

[(X;Y) is the amount of information conveyed by one random variable about the oth-
er; for a noise free channel, it is equal to the joint entropy; for a random channel, it is

Zero.

3.4 Continuous Memoriless Souwres and Channels

Consider now a source variat{end received variab¥which take values in a con-
tinuous ranged, bj. We might try to approximate the information content of the source
by discretisinghe ranged, b into n equal cells and calculating the associated discrete
probabilities and entropy. This approach is fundamentally flawed, as the resulting entro-
py is strongly dependent anand always tends to infinity agends to infinity; such an
entropy measure is arbritary and meaningless. It is only to be expected that a variable
taking unrestricted continuous values should have infinite entropy—consider that an
arbritary real number cannot be completely stored in any amount of computer memory,
and entropy is measured in bits. However we can derive meaningful measures which de-
scribe the information content of one message relative to another. The five entropies for
a continuous memoriless channel are exact continuous analogues of (EQ 5) to (EQ 9),

with integrals replacing the summations and continuous probability density funictions
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replacing probabilitiep. It can be shown (see e.qg. [4]) thaXihas rangg —w, ») and
known finite variances2, thenX has maximal marginal entropy when it has a Gaussian
distribution.

These entropies can be problematic, however: they may be negative; they may be in-
finite; and they are not invariant under linear transformations of the coordinate system.
By analogy with the discrete case, define tigtual (or trans-) information between

continuous variables X, &s

I(X:Y) = IIﬂxw%m£%§ﬁ$my (EQ 15)

—00 —00

(EQ 14) also holds in the continuous case. Mutual information does not suffer from the
above-mentioned problems.
Under the assumptions thétandY have a joint Gaussian distribution with correla-

tion parametep, and known marginal variances,

I0GY) = 3In(1-p3)  (pl %) EQ16)

3.5 Additive Gaussian Noise

The transinformatiom(X;Y) is also known as the rate of transmission; the maximum
rate of transmission possible is known asdh@&nnelcapacity, |.Theadditive noise as-

sumptionis that

Y = X+7Z; ZO@2) (EQ 17)

whereq is the distribution of additive noige We further assume thatandX are inde-
pendent. Th&aussian additive noise assumptiomther stipulates that noise is zero-
mean with a Gaussian (normal) distribution, with knqeemver (i.e. variance)of and
that the signal is zero-mean with known powgr (the zero-mean assumptions are not
strictly necessary). It can be shown (see e.g. [4]) that channel capacity (maximum
transinformation) under these assumptions occurs when input (equivalently, output) is
Gaussian, in which case

SO 0S = o?

1. 0

EQ 18
= o (EQ 18)

[
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whereS/Nis known as thsignal-to-noise ratio.

3.6 Continuous Band-Limited Signals

Now suppose that the sourkes a continuous function of a continuous variable
(time). We no longer have a discrete sequence of continuous events; furthermore, the
continuity constraint implies that the source has memosgqchastig— the probability
density function foiX at timet is not independent of previous transmissions. In general,
the maximum transinformation for channels carrying continuous stochastic time signals
Is unknown. Many simplifications and assumptions must be made in order to derive a
channel capacity for such channels.

First consider the simpler case in which a discrete sequence of continuous variables
X;(1<t<n) are transmitted. Under Gaussian additive noise assumptions, with inde-
pendent noises at any two time points, maximum transinformation has been shown to oc-
cur when theX; aren independent Gaussian random variables, in which case

| = glog%1+gg (EQ 19)

Returning to the case wheXeandY are continuous functions of time, we wish to re-
duce the infinity of time points to a discrete, finite sequence of time poista{plg
without loss of information in order to enable a calculation of channel capacity. In fact,
the class oband-limited, time-limited continuous signadmits such an analysis. A
continuous signal iband-limitedif its fourier integrals have no frequency content be-
yond some frequency rande-W, W) , and time-limited if the signal is negligible out-
side some timespanT|f2, +T/2]. The Sampling Theorem (see e.g. [4]) tells us that a
band-limited signal is completely determined by its values at the points
i%] n =123, ..., and time-limitation allows us to replace this infinite sample
with a finite sample. Under independent Gaussian additive noise assumptions, and the
assumption of constant signal power ifvV§ +T/2], the Channel Capacity Theorem for
Time-Limited, Band-Limited Signals (Shannon, see e.g. [4]) derives

O0S+ NOW SO

a1 _ O
I_TllinmflnDTD *W|”D1+ND (EQ 20)

The assumption of band-limitation is essentially an imposition of a smoothness con-

straint on the signal. A continuous signal typically has a frequency spectrum which tails
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off for higher frequencies; the frequency for which the fourier inteyalx(t)] be-

comes ‘negligible’ is greater when the signal is less smooth. We can interpret the result
(EQ 20) as a quantitative expression of the intuitive notions that more information is con-
veyed in the transmission of ‘bumpy’ signals than smooth signals, and that more infor-
mation is conveyed when the signal-to-noise ratio is greater.

Applications of information theory to more general source variables and channels
have been studied (particularly more general stochastic sources, and stochastic chan-
nels), though the models become rapidly more complex as simplifying assumptions are
dropped.
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Chapter 4 —Decision Trees and Hierachical Partitioning

4.1 Adaptivity

Many Data Mining techniques are distinguished by their adaptive nature. An adap-
tive methodology is one which modifies its strategy according to the local nature of the
data. Such adaptivity allows a model to tailor itself to the local data qualities; where data
is denser or more heterogeneous, it can be modelled at a greater resolution (specificity);
where data are noisier, a smoother model can be imposed; and so on.

Commonly, adaptive methods employavide and Conquesstrategy (orecursive
hierarchical partitioning. The principle is to recursively subdivide the population into
exclusive exhaustive subsets (partitions) in such a way that records in one partition be-
have by some criterion similarly, and records from different partitions behave relatively
dissimilarly. The process is repeated for each partition, but the type and/or details of the
algorithm employed are allowed to vary according to local criteria (that is, based on the
data in the partition being processed). The decision of when to stop subdividing each par-
tition is also based on local criteria, i.e. when the records contained in a partition are
deemed sufficiently similar, or model fit sufficiently good. Accordingly, different parts
of the data find themselves represented at different resolutions: where data is relatively
sparse and/or uniform, fewer subdivisions occur; where data is dense and/or heterogene-
ous, the domain is more subdivided, and so the data more intensively processed. A con-
sequence is that each of the final partitions in such a model display a similar degree of
within-partition heterogeneity (each cluster bears a similar share of the data’s total var-
iability).

4.2 Notation

Recall the notation of section 2.2, where the domains of the predictors are denoted
)..(11 LR |

their cross product

Xj, ..., X5, and define theJtdimensionalpredictor spacgor thedomair) to be

X = XX XX x X (EQ 21)

Also, call the product of the response domaingésponse spacer codomain
Every pointx in the domain is specified by idgredictor values. Consider the case

where all predictors are discrétthen there are an enumerable number of such points in
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X. We can assume all domai)j]s are finite (since we have a finite number of records).

Denote a partition oK

Dxpnxq = U;(1<sp#zqs<P)

(EQ 22)

X1

= {2,( 1'--12,( 1'--12,( } |:| P
(1) (p) (P) 0 and []X,.. =X
— = (p)
p=1
calling theexclusivegxhaustivesubsetsX ) thecells of the partition>:(.
A hierarchical partition}? is a series of partitions of, which starts with the uni-
versal partition (whose only cell is the entire domain), and in which each patrtition is de-

rived from the previous partition by splitting one or more cells. Formalising,

is a hierarchical partition of if

= {X} and

X1
5 2 (EQ 24)

where we use>:<' <):(, to denote thab:(' IS a proper subpartition oi( We say

X = {)~(~l(0)""’)~(l(P')} is a subpartition of X = {)~((0),...,)~((P)} if every
XI

X () 0O X' is a subset of sormé(p)

least one cell irK' is a proper subset of some celln.

O ):<; the subpatrtition is proper g > p (so that at

4.3 Decision Tees

A hierarchical partition'X iIs most easily represented by a tree. The root represents
the whole domain. Each level of the tree represents a pab:qgigmith nodes at that lev-
el representing partition cells (domain subsets); the leaves represent ?Z(@lsWé can
mark the branches of the tree with conditions on attributes; these are the conditions
which exactly specify the child cell as a subset of the parent cell—thus the branches de-
scending from any one node have conditions which are mutually exclusive and exhaus-
tive. If the tree is such that each branch condition involves just a single predictor
attribute, the tree is calledd@cision tregsince any case in the database belongs to ex-

actly one cell (node) at any given level of the tree, and the conditions on each branch

1. Since continuous variables candiscretisedby partitioning their domains.
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decidein which cell each case should reside at the next level. (FIGURE 1.) gives an in-
complete example. Binarydecision tree is one in which at most one cell is split at each

level, and always into exactly two children.

X, O {Mon, Tue, Wed, Thu, Fri} X, O { Sat, Sun}

X4 = summer

FIGURE 1.

Top-down tree building, also known gsneral-to-specifipartitioning, starts with
the universal partition and recursively splits cells until some (usually local) criteria lim-
iting tree size is met. Bottom-up tree building specific-to-generapartitioning, starts
with the maximal possible number of leaves, each of which contains either just one case
from the database, or all those cases which have identical values for every predictor. At
each stage, some of the cells are combined into a larger cell so as to form a superparti-
tion; at the final stage, all cells have been combined to form the universal partition at the
root.

Top-down methods are more common though are often augmented with bottom-up
methods. This is known awerfitting and pruning tree: a tree is grown top-down until
it is (deliberately) ‘too’ large, then pruned back by recursively combining cells, until a
‘right’ sized tree is found (this may be repeated iteratively). The pruning (cell joining)
criterion must, of course, be different from the growing (cell splitting) criterion.

Decision trees are used for regression, classification and clustering. The objective of
a decision tree is usually to find partitions of the predictor space whose cells are such that
the response variables of the cases in a cell behave similarly; or, such that the response
variables of two cases in different cells behdigsimilarly. Thus in a regression tree,

the objective is to seek partitions whose each cell contain cases whose responses fit the
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same regression model well. In a classification tree there is one respassend cells
should ideally contain cases which are all in the same class with as few exceptions as is
possible In decision tree clustering, cells should contain cases whose multivariate re-

sponses are ‘close’, according to some multivariate distance measure.
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Chapter 5 —Variable Reduction and Data \fsualisation

5.1 Introduction

In order to visualise multidimensional data we wish to reduce its overall dimension-
ality to two or three to enable a graphical representation. The most common methods are
factor analysis, principal components analysis, and discriminant analysis, each of which
aims to replace a large variable set with a smaller variable set, the latter of which cap-
tures as much as possible of the interactional structure of the former. Of these, principal
components analysis (PCA) is the simplest, and arguably the most widely useful. The
new variables discovered by these methods (particularly PCA) have much utility in a
number of data analysis techniques, besides their usefulness in data visualisation. In high
dimensional data mining tasks in possibly noisy databases, variable reduction can prove
very useful in reducing computational complexity, and improving human conceptualisa-
tion of problems and data structures. It can prove especially so when the database has a
large number of strongly linearly dependent variables.

Other visualisation techniques are also important in representing complex underlying
structure in databases. Of course, graphs and charts of all manner can be starting points
in determining structures. Decision trees (section 4.3) are one example of an at-a-glance
distillation of multidimensional data structure. Other types of tree (e.g. dendrograms in
intrinsic cluster analysis, see section 8.5) can also be of use. Problem-specific visualisa-
tions may suggest themselves to the data analyst, whether they serve as exploratory

tools, or as final representations of discovered knowledge.

5.2 Principal Components Analysis

Suppose certain linear combinations of the continuous vaﬂallnles., Uy .on Up
are to be introduced as replacements. Call tagm., v,, ..., v, where
Vi = aqlp o taguy 1<ksK (EQ 25)

or in matrix form,

1. The variable set to be reduced may be a set of predictor variables or of response variables, though not

usually a mixture.
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v, = aju (EQ 26)

Thekth principal componenobf the datau,; (1<i<N) is denoted/, .
vy is defined as that linear combination which maximises the variance of the combi-

nation over thé\ observations, subject to the unity constraint,

P
z afp =ala=1 (EQ 27)
p=1

The variance of a linear combinati@ﬁg of u is defined

P P
var@) = ) > a43a0; (EQ 28)
i=1j=1
Whereoij = cov(u, uj) , the covariance of predictargover the observations; in matrix
algebra

var(a) = QICQK (EQ 29)

whereC is the covariance matrix of over the observations. Often the variables are first
normalised to have unit variance; in this c@&slbecomes a correlation matrix (usually
denotedr).

The second PQv,is defined as that linear combination of which maximises

var(az) = QZTCQZ subject to the constraints

(Bja, = 1
O (EQ 30)
Mafa, = 0

The second constraint ensures linear independence (orthogonality) of the first two PCs.
The third PC maximisealCa, subject toala, = 1 and mutual linear independence

of the first three PCs, and so on, so that any two principal components are guaranteed
orthogonal.

Oftenv, represents that linear combination of variables which best typifies the be-
haviour ofu amongst the observations, andcan be interpreted as the combination or-
thogonal tov, which bestdistinguishesthe different behaviours ai amongst the
observations. Further PCs often have clear interpretations, dependent on knowledge of
the field of study.
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The a,, ..., a are the firsk eigenvectors of the covariance mattixtach eigenvec-
tor has a corresponding eigenvalig ..., A, ; these are proportional to the proportion

of total variance in the data accounted for by the corresponding eigenvector, and

A <A, < ... <A, Thus the firsk PCs account foHZL(: l)\k%zgz 10p%'1 x 100%

of the total variance Whercezp are the variances of the original variables. The eigenvec-

tor matrixA = [aij] relates the PCs to the original variables,

v =ATu (EQ 31)
andATA = |. We can spectrally decompose the covariance matrix as
R = AAAT (EQ 32)

where A is the diagonalp x p matrix whose diagonal entries are the eigenvalues

Ay )\p, which expands to
P
R = Z )\pz_apag (EQ 33)
p=1

5.3 Rotation of Principal Components

Theloadingsl, for thekth PC are obtained by scaling the coefficiegy Jfk:

l, = A By (EQ 34)

and thel, together form thep x k loadings matrix, LNoteR = LLT. Manual exami-

nation of the loadings is generally performed when trying to interpret the principal com-
ponents. Now if the firsk PCs account for a ‘significant’ proportion of total variance,

we know that the original data lie ‘close’ t&-glane, the plane defined by tkeigen-
vectors. If these PCs are rotated inkkdane, the rotated vectors still define the plane
with no loss of information; however, certain rotations of the components admit more
obvious interpretations. Thaarimaxrotations are the unique orthogonality-preserving
rotation of the PCs which maximise the sum of variances of the loadings matrix (ob-
tained iteratively). The varimax-rotated components tend to have loadings which are
close to either 0 or 1 and hence have obvious interpretations as indicators of similarities

and dissimilarities between certain variables.
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5.4 Applications and extensions

We may wish to retain a subset of the original variables rather than linear combina-
tions, but use the PCs to select a reduced variable set. One method is to include the orig-
inal variable which has the greatest loading jnthen that with the greatest loading in
V, (unless already included), and so on.

PCs have particular validity in multiple simple linear regression. If the orig -
dictors are replaced by thgrPCs, the resulting simple linear regression parameters
have variances inversely proportional to the variance of the corresponding PC. Thus low
variance (low eigenvalue) PCs are unreliable as simple linear regression predictors, and
are often omitted. Furthermore, the regression coefficient for a particular PC remains
constant regardless of how many other PCs are included in the model (since PCs are mu-
tually uncorrelated) and can thus be determined separately.

Two dimensional scatter plots for the cases’ loadings for the first two PCs may be
informative representations for multidimensional data (see FIGURE 2.). In particular
such plots can be used for the visual identification of outliers (marked X, y) and clusters
(marked a, b).

V, A
b
a bb
ada b
a a2 pp
a a b
X
y
-
Vi
FIGURE 2.

Use of the first few PCs of the respoffatterr) variables, rather than all the variables,
can reduce the size of a cluster analysis task.

In discriminant analysiswhich relates to classification (chapter 7) in the same way
in which PCA relates to cluster analysis (chapter 8), the original €asgb<i < N)
(variablesy;) each have an associatddssvariable (discrete responsg). The idea is
to obtain linear combinations of the predictors which have maximal discriminatory pow-
er between classes. Eigenvector§gfS; provide the coefficients for the linear combi-
nations, where5,, S; are (respectively) the within-group and between-group scatter

matrices defined by the class variable (related to the scalar scatters of section 8.3, which
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are scatter matrices summed over rows and over columns).

Factor analysishas similar aims to PCA but a more complex underlying model
which relies on the notion of a set of hypothetical, unobseneainiegnon factorseach
variable has an expression as a linear combinatircofnmon factors and one unique
factor. Factor analysis is popular in the social sciences, where data often contains sub-
stantial measurement error, and an underlying factor model can be postulated from the-
ory or experience.

Correspondence analyssa form of PCA applicable to categorical variables, which
can be used to visualise the relationships between two categorical variables. Principal
components are induced from the contingency table of the two variables, aadethe
goriesof each variable are plotted as points on a graph which has principal components
as axes. Points which appear nearby on this diagram represent either similar categories

of the same variable, or highly contingent categories of the different variables.
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Chapter 6 —Regression in Large Noisy Databases

6.1 Formulation

It is convenient for us to suppose at this stage that the predictors, X, ..., X,
are all continuous. Regression on discrete predictors will be considered shortly. Regres-
sion requires continuous responses; usually multiple responses are dealt with separately
or somehow combined into one, so assume a single resjgoii$e general parametric

regression model (with additive errors) is
Y, = f(X:8) +¢, 1<i<N (EQ 35)

whereX is theJ-vector of predictorsd is a vector of paramete(®,, ..., 6,) T, andg,
are the errors in the model for each chsel < N. If errors are assumed multiplicative,

we write
Y, = 1(X;;0) & (EQ 36)
which can be transformed to the additive error model by taking logs:
logY = logf(X;;6) + ¢; (EQ 37)

WhereaiD = expg,;. The additive errors (or additive log errors in (EQ 37)) are assumed
independent and identically distributedl(d), and generally assumed Gaussian.

The parametric model is linear when the regression funictiam be written in a form
f(X;8) = a fi(X) +... +a,f,(X) (EQ 38)

(whether or not th(ﬁJ are linear). Thus fourier regression and polynomial regression are
linear.

Visual examination of scatter plots of the errors will usually be enough to determine
whether additive or multiplicative error assumptions are more appropriate. If the distri-
bution of errors in both cases is too far from Gaussian, a more complex transformation
of the data may be considered.

Theregressiorequationis the criterion for parameter selection. Most common is the

least-square-error criterion
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N
min §6) = % w;[Y; - f(X;0)] 2 (EQ 39)
i=1
Weightsw, may be absent, or selected according to various criteria. Least-square-error
minimisation is particularly sensitive to outliers, which may distort the final regression
function. Outliers can be removed before regression modelling, or an error measure less
punitive to outliers may be adopted.

Non-linear parametric regression models (EQ 35) have many associated problems
[6]. Firstly it is difficult to select a form for the regression function unless there is a sound
domain-dependent precedent for choosing one. Secondly, different parametrisations are
possible for each candidate function, some of which may lead to poorly conditioned
equations. Thirdly, the regression equation is usually insoluble except by iterative meth-
ods, often with poor convergence rates. On the other hand, linear multivariate parametric
models (which have easily soluble regression equations) can rarely be found which fit
the data well in all parts of the predictor space. Since data mining tasks often have high
dimensional domains, and high-noise response variables which do not vary smoothly,

non-classical regression techniques which have greater flexibility are often preferable.

6.2 Stepwise Regrssion

It is supposed that the respomé&\)) has a univariate, possibly weak, relationship
with each of the predictorxj individually. Each univariate regression model is usually
linear with few parameters unless there is a particular reason to adopt a non-linear model.
Different models may be used for each predictor.

The basic idea behind stepwise regression is that each predictor is used in turn to
model the response. Having found the regression function for the first predictor, the ac-
tual values of the responé@o) are differenced with the valué's(o) predicted by the
regression function, to create a new response var}é(q;e This can be thought of as
the original response ‘filtered for’ the effect of the first predictor. Next a new predictor
Is selected and used to model the residual resp‘éme This continues until no more
significant relationships can be found.

The order in which predictors are used may be decided by heuristics; a simple linear
correlation coefficient can be computed for each predictor with the response and the

most highly correlated predictor used; or the regression function can be determined for
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each predictor, and the predictor resulting in the closest fit selected. Predictors may be
selected more than once.

It is simple to reconstruct a single equation Y%) in terms of the predictors by
chaining backwards, but there is no guarantee that the reconstructed model will be glo-

bally least-square-error.

6.3 Hierarchical Regression

In a hierarchical regression, an initial regression is used as a means of variable reduc-

tion. An initial regression model
Y, = f()_(i;Q) +E, 1<i<N (EQ 40)

is postulated, with the number of parameter8 significantly smaller than the number
of responses iiX. In general, not all of the predictoXs, ..., X; will be used; and in
general, not all of the casés i <N will be used at once—sometimes a separate fit is
determined for each case, or for each cell in a partition of the cases.

In the second phase, the discovered param@ters(6,, ..., 6, ) are now treated as
new response variables, and each in turn is regression modelled as a function of the
X, -+ X5, usually only using those predictors which were not used in the initial stage.
The process is not normally extended beyond the second tier of regressions. Via back-
substitution, a single regression functionYan terms ofX can be recovered, although

as with stepwise regression the errors are not least-square globally.

Example. Suppose we wish to model a database of analogue communications signals.
As a first step, we might decompose each signal into a linear combination of a handful
of preselected sinusoids, using linear regression; here the only predictor is time. Next,
any remaining predictors can be used to regression model the coefficients for each sinu-

soid.

6.4 Piecewise Regssion and Non-Parametric Reggssion

6.4.1 Regession with Piecewise Polynomials

Consider fitting a polynomial regression model to the data in (FIGURE 3.). Simple

linear or quadratic curves do not fit the data well; even a cubic or a quartic fares badly,
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FIGURE 3.1

and the danger of fitting higher and higher order polynomials is overfitting the data—
high order polynomial regressions tend to fit the noise rather than smooth the data. Ex-
tending to a multivariate case, where we would like to fit a surface or hypersurface to
noisy data with many local minima and maxima, any attempt to fit the data with a single
global regression function is almost certainly doomed, however complicated the form of
the function. In (FIGURE 4.), the same data have been fitted with two cubic equations,

each of which is least-square-error for a subdomalfi of

FIGURE 4.

Not only is the fit much better than the single cubic fitin (FIGURE 3.), but the possibility
of fitting the noise rather than the trend is less likely than with a single high-order poly-

nomial. This is an example of piecewise polynomial regression.

6.4.2 Splines

Note the discontinuity at, in (FIGURE 4.) Itis highly unlikely that the true nature

1. (FIGURE 3.) and (FIGURE 4.) depict hand drawn approximations to least-square-error cubic.fits only
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of the data is discontinuous at this point, or that the gradient should be discontinuous at
this point. If we fit the two cubics again, with the additional constraints that the com-
pound curve is botbontinuousandonce differentiabl@tx, , we obtain a (cubigegres-
sion spline A spline is essentially a piecewise polynomial fit to data with additional
constrains at the junctions between constituent curves. These junctions (sycim as
(FIGURE 4.)) are known as knots (since the constituent curves are ‘tied together’ by
continuity constraints at these points). iliterpolating cubic spline for the above data
would pass through every data point, be continuous with continuous first derivative eve-
rywhere, and twice differentiable everywhere excepting the knots—every data point is a
knot for an interpolating spline. Clearly this is unsuitable for noisy data and what is re-
quired is asmoothingspline. A smoothing spline may have a knot at every data point.
We do not wish to interpolate every (or even any) point, so the regression equation con-
sists of restrictions on the least-square-error of tharfd,of continuity constraints.
Smoothing splines are an example of non-parametric regression—there is no preor-
dained fitting function or number of parameters; any ‘good’ description of the data will

do. Our univariate non-parametric model is
Y; = f(X) +¢ (EQ 41)

We do not impose a preset form foibut instead insist on certain constraints. If we insist

on continuity for, and continuity of first derivative fércontinuous second and third de-
rivatives except at knots; and piecewise constant third derivative everywhereisthen
cubic spline. Another way of phrasing these constraints is that the second derivative is
continuous and piecewise linear. §X) is a cubic spline on the set of knots

K= {ky ..., kIL<I} , then equivalently it can be written in the form

IKI-1
SX) = a; X3+ aX2tagX+a,+ Y g [X-k]? (EQ 42)
i=2
The first four terms form a cubic polynomial and the last term is a sleroélfunc-
tions centred at (internal) knots. The kernel functions are translates of
x3 x>0

= 3=
w9 = 2= EQ43)

There is an alternative and (perhaps surprisingly) equivalent formulation for cubic

splines: define
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Kig
Jf) = I [f"(X)] 2dX (EQ 44)
kl

andJ, [k, kIL<I] the set of all functions for which the integral in (EQ 44) exists. Then
the function inJ, [k, leq] which interpolates data at the knots and minimises (EQ 44)

is unique, and is matural interpolating cubic splinéa natural cubic spline is one which

has zero second derivatives at the external qukrlﬂ ). The knot set is usually the en-

tire data set. When smoothing rather than interpolation is required, we drop the interpo-
lation constraint, but by adding a least-square-error component to (EQ 44), we obtain the

formulation for thenatural cubic smoothing spline

N
min E,(f) = J() + z A; D(f(X(i)) —f)? (EQ 45)
i=1

Here theX(i) are the predictor values for theobservations anf] theN observed re-
sponses. The parameters of (EQ 45) are the welghtand the knot se and are
known assmoothing parametetsThe knot set is usually the entire data set. The sparser
the knots the smoother the spliff&) (and the less closely it fits the data); the smaller
the weightsA, , the smoother the spline also. Careful choice of smoothing parameters is
vital in spline smoothing, since too much smoothing produces near-linear splines with
poor fit, but too little smoothing tends to overfit the data—i.e. to fit the noise, not the
trend. J(f) itself can be seen as a measure of smoothness for a fuinction

One common simplification is to take = }\/Gi2 whereA is a common smoothing

parameter andri2 some estimate of the variancefaf

6.4.3 Multivariate Smoothing Splines

Now extend the non-parametric model to a multivariate case:

Y, = f(Xp o X X g (EQ 46)

The case wheré = 2 is rather common, higher dimensionality less so. WheR the

1. An irony of the term ‘non-parametric regression modelling’ is that such models usually have more

parameters (albeit of the smoothing variety) than comparable parametric models.
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problem is to fit a smoothingurfaceto the data. Recall the two derivations of univariate
smoothing splines. We can consider them as piecewise polynomial regression curves
tied by continuity constraints at the knots; or as minimisers of a compound least-square-
error/smoothness criterion. These extend to two different concept of multivariate
smoothing splines, respectivdipnite element methodsnd (hyper-)surface splineA

third concept of multivariate smoothing splines is provided bybteading function
methodsandtensor producsplines. These methods derive univariate splines for each
predictorxj and blend them into a surface or hypersurface.

Finite element methods require reliable estimates for the partial derivatives at knots,
and will not concern us.

Surface splines for smoothing are analogues of univariate smoothing splines for the
bivariate case. Recall (EQ 42) which decomposes a univariate cubic spline into a univar-
iate cubic and a sum of kernel functions centred at knots. Note that the kernel functions
are translates of a basic functigfx) . For surface splines we seek a basic function
®(X4, X,) which has rotational symmetry about the origin. Tipusan be expressed as a
function ofp = W Common choices axgp) = |p3 (this is the direct analogue
of cubic splines)p(p) = |p2In|pl, which is used in ththin plate splineand e=Ipl?,
the rotated Gaussian splineThe various basic functions optimise various different
smoothness measurdd) . These ideas have natural extensions to higher dimensional

splines.

6.4.4 Kernel Estimators

Surface and hypersurface splines are examples of a broader class of non-parametric
modelsmultivariate kernel estimator3 hese methods are based around the summation
of kernel functions centred at various points, but do not necessarily obey any smoothness
criteria, like splines.

An example isnear neighbour regressiora family of kernel estimation methods
which estimate the valu€X) as some function of the response values taken by points
in the sample data with predictor values ‘nearXtofor example, take the mean of the

response values for thenearest neighbours ¥ in the sample data.

6.5 Multivariate Adaptive Regression Splines and Related Models

The Multivariate Adaptive Regression Spline (MARS) [9], [10] is an ingenious non-
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parametric regression technique which combines ideas from regression tree models (re-
cursively fitting separate models to cells of a hierarchical partition) and from the method
of interaction splines. It is adaptive in the sense that its strategy adjusts according to the
local behaviour of the function to be approximated. It was designed for data sets with 50
to 1000 observations and 3 to 20 predictors though has been fruitfully applied to larger
problems [9].

6.5.1 Interaction Splines

The interaction spline is designed to model multidimensional data as a linear combi-

nation of low dimensional splines. The model is

J
fX) = > §(2) (EQ47)
j=1
WhereZj are low (usually one or two) dimensional subsets of argumentsXrdire set
of predictors, andj]j are splines of appropriate dimension. The model is appropriate
when interactions between predictors are thought to be of low dimension. The criteria

for optimising thegj is a global version of (EQ 45),

N J 2 J
min % {yi— > QJ-(Z”)} +z A J(9) (EQ 48)

i=1 j=1 j=1
Choice of the predictor subse:tﬁis a crucial factor and requires prior knowledge of

which predictors interact and at what level.

6.5.2 Recursive Partitioning Recast

The basic regression tree model is

XOX@p 019 = g,x6)  1<ps<P (EQ 49)

where { 2((1), Z((P)} partition predictor spack. The partition and the parameters
are estimated simultaneously using recursive hierarchical partitioning (divide and con-
guer strategy). A simple but popular choice for@lae’s constant functions. We can re-
cast the regression function for the regression tree with piecewise constant fitting

function into a single regression function
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P
9 =S aB,(X (EQ 50)
p=1
where
1 if XOX
B,(X) = I[XDX ]E[ (®) (EQ 51)
P ® 1o otherwise
. . 1 v=>0 . :
If H[v] is a step functiomd [v] = [0 <0 then thebasis functlonsBIO can be
Y
expressed
KP
B = [ HISe K~ o) (EQ52)
k=1

Here thetkIO are ther split points in thepth recursive partition, called for convenience
knots. Knottkp splits thej(k, p) -th predictor;SkIO = 1 carries the left/right informa-

tion about that split. Predictors may be selected for splitting several times.

6.5.3 Piecewise Linear MARS Model

(EQ 52) produces a discontinuous fitting function; the basic idea behind the MARS
model rids us of the discontinuities by repladihdhe step function, by a truncated pow-

er function

by (x=1) = [+(x~1)]9 (EQ 53

where the right hand side is defined[as(x—t) ] 9 if £ (x—t) =0, or O otherwise. This
is thetwo-sided truncated power bagompare (EQ 43)); in fagt = 1 is used, so that
the basis functions are piecewise linear.

The multivariate spline basis functions are

Kp
By (X) = [ S Xy ~til + (EQ 54)
k=1

along with one constant term. Knots are always located at the projection of a data point
onto the axis of the relevant predictor. A problem arising with this model is that when
some attribute is selected for splitting more than once, corresponding basis functions

have power greater than one.
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However MARS adds a further generalisation to the model which rids us of this prob-
lem, and also allows us to use basis functions of arbitrarily low dimension at any stage
in the recursion. The idea is to generalise the set of basis functions (EQ 54) to include
interactions of every dimensiog Kp. Lower order interaction terms are always avail-
able for selection or reselection at any stage. The same attribute can be selected many
times without incurring high order basis functions: each basis function added can only
feature that attribute once in its product. The process begins with only the constant basis
function By(X) = 1, and after then + 1st iteration (n>0) adds two new basis func-

tions

B2m+ 1(>—() = BI(m+ 1)()—0 D[+ (Xv(m+ 1) _tm+ 1)] E

. (EQ 55)
B2m+ 2(>—() = BI(m+ 1)(>—<) Of- (Xv(m+ 1) s 1) ] E

where Bl(m+ 1)()_<) is one of the basis functions already selectén,+ 1) is one of the
variablesnot already present i, , ;,(X), andt,, ; is the knot location on that vari-
able. These three parameters are chosen so as to most improve goodness of fit of the new

model

2m

O O
Ellzoai Bm()—()%+ QBm+ lBIO—() [+ (XV(m+ 1) ~tne 1)] (EQ 56)

+ a2m+ZBI(>—O [_(Xv(m+ 1) —tns 1)]

(optimisation is with respect to the paramelesst, a,, a,, ..., 3,,,, »)- It is not feasi-
ble (for problems of any reasonable size) to compute exactly optimal values for all these
parameters, and a number of sacrifices of optimality for speed are made by the MARS
procedure (see [11]) to achieve more reasonable computation times.

Note that the resulting modeln®t a partition (it is exhaustive but not exclusive—
some regions of predictor space are relevant to several basis functions). This is best il-
lustrated by théNOVA decompositidrof the MARS model:

) =ap+ § 00+ 5 f06X) + 5 0 X X0 + .. (EQ57)
Kp=1 Kp=2 Kp=3

The f, fij, fijk, ... are sums of basis functions involving exacdly?, 3, ... predictors.

1. So called because the decomposition looks like that used in Analysasiafidé (ANOW)
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For example,

M
B(X) = 5 aB(Xy (EQ 58)
m=1

would be a piecewise linear splineXn formed fromM univariate basis functions of
the form of (EQ 53).
The lack-of-fit function used when deciding which basis function to add next is a

modified form of the generalised cross-validation score, GCV:

N
LS 1Y -T2
Effy = = (EQ 59)
(P)72
e

Normally, model complexityC(P) is just equal td?, the number of parameters being
fitted. The denominator is a term which is intended to counter the bias introduced by the
increased variance due to greater model complexity. GCV is comparable at any level in

the hierarchy (see [9]). In MARS it is modified by choosing

Cc(P) = P EH% +15+1 (EQ 60)

(2<d<4 usually), whereP is the number of non-constant basis functions being con-
sidered [10]. Largel penalises knot addition more severely, and results in fewer knots,
hence smoother fitting functions.

The MARS methodology opts for an overfitting and pruning approach to determine
a right-sized model. The user supplies a maximum number of basis functions to be dis-
covered in the forward selection algorithm; the backward pruning algorithm consequent-
ly removes some (typically about half) of them from the model. Each iteration seeks the
basis function whose removal either least degrades or most improves fit. The constant
basis functiorB,(X) = 1 cannot be removed (so there is never a ‘hole’ in the domain
in which no function is applicable).

The overfitting and pruning approach allows low order interaction terms to be select-
ed in the stepwise-forward part of the algorithm that will eventually be removed, but

which nevertheless serve as building blocks on the way to building higher order terms.
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6.5.4 Piecewise Cubic MARS Model

The piecewise linear MARS model with= 1 does not have a continuous first de-
rivative, and tends to have a poor fit near to knots. Truncated cubics of a special form
can be used in place of the two-sided truncateldpower basis. The positive versions

have the form

0 0 X<t
Clxt, tt,) = Bp, (x=t) 2+, (x=1)3 t<x<t, (EQ 61)
. x—t x2t,

with analogous negative formg, and p_ are functions ot, t, andt, chosen so that

the functions are continuous, with continuous first derivatives (second derivatives being
discontinuous only at,, t ). This results in a final fitting function which is continuous,
with continuous partial derivatives. The positive form of the truncated cubic is illustrated
in (FIGURE 5.).

FIGURE 5.

Central knotst] are placed at data points; side kndtst() are placed at the mid-
points between central knots. An additional smoothing parameter limits the closeness of
consecutive knots of any one predictor: there are at least parardatarpoints between
any two central knotd.=5 is typical. Note that the MARS model lack-of-fit function
(EQ 59) is always calculated according to a piecewise linear MARS model; the piece-
wise cubic basis functions are used to replace the piecewise linear basis functions only
once the model has been built.

MARS has been empirically shown not to claim a low error when presented with to-
tally random data, suggesting that MARS does not overfit (fit to noise). Also, when
asked to model data whose true underlying function has no interaction terms, research

has shown that MARS seldom produces terms with interactions.
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6.5.5 Extensions and Remarks

Semi-parametric models (regression models including some parametric terms sug-
gested by experience or theory, in addition to a non-parametric model) can be easily in-
corporated into the MARS model; the term in question can simply be calculated for each
datum, and included as an extra predictor variable. A priori restrictions on the maximal
dimension of interaction terms, as well as on the total number of terms, can be imposed.
Variables known or expected to have little or no mutual interaction can be prohibited
from appearing in the same interaction term. Model parsimony can be improved by spec-
ifying a penalty for introducing a new variable to the model, so that those variables
which have already been used for splitting are more likely to be picked again.

