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Abstract 

Taming the Curse of Dimensionality in the Generation Expansion Planning Problem 

Abeer Almaimouni 

Chair of the Supervisory Committee: 

Prof. Daniel Kirschen 

Electrical and Computer Engineering  

Integrating a significant amount of generating capacity from intermittent 

renewable energy sources (IRES) requires a change in the long-term generation 

investment plans. The variability and stochasticity of these sources mean that it 

is essential to consider not only the cost of meeting the annual demand for 

electrical energy but also the hourly or even sub-hourly changes in operating 

conditions in the generation expansion plan (GEP). However, introducing these 

operational constraints dramatically increases the dimension of the GEP problem 

and the computational burden. Selecting a small set of the most representative 

profiles makes it possible to consider the operational constraints in GEP models 

within a reasonable computing time. 

In this work, the application of feature engineering and machine learning in this 

area of research has been revisited to design a rigorous algorithm for 

systematically selecting representative profiles from a one-year horizon net load 

series. A new metric to evaluate the representative profiles has also been 

proposed. Further, the long-term impact of basing GEP on the selected sample 

data using this new metric and other metrics in the literature is investigated. In 
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addition, sensitivity tests regarding the size of the sample data and different 

penetration levels of IRES are carried out. 
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Nomenclature 

Indices and sets 

𝑡, 𝑡𝑡 1 ≤ 𝑡 ≤ 𝑇 Index to hours in a day 
𝑑 1 ≤ 𝑑 ≤ 𝐷 Index to representative days  
𝑔 1 ≤ 𝑔 ≤ 𝒢 Index to generating units 
𝑎 1 ≤ 𝑎 ≤ 𝒜 Index to generation technologies 
𝒯ℋ ⊂ 𝒢 Subset of thermal power plants 
𝒲 ⊂ 𝒢 Set of wind units 
ℬ ⊂ 𝒢 Subset of base units 
ℐ ⊂ 𝒢 Subset of intermediate units 
𝒫 ⊂ 𝒢 Subset of peaking units 
𝜔𝑑  Weight of each representative day 
𝐷  Number of representative days 
Parameters 

𝐷𝑑,𝑡 Electricity demand at hour 𝑡 [GWh] 

𝑐𝑓𝑑,𝑡
𝑊  Capacity factor of wind generation at hour 𝑡  [%] 

ℂ𝑔
𝑓𝑖𝑥𝑒𝑑

 Annualized fixed cost of unit 𝑔  [$/year] 

ℂ𝑔
𝑣𝑎𝑟 Variable O&M cost of unit 𝑔  [k$/MWh] 

ℂ𝑔
𝑠𝑡𝑎𝑟𝑡𝑢𝑝

 Start-up cost of unit 𝑔  [$] 

𝑉𝑂𝐿𝐿 Value of lost load  [$/MWh] 
𝑃̅𝑔 Maximum output of unit 𝑔  [GW] 

𝑃𝑔 Minimum stable output of unit 𝑔  [GW] 

𝑃̅𝑊 Installed wind generation capacity  [GW] 

𝑅𝑔
𝑢𝑝

 Maximum ramp rate of unit 𝑔  [GW/h] 

𝑅𝑔
𝑑𝑛 maximum ramp down rate of unit 𝑔  [GW/h] 

𝜏𝑔
𝑢𝑝

 minimum up time for unit 𝑔  [h] 

𝜏𝑔
𝑑𝑛 minimum downtime for unit 𝑔  [h] 

Variables 

𝑦𝑎,𝑔 ∈ {0.1} Decision to build a unit g of type a  

𝑃𝑔,𝑑,𝑡 ≥ 0 Output of unit 𝑔 at hour t  [MWh] 

𝑃𝑑,𝑡
𝑊  ≥ 0 Curtailed wind generation at hour t [MWh] 

𝑢𝑔,𝑑,𝑡 ∈ {0.1} Status of unit 𝑔 at hour 𝑡  

𝑥𝑔,𝑑,𝑡 ∈ {0.1} Start-up of unit 𝑔 at hour 𝑡 
 

𝑣𝑔,𝑑,𝑡 ∈ {0.1} Shutdown of unit 𝑔 at hour 𝑡 
 

𝑁𝑆𝐸𝑑,𝑡 ≥ 0 Non-served energy [MWh] 
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List of Abbreviations 

CCGT Combined cycle gas turbine  

ERCOT Electricity Reliability Council of Texas  

GAMS General Algebraic Modeling System 

GEP Generation expansion planning 

IRES Intermittent renewable energy sources  

LDC Load duration curve 

MILP Mixed integer linear programming 

NLDC Net load duration curve 

NRMSE Normalized root-mean-square-error 

NSE Non-served energy 

OCGT Open cycle gas turbine  

PCA Principal components analysis 

POD Proper orthogonal decomposition 

RDC Ramp duration curve 

REE Relative energy error 

RHUC Rolling horizon unit commitment 

SVD Singular value decomposition 

UC Unit commitment 

VoLL Value of lost load 
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Chapter 1: Introduction 

This thesis discusses the quality of the input data used in long-term planning 

models in the power sector. Long-term planning models are optimization models that are 

designed to yield the best investment decisions in generating facilities and transmission 

lines. Making these investment decisions is a critical process, as building the right system 

enables the design of a reliable system that can uphold the delicate balance between 

electric load and generation to “keep the lights on.” A reliable system is one that can meet 

the demand for electricity in both the short and long term such that interruptions in the 

service are kept below the established reliability standards and metrics [1]. Short-term 

reliability, or security of the system, can be achieved by successfully managing the 

resources available in the system, while long-term reliability, or adequacy, can be 

achieved by investing in the appropriate technologies and resources to make them 

available for the system operator in the short term. Designing the optimal system not only 

allows electricity to be supplied reliably but also economically and efficiently, which is 

critical to making electricity affordable and accessible. This decision-making process is 

complex because these generating facilities and transmission lines are capital intensive, 

and the lead time to their construction ranges from a few months to several years. 

Moreover, such long-term decisions influence the operation and reliability of power 

systems for decades due to their long lifetime. 
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1.1 The Curse of Dimensionality 

Ideally, a dynamic multistage framework similar to the one shown in figure 1.1 is 

desirable for the decision-making process, as it considers the many uncertainties that could 

unfold throughout the decades in which the facilities are in service. These uncertainties 

include the demand throughout the transmission network; the cost of investment and 

operation of the different generating units throughout the planning horizon; the changes 

in regulation driven by changing political climate; environmental concerns; economic 

factors; and the timing and type of technological breakthroughs that could take place, such 

as a breakthrough in storage technologies that could make them cheaper or one in base 

generating units that could make them more flexible. In these models, investment 

decisions are made at different points in time to optimize the timing of the investments 

and to take into account the status of the existing generating facilities and transmission 

lines. However, addressing these uncertainties over such a long horizon adds to the 

dimensionality of these models and makes them computationally intractable. It is not 

possible to use such high-dimensional models without sacrificing the accuracy of the input 

data and simplifying the assumptions to render these models computationally tractable. 
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Figure 1.1 A multistage dynamic framework to make long-term decisions under 

uncertainty. Adapted from A. J. Conejo, L. B. Morales, S. J. Kazempour, and A. S. 

Siddiqui [2]. 

An alternative framework can be used to lessen this curse of dimensionality. 

Instead of a dynamic multistage framework, a rolling window single-stage static 

framework can be used. In this framework, the planning horizon is divided into segments 

such that one uncertainty is considered in each time segment and the investment decisions 

are made at the beginning of each segment. The resulting decisions from one segment and 

the updated input data are considered in the decision-making of the following segment, as 

demonstrated in figure 1.2. While such a framework is not ideal, dividing the planning 

horizon into segments allows consideration of a more detailed representation of the input 

data and the different operating conditions and characteristics of generating plants. 



 

4 

 

 

Figure 1.2 A rolling window single-stage static framework to make long-term 

decisions under uncertainty [2]. 

This thesis only considers investment in generation assuming a single-node model 

in which transmission constraints and investments in transmission are not considered. This 

in turn reduces the long-term planning problem into a generation expansion planning 

(GEP) problem. A GEP problem is carried out to determine the type and the size of 

generating units required to be built to meet the future demand for electricity reliably and 

economically, considering the existing generating units. In this work, a simplified version 

is considered, as only a single-stage static framework is taken into account and the 

planning horizon is limited to one year. Further, only a deterministic model is considered, 

in which it is assumed that the planner has perfect information about the level of load and 

the penetration of renewables. Other types of uncertainties are ignored. The framework 

considered is summarized in figure 1.3. 
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Figure 1.3 The framework considered in this thesis. A single-stage single-node static 

and deterministic GEP model. 

Considering a single-node single-stage static version of GEP might not sound 

ambitious enough at first to be the focus of this dissertation. Unfortunately, even with that 

level of simplification in this basic formulation of the GEP, the curse of dimensionality is 

still inescapable. In this framework, summarized in figure 1.4, the GEP problem can be 

formulated such that the objective function minimizes the total cost (i.e., annualized 

investment cost of different generating units and operational cost of operating these units 

over a year). The operational constraints of these models include ramp up and ramp down, 

uptime and downtime, reserve, and energy balance constraints. For example, solving this 

problem for a pool of 300 generating units and one year’s worth of hourly load and 

renewables data results in more than 5,000,000 binary variables, which renders this mixed 

integers linear programming (MILP) problem computationally intractable [3]. 



 

6 

 

 

Figure 1.4 The structure of GEP model considered in this thesis. 

To work around the curse of dimensionality, the investment and operational 

decisions are traditionally separated in long-term planning. The conventional screening 

method, one of the early works on systemizing GEP, was developed in the in 1969 [4] and 

provided a means by which to study different options and scenarios at the early stages of 

decision-making. To keep these models computationally tractable, a high-level 

representation of the load data was used. For example, in the classical version of GEP, the 

investment decision-making is based on projected load duration curves (LDCs) [5]. LDC 

represents the percentage of time that the load is expected to be at or above a certain level. 

Because an LDC does not contain any information about the chronology of the load, it 

significantly simplifies the problem and makes solving the GEP problem computationally 

tractable. This high-level representation of the input data does not allow for a detailed 

representation of the operational or temporal details in these models, but such practices 

have provided a means to tackle a complicated high-dimensional problem [6]. Such 

approaches were welcome as they were developed at a time when computational power 

was limited. Also, years of experience have provided researchers with confidence in their 

ability to bend the well-controllable conventional generators to make them follow the 

Cost + Operational Cost

s.t:
Investment Cost = 

Operational Cost = 

Unit Commitment Constraints 
Reserve constraints
Non-negativity/ binary constraints
where:
g : generating units.
t : time index.
cap : capacity of generating units g. 
gen : generation of generating g.
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well-understood cycles of demand. Validating these models using highly detailed 

operational models was performed at a later stage. 

1.2 Integrating Renewables 

This dissertation argues that approaches that separate operation and investment 

decisions are no longer valid in the current state of the power sector. Over the last two 

decades, the power sector has been at the center of some serious changes to address the 

pressing concerns of climate change, as the power sector emits around 29% of the world’s 

greenhouse gases [7]. One significant change that the power sector has undergone is the 

shift to integrate large amounts of generating capacity from intermittent renewable energy 

sources (IRES). Unlike conventional power plants, which can be deployed and controlled 

to follow the demand of electricity, these resources are intermittent, and the ability to 

control or accurately predict their output is limited. This, in turn, has introduced a 

significant amount of uncertainty on the supply side, shaking confidence in the ability to 

meet the demand in the short term. 

Maintaining the balance between the demand and the supply in the short term in 

systems that integrate high capacities from IRES has become more challenging. The 

remainder of the generation portfolio must have sufficient flexibility. Operational 

flexibility is understood as the “ability to ramp and cycle resources to maintain a balance 

of active power supply and demand through reliably operating a system at least cost. These 

changes can be both upward and downward ramps over a wide variety of time scales, 

ranging from minutes to hours [8].” In addition, as the penetration level of IRES increases, 

thermal plants must be cycled more often. Cycling means “changing operating modes of 

thermal plants that occur in response to varying dispatch requirements: on/off operation, 
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low-load cycling operations and load following [9].” Flexible units (i.e., units with a short 

on/off time and the ability to change their output rapidly) will play a larger role and 

displace inflexible base units [9]. In this new way of operating power systems, the heavy 

cycling regime of power plants increases their wear and tear, thereby increasing their 

operational and maintenance costs, and shortens their lifespan. It has become inevitable 

that the long-term planning process takes these operational requirements into account to 

ensure both short-term reliability and long-term reliability (i.e., the security and the 

adequacy) of power systems. 

1.3 Attempts to Integrate Short-Term and Long-Term Planning 

The low level of temporal and technical details in traditional long-term planning 

models have been shown to overestimate baseload technologies and the uptake of IRES 

and to underestimate the value of flexible technologies [10], [11], [12]. This highlights the 

limitations of the traditional long-term investment models to address the current changes. 

