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Abstract. Physical-layer and MAC-layer defense mechanisms against
jamming attacks are often inherently reactive to experienced delay and
loss of throughput after being attacked. In this paper, we study a proac-
tive defense mechanism against jamming in multi-hop relay networks, in
which one or more network sources introduce a deceptive network flow
along a disjoint routing path. The deceptive mechanism leverages strate-
gic jamming behaviors, causing the attacker to expend resources on tar-
geting deceptive flows and thereby reducing the impact on real network
traffic. We use a two-stage game model to obtain deception strategies at
Stackelberg equilibrium for selfish and altruistic nodes. The equilibrium
solutions are illustrated and corroborated through a simulation study.
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1 Introduction

Wireless networks play a crucial role in many military and commercial appli-
cations. The open wireless medium, however, leaves such networks vulnerable
to jamming attacks, in which an adversary broadcasts an interfering signal in
the vicinity of a node, preventing any incoming packets from being correctly
decoded. Jamming attacks are particularly harmful when the adversary can ex-
ploit weaknesses in the physical or MAC layer protocols used by the nodes [4],
or target intermediate relay nodes in a multi-hop network to reduce the end-
to-end-throughput [11]. Different classes of jamming adversary have been stud-
ied, including constant jammers that emit a constant interfering signal, random
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jammers that broadcast an interfering signal at random intervals, and intelligent
jammers that can selectively target packets from different flows to maximize the
damage of the attack [5].

Defense mechanisms against jamming are based on physical-layer techniques,
such as beamforming, spread-spectrum, and directional antennas [7], or MAC-
layer protocols such as channel surfing [12]. When multi-hop routing is used,
the source nodes can also decrease the flow rate on paths that experience high
packet-loss due to jamming, while increasing the rate on routes experiencing
lower packet-loss [10]. This, however, is an inherently reactive defense that cannot
be employed until the network has already been targeted by the adversary and
experienced loss of throughput.

In this paper, we study a proactive defense mechanism against jamming for
multi-hop wireless networks, in which one or more network sources introduce a
deceptive network flow, consisting of randomly generated dummy packets, along
a disjoint routing path. When the real and deceptive packets are encrypted, the
adversary will be unable to distinguish between them, and will expend limited
resources, such as jamming power, on targeting a false flow. This leaves fewer
jamming resources available for targeting real packets, allowing those packets to
escape jamming. The goal of this approach is to use the intelligent attributes of
the adversary, such as the ability to target individual packets from specific flows,
to create deception and thus mitigate the impact of the attack.

While this approach is promising, several challenges must first be addressed.
First, the deceptive packets will traverse the same links as real packets, leading
to increased congestion and delays. Second, each source node may have limited
capacity to generate, encrypt, and transmit packets, and this scarce capacity
must be divided between real and fake flows. Third, if the fake packets are
not introduced according to an optimal strategy that leverages information on
the adversary’s capabilities and goals, then the deception may be ineffective in
increasing the throughput of real nodes, and may be counterproductive due to
the increase in congestion.

To address these issues, we introduce a game-theoretic framework for thwart-
ing jamming attacks through deceptive flows. Our framework is based on a two-
stage game between a set of sources and an adversary mounting the jamming
attack. In the first stage of the game, the sources play a noncooperative game in
order to select the real and deceptive flow allocations. In the second stage, the
adversary observes the total flow allocation of each source and selects a jamming
strategy accordingly in order to maximize the decrease in throughput. We study
the deceptive jamming game under two types of source behavior, namely a selfish
source that maximizes its own throughput while disregarding the delays expe-
rienced by other sources, and an altruistic source that incorporates the delays
of other sources when choosing flow rates. We derive the equilibria of the game
for each case, and provide efficient algorithms for allocating real and deceptive
flows at each source based on the equilibria. Our results are illustrated through
a simulation study.
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The paper is organized as follows. In Section 2, we review related work on
jamming attacks and defenses. In Section 3, the system and adversary models
are introduced. Section 4 contains the game formulation and solution algorithms
for each player. Section 5 presents our simulation results. Section 6 concludes
the paper.