The total square error arising when using the piecewise cubic technique is generally
found to be a little higher than that arising when using the piecewise linear technique [9];
however, the piecewise cubic fitting functions usually entail lower square error than the
piecewise linear functions when the fitted models are tested against new data.

MARS uses a lack-of-fit criterion based on least-square-error, and is thus not locally
robust (i.e. extreme outlying records may distort the model locally). Friedman [9] rec-
ommends considering the removal of outliers before applying MARS. However, MARS
models are globally robust (altering an observation only has a significant effect on the

model near that observation).

6.6 Regession with Discete Predictors; Mixed MARS Model

6.6.1 General Regession with Discete Predictors

Theoretically there is no bar to using discrete variables as predictors in regression
equations. Ordered discrete attributes can be transformed to integer attributes which are
treated exactly as if they were real variables. Categorical variables Yad#iatnct val-
ues can be transformed ifel binary attributes (taking values 0 or 1). For example a
variableA taking categorical values {cat, dog, mouse, rat} can be transformed to the
three variable€, D, M, which take the value 1 if and onlyAftakes the values cat, dog,
mouse respectively. Whek=rat,C = D = M = 0. Such binary values can also be
treated exactly as if they were real variables. The principal problem with this approach
is that very high dimensional predictor spaces are likely to arise, and consequently very

sparse data.
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An alternative means of dealing with discrete predictors involves partitioning the do-
main of the discrete predictors, and deriving separate regressions (using just the contin-
uous predictors) in each cell of the partition. The aim is to seek partitions for the discrete
predictors for which the resulting regressions have the best fits. If the partition is hierar-
chical, aregression tree results (see section 4.2). The principal drawback of this approach
Is again data sparsity: each regression fit has only a fraction of the original cases with

which to construct a model.

6.6.2 MARS Model for Mixed Discrete & Continuous Predictors

An extension to the MARS model incorporates the use of categorical variables within
the same hierarchical partitioning procedure used for the continuous variables [10]. The
idea is that basis functions based on simple indicator functions can be defined on cate-
gorical variables, and these are allowed to compete on entirely equal terms with the con-
tinuous basis functions of (EQ 53), (EQ 54). Kebe a categorical variable with domain

{xy, ..., %}, and letA be non-empty subsets of categoriég,] {Xx;, ..., X} ,

1<I|<L. Then define a fitting function

fx) = ZL: A A) L<k (EQ 62)

whereindicator functionl(X, A) is defined to be 1 iK J A, or 0 otherwise. Coeffi-
cientsa, are determined by least squares. For a givéine goal is to choose that set of
subsets for which (under least squares optimisation of the coeffieigrttse best fit is
obtained.L is a smoothing parameter, with lower producing smoother models
(smoother in the sense that they tend vary less esanges).

For a multivariate model witim categorical variables, multivariate indicator basis
functions| can be formed by taking the tensor product over all of the variables of the
univariate basis indicator functions, exactly as tensor products of spline basis functions
are used in a continuous multivariate MARS model. Thue aariate indicator basis

function takes the form

n
(X, oon X)) = |‘| I(XJ. O A,J.) (EQ 63)
j=1
whereAIj is some subset of vaIues)t{)Jf for 1<j <n.When there ara categorical var-

lables andm continuous variables, the model simply allows tensor products between
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discrete indicator functions and continuous spline basis functions. When a variable is be-
ing considered for addition into the model, if it is a continuous variable, tensor products
of the existing functions with various spline basis functions featuring that variable are
computed; if it is a categorical variable, products of existing functions with various in-
dicator basis functions featuring that variable are computed.

The ANOVA terms for a mixed continuous/categorical MARS model are similar to
those of the continuous model, but with an extra (optional) product of indicator basis
functions introduced into each of the sums in (EQ 57). Plotting of ANOVA terms with
1 or two variables (which can be generated from higher order terms by slicing) requires
that a separate plot may need to be generated for each AHbserturring in the term
(which can become unmanageable where many categorical variables are present).

This scheme has a distinct advantage over the general schemes of 6.6.1 for using cat-
egorical predictors in regression models. There is no need to present more than one new
variable to the model for each categorical predictor; yet there is no need to partition the
entire domain into separate subdomains for every possible combination of categorical
variable values; instead, the domain fgaaticular multivariate basis function becomes
split into two subdomains when and only when an indicator basis function of a categor-
ical variable is selected to be multiplied with that multivariate basis function. Thus only
at alocal level, where deemed appropriate, is the domain split according to the values of
a categorical variable, which helps to ensure that data sparsity does not become too much

of a problem.
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Chapter 7 —Classification Problems

7.1 Task Definition

Classification is also known as pattern recognition, discrimination, or supervised
learning. In a classification task there is one response attribute, which is discrete. The
response is seldom ordered—it is usually categorical, and may have some hierarchical
structure. The response variable is known aschags variable and its values as the
classeslf there are several discrete variables several separate classifications are usually
required. There may be any number of discrete and/or continuous predictors.

The objective of a classification task is to derive a rule or set of rules which deter-
mine, given a set of cases (tiest data with known predictor values but of unknown
classes, which class each case does, or is most likely to, belong to. These rules must be
determined from another set of cases {th&ing data), whose predictor valueand
class values are known. There are many, many data mining tasks which are classification
tasks, such as diagnosis of illness from databases of medical records, fault diagnosis
from engineering data, and classification of customers in sales databases.

As well as long established classical statistical methods for classification, there is a
plethora of more recent approaches, including the use of decision trees and rule induc-
tion; density estimation; and artificial neural networks.

The best known statistical classifier is the method of discriminants, which works
only for binary class variables (general discrete variables can be converted to binary var-
lables; see 6.6). They aim to find the (rather simple) surface or hypersurface in predictor
space which best divides the cases into the two classes. Linear and quadratic discrimina-
tion surfaces are used most frequently.

Artificial neural network approaches to classification are somewhat fashionable, but
suffer from very slow training (i.e. model calculation) times. Moreover, a trained neural
network is a ‘black box'—given an input, a neural network always returns an output, but
it is virtually impossible to determine any reasoning behind the output. Thus they tend
to add very little to the understanding of the modelling task.

Density estimation methods employ non-parametric (distribution-free) statistical
models to estimate the multivariate probability distribution functions for each class val-
ue. At any point in predictor space, the class value which has the highest probability den-

sity estimate is predicted as the true class value corresponding to that point in predictor
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spacek-nearest neighboukIN) classification is a very simple (but sometimes effec-
tive) example; the relative proportions for the observed class values amorgsasies
‘closest’ in predictor space are used as the estimates for the probability densities. Eucli-
dean distance is often used as the proximity measure.

There are many decision tree classifiers available, each with their own strengths and
weaknesses. With each, the principal motive is to seek hierarchical partitions in predictor
space within whose cells as many cases as possible belong to the same class or classes.
Information theoretic measures, most commonly the information gain from branching on
the values of a predictor, are often used in deriving the partition.

ID3 [12] is an early decision tree classifier which can be seen as the forbearer of
many decision tree classifiers. We briefly describe its methodology. Suppose an attribute
Xj with valuesle, lele is used to partition the set of cafes ..., C,, ..., Cy into
exhaustive exclusive subset{sC(l), C(IX;I)} so that C, O C(k) o Cij = Xy
whereCij = in is the value of théh case in th¢th variable. Let there be two classes,
denoted® (positive cases) ard (negative cases) and deficlass entropyver any sub-

set of case€U as

n Neg
log, (EQ 64)
pc|:|

P p
Hc(C[) = - ct I ct ct n
cd

PcotNeo "Peot N Peot Nen

WherepCD is the number of positive-class case€in, andnCD the number of negative-
class cases (the usual entropy formulation, restricted to a binary variable). Deéine the

tropy of partitioning oan to be

>~<i
H(X) = | ||C(k)|EH (C o) EQ 65
I Z IC| c (EQ 65)

Then the information gain from partitioning NJ] is
gai n(Xj) = H(C) - H(Xj) (EQ 66)

which is maximised by minimisingd (Xj) over the candidate variables, ..., X;.
Note thatH (Xj) is the mutual (or trans-)information betwe)éjnand the class variable.
ID3 uses g2 dependence test to determine (locally) when to stop partitioning. ID3
is a very simple decision tree classifier; descendents of ID3 have been adapted to non-

binary class variables, and to deal with missing data, continuous predictors, structured
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categorical predictors, and so on. Variant methods differ significantly in tree building di-
rection, their splitting/joining criteria, the criteria for ceasing splitting/joining, and the
amount and type of tree pruning.

Rule sets governing in which class a test datum should reside can trivially be induced
from a decision tree. A few approaches to classification seek a rule set without using de-
cision trees. For example, ITrule (see [3]) seeks simple inference rules in multivariate

data using a beam-search.
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Chapter 8 —Cluster Analysis

8.1 Task Definition

As noted, classification is also known as supervised learning. Because the training
data are of known class, the task of predicting class for the test data is supervised by what
the training data have told us about the nature of the class variable. Suppose now that
there is no class variable, but that we wish to group the cases into (usually exhaustive
and exclusive) subsets, within which cases have similar attribute values. In effect we are
aiming todiscovera meaningful class variable (the class being the index of the subset to
which a case belongs); this is sometimes called unsupervised learning, and also known
as cluster analysis or clustering.

We can divide clustering problems intdrinsic clustering anaxtrinsic clustering
[14]. Inintrinsic clustering, all variables can be regarded as both predicrsspons-
es; cases are known as patterns. Our brief is simply to find clusters of patterns which are
similar—or alternatively to find clusters of patterns such that patterns from different
clusters arelissimilar.

In extrinsic clustering, there are distinct predictors and responses; we use pattern to
mean the values taken by ttesponsevariables of a case. Our aim is to find clusters of
similar patterns as before; but the rules governing which cluster a case belongs to are de-
pendent only on the values of the non-pattpradictor) variables of that case (i.e. must
be extrinsic to the pattern’).

In either type of clustering, it is possible (but not always desirable) to reduce the pat-
tern data to alN x N proximity matrixbetweerN patterns, so that only the distances be-
tween patterns, rather than their attribute values, are used to determine the clusterings.

Clustering methods can be further dichotomised into hierarchical methods and non-
hierarchical methods. In a hierarchical method a hierarchical partition is discovered
(which can be formed top-down by splitting or bottom-up, by joining; see section 4.3).

In a non-hierarchical method, a single partition is sought (rather than a tree-structurable
hierarchy of partitions). This may require an a priori and somewhat arbitrary choice for
the number of cells (clusters) in the model.

Sections 8.2 and 8.3 deal with metrics and notation for cluster analysis. Sections

1. Intermediate methodologies may use predictor variables to gutdeot dictatecluster membership.
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8.4 through 8.7 describe various intrinsic clustering algorithms, and section 8.8 describes

ways in which extrinsic variables are used to determine clusters.

8.2 Distance Measugs

Given any two patterns, we requiredstanceor dissimilarity measure between
them. If the response (pattern) attributes are all continuous, Euclidean measures are most

common;simple Euclidean distanas

K
d(C,, Cj) = dij = A/Zk: L (Y —ij) 2 (EQ 67)

andweighted Euclidean distance

K
d¥C;, C) = d;¥ = /\/Zkzlwk(Yki_ij)z (EQ 68)

wherew = (wy, ..., W,) T is a vector of weights for the responses. The weights may be
chosen subjectively according to an experts assessment of the relative importance of the
responses; or they can be set to be inversely proportional to the sample variance of the
kth response, though this weighting presents a problem in that it tends to maximise with-
in-cluster variance, contrary to the objectives of clustering.

Natural extensions of Euclidean distance to discrete responses can be applied where
patterns consist partly or entirely of discrete variables. There are also natural Euclidean
measures for the distance between two continvariagbles given all the cases. The nat-
ural distance measure between discrete variables is their mutual information (section
3.3).

8.3 Notation

Recall the notation for partitions and hierarchical partitions of predictor space
(section 4.2). An intrinsic clustering is a partition on the set of all pat@riise nota-
tion of section 4.2 can be analogously applied to partitions and hierarchical partitions of
the set of all cases (replace all instanceX afith C). An extrinsic clustering can be
thought of as a partition on predictor space or a partition on the set of cases/patterns, and
the notations are interchangeable.

Call a cell of a clusterin@ acluster If C = {C(l), C(p), C(P)} , we de-

fine the P centroids (or cluster centroids) ofC to be new pseudo-patterns
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C(1), ---» C(p), ---» C(py , €ach of which is somehow representative of the patterns con-
tained inC(l), C(p), C(P) respectively. If the pattern attributes are continuous,
means are taken; if pattern attributes are discrete, modes or medians may be appropriate.

In the continuous case, define tbe p< P

1<i<Nand
C,0C,
Whereé(p) k IS the value of th&th attribute for centroid_l(p) » C;\ the value of théth
attribute for theth pattern, anqu(p)| the number of patterns @ .
Given a clustering and its centroids, we can decompose the amount of (Euclidean)
scatter(variability) in the pattern data into thgthin-cluster scatteand thebetween-

cluster scatterDefine thegrand or pooledcentroid to be

N

Ck =

Zl-

Ci 1<k<K (EQ 70)
1

whereCx is the value of the pooled centroid in Hil pattern attribute.

Then thepooled scatte6is defined

P K
[ = [
S = . —C (EQ 71)
pZ]_ i;CigC z DCIk -

® k=1

Thepth cluster scatteis defined

K
Sp) = i;Ci% z %Cik_é(p)k%b (EQ 72)

m k=1

Thewithin-cluster scatters defined
P
Sy = Z S(p) (EQ 73)
p=1

and thebetween cluster scattés defined as the scatter for the centroids:

P 0. =D
S$= ) > Cprk—CkO (EQ74)

p=1 LEGUC, k=1

It is easily shown thab = S;+ 5, (see [13] or [14]), so that scatter is decomposed
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into between-cluster and within-cluster scatter. Thus if the distance measure employed
in a clustering algorithm is simple Euclidean, there is no difference between the two
clustering criteria ‘minimise distances to centroids within groups’ and ‘maximise dis-
tances between group centroids’. We say 834tS is theproportion of scatter account-

ed for by clustering:_t.

8.4 One-Pass Clustering

A computationally very efficient but otherwise inferior clustering algorithm can be
used to generate a clustering having examined each pattern only once.

Firstly the patterns are arranged into a fixed order. This order may be arbitrary, de-
cided by application heuristics, or determined systematically (say, in order of proximity
of the patterns to the pooled centroid). Pattern number one is assigned taZ|ustat-
tern number two is assigned to clusigralso, if its ‘distance to cluste€, is less than
a certain threshold value, or otherwise assignégi,tdSubsequent patterns are assigned
to existing clusters if their distance to the nearest existing cluster is less than the thresh-
old, or otherwise to new clusters, until every pattern is assigned. ‘Distance to a cluster’
may be variously defined (e.g. Euclidean distance to cluster centroid; Euclidean distance
to nearest member of cluster; etc.) resulting in a variety of one pass methods. One-pass
clustering is primarily used to obtain an initial clustering for a subsequently employed

iterative clustering algorithm. The threshold can be varied to obtain a hierarchy.

8.5 Graph Theowtic Hierarchical Clustering

A variety of graph theoretic clustering algorithms are in use which only employ the
N x N proximity matrix [dij] (calculated from th&l patterns), and not the pattern data
themselves, to determine clusters. They may in some cases be somewhat restricted by
their inability to access the original pattern data.

Note that, assumingl, = 0;(1<i<N) and dij = dji;(lsi,j <n), there are
(N/2) (N-1) distances to consider, which is prohibitive wineis very large. Before
clustering, the distances are replaced by their rankings, so that the two closest patterns
in the database have rank distance 1, and the two most distant patterns rank distance
(N/2) (N-1) (tiesin proximity are usually assumed absent, or can be broken arbitrar-
ily).

The two best known graph theoretic algorithms for clusteringiagte link cluster-
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ing andcomplete link clusteringrhe algorithms may be applied in either top-down (di-
visive) or bottom-up (agglomerative) versions, with no difference to the resultant
hierarchical clusterings. Here consider the bottom-up versions, which begin with each
pattern in its own singleton cluster. A series of threshold graphs is constructed on the
nodes, where every node represents a pattern. The first threshold graph has only one
edge, which connects the two patterns with rank distance 1 (i.e. the closest two patterns).
Thekth threshold graph h&sedges, connecting each pair of patterns with rank distance
less thark+1. In single link clustering, theonnectedubgraphs of a threshold graph are
interpreted as the clusters. In complete link clustering,ctimepletesubgraphs of a
threshold graph are interpreted as the clusters. The nodes in a complete subgraph are
such that every node is connected to every other node. Where two maximally complete
subgraphs overlap, the earliest one formed takes precedence. (FIGURE 6.) gives a few

threshold graphs for a hypothetical data set.

1 2 1 2 1 2
. ‘3 . 3 < 3
6@ 7 6@ 7 6\ 7
[ J [ [
5 4 5 4 5 4
k=1 k=2 k=4
1 2 1 2 1 2
3 3 3
6 7 / 6 7 6
5 4 5 4 5 4
k=26 k=28 k=12
FIGURE 6.

Fork=1, (1,2) forms a single-link cluster and a complete-link cluster (since nodes 1 and
2 are connecte@ndform a complete subgraph). Every other node is in a singleton clus-
ter. Byk=4, (1,2,7) forms a single link cluster, but not a complete link cluster (since 2
and 7 are not connected). (1,7) is not a complete link cluster since node 1 is in (1,2) which
takes precedence. Rt6, there are just two single link clusters, and (1,2,7) is a complete
link cluster. Byk=8, there is only one (universal) single link cluster; (1,2,7) is still the
largest complete link cluster. By12, (1,2,6,7) is a complete link cluster, as is (3,4,5),
but not (5,6,7), since (1,2,6,7) takes precedence.
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Since if any pair of patterns are in the same cluster ik-thehreshold graph they
will still be so in the K+1)-th, the sequence of clusterings is hierarchical. Single link
clustering tends to form ‘stringy’ drawn-out clusters; complete link clusters are usually
compact and near hyperelipsoidal.

Other graph theoretic methods employ a cluster criteria (on subgraphs of threshold
graphs) that is intermediate between connectedness and completeness. Hierarchical clus-
terings can be visualised in a dendrogram, a type of tree in which the height on the page
at which two nodes are joined indicates the relative distance of the nodes. A dendrogram
corresponding to the single link clustering based on the threshold graphs of (FIGURE 6.)
Is shown in (FIGURE 7.).

Feurez.l 2 7 5 6 3 4

8.6 Non-Graph Theoetic Hierarchical Clustering

If pattern variables are discrete, it is possible to form a hierarchical partition by start-
ing with the universal cluster (which contains every pattern) and, at each stage, selecting
a pattern variable on which to partition; each node in the decision tree has one child for
each value of the variable selected for partitioning. The variable selected is that which
‘best predicts’ the other variables: choosing that variable which has least sum of mutual
informations (see section 3.3) with the other variables is one option.

If the pattern variables are continuous, the variable selected for partitioning might be
that with the greatest sum of correlations with the other variables. Another option is to
partition not on an explicit pattern variable, but on the principal components of the pat-
tern variables. The first variable selected for partitioning is the first PC, the next the sec-
ond PC and so on. Such algorithms can be tedinedt splittingalgorithms, ointrinsic
decision tree clustering.

TheFiltering Algorithmis a hierarchical version &-means clustering (see 8.7). An

initial binary tree forms the first clustering. Then each pattern is ‘filtered down’ the hi-
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erarchy, by assigning it to the closest of the two cluster centroids available at each binary
split. An initial binary tree might be obtained from the methods of the preceding two par-
agraphs.

TheBinary Splitting Algorithndivides a set of patterns into two clusters, and applied
recursively generates a hierarchical clustering. If the clusters are deﬂhaged:(z) ,

then the weighted averages of Rtle variable over the two clusters are

;c W, Ciy
= C__(.El—_—i
Hp)k % w
ik
Ci (p)

and the error of a binary partition is based on the sum Kvariables) of the squared

p=12 (EQ 75)

differences between these averages,

K
Yo Mok~ HeW? (EQ 76)

The weightsw;, are usually the number of observations combined into the pattern
C,,.- Initially C(Z) Is empty. The pattern which most decreases or least increases the er-
ror given in (EQ 76) is transferred Cb(z) at each step unt(l:(l) is empty. The best of
the N partitions thus examined is selected.

TheTwo-Way Splitting AlgorithrfHartigan, [13]) does not distinguish between pat-
terns and variables: the objective is to partition the pattern maiy by simultane-
ously building a hierarchical partition of variables and a hierarchical partition of cases,
with the objective that the responses within any cell (cluster) have a variance less than
some predetermined threshdldTransposing the pattern matrix (so cases become pat-
tern variables and vice versa) does not affect the resulting two-way clustering. Initially
there is one universal cluster. At each stage, either that column or that row which has the
greatest variance is partitioned according to the binary splitting algorithm (preceding
paragraph), excluding from consideration those rows or columns whose variance is less
than the threshold. As well as the marginal hierarchies on variables and cases, a joint
hierarchical partition is generated on both.

Hartigan [13] also presents an analogous technique based on joining (variables/cas-

es) rather than splitting.
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8.7 Partitional Clustering

If there are only a handful of patterNsand a prefixed number of clustétsit may
be reasonable to exhaustively calculate the within-cluster scatters for all possible clus-
terings, and select the clustering with the least within-cluster scatter. However unless
bothP andN are small, exhaustive search is computationally infeasible, and local opti-
misation of some form must be used to estimate the ‘Bedtisters. The most widely
used partitional clustering algorithm is knownkasneans clusteringP-means in our
notation). Here it is presented in a form which allows the number of clikstersary

(slowly) from an initial preset.
1. Select initialP clusters (forming a partition) and compute cluster centroids.

2. Generate a new partition by in turn assigning every pattern to the cluster whose cen-

troid it is nearest to.
3. Recompute centroids.
4. Repeat 2 and 3 until no patterns are reassigned in 2.

5. Adjust P by splitting lage clusters, and/or ngng small ones, and/or removing

small outlying clusters. Repeat from 2.

Various methods can be used to compute the initial clusters (step 1), and various cri-
teria used to decide when to stop. The details of the algorithm can be varied substantially
to produce many different clustering algorithms. An important variation is to introduce
some random perturbation of the clusters after stage 3, allowing the algorithm to buck
local optima—a simulated annealing approach. These algorithms are good at finding
compact hyperelipsoidal clusters.

Mixture Decompositiofa.k.a. statistical pattern recognition) is a statistical approach
to clustering, in which patterns are assumed to have been drawn fromPboadsrly-
ing populations of known distribution. Hill climbing is used to obtain a locally maximal
likelihood estimate for the memberships of patterns to populations—the principal prob-
lem is formulating the underlying model.

Density Estimatiorapproaches to clustering operate by choosing as cluster centres
the local maxima of some density estimate in pattern space. Clusters in such a scheme
are essentially regions of high density in pattern space. Simple histograms as well as

non-parametric estimates of pattern density have been used.
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Fuzzy Clusteringloes not impose that any pattern should belong to just one cluster,
but instead assigns degrees of memberf%hip., f, for each pattern to each cluster. The
objective is to iteratively recluster so as to minimise some measure of ‘fuzziness’ whilst

maximising between cluster distance.

8.8 Using \ariables Extrinsic to Pattern

8.8.1 Using Extrinsic Ordering

Thus far we have examined only intrinsic clustering methods. One helpful piece of
extrinsic data we might employ when clustering patterns is a non-strict ordering on the
patterns (an ordered discrete extrinsic variable). Most commonly this will be a temporal
variable measured on each case. If we restrict the form of the clustering so that each clus-
ter must represent a contiguous time interval, the number of possible clusterings is very
dramatically reduced. Fisher (see e.g. [13]) uses such a restriction to facilitate an exhaus-
tive search of partitions, practical for moderbtendP. If a hierarchical partition is
sought, Fisher gives a particularly simple and rapid algorithm which repeatedly splits the
time interval, and is practical for even very laMjd (though does not guarantee a glo-

bally optimal partition).

8.8.2 Using Extrinsic Categories

As well as simple temporal orderings there may be categorical information which can
be used to determine cluster structure (but which is not part of the pattern). If there are
continuous variables we wish to exclude from the pattern (i.e. continuous predictors), we
can discretise them (partition them into ordered discrete variables).

Categorical predictors can be used in various ways to guide cluster formation. As-
suming all predictors are discrete, first let us compress the total number of cases (pat-
terns) into the reduced set afomic patternsor atoms each atomic pattern is the
centroid of all those patterns whose categorical predictor values are identical. If
Cp -G ..oy Cyp are the initial cases, lét), ..., A, ..., Ay be the induced atomic

|
patterns wittkth response

A, = S 1<i<N;l1<ks<sK (EQ77)
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Wherex(i) is theith non-empty cell in the maximal partiti():ﬁ of predictor space. Nat-

urally, atomA, has associated predictor values equal to the common predictor values of
its constituents. The maximal partition of predictor space is that partition in which every
cell represents a unique combination of attribute val§es, = Xiyp o X;= xJVJ} .

Such a cell is empty if there is no pattern matching this specification.

We can now perform any intrinsic clustering algorithm thus far described on the
atomic patternsA;; (1<i <N), rather than the original cases. Essentially we thus re-
strict our clustering technique so that it is forced to put cases with identical predictor val-
ues in the same cluster. We will call this methodolagymic clustering

It may be prudent to modify any atomic clustering algorithm so thatefghtof (i.e.
number of initial patterns represented by) each atom is taken into account when calcu-
lating centroids, scatter measures, and so on. Moreover, information about the within-
atom spread or scatter can be retained and utilised in calculating the within-cluster scat-
ters.

Note that atomic clustering does not make any restrictions about the nature of the pre-
dictor variables represented within a cluster. A related approach, which we wétk-call
trinsic decision tree clusterin@llows less freedom for predictor values in a cluster. The
idea is to cluster by recursively partitioning the predictor space using one predictor at a
time, so as to locally maximise between-cluster variaifgratterngor minimise with-
in-cluster variation). At each stage, the domain of one predictor is to be partitioned; the
centroidal patterns corresponding to each predictor value can be treated as the patterns
in any intrinsic clustering algorithm. The ‘best’ predictor and ‘best’ partition of that pre-
dictor's domain should be used at each stage.

A great advantage of this methodology is that each constituent clustering problem
has at mosmax(|)~(j|) patterns to cluster (in the usual notation); a disadvantage is the in-
flexibility and local greediness of the approach.

Neither of the above approaches allows the ‘splitting’ of atoms, a restriction which
may need to be addressed when an atom is built from constituent patterns which are
markedly dissimilar—i.e. when cases with identical predictor values have diverse pat-

terns.
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Chapter 9 —The Load Profiling Task

9.1 Task Selection

After consultations with the PhD project’s Sponsor organisation regarding their da-
tabases, two particularly promising data sets were identified for investigation using data
mining techniques: fault data for high voltage (HV) lines, and half-hourly electrical load
readings for customers of known and various type.

The fault database comprised several thousand abnormality reports on HV power
lines. For every interruption, attributes recorded included data and time of interruption;
method(s) of fault clearing; direct and contributory causes where known; main equip-
ment/components involved; age and manufacturer of equipment; and information con-
cerning progress of restoration (major faults are restored in several stages, and various
data recorded for each stage); and more. Further, some records had plain language en-
tries describing aspects of the incident.

The faults database was characterised by a great number of missing data (especially
regarding the cause of faults), and of subjective entries (particularly the plain language
entries). The rather non-specific objectives of the data mining task were to seek out in-
teresting generalisations about the fault data (for example, regional and seasonal trends);
and to identify any structure underlying the data which was not previously known.

The half-hourly load databases comprised the meter readings every half hour, over
some years, for various customers, together with information on each of the customers,
and hourly weather variables (temperature, wind speed, humidity, cloud cover and rain-
fall) and daily sunset times, for the period. The first such database comprised load data
for business customers on monthly billed tariffs; their tariff codes, two-digit Standard In-
dustrial Classification (SIC) codes, total consumptions, maximum demands, and load
factors were supplied. A second database of interest comprised quarterly billed business
customers, and a third comprised residential customers; customer information for these
databases derived from customer questionnaires. The data mining task was to analyse
daily load/time-of-day profiles with regard to their dependencies on the weather, day
type, month, and customer information. This type of task is known as load profiling.

The half-hourly load profiling task was selected, primarily because the data structure
Is simpler (each record the same size and complexity) and the data contains less ambi-

guity (less missing data; less subjective data). There is a greater depth of literature on
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load profiling and forecasting than on analysis of line fault data.

At the Sponsors’ behest, only the monthly billed customer database was studied for
this PhD project, rather than also the quarterly billed business customer or the domestic
customer databases.

It is worth noting that line fault databases are thought to contain much hidden and
valuable information, and that data mining techniques are not necessarily less applicable

to this problem than to the load profiling task.

9.2 Importance of Load Pofiling Tasks

The relationships between daily load profiles and knowable factors such as weather
conditions, temporal factors, and customer characteristics, are known to be complex,
non-linear, and have many mutual interactions. A better understanding of the behaviour
of daily load profiles is desirable since the load shape, as well as the daily peak load, are
vital factors in planning the production and pricing of electricity. In the short term, it is
essential to know with as much accuracy as possible what the total and local system de-
mand will be in the next minutes, hours, and days, so that generators with various start-
up times and start-up costs can be switched on or off or vary their output levels so as to
optimise the total efficiency of generation. This is the doma8hofkt-Term Load Fore-
casting(STLF), and STLF methodologies often utilise various daily load profiles to this
end.

Medium- and long-term forecasting seeks to predict daily peak load and load shape
weeks, months, and years hence. Load shape and peak load are affected by demographic
and socioeconomic trends as well as seasonal and weather factors, and so load profiles
disaggregated according to socioeconomic/demographic factors are of particular impor-
tance in longer term planning.

Most of the research until now into the behaviour of load profiles has been for the
purposes of short/medium-term and (particularly) long-term forecasting. However, load
profiling is of particular interest at current in the United Kingdom because of the unique
competition structure which is legally imposed on the UK electricity industry. All elec-
tricity customers in England and Wales, irrespective of their location or their peak or an-
nual demand, can choose from which licensed UK supplier they purchase their
electricity.

Whilst the purchase costs of electricity to the supplier are subject to daily and sea-
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sonal fluctuation, the supplier is unable to pass on the price variation and subsequent risk
to the customer because most of these customers are not equipped with intelligent two-
way metering. In order to minimise their risks and maximise profits, suppliers need flex-
ible tariff structures tailored to the load profile of the customer being charged.

On the other hand, there is so much diversity in customer profiles that it would hardly
be viable to negotiate every customer’s tariff on the basis of their load profile history.
Rather, a manageable set of profiles intended to represent as much of that diversity as
possible can be used to design a manageable set of tariff structures.

In the case of potential rather than existing customers, the supplier has effectively no
available detailed profile data at all. In order to offer tariffs that are competitive without
incurring undue risk on the part of the supplier, the variations between load profiles from
customer to customer and from day to day must be better understood. Such is the variety
of load profiles in the population that the deliberate ‘poaching’ of customers
having unusual (but advantageous) load shape with the offer of a tailored tariff may be
viable, where such customers can be identified.

Hence there is a need for reliable models of load shape which attempt to explain the
half-hourly and the daily and seasonal variations in load as responses to the time of day,
the time of year, weather conditions and known or observable customer information.

Nor is tariff determination the only reason to study models of load shape. As well as
the well documented importance of profile models in load forecasting, concise sets of
‘standard profiles’ that nevertheless maximally capture load shape variability are desir-

able in load flow analysis.

9.3 Objectives of the Load Pofiling Task

Customers of differing types and characteristics have differing daily load shapes. Not
only does load shape differ according to the weather, the day of the week, and the time
of year, but it does so in a different manner for customers of different characteristics.
Given a set of customers, their recorded attributes, and their half-hourly demands over a
period of some months, the primary objective of our load profiling task, agreed upon
with the Sponsors, is: to build models which estimate, for certain subsets of customers,
their load shapeand confidence estimates for those load shapes, for different weather
conditions, times of year, and days of the week. The generation of sets of ‘standard pro-

files’, which are not too large but still capture most of the variability in the database, is
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part of that task. This will be formally formulated in Chapter 10.

Secondary objectives include producing models and visualisations which help to pro-
mote understanding of whatever underlying structures there may be in the load data; and
identification of the relative importance of, and interactions between, the various predic-
tor variables (such as weather, temporal variables and customer attributes).

To give some idea of the huge variety of load shapes existing in the business custom-
er databases to be studied, some 3 dimensional overviews of seasonal variation in load
shape are presented in (COLOUR FIGURE 1.) to (COLOUR FIGURE 4.), which are
drawn from a 1994/5 database of business customers’ loads. The y-axis shows time of
day, the x-axis shows time of year, and the z-axis (which is represented on a smoothly
changing scale of colour) shows the corresponding half-hourly load. A full explanation
of this type of colour load diagram is given in section 12.5. These diagrams demonstrate
that not only from customer to customer but from day to day, load shape can vary in
many different ways; they go some way towards showing what a difficult task load shape
modelling can be, and why data mining methods which can adapt to such extreme vari-

ation are of importance in load profiling problems.

9.4 A Review of Literature on Short-Term Load Forecasting

9.4.1 Overview

Short-Term Load Forecasting is a field of study with certain relevance to load profil-
ing (although load profiling does not aim to predict hourly or half hourly total system
load in the immediate future—the aim of STLF. The principal common ground between
these fields of study is that practitioners from either domain must find ways of account-
ing for effects of weather, day-of-week, time of year, and daylight saving clock changes
in their models. The identification and modelling of special days and periods (bank hol-
idays, Christmas and Easter vacations, school holidays, periods of industrial action, and
S0 on) is also of interest to either practitioner. However in STLF considerable attention
Is paid to modelling the hour-to-hour variations in load, and accounting for hour-to-hour
errors in the forecast, using time series analysis. In load profiling, modelling detailed
hour-to-hour variation in load as a time series is not the intention; rather we aim to ac-
curately model the variation ahaily load shape&lue to customer and temporal variables.
There is somewhat more literature regarding STLF than load profiling; [15] provides a

good overview and thorough bibliography. A review of some salient examples of load
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forecasting procedures (next) precedes a review of load profiling literature (9.5).

9.4.2 United Kingdom Short-Term Load Forecasting Methodology

The UK STLF regime is described in the report [16]. An adaptive regression tech-
nigue with many levels is employed, and human judgement is required at certain stages.
Separate models are derived for GMT and BSince the effect of daylight saving on
load is quite dramatic; and for weekdays, Saturdays and Sundays, as load shape varies
substantially between these day types—six models in all.

A number ofcardinal pointsof the daily load shape are selected, usually at maxima,
minima and inflections of the load shape. Using historical data, loads at each cardinal
point are regression modelled by a low order polynomial in three weather statistics: ef-
fective temperatur€E— an exponentially weighted average of recent temperatures; ef-
fective illuminationEl; and the cooling power of the wit@P. These are derived from
basic weather data. A slowly changing quartic polynomia) the day number, accounts
for seasonal changes.

From these cardinal point models, historical data is reconstructdobisitbdemand
(hypothetical loads at the cardinal points affected by neither weather nor day of the
week) by subtracting the weather/day-type models from total demand. To produce target
day load forecasts (usually just one day ahead) basic demand is reconstructed into pre-
dicted demand by reintroducing the weather/day-type model using the target day
weather forecast.

The final stage is to construct a continuous profile for the target day from the cardinal
point forecasts. This is done by selecting a profile from the historical database which is
likely to be similar to the profile for the day to be forecast, and stretching and compress-
Ing it so as to force it to interpolate the forecasts at the cardinal points. It is important that
the historical profile selected is from the same time of year (and ideally day of week) as
the target day, possibly from a previous year, so as to capture seasonal variation in load
shape. Bank holidays are treated as either Saturdays or Sundays (according to experi-
ence) in the model building phase; days adjacent to bank holidado(v dayswhich
are known to have perturbed load shapes) are treated normally in the model building

phase. However in the interpolation phase, the historical profile selected is usually taken

1. Greenwich Mean ifhe; British Summer ime.
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to be that from the same holiday/window-day from the previous year.

The UK forecasting method nicely illustrates many of the complicating factors in
load profiling tasks, and some common ways to deal with them. Of particular interest is
the manner in which the effect of weather on historical loads is modelled using multiple
regression, and then the modelled effects ‘filtered out’ to recover hypothetical ‘weather-
free’ loads. We shall refer to this dsweatheringand to the subsequent reintroduction

of weather effects given certain weather conditioesgeathering

9.4.3 Load Foecasting by Identification of Similar Previous Days

Moghram & Rahman [17] describe a Knowledge Based Expert Systems (KBES) ap-
proach to forecasting. Based on a large historical database of daily profiles, the KBES
selects a past reference day expected to be similar in profile to the target day. This is an
automation of a task performed using human judgement in the method of section 9.4.2.
The KBES also has rules which reshape the profile of the reference day based on weather
and any other factors expected to cause variation.

