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Abstract—The Advanced Metering Infrastructure (AMI) is a
fundamental component of modern Smart Grids, and allows fine-
grained and real-time monitoring of the electricity consumption
of utility customers. In an AMI, intelligent devices commonly
called Smart Meters (SMs) communicate with an operation center
for the purpose of management and billing. However, while on
one hand this technology has the potential for advanced load
balancing and grid management, it poses a threat to customers
privacy. Indeed, an adversary can infer sensitive information
about the end users by analyzing the metering data reported
by the SMs. In this paper, we present the design of a privacy-
preserving AMI for fine-grained metering data collection. We
propose a collaborative protocol among SMs that achieves anony-
mous metering data delivery via a random multi-hop path. Our
construction enables a verifier entity to detect any inconsistent
behavior from SMs by accessing their internal log. Our scheme
is scalable with the number of SMs in the network, and unlike
existing methods, does not rely on trusted third-parties. We
consider an adversarial setting where SMs are either honest-
but-curious or controlled by a powerful adversary, whose aim
is to deanonymize the received metering data. Finally, we prove
that our protocol is secure and computationally efficient for the
resource-constrained SM devices.

Index Terms—Smart Grid; Smart Metering; Advanced Meter-
ing Infrastructure; Security; Privacy; Anonymity.

I. INTRODUCTION

The advent of Smart Grid technologies has the potential to
bring an advanced control over both energy generation and
distribution in energy networks. A fundamental component
of modern Smart Grids is the Advanced Metering Infrastruc-
ture (AMI), which intends to periodically communicate with
intelligent metering devices, namely Smart Meters (SMs), to
collect and analyze the energy usage of private houses or
buildings. SMs periodically transmit usage data to a Metering
Data Management System (MDMS), which collects fine-
grained time series of metering data, for management purposes,
or aggregates energy consumption data for billing [1]. The
adoption of AMIs is supported and encouraged by governments;
for example, in United States in 2013, about 50 million SMs
were registered operating in AMI mode [2], and in United
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Kingdom up to March 2015, about one million SMs are
operating in AMI mode [3].
Motivation. The privacy implications of AMI adoption have
been highlighted in several works in the literature [4]–[7]. It has
been shown that the use of AMI and in particular the collection
of fine-grained consumption measurements from SMs reduces
the privacy of customers. Indeed, privacy-sensitive information,
such as the detailed user activities, can be inferred from the
raw metering data [6], [7]. Therefore, it is vital to deploy
mechanisms for preserving the privacy of customers, against
both the MDMS and external attackers, without compromising
the utility of the data.

One common approach is to aggregate frequent metering
data at the edge of the AMI network and deliver the result
to the MDMS [8]–[12]. However, compared to having the
individual measurements, aggregation significantly reduces the
utility of the data, restricting the type of the statistics that
can be extracted from them. Another solution for providing
strong privacy guarantees is using trusted or semi-trusted third-
party anonymizers [1], [13]. This solution however might
be expensive and difficult to deploy and manage. Also, a
privacy preserving protocol for billing purposes has been
proposed in [14], which, however, requires the intervention of
the customer in the computations.
Contribution. In this paper, we present the design of a privacy-
preserving smart metering, based on our preliminary design
presented in [15]. Our protocol allows SMs to anonymously
transmit individual fine-grained metering data to the MDMS,
thus maintaining the utility of the data. We consider an
honest-but-curious model for SMs and MDMS, as well as
an attacker who have access to the raw metering data and
can take control of a portion of the SMs in the network. We
propose a collaborative protocol among SMs to guarantee the
anonymity of the reporting process for the utility customers.
SMs securely log a minimal set of their activities, such that
a trusted Verification Center (VC), who periodically analyzes
the logs, can verify the functionality of SMs. Additionally, our
solution guarantees authenticity and integrity of the metering
data received by the MDMS. Our work considers realistic
system model and assumptions and aims at providing a practical
and easily deployable solution, with minimal modifications to
the existing infrastructure.
Organization. The rest of the paper is organized as follows.
Section II presents our system model, security assumptions,



and the reference attacker model. Section III describes our
protocol for anonymous metering data reporting. In Section V,
we analyze the security of the proposed protocol, and, in
Section VI, we evaluate its implementation aspects. An
overview of the existing literature is presented in Section VII,
and Section VIII concludes the paper.

II. REFERENCE MODEL AND ASSUMPTIONS

In this section, we present our reference system model
(Section II-A), our design and security goals (Section II-B),
and our security model (Section II-C).

A. System Model

We intend to develop a privacy-preserving protocol for fine-
grained smart metering in AMI. We propose a realistic system
model, presented in Figure 1, which is similar to the previous
works [16]–[18]. In the proposed infrastructure, Smart Meters
(SMs) periodically (e.g., every 10 minutes) transmit reports,
containing timestamped metering data, to a Metering Data
Management System (MDMS). MDMS is one of the units
of the Operation Center. Other units are Electricity Utility
Provider and Load Monitoring Center, who queries MDMS to
compute statistics on metering data.

Metering Data 
Management 

System (MDMS)

Data Collection 
Infrastructure (DCI)

...

Smart Meters 
Group Verification Center (VC)

...

Smart Meters 
Group

...

Load Monitoring 
Center (LMC)

Electricity Service 
Provider (ESP)

Operation Center

Fig. 1. System Model.