2 Related Work

The vulnerability of wireless networks to jamming attacks has been extensively
explored [7]. In particular, the use of commodity wireless devices has led to effi-
cient jamming attacks that target specific network protocols, such as 802.11 [4].
Jamming defenses at the physical layer are based on spread-spectrum commu-
nication [3], such as frequency hopping, in which jammed receivers change fre-
quency in order to prevent the attacker from discovering the channel [8]. Spatial
retreat, in which nodes that detect a jammer move away from the jammed region,
was discussed in [12]. These lower-layer defenses are not affected by our proposed
approach, and can be employed alongside our methods to further increase the
robustness to jamming.

The impact of jamming attacks on multi-hop wireless networks, in which
the jammer targets intermediate relay nodes in order to disrupt the end-to-end
throughput, was studied in [11]. This work focuses on quantifying the impact
of jamming for a given set of network flows and not on responding to jamming.
In [10], a flow allocation approach to mitigating jamming was presented, in
which each source responds to an increase in packet-loss rate, corresponding to
increased jamming activity, by shifting flow to an alternative path with lower
loss rate. The work of [10], however, does not explicitly model the goals and
constraints of the adversary, and therefore does not enable a strategic approach
to flow allocation, let alone introducing deception.

In [13], we proposed thwarting jamming attacks by introducing a deceptive
flow, causing the adversary to waste resources and allowing valid packets to
avoid being jammed. That work, however, focused on a single source selecting
routing paths for real and deceptive flows. Multiple sources introducing deceptive
flows leads to several challenges. First, the added deceptive flows may increase
congestion and delay in the network. Second, the effect of the deceptive flow
will depend on the flow allocations of other sources, resulting in a coupling
between sources. For example, by introducing a deceptive flow that is jammed
by an adversary, a source will not only improve its own throughput, but also
the throughput of nearby sources, since the adversary will have fewer resources
available to target those flows.

3 Model and Preliminaries

In this section, we introduce the network and adversary models along with rel-
evant notations.
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Fig. 1. Illustration of the network model with two source nodes s1 and s2, which
transmit data to destination t1 and t2, respectively, via the relay network consisting of
five relay nodes r1, r2, · · · , r5.

3.1 Network Model

We consider N source nodes, indexed in the set S = {s1, . . . , sN}. Source
si, i = 1, 2, · · · , N, has a corresponding destination node di ∈ T , where T :=
{t1, t2, · · · , tT } denotes the set of T destinations. Each source si maintains
a real flow to di, consisting of data packets, with rate xRi , as well as a de-
ceptive flow consisting of randomly-generated fake packets at rate xDi , with
xDi + xRi ≤ mi, x

D
i ≥ 0, xRi ≥ 0. The deceptive flow aims to deceive the at-

tackers along the routing path between the source and destination pair in order
to protect the real flow1. Since each source maintains two flows, we can equiv-
alently represent each source node si, i = 1, 2, · · · , N, with two virtual source
nodes sDi and sRi , where sDi is the virtual node that transmits deceptive flows
while sRi is the virtual node that sends real data. Let SD := {sD1 , sD2 , · · · , sDN} be
the set of N deceptive source nodes , and likewise, let SR := {sR1 , sR2 , · · · , sRN}
be the set of N real source nodes.

We consider a multi-hop relay network where sources have to send their
data via intermediate nodes. Let R := {r1, r2, · · · , rR} be the set of R relay
nodes deployed between sources and destinations. In general, the relay nodes
can form a hierarchical structure for multi-hop routing. In this work, without
loss of generality, we consider a two-hop routing scenario, where source nodes

1 In principle, the deceptive flow could also contain duplicate copies of real packets.
We assume, however, that the sources will not choose to send real packets along
routes that are likely to be jammed.
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first route data to relay nodes and then relay nodes to the destinations. We
assume that the routing paths have been predetermined by standard routing
protocols [2, 6]. Let aei ∈ R be the relay node chosen by the source node sei , i =
1, 2, · · · , N, e ∈ {R,D}, with aRi 6= aDi for all si ∈ S, and Bj ⊂ T be the set of
destinations that receive packets from relay rj . Let LRS be the set of links between
sources and relays, and LTR be the set of links between relays and destinations.
We can represent the routing network by the graph G := (V, E), where V is the
set of vertices consisting of deceptive and real virtual source nodes, relay nodes
and destinations, i.e., V := SD∪SR∪R∪T , and E is a set of data links between
nodes, i.e., E := LRS ∪ LTR.