Another KBES is described by Jabbour et al. [18]. A historical database of profiles
and weather conditions is searched to find the eight days whose weather conditions are
the eight nearest neighbours to the weather forecast for the target day (nearest by weight-
ed Euclidean distance). The eight corresponding load profiles are averaged to produce
the basic forecast, which is modified by various means.

Rahman & Bhatnagar [19] also describe a system which averages profiles from days
with weather similar to that forecast for the target day. They advocate the use of four sep-
arate models for the different seasons, but note that load behaviour changes more rapidly
at the boundaries between the seasons; at seasonal boundaries, both the appropriate mod-
els are implemented and monitored for accuracy.

In a related approach, Dehdashti et al. [20] perform an initial hierarchical clustering
of weather patterns. Variation within each cluster is assumed inevitable and due to un-
known factors, and consequently it is the nmesentdays in the appropriate cluster
(rather than the most similar) which are used as reference days. The data library used is
different for different times of the year, the transitional periods between seasons having
more data since these are the most unpredictable periods. Different weather variables

were used for each time-of-year period and each time-of-day period.
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9.4.4 Foecasting Pocedures Using Spectral Analyses

Lijesen & Rosing [21] propose some unusual ideas to model weather effects when
the weather is changing rapidfominalweather conditions are averaged from either
the seasonal historical weather, or the recent past weather. They then calculate the devi-
ation between the weather forecast for the target day and the nominal weather, and use
this to calculate thtotal amount of energy which should be added or subtracted from a
weather-independent profile forecast for the target day. How this energy should be dis-
tributed over the target day is determined fraspectral analysisf the weather depend-
ent load over the recent past.

Many STLF techniques involve spectral analysis of recent or historical loads. Spec-
tral analysis is a form of linear regression analysis for multiple responses problems, in
which the fitting functions are selected especially so as to represent certain features
known or postulated to affect the multiple responses additively.

The idea is to identify a small set of functions of time which account for the majority
of the variation in the profiles under consideration. If the load profiles
Y,(1), ... Y (D); (1=t<T) each takd values =48 for half-hourly profiles), we seek a
set ofM fitting functionse,(t), ..., @,(1); (1<t<T) (whereM is much less thah) with

the objective that least-square-error regressions

M
Yi® = ) Bin®n® +& (D) (EQ78)
m=1

for each of theY,, ..., Y}, over theT time values yield low square errors.

TheM functions@,, may consist of preordained functions selected by an expert; the
principal components of the profiles (see section 5.2); sinusoids (whose frequencies can
be determined from Fourier theory). Preordained choices for the fitting functions might
include certain load profiles to which tive are suspected to bear resemblance.

Once a set of fitting functions has been identified and the regressions of (EQ 78) been
performed, the values of the coefficiefits, can be seen as a reduced set of data which
represent the profil¥, . This invites a hierarchical regression (section 6.3) otheon
the other predictors.

Another example of spectral analysis in STLF is from Christiaanse [22]. The fitting
functions used are sinusoids of periods 168hrs, 24hrs, and 12hrs, as well as the second,
third, fourth, fifth, sixth and eighth harmonics (84hrs, 56hrs, 42hrs etc.).These periods
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correspond to spikes on the autocorrelation function of the load time series. The regres-
sion uses weighted least-square-error with weigHtsj =012 ..;(0sax<l)

where j is the age in hours of the load measurement under consideration, to produce a
constantly moving exponentially smoothed spectral decomposition of load as a function

of time.

9.5 A Review of Literature on Load Piofiling

9.5.1 Overview

A selection of techniques which model daily load shape as a function of predictor
variables including weather conditions, temporal factors, customer characteristics and
end use types and appliances, are presented. Such models are sometimes referred to as
load shape models.

Note that end use types (e.g. cooking, lighting, air conditioning) and actual end use
appliances (e.g. televisions, cookers) are not recorded in the Sponsors’ database being
studied. Therefore the techniques modelling the effects of weather, temporal predictors,

and customer characteristics are of greatest interest to our study.

9.5.2 Thermodynamic End Use Models

A number of methods build thermodynamic models for load shape contributed by
certain end uses— particularly air conditioning and storage heating. Predictors include
weather variables, thermal characteristics of buildings, thermostat settings, and tariff in-
formation (in particular the time of the onset of cheap-rate tariff, where storage heating
loads peak [23]).

Such physical models for load shape (see e.g. [23], [24], [25]) rely heavily on factors
not recorded in the Sponsor’s data, such as thermal properties of buildings, though other

methods have obtained end use profiles empirically, without using a physical model.

9.5.3 Mixed and Non-Thermodynamic Models for End Use Load Shape

Gellings & Taylor [26] disaggregate load shape into around 160 components. Loads
are decomposed into a weather-dependent and a basic (weather independent) component
using the notion afio-weather daysA no-weather day is one in which weather-depend-

ent loads are assumed absent (say, when Fahrenheit temperature is between 55 and 70,
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and humidity is less than 60%). No-weather days provide base curves, which are sub-
tracted from total curves to obtain weather-dependent curves for those days where
weather-dependent loads are considered present.

Storage heating and storage air conditioning have complex thermodynamic models;
other weather sensitive loads (e.g. refrigeration) have piece-wise models as functions of
temperature, including seasonal and weekly response factors.

Domestic loads are broken down into thirty-five end uses (e.g. washing machine),
and industrial and commercial loads disaggregated by tariff code (SIC codes were tried
initially put proved somewhat inconclusive). In order to disaggregate load into end uses,
data must be present for each customer regarding ownership of appliances. The method
requires much data absent from the Sponsor’s databases.

Broehl [27] also disaggregates load shape according to end use. For residential cus-
tomers, experimental data concerning the use patterns of various end use appliances was
available (a matrix with dimensions 24 hours by 4 day types by 12 months) which was
used in conjunction with socioeconomic and demographic factors such as appliance sat-
uration (what percentage of households have a certain appliance), and experimentally
obtained appliance wattages. Weather dependent appliances have a partitioned temper-
ature variable in place of month. Industrial customers are disaggregated by SIC code,
and commercial loads divided into heating, air conditioning, and other. Again, the meth-
od requires data unavailable in the Sponsor’s databases.

The papers [28] and [29] consider the estimation of residential end use load shapes
from whole-house metered data. The study comprises a longitudinal study (modelling
the behaviour of load over time) and a cross-sectional study (modelling load behaviour
in terms of household characteristics) combined in a hierarchical regression.

Weather dependency is first removed—the weather-dependent component is mod-
elled as a non-linear thermodynamic system. The longitudinal analysis uses a spectral
analysis (decomposition into sinusoids and other simple functions). This compresses
longitudinal load data for each household into a few parameters. In the cross-sectional
analysis, the coefficients of the fitting functions are regressed on household characteris-
tics.

Appliance end use load shapes are generated by aggregating all household level pro-
files for those householdsith an appliance and subtracting the aggregate profile for
householdsvithoutthe appliance. Willis & Brooks [30] attempt to reconstruct approxi-

mate 876® hour load profiles for various end uses, from a number of data sources. They
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note that most utilities have total system loads hourly, billing-class loads monthly, loads

on various feeders and substations etc. hourly, and unreliable data on the relative break-
down of end use categories of load and appliance saturation. The idea is to fill in as many
as possible of the gaps to reconstruct yearly end use profiles, utilising the facts that some
feeders and substations supply a single class of customer; that all hourly loads must sum
to the total system load; and that all hourly loads must integrate to the appropriate month-
ly billing total. The recovered 8760 hour profiles are approximated using either 77 or just

48 numbers.

9.5.4 Load Pofiling Using Cluster Analysis

Papers [31] through [33] use cluster analysis (chapter 8) to obtain groupings of sim-
ilar load profiles.

Muller [31] performs extrinsic clustering using various sets of predictors; the pat-
terns to be clustered are daily total system profiles for a number of years. The daily pro-
files are first normalised by dividing through by the daily mean.

In a weather based clustering, nine weather variables recorded for each day (temper-
ature at various times; minimum and maximum temperature; previous days average tem-
perature; illumination means for various periods) are used as disaggregating predictors.
In a seasonal clustering, a seasonal index, plus day of the week (including a ‘bank holi-
day’ day type) were the predictors. A special days clustering used a summer/winter var-
lable and a day type variable (with values such as workday, Sunday, holiday, pre-holiday
day, etc.) predicted the clusteksmeans clustering and a top-down decision tree clus-
tering were investigated.

In [32], a hierarchical clustering of daily profiles is used as the basis of a method for
load forecasting. In [33], a rapid iterative statistical clustering technique for clustering
profiles within a spreadsheet is described. Extrinsic (i.e. non-profile) data is not used in
papers [32] or [33].

1. Number of hours in a year
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Chapter 10 — Task Formulation for the Monthly Billed
Business Customer Database

10.1 Data For the Monthly Billed Business Customer Database

Unfortunately, the data provided by the Sponsor is incomplete, inconsistent, and in-
accurate in various ways. This is not an unusual state of affairs (in data mining nor in the
electricity supply industry). The data was delivered in flat file format, which had been
cobbled together from various sources, this being the only data that was available.

The half-hourly load profile data hails from three load databases (1994/5, 1995/6,
1996/7), covering different time periods (with some slight overlap) but not forming a
continuous record. Certain days, and entire months, of data are missing for various cus-
tomers, and it is not the same days and months which are missing for each customer. An
overview of the extent of the missing data in the 1995/6 and 1996/7 databases is given
by the visualisation in (COLOUR FIGURE 9.) (though a handful of missing dates illus-
trated in that diagram were deliberately removed because they were bank holidays or
holiday periods). Colour figures are to be found in the Appendix to this Thesis. The
1994/5 database covers October 1994 through April 1995 inclusive (and is complete);
the 1995/6 and 1996/7 databases each cover April through March inclusive (and have
omissions).

The customer information data covers 500 customers; these match perfectly with the
customers present in the 1994/5 load database, but the 1995/6 and 1996/7 load databases
contain many customers not among those 500, and do not contain data for all the 500
customers for which customer information is recorded. The customer information com-
prises the customers’ two-digit SIC codes (12.4% of which are missing, and a few of
which are not valid SIC codes); their tariff codes; their maximum demands; their load
factors; and their maximum measurement errors. Not only are some SIC codes missing
or invalid, but it is suspected by the Sponsor that some of the recorded SIC codes may
be inaccurate. Load factor (the ratio of average load to maximum demand, expressed as
a percentage) is a measure of the extent to which the peak demand is maintained through-
out the year. The tariff codes each correspond to a different tariff schedule used by cus-
tomers, i.e. a different way of pricing their electricity through the day. SIC (Standard
Industrial Classification) codes carry information about the type of business a customer

carries out; some two digit codes represent rather broad business descriptions (e.g. the
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retail and repair industries are, with few exceptions, represented within the same two
digit SIC code).

There are certain questionable data within all three of these loads databases. Partic-
ularly, there are instances where load increases by a very conspicuous amount for just
one half hour reading, and then drops back to about the same level as before; while it is
not possible to be certain that these data are actually erroneous, it seems rather likely in
many cases that they are. There are also conspicuous cases where the reverse happens
(i.e. a dramatic but short-lived fall in load). These are much more common, and are likely
on the whole to be genuine artifacts, caused by total or near-total loss of power, resulting
from an electrical fault of some type, or a power outage. Even so, these must be classed
as noise since there is no discernable pattern to the instances and no variable capable of
explaining them in any model. This type of data feature will be caledeaism

The weather data for the study period comprises the following variables, recorded
hourly: ambient temperature, windspeed, humidity, cloud covedKtas i.e. eighths,
convertible to a percentage), and hourly rainfall; but the hourly rainfall only covers up
until the end of March 1995 (i.e. six out of seven months of the 1994/5 loads database)
and is unavailable thereafter. Additionally the daily sunset times were supplied (for one
year only, though they differ very little from year to year; and not for the exact region
where the customers are actually situated).

A serious problem in the data is that where the 1994/5 loads overlap the 1995/6 loads,
there are discrepancies between the two databases. The discrepancies take one of two
forms: in the first form, profiles of a given customer in the second database are translated
by a small fixed constarg from the corresponding profile in the first database; in the
second form, profiles of a given customer in the second database are scaled by a scalar
a from the corresponding profile in the first database. Whilst for any particular custom-
er,3 ora was fixed,a ranged from 0.46 up to 1.28. The full predictor variable set in-
cluding these two derived variables is described in (TABLE 1.)-(TABLE 3.).

TABLE 1.

Predictors (Supplied, Non-Weather)

Notation  Description Type Domain
Xl or t time of day ordered [00.00h, 00.30h,..., 23.30h],
equivalently[1, 2,..., 48]
day index ordered [Oct 1 1994,..., Mar 31 1997],
X, or dUl

equivalently[1, 2,..., 913]
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TABLE 1.

Predictors (Supplied, Non-Weather)

Notation

Xs

6

~

X
X
X8

TABLE 2.

Description
SIC code

tariff code

Type
categorical

categorical

maximum demand  continuous

load factor

continuous

Domain
various two figure integers

various alphanumerical codes
non-negative real numbers

positive real numbers

Predictors (Derived, Non-Weather)

Notation
X4 or d

X4 or m Mmonthindex ordered

TABLE 3.

Description
day type

Type
categorical

Domain
[Mon, Tue, Wed,..., Sun],

equivalently[1, 2,..., 7]

[Jan, Feb,..., Dec],

equivalently[1, 2,..., 12]

Predictors (Supplied, eather)

Notation
Xgor 6

X0 0r W,
X1 OF W,
Xqp OF W,
Xi3 Or W,

X14 or w

Description
temperature

windspeed
humidity
cloud cover
rainfall

daily sunset
time

Type Domain

continuous real numbers

continuous  nhon-negative real numbers

continuous  non-negative real numbers

continuous [0, 100]

continuous non-negative real numbers

continuous  positive real numbers

A variety of derived weather variables are of interest also; these will be introduced

in section 10.5.3. The maximum measurement errors are of possible interest in determin-

ing model goodness-of-fit, but are of no use as predictors, and hence were not consid-

ered.

10.2 Normalisation of Load Pofiles

Consider the load data for two custome{scz.1 Suppose the total energies con-

sumed (in the study period) by the two customers are dekgféd respectively. Total
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energy consumed is perhaps the best measure of the customers’ sizes (although maxi-
mum demand, is a viable alternative). The database contains customers of significant-
ly different sizes, and thus load profiles from the same day for two different customers
are not directly comparable; in order to compare the load profiles it is necessary to nor-
malise them (convert them to comparable scales), and there are many candidate normal-
isations available. At one extremepérsenormalisation) we normalise each customer
¢, 's load readings by dividing each reading by the customer’s total energy consumption
E,; at the other extremdirfe normalisation), we divide customey's load readings for
a particular day by the total energy consumedhat day onlylntermediate normalisa-
tion schemes might divide daily load readings by the monthly energy total, the seasonal
total energy, the total energy for all days of the sdayetypeover the seven months, the
total energy corresponding to a certain marttdday type, and so on. There is a danger
associated with too fine a normalisation, in that two customers whose annual load shapes
vary from each other significantly might appear to have similar annual load shapes after
normalisation, and so distinction between dissimilar customers may be blurred. On the
other hand, the fact that two load profiles from different two customers have the same
basicshape but different daily energiptals, can sometimes be lost when a coarse nor-
malisation is used.

Now consider the effects of normalisation wiaggregating(rather than compar-
ing) load profiles (for example when computing centroids for clustering algorithms;
when aggregating profiles in the same patrtition cell in a regression tree; and so on). If
load profiles have been normalised (according, say, to annual energy consumption) then
all customers have the same weight in the aggregated profile. It is important to decide
whether or not this is desirable. There is an obvious case that ‘larger’ customers should
make a greater contribution in aggregate profiles (as occurs when no normalisation of
the above type is in place)—since their contribution to total system load is greater. How-
ever there is an argument for aggregating normalised profiles; viz that data is often
sparse in certain regions of attribute space, and we cannot afford the loss of information
contained in the profiles of smaller customers incurred by down-weighting them (by fail-
ing to normalise).

In all that follows, it should be assumed that all the raw data for each customer has

1. Recall thatCi denotes théh casein the database, not the samei:psthelth customer
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been normalised by dividing through by the total estimated energy for each particular
customer. Thus iinD is a raw load datum for customlefestimated total energy con-

sumption over the study peridt:q), then

Y, = YVE, (EQ 79)

The reasor’n%I is only an estimate of total energy consumption is that customers have
load data missing on some daté§;was calculated by assuming the energy consumed
on any day missing from a customer’s data was equal to the mean daily energy observed

for that customer on non-missing days.

10.3 Uniresponse Model and Multi-esponse Model for Monthly Billed
Business Customers

For notational convenience, defife8,, ..., Bg,,} to be a hypothetical set of un-
known (and unknowable) predictors which affect load but whose nature and values are
unattainable, and imagine that the union of the recorded predictors with the unknowable
predictors is a variable set capable of accounting for 100% of variance in the load.

The response can be thought of in two ways: either as a single response loatable
denotedY; or a multivariate response (or response vectogd profile denoted
Y = (Y5, .., Yy .., Yyg) ;s time of dayt can be dispensed of as a variable in the latter
model. Thus we can describe two general models for the load datanitlesponse
Model (UM), and theMulti-response ModgMM).

The most general uniresponse model we can propose for the data is

Y, = ft, d3Xq, ..., X,4By, ..., B

. +¢(m 1<isN (EQ 80)

Bmax)

where th&:i(m) are the additive errors due to measurement error in the datX(natel

X, can be derived frordl)). N, the total number of data points (i.e. cases), is given by
the product of the number of half-hours in a day (48), the number of days in the study
Nyays (maximum 913 in our study), and the number of customgrs, (maximum 500

in our study,48 x 913 x 500 = 21 912 000 being the maximuniN,, for our study)f,

Is a hypothetical ‘true’ model which could recover the exact load for a given customer.

When we exclude the unknown attribu% ...,B we can recast this as

Bmax’

Y, = fult, dOX,, ..., X ) + M + (W + (9 1<isN, (EQ 81)
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The errorssi(u) are errors due to absence of unknown attribB&es.., B the

Bmax;
errorsai(s) are errors due to limited sample size and missing data. As in (EQ 2), we as-
sume that the errors cannot be separated, and combine thea?ﬁ”ilﬂ'ﬂb. Finally we ac-

knowledge that any practical model (involving regression, classification and so on) we

may build will be far from perfect, thus introducing modelling eref&°d :

Y, = fult, dBXs, ..., Xyp) + (M) + g (mod) 1<i<N, (EQ 82 : UM)

The multi-response model MM is a model for load profiles, rather than [¥adsa
48 dimensional vector of half-hourly load responses (time of day is no longer a predictor)
and the multi-response model corresponding to (EQ 82 : UM) is

Y, = fud3X,, ..., X,,) +g(Mus) + g (mod) 1<i<N,, (EQ 83 : MM)

where the error terms are now vectors of 48 half-hourly errors. In (EQ 83 : MM), the
number of data points (i.e. caség) is limited to only913 x 500 = 456 500, though

each data point has 48 associated responses. Note that we can obtain local estimates for
g{mus) (or g (Mus) ) independent of the modelling errar§™d (or g(Mmd) ), and so do

not always combine them into a single error term.

10.4 Atomic Model for Monthly Billed Business Customers

At this point it is convenient to temporarily drop maximum dematd rom con-
sideration as it was not eventually used as a predictor, and to discretise loaddgctor (
into a categorical variabl¥, , with a handful of values. A maximum entropy partition
(i.e. one which retains the most information about the variable partitioned) has cells
which are as nearly as possible equal in size (see end of section 3.2). Hence, though re-
placing continuous load factors with discrete categories (such as low, medium, and high)
does result in some loss of information, we lose the least information when there are ap-
proximately equal numbers of customers in each category. In practice, seven categories
were always used (denoted, ..., L).

This move allows us to treat load factor in the same manner in which we treat SIC
codes and tariff codes, which is more convenient because load factor is, like SIC and tar-
iff codes, a customer property (rather than temporal or meteorological).

With this simplification, the multi-response model becomes
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Y, = fu(dd Xg, Xg, X i Xgy -y Xpg) + (M) + g (Mod) 1<i<N, (EQ84)

Note that any two cases which have identical valued%xs, Xg and X, are indis-
tinguishable in this modklWe can aggregate the profiles of indistinguishable cases by
simply averaging them, thereby reducing the number of cases. In this way we obtain the
atomic profilesor atomic casesr atomsA, for the load data. This is identical with the
notion of an atomic pattern (section 8.8.2). With= dllx X5 X X % X, the domain of
the discrete predictors aﬂld(i) theith non-empty cell in its maximal partition, (EQ 77)

defines the atoms (it is repeated as (EQ 85) for convenience).

2 Ci
C,

A, = - |>~((|)| 1<i<N;1<k<48 (EQ 85)
A, (1<k<48) are the 48 response values foritiheatom,i the index for the at-
oms, andl the index for the original (non-aggregated) profiles.Aebe the 48 dimen-
sional vector of responses for atén. Denote beji the value taken by predictmj
for atomi.
We can modify (EQ 84) to the Multi-response Atomic Model (MAM)

Y, = A = fyaXi)iw(t, dO) + g (Mus) + g (mod) 1<isN  (EQ86: MAM)

XU is the vector of discrete predictogdl] X5, Xer X[ ) » andw is the vector of supplied
weather variables(X,, ..., X;,) . N is the number of distinct values fe, i.e. the
number of non-empty cells in a maximal partitionXof= dlIx Xs % Xg % X - The upper
bound forN is 913 x |2(5| X |2(6| X |2(L| , butN is far less since there are many, many com-
binations of SIC, tariff code and load factor group for which there are no matching cus-
tomers.

This is easily recast as a Uniresponse Atomic Model (UAM):

Y, = fuat:XQi);w(t, dO) + (M) + g (mod) 1 <j<48N (EQ 87 : UAM)

Note that there is a loss of information involved in aggregating each set of profiles
with identical discrete predictors into one atomic (centroidal) profile; we retain informa-

tion (viz the mean) about the central tendency of loads at each half hour, but lose infor-

1. Since if they have identical day indel] then they have identical weather dXg, ..., X,
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mation about the spread of loads at each half hour. However, by extending the notion of
a profile from ‘a vector of half-hourly loads’ to ‘a vector of half-hourly loadda vec-

tor of half-hourlysquaredioads’, and extend the notion of adding two profiles so that
the sum profile records the sums of the 48 constisgumredoads as well as the sums

of the 48 constituent loads, important information about the spread of loads at each half
hour is retained (since this is enough data to reconstruct the initial half-hourly standard

deviations).

10.5 A General Model for WeatherDependent Loads

10.5.1 The Effects of Wather on Load

The six  weather variables X, ..., X, available  (alternatively

gr -
0, w,, w, W, W, w,, respectively temperature, windspeed, humidity, cloud cover,
rainfall, and sunset time, collectively designatelare an adequate variable set to ex-
plain all effects of weather on load. However, spetweather variables (the values of
the supplied weather variables for a particular day and time of day) are not necessarily
an adequate set of predictors for weather dependent loads observed at that time of day
on that day. This is because the values of weather variables prior to that time point also
have a lag effect on load. The discourse of this section would be applicable to residential
customers as well as business customers (although the load-weather relationships of
business and residential customers may vary substantially). Further reading concerning
the ideas discussed in this section can be found in [15], [17], [21], [23], [24].

The most influential weather factor on load is temperature. Suppose we are interested
in the load-weather relationship at a particular half-hourly time gomtT. Call T the
current time (or ‘now’). Thermostatic heating (/cooling) devices like water heaters,
space heaters (/space air conditioners, refrigerators) etc. are more likely to be drawing
power when the curreﬂﬂdoortemperatureﬁ{') is low (/high). When load at timEis
averaged over several days or customers, the particular on/off statuses of the various de-
vices will be ‘blurred’ (smoothed), so that the mean load is expected to vary quite
smoothly withef') . Non-thermostatic heating or cooling devices (which are switched
on or off by time switches or by hand) have aggregate loads expected to @cﬁll)ow
somewhat less closely, but nevertheless to follow it.

However the indoor temperature half an hour ago, an hour ago, or several hours ago,

also have effects on the loads of heating and cooling devices: thermostatic devices may
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take some time before reaching cut-off point (i.e. before they have heated or cooled to
such a degree that their thermostat switches them off); they may take half an hour or
longer before they switch back on again (this period is known as the dead band). Loads
for non-thermostatic heating or cooling devices may be dependent on even older temper-
ature readings (for example, a time-switched heating device generally changes its con-
sumption pattern only when its on/off times are manually reset, which might be only
once every few days or weeks; the sudden onset of a cold snap may well not manifest
itself for a day or two).

However this is only half the story, since the indoor temper&t?e(which is dif-
ferent for every customer) is not known: it is a function not only of the status of the var-
ious heating and cooling devices present, but of the cuaeriient (outdoor)
temperature, and of the ambient temperature over the recerit gaatmbient tempera-
ture (©) which is recorded in the databases. The thermal properties of buildings (which
vary from customer to customer and are not known) are such that the changes in ambient
temperature take some while to manifest themselves indoors. Thus the shdaigterm
temperatures (the ambient temperatures from half an hour ago to several hours ago) are
important factors affecting load. Longer term lag temperatures may also have an effect:
the temperatures a few feet under the ground, and the temperature of large bodies of wa-
ter, are dependent on the ambient temperatures several days (even weeks) ago. Thus heat
losses and gains through the floor may depend on the ambient temperature some time
ago; water-heating devices draw cold water through underground pipes from reservoirs,
and the temperature of the cold water can lag the ambient temperature by days or weeks.

The importance of these factors requires us to introduce lag temperature variables
(which can be derived) with various lag periods, and/or exponential smooths of the am-

bient temperature with various exponents. An exponential smo@htets the form

8(® = (1-a)86,+ab(%) (EQ 88)

a is fixed between 0 and 1. Whenis closer to 0, the exponentially smoothed temper-
ature is ‘forgetful’ and represents average temperature over the recent past; wehen
closer to 1, the smoothed temperature is more affected by older temperatures. Longer
term exponential smooths could use daily average temperatures or daily peak tempera-
tures instead of half-hourly temperatures.

Other weather variables affect loads more subtly. Humidity is a factor in predicting
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air conditioning and cooling fan loads. High indoor temperatures may be unpleasant, but
are considerably more so when indoor humidity is high. Indoor humidity may lag ambi-
ent humidity slightly, and lag or smoothed humidities could be employed. A derived var-
lable combining temperature and humidity is also of possible interest. Whilst air
conditioning is only a small part of UK domestic load, is can be a significant factor in
UK commercial and business loads.

Windspeed may have a minor effect on air conditioning/cooling fan loads (opening
a window on a breezy day is cheaper, if less effective, than air conditioning). However
its principal load-weather effect is on heating loads. Firstly, cold draughts may affect in-
door temperatures on cold, windy days. Secondly, the effect of wind on the exterior walls
of buildings is to cool the walls (particularly so if the walls are wet). A derived variable
combining temperature and windspeed could be of interest. Load is unlikely to lag wind-
speed by very much; a slightly lagged windspeed variable could be of use.

Cloud cover has an effect on lighting loads. In fact, the amount of natural illumina-
tion would be a more useful predictor of lighting loads, but was unfortunately unavaila-
ble in the data supplied. Natural illumination is principally a function of the time of day,
the time of year, rainfall, the opacity of cloud cover, and the percentage cloud cover (of
which only cloud opacity was unavailable in our data; rainfall is largely missing from
the data supplied, but has only slight effect on natural illumination). A derived variable
combining time of day, time of year and cloud cover, might be of interest in predicting
lighting loads. Since people frequently leave light switches on when they ought not,
some lag effect may be present.

Rainfall, as well as its (minor) effect on illumination, has (as noted above) an inter-
action effect with windspeed: wind cools wetter buildings more. The effect of rainfall on
illumination is instantaneous, but the effect of rainfall on the wetness of building walls
may last several hours, prompting the introduction of lag or smoothed rainfall variables.
Rainfall can affect domestic electric clothes drying loads, unlikely to be a factor for busi-

nesses.

10.5.2 Bmporal asymmetry of the Load-Weather Relationship

The effects of temperature on load are different when the temperature is rising than
when the temperature is falling. For example: a rapid fall in ambient temperature from

13°C to 10° Cis likely to place a large strain on (especially thermostatic) heating loads.
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However a rapid rise in ambient temperature fifdn C to 13° C can result in a some-
what smaller relaxation on heating loads (see [23], [24]Yfis the change in load for
some profile over a small time period&tf, andAB the change in ambient temperature

over that period, we can term

AY(AB) = —AY(-AB) (EQ 89)

thetemporal symmetry assumptjanstatement that the change in load resulting from a
rise in the temperature is equal in magnitude (opposite in sign) to the change in load re-
sulting from an equal temperature drop.

A static load-weather model (one which models current temperature in terms of only
instantaneous weather variables) cannot account for temporal asymmetry effects. (FIG-
URE 8.(a)) illustrates a particularly simple static load-weather model (in which load is a

function of 8 only).

YA YA

oV
oV
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FIGURE 8.

A heating/cooling curve load-weather model derives a different model for when the
temperature is rising (heating model) than when the temperature is falling (cooling mod-
el)—see (FIGURE 8.(b)). Such a model requires a categorical derived weather variable
which decides which sub model is appropriate depending upon whether temperature is
rising or falling.

A continuous derived variable which we might consider introducing &, the
change in temperature between the currenttiamel timet — t. We might consider var-
ious values fort, since temperatures from various times in the past might have effects
on load. Such variables enable a weather model to model temporal asymmetry (although
the lag temperature variables suggested in section 10.5.1 are already capable of convey-

ing this information indirectly).
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10.5.3 Derived Vather Variables

Due to the various lag times of lag afidweather variables, and the various expo-

nents which can be used in exponentially smoothed weather variables, there are practi-

cally limitless numbers of weather variables (derived from the spot weather variables)

available for a load-weather model. Many of these are highly correlated, and it is usually

necessary to select a parsimonious subset of weather variables (one which tries to avoid

redundancy of variables). This might be performed using principal components analysis

or related techniques; by heuristic choices; by trial and error; by use of an adaptive mod-

elling technique which automatically tends to produce parsimonious models; or by some

combination of these methods. (TABLE 4.) summarises some of the derived weather

variables which are candidates for inclusion in a load-weather model.

TABLE 4.

Predictors (Derived, Weather)

Notation Description Comment
0 (1] lag ambient temperature, laghalf-hours short, medium and long lags
() exponentially smoothed temperature, short, medium and long term
0 smooths
exponentd
A B delta-temperature (temperature change)tlag Short, medium and long term
T p p |
ags
emax yesterdays peak temperature
) yesterdays mean temperature
emin yesterdays minimum temperature
[t] (o) lag windspeed, smoothed windspeed short term
W, ", W,
w w
[t] (o) lag humidity smoothed humidity short term
Wh ) Wh
[t] (o) lag cloud coversmoothed cloud cover short term
w. W
Cc C
(a) smoothed rainfall medium term smooth; estimate
W of building/ground wetness
w O squared minutes from 18:00hrs GMT to sunset peaks at midsummer and at
S midwinter; seasonality

WSD, the square of the time difference between sunset and 18:00hrs GMT, was sug-

gested as a useful predictor of load by a researcher at the project’s sponsoring organisa-

tion. It can be thought of as a measure of the extremeness of season (as it peaks

midsummer and midwinter), and is dubbed ‘seasonality’.
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Compound variables suggested in section 10.5.1 (combinations of temperature and
windspeed; temperature, rainfall and windspeed; temperature and humidity; cloud cover,
time of day, day of year) representing particular concepts (respectively presence of
draughts; wind chill; discomfort; natural illumination) might be simple low order poly-
nomials in the constituent variables or non-linear terms suggested by theory. However,
a non-parametric method like MARS (section 6.5) would have the advantage that such
concepts can be modelled automatically (though not necessarily explicitly), since inter-
actions terms between any number of predictors are considered for inclusion in the mod-

el.

10.5.4 Derived E€mporal Variables

Reconsider the task specification: to analyse load profiles with regard to their de-
pendencies on weather, day type, month, and known customer details. The weather data
is recorded at hourly intervals: it is a simple task to recover reasonable interpolations
so that estimated weather variables are available for each half-hour (see section 11.2.1).
Since the combined weather variables vary from hour to hour and day to day in a chaotic
(i.e. dynamic non-linear) fashion, and have no weekly period, it is not viable to replace
dd, the day index, with(d, m) , the day type and month index, in any part of the model
which predicts the effect of weather on load. If day index were removed from the model,
then daily weather statistics would have to be aggregated (for example, all January Mon-
days clumped together), despite the fact that weather has no weekly periodicity. A day-
of-year variable (which records how many days have passed since January 1st, rather
than from the start of the study period lit€) may be a more suitable variable for the
weather model (see 11.3.2).

On the other hand, the non-weather dependent component of load is highly depend
ent on the day of the week, but tends to change only slowly from week to week. Thus it
is highly appropriate to scragl in favour of (d, m) for a weather-free load model.

This suggests a compound model comprising one model for weather-dependent load and
another for weather-independent load.

There is also a case for considering the inclusion of other derived temporal variables
in the weather model. For example, a sinusoid with period 24 hours peaking at noon
(with its trough at midnight), and a sinusoid with period 1 year peaking on midsummer’s

day (with its trough at midwinter’s day), are derivable from (respectivedy)ddL, but
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provide the time-of-day/time-of-year information in a way which may be more useful to

a particular regression model. Note that sunset tipeand seasonalityvsD can be

viewed as derived temporal variables themselves, since they are determinable accurately
from the time of day, time of year, and the latitude/longitude (which are fixed in this

model).

10.5.5 Weather Decomposition

To derive a compound weather/non-weather model, it is desirable to find some initial
means of decomposing load iMm@ather-depender@ndweather-independermompo-
nents. Once the weather-dependent loads have been modelled, we cardegewadr-
ered load profileghypotheticalveather-fredoad profiles) by subtracting (or otherwise
removing) the loads predicted by the weather model from the original data. Deweathered
profiles can be thought of as our expectation of what the profiles would have looked like
did weather not exisDepending on the deweathering methodology, weather ‘not exist-
ing’ can be interpreted as weather being always exactly ‘typical’ (and static), or weather
being always such that no weather-dependent electrical loads are present. The latter is
rather idealistic, since loads such as lighting, water heating (other than for central heat-
ing) and refrigeration are present every day of the year, but are mildly weather dependent
(not just seasonally dependent).

The initial decomposition of loads into weather-dependent and -independent compo-
nents can be performed variously. These components are somewhat nominal since no
perfect separation of these two components is possible. Two basic approaches to weather

composition have been seen in chapter 9:

1. Identification of No-Véather Days. Load profiles for days on which weather has
very little efect on load are aggregated to obtain estimates for waatlegendent
loads. Subtraction of the estimated weathdependent load from the total load pro-

duces an estimate for the weathdependent load (see section 9.5.3).

2. Smoothing and ¥eraging. Profiles are smoothed or averaged over a variety of
weather conditions. The smoothed or averaged loads are assumed-ineiaibend-

ent; again, these are subtracted from total load to obtain a weathemndent load.

Many researchers have additionally sougtread component (prior to deweathering),

which models daily peak load or daily total energy as a smooth function of month index,
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week index, or day index. This is to distinguish changes due to annual weather periodic-
ity (and long term load growth), from changes due to hourly and daily weather fluctua-
tion.

Note that whilst the weather-independent load is assumed to have no dependency on
the weather variables, the weather-dependent load is cemairygsumed to have no
dependency ononweather variables. Thus once a weather-dependent component has
been modelled, thresidualsrom that model are assumed dependent on the non-weather
variables; the weather model residuals are combined with the weather-independent com-
ponent to estimate the weather-free (deweathered) load; it is this weather-free load (and
not the weather-independent load component) which is subsequently modelled using the

non-weather variables.

10.5.6 Atomic Weather Model

Introduce the derived predictdr(day type), in addition to (rather than in place of)
the day indexdU. Although weather does not have a weekly period, we may anticipate
that theeffectof weather on daily load has some dependency on the day of the week, and
that day type may be relevant to any model for weather-dependent load. Suppose that
YW are the weather dependent components oflthé< 48N loads, produced by one
of the decomposition techniques in section 10.5.5. Further, suppose that the data have
been aggregated into atoms as described in section 10.4. Note that the atoms arising from
discrete predictor spacgV = dllx d x X5 % X % X, do not differ from those arising

from discrete predictor spaggé’) = dllx X x X, x X, , since the value ol dictates

AL
the value ofd.

