
Attacking Automatic Video Analysis Algorithms:
A Case Study of Google Cloud Video Intelligence API

Hossein Hosseini*, Baicen Xiao*, Andrew Clark** and Radha Poovendran*
*Department of Electrical Engineering, University of Washington, Seattle, WA

**Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA
hosseinh@uw.edu, bcxiao@uw.edu, aclark@wpi.edu, rp3@uw.edu

ABSTRACT
Due to the growth of video data on Internet, automatic video anal-
ysis has gained a lot of attention from academia as well as com-
panies such as Facebook, Twitter and Google. In this paper, we
examine the robustness of video analysis algorithms in adversarial
settings. Specifically, we propose targeted attacks on two fundamen-
tal classes of video analysis algorithms, namely video classification
and shot detection. We show that an adversary can subtly manipu-
late a video in such a way that a human observer would perceive
the content of the original video, but the video analysis algorithm
will return the adversary’s desired outputs.

We then apply the attacks on the recently released Google Cloud
Video Intelligence API. The API takes a video file and returns the
video labels (objects within the video), shot changes (scene changes
within the video) and shot labels (description of video events over
time). Through experiments, we show that the API generates video
and shot labels by processing only the first frame of every second
of the video. Hence, an adversary can deceive the API to output
only her desired video and shot labels by periodically inserting an
image into the video at the rate of one frame per second. We also
show that the pattern of shot changes returned by the API can be
mostly recovered by an algorithm that compares the histograms of
consecutive frames. Based on our equivalent model, we develop a
method for slightly modifying the video frames, in order to deceive
the API into generating our desired pattern of shot changes. We
perform extensive experiments with different videos and show that
our attacks are consistently successful across videos with different
characteristics. At the end, we propose introducing randomness to
video analysis algorithms as a countermeasure to our attacks.

CCS CONCEPTS
• Security and privacy → Domain-specific security and pri-
vacy architectures;

KEYWORDS
Automatic Video Analysis, Adversarial Machine Learning, Google
Cloud Video Intelligence API

1 INTRODUCTION
Machine learning (ML) techniques have substantially advanced
in the past decade and are having significant impacts on every-
day lives. In recent years, a class of ML algorithms called deep
neural networks have been successfully deployed for computer
vision tasks, particularly recognizing objects in images, where new

Sampling

Inserting

Frame Analysis
Algorithm

Sampling

Sampling

Inserting

Inserting

Flower

Figure 1: Illustration of image insertion attack on video clas-
sification algorithms. The adversary modifies the video by
placing her chosen image in the sampling locations of the
algorithm. As a result, the generated video labels are only
related to the inserted image.

algorithms reported to achieve or even surpass the human perfor-
mance [21, 28, 44].

With the growth of online media, surveillance and mobile cam-
eras, the amount and size of video databases are increasing at an
incredible pace. For example, in 2015, YouTube reported that over
400 hours of video are uploaded every minute to their servers [53].
Therefore, there is a need for automatic video analysis to handle
the growing amount of video data. Automatic video analysis can
enable searching the videos for a specific event, which is helpful
in applications such as video surveillance or returning the search
results on the web. It can be also used for prescanning user videos,
for example in YouTube and Facebook platforms, where distribution
of certain types of illegal content is not permitted.

Following the success of deep learning-based visual classifica-
tion research, there has been a surge in research for video anno-
tation [26, 27, 33, 57]. Internet companies such as Facebook [38]
and Twitter [12] are also developing products for analyzing the
videos on their platforms. Recently, Google has introduced the
Cloud Video Intelligence API for video analysis [30]. A demonstra-
tion website [25] has been launched which allows anyone to test
the API with videos stored in Google Cloud Storage. The API then
quickly returns the video labels (key objects within the video), shot
changes (scene changes within the video) and shot labels (descrip-
tion of every shot). By detecting the video shots and labeling them,

1

ar
X

iv
:1

70
8.

04
30

1v
1

 [
cs

.M
M

]
 1

4
A

ug
 2

01
7

the API can make videos searchable just as text documents. Thus,
users can search for a particular event and get related videos along
with the exact timings of the events within the videos.

MLmodels are typically designed and developedwith the implicit
assumption that they will be deployed in benign settings. However,
many papers have pointed out their vulnerability in adversarial
environments [4, 6, 7, 10]. Learning systems are increasingly applied
in security-sensitive and critical systems, such as banking, medical
diagnosis, and autonomous cars. This signifies the importance of
studying their performance in adversarial settings.

In this paper, we examine the robustness of video analysis al-
gorithms. Specifically, we propose targeted attacks against two
fundamental classes of video analysis algorithms, namely video
classification and shot detection. We then apply the attacks on
Google Cloud Video Intelligence API. 1 We show that an adversary
can subtly manipulate a video in such a way that a human observer
would perceive the content of the original video, but the API will
return the adversary’s desired outputs. Such vulnerability will se-
riously undermine the performance of video analysis systems in
real-world applications. For example, a search engine may wrongly
suggest manipulated videos to users, a video filtering system can
be bypassed by slightly modifying a video which has illegal con-
tent, or a video search algorithm may miss the important events in
surveillance videos. Our findings further indicate the importance
of designing ML systems to maintain their desired functionality in
adversarial environments.

Our contributions are summarized in the following:
• We develop a model for state-of-the-art video classification

and shot detection algorithms. We then formulate the ad-
versary’s objective function for mounting targeted attacks
on black-box video analysis systems and discuss different
approaches for video modification.

• We propose different methods for deceiving video classi-
fication and shot detection algorithms and demonstrate
the effectiveness of our attacks on Google Cloud Video In-
telligence API. In our experiments, we queried and tested
the API with different videos, including our recorded and
synthetically generated videos, videos downloaded from
web, and the sample videos provided by API website. Se-
lected videos vary in content, length, frame rate, quality
and compression format.

• Through experiments, we show that the API’s algorithm
for generating video and shot labels processes only the first
frame of every second of the video. Therefore, by inserting
an image at the rate of one frame per second into the video,
the API will only output video and shot labels that are
related to the inserted image. The image insertion attack
is illustrated in Figure 1.

• We also show that the pattern of shot changes returned
by the API can be mostly recovered by finding the peaks
in the vector of histogram changes of consecutive frames.
Based on our equivalent model, we develop a method for
slightly modifying the video frames, in order to deceive the
API into generating our desired pattern of shot changes.

1The experiments are performed on the interface of Google Cloud Video Intelligence
API’s website in April 2017.

• We propose countermeasures against our attacks. We show
that introducing randomness to video analysis algorithms
improves their robustness, while maintaining the perfor-
mance.

The rest of this paper is organized as follows. Section 2 provides
a background on video data and describes the Cloud Video Intelli-
gence API. Section 3 reviews video analysis methods. The threat
model is given in Section 4. Sections 5 and 6 present our attacks
on video classification and shot detection algorithms, respectively.
Section 7 provides related works and Section 8 concludes the paper.

2 PRELIMINARIES
In this section, we first provide a background on digital video data
and then describe the Google Cloud Video Intelligence API.