We consider the AMI to be a mesh network, where SMs
are capable of both wireless connectivity, for communication
with peer SMs, and wired connectivity, for delivering data
to the MDMS. SMs are organized in separate groups, within
which each SM is in the wireless communication coverage
of its neighborhood. We assume that SMs use Power Line
Communications (PLC) to deliver the metering data to the
MDMS, as leveraging the existing electrical infrastructure
reduces the costs of deployment and maintenance [19], [20].
Thus, SMs are assumed to be connected to a Data Collection
Infrastructure (DCI), which relays the data to the MDMS.
The DCI consists of multiple collector units geographically
distributed in the network, which naturally divide the set of
SMs in groups, for a more efficient data collection.

Finally, we assume the presence of a Verification Center
(VC), which is a trusted third party responsible for verifying
the behavior of SMs. VC does not actively participate in the
metering data collection; instead, it periodically (e.g., once a
month) monitors the system status to detect any inconsistent
behavior. VC can be, for example, a government agency.
SMs capabilities and security assumptions. We suppose
SMs are tamper resistant devices, i.e., they cannot be physically
attacked (i.e., accessed or compromised) by an adversary [13],
[14]. However, SMs can be subject to software attacks: an
attacker can modify or replace the software on SMs and
change their expected behavior. SMs are capable of basic
cryptographic operations, such as hashing and symmetric/public
key encryption [21]. Moreover, similar to [17], and in line with
the design of commercial SM devices [22] and recent advances
in embedded systems security [23], we assume SMs have a
low-cost, trusted component (e.g., a Trusted Platform Module
(TPM) chip [24]).

B. Design and Security Goals

We consider the following security goals for our protocol.
Confidentiality. The protocol should guarantee the confiden-
tiality of the raw metering data that SMs deliver to MDMS;
unauthorized entities should not be able to access such data.
Authenticity and Integrity. MDMS should be able to authen-
ticate the data, i.e., assess that the data has been originated by
a legitimate SM, and verify its integrity.
Anonymity. Of the different types of the anonymity [25], we
intend to provide the unlinkability of the metering data and the
source SM, i.e., no entity, including the MDMS, other SMs,
or an external attacker, should be able to link the metering
data with the identity of the source SM.
Verifiability. VC should be able to verify that all SMs are
honestly and correctly following the protocol.

Additionally, we require our solution to have Low Complexity.
Specifically, we intend the protocol to require minimal modifi-
cations to the existing infrastructure, to have low computational
overhead and also easy deployment. Moreover, the solution
also needs to be scalable with the number of SMs.

C. Security Model

We consider a security model where no entity is absolutely
trusted. The details of the model are described in the following.
Internal Attacker. Similar to [26], we assume the presence
of an internal attacker who is part of the operation center
and has access to the raw metering data provided by MDMS.
Moreover, we add the assumption that the internal attacker has
the ability to compromise (the application software of) part of
the deployed SMs, in order to gain additional information from
SMs in a group and deanonymize users. Compromised SMs
may try to inject arbitrary packets into the network, and access
and modify the content of their internal log files. However,
while the internal attacker intends to deanonymize users, the
metering data are needed for operational purposes. Therefore,
compromised SMs have no incentive in mounting Denial of
Service (DoS) attacks, e.g., dropping packets.



MDMS. The data collection entity MDMS is honest-but-
curious, i.e., it may analyze the received measurements to link
them to the users’ identities.
External Attacker. External attacker targets the following:
• Functionality of the protocol, by sending fake metering

data to the MDMS and/or injecting fake messages into
the network.

• Confidentiality and integrity of the data, by eavesdropping
the communications and altering the content of the reports.

• Anonymity of the SMs, by trying to link a message with
the source SM.

Non-malicious SMs. They are assumed to be honest-but-
curious, i.e., they honestly follow the reporting protocol, but
are curious to find a link between a message and its initiator.

III. OUR SOLUTION

In this section, we present our scheme for anonymous
metering data reporting.

We use S to indicate a source SM (i.e., a SM that initiates
a message transmission), and I to indicate an intermediate SM
in a multi-hop path. Each source SM S assigns a permanent
ID, CS ,0 , . . . ,CS ,NS−1 , to each of the NS reachable SMs,
i.e., the SMs in its wireless coverage. The assignments are
known to the VC. Each SM also shares a symmetric key with its
neighboring SMs. Such key can be exchanged at bootstrap using
well-known schemes, such as Diffie-Hellman key exchange.
SMs are assumed to be loosely synchronized with MDMS.
We divide the time into intervals of T seconds, and represent
the current time-interval as t̃ = b t

T c, where b·c is the floor
operation. Table I summarizes the notation we use in the paper.

We also assume that there is a log file in each SM’s memory.
The log is not inside the protected area of the memory, but
is stored such that: (1) it contains sufficient information for
VC to verify the behavior of SMs, and (2) any modification
to the log can be detected by VC. Section IV-A describes a
construction for the secure log. We assume SMs can append
an entry to their log using the LOG STORE() function.

A. Anonymous Verifiable Metering Data Reporting

At every interval t̃, each SM transmits its metering data to
MDMS through a random multi-hop path composed by other
SMs in its group. At the beginning of each time interval t̃,
each SM generates a random nonce as the hash of the previous
nonce νt̃ = H(νt̃−1). It also generates a random string X , and
starts the reporting process by transmitting the metering data to
its j-th neighbor, where j = X(2)(mod NS ). The source SM
includes X in the message transmitted to the first hop, which
will be used to derive the id of the next hop. Note that the
message must traverse at least one hop before being delivered
to the MDMS.