Incorporating some appropriate subseiothe spot weather variablasand (i) the
various lag, delta and smoothed weather variables and lag-load variables introduced in
section 10.5.3, into a weather vecW, incorporating the day typginto XUJ; and de-
noting weather-dependent Ioalﬂﬁ’; (1<i<48xN,,) , we can adapt the uniresponse

atomic model of (EQ 87 : UAM) into an Atomic Weather Model (EQ 90 : AWM)

YW, = (X)WL, D) + €,(Mus) + g (mod) 1<i<48N,, (EQ90: AVM)

HereN,, (the number of profiles presented to the weather model) is the number of days
in the study times the number of atoms arising from predigfgre X, % X, .

A point arises concerning the proper separation of the load-weather model AWM and
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the subsequent model for deweathered data (which will be described in section 11.1). We
would prefer that the load-weather model models precisely just that, and does not model
the effects of the non-weather variab¥¥. The presence of the day inddX in the
load-weather model need not particularly worry us provided that model terms including
dU vary only slowly withdU, since this just facilitates the computation of gradual trends.
However, the presence df X;, Xg, X facilitate the modelling of non-weather effects

on load which are better left to the weather-free model. The reason why we might wish
to retaind, X, X;, X, inthe weather model is that tvayin which weather affects load

is liable to be different for different day-types, SIC code classes, and tariff code classes,
and may be different for customers with significantly different load factors. The weather
modelling functionf 5, should be determined in a manner which circumvents this dan-

ger (see further discussion in 11.2.4).

10.6 A General Model for Weather-Free Loads

Now suppose thaﬁ;w\,(t;)_(W(i);\LV(t, d)), foril<is 48N,,, an estimated function
for weather-dependent load in terms of time of day, weather variables and derived
weather variables, and discrete predictors, has been obtainedfg;,@lfd'r brevity. Re-
call that an initial estimate @feather-independeibad, obtained by smoothing/averag-
ing, was required to build this model.¥f(t) are the initial loads (the raw dat)(t)
are the weather-dependent loads, afd) are the weather independent loads, then
YW() —?AW, the weather residuals, are added to the weather-independent loads to obtain

the weather free loads

YR = Y + (YO ~Tand = YO —Faw (EQ 91)
Section 10.5.4 suggests that in modelling weather-free loads it is appropriate to re-
placedd by d andm (i.e. day index with day type and month). Since we can now drop
the weather variableg/, we can adapt the multi-response atomic model of (EQ 86 :
MAM) to the Atomic weather-Free Model (AFM):

YF = Far(XF(0)) +g,(Mus) + g (mod) 1<i<Ng (EQ 92 : AFM)

Now XF = (d, m, X, X4, X) , andN. is no more than 7 (day types) times 12 (months)
times|)~(5| X |)~(6| X |>~(L| (and is much less, since most SIC/tariff/load factor combina-

tions are empty).
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Chapter I — Weather Model for Monthly Billed Customer
Database

11.1 Weather Decomposition

The no-weather day approach to weather decomposition (section 10.5.5) was not
deemed particularly appropriate for UK business loads; it would be hard to determine
conditions under which UK businesses are unlikely to be drawing any weather depend-
ent load, and there appears no major advantage of a no-weather day approach over a
smoothing/aggregation approach.

A simple aggregation approach was selected. The weather models were calculated on
the 1995/6 and 1996/7 databases, i.e. 24 months of data (with occasional days missing).
For a given model, some non-empty subset of the categorical predictors
{d, X5, X5, X } Is selected. Denote X , the set of categorical predictors used to deter-
mine the weather-independent loads. Certainly, the atoms arising from the predictor sub-
spaced x X x Xz x X (i.e. the centroidal profiles for a given set of values for day of
the week, SIC code, tariff code and load factor groupweegher-independent atoins
are reasonably weather-independent, since they cover all types of weather (24 months).
They are only weather dependent in so far as the 24 months in question may have been
atypical meteorologically, but we can do no better with the data available. This is equally
true if we only use some smaller subset of the categorical pred{aios,, Xg, X } - If
we discount special day types, so that day-type can take only seven values, then each
atom is guaranteed to represent at least around 100 constituent profiles, so we might
hope that the 48 load values in an atomic profile are reasonable estimates of the under-
lying ‘true’ weather-independent loads.

Denoting these weather-independent atorhs, or recast as a single response,

Y!.(t), theweather-dependent loadse recovered from the equation

YW = Yi(t) - Y1) 1<i<48N,, (EQ 93)

whereYi',(t) is the weather-independent atom appropriate taottheell in a maximal
partition of the domain okW (see atomic weather model, section 10.54)) are the
atoms for the raw data, using the same patrtition.

Note that the weather dependent loads take both positive and negative values. Where

weather has a locally above-average effect on consump‘liY&(tD, will be positive; be-
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low-average effects on consumption give negati{ét) .

11.2 MARS for Load/Weather Modelling

11.2.1 Calculating Derived Wather Variables and Interpolating Weather Data on
Half Hours

Note that the weather data provided (section 10.1) is recorded hourly, but the load
profile data is recorded half-hourly. It would be possible to throw away every second re-
corded load, retaining only those recorded on the hour, so that there is a set of weather
predictors available for every load recorded. However, it is possible to interpolate for the
missing half-hour weather data, in order not to waste half of the recorded load data. It
was decided to use cubic interpolations for the half-hour weather data, interpolating at

the two closest recorded data points on either side, as in (FIGURE 9.).

weather A y Yo Y1
variable -1 @ —®——~ _ Y3
_ & R )

| | | |
|
| | |
6:00 6:30 7:00 7:30 8:00 8:30 9:00 time of day

FIGURE 9.

It is easily determined by solution of simultaneous equations that the unique cubic pol-
ynomial which interpolates known responseg .,y ;,Y;,Y; at ordinates
= —=3,-1, 1, 3 respectively, takes a valug, = 1%(y_1+y1) _116(y_3+y3) at

t = 0 (t measures half hours either side of the missing value, e.g. 7:30 in (FIGURE 9.)).
At the beginning and end of the time period under study, where one or more of
Y_s Y_1, ¥1: Y5 fell outside the recorded data they were replaced by the nearest recorded
values. The interpolations are performed with each, @f,, w,, w_, and w, replacing
y in the above. Where, on occasion, the weather statistic produced by this interpolation
falls outside of the meaningful range (say, more than 8 oktas of cloud cover, or less than
0% humidity) it is automatically replaced by the nearest meaningful value.

The implementation of the selected weather model also calculates exponential

smooths, and lag and delta variables (with various exponents and lags supplied by the
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user), as described in section 10.5.3, using the above interpolations at the half hour ordi-
nates. Again, where weather data are required which fall before the beginning of the
study, they are replaced with the first value in the study period, which is only a poor es-

timate when the lags are very long or the smooths very long term.

11.2.2 Continuous Part of the Wéather-Dependent Model

Prior to any analysis, it is assumed that profiles have first been normalised so that
each customer has the same total energy consumption over the study period, as per sec-
tion 10.2.

Recall the atomic weather model of (EQ 90 : AWM) again:

YW, = (X)WL, dD) + €,(Mus) + g (mod) 1<i<48N,, (EQ94: AVM)

The predictors anddU are ordered discrete variables, but will be treated as continuous
predictors. Except for the presencelpK;, X.and X , all predictors are (considered as)
continuous, as is the responge) . Thus we have a regular multivariate regression task
with four additional discrete predictors.

Temporarily ignoring these discrete predictors, the task is to model the response in
terms oft, dl andW, the latter comprising several, possibly dozens of, weather, derived
weather, and derived temporal variables. Most load studies have greatly simplified the
task, by only using a handful of the candidate predictors, and by assuming a simple re-
gression function, usually linear in most predictors, sometimes with a few higher order
polynomial terms, and sometimes with some cross-terms (suthigg 0 [iv, ). How-
ever the best models of load-weather dependence may not be low-order polynomial
models, and such models may miss features in the data; moreover, derived variables of
the types in section 10.5.3 are known to be important, but because there are so many can-
didates, and so many mutual correlations between them, inclusion of more than a few of
them can lead to sparse data (due to the high dimensionality of predictor space) and ill-
conditioned regression equations (due to correlated predictors), hence poor fit.

It was decided to perform a multidimensional non-parametric regression of load on
a large number of weather variabWsusing Friedman’s Multivariate Adaptive Regres-
sion Spline (MARS) data mining regression algorithm (outlined in section 6.5, see
[9],[10]). The MARS model has many advantages both over parametric models and over

non-adaptive non-parametric models in this regression task.
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Parametric models require a preordained form for the fitting function; in order to cap-
ture all aspects of load-weather relationship, such a form would be highly complex, and
require some protocol for its design. Furthermore the high dimensionality of the predic-
tor spacelV x t x dU inevitably dictates that data will be sparse. Non-adaptive non-par-
ametric models (for instance, @W + 2) -variate smoothing or product spline model)
suffer from the same problem of data sparsity, and also from the problem of correlated
predictors.

An interaction spline model (see section 6.5.1) could avoid the problem of data spar-
sity and partly avoid the problem of correlated attributes: each additive component of the
model can be limited in dimension (say, allow components of dimension one, two, three
and perhaps four); and strongly correlated predictors can be prohibited from appearing
in the same additive term. We need only include terms involving more than one predictor
(interaction termyswhere the two or more predictors are known or suspected to interac-
tively affect response.

The chief obstacle to using interaction splines is the initial choice of additive terms—
the problem of selecting the sets of interacting predictors. One might simply propose in-
cluding a term for every set of two, three or four predictors suspected to interactively af-
fect response. However, there are vary many such sets, many of which will be redundant
in the presence of the others. Consequently such a scheme is liable to overfit the data (fit
noise not trend); also, the presence of similar additive terms could lead to ill conditioning
of the regression equations.

The MARS model has most of the advantages of the interaction spline model: no pre-
ordained fitting function is required; and (referring to the ANOVA decomposition of the
model (EQ 57)), additive terms with a certain number of predictors can be prohibited
from appearing in the model. Moreover, the total number of additive terms appearing in
the final model can also be limited, and smoothness parameters varied, so that the danger
of fitting noise rather than trend can be kept at bay.

The crucial advantage of MARS over interaction splines is that the selection of inter-
action terms is performed automatically in MARS models. Certain predictors can be ex-
cluded a priori from appearing in the same interaction term (usually those which are
known to be correlated), but otherwise any set of predictors can appear in the same in-
teraction term (subject to the specified maximum number of interacting predictors).
Moreover the pruning part of the MARS algorithm removes from the model those dis-

covered terms which contribute least to goodness of model fit, so that interaction terms
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in the final model are liable to represent real interactions rather than noise.

The interpretability of MARS models is good. Firstly, constraints on the dimension-
ality of interactions and final number of model terms check the model complexity. Sec-
ondly, many terms in the final model have only one or two predictors, admitting curve
and surface plots for those components. Thirdly, higher level interactions can easily be
slicedto admit curve and surface plots. Slicing an interaction term involves fixing the
values of all but one or two predictors (often so as to take their mean or median value),
and plotting a curve/surface using the remaining one/two predictor(s) (and the response).
The MARS code (in Fortran) is freely available and includes routines to perform slicing.

Note that the data (EQ 94 : AWM) are in atomic form; thus each data point presented
to MARS has a response which is aggregated from several underlying profiles. Accord-
ingly it is necessary to normalise and weight each datum. Each resp¥nisedivided
by the number of profiles summed thereat before presentation to MARS. In this way, if
one tariff code matches twice as many customers as another tariff code, for instance, it
will not result in twice as high a response being presented to the MARS model for ob-
servations matching that tariff code. However, each datum isvagghtedby the
number of profiles aggregated into that datum. MARS allows weights for each data point
in its lack-of-fit function; with such weights, , the GCV equation of (EQ 59) is modi-
fied to

N
LS WY, f,0017
E(pr) = —i=1 (EQ 95)

[ C(P)} ZW

i=1

Thus atom/day combinations with fewer representatives in the database are accorded

proportionately less importance.

11.2.3 Discete Part of the WeatherDependent Model

Now consider how best to employ the categorical predictors into the load-weather
model. Since the weather dependent Io‘é,‘dét) are obtained from the raw data by sub-
tracting the average profiles (over the whole study period) for each distinct combination
of values ofd, Xg, X;, and X, , we can assume that the principal effects of these predic-

tors on the weather dependent loads has already been removed. Thus the danger that the
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load-weather model might attempt to model the effects of non-weather variables on load
(rather than thenteraction effectf weatherand non-weather variables on load) is
averted.

To derive a separate MARS model for each weather-dependent atom of
dx X x X X X Is not a viable option: not only are an unwieldy number of separate
load-weather models produced, but each would be built using only a fraction of the data.
Constructing separate models for work-day (Monday to Friday), Saturday, and Sunday
loads would, however, be viable.

Otherwise, the binarising of categorical variables, subsequently treated as continuous
variables (see section 6.6), is an option, though it introduces many more variables. In or-
der to limit the number of new binary predictors in the model, tariff codes (or SIC codes)
deemed sufficiently similar could be lumped together into compound tariff (or SIC)
codes prior to binarisation. This could be achieved by prior clustering, as in Chapter 13.

However, as noted in section 6.6.2, MARS includes its own mechanism for the in-
clusion of categorical variables, in which they are treated analogously to and simultane-
ously with the continuous variables, yet avoiding (to an extent) the problems of these
other schemes, and this was the method used.

Finally, a database of ‘weather-free’ loads is constructed, by subtracting the profiles
arising from the weather model from the original profiles (see section 11.2.5). Note that
the weighting scheme described in 11.2.2 ensures that where a tariff code or an SIC code
has fewer representatives in the database, it is down-weighted proportionally in the
MARS model. As before, it is simply necessary to weight each datum presented to the

MARS model proportionally to the number of profiles aggregated into that datum.

11.2.4 Limitations on MARS Categorical \ariables

It was decided to limit the categorical variables that are allowed categorical predic-
tors in the MARS model in two ways. Firstly, only categorical variable)§I ithe var-
iable set used to determine the weather independent atoms, see section 11.1) are
acceptable as categorical predictors. Thus if the weather independent profiles are deter-
mined by summing profiles with identical values tband X, (only), for instance, then
neitherX; nor X are acceptable as categorical predictors in the weather model. The jus-
tification for this is that (as noted in 10.5.6) the weather dependent model is intended to

model only the effects of weather, not customer attributes/day of the week; the categor-
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ical variables (customer attributes and day of the week) are included as predictors be-
cause load may have a different dependency on weather for different values of these
categorical variables. However, if we allow only those variabIQSI ias predictors in
MARS, then their combined effect on load has already been removed from the loads pre-
sented to MARS (since the weather dependent loads were created by subtracting the rel-
evant atomic profiles arising from all variables)j'n from the original loads, and are
statistically independent of any variable or product of variabl@f,«,I )n The effect of
these variableghteractionswith the continuous (weather) variables, however, are not
removed by the weather separation process, and so we allow MARS to attempt to model
such interaction terms.

The second restriction on categorical variables allowed in MARS is practical rather
than theoretical, namely that possilaly and at most one other variable erﬁH, are
used as predictors in any one model. Whilst allovdn@ay of the week) into the model
does not increase the total number of observations (data points) presented to the MARS
model (since there are already 48 half-hourly data points for every day in the model
whether we includel or not), for each variablX [ { Xg, X5, X } we allow into the
model we significantly increase the number of data points; for each day and half hour in
the model, we need a separate observation for each combination of valiyeX ofind
X, occurring in the data. In the final implementation, both computation times and mem-

ory requirements proved impractical when this restriction was not made.

11.2.5 Deweathering Whole Load Using a Computed Mars Model

For each original (normalised) profile in the loads database, we wish to construct a
‘weather-free’ profile, to arrive at a set of profiles which (as far as possible) has had the
effects of weather removed. This can be achieved by subtracting, from the original pro-
file, the profile predicted by the weather model (EQ 91). More exactly, for each day in-
dex dlJ and customec, look up or calculate the values for the weather variables and
derived weather variables, and the temporal variables and derived temporal variables, for
that day, and look up the non-weather variablgsX, X, . Feed these into the comput-
ed weather modélqvv(t;Z(W(i);\LV(t, dd) (i is the index of the weather-dependent atom
that the original profileY belongs to) for each of 48 valuestofo determine the half-
hourly profile of the effects of weather on logg,,. Then by subtracting this profile

from the original, we obtain a weather-free profile
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YW =Y —faw (EQ 96)

Note that due to the way in which the weather-dependent profiles are normalised pri-
or to being presented to the MARS model (see end of section 11.2.2), the weather model
profile f,,, is on the same scale as the original prdfile

TheEecewise cubic version of the MARS model is subtracted in the deweathering
scheme, rather than the piecewise linear model; the piecewise cubic model is obviously

smoother, and generally has lower cross-validation errors.

11.3 Results and Interpetation of the MARS Load/Weather Models

11.3.1 Data Selection and Cleansing

Firstly, recall that rainfall, was recorded only for October 1994 through March
1995 in the available weather data, none of which covers the 1995/6 and 1996/7 profiles
databases on which the principal weather study was performed. However, a number of
exploratory weather models were built using the 1994/5 load data, for which (excepting
April) rainfall data was supplied. In all these exploratory studies, neither rainfall nor any
lag/delta/smoothed variables derived from rainfall were ever selected for inclusion by
the MARS modelling algorithm. It is therefore reasonable to conclude that the availabil-
ity of rainfall data in the 1995/6/7 study period would probably not have made a signif-
icant impact on the resulting weather models, and rainfall is not considered in the results.

In fact, due to the discrepancies where the 1994/5 data and 1995/6 data overlap, it
was decided to omit the 1994/5 data from consideration completely in the weather mod-
elling, since it would appear that customers in the former database have undergone a dif-
ferent normalisation procedure from those in the latter two. Note that including the six
months of non-overlapping data from the 1994/5 database would have introduced a pro-
winter bias into the weather-independent profiles (which, recall, are supposed to be av-
eraged over all types of weather) which would have to have been countered by some sys-
tem of weighting.

The 1995/6 and 1996/7 provide two years of data, which is not really enough data on
which to build a definitive weather model (since two years’ worth of data might not con-
tain all possible types of weather and weather changes for the geographical area mod-
elled; and even so may not contain enough profiles, for any given set of prevailing

weather conditions, to be representative of those conditions); but it is certainly enough
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data with which to build an interesting and informative weather model, and with which
to test and fine tune the presented methodology.

Accordingly, a loads database for 1995/6/7 (running 24 months from April 1995)
was built from the raw data supplied, having first excluded from consideration various
special days and holidays. These were determined by visual inspection of coloured 3 di-
mensional plots of the 1995/6 and 1996/7 databases, as described in section 12.5 (see
(COLOUR FIGURE 10.), (COLOUR FIGURE 11.)). In fact, all bank holidays and ex-
tended holidays had already been removed from the former database, but not from the
1996/7 database. All UK bank holidays were removed, and also the whole of the Easter
long weekend (Good Friday through Easter Monday) and Christmas/New Year period.
When to start and end the Christmas/New Year period is a matter of judgement (as it de-
pends on whereabouts weekends fall), which is why the visual inspection of the coloured
plots is helpful. In fact, December 18th 1995 to January 1st 1996 inclusive, and Decem-
ber 22nd 1995 to January 3rd 1996 inclusive, were excluded (the corresponding 1994/5
figures being December 24th 1994 to January 2nd 1995 inclusive).

There were a total of 431 customers present in this data, and a total of 248 614 load
profiles (11 933 472 weather-dependent load readings).

A mechanism for the automatic removalsolecismgsuspicious spikes in the data
sustained for only one half-hourly reading, see section 10.1) was built into the code
which builds the binary databases from the raw (flat-file) load data. Whilst the mecha-
nism used is rather crude, and may in some cases class genuine data as erroneous (or
wrongly class a short term dip in load as an outage or blown circuit), it was deemed nec-
essary to remove at least some solecisms in order to reduce noise (and also to calculate
accurate load factors), and it seems likely that most of the spikes removed were indeed
genuinely erroneous data (and most of the dips genuinely due to special circumstances).
A datuml, was classified as geak solecisnf the raw load reading immediately pre-
ceding itl_, and the raw load reading immediately followind,itwere such that

Ol, 1,0

min(-2, 20> 4.0 EQ 97
9,10 (EQ 97)

andl, > 18.0, whilst it was consideredteough solecisnif the data immediately preced-

ing and following it were such that
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mi nEllll, |—15> 8.0 (EQ 98)
lo 160

andl,>15.0. These various thresholds were chosen intuitively after inspection of the
raw data, with the aim of discriminating best between spikes which were genuine and
spikes which were likely not to be genuine, or due to brief loss of power. The thresholds
l,>18.0 andl,> 15.0 are intended to account for the fact that the ratios in (EQ 97) and
(EQ 98) are more likely to occur as genuine artifacts when load levels are low. In the
event that either type of solecism was detedteavas replaced byl_; +1,) /2.

The final stage in creating the database was to normalise each customer so as to make
their average half-hourly load equal to 100 units (see section 10.2). In what follows,
‘original database’ means one with special days removed, solecisms smoothed over, and

then normalised, as above, not the original flat file data.

11.3.2 Exploratory Runs and Conclusions Drawn Thesfrom

During the software’s development, a vast number of runs of the MARS algorithm,
and of the routines necessary to present data to and extract data from it, were performed,
usually on small subsets of the data; while results from these debugging and exploratory
runs are not recorded here, various observations were made which informed the format
of the experiments which are presented.

As has been noted, rainfall was excluded from further consideration (though there is
hardly any rainfall data recorded for the 1995/6/7 database in any case). It was noted that
cross-validation runs, to determine the MARS smoothing parardefsection 6.5.3)

(using the inbuilt MARS cross-validation scheme, see section 11.3.8) took far too long
for many to be performed often, except when the problem size is greatly reduced. The
total complexity can be reduced primarily by restricting the number of predictor varia-
bles, particularly categorical customer variables (see section 11.2.4). (Of course, the
complexity is also reduced by presenting less data, i.e. less dates and less customers, but
it was decided to perform all the final runs here presented on the full 1995/6/7 date and
customer sets, to allow for fair comparisons.) Another way to lower complexity is to lim-

it the number of initial basis functions selected prior to pruning (section 6.5.3), though
this often results in candidate variables being excluded from the model which are found
to be of importance when the initial number of basis functions is increased.

Even when cross-validation is not used, runs can still take prohibitively long, and it
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is necessary to restrict the number of candidate predictor variables (and be prudent with
the number of pre-pruning basis functions) as above. MARS also provides a ‘speed’ pa-
rameter. Larger values progressively sacrifice optimization thoroughness in the selection
of basis functions, to gain computational speed [11]. This usually results in a marked de-
crease in computing time with little or no effect on the resulting approximation’s accu-
racy. All the presented results use the highest (fastest) value for this parameter, due to
the high size of the problem (many observations, many variables).

Upon observing the long computation times on exploratory runs, it was also decided
to restrict the types of interactions allowable between predictor variables, which consid-
erably reduces complexity in some cases. The scheme chosen was based partially on the
exploratory runs, and partially on heuristic choices informed by the known interaction
effects of weather variables on load. The following types of interaction were allowed/
prohibited (and these apply to all lag/delta/smoothed versions of the variables referred

to, not only the spot variables):

* cloud can only interact with “insolation”, rainfall and temporal variables
* ‘“insolation” can only interact with cloud, rainfall and temporal variables

» “darkness” can only interact with rainfall and temporal variables

« windspeed can only interact with temperature-based varfatilemidity, rainfall,

“discomfort” and temporal variables
» “discomfort” can interact with rainfall, windspeed and temporal variables
» “chill” can interact with rainfall and temporal variables

The variables insolation, darkness, chill and discomfort are derived variables intro-
duced in sections 11.3.3 and 11.3.10.

Additionally, MARS was prohibited from considering interactions involving any
lags, deltas and smooths of the same basic (spot) variable (with each other, or with the
spot variable).

Note that a day-of-year variable (days since January 1st), was used rather than day

index dU (days since beginning of study period). This is because day index allows the

1. The temporal variables are time of daynset time, seasonality (see 10.5.3), and the derived variables

summey spring, noon and evening (see3l4).

min

2. The temperature based variables @@™, 8 and 8™" (temperature nowpeak yesterdaynean yes-

terday and trough yesterday).
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weather model to differentiate between a particular time of year in one year and the same
time of year in another year, regardless of whether the weather differs between the two
days in question, and so is not as relevant to a weather model as day-of-year.

A pure random noise variable (with a uniform distribution on [0, 1]) was also includ-
ed in all the experiments that follow; this was used as a safeguard against overfitting: if
at any stage in the MARS algorithm pure noise is selected in preference to the meaning-
ful variables, it is a very strong indication that the model is being overfitted. Whilst in
some exploratory runs where smaller customer and date sets were used and where few
meaningful variables were available for selection the noise variable was indeed selected,
in the full size trials presented here noise was never selected.

Any other MARS parameters were left at their default values (see [9],[10]), the
MARS algorithm being deemed too expensive to determine their optimal values by var-

ious series of cross-validation runs.

11.3.3 Derived \ariables Describing lllumination

An important observation made during the exploratory runs is that day-of-year was
found to be a very important variable, more so than had been anticipated. Since day-of-
year is not a weather variable, its chief justification for inclusion in the weather model is
that the amount of natural illumination at any moment is dependent on the time of year.
Of course, the time of year affects load very strongly, because the time of year affects
the weather so strongly, but since we have the principal weather variables recorded in
their own right, that does not in itself justify the inclusion of time-of-year variables in a
weather model. By including time of year in the weather model, any effects that the time
of year has on load shap®at are unrelated to weathare also liable to be modelled,
whereas this ideally ought be left to the weather-free (clustering) model.

If time-of-year variables were to be excluded, it would be especially desirable to in-
clude a natural illumination variable (which, as discussed, was not available in the
weather data). In fact, the amount of natural illumination avaitdibee the atmosphere
at any moment and any place, can be calculated from the date, the time of day, and the
(fixed for our model) latitude and longitude. The SOLPOS library of functions, freely
available from the (United States) National Renewable Energy Laboratory (NREL) [34],
were used to calculate this quantity, knowmdsaterrestrial insolationHowever, it is

the surface insolation (i.e. below the clouds) which we would really like to know, and
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this is affected by such factors as atmospheric pressure, pollutants, cloud cover and cloud
density. A very crude estimate for this quantity was calculated based on the only one of
these factors available, cloud cover. The simplifying model assumes that all of the extra-
terrestrial insolation will reach the surface, except for that which hits a cloud; and that a
fixed fraction (thecloud transparengyof the latter will penetrate to the surface regard-

less. Thus our estimate for surface insolatisois

I.= 1,([L=CF] + [CF xCT]) (EQ 99)

wherel , is the extraterrestrial insolatiod < CF < 1 is the fraction of the sky covered
by cloud and) < CT < 1 is the cloud transparency parameter. In fact, the parameter used

was namediarknessD , where

D=1_,—1I (EQ 100)

andl . is the greatest value that can be taken byThis is an estimate of effective
darkness, which avoids confusion with extraterrestrial insolafjowhich we will just
call insolation

The SOLPOS library was also used to calculate daily sunset times; these calculated
sunset times differ (though only very slightly) from true sunset times for a particular lo-
cation, as they do not take elevation, refraction, and other complicating factors into ac-
count; however the true sunset times for the geographical location in question were not

available.

11.3.4 More Derived Temporal Variables

Four derived temporal variables were also thought to be worth adding to the model
after some experimentation. These are sinusoids with various phases and periods (and
with amplitudes arbitrarily equal to 1). The varialdesnmerandspringhave period 1
year (reckoned as 365.25 days), and peak respectively on midsummer’s day and on the
vernal equinox. The variable®onandeveninghave period 24 hours and peak respec-
tively at 12:00 hours GMT and at 18:00 hours GMT. They represent closeness to sum-
mer, spring, noon and evening respectively.

As noted in section 10.5.4, such variables represent a different way of presenting
time of day and time of year information to MARS which may be more helpful than the

current hour or day of year. They also allow the periodicity of days and year to be rep-
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resented in the model (whereas time of day and day of year each have a discontinuity that
does not correspond to a similar discontinuity in nature). Note that linear combinations
of springandsummemvill be sinusoids with period 1 year, but with various phases. Thus
MARS is able to indirectly model closeness to any particular time of year by using these
variables in separate additive terms. An analogous point holdedmiandeveningand

times of day.

11.3.5 Notes on MARS Output

Recall that lack-of-fit function used by mars is GCV, defined in (EQ 59) (or modified
by weights, (EQ 95)). MARS produces a measure of relative variable importance for
each variable based on GCV; it is calculated for each variable in turn by removing all
terms in the MARS model involving that variable, and recording by how much the lack-
of-fit score GCV increases as aresult. These figures are normalised into percentage fig-
ures (by dividing by the greatest calculated GCV increase, taking square the root, and
multiplying by 100%; square roots are taken since GCV is measured in squared units).
Thus the variable whose removal most increases lack of fit is awarded 100% relative im-
portance, variables which do not appear in the model at all are adjudged 0% important,
and a variable whose removal increases lack of fit only 1/4 as much as the 100%-impor-
tant variable is awarded 50% relative importance.

Whilst these figures may be a useful guide to relative variable importance, the figures
should not be taken as any definitive ranking of variable importance. Particularly, it
should be noted that the amount of GCV added by removing all model terms featuring a
particular variables may be wildly different from the GCV that would be added by re-
moving v from the original list of candidate variables and building the model afresh.
This is especially the case where there are two or more related variables. For example, a
temperature smooth with a half-life of 8 hours might feature heavily in a model, yet a
temperature smooth with half-life of 7 hours feature much more lightly or be overlooked
completely. However, were the former variable removed and the model built again, we
would expect the latter variable to gain significantly in importance, and the overall mod-
el fit to remain largely unchanged.

Unfortunately it is not practical to judge the importance of each variable by rebuild-
ing the model without the variable, whereas the relative importance figures produced by

MARS are cheaply calculated.
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11.3.6 Experiment 1: Peliminary Run, No Cross-\alidation

A very large MARS model was run using a very wide selection of variables. The
maximum number of predictor variables in any interaction term was restricted to 3 (as
was the case in all following experiments unless noted otherwise), the number of basis
functions selected (prior to pruning) was set at 90, and 55 variables were made available

for selection, as follows:

» 26 temperature-based variablesd™, 8 and Gmin, plus temperature lags of 2, 4, 8
and 48 half-hours, delta temperatures for 2, 4, 24, 48 and 336 half-hours and expo-
nentially smoothed temperatures with half-lives of 1, 2, 4, 6, 12, 48, 96, 336 and

1344 half-hours

6 humidity-based variablesv, (current humidity), plus lags of 2 and 4 half-hours

and smooths of 1, 2 and 4 half-hours.

* 4 windspeed-based variableg, (current windspeed), plus a lag of 2 half-hours and

smooths of 1 and 3 half-hours.

* 4 cloud covetbased variableswy, (cloud cover), plus, again, a lag of 2 half-hours

and smooths of 1 and 3 half-hours.

» 8temporal variables: time of dayday of yegrsummerspring noon evening plus
sunsetw, and seasonality .

» 10 illumination-based variables: (extraterrestriagolation plus lags of 1 and 2
half-hours and smooths of 2 and 4 half-hours; plus (estimdta@thess with the
same lags and smooths. In this instance, darkness was calculated using a cloud trans-
parency parametesomewhat arbitrarilyof CT = 0.5 (see 1.3.3).

* 1 noise variable (sed B.2).
The MARS smoothing parametdrof (EQ 60) was set at 3.0, this being the recom-

mended typical optimal value [9]. Parametiewas kept at 3.0 in all the following ex-

1. In the results, exponentially smoothed variables are denoted by their half-lives (in half-hours), rather
than their smoothing exponeat (EQ 88), for ease of comparison with lag and delta variables. The

half-life of an exponentially smoothed series is the time it will take for the current wasueontribu-

tion to the series to decay to half that level. Half-lifeand exponenti are related by the formula

_ 0,10
Ina = D'nQD/H'
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periments, except where otherwise noted.

Weather dependent loads were calculated from the (normalised, special days-re-
moved) 1995/6/7 database using a weather separation as described in section 11.1, using
only day of the weekd) as a separating variable (i)e'. = {d} , sothere are just seven
weather independent profiles). Except where otherwise noted, all the weather separa-
tions for the results presented were generated thus. This separation results in a total of
32112 observations being presented to MAR&(x669, 48 half-hours and 669 dates,
after 62 special days out of a possible 731 days have been excluded).

The intention of this run was to narrow somewhat the large pool of candidate varia-
bles, and particularly to identify some suitable values for the time period of various lag,
delta and smoothed variables. Even this broad set of variables needed to be picked judi-
ciously (based on the experiences of many exploratory runs) to keep computation times
acceptable.

The GCV score for the unmodelled dasadefined as that arising from a constant
MARS model (one with a single constant term, denajgth (EQ 57)); this is a measure
of the total variation in the data. The unmodelled GCV for the data is 63.14. The model
generated for the above described experiment resulted in 38 ANOVA functions (see sec-
tion 6.5.3) after the pruning phase, and the resulting piecewise-linear MARS model has
a GCV score of 14.09. This yields a percentage of variation (as measured by root per-
centage of GCV) accounted for by MARS of 88.140/2/ 553'14_14'09) x 100 %).

63.14
The square root takes into account that GCV is measured in squared units.

The relative variable importances determined by MARS appear in (TABLlE 5.)

which also features the correlation coefficients of each variable with the response (in the

1. Tables presented in this chapter are partially automatically generated by the data mining software, and
feature abbreviations of some variable names as used in the software. Most are just a four letter abbre-
viation of the variable full name, and are easily deciphered. The only obscure abbreviations are
‘avey’ for average temperature yesterdayaxy’ and ‘miny’ for peak and trough temperatures yester-
day, and dofy for day of yeaAsterices are used for ‘not applicable’. ‘RESP’ is the response variable,

which, of course, is not actually used as a predictor variable.
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Y-Correlation column). The first column shows the variable number, and the second,

TABLE 5.

No || Type Subtype| 1/2- Y-Corre- || Importance: Importance: | Importance:
hrs lation Experiment 1 | Experiment 2| Experiment 3

1 RESP | * * 1 * * *

2 avey | * * -0.4606 9.453 41.93 16.99

3 clou smooth | 1 0.1177 *

4 clou smooth | 3 0.1192 14.26 * 19.19

5 clou lag -2 0.1129 *

6 clou * * 0.1159 *

7 dark smooth | 2 0.2613 *

8 dark smooth | 4 0.332 *

9 dark lag -1 0.2179 *

10 || dark lag -2 0.2434 *

11 || dark * * 0.1913 7.870 * 6.811

12 || dofy * * -0.1248 44.85 * 44.97

13 ||even | * * -0.02852 || 100.0 * 100.0

14 || humi | smooth | 1 0.3127 12.25 * 17.47

15 || humi smooth | 2 0.324 *

16 || humi | smooth | 4 0.3361 11.98 * 12.51

17 || humi lag -2 0.3159 *

18 || humi lag -4 0.3206 *

19 || humi | * * 0.3019 *

20 || inso smooth | 2 -0.2584 17.58 * 11.50

21 || inso smooth | 4 -0.3293 23.34 * 19.66

22 || inso lag -1 -0.2163 30.73 * 29.25

23 || inso lag -2 -0.2419 *

24 || inso * * -0.19 31.77 * 35.06

25 || maxy | * * -0.4594 13.35 100.0 16.94

26 || miny | * * -0.4413 52.77 12.41

27 || nois * * 0.01252

28 || noon | * * 0.007577 || 36.87 * 45.04

29 ||seas | * * 0.0916 22.21 * 26.56

30 || spri * * 0.1871 26.90 * 35.96

31 || summ | * * -0.4968 9.751 * 27.97

32 || suns * * -0.4757 15.56 * 20.77

33 ||temp | smooth | 1 -0.4851

34 || temp | smooth | 2 -0.4893

35 || temp | smooth | 4 -0.4916 18.03

36 || temp | smooth | 6 -0.4896

37 || temp | smooth | 12 -0.4827 17.03 38.08 23.46
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TABLE 5.

38 || temp | smooth | 48 -0.481 13.60 33.04 16.86
39 |[temp | smooth | 96 -0.4855 31.96 43.1 16.01
40 || temp | smooth | 336 -0.4804 34.59 14.61
41 || temp | smooth | 1344 || -0.3759 25.11 42.77 33.29
42 || temp | delta -2 0.06831 13.04

43 || temp | delta -4 0.05303 12.45

44 || temp | delta -24 -0.1334 52.93

45 || temp | delta -48 -0.0249 43.86

46 || temp | delta -336 -0.01002

47 || temp | lag -2 -0.4883

48 || temp | lag -4 -0.4914

49 || temp | lag -8 -0.4848 20.44

50 || temp | lag -48 -0.473 33.68

51 || temp | * * -0.4804 34.64 32.37 42.19
52 || time * * -0.01999 || 14.77 * 18.38
53 || wind smooth | 1 0.07475 *

54 || wind smooth | 3 0.07743 || 7.514 * 7.617
55 || wind lag -2 0.06949 *

56 || wind * * 0.07604 *

third and fourth give the abbreviated basic variable name, and where applicable the type
of derivation used to generate the variable (lag, exponential smooth, delta) and the time
period (in half hours) used in that derivation. Blank cells represent zero importance (var-
lables not used).

