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Abstract— A computer malware is a malicious code that
compromises a node and then attempts to infect the node’s
neighbors in order to mount further attacks. Strategies for
mitigating malware propagation attacks are based on patching
each node at a certain rate, which is selected based on a trade-
off between removing the viruses and the cost of patching. This
selection, however, implicitly assumes that the propagation rate
is known, whereas in practice the propagation rate depends
on the inherently uncertain goals and capabilities of the
attacker. In this paper, we propose and analyze adaptive defense
strategies against malware with unknown propagation rates
from a control-theoretic perspective. We introduce a distributed
defense strategy in which each host increases its patching rate
when a malware is detected, and decreases its patching rate
when the host is not infected. The proposed patching strategies
can drive the probability of infection to an arbitrarily low value
at steady-state by varying the patching update parameters.
Using a passivity-based approach, we prove that, when each
node has the same patching parameters, the adaptive defense
strategy ensures that the infection probabilities converge to any
desired positive steady-state value. When the parameters are
heterogeneous among nodes, we prove local stability of the
adaptive patching dynamics, analyze the convergence rate of the
infection probability, and formulate an optimization problem
for selecting the infection probabilities based on a trade-off
between the cost of patching and the cost of infection at steady-
state. Our results are illustrated through a numerical study.

I. INTRODUCTION

Networked systems consist of interconnected hosts that
facilitate exchange and processing of information. The grow-
ing reliance on networked systems for communication and
control [1] makes them inviting targets for cyber attacks. One
cyber attack on networked systems, which has been growing
in frequency and sophistication is malware propagation. In
malware propagation, a malicious code infects one or more
hosts via software exploits and uses the infected host’s
resources to infect its neighboring hosts. Infected hosts may
alter or drop exchanged control packets in networked control
system (NCS) to severely degrade the performance, or mount
large-scale denial of service attacks and spam campaign in
communication networks [2].
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Different mitigation strategies have been proposed against
malware propagation [3]. The standard defense strategy is a
patching-based mitigation, in which a host is taken offline for
inspection, followed by removal of malware if an infection
is detected. The inspected host, however, will be unavailable
for use during the cleaning process, leading to performance
degradation if the patching rate is too high.

In order to characterize the tradeoff between the perfor-
mance cost due to patching and the impact of malware
propagation, dynamical models have been developed to
describe the propagation dynamics of malware as well as
the effectiveness of the mitigation strategy [4], [5]. The
dynamical models enable an analytical approach for design-
ing efficient mitigation strategies that achieve the optimal
tradeoff between patching effort and malware removal.

Analytical design of mitigation strategies, however, as-
sumes various parameters, including scanning rates em-
ployed by malware, and the average rate of infecting
neighboring nodes, are known a priori to the defender.
In practice, however, such parameters are unknown to the
defender. Mitigation strategies derived in the presence of
uncertain propagation dynamics could lead to unnecessarily
high patching rates or low patching rates that are insufficient
to remove infection at a desired rate. At present, however,
design of a mitigation strategy with unknown propagation
parameters is still an open and active area of research.

In this paper, we develop adaptive patching strategies when
the parameters of the propagation dynamics are unknown
to the defender. The proposed patching rules are fully dis-
tributed and do not require information exchange between
nodes, thus reducing communication overhead and privacy
risks associated with sharing traces of infection. We prove
that these update rules drive the probability of infection
to an arbitrarily low value that can be tuned by varying
the patching parameters, and that the asymptotic patching
rate is the minimum rate required to achieve the steady-
state infection probability. We make the following specific
contributions:

o We propose update rules for patching rates based on
the outcome of inspections for potential infection. We
model the patching update as continuous dynamical sys-
tem and develop coupled passive systems to represent
the interaction between the propagation dynamics and
adaptive patching rates.