Each source node maintains two routes to its destination, one route for the
real flow and one for the deceptive flow. The real flow of source si in the
relay network can be represented by the set fRi := {(sRi , aRi ), (aRi , di)}, i ∈
S, and the deceptive flow of source si can be represented by the set fDi :=
{(sDi , aDi ), (aDi , di)}, i ∈ S. We let FR := {fRi , i = 1, 2, · · · , N} be the set
of real flows, FD := {fDi , i = 1, 2, · · · , N} be the set of deceptive flows, and
F := FD ∪ FR be the set of flows in the relay network.

To conserve notation, we let f denote a particular flow in F , and write xf
to denote the data rate for flow f ∈ F at the transmission rate, which may be
real or deceptive. For example, the real flow fRi , i ∈ S, has its transmission data
rate xfR

i
= xRi and the data rates of deceptive flows fDi , i ∈ S are given by xDi .

We let L denote the set of L bottleneck links in the network, and they consist of
links directed to relay nodes and destination nodes. Hence L = R + T . We use
Lf ⊂ L to denote the set of those links traversed by flow f ∈ F , with LRi ⊂ L
denoting the set of links traversed by real flow fRi and LDi ⊂ L denoting the set
of links traversed by deceptive flow fDi . The routes for real and deceptive flows
for source i are assumed to be link-disjoint, with LRi ∩ LDi = ∅. Each link l is
assumed to have a finite capacity µl. Letting Fl denote the set of flows traversing
link l, the capacity constraint can be expressed as

∑
f∈Fl

xf ≤ µl. We assume
that the delays τl ∈ R+ experienced by each link follow an independent M/M/1
queueing model [9], with the delay on link l given by

τl =
1

µ̄l −
∑
f∈Fl xf

, l ∈ L, (1)

where µ̄l = µl − ε, for ε > 0 sufficiently small. In addition, each source i has a
capacity constraint mi, so that xRi + xDi ≤ mi. The routing path of each source
is represented by the routing matrix W , which is a |L| × |F| real matrix with
a 1 in the (l, f) entry if flow f traverses link l and a 0 otherwise. The capacity
constraint can be expressed in a more compact form as

Wx ≤ µ, (2)

where µ = [µ1, µ2, · · · , µ|L|]. We use WR ∈ R|L| × R|FR| to denote the routing
matrix restricted to the set of real flows.

We illustrate the network model in Fig. 3. Sources s1 and s2 transmit data
to destinations t1 and t2, respectively. Both sources split their traffic into two
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flows: one is the deceptive flow containing randomly generated packets at rates
xD1 and xD2 for sources s1 and s2 respectively; the other one is the legitimate flow
containing the real data at rates xR1 and xR2 for sources s1 and s2 respectively.
A relay network consisting of a set of relay nodes R = {ri, i = 1, 2, · · · , 5} is
used to transmit data. The topology of the routing network can be represented
by the graph (V, E), where V := {sD1 , sR1 } ∪ {sD2 , sR2 } ∪ {t1, t2} ∪ R, and E =
{(sD1 , r1), (sD2 , r1), (sR1 , r3), (sR2 , r5), (r1, t1), (r1, t2), (r3, t1), (r5, t2)}. An attacker
A can jam the flows within its range of influence. The network consists of four
flows: fR1 = {(sR1 , r3), (r3, t1)}, fD1 = {(sD1 , r1), (r1, t1)}, fR2 = {(sR2 , r5), (r5, t2)}
and fD2 = {(sD2 , r1), (r1, t2)}, among which fR1 and fD2 are jammed by the at-
tacker A. The relay network has 5 links associated with 5 relay nodes. Note that
flows fD1 and fD2 share the same link and hence their rates are constrained by
xfD

1
+ xfD

2
≤ µ1, where µ1 is the capacity constraint on link 1 associated with

r1.

3.2 Adversary Model

The network is deployed in the presence of an adversary mounting a jamming
attack on a set of flows FA ⊆ F . The adversary has knowledge of the routing
topology for the flows in FA as well as the flow rate xf for all f ∈ FA. The
adversary is capable of differentiating between packets from different flows and
targeting individual packets for attack [11]. Since packets are encrypted, however,
the adversary cannot differentiate between real and deceptive flows.