Firstly, it should be noted that almost all of the variable types included are represent-
ed in some form in the model; temporal variables (both daily and yearly, as well as sun-
set-derived variables), derivatives of temperature, cloud cover, humidity, windspeed,
and derived illumination variables (insolation and darkness) all feature. Maximum and
mean temperatures from the previous day (but not the minimum temperature) are fea-
tured; only noise (as we would expect) plays no part at all.

Next to be noted is the great importance of the temporal variables, as reckoned by
MARS. Particularly, closeness-t0-18:00 GMT (egening, and also closeness-to-noon
and the day of the year, are ranked as very important; hour ofih&y, closeness-to-
spring, and seasonality also figure highly, whilst closeness-to-summer and sunset time
figure as less important (at least partially because the two variables share the same bur-
den, being strongly correlated and representing the same essential concept).

Extraterrestrial insolation, and variables derived from it, are temporal variables
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strictly speaking (though our estimated darkness variable must be regarded as a weather
variable, since it depends on cloud cover). Spot insolation and 1/2-hour lagged insolation
both appear to be influential variables, and short-term smooths of insolation also fea-
tured. (Spot) estimated darkness featured in the model, though not heavily.

Spot temperature and smoothed temperature variables appear to be easily the most
important of the non-temporal variables; particularly the spot temperature and some me-
dium and long term smooths (notably those with half-lives of 2 days and 28 days, i.e. 96
and 1344 half-hours); shorter term smooths (half-lives 12 and 48 half-hours) also play
their part.

The delta temperature variables were not selected at all by the model; various explor-
atory runs had found delta temperature variables to be of use, however. At least in this
experiment, lag variables were also found to be of very little importance (only one vari-
able - the half hour lagged insolation - being utilised), though again this had not always
been the case in prior exploratory runs. These observations prompted Experiment 2 (sec-
tion 11.3.7).

Of the remaining weather variables, humidity and cloud cover, and to a lesser extent
windspeed, all influenced the model, all in the form of short-term smooths.

Of the 38 ANOVA functions, 7 were functions of one predictor, 10 were functions
of two predictors, and the remainder (21) were functions of three predictors (recall the
maximum interaction level is set at three). There is no need to detail them all for this pre-
liminary experiment, but it is worth noting that no humidity variables interacted with
temperature (or any other weather) variables, that windspeed interacted with a medium-
term (half-life two days) temperature smooth, and that cloud cover-based variables only
appeared in interaction with insolation-based variables. Every interaction term included
at least one temporal variable - there were no weather-only interaction terms (unless in-

solation is counted as a weather variable).

11.3.7 Experiment 2: Bmperature-Based \driables Only

The same data and parameters were used as in experiment 1, but only temperature-
based variables (plus a noise variable) were available for selection (23 variables). As
would be expected, much less GCV was accounted for by the resulting model. The piece-
wise linear version of the model has a GCV score of 26.68 (28.86 for the piecewise cubic

version), compared to 14.09 for the piecewise linear model of experiment 1. Thus the
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(piecewise linear) model accounts for a root percentage of GCV of 75.99% (compared
to 88.14% in experiment 1).

There is no surprise that a model which is unaware of time-of-day variables can ac-
count for much less of the variation in weather dependent load (never mind the absence
of the other variables), since the effect of weather on load is strongly time-of-day de-
pendent. However it is interesting to note the changes brought about in the relative im-
portance of the temperature-based variables, shown in (TABLE 5.). Perhaps the most
important change is that delta temperature variables now play a role, and a reasonably
important one; the temperature change from 12 and from 24 hours ago appear particu-
larly influential. Lag temperature variables now also play a part, though are still of lesser
influence than exponentially smoothed temperatures. The previous day’s statistics (peak,
mean, trough), especially the previous day’s peak, assume a greater significance than
most of the other variables, whereas in experiment one they were less important than oth-
er temperature variables.

It is only to be expected that when a large selection of variables known to be useful
in load/weather modelling are removed, the importance of some remaining variables will
increase. Exactly why the previous day’s statistics, and the delta temperature change
from 24 hours ago, are rated as so important in the absence of the non-temperature-based
variables is unclear. In the case of the delta temperature with lag 8 half-hours, it is pos-
sible that it is rated as important partly because the variable conveys indirect time-of-day
information, in that the temperature tends to rise during the morning and fall through the
evening (no matter what the season); however the results of experiment 2 indicate that
delta variables are at least worth considering as candidate variables in load/weather mod-

els.

11.3.8 Experiment 3: Cioss-\alidation Results

n-fold cross-validation is a common technique for assessing the accuracy of predic-
tive mathematical models such as MARS. Whilst a goodness of fit statistic is generally
easy to calculate for a model, it only measures the goodness of the fit of the built model
to the actual data presented, not its goodness of fit to data of that type per se. However
since we generally assume that our data are drawn from a much larger, usually infinite
population, it is necessary to perform some kind of cross-validation in order to verify to

what extent a model’s claim of good fit applies to the population at large. This is espe-
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cially relevant when the data is noisy, since an overfitted model may claim an excellent
goodness of fit when it is in fact fitting to the noise; when that model is applied to fresh
data (which has different noise) the goodness of fit may be far lower.

n-fold cross-validation errors are calculated by subdividing the sample population
into n sub-populations, as equal in size as possible, in a completely random nmanner.
different models are then built, each usmg 1 of the sub-populations (combined) as
training data (on which the model is fitted) and the remaining sub-population as test data.
The cross-validation error for each model is the lack of fit of the fitted surfacetesthe
data. Then cross-validation errors are then usually averaged to obtain a single cross-val-
idation error figure.

The main smoothness parameter in MARS, degrees-of-freddcmarged per basis
function added (EQ 60) is intended as a parameter with which to guard against overfit-
ting in MARS. Each basis function added adds a knot to the fitting function, and fewer
knots result in a smoother fitted surface. Addition of too many knots to the fitted surface
increases the likelihood of overfitting the model, so it is necessary to use a cross-validat-
ed lack of fit measure to determine a suitable valuelfdlARS has a built-in routine
to estimate the optimal value fdrbased om-fold cross-validation errors.

Using this routine, based on a ten-fold cross-validation scheme, experiment 1 was re-
peated. Tenfold cross-validation greatly increases the algorithm’s computational com-
plexity (by a factor of around 10); furthermore, the number of basis functions (pre-
pruning) was increased from 90 to 120, imposing even greater complexity. It was not
feasible to compute cross-validation on very many of the experiments presented here be-
cause of the complexity, but the results in this instance are enlightening.

(TABLE 6.) shows a snippet of the output for the tenfold cross-validation run. The

TABLE 6.

Number of basis | correspondingd | Cross-\alidation Errors (CV)
functions

120 -1.95 12.82
119 -1.88 12.82
118 -1.78 12.82
117 -1.70 12.82
116 -1.59 12.82
115 -1.30 12.81
114 -.80 12.81
13 -.42 12.82
112 -.02 12.82
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TABLE 6.

111 .29 12.81
110 .98 12.81
109 1.64 12.82
108 1.97 12.82
107 3.14 12.82
106 4.1 12.82
105 4.95 12.83
91 21.03 12.91
90 22.19 12.92

cross-validation errors (CV) are almost constant for any final (post-pruning) number of
basis functions from 105 to 120 (and in fact, are little changed for as few as 90 basis func-
tions). Though Friedman recommends values between 2.0 and d.{(8forit would ap-

pear that for the problem presented here, a much wider range of valdesaiobe used

with minimal effect on goodness of cross-validated model fit.

The cross-validation routine determined the optimiabarameter at 0.98, corre-
sponding to 110 basis functions, with a predictive square error (averaged over 10 cross-
validation models) of 12.81. Running with=0.98 and 120 candidate basis functions,
the MARS model achieves an actual GCV score of 12.98 (for the piecewise linear ver-
sion; 14.86 for the piecewise cubic version), meaning it accounts for a root percentage
89.13% of GCV.

Comparing the relative importances in variables between experiments 1 and 3 (TA-
BLE 5.) there is very little difference to speak of, suggesting that although seeking 120
(rather than 90) candidate basis functions does not noticeably degrade cross-validated
goodness of fit (i.e. does not overfit), it does little to radically alter the final model.

Since the estimated optimal value for smoothness parachetes shown to result
in very similar cross-validated goodness of fit for such a wide range of values, it was not
deemed necessary to alter its value from the suggested default value of 3.0 (see [9]) in
any of the subsequent experiments, though the suggested value (approximately) was
used in the final modeb() of section 11.3.12.

It must be noted that a cross-validation scheme which seleataddom sub-popu-
lations ofcustomerswith which to build/test separate models, rather than of observa-
tions, might actually be more appropriate for our purposes; under the MARS cross-

validation scheme described, every sub-population is certain to contain observations

Applications of Data Mining &chniques to Electric Load Profiling 107



Applications of Data Mining &chniques to Electric Load Profiling

from every customer, and so customers with extremely unusual weather dependent loads
are unlikely to contribute quite as much lack-of-fit when appearing in test data as they
would under a cross-validation based on customer sub-populations. Unfortunately the
cross-validation scheme is programmed into the MARS code in a way which would be
very difficult to change, and time did not permit for this type of cross-validation to be
implemented. However, there are enough customers in the database that any difference

between these cross-validation schemes would most likely be slight.

11.3.9 Experiment 4: lllumination Variables

The variables available governing the amount of natural illumination present, and
hence affecting lighting loads, are principally cloud cover, (extraterrestrial) insolation,
(estimated) darkness and sunset time (and, excluding sunset, their lagged and smoothed
versions). Other temporal variables also influence the amount of natural illumination,
most notably time of day and closeness to summer; however they are not considered
here, since extraterrestrial insolation is of more direct relevance to lighting loads than
any of the time of day-based variables, and because sunset time is presumably at least as
relevant to lighting loads as any of the time of year-based variables.

The principal problem in trying to determine the importance of the above variables
on lighting loads is that most of them, directly or indirectly, strongly influence other
loads, especially heating and cooling loads. Sunset time is strongly correlated with tem-
perature variables, as is insolation (and inversely, darkness), and even cloud cover is co-
dependent with other weather variables (having a positive correlation with relative hu-
midity and a negative correlation with temperature). Thus it cannot be supposed that a
model featuring only the above variables will model mostly lighting loads rather than
other loads. Even if the actual recorded natural illumination figures were available to us,
there would be no way to isolate its effects on lighting loads from its indirect effects on
other loads, natural illumination having such strong correlations with other meteorolog-
ical and temporal variables.

The purpose of the experiments in this section was only to try and determine whether
our estimated darkness variable is of much utility relative to cloud cover and insolation,
and to try and determine a suitable value for the cloud transparency par@mnebér
(EQ 99).

To this avail, models were built using the same model parameters as experiment 1,
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except that the number of basis functions to be determined was only 50. The candidate
variables consisted of 2 temperature smooths (with half-lives of 4 hours and of one
week); yesterday’s mean temperature; closeness-to-evening (18:00 GMT) and close-
ness-to-noon; sunset time; plus a small selection of lagged and smoothed versions (and
a spot version) of (a) cloud cover, (b) extraterrestrial insolation and (c-g) estimated dark-
ness with a variety of cloud transparency parameters. The temperature variables were in-
cluded so that when variables deriving from cloud cover, insolation or darkness were
selected it was not merely due to their correlations with temperature (temperature being
the most influential non-temporal variable); the temporal variables for similar reasons
(since insolation/darkness have strong correlations with temporal variables). The results
appear in (TABLE 7.).

TABLE 7.
Experiment Numbert 4a 4b 4c | 4d | 4e | 4f | 49
lllumination \ariable ype: || clou inso dark
Cloud Transparency Parametey:* * 0.20 | 0.40 | 0.60 | 0.70 | 0.80
No || Type Subtype| 1/2- Relativeaviable Importance
hrs
1 RESP | * *
2 avey | * * 27.10 | 70.95 || 73.91 | 48.02 | 59.93 | 60.00 | 57.11
8 even | * * 100.0 | 100.0 || 100.0 | 100.0 | 100.0 | 100.0 | 100.0
9 nois * *
10 || noon | * * 37.53 | 41.63 || 31.04 | 31.86 | 35.36 | 43.78 | 33.44
11 |[suns | * * 67.67 | 51.11 || 68.19 | 62.92 | 53.45 | 47.93 | 42.46

12 | temp | smooth | 4 31.76 | 36.61 || 30.86 | 38.41 | 40.15 | 42.21 | 28.97
13 |[temp | smooth | 336 || 22.08 | 23.87 || 28.43 | 25.67 | 24.84 | 21.67 | 24.86

3 clijld® | smooth | 2 28.16 || 36.69 | 24.66 | 34.93 | 33.07 | 18.29
4 clild smooth | 4 9.542 | 32.69 || 34.86 | 17.15 | 6.332 | 6.793 | 10.36
5 clild lag -1 13.78
6 clild lag -2

7 clild * * 1256 | 7.535 | 10.10 | 11.91

GCV score (piecewise linear)j| 17.79 | 17.85 || 18.37 | 17.73 | 17.59 | 17.38 | 17.84
GCV score (piecewise cubic):|| 18.53 | 18.32 || 19.24 | 18.71 | 18,50 | 17.84 | 18.31

Correlation between observed| 0.8394 | 0.8409|| 0.8329| 0.8381| 0.8391| 0.8457| 0.8420
and (piecewise cubic) fitted:

a. c/ild means cloud cover in experiment 4a, insolation in experiment 4b, and darkness in experi-
ments 4c-4g.
The GCV scores for experiment 4a (using cloud cover) and experiment 4d (using
extraterrestrial insolation) are quite similar (although which model is judged better de-

pends on whether the piecewise linear or piecewise cubic version is used). Note that the
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cloud variables are not rated as particularly important in experiment 4a.

In experiments 4c-4g, using estimated darkness, cloud transparency parameters of
CT =0.2,0.4, 0.6 and 0.8 were used, and subsequently, a cloud transparency parameter
of 0.7 was also tried. For the lower valuesGir, fit was worse than, or barely better
than, either cloud alone or insolation alone. HowevelCtorvalues of 0.7 and 0.8, fit
was better than in experiments 4a and 4b, particularly S6Tor 0.7.

In any of the following experiments in which estimated darkness appears, a cloud
transparency figure €T = 0.75 has been adopted. It should not be inferred, however,
that the actual average transparency figure for clouds above the geographical area under

study is necessarily very near this figure.

11.3.10 Experiments 5, 6 & 7: Humidity and Whdspeed; Discomfort and Wnd
Chill Factors

There are a variety of measures used by meteorologists which attempt to describe the
combined effect of temperature and (relative) humidity on the level of comfort felt by
humans experiencing high temperatures. Air conditioning loads would be expected to in-
crease as human discomfort increases, and might be expected to follow a discomfort in-
dex more closely than either temperature or humidity individually, prompting the
introduction of a discomfort index to the weather model.

The most common of these measures isHbat Index(also known as Apparent
Temperature, also known as Temperature-Humidity Index) [35]. Another measure of the
discomfort arising from high temperature and high humidity isSilmamer Simmer In-
dex[36]. Both measures combine temperature and humidity into a figure reckoned to
represent how hot it actually feels when it is both hot and humid (rather than hot and dry),
measured in degrees Fahrenheit. The figures do not differ too greatly from one another
for most of the temperature/humidity range for which they are valid; however both for-
mulas become completely meaningless for low temperatures. There being little reason
to prefer one to the other, the Summer Simmer Index was deemed more useful for our
purposes because it is easier to extend the formula to be meaningful for lower tempera-
tures; there is a single temperature, 58 degrees Fahrenheit, at which the index is constant
whatever the relative humidity, a temperature at which there is deemed to be no discom-
fort due to heatTherefore by using a modified form of the Summer Simmer Index
(which we will just caldiscomfor} which remains constant at or below 58 degrees Fahr-

enheit, an index meaningful for all (reasonable) temperatures is recovered (there is no
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such cutoff point inherent in the Heat Index formula). The modified Summer Simmer In-

dex, then, is defined for Fahrenheit temperatures as

58 B-<58
discomfort = 8(EQ 101)

1.98 (6. — (0.55-0.0055w,) (6-—58)) —56.83 8 >5

wheref_ is the Fahrenheit temperature, andthe relative humidity (a percentage
figure), and by converting to and from degrees Fahrenheit and Celsius, a version is ob-
tained which can be used in our MARS model. Lagged and smoothed version of this spot
variable are also allowed as candidate variables; in fact, it could be the case that a differ-
ent lag/half-life is appropriate for temperature than for relative humidity in the calculated
discomfort index, but allowing such flexibility would lead to an explosion in the number
of candidate variables and was deemed counter-productive.

Whilst windspeed may also have an effect on air-conditioning loads (see 10.5.1) itis
more closely associated by modellers of the load/weather relationship with its effect on
heating loads, due to the cooling effects of the wind (again, see 10.5.1). Like discomfort
due to heat and humidity, the combined effect of wind and temperature are often com-
bined into one statistic. The most common of these is the Wind Chill Factor, which mod-
els the cooling power of the wind on skin, usually in watts per meter squared. This figure
is actually intended to model the apparent coldness for a human outdoors, rather than in-
doors, where except as draughts and through opened doors, the effect of wind will not
usually be felt directly. Since heating loads obviously depend chiefly on the indoor con-
ditions, Wind Chill Factor might not be an entirely appropriate candidate variable for a
load/weather model. However, since windspeed was demonstrated in experiment 1 to be
a non-trivial factor in the load/weather relationship, presumably mostly due to its inter-
action with the cold, it was felt that some measure of the combined effect of coldness and
windspeed might be useful, and Wind Chill Factor is the most obvious candidate.

Various versions of Wind Chill Factor are in use; the version that was used derives

from the Meteorological Service of Canada [37], and we will call itghsk:

chill = 1.162655.2735 fw,_+10.45—0.2778w,, H(33.0-6) (EQ 102)

Here, 8 is the temperature (degrees Celsius)apgd is the windspeed in miles per
hour; conversion of windspeed from knots to miles per hour was necessary before cal-

culating chill.
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Three experiments were conducted to evaluate the effectiveness of the derived vari-
ables discomfort and chill. Firstly, in experiment 5 a moderate selection of variables,
which did not include windspeed, humidity, chill or discomfort, were presented to
MARS (with the same model parameters as in experiment 1). Secondly, in experiment 6
these variables were used once more, together with windspeed and humidity (and some
lagged and smoothed variables derived from windspeed and humidity). Finally, in ex-
periment 7 the original variable set was used in conjunction with chill and discomfort
variables (again with some lags and smooths), without windspeed and humidity. The re-
sults are presented in (TABLE 8.).

TABLE 8.
Experi- Experi- Experi-
ment 5 ment 6 ment 7
No || Type Subtype| 1/2 Y-Correlation Impor- Impor- Impor-
hours tance tance tance
RESP * * 1 * * *
dofy * * -0.1248 22.89 25.02 16.15
even * * -0.02852 100.0 100.0 100.0
10 || nois * * 0.01252
11 || noon * * 0.007577 43.48 38.70 43.41
12 || spri * * 0.1871 44.46 31.14 34.45
13 || summ * * -0.4968 91.21 69.48 70.33
14 || temp smooth | 1 -0.4851
15 || temp smooth | 2 -0.4893 25.84 16.80 12.99
16 || temp smooth | 4 -0.4916 13.92 6.421
17 || temp smooth | 6 -0.4896
18 || temp smooth | 12 -0.4827 30.26 22.69 15.05
19 || temp smooth | 48 -0.481 32.84 28.25 20.83
20 || temp smooth | 96 -0.4855 40.03 32.96 29.62
21 || temp smooth | 336 -0.4804 12.52
22 || temp smooth | 1344 || -0.3759 32.66 23.66 15.44
23 || temp lag -2 -0.4883 10.93
24 || temp lag -4 -0.4914
25 || temp * * -0.4804 21.24 6.479 10.93
26 || time * * -0.01999 23.80 13.04 15.21
humi disc
4 humi/dis@ | smooth | 1 0.3127 || -0.2336 || *
5 humi/disc | smooth | 2 0.324 -0.2396 || *
6 humi/disc | smooth | 4 0.3361 || -0.2391 || * 7.191
7 humi/disc | lag -2 0.3159 || -0.2402 || *
8 humi/disc | lag -4 0.3206 || -0.2467 || *
9 humi/disc | * * 0.3019 || -0.226 || * 20.79
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TABLE 8.
wind chil

27 || wind/ chiP | smooth | 1 0.07475(| 0.4739 || * 5.612
28 || wind/ chil | smooth | 2 0.07501(| 0.4781 || * 1.262
29 || wind/ chil | smooth | 4 0.08147(| 0.4797 || * 17.45 8.565
30 || wind/ chil | lag -2 0.06949(| 0.4736 || *

31 || wind/ chil | lag -4 0.0672 || 0.4755 || *

32 || wind/ chil | * * 0.07604(| 0.4681 || *

a. Humidity in experiment 6, discomfort in experiment 7.
b. Windspeed in experiment 6, chill in experiment 7.

In each case the GCV score for the unmodelled data is (again) 63.14. The GCV
scores for the piecewise linear versions of the constructed MARS models are respective-
ly, 15.18, 14.39 (humidity and windspeed included) and 14.93 (discomfort and chill in-
cluded).

The first thing to note is that humidity is preferred by MARS to our discomfort meas-
ure: indeed discomfort and its derivatives are not selected at all, whereas plain relative
humidity (spot humidity and humidity smoothed with a half-life of 4 half-hours) is se-
lected. This is perhaps surprising, but less surprising in light of the fact that response is,
in fact,inverselycorrelated with discomfort in the data (see TABLE 8.). This is perhaps
counter-intuitive, since discomfort is constant when temperatures are low (i.e. less than
58 degrees Fahrenheit, or 14.5 degrees Celsius). It may well be the case that the cutoff
point used in the summer simmer index is much too low for our load/weather model (at
least for UK business loads), hence the negative load/discomfort correlation. It would
appear that even as discomfort (as measured by (EQ 101)) increases, the loads of the
Sponsor’s customers are still being relaxed, possibly due to lower water heating costs,
and possibly due to lower summer lighting costs. There might be some mileage in re-
placing the discomfort measure of (EQ 101) with some other measure, one with a higher
cutoff point. However, there are four interaction terms involving humidity in the ANO-
VA decomposition of experiment 6. One involves spot humidity and closeness-to-sum-
mer; two involve spot humidity and temperature smoothed with a half-life of 28 days
(once with closeness-to summer, once with the day of the year); and the last involves
smoothed humidity (2 hour half-life), smoothed temperature (2 day half-life) and
smoothed windspeed (2 hour half-life). Thus it would appear MARS is capable of con-
structing terms which take account of the effect of humidity on human discomfort, and

even of windspeed on human discomfort, without needing the assistance of an explicit
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discomfort variable.

The wind chill variable of (EQ 102), in contrast, is selected by MARS in various
forms, though it does not appear to assume markedly more importance than windspeed.
Smoothed windspeed (2 hours half-life) appears in ANOVA interaction terms with me-
dium-term temperature smooths, and closeness to summer (as well as with humidity/
temperature as above) in experiment 6, suggesting that wind chill can be modelled im-
plicitly by MARS just as well as by including an explicit Wind Chill Factor.

Indeed, in another experiment on the same data (TABLE 9.) featuring windspeed,
humidity, chillanddiscomfort, discomfort again went unselected, whilst chill and wind-
speed were both selected; however windspeed appeared to have greater importance than
chill. No temporal variables were present in this model, in order to better highlight the
effect of weather variables (compare with experiment 2, which featured only tempera-

ture-based variables).

TABLE 9.

1/2- || impor 1/2- || impor
No || Type | Subtype | hrs || tance | No || Type | Subtype | hrs tance
1 RESP | * * * 26 || temp | smooth 2
2 avey | * * 100.0 | 27 || temp | smooth 4
3 chil smooth 1 28 || temp | smooth 6 37.71
4 chil smooth 2 29 || temp | smooth 12 65.77
5 chil smooth 4 30 || temp | smooth 48 39.32
6 chil smooth 6 16.41 | 31 || temp | smooth 96 35.59
7 chil * * 32 || temp | smooth 336 || 35.20
8 clou smooth 1 33 || temp | smooth 672 || 66.07
9 clou smooth 3 34 || temp | smooth 1344 || 69.74
10 || clou smooth 5 35 || temp | smooth 2688 || 63.64
11 || clou * * 36 || temp | delta -2
12 || disc smooth 1 37 || temp | delta -4
13 || disc smooth 2 38 || temp | delta -24 31.05
14 || disc smooth 4 39 || temp | delta -48 17.63
15 || disc smooth 6 40 || temp | delta -336 || 20.52
16 || disc * * 41 || temp | lag -2
17 || humi smooth 1 42 || temp | lag -4
18 || humi smooth 2 21.06 | 43 || temp | lag -8 47.52
19 || humi smooth 4 94.08 | 44 |[temp | lag -48 51.88
20 || humi smooth 6 47.08 | 45 |temp | * *
21 || humi * * 33.62 | 46 || wind smooth 1
22 || maxy | * * 24.31 | 47 || wind smooth 3 16.45
23 || miny | * * 40.58 | 48 || wind smooth 5 39.26
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TABLE 9.

1/2- || impor 1/2- || impor
No || Type | Subtype | hrs || tance | No || Type | Subtype | hrs tance
1 RESP | * * * 26 || temp | smooth 2
24 || nois * * 49 || wind * *

25 || temp | smooth 1
Aside from the observations about the relative merits of chill and discomfort com-

pared to windspeed and humidity, it is interesting to note the huge relative importance
attributed by MARS to humidity (and its lags and smooths); indeed it appears to be at-
tributed around as much importance as temperature and its lags and smooths, though not
as much as the previous day’s mean temperature. Since humidity is not found to have an
influence comparable with that of temperature in the presence of temporal variables, it
is possible that the way in which MARS estimates variable importance is giving undue
importance to humidity here, especially as (relative) humidity has a fairly strong (nega-
tive) correlation with temperature (humidity smoothed with a half life of 2 hours has a
correlation coefficient of -0.4569 with a temperature smooth having the same half-life,
and a correlation coefficient of -0.4700 with closeness-to-summer). It is possible there-
fore that humidity is taking some of the role that would otherwise be taken by closeness-
to-summer, or that could be modelled by temperature variables, in its absence.

Another explanation for the high relative importance of humidity is that cold weather
heating loads may be elevated when humidity is high. This could arise because cold tem-
peratures are experienced as more unpleasant when the air is damp than when the air is
dry.

For whatever reason, there seems little doubt that humidity is a useful predictor in the
load/weather models presented, and of more importance than windspeed.

The ANOVA decomposition again features terms in which humidity variables inter-
act with one or more of: temperature variables; closeness-to-summer; and windspeed
variables. Humidity smoothed with half-life 4 half-hours also appears in interaction

terms with delta temperature variables (with 24, 48 and 336 half-hour lags).

11.3.11 Experiments with Mixed Categorical and Continuous ¥riables

Using the mixed MARS model of section 6.6.2 (as detailed in sections 11.2.3 and
11.2.4), models were built featuring a moderate selection of temporal and weather vari-
ables together with various categorical variables f{amXg, X., X } (day of the week,

SIC code, tariff code and load factor category). Seven (maximum entropy) load factor

Applications of Data Mining &chniques to Electric Load Profiling 115



Applications of Data Mining &chniques to Electric Load Profiling

categories were employed, based on recalculated 1-percentile load factors (see section
13.5.2 for an explanation of percentile load factors). There are 7 tariff codes and 41 SIC
codes represented in the data.

In the previous experiments, weather decomposition was performed by subtracting
one of just 7 weather independent profiles (corresponding to the day of the week), see
section 10.5.5 for details. In the following experiments, a full weather decomposition us-
ing all four categorical variables (day-of-the-week, load factor category, tariff code and
SIC code) was performed to arrive at the weather-dependent loads used for the mars
models. There were in fact 1491 weather-independent atoms; these were generated using
recalculated 1-percentile load factors and 7 load factor categories, and featured 7 distinct
tariff codes and 41 distinct SIC codes. Thus of The7 x 7 x 41 = 14063 possible
combinations of day of the week/load factor category/SIC/tariff code, only 10.6% have
any actual representatives in the 1995/6/7 database.

The experiments performed involved (i) no categorical variables, (ii) day of the week
only, (iii) load factor category only, (iv) day of the week and load factor category, (v)
tariff code only, (vi) day of the week and tariff code and finally (vii) SIC code only. For
(i) to (vi), 90 basis functions were sought. However, due to the massive size of the prob-
lem when SIC code is used as a categorical variable, it was not possible to seek as many
as 90 basis functions, and the number had to be limited to 40 in order to fit into machine
memory; even with this restriction, the program required over 1600 megabytes of ma-
chine memory. Thus the results of (vii) are thus somewhat compromised, and this should
be borne in mind when comparing with (i)-(vi).

It is important to note that the data presented is not the same in all these experiments;
even the number of observations varies (see TABLE 10.) because of the way in which
the response values are calculated when categorical customer variables are employed
(see sections 11.2.3 and 11.2.4). Whilst (i) and (i) have the same data (since introducing
day of the week does not require each date’s data to be split into categories), experiment
(iii) has seven times as much data (since on any date we need separate weather-depend-
ent load readings for each load factor category). Experiment (iv) uses the same data as
experiment (iii) since only day of the week is added. Experiments (v) and (vi) use nearly
seven times as much data as experiment (i) (not exactly 7, because one or more tariff
code must represent customers all of whom have data missing on a certain date or dates).
Similarly, experiment (vii) uses not far off 41 times as much data as experiment 1, hence

the excessive computational demands when using SIC codes as a categorical predictor.
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Relative variable importances from the experiment, and some other model statistics,
are shown in (TABLE 10.). The results of (i) do not show any major departures from a

previous similar experiment (experiment 1), and are given for comparison purposes.

TABLE 10.
Experiment: | (i) @ [ay [ [w [ ] i)
Type Subtype| 1/2- Relativeaviable Importance
hrs
Categ’l \ariables Used: none | day Id fac | day & || tariff day & || SIC
Id fac tariff
avey * * 28.13 | 13.43
chil smooth | 1
chil smooth | 2
chil smooth | 4 15.85
chil smooth | 6 22.22 | 20.70 28.80 | 42.06
dark smooth | 2 13.45 | 29.76 || 31.66 | 19.51 || 19.54 | 50.05 || 20.92
dark smooth | 4 43.73 | 35.93 || 53.68 | 54.07 || 41.40 | 42.80 || 23.93
disc smooth | 1
disc smooth | 4
disc * *
dofy * * 30.87 | 39.34 || 29.71 | 28.36 || 36.44 | 34.76
even * * 100.0 | 100.0 || 100.0 | 100.0 || 100.0 | 100.0 || 57.51
humi smooth | 1 9.701 | 24.94
humi smooth | 4 9.075
humi * * 12.22 15.45 | 11.92 || 21.78
maxy * *
miny * * 10.16 | 7.448
nois * *
noon * * 31.17 | 32.85 || 42.31 | 36.28 || 41.74 | 33.93 || 17.55
spri * * 43.08 | 34.73 || 43.71 | 41.02 || 37.86 | 32.91 || 15.88
summ | * * 46.99 | 38.48 || 44.23 | 32.43 || 48.46 | 39.77 || 22.18
temp smooth | 1
temp smooth | 2
temp smooth | 4
temp smooth | 8 19.54 | 23.61 || 31.74 | 28.08 || 23.19 | 23.35
temp smooth | 12 9.122
temp smooth | 48 16.79 | 17.30 || 17.92 | 32.72 || 11.74 | 11.48
temp smooth | 96 47.40 | 42.23 || 47.99 | 43.44 || 31.88 | 43.88 || 100.0
temp smooth | 336 9.608
temp smooth | 1344 || 30.97 | 14.07 || 43.80 | 41.22 || 30.89 | 15.53
temp delta -2
temp delta -4
temp lag -2
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TABLE 10.
temp lag -4
temp lag -48
temp * * 16.26 | 18.54
time * * 15.97 | 43.98 || 17.57 | 37.13 17.89 || 14.07
wind smooth | 2 10.10
wind smooth | 4 8.725 14.18
day of | * * * 35.27 || * 40.73 || * 46.02 || *
wk.
other * * * * 95.76 | 91.33 || 67.96 | 67.32 || 90.95
categ?

none | day Id fac | day & || tariff day & || SIC

Id fac tariff

Number of observations: 3212 224 784 223 344 1223808
GCV in unmodelled data: 62.52 99.76 100.1 222.4
GCV score (piecewise lin{| 14.50 | 13.24 || 42.54 | 41.26 || 46.52 | 45.69 || 153.3
ear):
GCV score (piecewise 15.64 | 14.54 || 43.29 | 42.87 || 47.37 | 47.26 || 154.1
cubic):
Root percentage GCV 87.64 | 88.78 || 75.73 | 76.58 || 73.16 | 73.73 || 55.74
accounted for (piecewise
linear model):

a. ‘Other categorical variable’: load factor in (i) and (iv), taif (v) and (vi), SIC in (vii).

The introduction of day of the week in experiment (ii) yields a notably better model
fit (comparing to (i)). Recall that MARS adds basis functions in pairs. The first appear-
ance of the categorical varialiden the procedure is as the 27th and 28th basis functions
are selected (out of 90 non-constant basis functions in total), and unsurprisingly the cat-
egorical basis functions represent {Mon, Tue, Wed, Thu, Fri} and {Sat, Sun}, i.e. week-
day and weekend. The next selectiomla$ upon the addition of the 35th and 36th basis
functions. More surprisingly, those basis functions represent {Mon, Tue, Wed} and
{Thu, Fri, Sat, Sun}. The next four timek is selected, the split is again into weekday
and weekend, and the next (and final) selectioth f for the 81st and 82nd basis func-
tions, the split (knot) being between {Thu, Fri} and the other days.

The grouping of {Thu, Fri, Sat, Sun} at the 35th/36th selection does not infer that
Thursday and Friday load/weather behaviour is more like Saturday and Sunday load/
weather behaviour than Monday to Wednesday behaviour: since the {Sat, Sun} basis
function is already part of the model, the new {Mon, Tue, Wed} term could be seen as
differentiating between {Thu, Fri} and {Mon, Tue, Wed, Thu, Fri}. However, there is

no obvious reason why Thursday and Friday are grouped together. Friday load shape is
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known to be slightly different from Tuesday to Thursday load shape (as is Monday load
shape) as a result of proximity to the weekend, but Thursday holds no such distinction
(except in the rare case when Friday is a bank holiday). In fact, it was eventually discov-
ered that there is some highly questionable data in the original whole loads database for
one particular month (January 1997), in which Thursday and Friday (and probably Sat-
urday and Sunday) loads are almost certainly misrecorded. This is discussed in 13.5.1,
and entirely accounts for the unusual grouping of Thursday and Friday.

Variables which appear in interaction terms together digall of order 3) are close-
ness to evening and smoothed temperature (48 hour half-life); day of year and smoothed
darkness (1 hour half-life); time of day and smoothed darkness (half-life 2 hours); close-
ness to evening and smoothed darkness (half-life 1 hour); and day of year and humidity
(smoothed with half-life 1 hour).

In (iii) and (iv) there is (understandably) more variation per observation (GCV),
since each observation in (i) is now replaced by several generally differing observations.
The modelling task is accordingly harder, and it would not be expected that the models
built on this data could account for as much variation as the models of (i) and (ii). Indeed,
model (iii) (featuring load-factor as a categorical variable) accounts for 75.73% root-per-
centage of GCV in the piecewise-linear model, as compared to 87.64% in (i) and 88.78%
in (if). When day-of-the-week is also admitted in (iv), the figure rises to 76.58%. How-
ever, while we cannot fairly compare the importance of load factor to the importance of
day-of-the-week, i.e. models (ii) and (iii), using GCV scores, it should be noted that load
factor was featured in a basis function more often, and at an earlier stage, in (iii) than
day-of-the-week was in (ii). In fact it was picked 8 times (rather than 7) and was first
used in the 9th and 10th basis functions. The first time load factor is used, it is load factor
category 1 that is separated from categories 2 to 7 (category 1 comprising those custom-
ers with the lowest load factors). The second time, it is categories 5, 6 and 7 that are sep-
arated from the others.

Much later, some rather more unusual splits occur: the 75th and 76th basis functions
introduce a split between categories {2, 3, 7} and {1, 4, 5, 6}. We would expect load fac-
tor categories nearby each other to exhibit similar load/weather behaviours, given
enough data, since load factor is a continuous quantity. Since various basis functions fea-
turing splits separating only contingent categories are already in the model, terms which
group together non-contiguous categories could in fact represent a valid modification to

the earlier terms. However, terms grouping non-contiguous categories could also arise
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due to some coincidental similarities between the customers in non-contiguous load fac-
tor categories, indicating possible overfitting.