In addition, the traditional power system planning models fail to capture the characteristics 

of the power plants and other important aspects of operating a power system, such as the 

start-up time and ramp up rates [8]. Highly detailed operational models, conversely, are 

very computationally intensive and hence unsuitable for capturing changes in generation 

capacity over the long term. 

A need for long-term planning models that integrate short-term dynamics has been 

identified in the literature [10], [11], [12], and [13]. As pointed out in [13], a rigorous 

assessment of the economics of a generation portfolio must take into account the 

chronology of the input data. A number of methods have been proposed in the literature 

to improve the representation of temporal and operational details in long-term planning 
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models. Collins et al. [13] performed an extensive review of the different techniques to 

achieve this goal. 

These approaches are divided into two groups: indirect and direct. In the indirect 

approaches, low-resolution models are used to generate fleets. The resulting fleets are then 

tested using high-resolution operational models to accurately estimate the flexibility 

provision, emission, and operational cost. However, such soft-linking between the short-

term planning and the long-term planning might yield a feasible solution but not 

necessarily an optimal one. An example of such an approach can be found in [14]. In the 

direct approaches, the planning horizon is divided into time slices. These approaches can 

be divided into two groups: the integral method and semi-dynamic method. In the integral 

method, the time slices represent average values of different load levels and the average 

capacity factors of IRES throughout the year. This representation of the data does not 

allow to capture the short-term dynamics nor to explicitly model the load-following 

constraints as chronology is lost in this representation of the data. On the other hand, the 

second group, the semi-dynamic method, uses several representative historical periods. 

The main idea behind the semi-dynamic method is to select a number of representative 

periods and to assign them weights. The periods are assumed to repeat throughout the year 

a number of times equal to their weights. 

1.4 The Focus of This Thesis 

This work focuses on the semi-dynamic approaches to integrate short-term 

dynamics into long-term planning. This approach preserves the chronology of the data 

and explicitly accounts for operational and temporal details in long-term models. This in 

turns allows for a detailed representation of load-following constraints such as ramping 
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rates and start-up costs of different technologies, which are critical to addressing 

flexibility needs. These periods can be used in models that are based on unit commitment 

(UC). These models add the annualized capital cost of different generating plants to the 

approximated variable cost. The variable cost of the different generating units is computed 

over one year and is scaled up using the associated weights of these periods as shown in 

figure 1.5. Examples of such models can be found in [15], [16], [17], and [18]. 

 

Figure 1.5 The modified version of the static single-stage GEP model in figure 1.4. It 

has been adjusted to make it computationally tractable by considering a limited number 

of periods instead of the whole year. 

These approaches can improve the accuracy of long-term planning models. To 

ensure the optimality and robustness of the GEP, net load profiles should be as 

representative as possible of the wide variety of net load conditions. Increasing the number 

of representative load profiles increases the likelihood that the expansion plan will be 

optimal under actual conditions. Conversely, the computational burden increases rapidly 

with the number of periods. A number of approaches have been proposed in the literature 

to select representative periods. An overview of the different approaches to select these 

periods can be found in [19]. They fall into three main groups: simple heuristics [16], [20], 

Cost + Operational Cost

s.t:

Operational Cost = 

Unit Commitment Constraints 
Reserve constraints

Non-negativity/ binary constraints
where:

:   weight of period p. 

g :  generating units.
t       : time index.
cap  : capacity of generating units g. 
gen  : generation of generating g.
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clustering techniques [21], [22], [23], and optimization models to approximate an external 

metric defined by the modeler [3], [19]. The length and number of these periods are left 

to the modeler to decide. Their length could be hours [24], days [19], [23], or weeks [3]. 

1.5 Thesis Research Question and Contributions 

Several techniques and metrics to select representative periods have been proposed 

in the literature. However, a standard algorithm to select representative periods or a 

standard metric to evaluate them is lacking. Moreover, the literature lacks an algorithm 

for assessing the available metrics to gauge their ability to identify a suitable set to 

approximate the flexibility requirements in long-term planning. Poncelet et al.[11] 

demonstrated that basing these models on a set of representative days to represent the 

entire year increases the accuracy of the operating cost estimates and the uptake of 

renewables significantly; however, how to select and evaluate these representative days 

remains an open research question. This dissertation contributes to the ongoing research 

on selecting and evaluating representative days to integrate temporal details into GEP 

models. 

This dissertation proposes answers to a number of questions related to selecting a 

suitable set of representative days and their weights for single-node single-stage static 

GEP models to address the technical challenges in power systems that integrate large 

capacities of IRES. 

This thesis asks: 

1. What is the best representation of the input data? 

2. How to generate suitable sets of representative days and their weights? 

3. How to evaluate the sets of representative days? 
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4. How to validate the results? 

To answer these questions, the following algorithms are proposed: 

1. What is the best representation of the input data? 

– An algorithm that applies principal components analysis (PCA) is 

designed to optimize the representation of the input data. 

2. How to generate suitable sets of representative days and their weights? 

– Machine learning in the form of clustering techniques is applied to 

generate multiple sets of representative days and their weights. 

3. How to evaluate the sets of representative days? 

– A novel algorithm to assess the representativeness of each set is 

introduced. The proposed algorithm compares the sets to the full dataset 

using a rolling horizon unit commitment (RHUC) model on a test fleet. 

4. How to validate the results? 

– An algorithm to assess the long-term implication of basing GEP on a set 

selected using different metrics and algorithms is proposed. It is also used 

to investigate the metrics available in the literature. 

1.6 Thesis Structure 

The rest of this dissertation is organized as follows: Chapter 2 discusses features 

extraction and its application to the input data to optimize its representation. Chapter 3 

discusses applying machine learning to produce multiple sets of representative days and 

their weights. Chapter 4 reviews the existing metrics in the literature and introduces the 

new algorithm to evaluate the different sets of representative days. Chapter 5 introduces 

the new algorithm to evaluate the different metrics and their effectiveness in selecting sets 
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that capture the necessary dynamics to quantify flexibility needs in long-term planning. 

Conclusions are outlined in chapter 6. Finally, chapter 7 discusses future work. The 

different algorithms are demonstrated using Electricity Reliability Council of Texas 

(ERCOT) data. Figure 1.6 summarizes the outline of the thesis. 

 

Figure 1.6 An overview of the main frameworks of the thesis and how they relate to 

each other.  

Set  𝑎 Set  Set 𝑐 Set 𝑑

Investigate the metrics

one-year horizon net load series

Features Extraction

Proposed Metric Metric 2* Metric 3*

* From the literature

Metric 1*

24

Clustering and Classification
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Chapter 2: Features Extraction 

2.1 Introduction  

This chapter addresses the question: what is the best representation of the input 

data? One year’s worth of hourly net load, which is the load minus the IRES generation, 

constitutes the input data of interest. Net load is considered to preserve the correlation 

between the load data and the IRES data. Consideration of only peak values of the net 

load can overshadow other details, such as the hourly variation of the net load. These 

details are critical in characterizing the net load data as they affect the operation of power 

systems. When considering the flexibility, details such as the peak demand, the hourly 

variations, and the ramp rates are of particular importance. Thus, an algorithm that 

improves the accuracy of predicting similarity between the net load profiles based on their 

characteristics is proposed. 

This chapter revisits the application of feature engineering in this area of research 

for designing a rigorous algorithm to optimize the representation of the data. The 

algorithm utilizes PCA [25] to unfold a low-dimensional uncorrelated basis that 

effectively captures all the dynamics present in the data. PCA utilizes singular value 

decomposition (SVD), a diagonalization technique, to decompose the input data into its 

main features or principal components. Figure 2.1 summarizes the algorithm proposed. 
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Figure 2.1 An overview of the algorithm proposed to represent the input data by its 

most distinguished features. 

This chapter is organized as follows: Section 2.2 presents PCA and its underlying 

mathematical background. Section 2.3 demonstrates the application of PCA on ERCOT 

data. Section 2.4 introduces the new representation of the data. Finally, section 2.5 draws 

conclusions. 

2.2 PCA and How It Works 

Suppose 𝑓(𝑑, 𝑡) is the function that generates the daily net data, where 𝑑 is the day 

index and 𝑡 is the time index. PCA offers a means to find basis functions to approximate 

𝑓(𝑑, 𝑡) to any desired accuracy, such as: 

𝑓(𝑑, 𝑡) ≈∑𝑎𝑗(𝑑)𝜙𝑗(𝑡)

𝑁

𝑗=1

 
(1)  

where 𝜙𝑗(𝑡) are the basis functions and 𝑎𝑗(𝑑) are the weighting coefficients. 

The basis functions are orthonormal (i.e., orthogonal and normalized). Hence, the 

inner product rule implies: 

Preprocessing  the input data

Load Data

Principal Components Analysis

Optimal Thresholding Truncation

Wind Data
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∫𝜙𝑗(𝑡)𝜙𝑞(𝑡)𝑑𝑡 = {
1 𝑗 = 𝑞
0 𝑗 ≠ 𝑞

 
(2)  

Therefore, the weighting coefficients can be computed as follows: 

𝑎𝑗(𝑑) = ∫𝑓(𝑑, 𝑡)𝜙𝑗(𝑡)𝑑𝑡 
(3)  

In other words, the function 𝑓(𝑑, 𝑡) is projected on some basis functions 𝜙𝑗(𝑡). 

Expanding a function in terms of some basis functions is a familiar concept that has 

extensive applications in engineering and other fields. Such transformation can simplify 

the analysis in this new domain. These basis functions are typically selected to highlight 

specific characteristics of the data. For example, the basis functions in Fourier expansion 

are simple, standard sinusoidal functions that highlight the frequency components present 

in the data, which are very important in many applications. 

What PCA offers, conversely, is basis functions that are specially designed for 

function 𝑓(𝑑, 𝑡). These basis functions, referred to herein as the “principal components,” 

capture different features present in the data. The principal functions are unique in the 

sense that they can achieve the desired level of accuracy with the minimum number of 

terms in equation (1) (i.e., the smallest possible N). The principal components are a 

sequence of ordered orthonormal functions that are designed so that the first principal 

component captures most of the variance in the data. The second principal component 

captures less variance than the first component but more than the third, and so forth. These 

principal components are also called proper orthogonal decomposition (POD) modes and 

the expansion is called the POD of 𝑓(𝑑, 𝑡). 

A continuous function 𝑓(𝑑, 𝑡) that generates the daily net load profiles, while 

desirable, is not available. Instead, discretized historical hourly data are available, and 
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these data will be used throughout this dissertation. Nevertheless, the same idea can still 

be applied to this representation of the data. Instead of function 𝑓(𝑑, 𝑡) , the hourly net 

load data is arranged into a matrix 𝑸 ∈ ℝ𝑚𝑥𝑛, where 𝑚 is the number of days in a year, 

and 𝑛 is the number of hours in a day. To ensure the analysis is unbiased, the input data 

were normalized by dividing each element of 𝑸 by √𝑛 − 1 to produce matrix 𝑿. This 

choice of normalization will be explained section 2.2.2. 

Equation (1) is then transformed into equation (4): 

𝑿 = 𝑼𝒀 (4)  

where 𝑼 ∈ ℝmxn and 𝒀 ∈ ℝnxn. In this case, each row of 𝑈 represents the set of 

weights necessary to express the corresponding daily net load profile as a linear 

combination of the principal components, while each row of matrix 𝒀 represents a 

principal component. The question that remains to be answered is this: how can the 

principal components be obtained? The answer lies in the covariance matrix. 

2.2.1 The covariance matrix. 

The covariance is a measure of the statistical independence or dependence between 

two data sets. This measure is useful in identifying redundancy between the two data sets. 

Suppose the net daily net load profiles of the year are expressed in row vector form as 

𝒙𝟏 , 𝒙𝟐 , … 𝒙𝒎. The covariance between the first two daily net load profiles is given by: 

𝜎1,2
2 =

1

𝑛 − 1
𝒙𝟏 𝒙𝟐 

𝑇 
(5)  

In this case, there are 𝑚 daily net profiles among which common patterns are to 

be detected. Hence, equation (5) is generalized to equation (6) to detect the common 

patterns among the daily net load profiles by computing the covariance matrix 𝑪𝑿 of 

matrix X. 



 

18 

 

𝑪𝑿 =
1

𝑛 − 1
𝑿𝑿𝑇 

(6)  

Alternatively, 𝑪𝑿 can be expressed as: 

𝑪𝑿 = [
𝜎1,1
2 ⋯ 𝜎1,𝑚

2

⋮ ⋱ ⋮
𝜎𝑚,1
2 ⋯ 𝜎𝑚,𝑚

2
] 

(7)  

where matrix 𝑪𝑿 ∈ ℝmxn is a symmetric matrix. 