o We characterize the equilibrium infection probabilities
and patching rates, and show that the probability of
infection at the equilibrium is determined only by the
patching parameters chosen by the defender and does



not depend on the propagation rate of the malware.
When all nodes have the same patching parameters, we
prove the homogeneous patching dynamics guarantee
convergence to the equilibrium point via passivity based
analysis.

o In the case where nodes have heterogeneous patching
parameters, we prove that the equilibrium point is
asymptotically stable and characterize the convergence
rate to the equilibrium as a function of the patching
parameters and propagation rate. We further formulate
an optimization problem of selecting patching param-
eters based on a trade-off between removing viruses
and minimizing the cost of patching, and show that this
problem is a geometric program.

e We evaluate our framework via a numerical study,
which suggests that the infection probabilities converge
to the equilibrium under both homogeneous and hetero-
geneous patching parameters.

The paper is organized as follows. We review the related
work in Section II. Section IIl contains our assumptions
of the system and malware. The dynamical models for
malware propagation and patching update are also presented.
In Section IV, we present our passivity-based analysis for the
homogeneous patching update rules. Section V analyzes the
adaptive update rule under heterogeneous patching parame-
ters. Section VI includes our numerical results. Section VII
concludes the paper.

II. RELATED WORK

Modeling and mitigating malware propagation have been
active areas of research in both control and security
communities [6]. Dynamical models of malware propaga-
tion have been developed based on epidemic models by
Kermack and McKendrick [4]. The propagation models
have been extended for different mitigation models includ-
ing Susceptible-Infected-Susceptible (SIS) and Susceptible-
Infected-Recovered (SIR) models as well as propagation of
multiple different malwares [7], [8].

Control-theoretic approaches have been used to design
efficient mitigation strategies as well as propagation struc-
tures of damaging malware [5], [9]. Minimizing the patching
efforts while removing all infections against single virus
has been studied using optimal control in [5]. Recently, a
quarantine-based mitigation strategy has been studied for
time-varying graphs in [10] and structures of a graph has
been used to characterize the required mitigation efforts as
a solution to a resource allocation in [11].

Design of mitigation strategies when the propagation pa-
rameters are uncertain have been studied in [5], [12]. Here,
the defender is assumed to have a priori knowledge regarding
the range of possible propagation parameters [12] or the
statistical characteristics of parameter estimation error that is
modeled as noise [5]. Existing works derive fixed patching
strategies to guarantee minimum level of performance under
uncertain propagation dynamics. Under our approach, the
defense strategy does not depend on any prior knowledge of
the propagation parameter, but instead updates the patching

rate based on the detected infection during the inspection
process.

Passivity-based control design has been used in applica-
tions including congestion control [13] and control of cyber-
physical systems [14]. One advantage of passivity-based
design is that a class of control laws that guarantee stability
can be identified using the passive structure. Since any
controller that is passive will guarantee stability, a control
law can be chosen that is robust to noise or delay [13].

In [15], we studied adaptive patching strategies where each
host updates its patching rate based on the outcomes of
inspections. This preliminary work proved local convergence
under a linearized model around the equilibrium point, but
did not contain results for global convergence. In addition,
the tradeoff between the patching effort and the probability
of infection has not been studied for the adaptive patching
strategies.

III. MODEL AND PRELIMINARIES

This section presents the models and assumptions of the
adversary and network defense. We also give background on
passivity.

A. Adversary and Defense Models

We consider a networked system represented by an undi-
rected graph G = (V, £), where V is the set of hosts and £ is
the set of edges between hosts. We assume that an infected
host ¢ € V can infect node j only if j is a neighboring node
of i, i.e., (i,7) € £. The set of neighboring nodes of node i
is denoted as NN;, and the number of neighbors of host i is
denoted as d; = |N;|.

We consider patching based mitigation strategy where each
host ¢ is taken offline according to a Poisson process with rate
Bi. Once a host is taken offline, it is inspected for infection
and patched if it is infected. In this paper, we assume that
through inspection, any malicious code can be detected and
removed with certainty. The rate 5; can be varied over time,
based on observed infections at one or more nodes.