When day-of-the-week and load factor are allowed to compete in the same model, in
(iv), load factor is selected 8 times (again) and day-of-the-week 4 times. Day-of-the-
week is selected rather later than load factor, and groups together Saturday and Sunday
3 times, and Thursday and Friday once. Load factor shows even less tendency to group
together non-contingent categories than in (iii). Load factor is rated by MARS's relative
variable importance criterion as more important than day-of-the-week, across experi-
ments (ii)-(iv).

In (v) and (vi), using tariff code as a categorical predictor, there is only slightly more
GCV in the unmodelled data than in (iii) and (iv), but the variation in this data would
appear to be rather harder to model (allowing the use of tariff code) than that of (iii) and
(iv) (allowing the use of load factor), given that the root percentage of GCV accounted
for by these models is rather lower than that accounted for by the corresponding load fac-
tor models. Also, tariff code is rated by MARS as having lower relative variable impor-
tance than when compared to load factor category (though that comparison is across
different models). However, tariff code is actually selected for inclusion in new basis
functions more frequently than was load factor category. In (v), tariff code was selected
12 times, 5 of these occurring quite early in the forward selection algorithm (between the
selection of the 15th/16th and 31st/32nd basis functions, inclusive). These basis func-
tions split the tariff codes into a wide variety of binary partitions. In (vi), tariff code was
selected 8 times, and day-of-the-week was selected 5 times, for inclusion in new basis
functions. Day-of-the-week is split along weekday/weekend lines in four of these in-
stances, and into {Thu, Fri} and {Mon, Tue, Wed, Sat, Sun} in the other instance (on the
addition of the 77th and 78th basis functions). Day-of-the-week is first selected for the
addition of the 33rd and 34th basis functions, at which stage tariff code has already been
selected for inclusion on five occasions.

Tariff code is rated by MARS's relative variable importance criterion as more impor-
tant than day-of-the-week. However, comparing across experiments, tariff is rated as
less important than load factor; day-of-the-week is rated as more important when used
in conjunction with tariff code data than in any of the other categorical variable experi-
ments, indicating that there is some interaction between tariff code and day type in their
effect on the weather.

Because computational complexity considerations constrained experiment (vii) to
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only 40 candidate basis functions, what we can say about it's effectiveness as a categor-
ical predictor in load/weather models is limited. Since the data presented to the model
featured (understandably) much greater variation (GCV) than that presented to the other
models, we could not fairly compare the amount of GCV accounted for with GCV ac-
counted for in the other models even if as many as 90 basis functions had been selected.
However it would appear that SIC code is quite a useful predictor in the load/weather
model presented; it is rated as having high relative importance by MARS, and is selected
for inclusion in basis functions 10 times even though only 20 pairs of non-constant basis
functions were generated. It appears in the ANOVA decomposition in three terms, inter-
acting with darkness (smoothed with a one hour half-life), with temperature (smoothed
with a 48-hour half-life), and again with that temperature smooth in an order 3 interac-
tion with closeness-to-noon. At least one basis function from each pair of basis functions
featuring SIC survived pruning, and varied greatly in which SIC codes were grouped to-

gether, as can be seen in (TABLE 11.). Here, the 41-character strings feature a zero in

TABLE 11.

00001100110011001001011100100100101110010
00001100010011100001011100100100101010010
00000000000010000000000000000000000010000
11110011001100110010100100110110110010000
00001100010010000001001000000000001010010
00000010101011000101011000011001000011101
10010001011110111011111111100100100110010
10111000100111100110101111101111101011001
01100101001001100000001100100110111010000
11111111010110110111111011011011010011111

the nth position wherever theth SIC category was in one half of the partition, and a 1
where it was in the other half, for the ten different partitions used. It appears that there is
a complex relationship between SIC code, the weather and temporal variables, and
weather-dependent load.

Due to computational complexity considerations, no MARS model was built featur-
ing SIC code and day-of-the-week as categorical predictors together. Whilst it appears
that SIC code might be a very powerful predictor in load/weather models, in order to per-
form more thorough experiments (with more candidate basis functions), a server with

more random access memory and/or swap space, and ideally with a faster processor,
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would be required than was available. Another approach might be to use a decision tree
clustering technique as outlined in 13.3 and 13.4 on weather-dependent profiles, using
SIC code as the only extrinsic variable; this would cluster together SIC codes for which
the weather dependent profiles are similar. If, say, a dozen or so clusters of SIC codes
were used in place of the original 41 SIC codes, the computational complexity and mem-
ory requirements would become more manageable, though it can only be speculated as
to how useful a predictor such a clustered SIC variable could be.

It should be noted that in the 1995/6/7 data (and, indeed, the 1994/5 data) some SIC
codes only feature one customer, or very few customers. Whilst the weighting scheme
described in sections 11.2.2 and 11.2.3 ensures that such SIC codes do not assume undue
importance in the model, the predictive power of a weather model using SIC as a predic-
tor may be relatively poor when the previously unseen customer has an SIC code for
which there was little data in the original (training) database.

Comparing relative variable importances of the continuous weather and temporal
variables across all of experiments (i)-(vi) (comparisons with experiment (vii) are not re-
ally valid because of the smaller number of basis functions), there are few patterns to be
noted. Generally, it would seem that yesterday’s statistics, and that humidity and wind-
speed (though not wind chill), assume somewhat less importance as more categorical
variables are introduced.

There are some weather variables that seem to assume more importance in the pres-
ence of one particular categorical customer variable; notably, wind chill gains in impor-
tance when tariff code is present as a predictor; and spot temperature is only included in
the model when load factor is present as a predictor. There are no obvious explanations

for these two observations.

11.3.12 Final Models Used for Deweathering Data

Based on insights drawn from the results of the experiments in sections 11.3.6 to
11.3.11, three final load/weather models were built; all were built using data weather-
separated according to all four categorical variables (day-of-the-week, load factor cate-
gory, tariff code and SIC code), as in section 11.3.11; two were used to create nominally
weather-free databases (with and without the use of categorical variables), whilst one
model (without categorical variables) was restricted to use interaction terms of order no

higher than two, for the purposes of generating 3 dimensional surface plots of various
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ANOVA terms. (MARS provides a slicing option to generate lower dimensional terms
from higher dimensional terms by fixing one or more variables - see section 11.2.2 - to
enable plotting of high dimensional interaction terms. The plots so produced were not
found to be particularly revealing, and it was felt that restricting the maximum interac-
tion order produced a set of plots with better interpretive power.)

The first modelmodela , uses 49 weather and temporal variables, generally those
which had been rated as most important in the previous experiments. One exception to
this is that time-of-day and day-of-year were excluded from the final models, despite
usually being rated as fairly important in earlier experiments. The reasoning behind this
was that time-of-day and day-of-year are suspected of being more prone to overfitting
the data than the sinusoidal temporal variables (closeness-to-noon, -evening, -spring and
-summer); this is because time-of-day is capable of singling out one particular half-hour,
and day-of-year is capable of singling out one particular day, whereas a particular value
of one of the sinusoidal variables corresponds very closely to two non-consecutive half-
hours or days (except at its peak or trough). Thus the sinusoidal variables are less likely
to overfit to an outlying load value on a particular day and half-hour. Also, sunset time
was omitted from the final models, as it is so strongly correlated with closeness-to-sum-
mer as to serve no real additional value (their correlation coefficient is 0.9952).

No discomfort variable was used, though wind chill was included, as were relative
humidity and windspeed, each with a small selection of short-term smoothed versions.
lllumination-related variables consisted of cloud and estimated darkness (transparency
parameterCT=0.75), with short-term smooths. Finally a wide range of temperature-
based variables (including yesterdays mean/minimum/maximum, and various lags,
smooths and deltas that had proved of use in other experiments), and as always a noise
variable, were included. These are all detailed in (TABLE 12.). Parameters to the MARS
model were changed only slightly from experiment 1; the smoothness paranvedsr
set tod = 1.00 (in close accordance with the value determined by cross-validation in
experiment 3) and the number of candidate basis functions was increased from 90 to 120
(as in experiment 3). It was not thought necessary to perform a new cross-validation ex-

periment for this model, the set of candidate variables being very close to that of cross-
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TABLE 12.
Modedsion: || o B y
Maximum Interaction Ordgf:3 3 2
No. || Type Subtype| 1/2- || Y-Corre- || Relative \ariable Importance
hrs lation
2 avey * * -0.4663 19.94 10.41
3 chil smooth | 1 0.4808
4 chil smooth | 2 0.4846
5 chil smooth | 4 0.4857
6 chil smooth | 6 0.484 19.27 19.43
7 chil * * 0.4753
8 clou smooth | 1 0.1168
9 clou smooth | 3 0.1187
10 clou smooth | 5 0.1213 7.414
11 clou * * 0.1149
12 dark smooth | 2 0.2718 8.377 31.19 24.11
13 dark smooth | 4 0.3404 23.48 50.81 29.14
14 dark * * 0.2044 22.96 5.463
15 even * * -0.02271 || 100.0 100.0 100.0
16 humi smooth | 1 0.3152 33.99
17 humi smooth | 2 0.3257
18 humi smooth | 4 0.3366 23.85
19 humi smooth | 6 0.3392 8.998
20 humi * * 0.3051 6.715 17.45
21 maxy * * -0.4648 12.12 16.93
22 miny * * -0.4469 12.07
23 nois * * 0.01321
24 noon * * 0.003568 || 44.81 47.31 39.19
25 seas * * 0.09136 || 23.27 28.95 12.02
26 spri * * 0.1899 49.89 63.91 49.99
27 summ * * -0.5024 49.59 44.97 31.55
28 temp smooth | 1 -0.4917
29 temp smooth | 2 -0.4954
30 temp smooth | 4 -0.4968 17.45
31 temp smooth | 6 -0.4945 28.90
32 temp smooth | 12 -0.4876 27.87 24.00
33 temp smooth | 48 -0.4867 20.81 19.80 17.46
34 temp smooth | 96 -0.4914 38.10 50.42 26.19
35 temp smooth | 336 || -0.4864 11.52 9.117
36 temp smooth | 672 || -0.4584 19.75
37 temp smooth | 1344 || -0.3805 30.96 29.64
38 temp smooth | 2688 || -0.2534 29.55 48.05 21.47
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TABLE 12.

39 temp delta -2 0.05979

40 temp delta -8 0.001.69

41 temp delta -24 -0.1372

42 temp delta -48 -0.02625

43 temp delta -336 || -0.009455|| 8.745

44 temp lag -8 -0.4882

45 temp lag -48 -0.4796 5.920

46 temp * * -0.4875 20.87 14.85

47 wind smooth | 1 0.07613

48 wind smooth | 3 0.08026 9.967
49 wind smooth | 5 0.08996 || 23.65

50 wind * * 0.07682

51 day of week | * * * * 37.20 *

52 load factor | * * * * 97.73 *
Number of observations: 3212 224784 | 32112
GCV in unmodelled data: 62.52 99.76 62.52
GCV score (piecewise linear): 12.72 39.80 13.75
GCV score (piecewise cubic): 14.37 41.45 15.17
Root percentage GCV accounted for (piecewise lin-89.25 77.53 88.32
ear model): W

It would have been viable to increase the maximum interaction order from 3 for the
final modela , but this was decided against. Whilst MARS weather models which allow
unrestricted interaction orders were tested (not presented), and did sometimes select in-
teraction terms of order 4 and even 5, there is no compelling evidence that terms of order
greater than 3 play any particularly significant role in the load/weather relationship. Al-
lowing a model additional freedom when there is not a compelling reason to do so in-
creases the chances that the model will overfit the data, thus the maximum interaction
order was left at 3.

Model a does not select cloud cover or wind chill in any form. Estimated darkness,
relative humidity and windspeed all assume moderate importance, as do the previous
day’s temperature statistics. Whilst seasonality’s role is modest, the other temporal var-
lables, especially closeness-to-evening, are all rated as highly important.

A one-day lagging temperature variable played only a tiny role, and the only delta
variable selected, with a lag of one week, played almost as small a role. It appears that
(at least in the presence of temporal variables) temperature lags and deltas are of little to
no importance, as compared with exponentially smoothed temperatures. As previously,

a wide range of temperature smooths were found to be important, as well as the spot tem-
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perature.

Of 53 ANOVA functions in the final modet , 8 were functions of one variable, 18
were interactions of order two, and the remaining 27 were interactions of order 3. There
are many interactions between the various temporal variables and the various tempera-
ture variables; humidity appears in order 3 interactions with windspeed and a long term
temperature smooth (half-life two weeks); with windspeed and a short term temperature
smooth (half-life three hours); with closeness-to-evening and a long term temperature
smooth (half-life 1 week); and interestingly, with seasonality and a long-term tempera-
ture smooth. Since seasonality peaks at both midwinter and midsummer, this may be in-
dicative of humidity having an effect on winter heating loads as well as summer cooling
loads. Aside from interactions with humidity already mentioned, wind speed occurs in
only one other interaction term (of order 2, with a short term temperature smooth). Esti-
mated darkness appears in several interactions, always with only temporal variables. The
previous day’s temperature statistics appear in interactions with a variety of temporal
variables and with temperature (spot temperature, and short, medium and long term tem-
perature smooths).

In model3, the same candidate variables were used, plus two categorical variables
(load factor category and day-of-the-week). The parameters were unchanged, except for
MARS smoothness parametgr which was determined by a new cross-validation ex-
periment. Because of the higher computational cost of the weather model in the presence
of categorical customer variables, tenfold cross-validation (as in experiment 3) was re-
jected in favour of single-fold validation, which is less accurate but much faster. This in-
volved partitioning the population randomly into two sets (a training subset and a test
subset), witl‘%Ir of the data in the training subset %@f the data in the test subset. Part

of the output from this cross-validation run appears in (TABLE 13.).

TABLE 13.

Number of basis Corresponding] Cross-\alidation
functions Errors

(CV)

120 -1.70 39.26

102 -1.68 39.26

101 -1.66 39.26

100 -1.36 39.26

99 -0.73 39.26

98 -0.31 39.26
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TABLE 13.

97 0.79 39.27
96 2.17 39.27
95 5.36 39.27
80 62.36 39.37
50 513.36 41.36

As in experiment 3, the cross validation errors are very insensitive to changes in the
number of basis functions retained in the final (pruned) model over quite a wide range.
The optimal number of basis functions was determined by MARS to be 101, with a cor-
responding smoothness parameter —1.66, representing only a tiny penalty for the
addition of new basis functions in the lack-of-fit function (EQ 59), (EQ 60). Using this
value ford, the model (rebuilt on the full dataset, not just the training data) is de-
scribed in (TABLE 12.). Any differences from the results of experiment (iv) of section
11.3.11 (which used a similar variable set) are very slight.

Finally a model ihodely) was built with the same variables and parameters as in
modela , except that the maximum interaction level was restricted to 2, for easier visual
interpretation. There are some differences in relative variable importances when the
maximum interaction level is set at two (compared to madelknd the overall model
fit is somewhat poorer, but the simplified model is basically similar and allows much
more comprehensible visualisation by avoiding the need to slice order 3 terms. (COL-
OUR FIGURE 5.) to (COLOUR FIGURE 6.) show various surface plots for ANOVA
terms from the simplified order 2 model. The x- and y-axes are always scaled so that the
minimum value of a predictor is 0.0 and the maximum value is 1.0. The z-axis is scaled
by adding or subtracting a constant so that the smallest value of the fitted surface is 0.0;
however the highest value shown on the z-axis is indicative of the actual magnitude of
the illustrated ANOVA function in the final model. To make interpretation easier, points
are plotted in a colour with varies smoothly with the fitting function (i.e. z-axis). The
same colour gradient is used as in (COLOUR FIGURE 1.) and similar figures, with deep
purple being used for the minimum of the fitted function, through to bright red for the
maximum of the fitted function. Regions of the x-y plane in which no data points occur
do not have a valid fitting function in a MARS model, and so remain blank.

It must be pointed out that in the presence of so many correlated predictors, no single

ANOVA term for any two predictors can be properly interpreted in isolation from all the
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other ANOVA terms featuring related predictors. Nevertheless the presented plots are
instructive.

(COLOUR FIGURE 5.) shows an ANOVA term featuring a 48 hour half-life tem-
perature smooth with closeness to evening. Notice that the term increases for both low
temperatures and high temperatures, more so near evening. (COLOUR FIGURE 6.) fea-
tures the same temperature smooth together with closeness to summer. The two main
peaks occur where there are high temperatures in summer (top of diagram), and where
there are low temperatures distant from summer (centre right of diagram).

(COLOUR FIGURE 7.) features an interaction term involving estimated darkness
(smoothed with half-life 2 hours) and closeness to evening. The fitted surface peaks
when it is very dark near evening, and smoothly falls as the darkness level or the close-
ness to evening falls.

(COLOUR FIGURE 8.) features wind chill and closeness to summer. It is interesting
that as well as a peak associated with high wind chill factors, which is higher near winter,
there is a lesser peak associated with low wind chill factors, but only near to summer.
Since in summer a low wind chill factor is associated with warm, still, days this is evi-
dence that the model accounts for the increased air conditioning loads on hot days that
result from stiller air (since opening a window will provide little relief from discomfort

when the air is still).
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Chapter 12 —Visualisation of Load Profiles

12.1 Introduction

Discrete predictors collectively have complex interactional effects on loads. By av-
eraging only those atomic profiles for which a specified predictor takes some specified
value, we obtain a marginal profile (for example the Sunday profile). By subtracting the
average profile from a marginal profile (and scaling) we obtain an effect profile, which
indicates how a marginal profile differs from the typical profile. These ideas are extend-
ed to conditional profiles (for example, the January-Thursday profile, and the effect pro-
file of Thursdays on the January profile), which indicate interactional effects of discrete
predictors.

These objects are useful as explanatory devices; plots of these profiles provide a
handy visualisation of the local or global nature of the relationship between load shape
and discrete predictors.

A simple means for the visualisation of half-hourly load profile over several months

at one glance is suggested.

12.2 Basic Marginal, Effect and Diffeence Pofiles

During this chapter one can assume that weather modelling has already been per-
formed, producing weather-free Ioaﬁq'é(t) (and corresponding profile_qc), though all
the concepts could be applied equally to whole (i.e. not deweathered) loads. Recall the
weather-free atomic model AFM, here repeated:

YF = Fpr(XF(0)) +g,(Mus) + g (mod) 1<i<N (EQ 103 : AFM)

whose atoms derive from a maximal partitionn = (d, m, X Xg) -

Themarginal profilesfor a predictorxj in XF are simply the centroids of the atoms
for which Xj = X (for eachxjI O )~<j ). If Cis the set of all indexes for atomic profiles
(C={12..,1,...,N}), let C; be the partition or€ arising from splitting orX,
which has cellf:l-(l), éj(llﬂ-l) . Denote the number of elements in ktiecell of this

partition n, . Note that

X
Zlﬂllr‘n =N (EQ 104)
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Denote theanarginal profile forx by Y| X1 » where

3

n.

YX, =
il

(EQ 105)
A simple way to isolate the effect of one of the predic)(?rm XF on profile shape
is to compute theffect profilesfor that variable. Denote theffect profile for | by

E(le) , Where

E(q) = ny ((Y]x) (EQ 106)

Y being the grand centroid of all the atomic load profiles,

YIX. +
Ny Y[X; J|X|Y|X]|X|

N

Y = (EQ 107)

Note that loads in effect profiles can take both positive and negative values. The var-

lous effect profiles for a predict()tj sum to0 (the zero profile),
ECG) + -+ Elxy)) = O (EQ 108)

We can also pldifference profilegor any two profiles,, P, ; like an effect profile,
a difference profile can take positive or negative values, and requires that both profiles
are first normalised (by each dividing through by the number of raw profiles thereat);
thus a difference profile faP,, P, is given by

diff (P, P,) = 5B (EQ 109)
P [P

Where|P | and|P | are the respective number of underlying raw profiles making up a
particular profile. Thus we can plot the difference profile between a customer’s weekend
profiles and their weekday profiles, or between a group of customers’ December to
March profile and their April to November profile, for instance, for comparison purpos-
es.

Plots of effect profiles give at-a-glance indications of the effect of a particular at-
tribute taking a particular value, on load. For exampleii(g; ;) , i.e. E(Sun) effect
profile represents the effect on load of the day-type being a Sunday. We would obviously

expect this effect profile to take mostly negative values, since Sunday loads are lower
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than average.

12.3 Conditional Marginal and Effect Profiles

As thus far described, the marginal and effect profiles convey the influence of par-
ticular predictor values on total (deweathered) load for the database. However, the dis-
crete predictorXF have interactions; for instance the effect of (say) month index on
(say) Monday profiles is not necessarily the same as the effect of month on (say) Satur-
day profiles, nor the same as the effect of month on the all-days profile. The concepts of
section 12.2 are extensible in a natural manneotalitional marginal profiles/ effect
profiles. Suppose(j is first used to partition the set of atomic profiles (indicgsand
subsequently(j, (J #]") is used to subpartition a cé&l ;) of C;. We need only apply

the definitions of section 12.2 witéj )y in place ofC to obtain the conditional ver-

sions. IfC{ T I} is thel' th cell in the subpatrtition cftm) , define themarginal pro-
file for x;,|, conditional onx; , denotedy|x;.,.;x; , by
Y,

Y0y = il (EQ 110)

WherenJ " s

| is the number of constituent atomic proﬂl%@{
effect profile forxj,l, conditional onx;, is given by

le} ‘ . Similarly, the

The conditional effect profiles again contain both positive and negative values. They
give indications of the effect of some attribute taking a certain value, conditional on
some other attribute taking a certain value. For example we might wish to compare
E(Jan;Sun), the effect that the day being Sunday has on January profiles, with
E(Jan;Mon), the Monday-effect on January profiles, or wifOct;Sun) , the Sunday-
effect on October profiles.

Note that in marginal conditional profiles, the order in which variables are selected

for splitting is irrelevant:
Y[ X% =YXy (EQ 112)

for in-range choices gf | andj’, I'. However, the order of variables does affect con-
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ditional effect profiles: in fact
E(Xj.l,;X“) - E(X“;Xj'y) = Niyegy (Y|va|: —Y|Xj|) (EQ 113)

12.4 Multivalue Marginal and Effect Profiles

A final extension to the ideas and notations of 12.4 and 12.5 allows marginal and ef-
fect profiles (conditional or otherwise) to be calculated for disjunctions of predictor val-
ues. For example, we might want to know the effect profile of weekend day-types on the
profiles of customers whose two-digit SIC codes start with a ‘5’. This might be written
E(d O { Sat,Sun} ;X; O {50, 51, ..., 59} ) . The formal definitions for such profiles are
obvious extensions of the definitions in sections 12.2 and 12.2; for instance, replace par-
tition (53 = {(33(1), 63(5), 63(6), 63(7)} with partition
6'3 = {63(1), 63(5), 63(6) O 623(7)} in order to construct a marginal profile for
‘weekend’ rather than separate marginal profiles for ‘Sat’ and ‘Sun’, and so on. An al-
ternative notation for marginal and effect profiles of this type uses disjunctions of pre-
dictor values rather than set memberships (where no confusion will arise), so that the
above cited example of a multivalue effect profile is written
E(Sat OSun;50 051 ... (059).

12.5 Msualisation of Seasonally ¥rying Daily Load Shape

12.5.1 Tme-of-Day/Time-of-Year Visualisation

A two dimensional plot of load against hour of day visualises load shape for a single
day. However, by using colour to represent an extra dimension, the daily load shape can
be visualised at a glance over a period of many months. Let the horizontal axis of a Car-
tesian graph measure the day index over the period for which a visualisation is required,
whilst the vertical axis measures time of day (from 1 tot = 48). For a specified

set { \_(dD;dDmin <db<d4,,} of atomic, marginal or effect profiles indexed by day in-
dex dJ over the range of daydl, donad % let Yy, 1<t<48 be the half hourly

loads. Linearly scale these loads so that the lower bound for load has value 0.0 and the

1. As described in sections 12.2 to 12i#4,is not a disaggregating variable for minal or efect pro-
files, but the concepts of ngamal and dfect profiles are equally applicable whehis included as a

predictor Month indexm would be a viable alternative ¢t.
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upper bound for load has value 1.0. tetour() be a function of a real number which
associates a colour with real valueg 0, 1.0] , and also two ‘out of bounds’ colours

for values less than 0.0 or greater than 1.0. The function must be designed so that the hue
changes smoothly with the argument between 0.0 and 1.0. In the scheme that was select-
ed, the colour varies from deep purple (for low loads), through blue to cyan (the centre
point, 0.5), to green to yellow to orange to bright red. There are two out-of-bounds col-
ours; transparent (i.e. white) for loads below a lower bound, and wheat for loads above
an upper bound. By plotting small non-overlapping rectangles of the colour associated
with the scaled load at each of thig(,, —dt.,,) x 48 coordinates, a larger multi-col-

oured rectangle is produced.

Such a plot simultaneously conveys load/time-of-day behaviour and load/day-of-
month-or-year behaviour. Naturally, conventional 3 dimensional surface plots of load
against time of year against time of day could also be used to present this behaviour,
though problems arise because many features are frequently hidden from view in a sur-
face plot since load can vary so rapidly from day to day and hour to hour; load does not
always vary smoothly with time-of-day or day of year, though surface plots are some-
what better than the coloured type of plot at presenting responses which vary only grad-
ually.

Various such plots are illustrated in the Appendix (Colour Figures). A key is provid-
ed with all such plots to indicate what percentage of average half-hourly load is repre-
sented by the different colours. Such plots can be calculated for many customers’
profiles averaged together as in (COLOUR FIGURE 10.) or for individual customers, as
in (COLOUR FIGURE 1.) to (COLOUR FIGURE 4.).

12.5.2 Customer/Tme-of-Year Visualisation

A variant of this visualisation technique was also implemented which allows a whole
database to be visualised in such a way that differences between customers are apparent.
Instead of using time-of-day on the vertical axis, a customer index is used (running from
1 up to the number of customers in the database). Instead of half-hourly loads being plot-
ted as small coloured rectangles, daily load averages (for a given customer and given day
index) are plotted as appropriately coloured small rectangles). Customer index is not a
(meaningful) continuous variable, and customers plotted side by side in such a diagram

may have nothing in common, but such a diagram is still useful as an at-a-glance guide
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to the extent of variability in daily load between customers and seasonally; such a dia-
gram is also useful for visualising the extent to which load profiles are missing in a da-
tabase, and for which days.

All of the 1995/6/7 whole (i.e. not deweathered) load profiles database is displayed
in such a plot in (COLOUR FIGURE 9.). Here, transparent (white) represents missing
load profiles, and wheat represents a daily load total that is 200% or greater of the cus-
tomers average daily load total, with cyan representing average daily load total (i.e.
100%).

Applications of Data Mining &chniques to Electric Load Profiling 134



Applications of Data Mining &chniques to Electric Load Profiling

Chapter 13 —Model for Deweathered Loads

13.1 Discussion

Recall the atomic weather-free model AFM of section 10.6, repeated here:

YF = fAr(XF(i)) + g,(Mus) + g (mod) 1<i<N (EQ 114 : AFM)

whose atoms derive from the maximal partitionXdf = (d, m, X, X, X ) , the day

type, month, SIC code, tariff code and load factor category. Since the load data for this
model are the centroidal load profitefsr the N atomsA, , and the predictors for the
model are exactly those predictors used to construct the partition defining the atoms, triv-
ially the lowest error option fdiy is that which returns the untreated weather free mod-

el data (the training data):

far (XF() = A, (EQ 115)

Substituting this into (EQ 114 : AFM), we get
YF = A+ gi(mus) 1<i<N (EQ 116)

Note that the modelling-error tergri{mOd) completely disappears; the only errors in es-
timating the ‘true’ atomic profiles with the observed atomic profiles arise from measure-
ment error, unknowable factors, and errors due to sampling. Essentially, thé&fe are
distinct, exhaustive and exclusive identity fitting functions. The measurement compo-
nentof the error is assumed very small. We have estimates for the variance of the errors
due to sampling and unknown factors in each atom, namely the sample variances of the
atomic training data. Many of these are likely to be large, since there are relatively few
profiles represented in each atom. Moreover, for atoms which represent only a few con-
stituent profiles, the variance estimates are unreliable.

There are two major (and closely related) drawbacks to the trivial atomic weather-
free model (EQ 115), (EQ 116):

1. Though the form of the fitting function is simple, the model scores very low on inter-

1. These profiles comprise aggregate square-loads as well as aggregate loads, enabling the construction

of the 48 standard deviations over the constituent loads.
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pretability, since there are just too mam) distinct fitting functions withirfAF. The

data needs to be distilled into a more compact (lower resolution) model from which a
planner can more easily glean the nature of thedaattitionship to the discrete pre-

dictors.

2. Whilst the modelling errors(M°d) disappearthe errors due to unknown factors and

due to sampling are high. This means that when test data (distinct from the training
data) are presented to the model, fit is likely to be.dbave mege atoms so that

their underlying partition cells contain more data, these errors may be reduced (pro-
vided that the atomic profiles nged have similar distributions). Again, what is

required is a lower resolution model.

Opting for a lower resolution model reintroduces modelling elz_rléﬂ‘?d) but is in-
tended to reduce errors due to sampling, and i’gﬁ@}é) . Ideally, the errors we aim to
minimise are theross-validation errorsthese are the total errors arising when a model
built using training data is fed unseen test data. If the fitting funéignis built from

training data, then the cross validation erra_q?@V) are given by

A

gi(CV) — Yi(test) _ftrain ()_((test) (I)) (EQ 117)

with X (test) (i), Y;(tes) the test data (predictors, responses).

A slightly different way of looking at the trivial model and its drawbacks is in infor-
mation theoretic terms. To represent the fitting funcﬁgﬂ inside a computer, thd
profiles need be stored. This is the maximum entropy representation (because it is at the
highest resolution allowable), but is also very bulky. By merging certain atoms so that
P <N profiles are stored we reduce the bulk of the data (by a fidetBr), but also lose
information (entropy). We wish to minimise bulk whilst maximising the information re-
tained. Recalling that information in some data can be thought of as the size (in bits) of
the theoretical smallest equivalent coding (reversible data compression), we can cast this
problem as maximising theoretically optimal storage size (i.e. information) for the model
whilst reducing the actual storage size (bu¥k)Since high signal-to-noise representa-
tions carry more theoretical information than low signal-to-noise representations, errors
g(mus) + g (mod) are implicitly kept low by this criterion (cross-validation errors could
also be computed, their minimisation being an auxiliary criterion to any bulk-to-infor-

mation criterion).
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Whatever the precise criterion we use to guide the choice of partition undér,lying
this is an atomic cluster analysis task (see section 8.8.2). Extrinsic decision tree cluster-
ing (also 8.8.2), a subspecies of atomic clustering, is a viable option. The patterns to be
clustered are the atonds; (1 <i < N) : they have predictor value§™(i) and response
valuesA, (:Ait; (1=<t<48)). We can think in terms of partitioning the patterns (nota-
tion of chapter 8), or of partitioning predictor spa®e (notation of chapter 4) inter-
changeably, but it will be somewhat more natural for us to use the latter notation.

Note that the centroids for the various clusters which can arise in an atomic clustering
of profiles are unnormalised versions of the marginal and conditional marginal profiles

introduced in Chapter 12.

13.2 Atomic Clustering for Weather-Free Piofiles

Recall from 8.8.2 that atomic clustering is simply a clustering of the centroids of the
sets of patterns indistinguishable by their predictors; any clustering algorithm can be
used to obtain the atomic clustering. Due to the large sigmmimber of atoms) in the
monthly billed business customer database, it is very computationally demanding to per-
form a graph theoretic clustering (which requiresjéthé(N —1) distances between at-
oms to be calculated in advance). This task could be made much smaller by first applying
a conservative one-pass clustering (see section 8.4) to the atoms (that is, one which
leaves quite a large number of clusters). The clusters discovered thus could then be used
as the patterns to be clustered in a graph theoretic method.

The most flexible type of clustering algorithm we can apply to the atoms is probably
K-means clustering, in any of its varieties. The computational complexity for this set of
algorithms is rather dependent on the particular algorithm used: a $impéans clus-
tering, seeded by a simple one-pass clustesngot so demanding computationally as
a graph theoretic approach.

Having applied any clustering algorithm to the atomic data, we are leftRwitN
cluster centroid<€ 4y, ..., C(p). ..., C(py in place of the original data as the output of
fAF; fAF()_(F(i)) simply returns the cluster centroid whigh has been incorporated into.

Thus the atomic clustering has reduced the initially vast number of load profiles in the
database t® representative profile$ can be directly or indirectly adjusted to be as
small as desired. However, the partition of the atoms (whether simple or hierarchical) is

not based on the actual predictor valX&$i) , which are used only in determining the
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atoms.

13.3 Extrinsic Decision Tee Clustering for WeatherFree Piofiles

13.3.1 Dp-Down Variable-By-Variable Clustering

Now suppose that the clustering is based on a hierarchical partition of the predictor
spaceXF = dxmx X5 % X % X, inwhich at every splitting stage, the partition or sub-
partition is based on the values of one of the predictor variab}¢slirihe selected var-
lable takes distinct values within the current cell to be split, this defineslls in the
subpartition, whose centroids are treated as fraterns to be clustered. As mentioned
in section 8.8.2, the problem is to select at each stéipe(‘best’ attribute on which to
partition; and if) to select the ‘best’ partition based on that attribute’s values.

One might choose to seek the attribute and the partition simultaneously by checking
all partitions (of a certain type) of all variables for the ‘best’, where this approach is com-
putationally feasible (call thimp-down general extrinsic decision tree clusteyir@th-
erwise it is necessary to define a criterion for ‘goodness of partitioning variable’. Note
that the partitioning variableXF are discrete (and categorical exceptXorwhich is
ordered, andan which is ordered and periodic), whilst the proximity metric is between
patterns of continuous responses, so a simple information theoretical as is often used in
decision tree classification is not an option; information theoretical measures for load
profiles may need to be approximated (see 14.4.2).

Having selected a variabbé] for partitioning, a ‘good’ partition is sought; this de-
pends crucially on the resolution of the partition which is desired. If each variable is al-
lowed to be selected more than once for partitioning, the resolution can be very coarse—
a binary partition (into just two cells) is always acceptable, since either cell can be split
again at a later level in the hierarchical partitioning process. Supposir‘ng ttedtesv
distinct values within the current cell to be split. Then therepire — 1 binary parti-
tions possible(v>1) . It is thus only possible to exhaustively search all binary parti-
tions (seeking that which maximises between cluster scattery gmall (though note
that each time a variable is reselected for splittibgcomes smallerThe binary split-
ting algorithm described in section 8.6 provides a non-exhaustive (generally sub-opti-
mal) search for a binary partition encases. This involves searching jést(v+ 1)
binary partitions.

Another sub-optimal search algorithm is jbie-two algorithm, a bottom up cluster-
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ing algorithm which hierarchically partitions thgpatterns. Initially thes patterns are
searched to find that pair of patterns which are closest by our distance metric. They are
replaced by their centroidal pattern, and at the next stage-tlieremaining patterns

are searched to find the closest pair, and so on. \Whaaitterns remain, the algorithm
terminatesp being preset by the usgr € 2 finds binary partitions). This has complex-

ity of orderv3, which limits thev for which it is applicable, but is less greedy than the
binary splitting algorithm.

Where each variable is prohibited from being used for partitioning more than once,
the user can supply appropriate numbers of clusters per variable in advance (binary par-
titions are unlikely to be fine enough)—this is a much less flexible approach.

If we do not cluster at all, so that there acells in the partition (one for every var-
lable value) and continue to do so until all variables have been used, we arrive at the
maximal partition (the highest resolution partition possible, where every atom is in its
own leaf). This is one possible starting point for a bottom-up clustering method; the or-
der of variable selection would strongly influence such a bottom-up (or tree-pruning) al-

gorithm.

13.3.2 Dp-Down General Clustering

Rather than choosing the ‘best’ variable on whose values to partition, and then the
‘best’ partition, now suppose we seek the ‘best’ partition regardless of which variable
whose values it partitions. There a@réld more partitions to be considered in general
(J the number of predictors=5 for predictorsxF). To achieve similar computational
complexities compared to the variable-by-variable clustering algorithms, it would be
necessary to examine fewer candidate partitions for each predictor (i.e. use a greedier al-
gorithm; for example, the computationally more demanding join-two algorithm might be

dropped in favour of the binary-splitting algorithm).

13.3.3 Brmination Criteria for T op-Down Clustering

In sections 13.3.1 and 13.3.2 it was not suggested how one should determine when
to stop partitioning, and accept the current set of leaf clusters as our model. Whilst local-
ly we aim to minimise within-cluster scatter (maximise between cluster scatter), this
does not help us decide when to terminate the procedure, since the within-cluster scatter

Is minimised globally only when we reach the maximal partition (in which every cluster
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is an atom), returning the trivial model of section 13.1.