The adversary chooses a fraction of flow f ∈ FA to target, denoted pf . The
cost to jam flow f is equal to cfpf , where cf is a nonnegative constant determined
by the jamming power, the distance between the jammer and the jammed re-
ceiver, and the channel characteristics. The total jamming power budget is equal
to J , resulting in a jamming power constraint

∑
f∈FA

cfpf ≤ J .
We assume that the adversary does not attempt to differentiate between the

real and deceptive flows by observing the flow rates or network topology, and
instead assumes that all packets have an equal likelihood of being real. Otherwise,
the sources could gain an advantage by choosing the rate or routing path of the
deceptive flow in order to convince the adversary that it is real.

4 Game Formulation and Equilibria

In this section, the interaction between the adversary and network sources is
described. We first describe the actions of the adversary, who observes the flow
rates and routing topology and chooses a jamming strategy accordingly. We then
discuss the actions of the sources, who determine the flow rates xf .

4.1 Game Formulation

The deceptive jamming game consists of two stages. In the first stage, each source
si selects real and deceptive flows xRi and xDi simultaneously. In the second stage,
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the adversary observes the flow rates xf for all f ∈ FA and chooses the jamming
rates pf . When f is a real flow with source si, we write pf := pRi , while pDi is
the probability of jamming for a deceptive flow with source si. The adversary’s
goal is to find the optimal jamming strategy p∗f , f ∈ FA, which is the solution
to the optimization problem

maximize
∑
f∈FA

UA(pf , xf )

pf , f ∈ FA
s.t.

∑
f∈FA

cfpf ≤ J
(3)

The constant J is the adversary’s total power budget. We select UA(pf , xf ) =
ln pfxf for the analysis later in Section 4.3. At each source si, the goal is to
optimize a utility function Ui(x

R
i , x

D
i , x−i), where x−i is the flow rates of the

other sources. We consider two types of utility functions, selfish and altruistic.
In the selfish case, source si’s only goal is to maximize its own throughput while
limiting the delay of real packets, leading to utility function

USi (xRi , x
D
i , x−i) = (1− pRi (xRi , x

D
i , x−i))x

R
i − β

∑
l∈LR

i

1

µl −
∑
f∈Fl

xf
. (4)

The second term of (4) quantifies the delay resulting from flow rates xRi and xDi ,
based on the M/M/1 model described in Section 3.1. In Section 4.3, a closed-form
expression for the dependence of pRi on the xRi and xDi values will be derived.
The formulation is illustrated in Figure 2(a).

(a) (b)

Fig. 2. Illustration of two-stage games and Stackelberg equilibrium is used as solution
concept (a) Selfish source nodes: each source first decides on deceptive and real flows
in a noncooperative way. (b) Cooperative source nodes: source nodes jointly optimize
their data rates to achieve the best total utility. The attacker A sniffs the traffic of the
network after source nodes decide on their data rates, and launches a jamming attack
by choosing the power levels to affect the flows within its range of influence.
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While introducing a deceptive flow on a separate path may increase the
achieved throughput and reduce the error rate of a source, it will also increase
the congestion, and hence the delays, experienced by the remaining sources. We
denote sources that attempt to minimize the delay experienced by other sources,
in addition to maximizing their own utility, as altruistic. An altruistic source has
utility function defined by

UTi (xRi , x
D
i , x−i) = (1− pRi (xRi , x

D
i , x−i))x

R
i − β

∑
l∈LR

i ∪LD
i

1

µl −
∑
f∈Fl

xf
. (5)

The second (delay) term of (5) incorporates the delays experienced by both real
and deceptive flows, as opposed to the delay term of (4) which only measures
delay of real flows. The rationale is that increases in delay in fake packets are
due to increased congestion, which will affect the real flows of other sources as
well. Hence each source is penalized for the delays caused by fake packets. The
altruistic user case is illustrated in Figure 2(b).

4.2 Equilibrium Concepts

The equilibrium concept for the game is dependent on the amount of information
available to each player. For the game between the sources and the adversary, the
adversary observes the sources’ actions, equal to the source rates xR1 , x

D
1 , . . ., be-

fore selecting a jamming strategy pR1 , p
D
1 , . . .. Hence the adversary will select the

jamming strategy p∗f according to the optimization problem (3) after observing
the actions of the sources.

