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Abstract. Electronic Control Units (ECUs) exchange data via in-vehicle
network protocols such as the Controller Area Network (CAN) protocol.
These protocols do not encrypt data or authenticate messages since they
were designed for an isolated network. Many studies have developed In-
trusion Detection Systems (IDSs) that fingerprint each ECU to secure the
CAN protocol. These IDSs, however, cannot detect an attack in which
an adversary spoofs sensor measurements or control signals in a message
without changing the transmitter of that message. In order to detect
such attacks, we develop a motion-based IDS (MIDS) that exploits the
correlation between messages that convey the same information of a ve-
hicle’s movement, such as vehicle speed. We also introduce a new metric
to quantify the effectiveness of MIDS. We evaluate MIDS using CAN
data from two real vehicles by demonstrating that MIDS can detect the
attacks on the CAN bus or ECUs.

Keywords: Intrusion Detection System · Message Data · Correlation ·
Controller Area Network.

1 Introduction

Data for controlling a vehicle is exchanged among Electronic Control Units
(ECUs) via in-vehicle network protocols such as the Controller Area Network
(CAN) [4], FlexRay [3], and Local Interconnect Network [5]. In these protocols,
a message is not encrypted or authenticated because the in-vehicle networks
were designed to be isolated from external networks. Modern vehicles, however,
are equipped with ECUs that have outward-facing interfaces (e.g., Bluetooth,
Wi-Fi, and cellular network), which may introduce attack surfaces [8, 15]. It
is difficult to incorporate cryptographic primitives such as data encryption or
message authentication in the existing in-vehicle protocols due to the lack of
backward compatibility with legacy systems [16]. As a consequence, anomaly-
based Intrusion Detection Systems (IDSs) have been developed to detect attacks
on the CAN bus by tracking abnormal deviations in physical properties of the
bus or ECUs on the bus [9, 11, 13, 17, 19]. Frequently used physical properties
are message frequency [13], clock skew of an ECU [9, 19], entropy of the CAN
bus [17], and voltage levels of the CAN bus [11].
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(a) Masquerade attack (b) Data falsification attack

Fig. 1: Attack models. In a masquerade attack, the transmitter of a spoofed
message 0x01 is changed from ECU A to ECU B. In a data falsification attack,
however, the spoofed message 0x01 is transmitted from the compromised ECU
A that is the original transmitter of message 0x01 after the attack occurs.

Consider two ECUs A and B that transmit messages with IDs 0x01 and 0x02,
respectively. As illustrated in Fig 1a, the compromised ECU B injects a spoofed
message 0x01 instead of ECU A in a masquerade attack [9, 19]. The anomaly-
based IDSs that fingerprint each ECU can detect the masquerade attack because
the transmitter of message 0x01 is changed, which causes deviations in physical
properties. An adversary, however, may spoof data of message 0x01 using the
compromised ECU A as shown in Fig. 1b. A data falsification attack can bypass
these anomaly-based IDSs since the transmitter of message 0x01 is not changed
after the attack. In order to detect the data falsification attack, we propose a
motion-based IDS (MIDS). We make the following contributions in this paper:

– We propose MIDS that exploits the correlation between messages that con-
tain speed-related data, i.e., wheel speed, vehicle speed, and odometer data.

– We analyze the detection probability of MIDS by deriving its bounds under
the data falsification attack.

– We introduce a new metric called ε-Deviation Index to quantify the effec-
tiveness of MIDS.

– We demonstrate MIDS using data from two real vehicles. Our hardware
evaluation shows that MIDS can detect the data falsification attack.

The rest of the paper is organized as follows. Section 2 reviews the related
work, and Section 3 summarizes a background on the CAN protocol. Section 4
presents the adversary model. MIDS is proposed in Section 5, and Section 6
derives bounds on the detection probability of MIDS. Section 7 presents the
experimental evaluation. Section 8 concludes the paper.

2 Related Work

Multiple IDSs that detect cyber attacks using abnormal deviations in traffic
through the CAN bus have been proposed [13, 17]. Based on the fact that most
of the messages in the CAN protocol are transmitted with a fixed length and
period, an IDS that detects the existence of spoofed messages using a frequency of
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message occurrence is proposed [13]. The authors of [17] proposed the entropy-
based IDS that exploits coincidence among a set of messages. The entropy-
based IDS, however, can be bypassed if an adversary replicates the structure
and pattern of legitimate traffic [9].