Local criteria as well as global criteria may be applied to determine when to termi-
nate top-down clustering procedures. The most obvious global criterig toesét in
advance a maximum number N of clusters and terminate just before this is exceeded
or (i) to set in advance a certain proportion of sceetS which must be accounted
for by the clustering, and terminate when this is reached (proportion of scatter accounted
for: see end of section 8.3).

Local criteria, which dictate when a particular cell should not be subpartitioned, but
not when all hierarchical partitioning should terminate, could also be specified. The local
scatter (the value &,/ S for a particular subpartition) could be used to terminate par-
titioning locally when it goes above a certain preordained threshold. Note that this is sen-
sible only when the numb@& of cells in the local subpartition is fixed (e.g. in binary
partitioning).

Another crucial factor in determining when to cease partitioning is whether or not
one intends to overgrow the decision tree, and subsequently prune it back by joining sib-
ling clusters. If pruning is to occur, the splitting termination criterion will generally be
less important than the pruning termination criterion, and must allow for overgrowing.
One option is to not cease splitting until the maximal partition is reached (with atomic

profiles at leaves) and to prune back from there.

13.3.4 Bottom-Up Decision flee Clustering and Tee-Pruning Algorithms

Rather than splitting partition cells we can start with the maximal partition (whose
cells comprise one atom each) and successively join cells together (in other words, com-
bine profiles). The final partition in such a scheme is the universal cluster (which con-
tains all the atoms). An alternative to starting with the maximal partition is to apply
joining procedures to the leaf cells (leaf profiles) of a top-down decision tree clustering
(this is tree pruning, see chapter 4).

Many joining algorithms for decision tree clustering are functionally equivalent to
corresponding splitting algorithms, and we will not describe them. Using joining proce-
dures for pruning decision trees may be of much value (see, e.g. [9]) however.

The simplest pruning procedures simply cut off the decision tree below a certain lev-
el. However the real power of tree pruning can sometimes lie in its local nature — prun-

ing back overfitted or uninformative structure where it exists whilst retaining valid
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structures elsewhere.

Now if the pruning criterion is identical with the splitting criterion, we are simply re-
versing the original top-down procedure. Thus we require a different criterion: for in-
stance, a splitting procedure is selected which aims to minimise within cluster scatter but
pays scant regard to tree size or complexity; whilst a pruning procedure is chosen which

optimises tree size or complex@ydwithin cluster scattesimultaneously.

13.4 An Adaptive Decision Tee Clustering Technique for Load
Profiles

13.4.1 General Apppach

Various clustering algorithms were incorporated within a single adaptive, top-down,
binary decision tree clustering framework. Note that when the same variable is selected
for splitting more than once in a decision tree procedure, the number of locally observed
distinct valuess decreases each time. Consequently, it is appropriate to apply greedier
searches for good partitions nearer the root of the tree, and more exhaustive searches
nearer the leaves.

The relaxation on computational complexity brought about by such adaptivity (using
less expensive algorithms where the problem is locally harder) in fact makes general top-
down (rather than variable-by-variable top-down) procedures viable, at least for the data
sets studied.

The most expensive algorithm employed is exhaustive search (in which all possible
binary partitions on a particular variable’s domain are computed and compared). The
cheapest algorithm employed is the Binary Splitting Algorithm (see 8.6). An algorithm
of intermediate complexity, thivin-Twoalgorithm, is also employed (details follow in
section 13.4.2).

Note that when partitioning on month index and load factor (ordered rather than cat-
egorical variables), the assumption than any cluster contains only contiguous categories
would enable faster searches (see section 8.8.1). These were not implemented, in the end,
because exhaustive search was computationally feasible for loadXacterth 7 load
factor categories), and because momthhas periodicity and special features, which
means that the best clusters might not always feature contiguous months. In particular,
December has special properties due to the holiday period. More generally, a spring

month may be more similar to an autumn month than to a summer month.
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13.4.2 Sub-Algorithms Employed in the Decisionree Clustering Framework

SupposeN cases are to be clustered (i.e. that the variable being considered as a can-

didate for splitting on hall categories present at the current level in the tree).

1. Exhaustive Binary Seeln. For every possible binary clustering

C = {C(1 C(»} . the distancel( C ,,,C ;) is computed. That clustering with

the greatest computed distance wins. Complexi@(&V-1-1).

2. Binary Splitting AlgorithmThis algorithm only finds binary clusterings (exactly two

cIusters,C(l) andC(Z) ). Initially C(l) contains all the profiles, ar(d(z) is empty
At each step, one of the profiles(ﬂ‘m Is transferred t 5 - The profile selected

for transfer is the profile ilﬁl(l) which most increases (or least decreases) the dis-

tance between the clusteoﬁc(l), C(z)) . That distance is recorded, and the transfer
process is repeated un@l(l) is empty That pairing ofC(l) andC(z) which pro-

duced the greatest recorded between-cluster distance is the eventual winning binary
partition. By recursive application, an arbitrary number of clusters can be generated.

Complexity is no greater tha®(N?) (see [13]).

3. Iterative Join-Wo Algorithm Initially there are N clusters, one singleton cluster for

every profile. At each stage, the distance between each pair of cmﬁger@(k) is

calculated. That pair of clusters whose distad((eC(j) , C%) is the least are

meimged into a new clustet =C,, 0 C(k) , thenC(j) andC(k) are discarded.

(ik) )]
Distances are recalculated (where necessary) betwedhittie-2 = N—1 result-
ing clusters, and again the closest pair arggeterThis continues until only clus-
ters remain. Complexity is no greater th@iN2 (N—n)), thus less tharO(N3)

when a binary partition is sought.
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In fact, the Iterative JoinWlo algorithm is employed as a hybrid with Exhaustive

Search; once the number of clusters falls to a threshold mglu:m exhaustive

search of all possible combinations of the remaimipglusters into two superclus-

ters is performed (complexi@(2™ ! - 1)).

For any given decision tree clustering, the same distance measure is used in all three
sub-algorithms. This is either unweighted Euclidean distance between cluster centroids,

or a modified Euclidean distance measure

do(C sy C o) = PIas,(|C ;)] [C i) ¥ AC 5, C ) (EQ 18)

. : : 47 O~—0 0O=—0rCF
where d(C(j),C(k)) is regular Euclidean dlstancéthODDC(j)B— (o 00 -

q and% are the cluster centroids (i.e. each is the mean of all profiles in the cluster)
as usuaIJC(i)| is the number of original profiles that are combined t(% (where

i = jork),and

bias,(n,m) = (4nm/ (n+m)?2) ° (EQ n9)

Here,biasb(|C(j)|, |C(k) |) is a term which is introduced to bias against the selection
of unevenly sized clusters (size being judged by the number of profiles combined in a
cluster rather than the number of categorical predictor values)bGhk bias coeffi-
cient.Note that when eitth(j)| = |C(k)| (i.e. the clusters each combine equal num-
bers of the original profiles) dr = 0, the bias term equals unity, and (EQ 118) reduces
to regular Euclidean distance. However when 0, the more|C(j)|/|C(k)| differs
from 1 (i.e. the more uneven the numbers of profiles in the two clusters), the less the bias
term (EQ 119) becomes. Hence the distance bet\ﬁle(\snandc(k) is adjudged to be
smaller, and so in turg Cj, C,} is adjudged to be a worse binary clustering. Note the
bias term is symmetric ipn andk, and unaffected iFC(j)| and|C(k)| are each multi-
plied by the same scalar.

It is important that the same bias coefficibnis used globally during the decision
tree building, regardless of which sub-algorithm is being used locally. This is because
different sub-algorithms may be used for clustering on different variables at a particular

node in the tree, so the goodness of clustering medgusbould be the same in order
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to judge equitably which variable should be selected for splitting.

13.4.3 Building the Adaptive Decision fiee Clustering

Prior to any analysis, it is assumed that profiles have first been normalised so that
each customer has the same total energy consumption over the study period, as per sec-
tion 10.2. The clustering tree may either be built using these normalised profiles or, in
the full methodology, be built using deweathered (or ‘weather-free’) profiles constructed
by subtracting the correctly rescaled profiles from a MARS regression weather model
from the original data (as per section 11.2.5).

The decision tree clustering procedure is a divide and conquer algorithm which can

be summarised as follows:

1. Call the clustering we are buildirfg. Initially C has one elemer@,,, the universal

cluster (which contains all the profiles).

2. The clusterc in C that has the greatest within-cluster scatter (EQ 73) is selected for

splitting (initially this must be the universal cluster).

3. For each predictox O XF that allows further splitting irc, a locally determined
clustering algorithm is selected (see note below) and used to generate a binary parti-

tion of ¢ into subclusterg' andc" usingx as splitting variable.

4. Of the binary partitions calculated in 3, that with the greatest modified Euclidean

distanced,(c', c") (EQ 118) between the two partition centroids is the win@dus-

ter ¢ is removed fronC and replaced by the two clustersandc" corresponding

to the winning patrtition.
5. Repeat from 2, until a predetermined total number of clusters is reached.

Experiments were performed to determine a suitable policy for choosing which local
clustering algorithm to employ in stage 3. For the data sets under study, it was not
deemed necessary to use the Binary Splitting Algorithm at all for the extrinsic decision
tree clusterings presented in the results section 13.5, since the slower but more thorough
Join Two Algorithm was fast enough to be practical. The predictor with the greatest
number of categoriesX(, SIC code) has 41 categories (which includes a ‘missing’ cat-

egory which is assigned to any customer for which SIC was not recorded in the data, and
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an ‘invalid’ category for customers whose recorded codes were not valid), yet even near
the root of the decision tree the Join Two Algorithm can be applied with SIC code as the
splitting variable in under a minute. However the Binary Splitting Algorithm is retained
as part of the methodology as an alternative to the Join Two Algorithm, so that fast ex-
ploratory clusterings are possible, and so that in the event that larger data sets are studied
by the project Sponsors (with more profiles and/or more SIC codes) a faster algorithm is
available. The criteria decided upon for using exhaustive search rather than the faster al-
gorithms is that the predictor variable being used for splitting took seven or fewer values
amongst the customers whose profiles were being clustered (entailing an exhaustive
searchoR’ '—1 = 63 binary clusterings). The threshold valngat which the Join-
Two algorithm switches to exhaustive search (see section 13.4.2) is also seven.

Note that only montim and SIC codé; (and potentially, load factor categoxy )
have more than 7 possible values (SIC has 41, month has 12, tariff and day of the week
each have 7, and load factor categi[ywas also chosen to have seven categories for
the studies presented, though is allowed to have more), and hence cause the Join-Two
algorithm to be invoked rather than exhaustive search. As the global clustering proce-
dure is carried out and the decision tree built, the number of profiles at the start of a local
clustering sub-algorithm tends to get less, since attributes have already been used for
splitting (for example, if the very first split chosen at stage 4 is on day of the week, and
results in dividing the database/decision tree into Monday-to-Friday profiles and Satur-
day/Sunday profiles, then all further candidate sub-clusterings using day of the week will
have at most 5 initial profiles to cluster). Thus the local clustering sub-algorithms be-
come much quicker as the tree grows, and Join-Two clustering becomes less used (as the

number of SIC codes/months represented at leaf nodes in the tree falls to 7 or below).

13.5 Results of Extrinsic Decision fiee Clustering

13.5.1 Data Used in the Extrinsic Decisionrée Clustering

Three versions of the 1995/6/7 load profiles database were used to build the models
of this section. Firstly, the original whole loads database (cleaned and with special days
removed, as per 11.3.1) was usdataset 1secondly, a loads database deweathered us-
ing the final weather modet (see sections 11.2.5, 11.3.12) was udathset 2 and
thirdly a loads database deweathered using the final nflodels useddataset 3

A problem arises with the deweathered data of datasets 2 and 3. Because of the way
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they are generated (by subtracting profiles drawn from a weather model from the original
whole profiles), there are occasional negative data in the deweathered datasets. Whilst it
would be possible to leave the negative data in the datasets and still build viable cluster-
ing models, negative entries cause two problems: (i) interpretation; how should negative
entries be plotted, or indeed interpreted, when a negative load is meaningless?; (ii) com-
putation; as a precaution against error, the clustering code checks (in many places) that
all profile entries are non-negative, and removal of such fail-safe mechanisms in very
large complicated programs is dangerous.

It was decided to remove negative entries, by the simple mechanism of replacing
each negative datum with 0. As shown in (TABLE 14.), where negative entries do occur
(which is in less than 1% of load values in either dataset), they are on average very small
(-4.74 and -7.51 in datasets 2 and 3 respectively - recall were normalised so that the av-
erage half-hourly load reading of any customer is 100.00). Whilst there were exceptional
deweathered readings that were much more negative than this, these were truly rare; and
since exceptionally low load readings are in any case of much less interest to utilities
than exceptionally high load readings (since higher than expected demands can be very
expensive to supply), removing such readings is not thought to be significant.

Following the removal of negative entries, the deweathered databases were normal-
ised again on a per-customer basis (just as in 10.2) so that each customers mean half-

hourly load reading is 100.00 (to which they were all already very close), in order to ac-

TABLE 14.
number of
weather | negative entries smallest entry mean negative entry
dataset | model (before removal) (before removal) (before removal)
2 o 91027 (0.76%) | -26.90 -4.74
3 B 108990 (0.91%) | -50.36 -7.51

count for the removal of negative entries, and the fact that the mean value of MARS
model was not always exactly 0.00 for all customers.

Upon examination of the datasets using examples of the visualisation described in
12.5.1, four of which are illustrated in (COLOUR FIGURE 10.) to (COLOUR FIGURE
13.)%, it was apparent that there were certain whole months of dubious data in the 1995/
6 loads database, namely April, July and August of 1995, as well as one month of dubi-

ous data in the 1996/7 loads database, namely January 1997. The data for April 1995 is
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clearly misrecorded. Recall that the 1994/5 raw data and the 1995/6 raw data overlapped
and, for many customers, disagreed; profiles for a given customer in the latter database
were scaled by the addition of, or the multiplication by, a fixed scalar (different fixed
scalars for different customers). Evidently, for the month of April 95, a normalisation
scheme was applied to the raw data that is inconsistent (for some customers) with what-
ever normalisation scheme was used for the rest of the 1995/6 and 1996/7 raw data.
Whether or not the loads are deweathered before plotting, April 1995 loads are on aver-
age far higher than those for any other month, so much so that the data could not possibly
be correct.

The Sponsor was unable to give any definitive answers on how reliable various pe-
riods of the raw data files might be, or how the figures may have been normalised. How-
ever, by looking at which profiles are missing from the 1995/6 data - see (COLOUR
FIGURE 9.), it becomes apparent that the raw data files have the same customers miss-
ing throughout a given calendar month; it must be assumed that different months’ data
raw were in some cases drawn from different sources, and could be normalised in differ-
ent ways. Therefore all the April 1995 loads were removed from the data presented to all
of the clustering models discussed.

Whilst the April 95 data is without question mismeasured, the unusually high
(whole) loads for July and August 1995 (COLOUR FIGURE 10.) do not look impossibly
high; it is feasible that they could be due to cooling loads (and the summer of 1995 was
an unusually warm summer in the UK). However, these loads still appear to be unusually
high even in the deweathered data plotted in (COLOUR FIGURE 12.). There is no ob-
vious reason why the weather modeds §) described in 11.3.12 would not be able to
account for increased loads resulting from high summer temperatures. Particularly, by
comparing the visualisations of datasets 1 and 2, it is apparent that loads for the cold win-
ter months have been very effectively normalised to levels comparable to other months
by the deweathering process; yet only July and August 1995 (aside from the misrecorded
April 1995 loads) appear immune to the deweathering process. Furthermore, plots of
certain ANOVA terms of various MARS weather models reveal a definite positive rela-
tionship between load and very high summer temperatures, for example (COLOUR FIG-
URE 5.).

1. Any differences in the visualisations of datasets 2 and 3 (deweathered according to anpdels

respectively) are barely discernable, so the visualisation for dataset 3 is not provided.
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If the weather models, 3 genuinely failed to account for higher cooling loads in
July and August of 1995, it is perhaps due to the amount of missing data in August 1995,
and particularly, July 1995; recall that each datum presented to MARS was weighted ac-
cording to the number of profiles which were summed therein, and so the July 1995 data
would have had very little weight in the weather models. However it seems more likely
that the data for those months is in fact misrecorded. In either case, it was decided to also
omit the data for July and August 1995 from all the clustering models that are presented
here.

Finally, there is some very strange profile behaviour apparent in the January 1997
loads, which can be seen more clearly in (COLOUR FIGURE 14.). The Thursday and
Friday mean profiles are markedly different from the Monday to Wednesday Profiles,
and rather similar to the Saturday and Sunday profiles. The Saturday and Sunday profiles
also look suspiciously high. It does not seem at all likely that the January 1997 data is
correct (at least, not for all customers), though how it might have come to be misrecorded
in such a way is not known. Accordingly, this whole month’s data was also excluded
from all clustering models presented here.

It must be noted that the failure to remove April 1995, January 1997, and possibly
July and August 1995, from the data prior to weather modelling must have introduced
some slight bias into the models; in particular, the January 1997 data is almost certainly
responsible for the curious grouping together of Thursday and Friday in some basis func-
tions involving day-of-the-week. The dubious nature of the April, July and August 1995
and January 1997 data did not become apparent until all of the weather experiments had
been performed, and time did not allow for their repetition. It is in any case not unusual
that the data analysed by data mining techniques is not wholly reliable, that being the na-
ture of real world databases, and the weather models presented cover too short a time pe-
riod to be definitive, even if all the data were reliable.

Finally, note that as well as making the profiles much more uniform in level over the
course of the study period, the deweathering process has also lessened the starkness of
the impact on load shape of daylight saving clock changes. In (COLOUR FIGURE 10.)
and (COLOUR FIGURE 11.) there are obvious changes in daily load shape following
clock changes near the end of March and end of October (though in fact a clock change
at the end of March 1996 is obscured because it falls between the two diagrams; it can
be seen in (COLOUR FIGURE 15.)). These clock changes are still visible in diagrams
of deweathered load (COLOUR FIGURE 12.) and (COLOUR FIGURE 13.), but con-
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siderably less so. Note that all loads, and all weather variables, used in the MARS models
were recorded in hours Greenwich Mean Time, and no explicit variable carrying GMT/
BST information was used. Thus the weather models have partially accounted for day-

light saving through the use of the time-of-year variables available to them.

13.5.2 Use of Peentile Load Factors

Load factor (100%x mean load/maximum load over some specified period) is of-
ten used in the electricity supply industry as a measure of the extent to which a custom-
ers’ loads maintain their peak level throughout the year (or some other period). A
customer with a high load factor has a peak load close to its average load; a customer
with a low load factor over a certain period has at least one instance of a much higher
than average load measurement. Customers with high load factors generally have pro-
files that are quite flat; those with low load factors tend to have profiles that are more
bumpy or ‘peaky’. There are three important drawbacks to the use of load factor as a pre-

dictor of load shape:

* First, a customers’ load factaneasured over a certain time peripg,, T,] , may

be rather dierent from its load factor as measured over another time period

[T,, T3] . Therefore a customers’ load factor as stored in a customer database may

not match its load factor as measured in any particular set of its profiles.

» Second, where the maximum load in a set of profiles used to calculate load factor is
mismeasured, the load factor will be strongligetied. As noted in113.1, there are
instances in the data of solecisms - abnormally high or low readings that are sus-
pected to be inaccurately recorded, which where undetected might lead to inaccurate
calculation of load factor

» Third, load factor is by definition heavily influenced by an outlying data point,
namely the maximum load. Where this maximum load is a particularly atypical load
for a given customea single outlying datum can significantlyeat any model that
uses load factor as a predictdbhus models relying on load factor may not be partic-
ularly robust.

Load factors as recorded in the customer database were compared to load factors as
calculated on the original whole loads database (over all of 1995/6/7), and there were
many severe discrepancies between recorded and calculated figures, indicating that the

first and/or the second points above come into play for some customers. Therefore it was

Applications of Data Mining &chniques to Electric Load Profiling 149



Applications of Data Mining &chniques to Electric Load Profiling

decided to ignore the load factors supplied with the customer database and instead rely
on recalculated 1995/6/7 load factors in all studies. However, to minimise the problems
associated with the second and third points above, it was decided that recaprriated
centileload factors would be used for the weather and the clustering models presented

in this thesis. Ap-percentile load factor is defined to be equal to

C
LP%

x 100% (EQ 120)

measured over some given period, wheris the mean load for the period and® is

the upperp-percentile load for the period (the load reading which as close as possible to
p % of loads are greater than or equal to). Initially, 1-percentile load factors were used,
and later other values far were tried. Clearly this measure is more robust to outlying
data (including mismeasured outlying data) than a regular load factor calculation.

One reason that load factor is widely used in load profiling problems is that it is more
easily measured and recorded by a conventional analogue meter than other measures of
profile flatness/uniformity - just one value need be recorded, i.e. the peak power drawn
over the period between meter readings. However, with half-hourly digital metering be-
coming much more prevalent, alternative measures of profile flathess, which may be of

greater value in load profiling, are becoming viable.

13.5.3 Effects of Bias Coefficient on Decisiorr@e Clusterings

To examine the effects of the bias coefficibnta clustering was performed using
the variablesd (day-of-the-week)X; (SIC code) X (tariff code) andX; (1-percentile
load factor category with seven categories), using dataset 2 (roedeiveathered
loads), repeated several times with varying coefficlentn each case, the predeter-
mined number of splits to be performed was set at 11 (resulting in 12 leaf profiles).

The results withh = 0 (i.e. no bias against uneven binary clusters) are shown in ().
Some notes on the interpretation of the decision trees presented here are necessary. Each
node is marked with a numeral to its side; these numerals describe the order in which the
nodes were added to the tree. Thus nodes 5 and 6 are always the nodes added by the third
split, for instance. Directly below each node (except node O, the root) is printed the
number of profiles represented at that node; directly beneath that, in parentheses, is print-

ed the within-cluster scatter found at that node, expressed as a percentage of the total
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scatter in the data (i.e. as a percentage of the within-cluster scatter at the root node).
Above the root node, a description of all the variable values of the model predictors that
are present in the data is given (though when SIC code is used, this description may be
too large to fit on the page). These variable values are expressed as three letter abbrevi-
ations (for month or for day-of-the-week values); or as a two figure number (for SIC
code category); or as an upper-case L followed by a number from 1 to 7 (for load factor
category); or as an upper case A, G or L followed by a two-figure number (for tariff
code). Finally, each branch is marked with the predictor values which were clustered to-
gether into the corresponding child node at the bottom of the branch.

SIC code categories are numbered sequentially from 1 to 41 in such plots, and do not
correspond to the actual two-figure SIC codes which they represent.

After each split in the decision tree building process, the total within cluster scatter
(the sum of the scatters for the current leaf profiles) is calculated. The amount of total
scatter accounted for by the clustering model aftenthesplit, S , is given by subtract-
ing then cluster scatters of the leaf clusters in the current model from the pooled (total)

scatterS

n
S, = S- Z s (EQ 121)
p=1

(whereS(P) s given in (EQ 72)) and theot-percentage of scatteccounted for after

the nth split, RPS, , is given by

RPS, = 100% x [S/S, (EQ 122)

with the square root accounting for the fact that scatter is a squared quantity.
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data is accounted for by the clusters, but it is not the only viable measure of model good-
ness, and in fact, is not what the model attempts to maximise at each split. The model
tries to maximise (biased) distance between cluster centres over the range of allowed bi-
nary splits; even when the distance measure is unbiased Euclidean distance, this is equiv-
alent to attempting to minimise the scatter of ét@mic profileswithin each cluster,

which is not the same as trying to minimise the scatter afrtgmal profileswithin each

cluster, the type of scatter accounted for ameasures. Either type of scatter is valid

as a measure of model goodness, although time did not allow for the inclusion of an op-
tion to use original-profile scatter accounted for as a distance metric.

In addition to calculating the total scatter accounted for after each split, after every
split in the decision tree building process the amount of total scatter accounted for by that
particular binary splitS,—S, _;, is added to acatter-by-variable surl,, wherev is
the variable whose values were used to determine the split. Before any splitting has taken
place, the scatter-by-variable sugs S, SXS, Sxe, S><L are all zero. If at the first split,
day-of-the-week is the splitting variable selected, and the first split accounts for scatter
s, = §,—S,, thens, is added td5,, and so on. Following the final split, the scatter-
by-variable sums serve as a guide to the relative variable importance of the various mod-

el predictor variables. Relative variable importance for variabienp, , is given by

imp, = 100% x ,/S/S (EQ 123)

Again, the square root takes account of the fact that scatters are measured in squared
units. This is only one viable measure of variable importance, and (like GCV in MARS
modelling) cannot be taken as the definitive guide to relative variable importance for any
given model.

The root-percentage of scatter accounted for aftenthesplit (for the zero-bias
model of (FIGURE 10.)) is graphed againsin (FIGURE 11.(a)).
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FIGURE 11.

15

root—%age scatter accounted
root—%age scatter accounted

split number split number

RPS, againstn for models with bias coffient 0.0, 1.5. Note that the scales for the y axderdif

The same clustering was repeated with biases coefficietts=00.5, 1.0, 1.5 and

TABLE 15.
relative variable importances: ,
bi ffici final root-%
las coefficient day-of-the- scatter
b week load factor | SIC tariff accounted for
0.0 32.2753 29.2146 18.1208 47.1546
0.5 33.2348 33.4844 22.1930 52.1375
1.0 33.2348 37.0760 16.7887 12.4196 53.9934
1.5 33.2348 39.777 12.5758 14.0232 55.1503
2.0 33.2348 39.5162 15.7292 8.82469 54.6934

2.0. The final root-percentage scatter accounted for (after 11 splits in each case) as well
as the relative variable importances are given in (TABLE 15.) - an empty cell indicates
that a variable was never selected for splitting in a given experiment. Looking at the final
root-percentage scatters accounted for by these 5 models, it is immediately clear that at
least some bias against small clusters is beneficial in terms of model goodness of fit;
(FIGURE 11.) in particular shows how much more quickly scatter is accounted for with

a reasonable degree of bias against small clusters - (FIGURE 11.(b)) shows scatters ac-
counted for withb = 1.5.

The decision tree for thk = 1.5 model is shown in (FIGURE 12.). Considerably
more scatter is accounted for in this model than when there is no bias (FIGURE 10.).
Without bias the model tends, for most of the eleven splits determined, to pick off just
one (or occasionally two) SIC codes into one very small cluster, which does not get split

again (or at least, not by the eleven splits calculated). In all of these splits, only one or
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two customers belong to the SIC code categories that make up the small cluster; whilst
that customer’s centroidal profile over the relevant dates has a very great Euclidean dis-
tance from the centroidal profile of the remainder of the customers begin considered, be-
cause just one or two customers end up in the small cluster the amount of scatter
accounted for is generally small.

When bias is introduced against the small clusters, not only is the total amount of
scatter accounted for increased, but the informativeness of the model (informally speak-
ing) is much better. (FIGURE 12.) tells us more about the nature of load shape variation
in relation to load factor category and tariff code than does (FIGURE 10.); but arguably
it tells us more useful information about the effect of SIC code on load shape than does
(FIGURE 10.), even though SIC code is used much more as a splitting variable when
bias is absent. Split number 3 (into nodes 5 and 6), tells us that the customers belonging
to the 16 SIC codes represented at node 6, with load factors in categories L1, L2 or L3,
have relatively similar load shapes (at least on weekdays); all the third (say) split in the
bias-free model tells us is that one particular SIC code category has load shape relatively
unlike that of other categories - and since only one customer in the data has that SIC
code, this might not generally be the case in the population at large anyway.

Looking at (TABLE 15.) we see that day-of-the-week is rated as the most important
variable wherb = 0.0, ahead of load factor category and SIC code. Only in this model
was day-of-the-week not selected at the first spliththedd models all split day-of-the-
week into weekday and weekend first of all. Load factor is rated slightly more highly
than day-of-the-week fd» = 0.5, and more so for the higher biases. Tariff code is not
selected at all wheh = 0.0 or 0.5; however with higher biases, SIC code-based clus-
terings with very uneven sized clusters are more heavily penalised, and tariff code gains
in relative importance (though tariff code falls slightly in importance when bias increas-
es to 2.0).

A bias coefficient figure ob = 1.5 was selected for all the clustering models that
follow, not only because this coefficient accounts for a relatively high amount of within
cluster scatter after 11 splits in the models of this section, but because a bias coefficient
of 1.5 has been found to produce trees which carry (informally) interesting information
about load shape and about the available predictor variables in several experimental var-
lations on these models (including when month is also included in the set of predictor

variables).
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FIGURE 12.
eWedThuFriSatSun/L1L2L3L4L5L6L7 /-1-2:3-4-5:6-7-8-9-10-11-12-13-14:15-16-17-18:19:20-21:22:23:24-25-26-27-28-29-30-31-32-33-34-{
w_ O
MonTueWedThuFri
SatSy
T a7
3108 60407
(69.1%) (19.9%)
Lil2ts L4L5REL7 Li2ts L4L5RGL7
& 3 B4 & 9 m 10
64484 88616 25430 34977
(44|3%) (13.8%) 11.9%) (5.7%)
13:14:15-16-17-18'19-24-2526.27-28-29-32- 33 34+35: 3637, 4
2B E1T127202128253.30-31-36-39-40-41 6
w5 B0 @ 2] m 22
38754 25730 44113 44503
(18l27) (24.7%) 8.5%) (4.0%)
[t 1 il #_/ W
26244 12510 96(66 16064
) (2.8%) (1743%) (6.7%)
Aé?%% AS53A7 3G 77L34 G é AS1AS3A73657G77L.34
w 17 wm 18 m 13 m 14
14085 12159 771 8895
(7.6%) (6.9%) ) 0.6% (15.6%)
~ AS51A73G57G77L34
& w 10
2059 6836
(1.3%) ) (13l9%)
7 -2:57-8:1112:20-21-22:23-30-31-39-40-41
@19 wm 20
1179 5657
(0.9%) (12.8%)

Bias coeficientb = 1.5. The tree is shallower (fitting on one output page), and SIC code is selected

for splitting much less frequently

13.5.4 Comparison of Clustering Models on Datasets 1, 2 and 3

With the bias coefficienb fixed at 1.5, models were built on all 3 datasets described
in 13.5.1. The variables used were day-of-the-week, load factor category, month and tar-
iff code, and the number of splits was slightly increased from the models in 13.5.3, to 13

(generating 14 leaf profiles). Results from the three models appear in (TABLE 16.),

TABLE 16.

relative variable importances: ,

final root-%

day-of-the- scatter
dataset week load factor | month tariff accounted for
1 (whole loads) | 33.021 39.4169 7.25369 14.6994 53.9701
2 (deweathered | 33.2347 40.0555 3.75736 14.3839 54.1295
using modeld )
3 (deweathered | 33.222 39.9864 2.8251 14,5316 54.0533
using model3)

whilst their respective decision trees appear in (FIGURE 13.) to (FIGURE 15.).
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FIGURE 13.
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Dataset 1 (whole loadd),= 1.5, clustering with day-of-the-week, month, load fac®€ code.

From (TABLE 16.) it is immediately clear that the principal effect of deweathering
the loads database is that month becomes far less important as a splitting variable in the
clustering methodology. This was expected, since weather’s effect on load shape varies
much more from month to month than it does from tariff code to tariff code, from load
factor category to load factor category, and so on, because the weather itself is different
from month to month. In the model built on dataset 1 (whole loads), month is first select-
ed as the splitting variable for the fifth split, and for a second and final time for the elev-
enth split. In the model built on dataset 2 (deweathered without using categorical
variables in the weather model), month is not selected until the eight split, and then once
more for the final (13th) split; in the model built on dataset 3 (deweathered using day-
of-week and load factor in the weather model), month is not selected until the ninth split,

and is selected also on the final (13th) split.
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Dataset 2 (loads deweathered with weather medgb = 1.5; variables as in (FIGURE 13.).
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FIGURE 15.
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Dataset 3 (loads deweathered with weather mpiigh = 1.5; variables as in (FIGURE 13.). A sec-

ond output page is required to display the subtree below node 23.

It appears that the weather modelling removes most, though not all, of the time-of-

year dependence in the deweathered loads databases; and that it can do so even more ef-

fectively when certain categorical variables (day-of-the-week and load factor category)

are used as predictors in the weather model. In fact, for the models presented here, month
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is only selected as a splitting variable in the deweathered datasets in a part of the model
which applies only to the lowest load factor category and to two tariff codes; for the
whole loads dataset, month is selected in parts of the dataset that apply to the lowest two
load factor categories (but various tariff codes). All three models account for a very sim-
ilar root percentage of scattBPS, after 13 splits, though the model built for dataset 3
accounts for scatter slightly the fastest - after 6 splits only, the respB&tyg scores

for datasets 1, 2 and 3 are 51.2045%, 51.4895% and 51.6171%. Whilst there is a large
change between whole and deweathered dataénein the clustering tree month is se-
lected, month is used in similar ways in all the models, i.e. to divide colder/darker
months from warmer/lighter months. In the whole loads clustering, note that the daylight
saving clock changes occur at the end of March and towards the end of October, and so
rather close to the month splits that occur in the whole loads model (FIGURE 13.). For
dataset 2 the warmer/lighter months (as determined by the clustering) begin with April
and end with November, though November is subsequently separated from April to Oc-
tober. For dataset 3 the warmer/lighter months (as determined by the clustering) do not
appear to be closely related to daylight saving clock changes. Note that whatever dataset
is used, the lower load factor categories tend to be much more intensively modelled (i.e.
much more splitting occurs in the parts of the model with lower load factors), because
disproportionately more scatter exists in those parts of the model (since customers with
high load factors tend to have much flatter profiles, and accordingly less scatter amongst
their profiles).

Two further experiments were performed to try and determine the effect of deweath-
ering loads on clustering, when month is not present as a predictor variable in the clus-
tering model. The same parametdos 1.5, number of splits = 11) are used as were
used in the clustering of (FIGURE 12.), so direct comparison is possible, but the datasets
used were 1 and 3 (not dataset 2, which was used in generating (FIGURE 12.)). Results

for the three clusterings are displayed in (TABLE 15.), and graphs for the decision trees

TABLE 17.
relative variable importances: ]
final root-%
day-of-the- scatter
dataset week load factor | SIC tariff accounted for
1 (whole loads) | 33.0212 38.9320 14.0695 13.3177 54.6023
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TABLE 17.

relative variable importances: ]

final root-%

day-of-the- scatter
dataset week load factor | SIC tariff accounted for
2 (deweathered | 33.2348 39.777 12.5758 14.0232 55.1503
using model )
3 (deweathered | 33.222 39.9645 13.1577 12.6813 55.089
using model3)

in (FIGURE 16.) for dataset 1 and (FIGURE 17.) for dataset 3, as well as (FIGURE 12.)

for dataset 2.
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Dataset 1 (whole loadsl;= 1.5.

The results of (TABLE 15.) suggest that deweathering a dataset before performing a
decision tree clustering affects the resulting clustering somewhat even when time-of-
year information (i.e. month) is absent from the model. The percentage scatter accounted
for is somewhat better for the deweathered datasets; and whilst the relative variable im-
portances remain similar for all three models, there are substantial differences between
the clustering decision trees for whole and deweathered loads; this is further evidence

that weather has rather different effects on the load shape of customers who differ in their

Applications of Data Mining &chniques to Electric Load Profiling 161



Applications of Data Mining &chniques to Electric Load Profiling

customer attributes (SIC, tariff, load factor), which was already clear from experiments
in section 11.3.11. The trees for datasets 2 and 3 (deweathered with weatheromodels

and[3 respectively) also differ, though rather more subtly.

FIGURE 17.
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Variables

Comparison of Clusterings Using Diffeant Percentile Load-Factor

As discussed in 13.5.2, rather than calculating load factors as a ratio of average load

to maximum load, they may be calculated as a ratio of average load to fheéopen-
tile load. The clustering models so far (and, in fact, the weather models where they have
used load factor) have used 1-percentile load factors. This was motivated more by the
danger of misrecorded peak loads biasing the calculated Ioadlfmanrby the more
general problems of using (conventional) load factor as a predictor. The more general
problems are that a few (correctly recorded) peak loads can heavily affect a final model

when load factor is a predictor, and that a customer’s load factor can change considera-

1. Indeed, the 1-percentile load factors vary little from the true (or 0%, i.e. conventional) load factors, in

general.
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bly depending on the time period over which it is recorded.

The atomic profiles for the clustering model were recalculated from dataset 2 using
various p-percentile load factorgy values of 0.0% (conventional load factor), 1.0%,
10.0%, 20% and 33% were tried. Using these differing sets of atomic profiles 4 new
models were built using day-of-the-wegkpercentile load factor category, tariff code
and SIC code as predictors, setting the number of splits to 11 and the bias coéfficient
to 1.5 (note that the 1-percentile version has already been built with this dataset and these
parameters - see (FIGURE 12.)). Results appear in (TABLE 15.).