The diagonal terms of matrix 𝑪𝑿 are typically larger than the other terms in each 

row, as they are the covariance between two identical days. Also, when compared to each 

other, large diagonal terms represent significant dynamics or dominant dynamics as they 

indicate high variance or fluctuation in that variable. Large off-diagonal terms, conversely, 

indicate redundancy or strong dependence between two measurements. It can also be 

understood as the strength of different dynamics in each daily profile. Therefore, a 

mathematical tool is needed to separate these common dynamics and transform the 

covariance matrix 𝑪𝑿 such that the diagonal terms are ordered from largest to smallest and 

off-diagonal terms are zero. In other words, matrix 𝑪𝑿 needs to be diagonalized and 

written in terms of its principal components such that redundancies are removed. 

Therefore, a diagonalization technique is required. A diagonalization technique that has 

been closely linked to PCA is singular SVD, which will be explained next. 

2.2.2 SVD. 

SVD is a powerful mathematical tool because a singular value decomposition is 

guaranteed to exist for every matrix [24]. SVD provides a method to decompose 𝑿 into 

three matrices: 𝑼 ∈ ℝmxn , 𝑽 ∈ ℝnxn , and 𝚺 ∈ ℝnxn, such that: 

𝑿𝑽 = 𝑼𝜮 (8)  

where matrices 𝑼 and 𝑽 are unitary and matrix 𝛴 is diagonal. 
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Alternatively, equation (8) can be expressed as follows: 

[
 
 
 
 

  

 
 
𝑿
  
 ]
 
 
 
 

[

 
𝒗𝟏
 

   

𝒗𝟐 … 𝒗𝒏
   

] = [

 
 
𝒖𝟏

 
 
𝒖𝟐

  
  

… 𝒖𝒏
    

    

] [

𝜎1    

 𝜎2   
 
  

 
 

⋱  
 𝜎𝑛

] 

Since 𝑽 is unitary—that is, its inverse is equal to its transpose—𝑿 can 

be expressed graphically as shown in figure 2.2: 

(9)  

𝑿 = 𝑼𝜮𝑽𝑇 (10)  

 

Figure 2.2 Graphical representation of the SVD. 

To compute the singular values {𝜎𝑗} and the singular vectors {𝒖𝒋} and {𝒗𝒋}, 

consider 𝑿𝑿𝑇 and 𝑿𝑇𝑿: 

      𝑿𝑇𝑿 = (𝑼𝜮𝑽𝑇)𝑇(𝑼𝜮𝑽𝑇) 

      = 𝑽𝜮𝑼𝑇𝑼𝜮𝑽𝑇 

 = 𝑽𝜮2𝑽𝑇 
(11)  

and 
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     𝑿𝑿𝑇 = (𝑼𝜮𝑽𝑇)(𝑼𝜮𝑽𝑇)𝑇 

     = 𝑼𝜮𝑽𝑇𝑽𝜮𝑼𝑇 

= 𝑼𝜮2𝑼𝑇 
(12)  

Multiplying equations (11) and (12) by 𝑽 and 𝑼 respectively produces: 

      𝑿𝑇𝑿 𝑽 = 𝑽𝜮2 

(13)  

and 

     𝑿𝑿𝑇 𝑼 = 𝑼𝜮2 
(14)  

𝑿𝑇𝑿 and 𝑿𝑿𝑇 are, by construction, square and symmetric (i.e., self-adjoint). This 

guarantees the existence of real, positive, and distinct eigen values. This can be expressed 

as: 

𝑿𝑿𝑇 = 𝑺𝚲𝑺−1 (15)  

where the matrix 𝑺 is a matrix of the eigenvectors of 𝑿𝑿𝑇 arranged in columns and 

Λ is a diagonal matrix whose entries correspond to the 𝑚 distinct eigenvalue of 𝑿𝑿𝑇. Since 

𝑿𝑿𝑇 is a symmetric matrix, these eigenvector columns are orthogonal, so matrix 𝑺 can be 

written as a unitary matrix with 𝑺−1 = 𝑺𝑇. 

The eigenvalues and eigenvectors can be found for the two problems in equation 

(13) and equation (14). Thus, if the eigenvectors are normalized, the orthonormal basis 

{𝒖𝒋} and {𝒗𝒋} and the singular values are simply the square root of the eigenvalues of 

equations (13) and (14). 

To make equation (10) equal to equation (4), the variable 𝑌 is defined as: 

𝒀 ≡ 𝜮𝑽𝑇 

 (16)  

The covariance matrix of 𝑌 then becomes: 
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𝑪𝒀 =
1

𝑛 − 1
𝒀𝒀𝑇 

           =
1

𝑛 − 1
𝜮𝑽𝑇(𝜮𝑽𝑇)𝑇 

         =
1

𝑛 − 1
𝜮(𝑽𝑇𝑽)𝜮 

  =
1

𝑛 − 1
𝜮2 

(17)  

Thus, the terms in the covariance matrix of 𝑌 are basically the eigenvalues 

of 𝑿𝑿𝑇𝑽 or 𝑿𝑿𝑻𝑼 divided by (𝑛 − 1); therefore, matrix 𝑿 is normalized by dividing it 

by √𝑛 − 1. Rows of 𝒀 are the principal components of matrix 𝑿. 

Another objective that this thesis aims to achieve is to ensure that the basis 

functions are optimal in the sense that they can capture most of the variance in the data 

with the minimum number of basis functions. This is guaranteed by the following theorem 

[25]: 

Theorem: For any 𝑁 so that 0 ≤ 𝑁 ≤ 𝑟, where 𝑟 is the rank of matrix 𝑿, the partial 

sum of matrix 𝑿 can be defined as: 

𝑿𝑵 =∑𝜎𝑗

𝑁

𝑗=1

𝒖𝑗𝒗𝑗
∗ 

(18)  

And 𝑖𝑓 𝑁 =  𝑚𝑖𝑛{𝑚, 𝑛}, define 𝜎𝑁+1 = 0. Then: 

‖𝑿 − 𝑿𝑵‖𝟐 = 𝜎𝑁+1 
(19)  

In other words, this theorem states that after 𝑟 steps, the total energy in 𝑿 is 

completely captured. Thus, the r-rank approximation to the data is the absolute best that 

can be achieved in the L-2 norm. 
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It should also be noted that PCA and SVD are so closely linked that they are often 

used interchangeably. However, there is a difference between the two. In PCA, the data 

needs to be normalized such that each daily net load profile has a unit variance and a mean 

equal to zero. This can be achieved by subtracting each row of matrix 𝑿 by the average of 

that row. Such a step is not performed when applying SVD. 

2.3 Applying PCA 

The PCA algorithm is applied to one year’s worth of hourly net load data. The data 

were obtained from the ERCOT for the year 2016. The load data is scaled to 6 GW and 

the penetration level of wind generation is scaled to be 25%. The resulting matrices from 

the SVD carry some meaningful information about the data. Each row of V represents the 

evolution of the POD modes in time. There are 24 modes present in the data. The first 10 

modes are shown in figure 2.3. Consider the first mode; it captures what looks like a rough 

representation of a net load profile but flipped. The second mode seems to capture 

information about the morning peak, while the fourth mode seems to capture information 

about the night peak. 

Matrix 𝜮, which contains the singular values, scales the different modes based on 

the amount of variance they capture. The singular values in matrix 𝜮 represent the amount 

of variance captured by each mode. These singular values 𝜎𝑖 are arranged in a descending 

order in matrix 𝜮 as shown in figure 2.3 (a). The first mode is associated with the largest 

singular value and captures around 70% of the energy; the energy captured by each mode 

is defined as 
𝜎𝑖

∑ 𝜎𝑖
𝑛
𝑖=1

 and displayed in figure 2.3 (b). This is expected given that the first 

mode captures the general shape of the data and most of the variance in the data. The other 

modes capture less variance, as shown in figure 2.3. Multiplying matrix 𝑽𝑇 by matrix 𝚺 
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produces matrix 𝒀, which carries the principal components. Figure 2.5 shows the first 10 

principal components. 

The strength of each principal component varies in each daily net load profile as 

shown in figure 2.6, where the first 10 rows of 𝑼 are plotted. In figure 2.7, the net load 

profiles of days 1 and 200 are reconstructed using different numbers of principal 

components. The quality of the approximation improves as the number of principal 

components considered increases. The corresponding weights of days 1 and 200 are 

shown in figure 2.8. 

 

Figure 2.3 The first 10 columns of matrix 𝑽. These represent the evolution of the first 

10 modes in the data. 
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(a) (b) 

Figure 2.4 The singular values on a logarithmic scale. (a) the amount of variance 

captured by each mode; (b) the percentage of energy captured by each feature. 

 

Figure 2.5 The first 10 columns of 𝒀. These represent the principal components of the 

data. 

1 4 8 12 16 20 24
10

0

10
2

10
4

10
6

POD modes

S
in

g
u

la
r 

V
a
lu

es

1 4 8 12 16 20 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

POD modes

E
n

er
g

y

1 4 8 12 16 20 24
-7

-6

-5

-4

-3

-2

-1

0

1
x 10

4

Time (hr)

 

 

Feature 1 Feature 2 Feature 3 Feature 4



 

25 

 

 

Figure 2.6 The first 10 rows of matrix 𝑼. These represent the weights needed to 

represent each day as a linear combination of the principal components. 
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Figure 2.7 Examples of reconstruing net load profiles. Examples of day 1 and day 200 

using a different number of features or principal components. 

 

(a) (b) 

Figure 2.8 The corresponding rows of matrix U to day 1 and 200. These represent 

the weight coefficients needed to represent each daily profile as a linear combination of 

the principal components. 
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As shown in figure 2.3 and figure 2.5, the principal components capture some 

unique features about the data. The weight coefficients, which indicate the strength of 
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profiles. Figures 2.6 and 2.8 show how the weight coefficients are close in range. This 

emphasizes the details in the data compared to the raw data. Since the principal 

components represent the optimal basis to project the daily net load profiles, only a limited 

number of components are needed to capture most of the details. As demonstrated in figure 

2.7, only 10 principal components are needed to effectively reconstruct the data. The 

corresponding weights are shown in figure 2.8. 

This suggests that there is an underlying low-rank system that captures almost all 

the dynamics in the data. Hence, instead of using the weights that are associated with all 

the principal components, it is better to use only a limited number to represent the data by 

its most distinguishing features. The question is then how to determine the optimal number 

of features to represent the data and reveal this low-rank system. 

A common practice is to select the number of features based on the amount of the 

energy (variance) they capture (e.g., [22]). Applying such a practice could result in 

selecting fewer features than necessary to capture the important details present in the data; 

for example, in [22] the data were represented using a single mode. Examining figure 2.7, 

it is clear that using one feature is not sufficient to capture important details about the data. 

In what is considered a theoretical breakthrough, Gavish and Donoho [26] 

demonstrated that an optimal hard threshold (τ) could be optimized and applied to the 

singular values, such that singular values that are less than the threshold are set to zero. 

The threshold can be numerically approximated using the following formula: 

𝜏 = 𝜔(𝛽)𝜎𝑚𝑒𝑑 
(20)  

where 𝜎𝑚𝑒𝑑 is the median singular value, 𝛽 = 𝑛
𝑚⁄ , 𝜔(𝛽) = 𝜆(𝛽)/𝜇𝛽, and 𝜆(𝛽) 

can be computed as: 
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𝜆(𝛽) =  √2(𝛽 + 1) +
8𝛽

𝛽 + 1 + √𝛽2 + 14𝛽 + 1
 

(21)  

and 𝜇𝛽 is the solution for the following problem: 

∫
√((1 + √𝛽)2 − 𝑡)(𝑡 − (1 − √𝛽)

2
)

2𝜋𝑡

𝜇𝛽

(1−𝛽2)

𝑑𝑡 =
1

2
 

(22)  

The computed threshold τ, displayed in figure 2.9, determines the optimal number 

of modes 𝑛𝑜 to represent the data. This is used to truncate the rows of matrix 𝑈 by 𝑛 − 𝑛𝑜 

to generate matrix 𝑈𝑇𝑟𝑢𝑛𝑐. Hence, each net load profile is represented by the 

corresponding row of 𝑈𝑇𝑟𝑢𝑛𝑐. 

The analysis was repeated for different penetration levels of IRES: 10%, 20%, 

30%, 40%, and 50% as shown in figure 2.10. Figure 2.10 reveals that the singular values 

are larger for higher wind penetration levels. This is expected, as the variability of the net 

load data increases as the penetration level of wind increases. Hence, a larger number of 

principal components need to capture more variance in the data to make it possible to 

reconstruct the data. 
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(a) (b) 

Figure 2.9 The singular values plotted on a log graph (a) and energy captured by 

each one (b). This figure also shows the optimal threshold and the singular values above 

and below the threshold. 