In order to detect attacks that replicate the legitimate traffic, IDSs that fin-
gerprint ECUs by exploiting physical properties of ECUs have been developed
[9–11]. The authors of [9] proposed the clock-based IDS (CIDS) that detects
an attack by tracking a sudden change in the clock skew of ECUs. It has been
demonstrated that the cloaking attack bypasses the CIDS by mimicking the clock
skew [19]. Since the voltage characteristics of ECUs are determined by a CAN
transceiver’s hardware, they are unique to each ECU and difficult to replicate.
The voltage-based IDSs are proposed, which detect an attack by exploiting the
voltage characteristics [10, 11]. An adversary may compromise a legitimate ECU
and inject spoofed messages that convey false sensor measurements or control
signals using that compromised ECU. These IDSs cannot detect this data falsifi-
cation attack because the transmitter of the spoofed messages remains the same
after the attack, which does not induce any deviations in physical properties.

The authors of [12] demonstrated that there is the correlation between mea-
surements from different types of sensors under the normal operation of a vehicle
because physical movement affects multiple sensors simultaneously. They, how-
ever, did not propose a concrete structure of an IDS or analyze the detection
probability of the IDS under the data falsification attack.

3 Preliminaries

In this section, we review the CAN protocol and explain how a sensor measure-
ment or control signal can be extracted from a message.

3.1 CAN Protocol Background

The CAN protocol is a multi-master broadcast bus network in which any ECU
can transmit messages and receive all ongoing messages through the CAN bus.
An ECU that accesses the CAN bus first transmits a message. If two or more
ECUs attempt to send messages simultaneously, the message with the smallest
ID is transmitted first through a content-based collision detection process called
arbitration. For example, consider two ECUs A and B that try to send their
messages with IDs 0x001 and 0x010, respectively. ECU B recognizes that a
higher priority message is being transmitted and stops transmitting its message
through an arbitration.

A data frame in the CAN protocol is composed of seven fields as illustrated
in Fig. 2, and the length of the data field can be varied from 1 to 8 bytes.
The data field is not encrypted, and there does not exist a field for message
authentication. If a message is not transmitted and received correctly due to
external electromagnetic interference or malfunction of CAN transceivers, the
ECU retransmits that message after an error frame is transmitted.
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Fig. 2: Structure of a data frame in the CAN protocol.

3.2 Extracting Sensor Measurements and Control Signals

An ECU encapsulates multiple sensor measurements or control signals in a mes-
sage after converting them to a bit sequence between 1 and 8 bytes. In order to
compute correlation coefficients, these sensor measurements and control signals
have to be extracted from the messages. We find actual values of the sensor mea-
surements and control signals as follows. First, we check a unit of the targeted
data that we want to extract. Second, we check the message ID and bit location
in the data field that contain the targeted data. This information can be found
either by reverse engineering or in an interface control document of a vehicle.
Third, we convert a bit sequence to a decimal number. If the Most Significant
Bit (MSB) is a sign bit, the decimal number is negative when the MSB is 1.
Fourth, we multiply a conversion ratio to that decimal number and then add
an offset to get the actual value. For instance, Message 0x0B0 of a 2010 Toyota
Camry contains measurements of a wheel speed sensor, which is located from
the 1st bit to 16th bit [18]. Also, the wheel speed is measured in km/h, and the
conversion ratio and offset for the wheel speed are 0.1 and 0, respectively.

4 Adversary Model

In this section, we describe an adversary model in which an adversary compro-
mises a legitimate ECU and launches a data falsification attack. The adversary
may have physical access to the CAN bus through the on-board diagnostics
(OBD-II) port that is mandated for all automobiles in EU [21] and US [7]. Then,
the adversary uploads its malicious code to a targeted ECU using a pass-thru de-
vice such as Hyundai Global Diagnostic System [1] and Volkswagen VAG-COM
Diagnostic System [20] to compromise the ECU. The adversary can also remotely
compromise an ECU without physical access to the CAN bus [8, 15]. We consider
two cases: (1) the adversary compromises an ECU having a telematics unit, and
(2) the adversary compromises an ECU without a telematics unit. In the first
case, the adversary remotely accesses the operating system of an ECU having a
telematics unit to figure out a particular code that handles wireless connectivity
by reverse engineering. By exploiting that code, the adversary executes its ma-
licious code on that ECU [8]. In the second case, the adversary lets a remotely
compromised ECU, which is compromised in the first case, upload the malicious
code to a targeted ECU without a telematics unit as a pass-thru device does.
As a result, the adversary can compromise any ECUs in the CAN bus [8].