We assume Susceptible-Infected-Susceptible (SIS) model
[16] where a patched node can be reinfected at a later time.
This model is consistent with recent advances in malware
including polymorphic worms where a malware mutates its
code over time to avoid signature-based detection [17].

B. Malware Propagation Dynamics

We consider the mean-field approximation to the SIS
model, defined as follows [18]. Let x;(¢) denote that prob-
ability that node ¢ is infected at time ¢. With the additional
approximation that the state of node ¢ is independent of the
state of node j € N; at time ¢, the mean-field approximation
yields the dynamics of x;(t) as

(1) = A1 —2i(1)) D w;(t) = Bi(B)as(t), (D)
JEN;

where A\ > 0 is a propagation rate that is determined by the
rate at which an infected node attempts to infect its neighbors
and the probability that an infection attempt is successful.



We assume that the propagation rate )\ is unknown to the
defender. The first term describes the transition of node
i becoming infected and the second term describes the
transition of node ¢ becoming susceptible via patching.

C. Background on Passivity

This section gives background on passivity. All definitions
can be found in [19].

Definition 1: A dynamical system ¥ : & = f(x,u),y =
h(x,u) is passive if there exists a positive semidefinite
function V' (z) (Storage function) such that

V(t) <u(t)y(t) 2)

for all input w and output y for all time ¢. If in addition,
V(t) < u(t)Ty(t) — W(z(t)) for some positive definite
function W, then the system X is called strictly passive.

Theorem 1 ([19]): A negative feedback interconnection
between two strictly passive systems is globally asymptoti-
cally stable.

For a negative feedback interaction between two strictly
passive systems with storage functions V; and V5, the func-
tion V = Vi 4+ V4 is a Lyapunov function for the combined
system.

IV. HOMOGENEOUS PATCHING STRATEGY

This section presents the proposed adaptive patching
strategy where the patching rate is dynamically updated
based on previously detected infections. We characterize an
equilibrium point of the propagation dynamics (1) and prove
the global asymptotic convergence to the equilibrium point
under the proposed adaptive patching strategy via passivity
analysis.

A. Homogeneous Patching Update

Our proposed adaptive patching strategy is as follows. The
patching rate applied to host ¢ is dynamically updated based
on detected infections of host ¢ and its neighboring hosts
7 € N;. When an infection is detected at host 4, the patching
rate 3;(t) is incremented by ) Similarly, if the inspection
of node i reveals that no malware is present, then the patching
rate is decremented by —J~. Since the patching rate for
host i will be incremented at the rate 3;(t)x;(t), since the
expected rate of increment is 5% Bi(t)xi(t) = ax,(t), and
the expected rate of decrement is v(1 — x;(t)) by the same
logic, the overall dynamics of patching rate §;(¢) is given as

Bi(t) = {ami(t) = v(1 —ai(t)} - 3)
where { };3’ is the positive projection defined as

, ; = 0 and p(x
{p(x)}}, :{ p(()x% flse Dand pla) <0

We say the positive projection is active when §; =
0 and p(x) < 0, and inactive otherwise. We will now
characterize an equilibrium point of the joint dynamics of
(1) and (3).

Theorem 2: Let x* = pow and 8f = /\diﬁ. There exist
two unique equilibria of the patching dynamics (3) with the

(=, B7)

propagation dynamics (1). The first equilibrium is (z],
= (0,0) for

for all 4, and the second equilibrium is (x;, 5;)
all 7.

Proof: A necessary condition for (X,3) to be an
equilibrium is given as either 3; = 0 and Z; < z* for all i
or ¥; = x;, which is a condition to ensure ﬁz = 0 for all 3.
Suppose Z; is a value in 0 < z; < z*, and B; = 0 Since X
is an equilibrium, the following equation is true.