 

Figure 2.10 The singular values plotted on a log graph for different penetration levels 

of wind energy. Penetration levels: 10%, 20%, 30%, 40%, and 50%. This figure also 

shows the optimal threshold and the singular values above and below the threshold. 
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2.5 Conclusion 

In this chapter, the different daily net load profiles were represented by their most 

distinguished features. The PCA was applied to represent the data by their principal 

components, where PCA is defined as “the decomposition of data from a dynamical 

system into a hierarchy of principal component vectors that are ordered from most 

correlated to least correlated with the data. PCA is computed by taking the SVD of the 

data after subtracting the mean. In this case, each singular value represents the variance 

of the corresponding principal component (singular vector) in the data [27].” An optimal 

threshold was computed to optimize the number of principal components to represent the 

data. Representing the data by its most distinguished features helps to highlight the 

different details in the input data, which in turns improves detection of similarities 

between different daily net load profiles.  
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Chapter 3: Clustering and Classification 

3.1 Introduction  

As was established in the first chapter, using a semi-dynamic approach to tame the 

curse of dimensionality in GEP models is gaining momentum. This approach uses a 

limited number of weighted representative profiles to explicitly incorporate operational 

details in GEP. The different approaches that have been proposed in the literature to select 

a set of representative profiles and their weights are reviewed in the next section. One 

common factor between these approaches is that the selection of the representative periods 

is based on metrics or assumptions that consider the input data independently of the 

characteristics of the generating plants or the way a power system is operated, as there is 

no direct method or tool to identify the suitable short-term dynamics in the input data to 

address flexibility needs. However, quantifying flexibility needs depends on the 

characteristics of the generating plants and how a power system responds to the rapid 

variations in the input data. Unfortunately, the generating plants that will be available in 

the power system are still to be determined at this stage. Incorporating the characteristics 

of a system that is yet to be built in evaluating the input data needed to design that very 

same system creates a circular argument. Tackling this circular argument is not a 

straightforward process or an easy task. There is no guarantee that selecting a single set 

of representative periods based on some assumptions will yield the best set and such an 

approach is limiting. 

Conversely, what this dissertation proposes, is to generate multiple sets of 

representative days and associated weights and compare them to select the best one to 
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address flexibility needs. To generate these multiple sets of representative days, it is 

important to determine what should characterize these sets. A good set should capture 

enough variance in the input data to capture the different operating conditions. Another 

goal is to represent the full input with the minimum number of representative days. While 

increasing the number of representative profiles provides a more accurate approximation 

of the input data, the computational burden increases rapidly with the number of profiles. 

Sisternes and Webster [3] selected the number of representative weeks such that the 

computation time remained reasonable. Kirschen et al. [16] selected the number of 

representative weeks heuristically to five in an attempt to capture enough variation in the 

data. Poncelet et al. [19] tested the number of representative days based on metrics that 

are derived from the duration curves of the input data. This dissertation argues that the 

variance captured by the representative profiles must be part of the trade-off. 

This chapter asks the question: how to generate multiple suitable sets of 

representative days and their weights? This chapter is organized as follows: Section 3.2 

reviews the different approaches that have been proposed in the literature to select 

representative profiles. Section 3.3 introduces the proposed algorithm to generate multiple 

sets of representative days. Finally, section 3.4 draws conclusions. 

3.2 Literature Review 

The three main approaches that have been proposed in the literature to select 

representative profiles from historical data are summarized below. A more detailed 

overview can be found in [13] and [19]. 
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3.2.1 Methods based on heuristic criteria. 

The simplest approach to achieving diversity between the selected profiles is to 

rely on heuristic criteria, such as season or load level. For example, in [16], one week is 

selected from each season and an additional week is used to represent extreme weather 

conditions. Other examples of heuristic approaches can be found in [28], [29], [30], and 

[31]. Although these approaches ensure diversity in the profiles, the choice of profiles is 

arbitrary because the number of profiles and the weight assigned to each of them is not 

assessed using a quantitative metric. 

3.2.2 Methods based on an external metric. 

In the second approach, profiles are selected based on how well they match an 

external metric defined by the modeler. However, this external metric is not necessarily 

relevant to the dynamics presented in the data. Sisternes and Webster [3] selected a 

combination of four weeks that minimized the error between the actual net load duration 

curve (𝑁𝐿𝐷𝐶) and the approximated net load duration curve (𝑁𝐿𝐷𝐶̃), constructed using 

the scaled-up sample weeks. This algorithm is computationally intensive as it requires 

evaluation of all combinations of weeks. Hence, the number of sample periods was limited 

to four, and their length, to a week. Poncelet et al. [19] address some of the limitations of 

Sisternes and Webster’s approach [3]. Instead of the original data, as given in [3], they 

create a new representation of the input data derived from the duration curves (DC) of the 

load and renewables generation. A MILP then selects a predefined number of 

representative days and optimizes the weights assigned to each of them to minimize the 

error between the new representation of the data and the scaled-up data. 
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3.2.3 Methods based on feature engineering and machine learning. 

The third approach utilizes feature engineering and machine learning to select 

representative profiles. Machine learning, in the form of clustering techniques, evaluates 

the full set of profiles to detect similarities among them. Similar profiles are grouped into 

a number of clusters. A single point in each cluster is chosen to represent that cluster. Each 

representative profile is assigned a weight proportional to the number of data points in 

that cluster. Different clustering techniques, such as 𝑘-means, 𝑐-means, or hierarchical 

clustering, can be applied. El Nozahy et al. [22] discuss various clustering techniques. 

While clustering techniques can support a systematic algorithm for selecting sample 

profiles, they do not solve the entire problem and have so far been applied in an ad hoc 

manner. The different aspects of using these techniques have not been subjected to 

metrics. These techniques can provide a systematic way to generate different sets of 

representative days that capture a suitable amount of variance in the data. This work 

revisits these techniques to design a rigorous algorithm to generate sets of representative 

days in a principled way. 

3.3 Proposed Algorithm 

To generate multiple sets of representative days, clustering analysis—a core 

analysis in data mining—is applied to the new representation of the data. Clustering 

analysis divides the input data points into clusters or groups such that the data points in 

each cluster share more common characteristics. In other words, the data points in each 

cluster are more similar to each other than the data points in other clusters. Clustering 

analysis is also referred to as unsupervised learning, as class labels are not externally 

assigned to the data points. 
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3.3.1 Which clustering technique to apply? 

The aim of applying clustering analysis is to group similar data points and to find 

a representative point in each cluster. For that purpose, a prototype-based algorithm is 

selected. A prototype-based algorithm abstracts a prototype for each cluster and the data 

points are partitioned in such a way that the clusters are formed around these prototypes 

[32]. In this work, the 𝑘-means clustering technique is selected. In this well-known 

technique, the prototype is the centroid of the cluster. 𝑘-means is an iterative clustering 

technique that starts by randomly selecting 𝑘 centroids and assigning each data point to 

the closest centroid to form 𝑘 clusters. The number of clusters 𝑘 is specified by the user. 

The selection of the centroid is updated until the sum of the distance of each point to the 

centroid is minimized for all clusters. 

Mathematically, 𝑘-means clustering solves the following gradient descent 

alternating optimization problem: 

𝑚𝑖𝑛{𝑚𝑘},1≤𝑘≤𝐾 ∑ ∑ 𝜋𝑥𝑑𝑖𝑠𝑡(𝑥,𝑚𝑘)

𝑥∈𝐶𝑘

𝐾

𝑘=1

 

(23)  

where 𝒙 ∈ {𝒙𝟏, ⋯ , 𝒙𝒏} are the data points to be clustered, 𝝅𝒙 is the weight of 𝒙, 

and 𝒎𝒌 is the centroid of cluster 𝐶𝑘. 

The centroid is the average of the data points in cluster 𝐶𝑘 and can be computed 

as: 

𝑚𝑘 = ∑
𝜋𝑥𝑥

𝑛𝑘
𝑥∈𝐶𝑘

 

(24)  

where 𝒏𝒌 is the number of data points in cluster 𝐶𝑘. 
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The most common distance function is the squared Euclidean distance [32], which 

is used in this work. 

3.3.2 How to determine the number of clusters? 

One of the challenges with real data is determining the number of clusters present 

in the data. This is not an easy task especially given that knowledge of clear patterns or 

classes present in the data is unknown to the modeler. Unfortunately, there is no standard 

method to identify the “right” number of clusters in a given dataset [33]. However, the 

objective of this research is to ensure that the number of clusters is selected so that a 

suitable amount of variance is captured. One common technique to identify the number of 

clusters is the elbow method. 

For a demonstration of how the elbow method works, see figure 3.1, which shows 

two-dimensional data points. As the number of clusters increases, the amount of variance 

across clusters increases. However, there will be a point at which increasing the number 

of clusters will not capture an additional significant increase in variance among clusters. 

This can be achieved when the number of clusters is selected such that the total intra-

cluster variation is minimized. In other words, if the points in each cluster are similar, the 

total within-cluster sum of distances of the points to each centroid in each cluster is 

minimized and the clusters are compact: 

𝑚𝑖𝑛∑𝑠𝑠𝑑(𝐶𝑘)

𝐾

𝑘=1

 

(25)  

where 𝑠𝑠𝑑 is the within-cluster sum of the squared point-to-centroid distances. 

The elbow method summarized in algorithm 1 in figure 3.2 is a graphical tool. For 

each 𝑘, the total 𝑠𝑠𝑑 is plotted against the number of clusters. The location of a bend, or 

elbow, in the plot is considered the appropriate number of clusters. Ideally, a well-defined 
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elbow is desired. However, with most real data, it is difficult to achieve a defined elbow. 

Nevertheless, the elbow method can still provide insights into the amount of variance 

captured by the clusters. 

 

Figure 3.1 Demonstration of how the compactness of clusters changes as the number 

of clusters increases.[34]. 

 

Figure 3.2 Summary of the elbow method. 

3.3.3 How to generate one set of representative days? 

After determining the number of clusters with the elbow method, the clustering 

analysis is applied to the new representation of the data discussed in chapter 2. The 

centroid represents an average of the data points in the cluster. Therefore, it is not 
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associated with actual data points. Thus, the closest point to the centroid of each cluster is 

identified and selected as a representative of that cluster instead of the centroid. The 

associated daily net load profile is then identified as one of the representative days. The 

weight of each representative day is set equal to the number of data points in the 

corresponding cluster. 

3.3.4 How to generate multiple sets of representative days? 

The gradient descent alternating optimization problem involved in 𝑘-means 

clustering often converges to a local minima or a saddle point [32]. The optimization 

problem starts by assigning centroids randomly. Every time the clustering process is 

carried out, a somewhat different set of representative profiles is generated, since the 

starting points of the clusters are different. Therefore, the process should be repeated to 

explore the space of possible representative sets. This research takes advantage of this 

characteristic of k-means clustering to generate multiple sets of representative days and 

their weights. Ideally, the clustering should be repeated a large number of times. However, 

the number of sets must be limited, as the evaluation process described in the following 

chapter is computationally intensive. Here again, a criterion to determine when the 

clustering process no longer needs to be repeated is required. 

The metric that is proposed is based on the 𝑁𝐿𝐷𝐶, as it captures the distribution 

of the data. The 𝑁𝐿𝐷𝐶 of the original data serves as a reference. Every time the clustering 

process is performed, the approximated 𝑁𝐿𝐷𝐶̃ of each set 𝑧 of the representative days is 

constructed by scaling up the number of hours of each representative day by the weights 

associated with it. Equation (26) shows how the error between 𝑁𝐿𝐷𝐶 and 𝑁𝐿𝐷𝐶̃ is 

computed for each set 𝑧, while equation (27) shows how the accumulated average error 
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across the sets is computed after each iteration of the clustering process. Then, equation 

(28) is used to calculate the percentage change in the accumulated average error across 

the sets. After a number 𝑧𝑜 of repetitions, the average error stabilizes and generation of a 

new set of representative days does not add a significant variation to the sets of 

representative days, and there is no need to repeat the clustering process. 

𝑒(𝑧) =
∑ |𝑁𝐿𝐷𝐶𝑡 − 𝑁𝐿𝐷𝐶𝑡(𝑧)̃ |𝑇
𝑡=1

8760
 

(26)  

𝑒̅(𝑧) =
∑ 𝑒(𝑧)𝑧
1

𝑧
 

(27)  

∆𝑒̅(𝑧)% =
𝑒̅(𝑧) − 𝑒̅(𝑧 − 1)

𝑒̅(𝑧)
× 100 

(28)  

3.4 Application 

Load and wind data were obtained from ERCOT for the year 2016. The data are 

scaled such that the installed capacity of the system is 6 GW and the penetration level of 

wind is 25%. Figure 3.3 (a) demonstrates the elbow method where 𝑠𝑠𝑑 is plotted against 

the number of clusters 𝑘. As is the case with real data, a defined elbow is not detected. 