Once an ECU is compromised, the adversary may manipulate periods and
data fields of messages. Since an attack that changes periods of messages can
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Table 1: Frequently used symbols
Notation Variable

nnormal number of samples in normal data
nattack number of samples per attack experiment

w window size
ā vector containing measurements from sensor a
b̄ vector containing measurements from sensor b
d̄ disturbance generated according to a Gaussian distribution N(0, σ2)
b̄′ b̄ + d̄
σa standard deviation of ā
σ standard deviation of d̄
Pd detection probability of MIDS
σlim minimum standard deviation of d̄, at which Pd > 1− ε

σbypass maximum standard deviation of d̄, below which Pd=0
σdetect minimum standard deviation of d̄, above which Pd=1
∆bypass decrement of correlation coefficient per sample for σbypass

∆detect decrement of correlation coefficient per sample for σdetect

ρ vector of correlation coefficient between ā and b̄ (or b̄′)
ρ′ normalized ρ using µρ and σρ

ρ0 last correlation coefficient before an attack
ρattack first correlation coefficient after an attack
ρref vector containing all previous correlation coefficients such that ρ′ < γ
µρ/σρ mean/standard deviation of elements of ρref
L+/L− upper/lower control limits of CUSUM

κ sensitivity threshold of CUSUM
Γ detection threshold of CUSUM
γ update threshold of CUSUM

be easily detected using the existing IDSs [9–11, 13, 17], we consider two types
of the data falsification attacks. In the first type of attack, the adversary adds a
disturbance to the legitimate data, where the disturbance is generated according
to a zero-mean Gaussian distribution in order to analyze effects of deviation of
the disturbance. In the second type of attack, the adversary manipulates one
of the wheel speed sensor values to be increased, in which a non-zero-mean
disturbance is added, while other sensor values remain the same. The physical
properties of ECUs do not deviate from the normal behavior after the data
falsification attack, and the data falsification attack bypasses the existing IDSs.

5 Motion-based Intrusion Detection System

In this section, we propose MIDS, an IDS that exploits the correlation between
messages. MIDS may exploit any pair of messages that contain data of the same
physical movement of a vehicle. Without loss of generality, we use speed-related
data for MIDS in this paper. Frequently used symbols are summarized in Table 1.
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Table 2: Correlation coefficients of four wheel speeds, vehicle speed, and steering
wheel angle.

Data 1 Data 2 Correlation Coefficient

Wheel Speed 1 Wheel Speed 2 0.9999
Wheel Speed 1 Wheel Speed 3 0.9999
Wheel Speed 1 Wheel Speed 4 0.9999
Wheel Speed 2 Wheel Speed 3 0.9998
Wheel Speed 2 Wheel Speed 4 0.9999
Wheel Speed 3 Wheel Speed 4 1.0000
Wheel Speed 1 Vehicle Speed 0.9999
Wheel Speed 1 Steering Wheel Angle -0.5324

5.1 Correlation Between Messages

Consider ā and b̄ with the same length of n, where ai and bi denote the ith

samples of ā and b̄, respectively. The correlation coefficient ρ between ā and b̄
can be computed as follows:1

ρ =

∑n
i=1(ai − µa)(bi − µb)√∑n

i=1(ai − µa)2
√∑n

i=1(bi − µb)2
, (1)

where µa and µb denote means of ā and b̄, respectively. Multiple sensors are
implemented in a vehicle to measure the same movement such as vehicle speed,
and measurements from these sensors are highly correlated with each other dur-
ing normal operation [12]. We use data collected from a 2010 Toyota Camry,
which contains four wheel speeds, vehicle speed, and steering wheel angle [18].
Table 2 shows correlation coefficients for possible pairs of four wheel speeds,
vehicle speed, and steering wheel angle, using Eq. (1). All four wheel speeds and
vehicle speed are highly correlated with each other (i.e., ρ > 0.99), while the
steering wheel angle is not correlated with wheel speed 1 because the vehicle
speed and steering wheel angle are independently controlled.

5.2 Proposed MIDS

MIDS consists of a correlation computer and cumulative sum (CUSUM) de-
tector as illustrated in Fig. 3. In this section, we explain how MIDS computes
correlation coefficients and tracks deviations in them to detect an attack.