In the case of selfish sources (see Fig. 2(a)), there are also strategic interac-
tions among the sources. Since the sources cannot observe each others’ actions
before selecting real and deceptive flow rates, their interactions can be described
by a normal-form game by fixing the behavior of the adversary. Hence, Stack-
elberg equilibrium solutions can be used to characterize the outcome for this
(n + 1)-person hierarchical game. Let p̃ be a feasible action of the attacker as
his response to the sources based on the attacker utility function, i.e.,

p̃f = p∗f (xR,xD), f ∈ FA,

where xR = [xRi ]i∈{1,...,N},x
D = [xDi ]i∈{1,...,N}, and p̃f : R2N → R|FA|, f ∈ FA,

is the reaction map of the attacker.

Definition 1 (Stackelberg Equilibrium). An action profile (xR∗,xD∗, p̃) ∈
R2S × R|FA| is a Stackelberg equilibrium if

p̃f = p∗f (xR∗,xD∗), f ∈ FA

and the source rates xR∗i , xD∗i satisfy, for all i ∈ S,

Ui(x
R∗
i , xD∗i ,x−i, p

∗
f (xR∗i , xD∗i ,x−i)) ≥ Ui(xRi , xDi ,x−i, p∗f (xRi , x

D
i ,x−i)), (6)

for all feasible flow rates xRi , x
D
i .
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4.3 Solution for Adversary

We consider an attacker with utility function UA = exp
{
γ
∑
f∈FA

αf lnxfpf

}
,

where the log function reflects the fact that the adversary attempts to distribute
the jamming impact among multiple flows and γ is a risk parameter. The coef-
ficient αf represents the relative importance of flow f , which is normalized so
that

∑
f∈FA

αf = 1. We define αf =
xf∑

f′∈FA
xf′

, modeling an adversary who

places a higher priority on flows that carry more network traffic.
The attacker then solves the optimization problem

max
pf ,f∈FA

exp
{
γ
∑
x∈FA

αf lnxfpf
}
, (7)

s.t.
∑
f∈FA

cfpf ≤ J,

Let c̄f = cf/J. The solution to this optimization problem is given by

pf = αf/c̄f . (8)

4.4 Solution for Selfish Sources

We first consider the behavior of source nodes when each source attempts to
maximize its own utility, represented by its throughput and delay. In this case,
the utility of source i is given by

USi (xRi , x
D
i ) = (1− pRi )xRi − β

∑
l∈LR

i

1

µl −
∑
f∈Fl

xf
.

Substituting the adversary’s strategy for pRi yields

USi (xRi , x
D
i ) =

(
1− αRi

c̄Ri

)
xRi − β

∑
l∈LR

i

1

µl −
∑
f∈Fl

xf

=

(
1− xRi

c̄Ri
∑
f∈FA

xf

)
xRi − β

∑
l∈LR

i

1

µl −
∑
f∈Fl

xf

Furthermore, since the total flow originating at source i cannot exceed mi,
we have that each source’s optimization problem, given the behavior of the other
sources, is

maximize

(
1− xR

i

c̄Ri
∑

f∈FA
xf

)
xRi − β

∑
l∈LR

i

1
µl−

∑
f∈Fl

xf

xRi
s.t. xRi + xDi ≤ mi

(9)

We observe that the objective function of (9) is strictly increasing in xDi ,
since the routes used by real and deceptive flows are link-disjoint. As a result,
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the constraint xRi + xDi ≤ mi will hold with equality. Moreover, in equilibrium,

xRi + xDi = mi for all sources i. Letting M =
∑N
i=1mi, (9) can be rewritten as

maximize
(

1− xR
i

Mc̄Ri

)
xRi − β

∑
l∈LR

i

1
µl−

∑
f∈Fl

xf

xRi
(10)

Taking a linear approximation around the origin to the second term, which
models the case where the total data flow through each link is significantly less
than the link capacity (as in sensor networks where the nodes themselves face
energy constraints that prevent full utilization of the channel), yields

USi (xRi ) =

(
1− xRi

Mc̄Ri

)
xRi − β

∑
l∈LR

i

1

µl

1 +
∑
f∈Fl

xf

 (11)

The value of xRi that maximizes (11) is xRi = c̄iM
2

(
1− β

∑
l∈LR

i

1
µl

)
. Further-

more, a quadratic approximation yields

USi (xRi ) =

(
1− xRi

Mc̄Ri

)
xRi − β

∑
l∈LR

i

1

µl

1 +
∑
f∈Fl

xf +

∑
f∈Fl

xf

2
 (12)

which attains its maximum at

xRi =

 2

c̄iM
+ 2β

∑
l∈LR

i

1

µ2
l

−1 1− β
∑
l∈LR

i

(
1

µl
+

2
∑
f∈Fl

xf

µ2
l

) . (13)