Upon receiving the message, the intermediate SM generates
a random string Y as the hash of the concatenation of the
received random string X with its current nonce νt̃. Based
on Y , it then decides to either deliver the received packet to
MDMS or to forwards it to another peer SM. Both the source
and intermediate SMs store a minimal information inside their

TABLE I
NOTATION

Entities

S, I Source and intermediate SM in a path, respectively.

C(·),j The j-th SM in the neighborhood of a SM.

Parameters

N(·) Number of reachable meters for a SM.

t̃ = b t
T
c Quantized version of the current time t based on the

interval duration T .

dS,t̃ Metering data of S at t̃.

νt̃ Random nonce of each SM at time t̃.

kG Group key shared between a group G of SMs and MDMS.

kj Symmetric key of a SM shared with its j-th neighbor.

mk The secret key of a SM shared with the VC.

pk , sk Public and secret key pair of MDMS.

h An positive integer, where 1
h

is the probability that an
intermediate SM delivers a received packet to MDMS.

X(1), X(2) The decimal value of the first byte/last two bytes of a bit
string X .

ID(·) Unique identifier of each SM.

Cryptographic Primitives

Ek(·), Dk(·) Symmetric Encryption and Decryption with key k.

Epk (·) Public key Encryption with key pk .

H(·) Cryptographic Hash function.

HMACk(·) Hash-based Message Authentication Code with key k.

log file, respectively 0‖X‖t and νt̃‖Y ‖t. By looking into the
log files, VC can reconstruct the paths for each message. Thus,
the forwarding mechanism is both random, since it relies on
the randomness of a cryptographic hash function, and verifiable
by a third-party entity in possess of the log files of all SMs.

In the following, we provide the details of our protocol for
anonymous reporting of metering data.
Initialization. Algorithm 1 describes the initialization phase.
First, the source SM, S, uses the MDMS’s public key to
compute M as the encryption of the concatenation of the
metering data dS,t̃, the corresponding time-interval t̃, the
group ID G, and the HMAC of the metering data with the
group key HMACkG

(dS,t̃) (line 1 of Algorithm 1). Then, it
generates a random bit string X = H(0‖νt̃), where 0 is an
all-zero string with the same bit-length as X , and computes
j ← X(2)(mod NS ) (lines 2-3 of Algorithm 1). Finally,
S computes φ = HMACkG

(t̃‖X), creates the message by
encrypting the string (M‖t̃‖X‖φ) with the symmetric key
shared with the CS ,j , the j-th SM in its neighborhood, and
transmits it to CS ,j (lines 4-5 of Algorithm 1). SM S also adds
a new entry (0‖X‖t) into its log file by invoking the function
LOG STORE() (line 6 of Algorithm 1).
Forwarding. Algorithm 2 describes the forwarding phase.
When an intermediate SM, I , receives a packet, it first decrypts
it with the symmetric key kprev shared with the previous SM in
the path, to obtain (M‖t̃‖X‖φ) (line 1 of Algorithm 2). It then



Algorithm 1 Initialization: S sends its metering data to a first hop.

Input: Metering data dS,t̃ at time t̃; MDMS’s public key pkMDMS; Group
key kG; Group ID G; Random nonce νt̃ at time t̃; ID and symmetric key
of the NS reachable SMs; Integer h.

1: M ← Epk (dS,t̃ ‖ t̃ ‖ G ‖ HMACkG
(dS,t̃));

2: X ← H(0‖νt̃);
3: j ← X(2)(mod NS );
4: PKT ← Ekj

(M ‖ t̃ ‖ X ‖ HMACkG
(t̃ ‖ X));

5: Transmit PKT to CS,j ;
6: LOG STORE(0 ‖X ‖ t);

checks the following conditions: (1) t̃ is not the current or the
previous time-interval, (2) X has been already received at the
current or previous time-intervals, or (3) HMACkG

(t̃ ‖X) 6= φ.
If any of these conditions hold, it drops the packet and stops the
procedure (lines 2-4 of Algorithm 2); otherwise, it continues
the procedure by storing X in a local memory, which will
be erased after two time-intervals (line 5 of Algorithm 2).
Finally, the intermediate SM computes Y = H(X‖νt̃) and
obtains c = Y (1)(mod h) and j = Y(2)(mod NI) (lines 6-7
of Algorithm 2). If c = 0, which occurs with probability 1

h , it
delivers M to MDMS (lines 8-9 of Algorithm 2); otherwise,
it computes φ = HMACkG

(t̃ ‖Y ), creates PKT by encrypting
(M‖t̃‖Y ‖φ) with the symmetric key shared with CI ,j , the j-th
SM in its neighborhood, and forwards PKT to CI ,j (lines 10-
13 of Algorithm 2). Similar to the Initialization, the intermediate
SM also adds a new entry (νt̃‖Y ‖t) into its log file by invoking
the function LOG STORE() (line 14 of Algorithm 2).

Algorithm 2 Forwarding: I performs one of the following operations:
(1) forwards the received packet to another SM; or (2) delivers it to
the MDMS; (3) or discards the packet if it is not verified.

Input: Received packet PKT ; Symmetric key kprev shared with the previous
SM; Group key kG; Random nonce νt̃ at time t̃; ID and symmetric key
of the NI reachable meters; Integer h; Local memory.