2.1 Video Data
A digital video consists of audio data and a series of frames (still im-
ages) that are displayed in rapid succession to create the impression
of movement. The frequency (rate) at which consecutive frames
are displayed is called Frame Rate and is expressed in frames per
second (fps). Modern video formats utilize a variety of frame rates.
The universally accepted film frame rate is 24 fps. Some standards
support 25 fps and some high definition cameras can record at 30,
50 or 60 fps [31].

Digital videos require a large amount of storage space and trans-
mission bandwidth. To reduce the amount of data, video data are
typically compressed using a lossy compression algorithm. Video
compression algorithms usually reduce video data rates in twoways:
1) Spatial (intraframe) compression: Compressing individual frames,
and 2) Temporal (interframe) compression: Compressing groups
of frames together by eliminating redundant visual data across
multiple consecutive frames, i.e., storing only what has changed
from one frame to the next [31]. We refer to compression and de-
compression algorithms as encoder and decoder, respectively, and
call the concatenation of encoder and decoder as codec.

2.2 Google Cloud Video Intelligence API
Success of ML algorithms has led to an explosion in demand. To
further broaden and simplify the use of ML algorithms, cloud-based
service providers such as Amazon, Google, Microsoft, BigML, and
others have developed ML-as-a-service tools. Thus, users and com-
panies can readily benefit from ML applications without having to
train or host their own models.

Google has recently launched the Cloud Video Intelligence API
for video analysis [25]. The API is designed to help better under-
stand the overall content of the video, while providing temporal
information on when each entity was present within the video.
Therefore, it enables searching a video catalog the same way as text
documents [30]. The API is made available to developers to deploy
it in applications that require video searching, summarization or
recommendation [30]. The API is said to use deep-learning models,
built using frameworks like TensorFlow and applied on large-scale
media platforms like YouTube [30].

A demonstration website has been also launched which allows
anyone to select a video stored in Google Cloud Storage for an-
notation [25]. The API then provides the video labels (objects in

2

(a) (b)

Figure 2: Screenshots of the API’s outputs for “Animals.mp4” video, provided by the API website. a) Screenshot of the video
labels, and b) screenshot of the shot changes and shot labels. The shot changes are the white bars appeared within the green
strip. Shot labels are generated for each shot.

the entire video), shot changes (scene changes within the video)
and shot labels (description of the video events over time). As an
illustration, Figure 2 shows the screenshots of API’s outputs for the
video “Animals.mp4,” provided by the API website. Through exper-
iments with different videos, we verified that the API’s outputs are
indeed highly accurate.

In our experiments, we queried and tested the API with different
videos, including our recorded and synthetically generated videos,
videos downloaded from web, and the sample videos provided by
API website. Selected videos vary in content, length, frame rate,
quality and compression format. For mounting the attacks, we
modify videos, store them on Google cloud storage and then use
them as inputs to the API. In one of our attacks, we insert images
into the videos. Figure 3 shows some of the sample images that were
used in our experiments. If not said otherwise, the manipulated
videos are generated with frame rate of 25 fps, where each frame is
a color image of size 300 × 500.

3 VIDEO ANALYSIS METHODS
In this section, we review the current methods for video classifi-
cation and shot detection and provide a system model from the
adversary’s perspective for each task.

3.1 Video Classification Methods
Automatic video annotation would be a breakthrough technology,
enabling a broad range of applications. It can help media companies
with quickly summarizing and organizing large video catalogs. It
can also improve video recommendations, as it enables the search
engines to consider video content, beyond the video metadata. An-
other use case would be in video surveillance, where many hours
of videos must be searched for a specific event. Moreover, Inter-
net platforms, such as YouTube and Facebook, would be able to
automatically identify and remove videos with illegal content.

Using ML techniques for video analysis is an active field of re-
search [26, 27, 33, 57]. A simple approach is to treat video frames as
still images and apply ML algorithms to recognize each frame and

(a) (b)

(c) (d)

Figure 3: Sample images of (a) a car, (b) a building, (c) a food
plate, and (d) a laptop, used in experiments.

then average the predictions at the video level [58]. However, pro-
cessing all video frames is computationally inefficient even for short
video clips, since each video might contain thousands of frames.
Moreover, consecutive video frames significantly overlap with each
other in content and not all frames are consistent with the overall
story of the video. Therefore, in order to learn a global description of
the video while maintaining a low computational footprint, several
papers proposed subsampling the video frames [18, 46, 50, 55, 58].
Hence, the focus of recent research is mostly on developing ad-
vanced ML techniques, such as deep neural networks, on subsam-
pled frames. Figure 4a illustrates the model of video classification
algorithms.

3.2 Shot Detection Methods
Shot detection is used to split up a video into basic temporal units
called shots, which is a series of interrelated consecutive pictures

3

Subsampling
Video Frames Video Labels

Video Classification Algorithm

Decoder
Analyzing

Frames
Encoder

Video File

(a)

Video Frames
Pattern of

Shot Changes

Shot Detection Algorithm

Decoder
Analyzing

Frames
Encoder

Video File

(b)

Figure 4: Models of video analysis algorithms. a) Video clas-
sification algorithm takes a video file, decodes it to obtain
video frames, samples some of the frames and then pro-
cesses subsampled frames to generate the video labels. b)
Shot detection algorithm takes a video file, decodes it to ob-
tain video frames and then processes the frames to generate
the pattern of shot changes.

taken contiguously by a single camera and representing a contin-
uous action in time and space. Shot detection is widely used in
software for post-production of videos. It is also a fundamental
step of automatic video annotation and summarization, and enables
efficient access to large video archives [20]. In film editing, two
methods are usually used to juxtapose adjacent shots: 1) Abrupt
Transitions: A sudden transition from one shot to another, i.e. the
last frame of one shot is followed by the first frame of the next shot,
and 2) Gradual Transitions: The two shots are combined so that
one shot is gradually replaced by another [20].

Shot detection algorithms try to find the positions in the video,
where one scene is replaced by another one with different visual
content. Conventional approaches for shot detection usually in-
volve the two steps of measuring the similarity of consecutive
frames and then determining the shots’ boundaries. Two simple
methods for measuring the similarity of frames are sum of absolute
values of pixel-wise difference of frames and the difference between
the histograms of frames. Compared to computing the pixel-wise
difference of frames, the histogram-based method is more robust
to minor changes within the scene. After scoring the difference of
consecutive frames, typically a fixed or adaptive thresholding is
used for localizing the shot changes [20]. Once a shot is detected,
it can be treated as a short clip and the same algorithm for video
classification can be applied for annotation. Figure 4b illustrates
the model of shot detection algorithms.

4 THREAT MODEL
We assume that the video analysis system takes a video file and
outputs video labels and the pattern of shot changes. We further
assume that the system can only be accessed as a black-box. That is,
the adversary possesses no knowledge about the training data or
the specific ML models or video processing algorithms used, and
can only query the system with any video of her choice and obtain
the outputs. The goal of the adversary is to mount targeted attacks,
i.e., given any video, the adversary intends to manipulate the video

in such a way that the system generates only the adversary’s desired
outputs. The modification to the video should be very small, such
that a human observer would perceive the content of the original,
unmodified video. The proposed attacks are as follows:

• Targeted attack on video labeling algorithm: Deceiving the
system to only output the adversary’s desired video labels,

• Targeted attack on shot detection algorithm: Deceiving the
system to output the adversary’s desired pattern of shot
changes.