Correlation Computer The correlation computer calculates correlation coef-
ficients between sensor measurements and control signals in messages. An ECU
may not save all ongoing messages through the CAN bus due to its limited
memory size and computation capability. Computing correlation coefficients us-
ing all past data, as defined in Eq. (1), is not a viable option in practice. MIDS

1 We use Pearson correlation coefficient because sensor measurements of the same
vehicle movement are in the linear relationship (Chapter 5.6 in [14]).
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Fig. 3: Structure of MIDS.

computes correlation coefficients using the w most recent data samples in real
time, which is updated by a sliding window. The window size is determined by
ECU’s memory size and computation capability. If the number of data samples
is less than w (i.e., k < w), MIDS saves the data samples in its memory but
does not compute a correlation coefficient. When k ≥ w, correlation coefficients
are computed and fed to the CUSUM detector as described in Fig. 3.

CUSUM Detector MIDS uses the CUSUM method that computes cumulative
sums of deviations from the normal value in order to detect a sudden change. The
CUSUM method is widely used to track the drift of values that steadily increase
or decrease (Chapters 2.1 and 2.2 in [6]). MIDS keeps the normal behavior of
correlation coefficients by tracking the mean µρ and standard deviation σρ of
ρref that is a vector containing all previous ρ’s from the normal data. For every

incoming ρ, MIDS computes the normalized correlation coefficient ρ′ =
ρ−µρ

σρ
.

Using ρ′, the upper and lower control limits, L+ and L−, are updated as follows:

L+ ← max
[
0, L+ + ρ′ − κ

]
, L− ← max

[
0, L− − ρ′ − κ

]
,

where both L+ and L− are initially zero and κ is the sensitivity threshold. MIDS
declares an attack when either control limit exceeds the detection threshold Γ .
MIDS appends the current ρ to ρref if ρ′ < γ, where γ is the update threshold.
Then, µρ and σρ are updated and used to normalize the next incoming ρ. We
set γ, κ, and Γ to such values that make zero false-positive probability in the
normal data [9, 19].
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6 Theoretical Analytics of MIDS

In this section, we derive standard deviations of a disturbance at which the
attack is not detected by MIDS or always detected by MIDS. Then, we define a
performance metric. Symbols are referred in Table 1.

Bounds on Detection Probability of MIDS Consider ā and b̄ that are
measurements from two different sensors. An adversary spoofs b̄ by adding a
disturbance d̄ to yield b̄′ := b̄+ d̄, where d̄ is generated according to a Gaussian
distribution N(0, σ2). b̄′ can be approximated as ā + d̄ because b̄ � ā. If b̄ is
disturbed from the lth element in the window with size w, using Eq. (1), the
correlation coefficient ρ between ā and b̄′ can be approximated to be

ρ �
σ2
a +

∑w
i=l aidi

σa

√
σ2
a + 2

∑w
i=l aidi +

∑w
i=l d

2
i

. (2)

For the analysis, we assume that ρ linearly decreases as l decreases, which is
experimentally observed in Section 7. Also, µρ and σρ are not updated because
ρ′ ≥ γ during the attack as explained in Section 5.

Theorem 1. A data falsification attack is not detected by MIDS if σ < σbypass,

where σbypass = σa

√
1

(ρ0−κσρ)2
− 1.

Proof. When all elements of b̄′ are disturbed (i.e., l=1),
∑w

i=l aidi is zero because

the mean of d̄ is zero and ā and d̄ are independent. As a result, ρ � σ2
a

σa

√
σ2
a+σ2

=

σa√
σ2
a+σ2

, which is the minimum value of ρ after the attack. Since ρ decreases

linearly, a decrement of ρ per sample for σbypass, ∆bypass, can be derived as

∆bypass =
ρ0 − σa√

σ2
a+σ2

w
. (3)

We find the condition under which both control limits, L+ and L−, stay zero.
The normalized correlation coefficient at the kth data sample, ρ′(k−w+1), can
be derived in terms of ∆bypass as

ρ′(k − w + 1) =
ρ0 − (k − nnormal)∆bypass − µρ

σρ
= − (k − nnormal)∆bypass

σρ
,

because ρ0 � µρ when there is no attack. L+ and L− stay zero if
(k−nnormal)∆bypass

σρ

is less than κ for all k ≤ (nnormal + w), which indicates that the data falsifica-
tion attack is not detected. At the last attack sample that corresponds to the
minimum value of ρ (i.e., k = nnormal + w), ∆bypass becomes

∆bypass =
κσρ

w
. (4)

Substituting Eq. (3) into Eq. (4) gives σbypass = σa

√
1

(ρ0−κσρ)2
− 1. ��
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Theorem 2. MIDS can always detect a data falsification attack if σ > σdetect,

where σdetect = σa

√
1

(ρ0−jσρ(Γ+κ))2
− 1.