1: M ‖ t̃′ ‖ X ‖ φ← Dkprev (PKT );
2: if (t̃′ 6= t̃ ∧ t̃′ 6= t̃ − 1) ∨ (X already received during t̃ or t̃ − 1) ∨

(HMACkG
(t̃ ‖ X) 6= φ) then

3: Discard the packet and stop;
4: end if
5: Store X in local memory for two time-intervals;
6: Y ← H(X ‖ νt̃);
7: c← Y (1)(mod h); j ← Y(2)(mod NI );
8: if c = 0 then
9: Deliver M to MDMS;

10: else
11: PKT ← Ekj

(M ‖ t̃ ‖ Y ‖ HMACkG
(t̃ ‖ Y ));

12: Forward PKT to CI ,j ;
13: end if
14: LOG STORE(νt̃ ‖ Y ‖ t);

For the description of the protocol, we assumed that h ≤ 256,
i.e., the probability of forwarding a received message to the
MDMS is greater than or equal to 2−8. Also, for each SM,
the number of neighboring SMs are assumed to be less than

or equal to 216. Although, these are practical parameters for a
typical system, they can be adjusted to any desired values.
Transmission Times. SMs stack the outgoing messages and
transmit them at once, to their respective receivers, when the
number of stacked messages reaches a pre-determined number,
which is also known to the VC. Note that SMs record the true
transmission time in the log, but include the quantized version
t̃ of the time interval in the transmitted message.
Receiving data in MDMS. Upon receiving the message M ,
MDMS first extracts (dS,t̃‖t̃‖G‖φ) by decrypting M with its
secret key sk . If φ = HMACkG

(dS,t̃), MDMS verifies both the
authenticity and the integrity of the metering data; otherwise,
it discards the packet.

B. Verification of SMs behavior

Our scheme allows VC to verify the correct functionality
of SMs by accessing their internal log file. Assume that SMs
deliver their logs to VC via a secure channel; this can be
done, for example, by encrypting the log with the VC’s public
key, and delivering it via PLC (as for reporting to MDMS)
or over the Internet. The verification process consists of two
steps: log integrity verification, which ensures that the log
file has not been modified, and reporting protocol verification,
which verifies the correct execution of the protocol by SMs.
Section IV describes a secure log construction, as well as how
VC can verify the log’s integrity. In the following, we provide
a description of reporting protocol verification.
Reporting Protocol Verification. After verifying the integrity
of the log files, VC checks if SMs have followed the protocol
correctly. Algorithm 3 presents the verification process per-
formed by VC, which outputs a set E of IDs of malfunctioning,
i.e., erroneous or compromised, SMs. The set E is initialized
as empty (line 1 of Algorithm 3). For each source SM S, VC
selects the entry of the log file corresponding to the message
originated at time t̃, of the form e = 0‖X‖t, where t̃ = b t

T c.
If no such entry exists, the id of S is added to E (lines 2-6
of Algorithm 3). If e exists, VC iteratively reconstructs the
forwarding chain as follows. It keeps track of the current SM
Curr , initially S, and of the next SM Next , initially CS ,j

(line 7 of Algorithm 3). It then searches Next’s log for an
entry e′ = νt̃‖Y ‖t, where Y = H(X‖νt̃) and t̃ = b t

T c and
t̃ = b t

T c + 1. If e′ does not exist, VC adds the id of Next
to the set of the potentially compromised SMs and exits the
loop (lines 9-14 of Algorithm 3). Otherwhise, VC computes
c← Y (1)( mod h) (line 15 of Algorithm 3). If c = 0, it means
that Next must have delivered the message to MDMS; thus,
VC exists the loop (lines 16-18 of Algorithm 3); if c 6= 0,
VC computes j ← Y(2)(mod NCurr ), sets Curr ← Next ,
Next ← CCurr ,j (line 19 of Algorithm 3), and repeats the
loop (from line 8 of Algorithm 3). The algorithm verifies all
the SMs in a group G with the complexity O(|G| · h), where
h� |G|.

IV. SECURE LOG IMPLEMENTATION

As introduced in Section III, we assume that there is a
secure log, i.e., a log file stored inside an unprotected area of



each SM’s memory, to which modifications can be detected
by VC. In the following, we present the design of a possible
secure log implementation that leverages a TPM v1.2 secure
cryptoprocessor [27]. TPM v1.2 provides secure generation
and storage of keys, pseudo-random number generation, and
secure storage of a limited amount of data.

Algorithm 3 Log verification.

Input: Time t̃; Log files of all SMs.
Output: Set of malfunctioning (erroneous or compromised) SMs E .
1: E ← ∅
2: for Source SM S do
3: e← S’s log entry e = (0 ‖ X ‖ t), for t which t̃ = b t

T
c;

4: if @ e then
5: E ← E ∪ {ID(S)}
6: else
7: Curr ← S; j ← X(2)(mod NCurr ); Next ← CS,j ;
8: loop
9: Y ← H(X ‖ νt̃);

10: e′ ← Next’s log entry e′ = (νt̃ ‖ Y ‖ t), for t which
t̃ = b t

T
c or t̃ = b t

T
c+ 1;

11: if @ e′ then
12: E ← E ∪ {ID(Next)};
13: exit loop;
14: end if
15: c← Y (1)(mod h);
16: if c = 0 then
17: exit loop;
18: end if
19: Curr ← Next ; j ← Y(2)(mod NCurr ); Next ← CNext,j ;
20: end loop
21: end if
22: end for