However, as the amount of variance captured by clusters changes drastically for 𝑘 less 

than 10, the number of clusters selected should not be less than 10. No significant 

additional variance in the data can be captured if the number of clusters is increased 

beyond 35. Hence, the number of clusters was set to 35. The change in the variance 

captured, 𝜖 , defined in algorithm 1, was set to 0.005. Figure 3.3 (b) shows ∆𝑒(𝑧)% as a 

function of the number of times the clustering process is repeated. The number of sets 𝑧 

was selected to be 20, as ∆𝑒(𝑧)% was then 0.005, which was small enough. 
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Figure 3.3 (a) The elbow method as it plots the 𝑠𝑠𝑑 vs. the number of clusters 𝑘 for 

wind penetration level of 25%. (b) The change in the error as described by equation 

25 as a function of the number of sets of representative days. 

Similar observations can be made when considering different wind penetration 

levels: 10%, 20%, 30%, 40%, and 50% in figure 3.4 and figure 3.5. In chapter 5, sensitivity 

tests are carried out to validate the results with respect to the penetration level of wind and 

the number of clusters. Therefore, a number of sets of representative days need to be 

generated for these tests. Table 3.1 summarizes the type of sets that were generated. 
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Figure 3.4 Demonstration of the elbow method as it plots the 𝑠𝑠𝑑 vs. the number of 

clusters 𝑘 for different penetration levels of wind. Penetration levels: 10%, 20%, 30%, 

40%, and 50%. 

 

Figure 3.5 The change in the error as described by equation 25 as a function of the 

number of sets of representative days for different penetration level of wind. 

Penetration levels: 10%, 20%, 30%, 40%, and 50%. 
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Table 3.1  

Summary of the Sensitivity Tests 

Figure 3.6 shows the approximated 𝑁𝐿𝐷𝐶̃ of three different sets and how they 

differ in approximating the 𝑁𝐿𝐷𝐶 of the full data. However, as chronology is lost in this 

representation of the data, it is not possible to use it to make conclusions about the different 

sets of representative days. Hence, there is a need to find a better way to evaluate the 

different sets of representative days, which is the focus of the next chapter. 

 Number of 

rep. days in 

each set 

Penetration 

level of 

wind (%) 

Number of 

sets 

Test 1 15 

10 20 

20 20 

30 20 

40 20 

50 20 

Test 2 

10 

25 

20 

15 20 

20 20 

30 20 

40 20 

50 20 
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Figure 3.6 The approximated 𝑁𝐿𝐷𝐶 constructed using different three different sets of 

representative days and how they compare to the NLDC constructed using the full 

data. 

3.5 Conclusion 

In this chapter, machine learning, in the form of clustering analysis, was deployed 

to generate multiple sets of representative days and calculate their weights in a way that 

captures a suitable amount of variance in the data. The chapter provides guidelines to 

determine the appropriate number of clusters to represent the input data and the number 

of times the clustering process should be repeated. ERCOT data were used to demonstrate 

the new algorithm. The next chapter discusses a novel algorithm to evaluate the sets and 

a new metric to assess the dynamics presented in these sets.  
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Chapter 4: Evaluating the Representative Days 

4.1 Introduction 

Research that aims to integrate operational details into long-term planning models 

using representative profiles started to pick up momentum only recently. This could be 

attributed to the fact that there was previously no pressing need to address the curse of 

dimensionality in long-term planning models in what used to be a relatively stable power 

sector—not to mention the limited computational power that was available to the planners. 

However, changes have taken place over the last two decades that have affected the power 

sector [1]. The rapid transitioning of the industry [35] as a result of the increasing 

decentralization of power systems, growing penetration of IRES, and increased 

participation of the previously passive demand in the form of the demand response 

programs have made it necessary to revisit the old models and investigate their ability to 

address these new changes. The challenge of interest in this dissertation is the ability of 

GEP models to accurately account for operational flexibility. As was discussed in the first 

chapter, the long-term traditional models fail to address flexibility requirements as they 

overestimate base generation and underestimate flexible generation and operational cost 

[10], [11], [12]. 

Using representative days to integrate operational details in long-term planning 

models has been shown to improve the accuracy of estimating flexibility needs in future 

investments [11]. However, determining how to select these representative days and their 

weights is still an open research question. A number of metrics have been proposed in the 

literature to evaluate the representative profiles to be used in GEP models. These metrics 
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will be reviewed in the next section. Three main drawbacks are common among these 

metrics: 

1. They ignore the chronology of the input data. 

2. They evaluate the input data independently of the way power systems are 

operated. 

3. They minimize an error metric defined by the modeler based on some untested 

assumptions. 

These drawbacks make the ability of such metrics to identify a suitable set of 

representative days to address flexibility needs questionable. This necessitates the design 

of new metrics or algorithms to address these drawbacks. In other words, there is a need 

to develop a metric or an algorithm that can assess how well the weighted representative 

profiles approximate the operating conditions directly linked to the flexibility and 

reliability needs of power systems with high penetration levels of IRES. 

While the need for such a metric or algorithm is indisputable, designing it is 

difficult. The sought-after algorithm should establish a link between the characteristics of 

the input data and characteristics of the different generating units in the generation 

portfolio that is yet to be determined. This creates a circular argument. However, breaking 

this circular argument is necessary, because the ability to keep up with the rapid variations 

in the net load as a result of integrating large capacities of IRES requires high ramping 

capabilities and short up and down times. Moreover, accommodating these rapid 

variations increases the operational costs of power systems due to the increased 

deployment of expensive flexible units, which increases the consumption of fuel along 

with the cost of maintaining and operating the units. Hence, establishing the link between 
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the input data and the operational conditions is critical to quantifying the cycling of the 

generating plants and approximating the flexibility needs in long-term plans. 

This thesis proposes a novel algorithm to evaluate the weighted representative 

days, which is, to the best of the author’s knowledge, the first attempt to break the circular 

argument in this area of research. The algorithm is different from the other approaches in 

the literature in that it is more rigorous and sophisticated. Section 4.2 reviews the metrics 

available in the literature to evaluate a set of representative profiles while section 4.3 

explains the different aspects of the proposed algorithm. Section 4.4 discusses the 

implementation of the algorithm, and section 4.5 draws conclusions. 

4.2 Review of the Available Metrics 

4.2.1 An overview of the metrics. 

A number of metrics are available in the literature to evaluate the representative 

profiles for long-term planning models. They were reviewed by Poncelet et al. [19] and 

are summarized below. 

4.2.1.1 Relative energy error (𝑹𝑬𝑬). 

This metric evaluates the set based on how well it approximates the average value 

of a time series (i.e., the net demand) as defined in equation (29): 

𝑅𝐸𝐸 = |
∑ 𝑁𝐿𝐷𝐶𝑡𝑡∈𝒯 − ∑ 𝑁𝐿𝐷𝐶̃𝑡𝑡∈𝒯

∑ 𝑁𝐿𝐷𝐶𝑡𝑡∈𝒯
| 

(29)  

where 𝑡 ∈ 𝒯 is the index to the time steps in the net load data, 𝑁𝐿𝐷𝐶𝑡 is the net 

load duration curve of the full dataset, and 𝑁𝐿𝐷𝐶̃𝑡 is the approximated 𝑁𝐿𝐷𝐶𝑡, generated 

by scaling up the number of hours in each period by the associated weight. 
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4.2.1.2 Normalized root-mean-square-error (𝑵𝑹𝑴𝑺𝑬). 

This metric evaluates the set based on how well it approximates the distribution of 

the net demand and the frequency of occurrence of different levels of the net load. The 

distribution of the different levels of net demand and their frequency is captured by 𝑁𝐿𝐷𝐶𝑡 

as shown in equation (30): 

𝑁𝑅𝑀𝑆𝐸 =

√1
𝒯
∑ (𝑁𝐿𝐷𝐶𝑡 − 𝑁𝐿𝐷𝐶̃𝑡)2𝑡∈𝒯

𝑚𝑎𝑥(𝑁𝐿𝐷𝐶𝑡) − 𝑚𝑖𝑛(𝑁𝐿𝐷𝐶𝑡)
 

(30)  

4.2.1.3 Normalized root-mean-square-error of the ramp duration curve 

(𝑵𝑹𝑴𝑺𝑬𝒂𝒗
𝑹𝑫𝑪). 

This metric evaluates the ability of the set to approximate the distribution of the 

hourly changes in the net load. The hourly changes in the demand are represented by the 

ramp duration curve (𝑅𝐷𝐶𝑡). The 𝑅𝐷𝐶𝑡 can be constructed by differentiating the original 

net load series and then arranging the series in descending order, similar to how the 𝑁𝐿𝐷𝐶𝑡 

is constructed: 

𝑁𝑅𝑀𝑆𝐸𝑅𝐷𝐶 =

√1
𝒯
∑ (𝑅𝐷𝐶𝑡 − 𝑅𝐷𝐶̃𝑡)2𝑡∈𝒯

𝑚𝑎𝑥(𝑅𝐷𝐶𝑡) − 𝑚𝑖𝑛(𝑅𝐷𝐶𝑡)
 

(31)  

4.2.2 Discussion of the metrics. 

Poncelet et al. [19] argue that the NRMSE metric captures the hours of high or low 

IRES generation when applied to the IRES generation instead of the NLDC, thereby 

helping to evaluate the need for backup generators or the need to curtail IRES. In addition, 

the 𝑁𝑅𝑀𝑆𝐸𝑅𝐷𝐶 helps capture the short-term dynamics and, thus, address flexibility. It is 

not clear how these metrics can achieve this when the chronology of the input data is 
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ignored, either completely or partially, such as in the case of the 𝑅𝐷𝐶𝑡. These metrics 

abstract the variability of the load and the renewables data from duration curves. 

Approximating the annual demand or the net demand of electricity and the frequency of 

occurrence of different levels of the input data are important aspects when selecting 

sample data. However, this work argues that these metrics are not sufficient to ensure the 

selection of sample data that capture the “right” dynamics to design a system that 

integrates a large amount of generating capacity from IRES. 

4.3 Proposed Algorithm 

The idea behind the design of the proposed algorithm is based on how a good set 

of weighted representative days is defined. In theory, a set that contains the right 

representative days that are suitably weighted should be able to approximate the short-

term dynamics present in full data set, or what would be called the reference case. In other 

words, a good set should exhibit a similar behavior to that of the reference case when 

tested on a base generation portfolio system, and should approximate the different 

outcomes of the reference case effectively. There is no direct tool for inspecting the daily 

net load profiles that compose a year to identify a set that matches that description. 

However, generating a pool of different candidate sets can help improve the selection of 

representative days. In the previous chapter, machine learning was applied to generate 𝑁 

sets of weighted representative days, which can serve as candidate sets to select from and 

to compare to the reference case as shown in figure 4.1. 
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 An overview of the proposed algorithm to evaluate the different sets of 

weighted representative days. 

Many questions still need to be answered to assess these sets and compare them to 

the reference case: Since the representative days are intended to be used for designing the 

future generation portfolio, what base generation portfolio should be used to compare 

them? What analysis or tool should be used to compare the different sets to the reference 

case on a realistic test power system to link the input data to the way generating units 

would be scheduled and dispatched to meet the net load at minimum cost? A UC 

calculation captures these hourly or sub-hourly dynamics and thereby could provide a 

suitable tool for comparing different sets to the reference case. The set that best 

approximates the outcomes of the reference case should be selected as the best set to 

represent the full dataset. To implement a UC-based metric, several issues must be 

addressed: Which results produced by the UC calculation should be used to compare sets 

of representative days? When running a UC on individual representative days, how should 

the initial conditions of the generators be set and how should the following days be 

accounted for? The answers to these questions constitute the algorithm that is proposed to 

assess the different sets of representative days. This algorithm is summarized in figure 4.2 

and explained below. 

Full data

Set 1

Set 

Generation 
Portfolio

Full data

The best set
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 An overview of the new algorithm and metric to evaluate the sample data. 

4.3.1 Creating a base generation portfolio. 

In an attempt to break the circular argument that surrounds this area of research, 

starting with a fleet designed using the basic form of the classical GEP is proposed. This 

form uses screening curves and the NLDC to determine the proportion of the total 

generation capacity that can be provided by different technologies, rather than the size of 

each plant. Thus, it does not account for the need for reserve or the fact that generating 

units come in prespecified sizes. Screening curves, such as the one shown in figure 25, 

represent the sum of the investment and operational costs of running a unit of a given 

technology as a function of the number of hours it is operated each year. The intersection 

of a curve with the 𝑦-axis is equal to the sum of the annualized investment cost and the 

One-year Net Load Data

Net Load Duration Curve (𝑁𝐿𝐷𝐶)
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annual O&M fixed cost of the corresponding technology ($/MW-year). The slope of the 

line is equal to the total variable cost (i.e., the variable O&M cost and the variable 

operating cost ($/MWh)). As the number of hours increase, the large investment cost of 

base units such as nuclear plants offsets their cheap operational cost. Conversely, 

deploying peaking units such as open cycle gas turbines (OCGTs) becomes expensive 

after a limited number of hours per year due to their high operational costs. The 

intersection points of the screening curves of different technologies determine the number 

of hours that plants from each technology should be used. Figure 4.3 illustrates how these 

hours are translated into generation capacities using the 𝑁𝐿𝐷𝐶. 