The adversary’s problem can be formulated as follows. Let F
be the video analysis algorithm and {Xt }t=1:T be the sequence
of video frames, where Xi is the i-th frame. For simplicity, we
write {Xt }t=1:T as X . Let y∗ denote the adversary’s desired output.
Adversary’s goal is to cause the algorithm to yield her desired
outputs by making minimal changes to the video. Therefore, the
adversary’s objective function is as follows:

Find X ∗ s.t. F (X ∗) = y∗ and ∥X − X ∗∥ ≤ ϵ,

where X ∗ is the modified video. The term ∥X − X ∗∥ represents the
amount of perturbation made to the video and ϵ is the maximum
allowed perturbation, for which a human observer would still be
able to perceive the content of the original video.

A video file can be modified in different ways. In the following,
we review some methods of video modification and explain the
maximum allowed perturbation corresponding to each method.
Inserting images within video frames at a low rate: The ad-
versary can insert images of her choice within the video frames.
However, the insertion rate must be low, so that the content of the
original video would be perceivable. Moreover, it is preferable that
the inserted image would be unnoticeable to a human observer.
Speed of processing in the human visual system largely depends on
the contrast of successive images shown [37, 48]. Empirical stud-
ies have shown that human visual system needs about 50 ms to
process and comprehend every single image [17]. Therefore, in a
video with frame rate of more than 20 fps, individual frames cannot
be distinctly understood by humans. As a result, if an adversary
inserts images at the rate of 1 fps within frames of such a video, the
human observer would not perceive the content of inserted images.
Removing video frames at a low rate:Consecutive video frames
are typically highly correlated, especially for videos with high frame
rates, e.g., greater than 30 fps. Therefore, it is possible to remove
video frames at a low rate (and replace them with adjacent frames)
without significantly reducing the video quality. It is known that
with frame rates greater than 20 fps, human visual system is fooled
that the sequence of frames represents an animated scene, rather
than being a succession of individual images [14]. Therefore, to
preserve the video smoothness, removing video frames should not
cause the rate of distinct video frames to drop below 20 fps.
Slightly modifying individual frames: Instead of adding or re-
moving frames, the adversary can modify individual frames. The
modification to each frame can be quantified by the PSNR value of
the modified frame with respect to the original frame. For images x
and x∗ of size d1 × d2 × 3, PSNR value is computed as follows [52]:

PSNR = 10 · log10 *.,
2552

1
3d1 d2

∑
i, j,k (xi, j,k − x∗i, j,k)2

+/- ,
4

where (i, j) is the image coordinate and k ∈ {1, 2, 3} denotes the
coordinate in color space. PSNR value is measured in dB.

Due to the inherent low-pass filtering characteristic of humans
visual system, humans are capable of perceiving images slightly
corrupted by noise [8], where acceptable PSNR values for noisy
images are usually considered to be more than 20 dB [3]. However,
similar to image insertion, an adversary is allowed to add high-
density noise to video frames, but at a low rate, e.g., one frame
per second. In contrast, the succession of noisy images corrupted
even by low-density noise is very disturbing, especially when the
video is passed through a lossy video codec. The reason is that
video compression algorithms rely on similarity of consecutive
frames to compress the video. A random uncorrelated noise added
to frames increases the difference of consecutive frames. As a result,
the compression algorithm reduces the quality of individual frames
to achieve the same compression ratio.

In our attacks, we modify videos by low-rate image insertion
within the frames or slightly perturbing frames, e.g., by adding
low-density noise to frames at a low rate or smoothing some of the
frames. The modifications are done in such a way that the content
of the original video would be perceivable. In the following, we
describe the attacks.

5 TARGETED ATTACK ON VIDEO
CLASSIFICATION ALGORITHMS

In this section, we first present different approaches of attacking
video classification algorithms and then describe our attack on
Google Cloud Video Intelligence API.

5.1 Attack Approaches
For attacking a video classification algorithm, the adversary slightly
manipulates the video. As shown in Figure 4a, the manipulated
video passes through three blocks of codec, subsampling and frame
processing. In the following, we discuss adversary’s considerations
for modifying videos.

For deceiving the system, the adversary can target the frame
analysis algorithm. In this case, the adversary slightly modifies
video frames such that, after subsampling, a human observer would
classify the subsampled video as its original label, but the frame
analysis algorithm yields adversary’s desired labels. This attack
type can be thought to be a form of generating adversarial ex-
amples [47] for frame analysis algorithm. However, as stated in
Section 2.1, video files are typically compressed using lossy com-
pression algorithms. The compression algorithm is likely to filter
out the adversarial noise and thus render this approach ineffective.
Therefore, the modification to video should be done in such a way
that it would “survive” the codec operation. Moreover, even without
the codec operation, this attack approach is challenging due to the
adversary’s black-box access to the model.

Another approach is to modify the video such that, after sub-
sampling, a human observer would classify the subsampled video
as adversary’s desired label. This approach is preferable, since it
is effective, regardless of frame analysis algorithm. For mounting
this attack, the adversary inserts images with her desired content
within the video frames, in locations where the subsampling func-
tion will sample. The subsampling locations need to be determined

Table 1: Video labels generated by Google Cloud Video Intel-
ligence API for different videos. The results suggest that the
API’s algorithm for generating video labels processes only
the first frame of every second of the video.

Video Video labels returned by API

Original Video: A one-
minute long video with all
frames being the same image
of a “building.”

Building, Classical architecture,
Neighbourhood, Facade, Plaza,
Property, Apartment, Architec-
ture, Mansion, Courthouse

Modified Video 1: Replac-
ing the first frame of every
second of the original video
with an image of a “car.”

Audi, Vehicle, Car, Motor vehi-
cle, Land vehicle, Luxury vehicle,
Sedan, Audi A6, Wheel, Mid-size
car, Audi A4, Bumper, Family car,
Audi RS 4

Modified Video 2: Replac-
ing the second frame of every
second of the original video
with an image of a “car.”

Building, Classical architecture,
Neighbourhood, Facade, Plaza,
Property, Apartment, Court-
house, Mansion, Architecture

by querying the system with several specifically chosen videos.
The success of inferring the subsampling function and the required
number of queries depend on the function randomness and how it
is related to video characteristics, such as video length, frame rate,
codec, etc.

We demonstrate the effectiveness of this approach by attack-
ing the video and shot labeling algorithms of Google Cloud Video
Intelligence API. Through experiments, we first infer the API’s
algorithm for sampling the video frames and then mount the im-
age insertion attack. While the proposed attack is demonstrated
on the Google API, this approach is applicable against any video
classification system that is based on deterministic subsampling,
e.g., [18, 46, 50, 55, 58] to name a few.

5.2 Inferring API’s Algorithm for Sampling
Video Frames

In order to infer the API’s sampling algorithm, we first need to
determine whether it uses deterministic or stochastic algorithms.
For this, we queried the API with different videos. We found that
when testing the API with the same video several times, it generates
exactly the same outputs, in terms of the video and shot labels, the
corresponding confidence scores, and the pattern of shot changes.
Our observations imply that the API’s algorithms for processing the
input videos are deterministic.