A. Secure Log Construction

We assume VC shares a distinct secret mk with each SM.
Such secret is stored in a protected memory inside the TPM
(i.e., TPM’s NVRAM [27]). A TPM v1.2 contains up to 24
Platform Configuration Registers (PCRs), which are 160-bit
(20-byte) registers inside the TPM. The value of a PCR can be
read and modified only through, respectively, the functions
TPM PCR READ() and TPM PCR EXTEND(), exposed
by the TPM’s driver [28]. TPM PCR EXTEND() takes as
input a sequence of bytes of arbitrary size, and a PCR index i;
it concatenates the sequence of bytes in input with the current
value of the i-th PCR, and computes its SHA-1() hash. Then,
it writes the result inside the i-th PCR (overwriting its current
value). Therefore, by construction, when a PCR transits from
a state to the next one, it is impossible to return back to the
previous state.

We leverage this functionality to construct our secure log. At
boot time, each SM initializes a specific PCR of its TPM, using
mk as input of the function TPM PCR EXTEND(). A SM
adds a new log’s entry el using the function LOG STORE() (see
Figure 2). This function first invokes TPM PCR EXTEND(),
by passing the content of the new entry as input, which

updates the value of the reference PCR (Operation 1 in
Figure 2). Then, SM reads the new extended PCR value (using
TPM PCR READ()), and concatenates it with the content of
the new log’s entry (Operation 2 in Figure 2).

TPM Log

...

...

e0

e|L|-2

    H (         | |                     )

e|L|-1

Previous value 
of j-th PCR

2

1

TPM_EXTEND(                    )

TPM_READ( j )

TPM SM’s Log

...PCRs
0 1 2 j

Use of j-th PCR for 
New log entry

Fig. 2. Operation performed by LOG STORE() function.

B. Log Integrity Verification

VC knows the value mk and has access to the log file
and a “quote”, which is a signed value with a TPM’s
unique key pair of the current value of the PCR (obtained
with TPM PCR QUOTE() function). Thus, VC can easily
reconstruct the chain of hash values appended to each log’s
entry, verifying the integrity of the log file. Note that this alone
is not sufficient for VC to verify the behavior of SMs.

Let ψ0 be the initial value of PCRl, which VC computes
as the hash of the default value of PCRl (e.g., 20 zero bytes)
concatenated with mk . Let ej be the jth entry of SM’s log L,
such that ej = {content}‖ψj . VC first checks whether ψ|L| is
equal to the received quote; if this is true, it then simply checks
if H(ψj−1 ‖ {content}) = ψj , 1 ≤ j ≤ |L|, where |L| is
the number of entries of L. The integrity verification has the
complexity of O(|G| × |L|), where |G| is the number of SMs
in a group. Note that, even if an attacker fully reconstructs the
whole log, VC would still be able to detect this attack. Indeed,
due to the properties of PCRs, the attacker would build the
new log hash chain starting from a PCR value different to the
expected one.

V. SECURITY ANALYSIS

Our data reporting protocol relies on a random forwarding
mechanism similar to Crowds [29]. Several works, e.g., [30]
and [29], have presented methods for measuring the degree of
anonymity for such protocols. However, our specific application
scenario makes the proposed verifiable random forwarding
mechanism less subject to anonymity attacks. This is true
because, at each time interval, all SMs generate a new message,
containing the measurement data, and encrypt it with the
MDMS’s public key. Messages will be routed through a random
set of SMs before being delivered to the same destination, i.e.,
MDMS. This makes it impossible to track users based on
their activities. Moreover, SMs must follow the protocol, in
order to keep their behavior verifiable by the VC. Therefore,
they cannot mount collaborative attacks to break other SMs’
anonymity.



In what follows, we analyze the security of our proposal
based on the requirements (Section II-B) and the security model
(Section II-C).

A. Anonymity

To assess the anonymity of the proposed protocol, we
compute three parameters: the average number of hops in a
path, the average number of hops before the first compromised
SM in the path, and the probability that a non-malicious SM,
transmitting a message to a compromised SM, is the source of
the data. Every intermediate SM delivers a received message
to MDMS with probability 1

h , or, otherwise, forwards it to
another SM with probability pf = 1− 1

h . Thus, the parameter
h has a direct impact on the anonymity degree of SMs. For
example, assume h = 1, i.e., all intermediate SMs always
deliver the received message to the MDMS. In this case, if a
compromised SM receives a message, it can always identify
the transmitter as the source SM, since the the number of hops
in every path is always 1.

Assume that there are n SMs in a group and, for the sake of
simplicity, let every SM be in the communication coverage of
all other SMs. Recall that SMs follow a random, yet verifiable,
algorithm to choose the next hop in the path. Therefore, the
number l of hops in the path follows a geometric distribution
supported on the set of positive integers, with expected value
E[l] = h. This means that in one time interval an expected
number of n · h transmission occurs, and, thus, each SM
transmits on average h messages, including its own metering
data. As a result, there is a trade-off between anonymity and
complexity: while on one hand a large h increases the average
path length (and therefore, the anonymity degree for SMs), on
the other hand, it increases the computational overhead for
SMs.