Proof. Using Eq. (2), ρ decreases from ρ0 to
σa√

σ2
a+σdetect

2
at the jth attack sample

in the window if σ is set to σdetect.
σa√

σ2
a+σdetect

2
� 0 because σdetect >> σa. As a

consequence, j can be approximated as
⌈

ρ0

ρ0−ρattack

⌉
, where � � denotes a ceiling

operator. A decrement of ρ per sample for σdetect, ∆detect, can be derived as

∆detect =
ρ0 − σa√

σ2
a+σdetect

2

j
. (5)

An attack is always detected if either L+ and L− becomes larger than Γ at the
first attack sample. Notice that L− > Γ when ρattack ≤ µρ − σρ (Γ + κ). As a
result, ∆detect can be also represented as follows:

∆detect = σρ (Γ + κ) . (6)

Substituting Eq. (5) into Eq. (6) gives σdetect = σa

√
1

(ρ0−jσρ(Γ+κ))2
− 1. ��

Performance Metric We introduce a metric that formalizes how the detection
probability is close to σbypass. Let Pd(σ) denote the detection probability of
MIDS when the standard deviation of the disturbance is σ. We define σlim as:

σlim(ε) = min [σ : Pd(σ) > 1− ε] .

We define the ε-Deviation Index (ε-DI) as ε-DI= σlim(ε) − σbypass. A smaller
value of ε-DI signifies a more effective detector and less freedom for the attacker
at choosing a standard deviation of the disturbance.

7 Evaluation

In this section, we demonstrate that MIDS is effective in detecting a data falsi-
fication attack by using data from two real vehicles.

7.1 Testbeds

Chevrolet Camaro A 2016 Chevrolet Camaro is used in our experiment in a
controlled environment as shown in Fig 4a. A Vector GL1000 logger is connected
to the CAN bus of the vehicle via the OBD-II port to collect all ongoing messages
through the CAN bus as shown in Fig 4b. We collect data while the vehicle is
being driven on the road for 68 minutes in order to validate that MIDS detects
a data falsification attack in a practical environment. We also collect data for
24 minutes while the Camaro is on a chassis dynamometer. This experiment
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(a) Chevrolet Camaro (b) Vector GL1000 logger

Fig. 4: A 2016 Chevrolet Camaro is used to validate MIDS. All messages trans-
mitted through the CAN bus are collected using a Vector GL1000 logger.

emulates an attack in which an adversary spoofs the rear wheel speed to large
values because only the rear wheels rotate on the chassis dynamometer (i.e.,
adding non-zero-mean disturbance). We find messages that contain rear wheel
speed, front wheel speed, odometer data, and battery voltage data using the
interface control document.2

Toyota Camry In order to demonstrate that MIDS is applicable to other
vehicles, we use the CAN data logged from a 2010 Toyota Camry [18]. The
data is collected using a Dearborn Group Gryphon S3 and the Hercules software
through a wireless link. Messages 0x0B0 and 0x0B2 contain measurements from
all four wheel speed sensors (i.e., two wheel speeds in each message). Because
each wheel that corresponds to respective wheel speed sensor is not reverse
engineered in [18], we indicate two wheel speeds in Message 0x0B0 as wheel
speeds 1 (from 1st bit to 16th bit) and 2 (from 17th bit to 32nd bit) and the
other two wheel speeds in Message 0x0B2 as wheel speeds 3 (from 1st bit to 16th

bit) and 4 (from 17th bit to 32nd bit). Message 0x610 (from 17th bit to 24th bit)
contains the vehicle speed [2].