Knowing that API’s algorithms are deterministic, we designed
an experiment for testing the API with videos which are different
from each other on certain frames. We first generated a one-minute
long video with all frames being the same image of a “building.” We
then modified the video in two different ways: 1) replacing the first
frame of every second with an image of a “car,” and 2) replacing the
second frame of every second with the same image of the “car.”

Table 1 provides the set of labels for the generated videos. As
expected, all labels of the original video are related to “building,”
since it only contains images of a building. However, all labels of

5

time (sec)

. . .

0 1 2

Frame Analysis
Algorithm

Uniform
Subsampling

. . .

Video and
Shot Labels

.

3

Video
Frames

Figure 5: The video and shot labeling algorithm of Google
Cloud Video Intelligence API subsamples the video frames
uniformly and deterministically. Specifically, it samples the
first frame of every second of the video.

the first modified video are related to “car.” In contrast, all labels of
the second modified video are related to “building.” We also tested
the API with modified videos for which the i-th frame, 3 ≤ i ≤ f , of
every second is replaced by image of the “car,” where f is the number
of frames per second. We observed that, for all of them, the API
outputs video labels only related to “building.” We selected videos
with different characteristics and repeated the above experiments.
We found that, regardless of the video content, length, frame rate,
quality or compression format, the API’s algorithm for generating
the video labels can be reduced to a function that gets as input only
the first frame of every second of the video. This suggests that the
subsampling function samples video frames at the rate of 1 fps.
Specifically, it samples the first frame of every second of the video.

Then, we examined how the API samples video frames for gen-
erating the shot labels. Similar to the case of video labels, we tested
the API with a one-minute long video with all frames being the
same image of a “building,” and with modified videos, for which
the i-th frame, 1 ≤ i ≤ f , of every second is replaced by image of
the “car.” For the original video, there is only one shot and the shot
labels are related to “building.” As expected, the API generated 60
shots (one shot per second) for each of the modified videos, because
each replaced frame is different from the adjacent frames and thus
triggers a shot. For the first modified video, where image of the “car”
is replaced in the first frame of every second, all shot labels were
related to “car” for all 60 shots. In contrast, for 2 ≤ i ≤ f , all the
shot labels were related to “building.” Our observations suggest that,
similar to video labels, the API generates shot labels by processing
only the first frame of every second of the video. Figure 5 illustrates
the API’s sampling algorithm.

5.3 Image Insertion Attack on API
Now, we describe the image insertion attack for changing the video
and shot labels returned by the Google Cloud Video Intelligence API.
The goal is to mount a targeted attack on the video classification
algorithm. That is, given any video, the adversary intends to slightly
manipulate the video, in such a way that a human observer would
perceive the content of the original video, but the API outputs the
adversary’s desired video and shot labels. The attack procedure

Table 2: Results of Image Insertion Attack on Google Cloud
Video Intelligence API. Sample videos are provided by API
website [25]. The images are inserted in the first frame of
every second of the video. The table only shows the video
label with the highest confidence returned by API.

Video Name Inserted Image
Video Label Returned by
API (Confidence Score)

“Animals”

“Car” Audi (98%)
“Building” Building (97%)
“Food Plate” Pasta (99%)
“Laptop” Laptop (98%)

“GoogleFiber”

“Car” Audi (98%)
“Building” Classical architecture (95%)
“Food Plate” Noodle (99%)
“Laptop” Laptop (98%)

“JaneGoodall”

“Car” Audi (98%)
“Building” Classical architecture (95%)
“Food Plate” Pasta (99%)
“Laptop” Laptop (98%)

is as follows. The adversary is given a video and the target video
label. She selects an image which represents the desired label, and
inserts it into the first frames of every second of the video. The
image insertion attack is illustrated in Figure 1.

For validating the attack on the API, we generated manipulated
videos, stored them on Google cloud storage and used them as
inputs to the API. Table 2 provides the API’s output labels for
the manipulated videos of three videos “Animals.mp4,” “Google-
Fiber.mp4” and “JaneGoodall.mp4,” provided by API website (the
table shows only the label with highest confidence score). As can
be seen, regardless of the video content, the API returns a video
label, with a very high confidence score, that exactly matches the
corresponding inserted images. We tested the API with several
videos with different characteristics and verified that the attack
is consistently successful. We also mounted the image insertion
attack for changing the shot labels returned by the API and verified
that, by inserting an image in the first frame of every second of
the video, all the shot labels returned by the API are related to the
inserted image.

5.4 Improving Attack on API
In proposed attack, the image insertion rate is very low. For example,
for a typical frame rate of 25, we insert only one image per 25 video
frames, resulting in an image insertion rate of 0.04. Therefore, the
modified video would contain the same content as the original
video. Nevertheless, the attack can be further improved using the
following methods.
Lower insertion rate. We found that the attack still succeeds if
we insert the image at a lower rate of once every two seconds, i.e.,
by inserting the adversary’s image into the video once every two
seconds, the API outputs video labels that are only related to the
inserted image. However, by further lowering the insertion rate, for
some of the videos, the API’s generated video labels were related to
both the inserted image and also the content of the original video.

6

(a) (b)

Figure 6: Illustration of superposed and noisy images used
for replacing the original video frames. a) The video frame
is averaged with the image of a car, presented in Figure 3,
where the weight of video frame is 0.75 and the weight of the
car image is 0.25. b) The video frame corrupted by 5% impulse
noise. As can be seen, in both cases, the modification to the
video frame is hardly noticeable.

Averaging with the original frame. Instead of replacing the
video frame, the adversary can superpose the image with the frame.
Let xV be a video frame and xA be adversary’s image. We generate
x ′V = αxV + (1 − α)xA as the new frame and replace it for xV . We
found that by setting α = 0.75, we can deceive the API to only
output the video labels that are related to the inserted image. As an
illustration, Figure 6a provides an example of a video frame aver-
aged with the image of a car, presented in Figure 3. The weighted
averaging of the adversary’s image with the video frame signifi-
cantly reduces the visual effect of the inserted image in the video,
yet the API annotates the video as if it only contains the adversary’s
image. 2

Misclassification attack by adding noise. In misclassification
attack, the adversary’s goal is to cause the API to output different
video labels then the original labels. For mounting the misclassi-
fication attack, it is enough to just add noise to video frames. We
performed the experiments with impulse noise. Impulse noise, also
known as salt-and-pepper noise, is commonly modeled by [22]:

x̃i, j,k =

0 with probability p

2
xi, j,k with probability 1 − p
255 with probability p

2

where x , x̃ and p are the original and noisy frames and the noise
density, respectively. This model implies that each pixel is randomly
modified to one of the two fixed extreme values, 0 or 255, with the
same probability. Through experiments, we found that by adding
only 5% impulse noise to the first frame of every second of the video,
we can deceive the API to generate entirely irrelevant video labels.
Figure 6b provides an example of a video frame corrupted by 5%
impulse noise. As can be seen, the noise effect is hardly noticeable.
We performed the experiments with other image noise types as
well and found that impulse noise is the most effective one, i.e., it
can cause the API to misclassify the input video by introducing
very small perturbation to the video frames.