A1—z) Y z;=0. @)

JEN;

Since 1—2; > 0, this condition implies that Z; = 0 for all j.
This in turn, implies that Z;, = 0 for all k € N} since &; = 0.
However since ¢ € N, this is a contradiction because Z; > 0
from assumption. Therefore, Z; can either be 0 or z; = z*
for all 4.

Suppose that a host 7 has an equilibrium z; = 0. This
implies that ; = 0 for all j € ;. Making the same
argument for all neighbors of j inductively, we conclude
that X = 0 for all hosts. Moreover, since (3;(t) is a strictly
decreasing function if 2; = 0, §;(t) will converge to 0 when
the positive projection becomes active.

For the non-zero equilibrium (z}, 8}), we verify by sub-
stituting «* as x; for all ¢ and 3; = B} in the propagation
and patching dynamics. We obtain

;(t) = A1 — z")dx* — Bfz* =0
; g
But) = (ot 7)1 — 715, =0
for all i.
|

While (z*, 5*) is an equilibrium point of the joint patching
and propagation dynamics, this equilibrium point is not
unique. The other equilibrium point is when x; = 0 and
B; = 0 for all 7. In what follows, we will prove that
the proposed patching dynamics guarantee convergence to
(z*, 5*) when at least one host is initially infected with non-
zero probability.

B. Passivity-Based Analysis of Homogeneous Patching

We prove convergence to (x*,3*) by formulating the
joint propagation-defense dynamics as a negative feedback
interconnection between the propagation dynamics and the
adaptive patching rate update. We show that the propagation
dynamics are strictly passive from input —(8 — 8*) to
(x — x*). We then prove that the overall system dynamics
converge to the equilibrium (2*, 8*), guaranteeing the global
asymptotic stability of the overall system as illustrated in
Figure 1.

Lemma 1: For all z* € (0,1), and for all z;,z; € (0,1],
(z;—2*) (L —xj—14+2*)+(z;—2*) (= —2;— 1+2*) <0

€T, Zj
with equality achieved only when z; = z; = x*.
Proof: Let g(z;, ;) = (x; —x )(x—J —z;—1+a%)+
(xj — )(—J — z; — 1 + z*). Expanding and rearranging
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Fig. 1. Figure illustrating passivity approach for proving convergence to the
equilibrium x*, 8*. The malware propagation and patching dynamics are
passive dynamical systems coupled by negative feedback interconnection.

g(x;, x;) yields
T | T

4 x ) -t (—+

= —2wx; + 22" (1 —
Zj iz

Let t = 22, then g(x;,2;) can be rewritten as

1
g=2z"1+t)z; —z"(t + E) —2tx? +22%(1 — 2*)

To derive the upper bound on g(x;,x;), we will first max-

imize over z; for a fixed ¢ and then maximize over t. The

upper bound obtained by this procedure will be an upper
bound on

iy g 5

%H;?)Zcog(x ;) )

To see this, define U(t) = max {g(x;,tx;) : ; > 0}. Sup-

poseithat (%;,%;) is the optimal solution to (5), and let

% Then

and hence

mtaxU( ) > U(t) > max g(mz,m])

Tq,xj>

For any fixed ¢, g(x;,tx;) is a concave function in z;
that is maximized when z; = $2*(} + 1). Substituting this
expression into the formula for g yields

g=a (04" D +2-a")

For 0 < z* < 1, the term %:z:* — 1 < 0. Since ¢ + % is
a strict convex function in ¢, g is a strict concave function
in t. Therefore, the ¢ at which the maximum is achieved is
unique and the function is maximized when ¢ = 1, i.e., when

x; = x. Therefore,
g<a*(z*—2+2-2")=0
This completes the proof. [ ]
Theorem 3: The propagation dynamics is strictly passive
from input — (3 — 5*) to (x — x*).