While it is understood that a system built using the classical version is not 

necessarily optimal to address flexibility needs, this version can still be used as a tool to 

gain insights about the different sets. The base generation portfolio is intended to be used 

to test the ability of the sets to approximate the operational aspect of the GEP problem. 

The classical version can be used as a starting point to determine the proportion of the 

different generating technologies. The resulting fleet is inflated to consider the need for 

reserve and is adjusted to accommodate the predetermined sizes of different technologies. 

Moreover, the fleet is also inflated to ensure there are enough generation capacities of 

different technologies to meet the different operational flexibilities. This step is carried 

out to ensure that the load shedding and curtailment of renewables is not a result of 

insufficient generation capacities but rather economically justified in the face of 

challenging dynamics or binding constraints. 
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 Screening curves and NLDC as used to determine the proportion of 

different generation technologies in classical GEP. 

The base portfolio is limited to conventional generating units and is designed to 

consist of generating units from the three major categories of conventional technologies: 

base, intermediate, and peaking units. Storage technologies and demand response are not 

considered in the model, as mitigating the effect of integrating large capacities of IRES is 

not desirable to fully capture the effect of IRES on the reliability of the system. When this 

algorithm is used for GEP, generating technologies of the pool considered should be used. 

However, this dissertation assumes that different technologies from each category have 

similar technical characteristics; an example or two from each category is used to create 

the base generation portfolio. To demonstrate the algorithm in this dissertation, nuclear, 

coal, combined cycle gas turbines (CCGT) and OCGT units are considered. 
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4.3.2 Formulation of the UC. 

To obtain a realistic schedule of how the base portfolio would be used on each 

representative day, the initial condition of the units must be reasonable and their dispatch 

at the end of the representative days should reflect the condition for the following day. 

Therefore, instead of using a classical UC formulation, this work uses an RHUC model 

introduced by Tuohy et al. [36]. Once the representative days are identified, the profiles 

of the previous days and the following days are extracted, and 72-hour profiles are formed 

for each representative day as shown in figure 4.4. A UC is run for the first 36 hours for 

each profile to identify realistic initial conditions for the actual representative day. A 

second UC is then run starting from these initial conditions through the end of the next 

day. 

 

 Time division for the RHUC. 

The RHUC follows the below structure: 

 

Figure 4.5       The structure of the RHUC. 
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To control how the RHUC is run, sets 𝑛𝑗  are used to assign the hours 𝑡 ∈ {1 𝑡𝑜 𝑇} 

to different 36-hour net load profiles: 

𝑡 ∈ 𝑛𝑗  𝑖𝑓 24( 𝑗 − 1) + 1 ≤ 𝑡 ≤ 24(𝑗 − 1) + 36 

(32)  

such that: 

𝑗 ∈ {1 𝑡𝑜 𝑁}, where 𝑁 is the total number of 36-hours net load profiles considered. 

After the RHUC is run, the outcomes of the representative days are computed 

using sets 𝑑𝑖, which identify the hours 𝑡 that belong to each day 𝑑𝑖 as shown in equation 

(33): 

𝑡 ∈ 𝑑𝑖  𝑖𝑓 24( 𝑖 − 1) + 1 ≤ 𝑡 ≤ 24(𝑖 − 1) + 24 
(33)  

𝑖 ∈ {1 𝑡𝑜 𝐷}, where 𝐷 is the total number of days considered. 

The detailed equations of the RHUC are the same as the ones used for the GEP 

model in the chapter 5. The only difference is that the objective function excludes the 

fixed annualized costs and only considers the operational costs. 

4.3.3 A new metric to identify the best set. 

To provide a baseline for comparison, the different sets are compared to the 

reference case according to a new metric proposed in this work. The design of this metric 

aims to provide a means to compare the sets to the reference case regarding aspects that 

are important for addressing flexibility needs: load shedding and curtailment of 

renewables. When the system is not tailored to accommodate the rapid changes in the net 

load, it could fail to provide sufficient operational flexibility for maintaining the reliability 

of the system. In situations when the available and online resources cannot be dispatched 

in a timely manner to meet these rapid changes, load shedding or curtailment of 
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renewables would be the two reasonable options to avoid a collapse in the system or a 

complete blackout. Load shedding is penalized by the value of lost load (VoLL), while the 

curtailment of renewables is not constrained. This is done intentionally, as load shedding 

is the last resort for system operators to maintain the reliability, and curtailment of IRES 

is prioritized in situations when there is insufficient ramping capability available in the 

system. 

Each set and the reference case are represented by the following two quantities: 

curtailment of IRES and load shedding. After running the RHUC for both the sets and the 

reference case, the total curtailment of renewables and the load shedding or the non-served 

energy (NSE) are computed. These quantities are calculated for the sets by scaling the 

quantities of each representative day 𝑑𝑟,𝑧 in each set 𝑧 by the corresponding weight 𝜔𝑑𝑟,𝑧of 

that representative day as shown in equations (34) and (35). 

𝑁𝑆𝐸(𝑑𝑟,𝑧) = 𝜔𝑑𝑟,𝑧 ∑ 𝑁𝑆𝐸𝑡
𝑡∈𝑑𝑟

 

(34)  

where: 

𝑑𝑟,𝑧 ∈ {𝑑1,𝑧 𝑡𝑜 𝑑𝑘0,𝑧} : index of representative days 

𝑘  : the total number of representative days in set 𝑧 

𝜔𝑑𝑟,𝑧 : the weight of representative day 𝑑𝑟,𝑧 

𝑁𝑆𝐸𝑡 [MWh] : NSE at hour 𝑡 

The approximated total NSE of each sample 𝑧 is the sum of the scaled-up operating 

cost of each representative day. 

𝑁𝑆𝐸(𝑧) =∑𝑁𝑆𝐸(𝑑𝑟,𝑧)

𝑑𝑟,𝑧

 

(35)  

The total curtailment of renewables is calculated in a similar manner. 
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The best set is one that can approximate the reference case. Therefore, the best set 

would be the set closest to the reference case according to the proposed flexibility metric. 

L-2 norm is used to compute the distance between each set and the reference case 

according to equation (36). The set closest to the reference case is selected as the best set. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑅, 𝑧) = ‖𝑝𝑅 − 𝑝𝑧‖2 (36)  

where: 

𝑅 : the reference case 

𝑝𝑧 : (𝑁𝑆𝐸(𝑧) , 𝐶𝑢𝑟(𝑧)) 

𝑝𝑟 : (𝑁𝑆𝐸(𝑅) , 𝐶𝑢𝑟(𝑅)) 

𝐶𝑢𝑟 : total curtailment of renewables 

4.4 Application 

Load and wind data were obtained from ERCOT for the year 2016. The data were 

scaled such that the installed capacity of the system was 6 GW and the penetration level 

of wind was 25%. The RHUC was implemented in General Algebraic Modeling System 

(GAMS) v24.0 and solved using CPLEX v12.5 with a 0.005 optimality gap on an Intel 

Xenon 2.55 GHz processor with at least 32 GB RA. The solution for the reference case 

took approximately 80 hours. The computation time for each set of representative days 

took between 45 minutes and two hours. Table 4.1 summarizes the characteristics of the 

generating units of the base portfolio. 

The VoLL is a social value that reflects the cost associated with an interruption of 

electricity supply [37]. Selecting it is an open research question and its value varies 

significantly depending on the type of load, season, location, and time of day [37]. In this 

part of the dissertation, the VoLL was selected to be $500. The choice of this relatively 
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low value is intentional, as a very high VoLL prevents load shedding and promotes the 

dispatch of additional flexible units—especially since the base fleet is inflated, and the 

up/down time of the most flexible units is set to zero. This will result in zero load shedding 

and it will not be possible to compare the sets to the reference case. The value selected is 

significantly higher than the operational cost of the most expensive units, and significantly 

lower than the upper bound of VoLL, which can be close to $150,000 [37]. 

In figure 4.6, a graphical representation of the proposed flexibility metric is 

presented. Each set is represented by the total curtailment of IRES and NSE. Two sets are 

identified on the graph: the closest set to the reference case and the set that best 

approximates the 𝑁𝐿𝐷𝐶, to investigate how they compare to the reference case. Figure 

4.6 shows that the set that best approximates the 𝑁𝐿𝐷𝐶 is not necessarily the one that best 

approximates the reference case when tested on a realistic system. Figure 4.7 shows the 

𝑁𝐿𝐷𝐶 of the reference case, the set that best approximates the 𝑁𝐿𝐷𝐶, and the closest set 

to the reference case according to the proposed flexibility metric, and how they compare 

to the 𝑁𝐿𝐷𝐶 of the reference case. The set that best approximates the flexibility needs 

does not approximate the NLDC well. The results are not surprising. Comparing sets based 

on a metric that does not capture the chronology of the data fails to select a set to quantify 

the flexibility needs. 

Table 4.1  

The Input Data of the Mix of Generations That Were Used to Test the Different Sets 

Technology Nuclear Coal CCGT OCGT 

No. of units 2 4 24 32 

Capital cost [k$/MW-year] 450 396 177 139 
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Variable cost [$/MWh] 8.8 28.05 61.93 114.1 

Start-up cost [k$/start-up] 1000 125 60 10 

Fixed O&M [k$/MWh] 100 35.97 14.39 14.25 

Maximum power [MW] 1000 500 400 200 

Minimum power [MW] 900 350 150 50 

Ramp up/down rate [MW/h] 30 210 320 360 

Min. up/down time [h]  36 6 3 0 

 

  

Figure 4.6     Representations of different sets, the reference case, the closest set to the 

reference case, and the set that best approximates the 𝑁𝐿𝐷𝐶. 
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Figure 4.7     𝑁𝐿𝐷𝐶 of the reference case, the set that best approximates the 𝑁𝐿𝐷𝐶, 

and the closest set to the reference case according to the new flexibility metrics. 

4.5 Conclusion 

In this chapter, a new algorithm and a new metric to evaluate sets of representative 

days were proposed. The algorithm establishes a link between the load, the IRES, and the 

characteristics of a base generation portfolio, and, therefore, approximates the operation 

of a power system with a significant proportion of renewable generation. Basing GEP on 

duration curves is no longer suitable since the rapid variations in net load caused by the 

intermittency and stochasticity of IRES require more flexibility from generating units, and 

this flexibility is not accounted for by the duration curves. Selecting a representative set 

of profiles is, therefore, an essential step in modeling power system operation in GEP 

models. 

In the next chapter, an algorithm is proposed to investigate alternative metrics in 

the literature and to compare them to the one proposed in this research. The algorithm will 

illustrate the long-term effect of basing the selection of the representative days for GEP 
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on a particular given metric. Sensitivity tests to the number of representative days and the 

penetration level of IRES are also carried out. 
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Chapter 5:  Evaluating the Different Metrics 

5.1 Introduction 

In the previous chapter, a new algorithm to select a set of representative days for 

GEP models was developed. The next logical step is to assess this algorithm and compare 

it to the other metrics in the literature. Here again, a gap in the literature is detected. To 

the best of the author’s knowledge, there is no principled method for evaluating the 

effectiveness of the metrics to incorporate operational details in long-term planning 

models under the influence of IRES. Various methods have been proposed to select these 

representative periods [19]; however, as highlighted in [3] and [19], a standard metric to 

gauge the fidelity of these representative periods is lacking. 

This chapter proposes an algorithm to compare the metrics that were reviewed in 

the previous chapter with respect to their ability to represent the flexibility needs in long-

term planning models. In addition, their sensitivity to the penetration level of IRES and 

the number of representative days is investigated. The rest of this chapter is organized as 

follows. Section 5.2 describes the algorithm proposed to compare sets of representative 

days. In section 5.3, four different metrics that are used to select the “best set” of 

representative days are compared. Section 5.4 discusses the results. Section 5.5 draws 

conclusions. 

5.2 Method 

A good set of representative periods consists of a combination of periods that 

capture the dynamics necessary to design a fleet that is suitably equipped and tailored to 

handle the wide range of dynamics present in the full data set. These periods especially 
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capture the dynamics that are likely to increase the number of binding constraints in UC 

calculations. First, multiple sets of representative periods are generated. These sets are 

then evaluated using the different metrics that have been proposed to identify the set that 

minimizes the error for each metric. A GEP calculation then produces a different 

generation fleet based on each set. A RHUC is then used to compare these fleets based on 

data for a full year. The results of these calculations provide a basis for identifying the 

most flexible fleet. The set of periods that led to this fleet is deemed to be the most 

representative, because it best captures the dynamics required to design the most flexible 

fleets. Hence, the metric used to select this set of representative periods can be considered 

the most reliable indicator of the need for flexibility. Figure 5.1 summarizes this method 

and the following paragraphs explain it in more detail. 