2We also tested the API with videos comprising of adversarial examples [47] and
observed that the API is robust to this attack.

5.5 Applications of Image Insertion Attack
We showed that by inserting an image at the rate of 1 fps into
the video, the video labels and all the shot labels generated by the
API are about the inserted image. Instead of periodically inserting
the same image, an adversary can replace the first frame of every
second a video with frames from the corresponding positions of
another video. The API then generates the same set of video labels
for both videos, although they only have one frame in common in
every second. In other words, the adversary can replace one frame
per second of a video with the corresponding frame of another
video and the API would not be able to distinguish the two videos.

Such vulnerability of video classification systems seriously un-
dermines their applicability in real-world applications. For example,
it is possible to poison a video catalog by slightly manipulating
the videos. Also, one can upload a manipulated video that contains
adversary’s images related to a specific event, and a search engine
wrongly suggests it to users who asked for videos about the event.
Moreover, an adversary can bypass a video filtering system by in-
serting a benign image into a video with illegal content. Therefore,
it is important to design video analysis algorithms to be robust
and perform well in presence of an adversary. In the following, we
provide a countermeasure against the image insertion attack.

5.6 Countermeasure Against Image Insertion
Attack

One approach to mitigate the effect of the attack is to introduce
randomness into the algorithms. In essence, inferring an algorithm
that generates different outputs for the same input would be sub-
stantially more challenging, especially in the black-box setting. For
video classification algorithms that subsample the video frames, an
obvious countermeasure to the image insertion attack is to sample
the frames randomly, while keeping the sampling rate the same.

Assume that the algorithm randomly samples the video frames
at the rate of 1 fps and the adversary replaces K video frames per
second with her chosen image. Let the frame rate be r fps. Thus,
a fraction of K

r sampled images are the inserted images by the
adversary, which is equal to 4% for r = 25 and K = 1. Appendix A
provides a detailed analysis on the probability that at least one
adversary’s image is sampled by the API, as well as the expected
number of chosen adversary’s images when the video frames are
sampled at higher rates than 1 fps.

Analyzing the exact effect of sampling a small fraction of frames
from adversary’s images would require knowledge about the frame
analysis algorithm and can be an interesting direction for future
works. However, the process of the adversary uniformly replacing
the video frames and the system randomly subsampling them is
equivalent to the process of the adversary randomly replacing
and the system uniformly sampling. Therefore, we can evaluate
the performance of randomly subsampling the video frames using
the current system, by randomly replacing the video frames with
adversary’s image. Through experiments, we found that even by
randomly replacing two video frames every second, the API outputs
mostly the same video labels as for the original video and none
of the labels are related to the inserted image. The results imply
that the video classification algorithm can benefit from randomly
subsampling the video frames, without losing the performance.

7

(a) “Animals.mp4” video (b) “GoogleFiber.mp4” video (c) “JaneGoodall.mp4” video

Figure 7: The histogram changes of consecutive video frames (blue curve), the shot changes generated by Google Cloud Video
Intelligence API (green pattern) and our histogram-based method (red pattern). The shot changes returned by our method are
located at large local maxima of the vector of histogram changes and are mostly aligned with API’s output.

(a) “Animals.mp4” video (b) “GoogleFiber.mp4” video (c) “JaneGoodall.mp4” video

Figure 8: The histogram changes of consecutive frames for the smoothed videos. For the sake of comparison, we keep the y-axis
of subfigures the same as the ones for Figure 7. All the peaks of the histogram changes are now smaller than our threshold of
detecting a shot (3× 104). Therefore, our histogram-based method does not detect any shot change. We verified that the Google
Cloud Video Intelligence API also generates only one shot for the entire smoothed video.

6 TARGETED ATTACK ON SHOT DETECTION
ALGORITHMS

In this section, we first present our approach of attacking shot
detection algorithms and then describe our attack on Google Cloud
Video Intelligence API.

6.1 Attack Approach
For attacking a shot detection algorithm, the adversary needs to
modify the video such that the algorithm detects a shot only at the
adversary’s desired locations. Since we assume that the adversary
only has a black-box access to the system, for every video, she
needs to query the system multiple times, each time with the video
modified differently. This approach may require a large number
of queries to the system, which can make the attack ineffective in
real-world applications.

However, we noticed that different shot detection algorithms
usually yield similar pattern of shot changes. Therefore, the adver-
sary can rely on transferability of manipulated videos, i.e., a specific
modification to a video causes different algorithms to detect the
same pattern of shot changes. Hence, the adversary can first design
her own shot detection algorithm and try to deceive it by manipu-
lating the video. The adversary then uses the manipulated video as

input to the target algorithm. We demonstrate the effectiveness of
our approach by attacking the shot detection algorithm of Google
Cloud Video Intelligence API. We first develop a histogram-based
method for shot detection and then propose an attack for deceiving
the algorithm to output our desired pattern of shot changes. We
show that the manipulated videos can successfully deceive the API.

6.2 Histogram-Based Algorithm for Shot
Detection

We first develop a method for shot detection and then compare
the results with the ones generated by the API. Since shot changes
are usually detectable on the gray-scale video, for simplicity, we
transform the frames to gray-scale images. We adopt a histogram-
based algorithm, where histogram of a frame is a vector that, for
each gray-value, contains the number of pixels with that value. In
this method, we first compute the difference between histograms of
consecutive frames. If a frame has a large histogram difference with
its previous frame, we declare that a shot is initiated at that frame.
For measuring the difference of two histograms, we compute the
L1 norm of their difference, i.e., the sum of the absolute values of
histogram changes.

8

Our method is described more formally in the following. Let
{Xt }t=1:T be the set of video frames and {Ht }t=1:T be the set of
histograms of gray-scale frames. We denote by δHt = Ht − Ht−1
the element-wise difference of the histograms, which represents
the change in statistics of the consecutive frames. Let v be a vector
of histogram changes of the video, obtained as the L1 norm of the
difference of histograms, i.e.,vt = ∥δHt ∥1, 2 ≤ t ≤ T . We locate the
shot changes by finding the local maxima of the vectorv , for which
the amplitude of the histogram change is more than a threshold.
The threshold is set to be greater than the typical histogram change
of consecutive frames within a shot.

Through experiments with different videos, we explored whether
the output of our method can resemble the pattern of shot changes
returned by the API. Figure 7 provides the results for three sample
videos, “Animals.mp4,” “GoogleFiber.mp4” and “JaneGoodall.mp4.”
For each video, the figure shows the vector v and the correspond-
ing shot changes generated by the API (green pattern) and our
histogram-based algorithm (red pattern). For our method, we set
the threshold of 3 × 104 for declaring the shot change, which is
determined by manually checking the histogram plots of several
videos. We also discard very small shots (less than 10 frames). As
can be seen, our method declares a shot change when there is a
large local maximum in the vector of histogram changes. Also, the
shot changes generated by our algorithm are mostly aligned with
the API’s generated pattern of shot changes. The results imply that
the API’s algorithm of detecting shot changes can be reduced to an al-
gorithm of finding the large peaks in the pattern of histogram changes
of consecutive frames.