Obtaining the equilibria for the games with responses (11) and (12) is equivalent
to solving a system of linear equations. Define D to be a diagonal matrix with

entries Dii =
(

2
ciM

+ 2β
∑
l∈LR

i

1
µ2
l

)−1

. Then (13) can be rewritten as

xRi = Dii

1− β
∑
l∈L

Wil

µl
− 2β

∑
l∈L

Wil

µ2
l

∑
f∈F

Wflxf

 .

Multiplying by Wil and Wfl allows us to sum over all entries in F and L.
Let U be a diagonal matrix with entries Ull = µl. Since the flow rates satisfy
xRi + xDi = mi, define

Z =


1 0 · · · 0
−1 0 · · · 0

...
0 0 · · · 1
0 0 · · · −1

 , m =


0
m1

...
0
mn

 ,
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where Z ∈ R2n×2n and m ∈ R2n, so that x = ZxR + m. Finally let ν be a
vector with νl = 1/µl. Then the vector of real flow rates can be obtained by
solving the matrix equation

(I + 2βDWT
R (U2)−1WZ)xR = D(1− βWT

R ν − 2βWT
R (U2)−1Wm). (14)

In the case where the quadratic approximation does not hold, the Stackelberg
equilibrium of the game with selfish sources can be computed by observing that
the best-response optimization problems (10) for each source define a potential
game, with potential function

Φ(xR1 , . . . , x
R
N ) =

N∑
i=1

xRi

(
1− xRi

Mc̄Ri

)
− β

∑
l∈L

1

µl −
∑
f∈Fl

xf
(15)

Computing the equilibrium of the selfish-user game is equivalent to solving the
optimization problem

maximize
∑N
i=1 x

R
i

(
1− xR

i

Mc̄Ri

)
− β

∑
l∈L

1
µl−

∑
f∈Fl

xf

xR1 , . . . , x
R
N

s.t. 0 ≤ xRi ≤ mi

(16)

Since the potential function Φ(·) is a strictly concave function of xR1 , . . . , x
R
N , the

optimization problem (16) has a unique solution that can be computed efficiently.

4.5 Solution for Altruistic Sources

When the sources behave altruistically, the utility function for source si is given
by (5). In this case, we observe that the utility of si is no longer increasing in
xDi , and hence we may have xRi +xDi < mi. The best response of si to the other
sources and the attacker is then given by the optimization problem

maximize

(
1− xR

i∑
f∈FA

xf c̄Ri

)
xRi − β

∑
l∈LR

i ∪LD
i

1
µl−

∑
j∈Fl

xf

xRi , x
D
i

s.t. Wx ≤ µ
xRi + xDi ≤ mi i = 1, . . . , N

(17)

Lemma 1. The utility function UTi is a strictly concave function of xRi and xDi .

Proof. The function (xRi )2/
∑
f∈F xf is a quadratic-over-linear function, and

hence is strictly convex, implying that the first term of UTi is strictly concave. The
concavity of the second term can be verified by computing its second derivative.

Lemma 1 yields the following theorem.

Theorem 1. The simultaneous-move game, in which player si has utility func-
tion UTi , has a pure-strategy Stackelberg equilibrium.
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Proof. By [1, Theorem 4.4], an equilibrium in pure strategies exists if the set
of feasible flow allocations (xR1 , x

R
2 , . . .) is compact and convex and the utility

function UTi is a strictly concave function of xRi and xDi . The second condition
holds by Lemma 1. The set of feasible flow allocations is convex and closed due
to the convexity of the constraints Wx ≤ µ and 0 ≤ xRi +xDi ≤ mi. Furthermore,
since 0 ≤ xRi , x

D
i ≤ mi for all i, the set of feasible flow allocations is bounded,

and hence compact.

A heuristic algorithm for approximating a solution to the altruistic sources
game is as follows. Each source initializes its flow rate to a feasible value, such
as 0. At each iteration, each source computes its best-response to the observed
flows of the other sources, based on (17). The algorithm terminates when no
source can improve its utility by changing its strategy, or after a fixed number
of iterations. The algorithm is summarized in Figure 3.