Assume the internal attacker takes control of m = r · n
SMs, where r ∈ [0, 1] represents the ratio of compromised
SMs. We define the effective path-length le to be the number
of hops before the first compromised SM in the path. The
parameter le follows a geometric distribution supported on
the set of non-negative integers. The process is terminated
when the packet is either forwarded to a compromised SM
or delivered to the MDMS, which happens with probability
1− pf n−m−1

n−1 . Therefore, we have

E[le] =
1

1− pf · n−m−1n−1
− 1 =

h · (n− 1)

h ·m+ n−m− 1
− 1

≈ h

r · (h− 1) + 1
− 1, (1)

where n� 1. Large values of r can significantly decreases the
effective path-length E[le]. For r = 0, we have E[le] = h− 1,
which is at its maximum value, and, if there is only one non-
malicious SM, we have le = 0.

Finally, let q be the probability that a non-malicious SM,
transmitting a message to one of the compromised SMs, is
indeed the source of the data. For transmitting the metering

data of one time interval, each SM transmits, on average, h−1
messages of other SMs. Therefore, we have

q =
1 · m

n−1
1 · m

n−1 + pf · (h− 1) · m
n−1

=
h

h2 − h+ 1
. (2)

Unlike Crowds [29], [31], q is not a function of r, meaning
that even if there is only one non-malicious SM in a group,
compromised SMs cannot distinguish its metering data among
its other outgoing messages. This happens because the behavior
of the compromised SMs needs to be also verifiable by the
VC; thus, they cannot stop transmitting their messages to the
non-malicious SM, so to later identify its metering data. Even
the MDMS or the internal attacker, who have access to the
raw data, cannot link the received data to any SM. Again, we
can see that there is a trade-off between the anonymity and
the complexity, as increasing h will decrease the probability q.
Timing Attack. At each time interval, SMs transmit their
metering data following a random delay, which is the waiting
time that the number of outgoing messages reaches a pre-
determined number. However, SMs include the quantized
version t̃ of a time interval in the transmitted message.
Therefore, no entity can mount a timing attack even with access
to the raw metering data and their corresponding quantized
time interval.

B. Confidentiality

Metering data are encrypted with MDMS’s public key to
ensure that other SMs or an external eavesdropper cannot access
the raw data. Therefore, the metering data confidentiality from
SMs to MDMS is preserved.

C. Authenticity and Integrity

We intend to protect the MDMS from both Impersonating
Attack, where an external attacker tries to send fake metering
data, and Replay Attack, where the attacker tries to re-transmit
a previously-transmitted valid packet. We prevent these attacks
as follows. Each intermediate SM, I , memorizes the ids of
the packets it receives in both the current and previous time
intervals. Upon receiving every packet, it checks if the time-
interval t̃ specified in the packet does not correspond with
the current or the previous time-intervals, or whether it had
already received another packet with the same message ID,
or if it cannot verify the output of the HMAC() function
(line 2 of Algorithm 2). If any of first two conditions hold,
the intermediate SM realizes that a replay attack has been
performed, and, if the third condition holds, it declares an
impersonating attack. In either case, it discards the packet
and terminates the forwarding procedure. Finally, MDMS can
assess the authenticity and integrity of the received metering
data by verifying the HMAC contained in the message.

D. Verifiability

As stated in Section III-B, VC can identify the irregularities
in the execution of the protocol by SMs, based on the
information contained in the log files. We now explain how
VC can effectively detect any malicious behavior from SMs.



A malicious SM may follow different strategies to remain
undetected. First, it may stop logging the outgoing packets.
The verification procedure in Section III-B can easily detect
this behavior by reconstructing the forwarding chain looking
for inconsistencies. In this case, for the compromised SM, the
verification in line 10 of Algorithm 3 fails. Second, a malicious
SM may forward the packet to an arbitrary chosen SM, instead
of the one determined by the algorithm, but still writes a correct
entry into the log. Similar to the previous case, the verification
of line 10 of Algorithm 3 will fail on next node’s log file. As
a further attempt to remain undetected, the malicious SM may
try to modify, insert or delete part of the entries of the log file.
In all this cases, log integrity verification will fail.

Finally, by looking at the transmission times in each SM’s
log, VC can verify whether the SM is correctly following the
protocol for waiting to transmit a certain number of messages
at once.

VI. DISCUSSION AND EVALUATION

A. Scalability and Ease of deployment

As stated in Section II-A, our scheme introduces small
modifications to the existing electrical infrastructure, which are
mainly related to SMs. In particular, our solution brings the
following improvements compared to the existing methods.

Unlike the works in [13] and [1], our solution does not
rely on a deployed trusted third-party to obtain anonymity,
and, unlike [9], we do not require full connectivity among
SMs. Furthermore, the average number of packets sent and
received by each SM depends only on the parameter h. Indeed,
as mentioned in Section V, assuming a constant number of
neighbors per SM, each SM transmits an average number of h
packets in each time interval. Therefore the overhead on each
SM is not affected by the size of the network. This brings
several non negligible advantages, such as improved scalability,
and easy deployment of new SMs.

Moreover, our protocol does not require complex key
management between MDMS and SMs. Indeed, MDMS only
pre-distributes a group key kG to all SMs in a group, which,
for example, can be performed at bootstrap time; kG might be
periodically re-generated and efficiently re-distributed via DCI.
Furthermore, each SM can advertise its public key or certificate
to each of its neighbors, and use it to exchange pairwise keys.
By using a simple PKI rooted at MDMS’s certificate, each
SM can verify whether the received certificate belongs to a
legitimate SM (i.e., a SM deployed by MDMS).