6.3 Shot Altering Attacks on API
In this section, we present shot removal and shot generation at-
tacks with the goal of deceiving the shot detection algorithm to
miss real shot transitions and detect fake shots, respectively. Using
the combination of shot removal and shot generation attacks, an
adversary can deceive the API to output any desired pattern of shot
changes for any video.
Shot Removal Attack. To force the API to miss a shot change,
we need to modify an abrupt transition in the video to a gradual
transition. For this, we apply a local low-pass filter on the frames lo-
cated on the shot boundaries. We iteratively smooth those frames so
that their histogram difference becomes less than the pre-specified
threshold of our shot detection algorithm. Once we can deceive our
histogram-based algorithm, we test the smoothed video on the API.

The smoothing attack is describedmore formally in the following.
To remove the shot transition between the frames Xt and Xt+1, we
first smooth them as follows: X ′t =

1
h

∑h
i=−h Xt+i and X ′t+1 =

1
h

∑h
i=−h Xt+1+i , where h = 1. We then compute vt , the L1 norm

of the difference of histograms of X ′t and X ′t+1. If vt is greater than
the threshold, we increase h by one and repeat the process. We
continue smoothing the frames, until the histogram change of the
two frames becomes less than the threshold.

Through experimentswith different videos, we examinedwhether
the smoothed videos transfer to the API, i.e., the API also fails to
detect the shot changes. We present the results on three sample
videos, “Animals.mp4,” “GoogleFiber.mp4” and “JaneGoodall.mp4,”
where the attack goal is to remove all shot changes, i.e., we want to

(a) Last frame of a shot (b) First frame of next shot

(c) Smoothed frame of (a) (d) Smoothed frame of (b)

Figure 9: An Illustration of shot removal attack. Original
frames represent an abrupt shot transition, while smoothed
frames form a gradual shot transition.

(a) (b)

Figure 10: An Illustration of shot generation attack. We gen-
erate a video, where all frames are an image of a “building”
(subfigure (a)). We then select one of the video frames and
increase all pixel values by 10 (subfigure (b)). When testing
the API with the modified video, it detects a shot change at
the location of the modified frame.

deceive the API to believe the entire video is composed of only one
shot. Figure 8 shows the histogram changes of the smoothed videos.
For the sake of comparison, we keep the y-axis of subfigures the
same as the ones for Figure 7. As can be seen, all the peaks now are
smaller than the threshold of 3 × 104. Hence, our histogram-based
method does not detect any shot change. We verified that the API
also generates only one shot for the smoothed videos. Since our
attack only smooths few frames on the shot boundaries and keeps
the rest of the video the same, the perturbation to the video is
hardly noticeable. Figure 9 illustrates an example of two frames on
a shot boundary and their corresponding smooth frames. Unlike the
original frames, the API does not detect any shot change between
the smoothed frames.
Shot Generation Attack. The goal of shot generation attack is to
slightly modify the video such that the API wrongly detects a shot
change at a specific frame. As explained in Section 5, inserting an
image in between the video frames causes the API to declare a shot
change at that frame. However, we do not need to insert an entirely
different image within the frames to fake a shot change. We found

9

that even by slightly increasing or decreasing all the pixel values of
a frame, the API is deceived to detect a shot change at that frame.

As an example, we generated a one minute long video, where
all frames were the same image of a building. As expected, the API
outputs only one shot for this video. We then selected one of the
video frames and increased all the pixel values by 10. When testing
the API with the modified video, it detects a shot change at that
frame. Figure 10 shows the original and modified frames. Notice
that the frames are hardly distinguishable.

6.4 Applications of Shot Altering Attacks
Shot detection is important for temporal segmentation of the video
and enables applications such as video searching and summariza-
tion. Fragility of the shot detection algorithm seriously undermines
the benefits of the video analysis system.We showed that by slightly
manipulating the video, an adversary can cause the API to generate
her desired pattern of shot change. Shot altering attacks disrupt the
functionality of the API by preventing it from correctly indexing
and annotating the video content. Essentially, without correctly
detecting the individual shots, the system cannot reliably produce
the story of the video by cascading the proper shot labels. As an
example of the attack, an adversary can prevent the API from find-
ing important events in video surveillance data. In the following,
we provide a countermeasure against shot altering attacks.

6.5 Countermeasure Against Shot Altering
Attacks

Several papers have proposed methods for gradual shot detection in
videos [5, 20, 45]. We are however interested in robust techniques
for adversarial inputs, i.e., videos that are maliciously modified to
deceive the algorithm. Similar to the image insertion attack, the
system robustness can be improved by introducing randomness
to the algorithm, e.g., random subsampling of the video frames
and measuring the difference of sampled frames as an indicator
for whether the shot has changed. However, compared to the task
of video labeling, the system needs to subsample video frames at
higher rates, e.g., 10 fps, to be able to detect small shots. Also, since
the scene may change within the shot, samples within the shot may
have large differences. Therefore, compared to consecutive frames,
a higher threshold needs to be set when measuring the difference
of subsampled frames. Moreover, the accuracy can be improved by
running the randomized algorithm several times and detecting the
shot changes by averaging the results.

There is a trade-off between accuracy and robustness of the shot
detection algorithm. Sampling at lower rates increases the robust-
ness to spurious changes within the shots, but causes the algorithm
to potentially miss the small shots occurred between the two consec-
utive sampled frames. Moreover, with subsampling, the information
of the exact moment of shot transition will be lost; but, since the
intersampling times are less than one second, the estimated time
suffices for most applications. Random subsampling, however, will
not affect the shot labels; therefore, the overall description of the
video remains mostly the same.

7 RELATEDWORK
With the proliferation of mobile devices, video is becoming a new
way of communication between Internet users. Accelerated by the
increase in communication speed and storage space, video data
has been generated, published and spread explosively. This has
encouraged the development of advanced techniques for various
applications, including video search and summarization [55]. How-
ever, due to the temporal aspect of video data and the difficulty of
collecting sufficient well-tagged training samples [51, 60], using
machine learning for videos classification has remained a challeng-
ing task. In recent years, several new datasets have been published
to help advancing the field [13, 27]. Most recently, a new large
dataset [2] and a competition [16] is announced by Google to fur-
ther promote the research in video classification methods.

Following the successful use of deep neural networks for image
classification [21, 28, 44], researchers have attempted to apply deep
learning techniques to the video domain. The current research
for video analysis has mainly focused on selecting the network
architectures and also the inputs to the networks. From network
architecture perspective, convolutional neural networks [26, 57],
recurrent neural networks [58], and temporal feature pooling [27,
58] are viewed as promising architectures to leverage spatial and
temporal information in videos.

For network inputs, current works usually adopt subsampling
the video frames, in order to gain both computational efficiency and
classification accuracy [18, 46, 50, 55, 58]. To compensate for the
loss of motion information, [43] suggested incorporating explicit
motion information in the form of optical flow images computed
over adjacent frames. Optical flow encodes the pattern of apparent
motion of objects and is computed from two adjacent frames sam-
pled at higher rates than the video frames [59]. It has been however
observed that the additional gain obtained by incorporating the
optical flow images is very small [58]. Also, in [54], the authors
proposed using audio spectrogram along with the visual data to
improve the video understanding.