Proof: Consider the storage function V7 (x) as

Vi(x) =) (x 1og§ + (2 — x*)) (6)

i

This storage function is a convex function in x since the
Hessian of V; is

V2V, = dzag(%) 0 (7

Due to convexity, the global minimum of V; is achieved
when V,V; = 0. However, the gradient of V; is a vector
whose ith entry is given as 1 — 2—7 Therefore, V1 (x) > 0
which is equal to 0 only when x = x*.

In addition, V1 is given as

Vi =

I
e
&8
\

&*

By adding and subtracting 3; term inside the parenthesis,
and rearranging the terms, we obtain

Vo= =Y (@i~ )i~ B7)

i

+)\Z(Z‘ -

Therefore, in order to prove passivity, it suffices to prove that

Z(ml —x* Z T —

7 JEN;

(1 —2")d;

x—l—l ij

JEN;

].—il’ dl <0

This term can further be rewritten as

= (@i —a") .Z(m zj—1+a%) )
7 JEN;
T
= Z [(xi—x*)(—?—xj—l—i—x*) (10)
(i,5)€E ‘
T
+zj —a")(— —x — 1+ 27)] (11)
Lj
However, each term of (11) is less than O for all

(i,j) € & due to Lemma 1, implying that Vi <
— > (x; —x7)(B; — BF) and the system is passive. [ |

Theorem 3 establishes the passivity of the propagation
dynamics. We will now prove the passivity of homogeneous
patching dynamics.

Theorem 4: The patching dynamics is passive from
(x(t) —x7) to (B(t) — 7).

Proof: We first show that

(B = B7)B: < (B: — BY)((a + 7)zi — )

If the positive projection is inactive, then the inequality holds
with equality. If the positive projection is active, then 3; = 0
and 3; = 0. Therefore, the left hand side of the inequality is
0, and the right hand side is equal to —3}((a + 7)z; — 7)



which is greater than or equal to 0 since 5 > 0 and (o +
~¥)x; — 7 < 0 by the definition of positive projection.
Let the storage function V> be given as
1
V - - _ px\T _ Q%
(8) = 5ra gy (B8 (B -8
which is a positive definite function which equals to 0 only
when = 3*. Moreover,

(12)

_ 1 T
L LA
o - 89" (« x—x"
B ) e k= x)

= (BB (x—x")
and hence the passivity property is satisfied for the homoge-
neous patching dynamics. [ ]

Theorems 3 and 4 show the passivity of both propagation 1
and patching dynamics 3. Using these results, we now show
that x;(¢) will converge to =* for all i.

Theorem 5: The probability of infection at time ¢, x;(t)
will converge to z* = 2 for all 4. The patching rate j3;(t)
will converge to 3 for all ¢.

Proof: Using the storage functions Vi(x) and Va(5)
from Theorems 3 and 4 respectively, we can construct a
Lyapunov function V(x,3) = Vi(x) + V2(3), which is a
positive definite function. Moreover,

V= Z g(zi,2;) <0
(4,5)€E
where g(z;, ;) is the function defined in Lemma 1. From
Lemma 1, it was shown that }; . ¢ g(2;,z;) = 0 if and
only if x; = z; = «* for all (i,js.
By LaSalle’s theorem [19], the x(¢) will converge to the
largest positive invariant subset of

{(x,8):V(x,8) =0} ={(x,8) : x = 2"1}.
Let R denote this largest positive invariant subset. Suppose
(z*1,8) € R and 8 # B*. Let x(0) = 2*1 and 5(0) = *.
Since 5, # BF for some 14, there exists § > 0 such that
#;(t) # 0 for ¢ € [0,0). Hence x(t) # x*1 when ¢ is in
a neighborhood of 0, contradicting the assumption that R
is a positive invariant subset of {(x,3) : x = z*1}. Thus
(x,3) converges to (x*1,3*) from any initial state where
x(0) # 0. [ |

V. HETEROGENEOUS PATCHING STRATEGY

In Section IV, we considered a homogeneous patching
strategy where the same patching update rule is applied to
every host in the network. However, different host may have
varying costs for patching efforts as well as different impact
on the overall system when infected. Under this scenario,
it is preferable to have a heterogeneous patching strategy
where each host will be infected with different probability
of infection at the equilibrium.