B. Communication, Memory and Computation Complexity

Similar to [32], in what follows we estimate overhead and
complexity of our solution on SMs under realistic assumptions.
We focus on communication, memory, and computation over-
head introduced by Initialization and Forwarding Algorithms.
Numeric Evaluation Setting. We assume SMs are low-
power battery operated devices, with limited memory and
computational capability. Moreover, similar to [17] and existing
SM device products [22], we assume each SM is equipped
with a low cost TPM chip. In particular, we assume that SMs

belong to the same class of low-power devices as a MICAz
platform [33] featuring a 4 MHz Atmega128L [34], and a
IEEE 802.15.4 compliant transceiver, such as the CC2420,
with maximum data rate of 250 Kbps [35]. Furthermore, SMs
are assumed to be equipped with an Atmel AT97SC3203S
TPM chip [24] designed for embedded systems, and capable
of RSA cryptography up to 2048 bit. We assume public key
operations are performed inside the TPM chip, to leverage its
cryptographic acceleration; therefore, public key encryption
and decryption are performed with RSA, using 2048-bit key.
SMs also use AES-CBC-128 symmetric encryption.
Communication Cost. Communication for both wireless and
PLC [36] is performed over the 802.15.4 link layer protocol,
with frame size of 127 bytes and a total of 36 bytes for
the header and footer1 [37]. Moreover, we consider IPHC
6LoWPAN compression [38] for IPv6 and UDP headers,
resulting in 2 bytes for each of them. In case of fragmentation,
each fragment carries the 802.15.4 header and footer, and IPv6
and UDP headers.

During executions of both Algorithm 1 and Algorithm 2,
SMs transmit messages to other SMs encrypted with pairwise
symmetric keys. Messages are composed by the concatenation
of M (256 bytes)2, the time reference t̃ (4 bytes), a bit string
X (20 bytes), and an HMAC() (20 bytes). The obtained string
is then encrypted with AES-CBC-128, resulting in 384 bytes
of payload. After fragmentation, we have a total of 635 bytes
per message. The message delivered to the MDMS by the last
SM in the path consists, instead, of only the 256-bytes M ;
after fragmentation, this translates into a total of 381 bytes.
Memory Overhead. The memory overhead on each SM
depends on the cryptographic parameters and the log file. We
assume MDMS’s public key and the shared secret mk with VC
are pre-installed inside the SM’s TPM. Therefore, we do not
consider them in our memory overhead estimation. Each SM
needs to store only a 128-bit key for each of its neighboring
SMs. The log file L introduces a memory overhead linear with
the number of stored entries |L|, which in turn depends on: (1)
the average number of messages transmitted by the SM; (2)
the metering data reporting frequency (e.g., every 15 minutes);
and (3) the log reporting frequency to VC (e.g., daily). Each
log entry consists of 64 bytes.

To better illustrate the total memory overhead on each SM,
let us consider an example where: h = 5; the average number
of neighbors per SM is 10; SMs send a metering report
every 15 minutes, while the log file to VC on a daily basis.
On average, each SM would need to store approximately:
16 × 10 = 160 bytes for pairwise keys; a random 20-byte
string X for each transmitted message for two time intervals,
therefore 20× 2× h = 200 bytes; and, considering an average
of h entries stored per each time interval t̃, a log of size
30.00 Kbytes per day3. This results in a total approximate

1We do not include the 802.15.4 message authentication code field.
2M consists of the RSA encryption of the metering data (represented in

8 bytes), t̃, the group identifier G of 4 bytes, and an HMAC().
3Each log entry has a size of 64 byte; thus, we have 64×h× 24× 4 byte.



overhead of 30.35 Kbytes, which is easily affordable even by
resource constrained platforms.
Computation Overhead. We measure the computation over-
head of our protocol on SMs in terms of both required execution
time, and energy consumption. We refer to [39] for estimating
the cost of TPM operations, while we use the measurements
in [34] and [35] to estimate respectively the cost of other
cryptographic operations and transmission/reception. Table II
summarizes the overhead introduced by the operations we use
in our algorithms, in terms of energy and time.

TABLE II
ENERGY CONSUMPTION

Atmel AT97SC3203S TPM [24], [39]

Function Energy (mJ) Time (ms)

RSA Encryption 0.04 (× byte) 0.03 (× byte)

TPM PCR READ() 0.92 5.8

TPM PCR EXTEND() 0.49× x+ 50 0.49× x+ 250

TPM PCR QUOTE() 268.80 1400

Atmega128L (4 MHz) [34]
Function Energy Time

× byte (µJ) × byte (µs)

AES-CBC-128 Encryption 1.62 117.39

AES-CBC-128 Decryption 2.49 180.43

SHA-1() and HMAC() 5.9 453.85

Transmit 4.8 73.84

Receive 5.36 74.40

The overall computation cost is dominated by cryptographic
operations and data transmission and reception. Transmission
and reception of messages between SMs require respectively
46.89 ms (3.05 mJ), and 47.24 ms (3.40 mJ). Similarly,
the transmission of the encrypted metering data to MDMS
requires 18.90 ms (1.23 mJ). Also, writing into the log roughly
consists of the execution of TPM PCR EXTEND() on an
input of the length 20 + 20 + 4 bytes, plus the execution of
TPM PCR READ(). According to Table II, these operations
require a total of 277.36 ms, and an energy cost of 72.48 mJ.