The security of ML models has been studied from different per-
spectives [4, 6, 7, 10, 36]. Learning models are subject to attacks at
both training and test phases. The main threat during training is
poisoning attack, which is injecting fake samples into the training
data or perturbing the training samples in order to influence the
model [11, 24]. During test time, the adversary may try extract pri-
vate training data, e.g., medical data, from the trained model [42].
To protect the training data, several papers have proposed algo-
rithms for privacy preserving ML models [1, 41]. Another threat
is extracting model parameters by querying the model multiple
times [49]. It has been also shown that ML models can be deceived
by perturbing the input features or generating out-of-distribution
samples [9, 19, 29, 32, 35, 47, 56]. This property has been used to
attack voice interfaces [15], face-recognition systems [40] and text
classification systems [23, 39].

Attacks on ML systems can be also classified according to the
adversary’s access to the system. In white-box model, the adversary
is assumed to have some information about the learning algorithm,
while the black-box model assumes that the adversary only has an
oracle access to the system [36]. One attack approach in black-box

10

scenario is to generate adversarial data based on a substitute model
and transfer them to the target model [34].

In this paper, we developed targeted attacks on video analysis
algorithms, by slightly perturbing the input videos, and applied the
attacks on a real-world video analysis system. The attacks are devel-
oped with having only a black-box access to the system. Moreover,
unlike the existing black-box attacks on ML models [34], we had
no information about the training data or even the set of output
labels of the model. We suggested that introducing randomness to
the video analysis algorithms can improve the system robustness.

8 CONCLUSION
In this paper, we proposed attacks on two fundamental classes of
automatic video analysis algorithms, namely video classification
and shot detection. We then applied the attacks on Google Cloud
Video Intelligence API. We showed that the system can be easily
deceived by an adversary without compromising the system or
having any knowledge about the specific details of the algorithms
used. By conducting several experiments, we inferred that the API
generates video and shot labels by sampling the video frames deter-
ministically and uniformly. We showed that by replacing an image
into the first frame of every second the video, the API’s generated
video and shot labels are only related to the inserted image. We also
showed that the API’s output pattern of shot changes can be mostly
recovered by finding the large peaks of the vector of histogram
changes. Based on this observation, we proposed two shot altering
attacks for generating fake shot changes and removing the real
ones. We suggested that using stochastic algorithms can improve
the robustness of the API and proposed random subsampling as a
countermeasure for the proposed attacks.

As another observation, we found that, in line with most of the
state-of-the-art methods, the API does not use the audio data for
video annotation. Specifically, we observed that the API generates
the same outputs for videos with the same visual data, but different
audio data. As a result, an attacker can embed illegal or inappro-
priate audio data in a benign video and evade the video screening
filters. With ML systems being deployed in daily applications, the
success of our attacks further indicates the importance of designing
learning systems to be robust in real-world applications.

APPENDIX
A ANALYSIS OF RANDOM SUBSAMPLING
In this section, we analyze the random subsampling method. Let
the frame rate be r fps. Suppose that the adversary uniformly (and
without replacement) selects a set ofK out of the r frames to replace.
Suppose further that the system chooses L samples out of the r
frames, uniformly at random and without replacement for analysis.
We compute the probability that at least one of the adversary’s
images is chosen by the system, as well as the expected number of
sampled adversary’s images.
Probability of sampling an adversary’s image. Let Y denote a
random variable representing the number of images that are sam-
pled from the adversary’s images. We are interested in computing
Pr (Y ≥ 1), or equivalently 1 − Pr (Y = 0). Let χi denote the event

that the i-th sample is from original video frames. We have
1 − Pr (Y = 0) = 1 − Pr (χ1 ∩ · · · ∩ χL)

= 1 −
L∏

i=1
Pr (χi |χ1, . . . , χi−1) (1)

= 1 −
L∏

i=1

(
r − K − (i − 1)
r − (i − 1)

)
(2)

where (1) follows from the conditioning on the χi ’s and (2) holds
since the probability of choosing a valid sample, given that the
first (i − 1) samples are valid, is equal to the number of remaining
valid samples (r − L − (i − 1)) divided by the total number of
remaining samples r−(i−1). ForK ,L ≪ r , this can be approximated
by Pr (Y ≥ 1) ≈ 1 − e

−KL
r , which can be further approximated

by Pr (Y ≥ 1) ≈ KL
r , when KL ≪ r . Also, for L = 1, we have

Pr (Y = 1) = K
r , meaning that the chance that adversary’s image

will be sampled increases linearly by the number of replaced images.
Expected number of selected images from adversary.
Let T (L,K , r) ≜ E(Y) denote the expected number of adversary’s
images that are chosen, and let χ1 be defined as above. Let χ1 denote
the complement of χ1. We have that
T (L,K , r) = E(X |χ1)Pr (χ1) + E(X |χ1)Pr (χ1)

= T (L − 1,K , r − 1) (1 − K

r
) +T (L − 1,K − 1, r − 1)K

r
.

where T (L,K ,K) = min {L,K }. Hence, the expected number of
adversarial samples can be computed recursively. For K ,L ≪ r , we
have E(Y) ≈ KL

r . With larger L, the number of frames sampled
from adversary’s image increases, however the ratio of adversarial
frames to all sampled frames remains approximately the same.

ACKNOWLEDGMENTS
This work was supported by ONR grants N00014-14-1-0029 and
N00014-16-1-2710, ARO grant W911NF-16-1-0485 and NSF grant
CNS-1446866.

REFERENCES
[1] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSACConference on Computer and Communications
Security. ACM, 308–318.

[2] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,
Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. 2016. Youtube-
8m: A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675
(2016).

[3] Aishy Amer, Amar Mitiche, and Eric Dubois. 2002. Reliable and fast structure-
oriented video noise estimation. In Image Processing. Proceedings. 2002 Interna-
tional Conference on, Vol. 1. IEEE.

[4] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. 2016. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565
(2016).

[5] Evlampios Apostolidis and Vasileios Mezaris. 2014. Fast shot segmentation
combining global and local visual descriptors. In Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 6583–6587.

[6] Marco Barreno, Blaine Nelson, Anthony D Joseph, and JD Tygar. 2010. The
security of machine learning. Machine Learning 81, 2 (2010), 121–148.

[7] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug
Tygar. 2006. Can machine learning be secure?. In Proceedings of the 2006 ACM
Symposium on Information, computer and communications security. ACM, 16–25.

[8] Peter GJ Barten. 1999. Contrast sensitivity of the human eye and its effects on
image quality. Vol. 72. SPIE press.

[9] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against

11

machine learning at test time. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 387–402.

[10] Battista Biggio, Giorgio Fumera, and Fabio Roli. 2014. Security evaluation of
pattern classifiers under attack. IEEE Transactions on Knowledge and Data Engi-
neering 26, 4 (2014), 984–996.

[11] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389 (2012).

[12] Twitter blog. 2016. Increasing our Investment in Ma-
chine Learning. https://blog.twitter.com/official/en_us/a/2016/
increasing-our-investment-in-machine-learning.html. (2016).