In this section, we introduce a heterogeneous patching
strategy where the patching update rule can differ for each
host. We characterize the equilibrium under this dynamics

and prove local convergence using the linearized dynamics.
In addition, we formulate an optimization problem to trade-
off the patching effort and the impact of infection.

A. Heterogeneous Patching Update

In the heterogeneous patching update rule, the patching
rate is updated based on previous infections as in the
homogeneous case. However, the increment and decrement
factors «; and +y; vary for each host. Similarly as in (3), the
heterogeneous patching dynamics is given as

Bi(t) = {auizi(t) — vi(1 — zi(t) )5,

Theorem 6: An equilibrium of heterogeneous patching

dynamics together with the propagation dynamics (1) is given
as

13)

* Vi * 1 * ;
T = B; —)\(E—l) > ajforalli (14)

JEN;
Proof: The patching dynamics is at equilibrium when

xf = —L—. Substituting =} in the (1), we obtain

? ity "

2i(t) = A1 —x}) Y x} — Bi(t)a]

JEN;

and ©; = 0 when §; = ;. [ |
We will now prove the local convergence to the charac-
terized equilibrium (z7}, 37).
Theorem 7: The equilibrium point (z}, 3F
cally stable.
Proof: Linearizing the propagation dynamics (1) around
the equilibrium point (z}, 3;), we obtain

) is asymptoti-

x = Ax + Bf3 (15)

where the diagonal entries of A are given as A; =
=AY jen, ¥; — Bi. For j #1i, Ajj is given as

g = M=), i jeN;
Y00, else
The B matrix is a diagonal matrix with B;; = —z}. Lin-

earizing the patching dynamics (13) around the equilibrium
point, we obtain

8= Kx (16)

where K is a diagonal matrix with K;; = a; + ;.

Since all off-diagonal entries of A are positive, from [20],
if there exists a diagonal matrix D such that ATD has
negative row sums for all rows, then there exists a positive
diagonal matrix D such that A7 D+ DA is negative definite.

Let D be a diagonal matrix where D;; = z}. Then the
sum of ith row element of AT D is given as

(ATD1); = Aua;+ > M1 -a})a)
JEN;
= =AY @i+ Y AMl-a))z; <0
JEN; JEN;

since 0 < 1 — :v;“ < 1 for all j. Therefore, there exists a
positive diagonal matrix D such that ATD + DA < 0.



Define the Lyapunov function
= 1 1 _
V(%,B) = ;%" Dx + ;BT (~B)DK ™'}

which is a positive definite function since D is a positive
diagonal matrix, and —B, D, K~ are all positive diagonal
matrices. The time derivative of V' is given as
) 1 _
Vo= 5xT(ATD + DA)x + BT BDx
+8T(-B)DK'Kx
< p'BDx - BT (B)Dx =0

with equality only if X = 0. This proves that heterogeneous
dynamics guarantees asymptotic convergence around the
equilibrium (z}, 37). |

Given that the equilibrium is asymptotically stable for
arbitrary values of «;,7; > 0, a defense strategy can be
designed to choose the equilibrium z; which minimizes
the trade-off between the probability of infection and the
patching cost.

The patching rate at the equilibrium 3} is not a convex
function in x*. However, if we assume that x7 < 1 for all
¢ then the patching rate 3 can be approximated as

A (ZjeN,-, xj)

*

B~
i

which provides an upper bound of 3. The optimization
problem of minimizing a trade-off between the probability
of infection and the patching cost at the equilibrium can be
formulated as

minimize >, ¢z} +AY2 D e, T (z3)~1

s.t. zf € (0,1]
where ¢; > 0 is a positive constant to trade-off the probability
of infection at host ¢. The optimization problem (17) is is a
geometric program [21], and hence can be solved efficiently
using convex optimization algorithms for a large network.
Note that the objective function of (17) includes parameter
A, which is assumed to be unknown. Hence, a nominal value
or probability distribution over A can be used in the objective
function. While an inaccurate estimate of A will lead to
suboptimal values of x*, it will not impact the convergence
properties of the adaptive update rule.