Approximate-Equilibrium: Algorithm for approximating a Stackelberg
equilibrium when sources are altruistic.
Input: Link capacities µ, source capacities mi, i = 1 . . . , N
Routing matrix W , number of iterations K
Output: Real flow rate xRi and deceptive flow rate xDi for each si ∈ S
xRi , x

D
i ← 0, ∀i = 1, . . . , N , k ← 0

while k < K
b← 0
for i = 1, . . . , N

xR,oldi ← xRi , xD,oldi ← xDi
xRi , xDi ← solution to (17) with xR−i, x

D
−i as input

b← 1 if xRi 6= xR,oldi or xDi 6= xD,oldi

end for
if b == 0
exit while loop; return xR1 , x

D
1 , . . . , x

R
N , x

D
N

end while
return xR1 , x

D
1 , . . . , x

R
N , x

D
N

Fig. 3. Algorithm for approximating a Stackelberg equilibrium of the altruistic sources
game.

We observe that the sources can update their rates in an arbitrary order (i.e.,
source 1 does not have to update first, as in Figure 3).

5 Simulation Results

We illustrate our proposed approach through a Matlab simulation study. We
consider a network with four sources, four relays, and one destination. Each
source has a capacity of 1. All network links have equal capacity, which we
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varied from µ = 2 to µ = 3. We simulated both selfish and altruistic sources,
with trade-off parameter β = 1. An adversary is assumed to be active in the
presence of the relay nodes, with jamming cost proportional to the square of its
distance to each relay. The adversary’s jamming budget is normalized to 1.

(a) (b)

Fig. 4. Illustration of our proposed approach for a network of four sources, four relays,
and one destination, with β = 1 and adversary cost proportional to the distance to each
relay. (a) Case where sources are selfish. The utility achieved by the sources increases as
the capacities of links and the adversary’s cost increase. Deception increases the source
utilities. (b) Case of altruistic sources. The utility achieved is higher on the average
than the utility of selfish sources.

Figure 4(a) shows the utility achieved by selfish sources. The benefit of de-
ception is reflected by an increase in utility. Each source’s utility increases as the
adversary’s cost of jamming increases, since the adversary requires more power
to jam the deceptive flows. Furthermore, a higher capacity results in lower de-
lays, further increasing the utility. In the case where the capacities are low, the
use of deceptive flows increases the utility of the sources. Increasing the capacity
reduces the benefit of deception.

We also observe that altruistic sources yield higher overall utility (Figure
4(b)), since these sources minimize the congestion and delays caused by deceptive
flows. As in the selfish source case, an increase in the adversary’s cost results
in higher utility for the sources. An increase in link capacity will also result in
lower delays and higher throughput, increasing the source utility.

6 Conclusion

In this paper, we have studied the problem of mitigating jamming attacks
through deception. We considered a defense mechanism in which each source
generates a false traffic flow, causing the attacker to expend resources targeting
a deceptive flow and enabling real packets to avoid jamming. We formulated
deceptive jamming as a two-stage game between the sources and the jammer.
In the first stage, the sources simultaneously choose both real and deceptive
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flow rates to maximize throughput and minimize delay. In the second stage, the
attacker observes the real and deceptive flow rates and selects a jamming strat-
egy, represented by the fraction of each flow to jam. We derived a closed-form
expression for the attacker’s optimal strategy, which shows the fraction of the
adversary’s jamming resources that will be used to target deceptive flows, as well
as the additional throughput of the real flows resulting from using deception. For
the sources, we proved the existence of pure-strategy Stackelberg equilibria for
two cases, namely the case where each source allocates flow in order to maxi-
mize its own utility (selfish users) and the case where each source incorporates
the congestion of other sources when choosing a flow rate (altruistic users). We
proposed algorithms for computing the equilibria for both cases, resulting in ef-
ficient methods for allocating real and deceptive flows at each source in order to
maximize throughput and minimize delay. We illustrated our approach through
a simulation study. Our simulations show that altruistic behavior improves the
overall utility of the sources. In future work, we intend to analyze the loss of effi-
ciency caused by selfish source behavior, and develop metrics for quantifying the
value of deception. We will also study the case where the sources have imperfect
information regarding the adversary’s utility function and cost.
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