[13] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles.
2015. Activitynet: A large-scale video benchmark for human activity under-
standing. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 961–970.

[14] Stuart K Card, Allen Newell, and Thomas P Moran. 1983. The Psychology of
Human-Computer Interaction. (1983).

[15] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr,
Clay Shields, David Wagner, and Wenchao Zhou. 2016. Hidden voice commands.
In 25th USENIX Security Symposium (USENIX Security 16), Austin, TX.

[16] Google Cloud and YouTube-8M Video Understanding Challenge. 2017. https:
//www.kaggle.com/c/youtube8m. (2017).

[17] Antoine Del Cul, Sylvain Baillet, and Stanislas Dehaene. 2007. Brain dynamics
underlying the nonlinear threshold for access to consciousness. PLoS biology 5,
10 (2007), e260.

[18] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. 2016. Convolutional
two-stream network fusion for video action recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 1933–1941.

[19] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[20] Alan Hanjalic. 2002. Shot-boundary detection: Unraveled and resolved? IEEE
transactions on circuits and systems for video technology 12, 2 (2002), 90–105.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[22] Hossein Hosseini, Farzad Hessar, and Farokh Marvasti. 2015. Real-time impulse
noise suppression from images using an efficient weighted-average filtering.
IEEE Signal Processing Letters 22, 8 (2015), 1050–1054.

[23] Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and Radha Poovendran. 2017.
Deceiving Google’s Perspective API Built for Detecting Toxic Comments. arXiv
preprint arXiv:1702.08138 (2017).

[24] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and
JD Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence. ACM, 43–58.

[25] Cloud Video Intelligence. 2017. https://cloud.google.com/video-intelligence.
(2017).

[26] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 2013. 3D convolutional neural
networks for human action recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 35, 1 (2013), 221–231.

[27] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-scale video classification with convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 1725–1732.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[29] Pavel Laskov and others. 2014. Practical evasion of a learning-based classifier: A
case study. In Security and Privacy (SP), 2014 IEEE Symposium on. IEEE, 197–211.

[30] Fei-Fei Li. 2017. Announcing Google Cloud Video Intelligence API, and more
Cloud Machine Learning updates. https://goo.gl/jeLXSd. (2017).

[31] Final Cut Pro 7 User Manual. 2017. https://documentation.apple.com/en/
finalcutpro/usermanual. (2017).

[32] Anh Nguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are eas-
ily fooled: High confidence predictions for unrecognizable images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 427–436.

[33] Pingbo Pan, Zhongwen Xu, Yi Yang, Fei Wu, and Yueting Zhuang. 2016. Hier-
archical recurrent neural encoder for video representation with application to
captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 1029–1038.

[34] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. 2016. Practical black-box attacks against deep learning
systems using adversarial examples. arXiv preprint arXiv:1602.02697 (2016).

[35] Nicolas Papernot, PatrickMcDaniel, Somesh Jha,Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on.
IEEE, 372–387.

[36] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. 2016.
Towards the Science of Security and Privacy in Machine Learning. arXiv preprint

arXiv:1611.03814 (2016).
[37] Mary C Potter, Brad Wyble, Carl Erick Hagmann, and Emily S McCourt. 2014.

Detecting meaning in RSVP at 13 ms per picture. Attention, Perception, & Psy-
chophysics 76, 2 (2014), 270–279.

[38] Joaquin Quinonero Candela. 2016. Powering Facebook experiences with AI.
https://code.facebook.com/posts/804694409665581/
powering-facebook-experiences-with-ai. (2016).

[39] Sravana Reddy, MA Wellesley, and Kevin Knight. 2016. Obfuscating gender in
social media writing. In Proceedings of the 1st Workshop on Natural Language
Processing and Computational Social Science. 17–26.

[40] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. 2016.
Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recog-
nition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1528–1540.

[41] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1310–1321.

[42] Reza Shokri, Marco Stronati, and Vitaly Shmatikov. 2016. Membership inference
attacks against machine learning models. arXiv preprint arXiv:1610.05820 (2016).

[43] Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional net-
works for action recognition in videos. In Advances in Neural Information Pro-
cessing Systems. 568–576.

[44] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[45] Alan F Smeaton, Paul Over, and Aiden R Doherty. 2010. Video shot bound-
ary detection: Seven years of TRECVid activity. Computer Vision and Image
Understanding 114, 4 (2010), 411–418.

[46] Chen Sun, Sanketh Shetty, Rahul Sukthankar, and Ram Nevatia. 2015. Temporal
localization of fine-grained actions in videos by domain transfer fromweb images.
In Proceedings of the 23rd ACM International Conference on Multimedia. ACM,
371–380.

[47] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199 (2013).

[48] Simon Thorpe, Denise Fize, and Catherine Marlot. 1996. Speed of processing in
the human visual system. nature 381, 6582 (1996), 520.

[49] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction apis. In USENIX Security.

[50] Balakrishnan Varadarajan, George Toderici, Sudheendra Vijayanarasimhan, and
Apostol Natsev. 2015. Efficient large scale video classification. arXiv preprint
arXiv:1505.06250 (2015).

[51] Meng Wang, Bingbing Ni, Xian-Sheng Hua, and Tat-Seng Chua. 2012. Assistive
tagging: A survey of multimedia tagging with human-computer joint exploration.
ACM Computing Surveys (CSUR) 44, 4 (2012), 25.

[52] Zhou Wang and Alan C Bovik. 2009. Mean squared error: Love it or leave it?
A new look at signal fidelity measures. IEEE signal processing magazine 26, 1
(2009), 98–117.

[53] Industry Keynote with YouTube CEO Susan Wojcicki (VidCon 2015). 2015. https:
//www.youtube.com/watch?v=O6JPxCBlBh8. (2015).

[54] Zuxuan Wu, Yu-Gang Jiang, Xi Wang, Hao Ye, and Xiangyang Xue. 2016. Multi-
streammulti-class fusion of deep networks for video classification. In Proceedings
of the 2016 ACM on Multimedia Conference. ACM, 791–800.

[55] Zuxuan Wu, Ting Yao, Yanwei Fu, and Yu-Gang Jiang. 2016. Deep Learning for
Video Classification and Captioning. arXiv preprint arXiv:1609.06782 (2016).

[56] Weilin Xu, Yanjun Qi, and David Evans. 2016. Automatically evading classifiers.
In Proceedings of the 2016 Network and Distributed Systems Symposium.

[57] Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo
Larochelle, and Aaron Courville. 2015. Describing videos by exploiting temporal
structure. In Proceedings of the IEEE International Conference on Computer Vision.
4507–4515.

[58] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. 2015. Beyond short snippets: Deep
networks for video classification. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 4694–4702.

[59] Christopher Zach, Thomas Pock, and Horst Bischof. 2007. A duality based
approach for realtime TV-L 1 optical flow. Pattern Recognition (2007), 214–223.

[60] Zheng-Jun Zha, Meng Wang, Yan-Tao Zheng, Yi Yang, Richang Hong, and Tat-
Seng Chua. 2012. Interactive video indexing with statistical active learning. IEEE
Transactions on Multimedia 14, 1 (2012), 17–27.

12