TABLE 18.
relative variable importances: ,

il int final root-%
percentiie point | yay-of-the- scatter
p week load factor | SIC tariff accounted for
0.0% 33.2348 33.7846 22.0294 11.8534 53.5886
1.0% 33.2348 39.777 12.5758 14.0232 55.1503
10.0% 33.2347 44.6534 12.9444 10.2584 58.0626
20.0% 41.7316 39.8381 15.4424 6.8826 60.1202
33.0% 33.2348 23.2382 15.0157 26.4896 50.7123

Using conventional load factop(= 0.0%), less scatter is accounted for (after 11
splits) than in the previously built model (wiph= 1.0%); load factor loses importance,
at the expense of SIC code. SIC code is selected for splitting four times, load factor just
3times (FIGURE 18.); whereas when using 1-percentile load factors (FIGURE 12.) load
factor was selected 5 times (SIC just twice). Thus ignoring as little as the top 1% of a
customers’ loads when calculating its maximum load is enough to make load factor a
more useful splitting variable.
The gains in scatter accounted for when increaping 10% and 20% are even more
impressive; load factor attains its greatest importance, as measmjmap}:LJy(EQ 123),
whenp = 10% - the decision tree for that model is given later in (FIGURE 21.)). The
greatest amount of total scatter accounted for (after 11 splits) occurspwhez0%,
where the presence of 20-percentile load factor as a predictor allows day-of-the-week to
take on more than its usual importance. We can see in (FIGURE 19.) that with
p = 20.0%, load factor is actually selected for the first split, ahead of day-of-the-week.
The usual weekend/weekday split does occur lower in the tree: immediately afterwards
for the lower 3 load factor categories, and on the tenth split for some customers with load
factors in the 4th and 5th load factor categories (though not at all, for some customers).

This arrangement actually allows day-of-the-week to take on a greater importance (as
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measured bymp,) than in the other models where it is picked first.

FIGURE 18.
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Use of conventional load factorg £0.0%). SIC is used for splitting 4 times, load factor just 3

times; withp=1.0% (FIGURE 12.), load factor was selected 5 times (SIC just twice).

FIGURE 19.
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With p=20.0%, load factor is actually picked ahead of day-of-the-week.
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When increasing the percentile popito 33.0%, the gains made in terms of scatter
accounted for disappear, and the model accounts for less scatter than when conventional
load factor is used.

We can examine some problems associated with sgtttog high by looking at the
(whole) profiles of a particular customer (call them customer A), who has a very low
load factor as calculated conventionally. Customer A’s centroidal profile, over the study
period, is shown in (FIGURE 20.). The y-axis is scaled between 0% and 600% of aver-
age half hourly load - the customers daily peak average load is nearly six times its aver-
age load; the x-axis shows time of day. Customer A’s SIC code is missing from the
customer database, but the customer is listed as ‘Tennis Courts’ in the Sponsor’s full cus-

tomer database.

FIGURE 20.
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Centroidal profile over study period of customer A.

In fact, customer A has the lowest conventional (0-percentile) load factor of all the cus-
tomers in the 1995/6 database, with a peak half hourly load 12.77 times its mean half

hourly load. However, as shown in (TABLE 19.), customer A’s 20-percentile and 33-

TABLE 19.

percentage pointp: 0.0% 10% 20% 33%
7.83% 22.71% | 256.31% | 1468.61%

p -percentile load factor

for customer A

percentile load factors are extremely high; in fact customer A has the highest 20-percen-

tile load factor in the database, and the highest 30-percentile load factor in the database.
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Whilst percentile load factors are intended to be a more ‘forgiving’ measure of profile
flatness than conventional load factor, in that the higp&stof loads for a given cus-
tomer have no influence on percentile load factor, it would seem that using too high a
percentage poirpp can be much too forgiving; in the case of customer A, well over half
of its loads are very small in comparison to its mean load. Most of A’s power is used
when load levels are greater than the denominator of percentile load factor (EQ 120)
whenp =20% or 30%, and so A is rated (by percentile load factor) as having a very flat,
uniform profile, whereas the opposite is true.

Thus some caution should be exercisega-fgercentile load factor is to replace con-

ventional load-factor as a measure of profile flatness,pghatot set too high.

13.5.6 Marginal, Difference & Effect Profiles in a Decision Tee Clustering

The model of the previous section using 10-percentile load factor, bias coefficient
b = 1.5, predictor variablesl, X;, X; and X and 11 splits, is illustrated in (FIGURE
21.).
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Decision tree withp =10%, b =1.5%; described fully in section 13.5.5.

The first split is into weekday and weekend clusters. The amount of scatter in the
weekend cluster (node 2) is much smaller, and consequently much less recursive split-
ting goes on beneath node 2 than node 1 (the weekdays node). The difference profile (see
section 12.2) for nodes 1 and 2 (weekday/weekend) is given in (FIGURE 22.(a)). This
shows that weekday profiles are somewhat higher between 05:00 and 22:00 GMT, and
much higher between 08:00 and 16:00 GMT, but almost the same from 22:00 to 5:00
GMT. A seasonal overview of the profiles in node 1 (weekday profiles averaged for all
customers) is given in (COLOUR FIGURE 16.). Note that due to deweathering there is
little seasonal variation among the profiles; white (i.e. paper coloured) areas indicate

missing/omitted days and Saturdays and Sundays.

FIGURE 22.
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Difference/Efiect Profiles for the clustering of (FIGURE 21.)

The next two splits are subdivisions according to (10-percentile) load factor catego-
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ry, and it is the three lowest load factor categories (at node 3) which carry the bulk of
remaining scatter, and which are recursively split the most times subsequently, particu-
larly load factor category 1 (node 5) which is split another 4 times, according to tariff
category (twice) and SIC code (twice). A difference profile for nodes 3 and 4 (weekday
low load factor (L1, L2, L3) profiles and weekday high load factor profiles is given in
(FIGURE 22.(b)). Between about 06:30 and 18:00 GMT, the lower load factor profiles
are typically much higher than the higher load factor customers, and this trend is re-
versed for the remainder of the day. The difference is most marked between 09:00 and
15:00 GMT. The seasonal plots for nodes 3 and 4 are given in (COLOUR FIGURE 17.)
and (COLOUR FIGURE 18.) respectively. Notice that while there is little seasonal var-
iation in node 4, there remains rather more seasonal variation unaccounted for by the
weather model in node 3.

As we move further down the tree, the difference profiles between sibling nodes, and
effect profiles (differences between daughter and parent profiles) tend to become less
smooth, and also more interesting. For example, the effect profile of node 7 (representing
one patrticular tariff code amongst customers in load factor category 1, on weekdays) on
node 5 (load factor category 1, all tariffs, on weekdays) is given in (FIGURE 22.(c)). It
demonstrates that customers with this tariff code tend to have higher loads towards the
middle of the day (07:00 to 16:00) than other customers in the same load factor category,
much lower loads during early morning and early evening, but similar loads at night. The
seasonal diagram for node 7 is given in (COLOUR FIGURE 19.). The difference profile
between node 15 and 16 (differing groups of SIC codes for customers in load factor cat-
egories two and three, weekdays) given in (FIGURE 22.(d)) shows how subtle the dif-

ferences between the clusters can become lower down in the decision tree.

13.6 Subatomic Clustering at Leaves of the Extrinsic Decisionréde
Clustering

A clustering algorithm which seeks clusters of profiles of any form, rather than a de-
cision tree approach which always partitions using values of a particular variable, allows
for more flexible clusterings. Whilst we might expect such a clustering to be very much
slower, without extrinsic variables to guide the search for clusters, we might also expect
the final clusters to better satisfy goodness-of-clustering criteria (when the number of

clusters is the same in either model) as a result of the freer form of its clusters.
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However, this increased flexibility is arguably very much a disadvantage, since the end
model is vastly less interpretable than a decision tree. Each leaf in a decision tree has a
single path to the root, marked with simple conditions on attributes. Thus the exact
meaning of any cluster (whether a leaf cluster or a coarser higher level cluster) is instant-
ly interpretable. Furthermore, effect curves allow for comparison of the effects of pre-
dictors between the various clusters at various levels, and the decision tree itself is a
highly interpretable at-a-glance visualisation of both global and local data structure.

However, the leaves of a decision tree clustering like those presented in section 13.5
often contain a significant amount of scatter unaccounted for; it seems more than likely
that there are patterns of variation at the leaves that are hidden by the atomic structure of
the data used in extrinsic decision tree clustering. Customers represented within the same
leaf may have very different load shapes, but be indistinguishable because they have the
same values for each of the predictor variables under consideration. There may be cus-
tomers in the same leaf cluster with very different load shapes, but that would require
several more splits using extrinsic variables to end up in different leaves - whereas a sin-
gle split that was ‘free’ rather than dictated by extrinsic variable values might immedi-
ately separate them.

Since the number of profiles in any leaf of a decision tree tends to be much smaller
than the number of initial profiles fieee-form(or subatomigi.e. intrinsic, not guided by
extrinsic temporal and customer variables) clustering on the profiles at a given leaf may
be viable, provided the clustering algorithm is a very rapid one; however the subatomic
clustering of profiles at a leaf can be made very much faster still by imposing that all the
daily profiles of any given customer end up in the same cluster; timerdigtinct cus-
tomers are found at a particular leaf, there arenuphtterns (the customers’ centroidal
profiles for the dates represented at the leaf) to be clustered.

A faster algorithm is required than the join-two algorithm, smaay still be rather
large, so thebinary splitting algorithmof section 8.6 is employed to generate binary
clusterings at the leaves of a decision tree. The framework within which this happens is
the same as for the extrinsic decision tree clustering we have already seen: the leaf clus-
ter with the greatest within-cluster scatter is selected for sub-atomic binary clustering
with the binary splitting algorithm; the two clusters so generated replace the old leaf
cluster in the decision tree; and these new leaves are made available as candidates for
further subatomic splitting, should either of their within-cluster scatters become the

greatest remaining within-leaf scatter. In fact, the same biased distance measure is used
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by the binary splitting algorithm when performing sub-atomic clustering. Thus the sub-
atomic clusters can be viewed on the same decision tree as the preceding extrinsic atomic
clustering - though the branches are merely marked with the number of customers rep-

resented at the node below the branch.

13.7 Subatomic Clustering Results

Subatomic clustering as described in 13.6 was applied at the leaves of an atomic de-
cision tree clustering. The atomic decision tree clustering used 11 splits using the varia-
bles d, X;, X and X , bias coefficientb = 1.5, 10-percentile load factors and the
deweathered data of dataset 2 (this is the clustering illustrated in 13.5.6). An additional
10 subatomic splits were generated on the leaves of the original atomic decision tree, still
using a bias coefficient of 1.5.

A graph of root-percentage scatter accounted for afteplits RPS, is given in
(FIGURE 24.). The dashed line marks the boundary between the 11th (final) atomic split
and the first subatomic split. Note that the rate of increaB®8f accounted for is fall-
ing sharply before the beginning of the subatomic splitting algorithm. However as soon
as the subatomic splits begin to be generated, the rate in increRiBg ofises sharply,

until after the first five subatomic splits the rate of increaseRf, slows down again.

TABLE 20.
relative variable importances: :
# # final root-
Atomic | Subatomic | day-of- load sub- % scatter
Model | splits splits the-week | factor | SIC tariff atomic | accounted
atomic | 21 0 33.500 45.186| 17.889| 11.899 | n/a 60.2133
mixed | 11 10 33.235 44.653| 12.944| 10.258 | 33.586 | 67.0765

(TABLE 15.) shows a comparison of the performance of the subatomic clustering
model in comparison to a model with the same parameters, and also using 21 splits, but
using only extrinsically guided atomic splits. All scatter accounted for by subatomic
splits have been added and converted to a root percentage to give a relative ‘variable’
importance for subatomic splits, though of course no extrinsic variable guides these
splits. As would be expected, more scatter is accounted for by the mixed atomic/suba-
tomic model. The subatomic splits are awarded a combined importance similar to day of
the week but less than load factor (though of course it is not a very fair comparison, as

on the one hand these splits take place after the other splits, when much of the scatter is
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already accounted for; and on the other hand, these splits are much freer in the profiles
that they are allowed to put into different clusters).

The decision tree for the mixed atomic/subatomic model is given in (FIGURE 24.).
Since the tree is very large, the weekday model (descending from node 1) and the week-

end model (descending from node 2) are given separately. Note that on some occasions
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RPS, against number of splits for a mixed atomic/subatomic clustering.

nodes that were generated by subatomic splitting are selected again for subatomic split-
ting.

It is hoped that the subatomic clusters that can be generated using this method may
be a useful tool in identifying niche markets for particular tariffs. By identifying small
clusters of customers who have similar profiles to each other, but dissimilar to those of
other customers with similar attributes (load factor, tariff group, SIC code), it may be
possible for a utility to identify a load shape for which it can price electricity competi-
tively, and to attempt to court similar customers from competing utilities.

However, the subatomic part of the model is of little use in predicting a new or po-
tential customer’s load shape given their attributes alone, because there is no extrinsic
variable to suggest which half of a binary subatomic clustering the customer should be-

long to.
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FIGURE 24.
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Chapter 14 —Possible Diections For Further Reseach

There are a number of suggested possible refinements of and extensions to the meth-
ods presented in this thesis for data collection and cleansing; for weather modelling of
half-hourly load data using weather, temporal and customer variables; for deweathering
of whole load using such a weather model; and for clustering whole or deweathered pro-
files using a variety of customer and temporal variables (and also without using extrinsic
variables). A number of minor possible enhancements to the methodologies have already
been suggested in Chapters 11 and 13, and these are, in general, not repeated here. How-
ever most of the extensions and alternative approaches suggested in this chapter would

be quite substantial research undertakings in their own right.

14.1 Improvements in Data Quality

One obvious way to improve the quality of results would be to procure more and bet-
ter data; data for more customers over more dates, data which contains fewer missing
dates and months, customer data without missing SIC codes, customer survey data con-
cerning end uses (such as presence of storage heating, air conditioning, etc.), and perhaps
foremost, data which is known to be consistently collected and normalised across all
dates and all customers, and free of erroneous measurements.

Unfortunately it is not always possible, in the real world, to get clean reliable data
such as this. Where improvements such as those above are impossible, there may be
more sophisticated ways of trying to detect erroneous or inconsistently recorded data
than have been described in this thesis - for example, automated methods to find out
which customers have dubious records in a certain month, rather than rejecting all the
data for a month which appears to have some dubious entries.

A more general way of removing (or severely down-weighting) outlying data points
than the somewhat crude solecism detection of section 11.3.1 would also be desirable.
One way to remove all variety of extreme outliers would be to build a preliminary model
for whole load (composed from the weather-dependent model and the weather-free clus-
tering model, or by just applying the decision tree clustering technique to whole loads),
and then identify outlying data in the original dataset as those that the constructed model
predicts very poorly. Single half-hourly data points, or whole profiles, or whole atoms,

or whole customers/dates, could be removed or down-weighted automatically if their
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Euclidean distance (say) from their predicted values in the preliminary model was too
great. Examining which data were removed by such a process may be revealing in itself,
and would also allow a secondary model to be constructed from the cleaned/weighted

data which was less distorted by outliers.

14.2 Enhancements to \&ather Model

One problem with the weather modelling methodology presented in Chapter 11 is
that it relies on an estimate of available natural illumination that is by no means accurate,
together with cloud coverage figures and time of day/year information, to assist the mod-
elling of lighting loads. If actual figures for illumination could be collected, the model
might improve, and we might also be able to do without time-of-year variables, relying
more on meteorological variables to model seasonal variations in load.

However the greatest problem with the presented model is that it can take extremely
long times and vast amounts of memory to calculate; this is especially the case when one
or more categorical customer variables are used as predictors, since then the number of
data points increasesfold when there ara distinct combinations of customer variable
values present. This made it impractical to use SIC code in large models, or to use two
customer variables at once.

Since it would be desirable to build weather models over longer periods, and for more
customers, than were present in the databases provided, ways to reduce the memory and
CPU-time requirements of the presented weather methodology might need to be found.
A prior clustering of the customers’ whole or weather dependent profiles, using custom-
er variables as extrinsic variables in a mixed atomic/subatomic clustering, could be used
to generate a new customer variableather dependence categomhose value was de-
termined by which leaf cluster a customer belonged to in this model. Provided that the
number of clusters (hence the number of values of the weather dependence category)
was reasonable, then load factor category, tariff code and SIC code could be replaced by
a one categorical customer variable, perhaps allowing for improved weather models
without too much additional computational complexity.

Another area of research would be to establish how much goodness of model fit is
sacrificed when various variables are excluded from the weather model. It may be pos-
sible to achieve a similar goodness of fit using a smaller variable set, thus reducing the

computational burden of the method.
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If the amount of data to be modelled was so great that there was no way to maintain
computational feasibility within MARS, a less complex method (such as interaction
splines - section 6.5.1 - featuring just the variable interactions most frequently chosen by
the MARS models in this thesis) might need to be adopted. Categorical variables could
be employed in such a scheme by building separate models for each ‘weather dependen-

cy category’ (see above) of customers.

14.3 Enhancements to Deweathering

A problem with the presented methodology of modelling weather dependent loads
and then deweathering whole load by subtracting the weather model is that every cus-
tomer with the same or with sufficiently similar customer categorical variables will be
assigned the same weather model; in fact, if customer categorical variables are not used
as predictors to MARS, thextl customers are assumed to have the same weather model.
Thus the deweathered loads for a given customer, which consist of subtracting the
weather model from the customer’s initial whole loads, may in fact overcompensate for
the effects of weather. In particular, some customers may have very little weather de-
pendency in their loads relative to the majority of customers, and hence have their winter
loads and/or their summer loads artificially lowered in the deweathered data for no good
reason.

Whilst this fact is largely disguised in the presented clusterings of deweathered loads
(because each customers profiles are composed into atoms with other customers, so that
the extent of an individual customer’s weather dependency becomes blurred), it could be
an important source of bias where an individual customer’s loads are important, such as
in the subatomic clustering phase of a mixed atomic/subatomic clustering model.

The use of a ‘weather dependence category’ variable determined by clustering
weather dependent customer profiles (as discussed in section 14.2) might help to reduce
this problem. However it might also be possible to do something about it at the deweath-
ering stage; a customers’ deweathered loads could be generated from its whole loads by
subtracting ascaledversion of the weather model, using a different sc)ajlafor each
customerc; ; customers with less weather dependence would employ smaller scalars. If
a customer'sN deweathered load reading®"F, are calculated from their original

whole loadsY; using modelled weather dependent loggds using
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YWE = Y = A faw (EQ 124)

for 1<i <N, then we can determine an approprva]tefor each customer; so that the
deweathered load¢"F, appear as uniform throughout the year as possible; an obvious
criterion for maximising the degree of uniformity gfs deweathered profiles through-

out the year (with respect tq) IS to minimise

N
> %YWFi —YWFE (EQ 125)
i=1
where YWF. is their average deweathered load, which since the weather model is very
nearly zero sum, can be replaced with their average whole load. It would be fairly

straightforward to minimise this criterion with respect to the single coeffiﬁijent

14.4 Improvements to Decision fiee Clustering Model

14.4.1 Mot Alternatives to Load Factor

We have already seen how replacing load factor with a percentile load factor can im-
prove overall scatter accounted for by the model, and that percentile load factor is gen-
erally a more useful predictor in the presented extrinsic decision tree clustering
technique than conventional load factor.

There might be some mileage in considering other measures of a customer’s profile
flatness/uniformity other than load factor or percentile load factor. One problem with
these measures is that they do not differentiate between, on the one hand, customers
whose daily load total varies greatly from day to day, and on the other hand, customers
whose daily load total does not vary much but whose typical peak load each day is much
greater than their mean load each day. Thus we might desire two measures of profile uni-
formity, one describing typical daily profile uniformity, the other describing typical an-
nual uniformity of daily load.

One statistical measure that is of possible interest iskiof a customers loads
(either the skew of their mean profile or the skew of their individual half hourly loads
over the period of study). Whereas a mean describes a typical value and a standard de-
viation describes how much values typically stray from the mearaftoeintof varia-
tion), skew describes the amount of asymmetry in that variation. High load factor

customers generally have a more negative skew than lower load factor customers.
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14.4.2 Alternative Metrics in the Decision Tee Clustering Algorithm

There are three principal criteria which dictate the final form of the extrinsic decision
tree clustering models presented in this thesis. Firstly, there is the ‘next node’ criterion
deciding which node should be split next; secondly there is the distance criterion be-
tween the centroidal profiles in the clustering algorithms used to split that node; and fi-
nally there is the tree size determination criterion.

In the methodology presented, total Euclidean scatter amongst all the constituent pro-
files at a node was used to determine which node to split; a biased Euclidean distance,
which discriminated against clusters with uneven numbers of constituent profiles was
used as a distance metric in the clustering algorithms; and the tree was grown only until
it reached a predetermined size.

There is a great deal of research which could be done on comparing these criteria
with a several alternative criteria. The Euclidean scatter amongst the underlying original
profiles at a node might be replaced by Euclidean scatter amongst the underlying atomic
profiles at a node, in the node selection criterion. Euclidean scatter is not robust to out-
liers, and a distance metric less punitive to outlying data could also be considered.

More ambitious would be a scheme which found the best binary clustering it could,
not at just one node, but at many. Then whichever of the binary clusterings at each of
those nodes was judged best would be the node that was split. This would require rather
more calculation, however, than the current scheme.

The distance criterion used (modified Euclidean) is also very sensitive to outliers,
and less punitive measures could be tried.

In the current scheme, when one binary clustering has been determined for each can-
didate variable, the ‘best’ variable is chosen to be that whose distance between the binary
clusters is greatest; however, depending on the goodness of model fit criterion applied,
this might not always be the split which most reduces lack of fit globally; looking at var-
ious criteria for overall model goodness-of-fit (rather than always choosing the binary
clustering which satisfies a local goodness of fit criterion) is another possible area of re-
search.

Rather than stopping at a fixed sized tree, an overgrowing and pruning approach may
yield better results. A more complex system involving repeatedly overgrowing, then
over-pruning, then overgrowing again and pruning again, repeatedly until no model im-

provements occur, may also be worth investigating.
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An advantage of growing a tree according to one criteria and pruning according to
another is that the local greediness of the growing criteria may be corrected by a globally
determined goodness of fit criterion applied in the pruning phase.

A major extension to the work in this thesis would be to perform thorough cross-val-
idation experiments to determine the best size tree, and to determine the best values for
various parameters, including the bias coefficienh-fold cross validation would in-
volve randomly dividing the customers into sub-populations, as described for the
MARS cross-validation scheme and testmguodels, each built usmg— of the da-
ta, against the remalnlnﬁ:;th of the data. The lack of fit arising When comparing what
each test profile should look like according to the model to what it actually looks like,
would be the criterion by which the model size and various model parameters would be
determined. Note, however, that other criteria than minimising cross-validation errors
are also important; an engineer, for example, may require a fixed number of profiles for
a certain task, in which case the final model size is not flexible; and various ratios be-
tween the number of splits and the number of subatomic splits may be desirable depend-
ing on to what extent the final clusters need to be dictated by known customer attributes.

Another major area of research which could be investigated with a view to extending
or adapting the clustering methodology would be information theoretical measures for
load profiles. Due to the stochastic nature of load profiles (the load at itinaeprofile
Is certainly not statistically independent of the loads at other timearticularly when
It —t'| is small) choosing meaningful estimators for quantities such as (i) the self-infor-
mation of a profile (ii) the transinformation between profiles, and (iii) information
gained by splitting a profile according to the values of that variable, are very difficult to
determine.

In section 3.6 the concept of band limitation was used as a simplifying assumption
about stochastic ensembles in order to derive meaningful information theoretic measures
for them. Other simplifying assumptions included time limitation, and independent iden-
tically distributed Gaussian additive noises. How appropriate is the assumption of band
limitation when applied to 48 half-hour load profiles? And since the highest frequency
we can investigate is limited very much by the sampling frequency for the load profiles
(i.e. half-hourly), would the concept of band limitation be useless anyway?

Since entropy is defined as the smallest theoretical storage space (in bits) for a signal
under a reversible coding (which is another way of saying a reversible compression tech-

nique), information theoretical measures for load profiles might be possible which are
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based on the number of points which are necessary to reconstruct the profiles (to within
a certain tolerance), just as the sampling theorem for band limited continuous signals de-
scribes the number of points necessary to reconstruct a band-limited signal in the formu-
lation of Shannon’s theorem for the transinformation of band-limited signals (EQ 20).
The number of knots required by a given cubic spline fitting technique to model a load
profile to within a certain accuracy might be used in entropy-like or transinformation-
like measures for load profiles.

How to best use these pseudo-information theoretic measures in a decision tree clus-
tering procedure would require investigation, though there are many well known infor-
mation theoretical decision-tree classification/clustering techniquescétegorical

responses) on which to model such a procedure.

14.5 Application of Methods to Other Databases

Of the three profiles databases discussed with the Sponsor (see section 9.1), the one
studied has the least complexity (the fewest number of predictors). The techniques pre-
sented would be applicable to more complex databases which include questionnaire data
(and/or other variables) without major modification: the non-weather predictors could be
employed in the weather-free (cluster analysis) model in exactly the same ways. More
discrete predictors would entail more atoms, which could present complexity problems,
though these problems might be overcome by using cheaper algorithms (say, the Binary
Splitting Algorithm in place of the Join-Two algorithm) towards the top of the decision
tree.

The weather modelling part of the methodology might be put under particular strain
if applied to databases for which there were many more categorical predictors (such as
domestic customer databases accompanied by questionnaire data on end uses and family
make-up), and it seems certain that the number of categorical variables would need to be
reduced (probably by extrinsic clustering of weather dependent loads, as discussed in

14.2) before the categorical information could usefully be incorporated.

14.6 Discoveed Predictors

One of the most important predictors of winter load shape after day type is the pres-
ence or absence of a storage heating load for a given customer. No variable recording the

presence or absence of storage heating loads for each customer is recorded in our month-
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ly billed business customer database, but it would probably not be too difficult to con-
struct such a predictor by examining loads at and shortly after the onset of night time
cheap-rate supply. If a customer has cheap-rate loads which are significantly higher dur-
ing spells of cold weather, this is almost certainly due to a storage heating load. A dis-
covered discrete variable recording whether or not a customer has storage heating would
be particularly useful in the weather dependent model, and of possible use in the weath-
er-free model; it might even be feasible to discover a continuous storage heating variable
which estimates the percentage of annual load due to storage heating devices for each
customer, for use as a continuous regressor in the weather dependent model.

Similarly it might not be difficult to discover the presence or absence of air condi-
tioning and/or storage air conditioning loads for each customer; where a customer’s day-
time loads have a significant positive correlation with temperature and/or humidity,
space conditioning is almost certainly used by that customer. Where night-time cheap
rate loads are significantly correlated with daytime temperature/humidity, storage space
conditioning is almost certainly installed. Such discovered variables could be incorpo-

rated into customer databases, and might have uses other than in load profiling tasks.
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Chapter 15 —Summary and Conclusions

The load profiling task described in this thesis covers a large number of customer,
temporal and meteorological variables, both supplied and derived. Because there are
many variables of potential importance to the task, particularly in the case of weather
variables where there are many derived candidate variables, the task is very large. High
dimensional modelling tasks present computational difficulties, and are also much hard-
er to interpret than low dimensional problems. Partly to keep the dimension of the prob-
lem in check, partly to allow for improved interpretability, and partly because different
types of model are better suited to modelling different relationships, a scheme was de-
vised which separates a weather-dependent component of load from a weather-inde-
pendent component.

The chief difficulties of the load profiling task, aside from the high dimension of the
problem, arise from the extreme heterogeneity of response in the data. Different custom-
ers may have dramatically different load shapes on a given day, and a customer’s load
shape may vary dramatically from day to day, from season to season, and with differing
weather conditions. This problem is exacerbated by the fact that even customers with the
same tariff code category, and/or the same SIC code, and of similar load factors, cannot
be expected to always have the same load shape characteristics or weather dependencies.
Another major problem with the particular load profiling task studied here arises from
the poor state of the loads database. Although some measures were employed to auto-
matically remove probable erroneous data, and visual inspection employed to detect
contiguous dates of questionable data, better results would be expected from cleaner da-
tabases.

A non-parametric and highly adaptive data mining regression algorithm (MARS)
was employed to model the effects of weather on load, separately from the principal ef-
fects of the other variables on weather independent load; the residuals from this model
are assumed to be due to non-weather variables, so are recombined with the weather in-
dependent loads prior to the second phase model, the model for the weather-insensitive
portion of load. A variety of different combinations of supplied and derived weather and
temporal variables were made available to the model, and various parameters varied, in
order to obtain good model fit, whilst guarding against overfitting the data.

The biggest drawbacks of the use of MARS for the load/weather analysis are its high

computation times and high memory demands when categorical customer variables are
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used. This is a peculiarity of the task rather than a general problem with using categorical
variables in MARS; because every customer is considered as experiencing the same
weather conditions at any given time, the number of data points in the model can be
hugely reduced by aggregating the loads for all customers; but when a variable which
disaggregates the customers is supplied, the number of data points grows, and does so
nearly exponentially as more such variables are supplied.

However, the weather modelling methodology presented proved itself capable of ac-
counting for a great deal of the variation in weather dependent load, with or without cat-
egorical customer variables. In particular, the order 2 and order 3 interaction terms
generated by MARS frequently corresponded to known phenomena in the load/weather
relationship (such as the combined effects of humidity with temperature, of cloud with
time of day and year, of windspeed and temperature, and the order three interaction of
windspeed, humidity and temperature); indeed, MARS appeared to be as good at mod-
elling such effects as summer discomfort and wind chill by itself (synthesising high or-
der terms as necessary) as when variables representing these concepts were explicitly
provided.

Exponentially smoothed versions of the weather variables, particularly medium and
long term smooths of temperature, proved to be important in the generated models. In
fact, medium and long term temperature smooths were generally rated as more important
than the current or very recent temperature. Lagged versions of the weather variables
generally proved much less useful than smoothed versions (though the maximum, min-
imum and mean temperatures from the previous day often proved to be of much value),
and delta temperatures were only of much use when temporal variables were excluded;
there was no evidence that delta variables were necessary to model temporal asymmetry
in the model.

It is only the highly adaptive nature of a model like MARS that allows so many in-
teractions of so many variables to be considered at the same time; since new variables
and new interaction terms are only introduced on a local basis where they are shown to
reduce lack of fit, it is possible to consider many more multiplicative combinations of
variables than could reasonably be considered in a non-adaptive regression scheme.

The introduction of categorical variables into the weather model, though limited in
its scope due to the computational difficulties mentioned above, appeared to be very suc-
cessful. All of the categorical customer variables introduced were found to be useful pre-

dictors of load/weather behaviour; load factor (which was only tested in a 1-percentile
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version) looked to be a little more effective as a predictor than tariff code, but SIC code
(which could not be tested in a model of comparable size) was picked more frequently
than any of the other categorical variables in a smaller experimental trial, and might be
the categorical variable with the most predictive power in the weather model.

More investigation is necessary in order to determine a way to present more categor-
ical customer information to the load/weather model without generating computational-
ly impractical models; a prior clustering of weather dependent loads to obtain categories
of customers with similar load weather relationships has been suggested as a major ex-
tension to the weather modelling methodology.

An adaptive decision tree clustering technique which recursively subdivides the do-
main using locally appropriate binary clustering algorithms, and which models the data
at higher resolutions where the data is locally most heterogeneous, was devised especial-
ly for the task of modelling the (nominally) weather-free loads generated using the
weather model. A biased distance measure was found to be required in order to discour-
age uneven clusters (which generally account for less scatter and are less informative)
occurring early on in the tree building process, and this resulted in great improvements
in the resulting models, in terms of interpretive power as well as scatter accounted for.
Alternatives to conventionally computed load factor were tested as predictor variables,
and significant improvements in the amount of scatter accounted for, and the speed with
which scatter was accounted for, were observed.

A scheme which attempts to seek interesting patterns existing at the leaf clusters of
the extrinsic decision tree clustering was implemented and tested. The principal motiva-
tion behind this is the observation that customers that, because of their load factors, tariff
codes and SIC codes, will often end up in the same leaf of an extrinsic atomic decision
tree clustering, will sometimes have very different load shapes. By freeing the clustering
sub-algorithms employed in the later stages of a decision tree clustering from the need
to keep profiles from the same atom together, clusters are generated that account for sig-
nificantly more scatter that when the same sized tree is built using only atomic cluster-
ing.

The much improved fit resulting from employing subatomic clustering in the latter
part of modelling indicates that there are ‘hidden’ patterns in the Sponsor’s business cus-
tomers’ load profiles that cannot be isolated using the recorded customer attributes
alone. It is anticipated that close investigation of the customers found in the subatomic

leaf clusters would expose certain types of customers with unusual load shapes that it
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might be of special benefit for the Sponsor to try and court.

The modelling procedure described satisfies the principal stated aims of the load pro-
filing task: to build models which estimate, for certain subsets of customers, their load
shapes (and confidence estimates for those load shapes), for different weather condi-
tions, times of year, and days of the week. The leaf profiles in an atomic or a mixed atom-
ic/subatomic decision tree clustering serve as a set of standard profiles, which can be
used as a tool in determining tariff policies and identifying patterns in load shape. Addi-
tionally, the structure in the variation in load shape can be visualised using the decision
tree, and the relative variable importance determined.

The load weather model can be applied on top of the weather-free clustering model
(by simply adding the relevant profiles from either part of the model) to determine a pre-
dictive model for load shape given a particular customer type and a particular set of
weather conditions. This could be of use in predicting the probable demand surplus/def-
icit arising from unusually cold or mild weather conditions, and of predicting the overall
demand profile at any given time of year, given hypothetical changes in the proportions

of differing types of business customers supplied.
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Appendix —Colour Figures

COLOUR FIGURE 1.

Customer ID 8-00 (Sat 1 Oct, 1994 to Sun 30 Apr, 1995 ) 7

October 1994-April 1995 whole load profiles. The custosmero figure SIC code is 55, listed as

“Hotel & Restaurant”. The z-axis (i.e.colour) runs from 0% to 250% of mean half-hourly load.

COLOUR FIGURE 2.
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Profiles for the same period for a customer with SIC code 80, which is listed as “Education”.
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COLOUR FIGURE 3.

Customer ID 8-14 (Sat 1 Oct, 1994 to Sun 30 Apr, 1995 )

This customés SIC code is 74, which is listed as “Legal & Marketing”. There is very little discern-

able pattern to the load shape.

COLOUR FIGURE 4.

Customer ID 8-82 (Sat 1 Oct, 1994 to Sun 30 Apr, 1995 )

This customés SIC code is 52, listed as “Retail & Repair”. Note that the z-axis (represented by
colour) is on a dierent scale (0% to 500% of mean half-hourly load) as the cust®ioad factor

is very low Much of the time the customers load is recorded as O.
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COLOUR FIGURE 5.
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MARS ANOVA plot for 48 hour half-life smoothed temperature and closeness to evening.
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COLOUR FIGURE 7.
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MARS ANOVA plot for closeness to evening and 2 hour half-life smoothed estimated darkness.

COLOUR FIGURE 8.
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COLOUR FIGURE 9.

7

ERREERR

IEETL

Database Summary of Entries

Overview of the entire database (whole loads), customer by cus@®mastome’s daily total load
(represented by colour) is calculated as a percentage of that custaveeagedaily total load. A

key between colour and percentage is provided. White represents missing profiles.
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COLOUR FIGURE 10.
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Overview of dataset 1 (April 1995-March 1996), i.e. whole (not deweathered) load. The data for
April, July and August, have apparently been measured fametif scales from the rest of the data.

see 12.5.1 for notes on interpretation.

COLOUR FIGURE 11.
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Overview of dataset 1 (April 1996-March 1997).
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COLOUR FIGURE 12.
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431 customers (Sat 1 Apr, 1995 to Sun 31 Mar, 1996 )
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Overview of dataset 2 (April 1995-March 1996), which was deweathered using weatheicmodel

Note the questionable data for all of April, July and August, which are even more apparent in the
deweathered data than in dataset 1 (COLOUR FIGURE 10.).

COLOUR FIGURE 13.
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COLOUR FIGURE 14.

¥
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Whole loads (dataset 1), December 1996 to February 1997 - greater detail than (COLOUR FIG-
URE 11.). Thursday to Saturday profiles look highly suspicious during January 1997.

COLOUR FIGURE 15.

A\

431 customers (Fri 1 Mar, 1996 to Tue 30 Apr, 1996 )

Whole loads (dataset 1), March to April 1996. THeatfon loads of a daylight saving clock change

in the early hours of March 31 is apparent.
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COLOUR FIGURE 18.
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COLOUR FIGURE 19.
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