Line 1 of Algorithm 1 requires one HMAC() operation on
8 byte, one RSA encryption (inside the TPM) of 36 bytes,
resulting in 4.71 ms, and an energy consumption of 1.60 mJ.
We assume pseudo-random number generation is no more
expensive than computing a SHA-1() operation over 20 bytes.
Therefore, we estimate the time overhead of Line 2 as 9.08 ms,
and the respective energy cost as 0.12 mJ. Line 4 of Algorithm 1
requires one HMAC() operation on 24 bytes and an AES-CBC-
128 encryption on 300 bytes; in total, this has a time overhead
of 11.38 ms, and an energy overhead of 0.63 mJ. Finally, the
last instruction of Algorithm 1 writes into the log. Thus, the
total time and energy required by the Initialization Algorithm
can be estimated, respectively, as 349.42 ms, and 77.88 mJ.

Line 1 of Algorithm 2 requires the decryption of 300 bytes,
which takes approximately 54.13 ms, with an energy cost of
0.75 mJ. Lines 2-4 of Algorithm 2 require the verification of an

HMAC() on 24 bytes, which takes approximately 10.89 ms, at
a cost of 0.14 mJ. Line 6 requires the computation of SHA-1()
on 40 bytes, resulting in a total execution time of 18.15 ms,
and energy cost of 0.24 mJ. Depending on the value of c, the
algorithm may deliver M to MDMS, which has a time overhead
of 18.90 ms, and an energy overhead of 1.23 mJ, or create
an encrypted message and send it to its j-th neighbor, with a
total cost in terms of execution time and energy consumption
of 58.27 ms and 3.68 mJ, respectively. Finally, in any case the
last instruction of Algorithm 2 writes into the log. Therefore,
the execution of the Forwarding Algorithm requires a total of
379.43 ms, and an energy cost of 74.84 mJ, in case the SM
delivers the metering data to MDMS, while 418.80 ms and
77.29 mJ in the the other case.

Finally, assuming the same technology for SM-to-VC and
SM-to-MDMS communication we can easily estimate the time
and energy required to report the log file to the VC, based on
the number of entries |L| in SM’s log file L. Such operation
requires the transmission of the whole log (i.e., |L| entries of
64 byte), as well as one execution of TPM PCR QUOTE(),
resulting in 18.90×|L|×64+1400 ms, and 1.23×|L|×64+
268.80 mJ. Note that, while this operation is clearly the most
expensive, it is much less frequent compared to Initialization
and Forwarding Algorithms. The verification frequency can
be tuned in order to find a balance between the security and
computational costs.

VII. RELATED WORK

In this section, we review the main related works for
anonymous metering data reporting.

A first approach to guarantee anonymity for metering data
reporting, is to rely on a trusted-third party [1], [13]. In [13],
the authors proposed a method for sending aggregate metering
data to an honest-but-curious Utility Provider, (the equivalent
of the MDMS in our system model). The method uses a semi-
trusted third-party entity composed of multiple aggregators,
and guarantees SM anonymity by leveraging a secret sharing
mechanism.In [1], Efthymiou et al. proposed a trusted third-
party escrow mechanism to allow authenticated anonymous
meter readings without the possibility to associate the metering
data with users.

A different approach is to transmit only an aggregate
metering data report to the MDMS, e.g., aggregating the
data consumption of a single user over a limited time [8], or
aggregating metering data of a population [9]–[12]. In [8], the
authors proposed a solution that achieves smart metering data
anonymity by adding minimal noise to aggregate consumption
of a single meter over a period of time. In [9], the authors
proposed a protocol for metering data anonymity, by assuming
full connectivity among SMs; data anonymity is achieved
by secure data aggregation (performed by a trusted SM in a
group) via homomorphic encryption. Similarly, in [12] Steiner
et al. provided SM anonymity by combining secret sharing
and homomorphic encryption. Other similar approaches are
proposed in [10], [21], [26], [40]. In [11] Ohara et al. proposed
a method that allows the MDMS to learn only the total amount



of consumption during a billing interval for each customer, and
the total amount of consumption of customers for each short
interval. MDMS, however, cannot learn the detailed information
of the consumption profiles. A slightly different approach is
to employ trusted hardware to build solutions for anonymous
reporting. As an example, the work in [17] uses a TPM v1.2
component to provide aggregate metering data to MDMS.

While being effective solutions, previous works, however,
have several limitations. Using a trusted third-party entity that
actively participate in the protocol execution is often expensive
and difficult to deploy and manage. It also introduces a single
point of failure into the system. Also, compared to having
the individual measurements, aggregation significantly reduces
the utility of the data for the operation center. In contrast, our
proposed protocol provides anonymity for fine-grained metering
data reporting, relying on a collaborative mechanism among
SMs. The protocol is shown to be secure and computationally
efficient for the resource-constrained SM devices.

VIII. CONCLUSIONS

In this paper, we presented the design of a privacy-preserving
fine-grained metering data collection from Smart Meters (SMs).
In our proposed infrastructure, SMs follow a collaborative multi-
hop protocol, which allows them to anonymously transmit
periodic metering data to a Metering Data Management
System (MDMS). We designed our solution considering an
adversarial setting where MDMS is honest-but-curious, an
internal attacker can take control of a portion of SMs, and other
non-compromised SMs are honest-but-curious. By construction,
our collaborative forwarding protocol is both random and
verifiable. Indeed, it allows a trusted Verification Center, an
entity who does not actively participate in the execution of the
protocol, to evaluate the functionality of each SM by accessing
its internal log. We provided a thorough security analysis, and,
considering realistic assumptions, we assessed the feasibility
of our protocol in terms of the overhead on SMs.
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