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Abstract—Advanced Persistent Threats (APTs) are stealthy,
sophisticated, long-term, multi-stage attacks that threaten the
security of sensitive information. Dynamic Information Flow
Tracking (DIFT) has been proposed as a promising mechanism
to detect and prevent various cyber attacks in computer systems.
DIFT tracks suspicious information flows in the system and
generates security analysis when anomalous behavior is detected.
The number of information flows in a system is typically large
and the amount of resources (such as memory, processing power
and storage) required for analyzing different flows at different
system locations varies. Hence, efficient use of resources is
essential to maintain an acceptable level of system performance
when using DIFT. On the other hand, the quickest detection
of APTs is crucial as APTs are persistent and the damage
caused to the system is more when the attacker spends more
time in the system. We address the problem of detecting APTs
and model the trade-off between resource efficiency and quickest
detection of APTs. We propose a game model that captures the
interaction of APT and a DIFT-based defender as a two-player,
multi-stage, zero-sum, Stackelberg semi-Markov game. Our game
considers the performance parameters such as false-negatives
generated by DIFT and the time required for executing various
operations in the system. We propose a two-time scale Q-learning
algorithm that converges to a Stackelberg equilibrium under
infinite horizon, limiting average payoff criteria. We validate our
model and algorithm on a real-word attack dataset obtained
using Refinable Attack INvestigation (RAIN) framework.

Index Terms—Stackelberg zero-sum semi-Markov games, Lim-
iting average reward criteria, Q-learning, Dynamic Information
Flow Tracking, Advanced Persistent Threats

I. INTRODUCTION

An Advanced persistent threat (APT) is a prolonged and
targeted cyber attack in which an intruder gains illicit access
to a system and remains undetected for an extended period of
time [1]. The intention of an APT attack is usually to monitor
network activity and continuously mine highly sensitive data
[2]. APT attacks consist of multiple stages that are initiated by
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a reconnaissance stage to establish a foothold in the system [3].
Attackers then move laterally through the system, exploring
and planning the best attack strategy for the desired data.
The lateral movement of APTs consists of multiple stages
followed by data exfiltration, which is continued for long
period of time until finally detected [4]. Defending against
APTs is a challenging task as they are specifically designed
to evade conventional security mechanisms such as firewalls,
anti-virus software, and intrusion-detection systems that rely
on signatures cannot detect them.

APTs introduce information flows in the form of data-flow
commands and control-flow commands while interacting with
the system, and these are continuously recorded in the log file
of the system. Dynamic Information Flow Tracking (DIFT)
[5] is a widely accepted detection mechanism against APTs.
DIFT uses the information traces recorded in the system log
for performing the security analysis [6]. The key idea behind
DIFT is that it taints (tags) all suspicious input/data channels
and tracks the propagation of the tainted information flows
through the system. DIFT generates security analysis using
the pre-specified set of security policies whenever it observes
an unauthorized use of tainted data. While the security policies
incorporated in the DIFT mechanism cover a wide range of
attacks, it may not be capable of verifying the authenticity of
information flows against all possible attacks at every location
resulting in the generation of false-negatives. For instance,
while the security rules for buffer overflow protection [7]
can be verified at some locations in the system, the security
rules for web application vulnerabilities [8] cannot be verified
at those locations. Further, performing security analysis at
every location is time consuming and hence not practical.
Consequently, there is a trade-off regarding when and where
to generate security analysis in the system.

As APTs are stealthy and remain persistent in the system
for a long time [9], a quick detection of APTs is important
to minimize the damage caused by the attack. Additionally,



limited availability of resources for defense along with the
performance and memory overhead imposed by the defense
mechanism on the system require a resource efficient detection
technique. An analytical model of DIFT and its interaction
with adversarial information flows may enable evaluation of
the effectiveness of flow-tainting mechanisms, as well as the
design of optimal trapping policies facilitating quick detection
of APTs in a resource efficient way. Although there exists
games that model the resource efficient detection of APTs
[10], [11], [12], [13], they do not address the trade-off between
resource efficient and quickest detection of APTs.