5.2.1 Step 1: Generating the sets. 

A machine learning algorithm [23] explained in chapter 2 and chapter 3 generates 

N sets of representative periods and their weights based on features extracted from the net 

load profiles. This algorithm ensures that each set captures a suitable amount of variance 

in the data. To test the metrics, each set has the same number of periods. The periods are 

selected to be days because Poncelet et al.[11] have demonstrated that using days as the 

basic period to represent operation over an entire year increases the accuracy of the 

estimates of the operating cost. Using net load data retains the correlation between the 

load and the IRES generation. 

5.2.2 Step 2: Evaluating the different sets. 

Each set of representative days is evaluated using the different metrics and 

compared to the full year-long dataset to compute the errors according to each metric. The 



 

63 

 

set that has the minimum error according to each metric is deemed to be the best set 

according to that metric. 

 

Figure 5.1 An overview of the proposed algorithm to compare the different metrics to 

assess the representative days. 

5.2.3 Step 3: Evaluating the metrics 

To investigate the long-term effect of basing GEP models on representative days, 

each set is used to build a generation fleet. To build these fleets, several questions must 

be addressed:  

1. What GEP model should be used? 

2. What generation technologies should be considered in the pool of candidates? 
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3. How should discontinuities in the representative days be handled so that their 

effects on time-linking constraints, such as ramp up/down and up/downtime, 

do not affect the results? 

4. How should the VoLL be set to distinguish between different sets of 

representative profiles? 

5. On what basis should the resulting fleets be compared? 

5.2.3.1 What GEP model should be used? 

The model used in this algorithm incorporates short-term planning and long-term 

planning (i.e., operations and investments). The objective function minimizes the total 

cost, which is the sum of the annualized investment cost of the generating units and their 

operational costs (e.g., the variable cost, the start-up cost, and the cost of NSE, as in 

equations (37)–(40)). Equation (41) ensures that a unit is only operated if built. Equation 

(42) represents the energy balance. Equation (43) allows renewables to be curtailed. 

Equations (44)–(46) determine the logic of the binary variables. Equations (47)–(48) 

ensure the up time and the down time for each are respected. Equation (49) ensures that 

units are only operated within their limits. Equation (50) ensures that the up/down ramp 

constraints are not violated. Equation (51) ensures that enough reserve is allocated for 

each hour. 

𝑚𝑖𝑛
𝑦,𝑃,𝑢,𝑥,𝑣

𝐶𝑜𝑠𝑡 = 𝐶𝐼𝑛𝑣 + 𝐶𝑣𝑎𝑟 + 𝐶𝑆ℎ𝑒𝑑  (37)  

CInv: = ∑ ℂg
f

g ∈𝒯ℋ

yg + ∑ ℂg
STUP

g ∈ℬ

yg 
(38)  

Cvar ≔ ∑ωd [ ∑ ℂg
STUPxg,d,t +

g ∈𝒯ℋ/ℬ,t

∑ ℂg
VPg,d,t

g ∈𝒯ℋ,t

]

D

d=1

 

(39)  
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Cshed ≔ ∑ωd [∑VoLL

t

× NSEd,t]

D

d=1

 
(40)  

Pg,d,t ≤ ya,gP̅g ∶ ∀ a ∈ 𝒜, g ∈ 𝒢, t ∈ T, d ∈ 𝒟 (41)  

Dd,t = Pd,t
W +NSEd,t + ∑ Pd,g,t

g ∈ 𝒯ℋ

∶  ∀ t ∈ T, d ∈ 𝒟 
(42)  

Pd,t
W ≤ cfd,t

w  P̅w ∶ ∀t ∈ T, d ∈ 𝒟           (43)  

ugdt ≥ yg: ∀ g ∈ ℬ, t ∈ T, d ∈ 𝒟 (44)  

xg,d,t − vg,d,t = ug,d,t − ug,d,t−1: ∀ g ∉  ℬ, t ∈ T, d ∈ 𝒟 (45)  

xg,d,t + vg,d,t ≤ 1 ∶ ∀ g ∉  ℬ, t ∈ T, d ∈ 𝒟 (46)  

∑ xg,d,t

t

tt=t−τg
up
+1

≤ ug,d,t ∶ ∀ g ∉  ℬ, t ∈ T, d ∈ 𝒟 

(47)  

∑ vg,d,t

t

tt=t−τg
dn+1

≤ 1 − ug,d,t ∶ ∀ g ∉  ℬ, t ∈ T, d ∈ 𝒟 

(48)  

ug,d,tPg ≤ Pg,d,t ≤ ug,d,tP̅g ∶  ∀ g ∈ 𝒢, t ∈ T, d ∈ 𝒟 (49)  

−Rg
dn ≤ Pg,d,t − Pg,d,t−1 ≤ Rg

up
∶  ∀ g ∈ 𝒢, t ∈ T, d ∈ 𝒟 (50)  

∑ ug,d,t(P̅g − Pg,d,t)

g ∈ 𝒯ℋ

≥ 5%Dd,t + 3%cfd,t
w  P̅w + max

g∈𝒯ℋ
ygP̅g  ∀ t ∈ T, d ∈ 𝒟 

(51)  

5.2.3.2 What generation technologies should be considered? 

The pool of technologies used contains base, intermediate, and peaking generating 

units. In this work, nuclear, coal, CCGT, and OCGT units are used as examples of the 

three groups of technologies. Storage technologies and demand response are not 

considered to mitigate the effect of integrating large capacities of IRES. This is not 
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desirable when trying to study how the GEP model responds to technically challenging 

dynamics that require more operational flexibility. 

5.2.3.3 How to tackle the discontinuity of the data? 

One source of error when considering representative periods in a commitment 

model is the discontinuities in the data, because these discontinuities affect the 

intertemporal constraints at the beginning or the end of each day. To avoid this problem, 

it is assumed that the day before and the day after each representative day are similar to 

the representative day. This allows the use of cyclical constraints for intertemporal 

constraints following the formulation that was presented in [40]. For example, t = 0 is 

assumed to be equal to t = 24 and t = –1 is assumed to equal t = 23. 

5.2.3.4 How to select the VoLL? 

The VoLL is a particularly important parameter in this evaluation process. VoLL 

is a social value that depends on the type of load in a specific system and the level of 

reliability desired. The VoLL to be used for GEP is typically set by the regulatory fiat. 

However, in this work, VoLL serves another purpose. Figure 5.2 illustrates how VoLL 

affects the choice of a generating fleet assuming a single representative day and three 

possible scenarios. Case (a) corresponds to a light load and a low VoLL. In this case, the 

GEP recommends some base units, some intermediate units, and a few peaking units. Case 

(b) assumes the same VoLL, but a larger load. Since VoLL is low, the GEP concludes that 

it would be cheaper to tolerate some NSE. Finally, case (c) assumes the same load as case 

(b), but a larger VoLL. In this case, the GEP recommends enough peaking units to meet 

the load. A low VoLL thereby makes the GEP insensitive to the dynamics of the net load. 

A sufficiently large value of VoLL should, therefore, be chosen to ensure that the GEP 
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responds differently to different dynamics and is thereby able to discriminate between 

different sets of representative days. 

 

Figure 5.2 Effect of VoLL on the generation fleets. (a) corresponds to the case of a 

light load and low VoLL. (b) has a larger load than (a), but the same VoLL. (c) has the 

same load as (b), but a larger VoLL. 

5.2.3.5 How to evaluate the resulting fleets? 

An important question that was raised during the design of this algorithm is as 

follows: how to compare the different fleets? Using the fleets to compare different sets 

requires reading the results in a way that challenges initial intuition, which might suggest 

trying to look for a trade-off between cost and reliability when selecting the best fleets. 

We argue that this trade-off is not necessarily the right way to evaluate the fleets. In this 

algorithm, the fleets are used to gain insights into the input data and classify these sets 

into “good” or “bad” sets. Therefore, we need to distinguish between the two cases 

presented in figure 5.3. 



 

68 

 

 

Figure 5.3 The difference between using a GEP model to build a reliable economic 

system (a) and using it to evaluate the different sets of representative days (b). 

The long-term planning process usually starts by considering a certain 

representation of the input data. Different pools of technologies are considered, as shown 

in figure 5.3 (b), and the resulting fleets are tested for reliability. The process is repeated 

until a fleet that meets the minimum requirement of reliability is produced. Then the other 

components of the power system, such as transmission lines, are designed. Afterward, 

various reliability tests are carried out to ensure the reliability of the resulting system. 

Following this, the total cost (i.e., operation and investment) is computed and assessed. If 

the cost is high, the process is repeated with different options for generation and 

transmission to successfully design a system that meets the minimum requirements for 

reliability at the minimum cost. This process demonstrates a trade-off between reliability 

and cost. 

However, in this algorithm, the fleets are used to gauge the different sets of 

representative days and to gain insight into the short-term dynamics captured by these 

sets. In other words, the sets are used to assess the quality of the input data to be used in 

the long-term planning described in the previous paragraph. Thus, these fleets are 

evaluated differently than they would have been evaluated in figure 5.3 (b). This 
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dissertation argues that the best fleet should be the most reliable fleet, even if it happens 

to be the most expensive fleet. To further demonstrate this counterintuitive argument, 

suppose each set contains one representative day, and suppose that these two days looked 

like the ones in figure 5.2 (a) and (c). The GEP model in case (c) will respond to the high 

level of the net load in sample 𝑦 by building an expensive fleet with more peaking units 

to meet the demand. However, when the two fleets are tested using the full data set, the 

reliability of fleet 𝑦 is naturally higher than that of fleet 𝑥 in case (a), as set 𝑦 has captured 

a representative day that represents an extreme condition (e.g., a very hot day or a very 

cold day). The high cost of fleet 𝑦 should be interpreted as a sign that set 𝑦 has captured 

challenging dynamics that must be considered to design a reliable system. Once the 

corresponding set is identified, other technology options could be tested to design a 

cheaper fleet using set y as shown in figure 5.3 (b). 

When considering the total cost, the sum of the operation and the investment is 

also misleading. For example, consider the fleet built for the representative day in figure 

5.2 (a); the fleet is cheaper than the fleet in figure 5.2 (c). However, the operational cost 

will be high because of the increased level of load shedding due to the limited capacity, 

which is associated with high VoLL. The total cost in case figure 5.2 (b) could be equally 

high. While the operational cost of the flexible units might not be as high as the cost of 

the load shedding in case figure 5.2 (a), the investment cost is much higher. Hence, total 

costs could be close in range for cases (a) and (c) in figure 5.2. 

While this conclusion might sound counterintuitive at first, the logic behind it has 

been proposed in the literature in another way. For example, when representative periods 

are used, in some cases, periods that represent extreme conditions [16] are added to ensure 

that the resulting fleet is built with consideration of challenging dynamics. This addition 
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of extreme periods naturally raises the cost of the resulting fleets, and it is accepted as a 

necessary additional cost to address reliability. 

Now that it has been established that cost might be a misleading criterion to 

compare the fleets, the question is this: what criteria should be used instead? To evaluate 

the resulting fleets, use of a RHUC using the full, one-year data set is proposed. To ensure 

proper treatment of initial conditions, a UC is run for 36 hours, starting 12 hours before 

the start of each day. This first UC run is used solely to identify realistic initial conditions. 

A second UC is then run starting from these initial conditions, extending through the end 

of the next day to avoid end effects. 

Different outcomes of the RHUC could be used to compare the consequences of 

using different sets of representative days on the design of a generation fleet. Two 

outcomes seem directly related to flexibility and reliability: the annual amounts of load 

shedding and the curtailment of renewable generation. When a system is not adequately 

planned, insufficient dispatchable generation resources may be available to meet rapid 

changes in the net load in the net load. In such cases, load shedding or curtailment of 

renewables is required to maintain the reliability of the system. In the RHUC model, load 

shedding is penalized by the VoLL, while the curtailment of renewables is not constrained. 

The quality of each fleet can then be represented by the Euclidean norm of these 

two outcomes. The fleet that is associated with the minimum norm is deemed to be the 

most flexible fleet. The corresponding set of representative days is then assumed to be the 

best set to quantify the flexibility needs in GEP. Conclusions can then be drawn about the 

different metrics for choosing these sets. 
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5.3 Application 

Load and wind data were obtained from ERCOT for the year 2016. The data were 

scaled so that the installed capacity of the system was 6 GW. The characteristics of the 

generating plants are summarized in table 4.1. 

Before testing the different metrics, the VoLL needs to be fine-tuned as explained 

in section 5.2.3.4. In this set of simulations, for a wind penetration level of 25% and 20 

representative days, 20 sets of representative days and their weights were generated. These 

20 sets were evaluated using the four metrics discussed in the last chapter. The sets that 

minimize the error according to each metric were identified. For each one of these sets, a 

fleet was generated using the GEP model described in section 5.2.3.1. The process was 

repeated for the values of VoLL shown in figure 5.4. As the VoLL increases, total load 

shedding for different sets decreases. For a VoLL equal to $10,000, the load shedding for 

all the sets nears zero. To be conservative, the VoLL was chosen to be $50,000. 