X

a7

B. Analysis of Convergence Rate

We now analyze the convergence of the adaptive patching
dynamics in the case of heterogeneous infection probabili-
ties. Our convergence analysis is based on the linearization
around the equilibrium point (z*, 3*). As a convergence rate
metric, we investigate the eigenvalue of the Jacobian whose
real part has the smallest eigenvalue.

In what follows, we assume that the value of ~; = ~ for
all nodes, for some > 0. This can be assumed without loss
of generality because any desired x can still be achieved by
varying the parameter «;. Letting J denote the Jacobian, we
first introduce the matrix decomposition

- (32)

where A and B are defined as in the proof of Theorem 7, and
C is a diagonal matrix with C;; = «; +-y;. As a preliminary,
we have the following lemma that relates the eigenvalues of
J to the eigenvalues of A.

Lemma 2: Let A denote the set of eigenvalues of A. The
eigenvalues of the Jacobian J are given as

_ + =y
A=nEVITHY ;7 TineA (18)

Proof: The characteristic polynomial of .J is given by

_ A—-pl B
AJ(,D) _det( C ol )

The matrices C' and —pl commute, and hence the char-
acteristic polynomial is equivalent to Aj;(p) = det((A —
pI)(—pI) — BC) [22]. The product BC is equal to —vI,
and hence

Ay(p) = det(—pA + p*I + 7I) = p"det(A — (p + %)I)
=p"Aalp+ %)-

Thus the eigenvalues of J at values of p where p + % =7
for some eigenvalue 7 of A. Solving for p gives the desired
result. [ ]
We now derive bounds on the eigenvalues of A.
Lemma 3: Let n be an eigenvalue of A. Then
Amin; {(z})?}
nl > ————.
max; x;
Proof: Define a diagonal matrix D by D;; = x. Then
the matrix AD satisfies

AT Y en, Ty 1=
/\(1 - JZ:)JZ;, .7 € Ni
0, else

(AD);; =

By the Gershgorin Circle Theorem, the magnitudes of the
eigenvalues of AD are bounded below by

. * * : *\ 2
min ] E x> )\rniln (x])=.
JEN;

Furthermore, for any vector v, we have that

ID= ADvl[> < [|D7V||2]|ADwv||2 <

1 . 9
< m)\ min (z7)7[|v]]2

1
—||AD
14Dl ool

Since D~'AD and A have the same eigenvalues, we have
the desired result. [ ]
We remark that, in the homogeneous case (all =] values
are equal), this bound reduces to || > Az;. Combining the
results of Lemmas 2 and 3 yields the following.
Theorem 8: The magnitudes of the real parts of the eigen-
values of J are bounded below by

19)
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Fig. 2. Figures illustrating convergence of z(t) and 5(t) to z*, 5* for adaptive patching strategies. (a) Trajectories of x(t) and B(t) for a network with
10 nodes (b) Trajectories of z(¢) and 3(¢) for a network with 100 nodes. (c) Convergence of z(t) and 3(t) for heterogeneous patching strategy. Random
networks of 50 nodes were generated for the heterogeneous patching strategies.

where 1* = Amin; (2})?/ max; x7. If v satisfies 4y >
(n*)?, then the magnitudes of the real parts are bounded
below by n* /2.

Proof: By Lemma 2, the eigenvalues of J are defined
by Eq. (18). The eigenvalue with smallest real part occurs
when |n| is minimized. Substituting the bound 7n* from
Lemma 3 yields Eq. (19). [ ]

From Theorem 8, we observe that convergence rate is
increasing in v and n*. The value of n*, in turn, is increasing
in min; z7, increasing in A, and decreasing in max; x;.
Hence the convergence rate is maximized when + is chosen
to be large, all nodes have the same infection probability, and
a higher infection probability is permitted. This suggests a
trade-off between achieving a low infection probability and
maximizing the rate of malware removal.