CAN Data Preprocessing In order to compute correlation coefficients using
Eq. (2), the number of the message that contains sensor measurements or control
signals has to be the same as that of the other message. The number of two
different messages, however, can be different if their periods are different. For
instance, periods of Messages 0x0B0 (wheel speed) and 0x610 (vehicle speed)
in the Camry are 10ms and 500ms, respectively. As a result, the length of the
wheel speed is 50 times longer than that of the vehicle speed. We generate more
samples for the vehicle speed by interpolation to make its length be the same
as that of the wheel speed when computing a correlation coefficient between the
wheel speed and vehicle speed in Table 2.

2 We assume that MIDS uses a pair of data that are transmitted from two different
ECUs where only one ECU is compromised, thus data from only one ECU is spoofed.
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Fig. 5: Front wheel, rear wheel, and vehicle speeds, odometer, and battery volt-
age of the Camaro when it is driven on the road.

The rear wheel speed, front wheel speed, odometer, and battery voltage of
the Camaro are presented in Fig. 5 when it is driven on the road. For the
odometer, we set the initial value to 0km to make Fig. 5b show the distance that
the Camaro is driven in that data collection. We compute the vehicle speed by
differentiating odometer values and verify that wheel speeds closely match with
the vehicle speed. The battery voltage is within a normal range (12-14V). We
also extract four wheel speeds and vehicle speed of the Camry as well.

7.2 Example of MIDS

For an illustration of MIDS, we observe the correlation coefficients and control
limits of the CUSUM detector under a single execution of a data falsification
attack on the Camaro. We generate attack data by adding a disturbance to the
front wheel speed, where the disturbance is generated according to a Gaussian
distribution with a zero mean and standard deviation σ. In this experiment, we
set window size to 1500, update threshold γ to 4, sensitivity threshold κ to 7,
and detection threshold Γ to 5 in order to avoid false alarm.

Fig. 6 shows scatter plots between the front and rear wheel speeds using 2500
samples. As demonstrated in Fig. 6a, the front wheel speed is almost the same
as the rear wheel speed without an attack. Figs. 6b and 6c present scatter plots
under the attack when σ is 10 and 20, respectively. As increasing σ, points are
scattered in a wider area, which indicates that the front wheel speed becomes
less correlated with the rear wheel speed.

MIDS computes the correlation coefficients between the front and rear wheel
speeds for 250 seconds to track the normal behavior of the correlation coefficients
before a data falsification attack occurs. Then, the attack data is fed to MIDS.
Fig. 7a demonstrates that the correlation coefficient ρ is greater than 0.99 before
the attack, which indicates that the front wheel speed is highly correlated with
the rear wheel speed. After the attack occurs, ρ decreases to 0.9566, 0.8514, and
0.7246 at the sample index of 2000 when σ is set to 10, 20, and 30, respectively.
This result shows that ρ decreases more if a larger disturbance is added to the
legitimate data. When a small disturbance is added (σ=1), the deviation in ρ is
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Fig. 6: Scatter plots between the front and rear wheel speeds of the Camaro for
various values of σ.
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Fig. 7: Example of MIDS. Using the Camaro data, the correlation coefficient
and control limits are demonstrated. The attack starts from the 1001st sample
that is indicated by a red dashed line in (a).

too small to increase either control limits. Consequently, L+ and L− stay zero as
shown in Fig. 7b. When σ is set to 20, ρ suddenly drops, which makes the lower
control limit increase right after the attack as demonstrated in Fig. 7c. Since the
lower control limit becomes larger than Γ=5, MIDS detects the attack.

Using the data collected from the Camaro on the chassis dynamometer,
Fig. 8a shows the front and rear wheel speeds of the Camaro when an adversary
spoofs the rear wheel speed between 250s and 270s (between the sample indexes
of 1000 and 1200) in order to cause a wheelspin. During the attack, the front
wheel speed is set to 10km/h while the rear wheel speed data is manipulated to
be increased from 10km/h to 70km/h. In this experiment, we set window size
to 1500, γ to 4, κ to 7, and Γ to 5. As demonstrated in Fig. 8b, the correla-
tion coefficient decreases to 0.83 at the sample index of 1200 after the attack.
Fig. 8c demonstrates that the lower control limit increases above Γ=5, which
demonstrates that MIDS successfully detects the data falsification attack.
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Fig. 7: Example of MIDS. Using the Camaro data, the correlation coefficient
and control limits are demonstrated. The attack starts from the 1001st sample
that is indicated by a red dashed line in (a).

too small to increase either control limits. Consequently, L+ and L− stay zero as
shown in Fig. 7b. When σ is set to 20, ρ suddenly drops, which makes the lower
control limit increase right after the attack as demonstrated in Fig. 7c. Since the
lower control limit becomes larger than Γ=5, MIDS detects the attack.