 

Figure 5.4 Load shedding plotted against the VoLL for sets 1 to 4. These minimize 

the error according to metrics 1 to 4 respectively. 
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Different tests are carried out to compare the metrics and gauge their ability to 

identify the set that best addresses flexibility needs in GEP models. These tests are 

summarized in table 5.1 and discussed in the following paragraph. Metrics 1 to 4 

correspond to the metrics which were described in the chapter 4; they are 𝑅𝐸𝐸, 𝑁𝑅𝑀𝑆𝐸, 

𝑁𝑅𝑀𝑆𝐸𝑎𝑣
𝑅𝐷𝐶, and the new algorithm described in the previous chapter respectively. 

Table 5.1  

Summary of the Sensitivity Tests 

 

Number of 

periods(days) 

Penetration 

level of 

wind (%) 

Number 

of sets 

VoLL 

($) 

Test 1 15 

10 20 50,000 

20 20 

30 20 

40 20 

50 20 

Test 2 

10 

25% 

20 50,000 

15 20 

20 20 

30 20 

40 20 

50 20 
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5.3.1  Test 1: Sensitivity to the penetration level of IRES. 

In this set of simulations, the sensitivity of the metrics to the different penetration 

levels of IRES is investigated. For this purpose, five levels of wind penetration are 

considered, as summarized in table 5.1. For each level, 20 sets of 15 representative days 

were produced and evaluated with the four metrics. The set that minimizes the error for 

each metric was identified. Figure 5.5 (a) summarizes the results. The four sets that 

minimize the four metrics are used to build fleets and the results are summarized in figure 

5.6 (a). An RHUC for the full data set is then run for the resulting fleets and the results 

are summarized in table 5.2. 

5.3.2 Test 2: Sensitivity to the number of periods. 

In this set of simulations, the sensitivity of these metrics to the number of 

representative days is investigated. For this purpose, six different numbers of 

representative days are considered, as summarized in table 4.1. For each number of 

representative days, 20 sets of representative days were produced and evaluated with the 

four metrics. The sets that minimize the error for each metric were identified. The results 

are summarized in figure 5.5 (b). The four sets that minimize the four metrics are used to 

build fleets and the results are summarized in figure 5.6 (b). An RHUC for the full data 

set is then run for the resulting fleets and the results are summarized in table 5.3. 

5.4 Discussion 

Figure 5.5 (a) shows that for the first three metrics, there are no clear patterns with 

respect to the different penetration levels of wind energy. The fourth metric seems to 

exhibit a pattern. As the penetration level of renewables increases, the average values of 

the error increase and stabilize for high values of wind penetration levels. The increased 
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level of IRES affects the shape of the net load data and introduces more irregular patterns. 

This makes approximating the full data using a few representative days challenging. The 

error starts to stabilize for penetration levels higher than 30%. Similarly, figure 5.5 (b) 

also shows that for the first three metrics, there are no clear patterns with respect to the 

number of representative days. The fourth metric seems to exhibit a pattern. As the number 

of representative days increases, the average values of the error and the variance increase. 

 

Figure 5.5 Error statistics. In (a), the statistics of the errors with respect to each metric 

for each penetration level of renewables are displayed, while in (b), the statistics of the 

errors with respect to each metric for each penetration level of renewables are shown. Sets 

1 to 4 are the sets that minimize the error with respect to metric 1 to 4 respectively. They 

are identified in each plot. 

The various tests were carried out to investigate whether the sets that minimize the 

error according to a specific metric exhibit a consistent behavior when basing GEP on 

them. In theory, a good metric should be able to identify a good set of representative days 

for each penetration level of IRES and number of the representative day. If a set captures 

the right dynamics to approximate the full data, the solution of the GEP problem should 
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be a feasible solution, and it should be a fleet that is well-equipped to handle the wide-

range, short-term dynamics in the full data set. 

The different sets seem to generate significantly different fleets, especially with 

regard to the capacities of the intermediate and peaking units. Some fleets seem to have 

significantly higher peaking capacities. This observation raises the question of whether 

fleets with high peaking capacities represent a case of overinvestment, as they correspond 

to sets that capture either many challenging days or sets that assign high weights to some 

of these challenging days. The other question to consider is whether fleets with low 

peaking capacities represent a case of underinvestment, as they correspond to sets that 

either failed to capture challenging days or assigned them low weights. 

As displayed in tables 4 and 5, feasible solutions for some of the sets were not 

obtained. This can be explained by the limited number of peaking units in the 

corresponding fleets. The need for ramping up can be met by dispatching the flexible units, 

load shedding, or curtailment of IRES. However, the only option that meets the need of 

ramping down is having enough flexible units that can rapidly lower their output when no 

other options, such as demand response or storage units, are available. Tables 4 and 5 also 

demonstrate that no particular metric seems to work consistently in selecting the best set. 

Each metric seems to fail at some point in identifying a suitable set. The patterns detected 

when evaluating the sets according to metric 4 did not translate in a pattern in the fleets 

associated with sets selected by metric 4. This could be attributed to the fact that the 

solutions to the GEP are suboptimal and lowering the optimality gap further did not 

produce solutions in many cases. Another possible explanation could be the discrete 

capacities of different units. This discontinuity makes it impossible to close the duality 

gap in the optimization problem and, as such, suboptimal solutions are reached. 
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Figure 5.6 Fleets arranged to respond to sets that minimize error. Error is minimized 

according to metric 1, metric 2, metric 3, and metric 4 respectively. In (a), the resulting 

fleets for each wind penetration level are shown. In (b), the resulting fleets for each 

number of representative days are shown. 

Table 5.2  

The Euclidean Norm of The Curtailment of IRES and NSE for Different Wind 

Penetration Levels 

Penetration 

level% 

Metric 1 Metric 

2 

Metric 

3 

Metric 

4 

10 21670 18270 27910 27910 

20 NaN 54140 70610 53310 

30 NaN 93270 90550 93610 

40 146110 152300 152300 NaN 
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50 91350 187310 NaN 192070 

Table 5.3  

The Euclidean Norm of The Curtailment of IRES and NSE for Different Numbers of 

Representative Days 

No. of 

clusters 

Metric 

1 

Metric 

2 

Metric 

3 

Metric 

4 

10 70120 69710 69710 70120 

15 45260 NaN 88295 74410 

20 882950 70670 97880 45260 

30 NaN NaN NaN 882950 

40 56130 56130 56130 45170 

50 56130 56130 75320 45170 

 

5.5 Conclusion 

In this chapter, a carefully designed algorithm to investigate the different metrics 

for selecting representative periods for long-term planning models was proposed. This 

algorithm offers a principled method to compare different metrics used to select sets of 

representative days. The algorithm was demonstrated on four metrics found in the 

literature. The results show that these metrics do not exhibit a consistent behavior. This 

calls for the design of new or improved metrics that more effectively select representative 

periods for long-term planning models. 
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Chapter 6: Conclusion 

The radical changes that have taken place in generation resource mix over the last 

two decades have shaken the power sector status quo. These changes have forced power 

engineers, regulators, and politicians to rethink power system planning, making inevitable 

the revisiting of outdated planning models and the investigation of their ability to address 

these changes. This research has focused on generation investment models’ ability to 

address the new requirement for operational flexibility in response to the increased 

penetration of IRES. 

The high dimensionality of long-term planning models render them 

computationally intractable. To work around the curse of dimensionality, certain practices 

have been developed over the years. In traditional models, the operational and temporal 

details are separated from the long-term investment models. Instead of using full data, a 

rough representation of the input data is used. In a later stage, these models are tested to 

ensure their reliability. 

This separation of the operation and the investment was revisited in the light of 

the new changes. It has been demonstrated that such models are incapable of addressing 

flexibility needs in long-term planning models. This is expected, as the rough 

representation of the input data does not allow an explicit modeling of time-dependent 

operational constraints, which are important for capturing flexibility needs. Using 

representative days to approximate the full planning period has been shown to improve 

these long-term planning models. However, a justified selection of these representative 

days and their weights remains an open research question. 
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In this research, basic and seemingly trivial questions were asked. Nevertheless, 

the answers to these questions were neither simple nor trivial. Integrating operational 

details into long-term planning remains one of the most challenging problems in long-

term planning. Using representative periods to integrate operational details into long-term 

planning has gained momentum recently; however, there is still much work to be done in 

regard to designing models that can effectively address flexibility and other operational 

requirements in long-term planning models. 

This research has contributed to the ongoing research on selecting representative 

days in the following ways: 

1. In chapter 2, the application of PCA was revisited to optimize the 

representation of the input data. 

2. In chapter 3, an algorithm was proposed for generating multiple candidate sets 

of representative days to select from rather than a single set, which is the 

general practice in the literature. 

3. In chapter 4, a novel algorithm was proposed for assessing the different sets of 

representative days. This algorithm is different than the other simple metrics 

in the literature because it represents the first attempt to establish a link 

between the input data and the operation of power systems. 

4. In chapter 5, a new algorithm is proposed to compare the different metrics in 

a principled manner and gauge their ability to identify a suitable set of 

representative days. The proposed algorithm can be used to gauge the currently 

available metrics and any future metric. 

The tests in chapter 5 demonstrate that none of the metrics currently available in 

the literature exhibit a consistent behavior in selecting the best set of representative days 
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under different penetration levels of renewables or a different number of representative 

days. When evaluated using the proposed algorithm in chapter 4, the sets seem to exhibit 

a pattern, but these patterns were not reflected in the design of the fleets. However, the 

tests carried out in chapter 5 offers some insights that can drive future work. 

Different sets seem to fail to make GEP models respond by designing a well-

equipped fleet that can handle the challenging short-term dynamics, which suggests there 

is a need to add some extreme or challenging days to the mix of the representative days 

and to assign them appropriate weights. While the need to add such days is understood, a 

clear definition of these extreme days or challenging days is lacking. Also, there is no 

clear method for identifying these days. 
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Chapter 7: Future Work 

This dissertation represents a work in progress. Integrating operational and 

temporal details into long-term planning models remains a challenging problem. 

However, insights were gained through the algorithms that were proposed in this work. In 

addition, many gaps were detected in the literature while attempting to tackle this problem. 

Designing solutions to tackle these gaps will drive future work. 

One gap that was detected in the literature is the lack of a clear definition of 

extreme days. Defining these days is an important aspect of designing a reliable power 

system. The challenge stems from the fact that it is difficult to design a universal technique 

or an algorithm to detect extreme days for load and IRES data in any geographical region. 

In the author’s future work, a clear definition of extreme or challenging days will 

be formed, with consideration of the following: 

1. An outlier or an extreme day from a statistical point of view does not 

necessarily comply with the definition of operationally challenging days. From 

a statistical point of view, an extreme day or an outlier could be a day that 

corresponds to very rare weather conditions such as hurricanes or tornados. 

Power engineers’ understanding of extreme days is that they are usually the 

days that require the dispatch of expensive units, such as hot summer days or 

very cold winter days. These days are not rare nor outliers; they belong to some 

recurring seasons. Hence, long-term arrangement and planning should be 

considered when determining future capacities and maintenance schedules. 
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2. Meeting operational flexibility needs requires a new definition of “challenging 

days.” Even when the demand is not exceptionally high, the more expensive 

flexible units might still need to be dispatched instead of otherwise cheaper 

units to keep up with the rapid changes introduced by high levels of IRES. 

Considering these days in long-term planning models is important, as they 

dictate the maintenance schedules and affect the choice of future fleets. 

3. PCA and machine learning will be revisited to improve the selection of 

representative days. 

Therefore, the focus of future work will be to define extreme days in the context 

of GEP, to design an algorithm for identifying such days, and to improve and modify the 

algorithm which was proposed in chapter 4, which seems promising. 

Other tests could also be performed to fine-tune the technique proposed in chapter 

4. 

1. GEP is a mixed integer linear programming problem. The resulting fleets 

represent suboptimal solutions. The effect of the duality gap on the resulting 

fleets will be examined. 

2. The length of the window in the RHUC model was 36 hours. The sensitivity 

of the results to the length of the wind will be investigated. 

In this work, a simplified deterministic version of GEP was considered, in which 

the planning horizon was assumed to be one year. Typically, investments are made 

considering a long planning horizon that spans decades. Once the algorithm is tested and 

is shown to work effectively to identify a suitable set of representative days for every 

penetration level of renewables, the work will be expanded to consider selecting 

representative days for a longer planning horizon. This will lead to the ability to consider 
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more sophisticated versions of GEP, such as a dynamic multistage generation expansion 

model that considers uncertainties in the input data. 
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