VI. NUMERICAL STUDY

We evaluated our approach through a Matlab numeri-
cal study. We considered randomly generated Erdos-Renyi
graphs where an edge exists between two nodes with prob-
ability p independent from other edges. In our simulation,
edge probability p was chosen as 0.3.

We evaluated both the homogeneous and the heterogenous
patching update rules. For the homogeneous case, parameters
a,~y were chosen as &« = 9 and v = 1. From Theorem 2,
z* = 0.1 for all hosts and the steady state patching rate for
host ¢ is given as 8 = \(1 — z*)d;.

For the homogeneous patching update, we generated two
networks of size 10 and 100. Convergence of z(t) and
patching rate 5(t) for the homogeneous patching update is
illustrated in Figure 2. A random host was chosen to evaluate
z;(t) and B;(1).

For a network with relatively small number of hosts (V =
10), we observe that the probability of infection and patching
rate exhibit oscillatory behavior around the equilibrium point,
but asymptotically converge to z*, 3 as shown in Figure
2(a). Figure 2(b) shows the convergence of z; and 53;(t)
for a larger network of size 100. We observe that as the
network size increases, the convergence of state variables

become monotonic as compared to the oscillatory behavior
exhibited in small-sized networks.

Numerical evaluation of heterogeneous patching update
is shown in Figure 2(c). Three networks were generated
with 50 nodes by varying the connectivity parameter p
as p = 0.1,0.2,0.4. Initial values of z;(t) were chosen
uniformly random, while the initial 3;(¢) values were chosen
by introducing a small perturbation from S* by adding
independent Gaussian random variables of variance 0.1. The
metric for deviation from the equilibrium was chosen as
() = x*le + [18(t) = 8 |2-

Figure 2 (c) shows that for arbitrary initial values of
x;(0), the deviation converges to 0 for all three cases. This
numerical result implies that global convergence of hetero-
geneous patching dynamics is feasible and maybe proved by
constructing an appropriate Lyapunov function. It is observed
that the deviation norm is not monotonically decreasing in
general. However, as the connectivity parameter increases,
the convergence rate increases and the trajectory of deviation
becomes more monotonic as p increases. We observe that this
trend is analogous to the homogeneous patching case, where
the convergence rate is improved as the average degree of the
network increases. Investigating this trend analytically will
be part of our future work.

VII. CONCLUSIONS

In this paper, we studied distributed adaptive patching
strategies against malware propagations attack when the
system defender does not have a prior knowledge of the
propagation rate of the malware. We proposed two update
rules depending on whether the same patching update rule
is applied to every host in the network. We modeled the
patching update as continuous dynamical systems that are
coupled with propagation dynamics and characterized equi-
libria points for both update rules.

Using passivity-based analysis, we proved that by allow-
ing non-zero, but arbitrarily low probability of infection at
the steady state, the homogeneous patching rule guarantees
global convergence to the characterized equilibrium if at least



one host is infected initially in the network. For the hetero-
geneous update, we proved the asymptotic convergence to
the equilibrium by linearizing the propagation and patching
dynamics around the equilibrium. In order to achieve the
optimal trade-off between the impact of infection and the
patching efforts for each node under the heterogeneous
patching dynamics, we formulated a geometric optimization
problem that can be solved efficiently for a large network.

For future work, we will consider patching update rules
that are robust to errors (false alarms and mis-detections)
during inspections by tuning the update parameters. More-
over, if each host has varying defense capabilities, then the
propagation rate would depend on which host the malware
is targeting. We will incorporate heterogeneous propagation
rate as part of future work. Finally, we will investigate the
global convergence properties of the heterogeneous patching
update rules.
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