Using the data collected from the Camaro on the chassis dynamometer,
Fig. 8a shows the front and rear wheel speeds of the Camaro when an adversary
spoofs the rear wheel speed between 250s and 270s (between the sample indexes
of 1000 and 1200) in order to cause a wheelspin. During the attack, the front
wheel speed is set to 10km/h while the rear wheel speed data is manipulated to
be increased from 10km/h to 70km/h. In this experiment, we set window size
to 1500, γ to 4, κ to 7, and Γ to 5. As demonstrated in Fig. 8b, the correla-
tion coefficient decreases to 0.83 at the sample index of 1200 after the attack.
Fig. 8c demonstrates that the lower control limit increases above Γ=5, which
demonstrates that MIDS successfully detects the data falsification attack.
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Fig. 8: Example of MIDS under a data falsification attack. The adversary spoofs
the rear wheel speed after 250s (after the sample index of 1000).
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Fig. 9: Detection probability of MIDS. The black solid line and black dashed
line indicate σbypass and σdetect, respectively.

7.3 Example of Detection Probability of MIDS

We select pairs of speed-related values for MIDS in each vehicle. The front and
rear wheel speeds are used for the Camaro, and a disturbance is added to the
front wheel speed. For the Camry, wheel speeds 1 and 3 are used where a dis-
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turbance is added to the wheel speed 3. MIDS is fed with 2500 samples of the
normal data, followed by nattack samples of the attack data in each experiment.
MIDS is successful if it detects an attack and is failed otherwise. 100 and 95
non-overlapping segments of size nattack are prepared from the attack data to
emulate 100 and 95 independent attack experiments for the Camaro and Camry,
respectively. We compute the detection probability of MIDS, which is the per-
centage of experiments where MIDS is successful. For this evaluation, we set γ
to 4, κ to 7, and Γ to 5.

Fig. 9 demonstrates the detection probability of MIDS for the Camaro and
Camry. We set nattack to 60, 80, and 100 and window size to 750 and 1500. The
black solid line and black dashed line indicate σbypass and σdetect, respectively.
Due to the limitation of the space, we present values of σdetect with a black
arrow in Fig. 9. For a window size of 1500 and ε=0.05, ε-DI decreases from 1.23
to 1.05 as increasing nattack from 80 to 100 in the Camaro. The same trend is
observed from the Camry that ε-DI decreases from 0.80 to 0.68 when nattack is
increased from 80 to 100. ρ decreases to a smaller value when MIDS exploits more
spoofed messages per attack experiment, which makes MIDS be more effective
in detecting the attack.

The correlation coefficient fluctuates less if more samples are used for com-
puting ρ because the impact of an outlier is reduced. As a consequence, MIDS
has more strict criteria (smaller σρ) in detecting an anomaly in ρ if a larger win-
dow size is used. For ε=0.05 and nattack=60, ε-DI reduces from 18 to 1.5 when
the window size is increased from 750 to 1500 as shown in Figs. 9a and 9b. For
the Camry, Figs. 9c and 9d, however, demonstrate that ε-DI increases from 1.05
to 1.10 as the window size increases from 750 to 1500. Even though MIDS has
smaller σρ when the window size is 1500, ρ drops more when the window size
is 750, which dominates the impact of smaller σρ. As a result, MIDS becomes
more effective when a smaller window size is used in the Camry.

8 Conclusion

In this paper, we investigated a limitation of the existing anomaly-based IDSs
under a data falsification attack. We proposed a motion-based IDS (MIDS) that
exploits the correlation between messages. MIDS computes the correlation coef-
ficients between two sensor measurements or control signals, and it tracks sudden
deviations in the correlation coefficients to detect the data falsification attack.
We derived standard deviations of the disturbance, below which the attack is
not detected by MIDS and above which the attack is always detected by MIDS.
In order to quantify the effectiveness of MIDS, we presented the ε-DI that is a
range of deviation of the disturbance that an adversary may introduce without
being detected. We demonstrated that MIDS can detect the data falsification
attack on the Camaro and Camry by using the wheel speeds. Our work suggests
that a defending mechanism exploiting the correlation between messages will
increase security assurance to automobiles.
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