In this paper, we provide such an analytical model for DIFT
for optimal selection of trapping locations in the system to
perform security analysis so as to maximize the probability
of detection while minimizing the cost of detection, the time
for detection, and false-negatives. Our framework is based on
the following insights. 1) The effectiveness of the detection
depends on the adversary’s strategy, while the adversary’s
probability of evading detection will be determined by the de-
fender’s strategy. This strategic interaction motivates a game-
theoretic approach. 2) The efficiency of the defender also
depends on the effectiveness of performing security analysis
at different locations in the system, which is determined by
rate of false-negatives. Hence, the game model is stochastic
in nature and the transition probabilities are governed by the
false-negative rates at different locations in the system. 3) The
game unfolds at multiple stages between the entry point and
the exit point of the attack. Each step of the APT attack is a
stage in the multi-stage game model, which is characterized by
a unique set of critical locations and critical infrastructures of
the system, referred to as destinations. 4) The time required for
executing various system operations, e.g., read, write, along
with the time spent by the APT at different locations in the
system gives a measure of transition time between the different
states of the game, which can be captured as the sojourn time
of a semi-Markov game. To this end, we formulate a semi-
Markov game model that is played on an information flow
graph that describes the feasible transitions between processes
in the system. At each stage, the adversary decides which
process to transition to, while the defender decides whether
to trap the information flow or not, at the cost of spending
the defense resources and generation of false-negatives. The
contributions of this paper are the following:

• We model the strategic interactions between DIFT and
APT as a two-player, zero-sum, Stackelberg semi-Markov
game. The new semi-Markov game framework captures
the cost of performing security analysis, false-negatives
generated by DIFT, and the time required for executing
various operations in the system (sojourn times) and
thereby models the trade-off between resource efficiency
and quickest detection of APTs.
• We analyze stationary Stackelberg equilibrium of the

game in infinite horizon using limiting average payoff
criteria. We present a two-time scale, Q-learning-based
algorithm to compute Stackelberg equilibrium of the

DIFT vs. APT game and prove the convergence of the
algorithm.
• To validate our approach, we provide simulations of the

model and the proposed algorithm on ScreenGrab log
data obtained from RAIN [6] framework.

The remainder of the paper is organized as follows: Sec-
tion II presents the related work. Section III details prelim-
inaries of information flow graph, the attacker model, and
the DIFT detection system. Section IV formulates the zero-
sum, semi-Markov game between APTs and DIFT. Section V
describes the solution concept, limiting average payoff, and
Stackelberg equilibrium used to analyze the game. Section VI
presents a two-time scale, Q-learning algorithm to calculate a
Stackelberg equilibrium of the zero-sum, semi-Markov game
between the players, APT and DIFT. Section VII provides the
simulation results of the model and the proposed algorithm
using real-world attack dataset. Section VIII presents the
concluding remarks and future directions.

II. RELATED WORK

Stackelberg games are widely used in security research to
model interactions between two rational players when one
player (follower) can observe the policy of the other player
(leader). In security problems the defender plays the role
of the leader and the adversary acts as the follower. The
model of adversary having more information compared to
the defender is preferred in security games. The concept of
Stackelberg Security Games (SSGs) is introduced in [14] to
allocate resources among eight terminals of the Los Angeles
International Airport. Recently, SSGs have been used for solv-
ing large scale, complex real-life problems such as protecting
biodiversity in conservation areas that span over 2500 square
kilometers [15] and screening 800 million airport passengers
annually throughout USA [16]. While these models consider
static (bi-matrix) Stackelberg games, Stackelberg equilibrium
has been also studied in Markov (stochastic) games in adver-
sarial patrolling games [17] and moving target defenses [18].

A game-theoretic framework was proposed in the literature
to model interaction of APTs with the system [19], [20]. While
[19] modeled a deceptive APT, a mimicry attack by APT was
considered in [20]. Game-theoretic models are introduced to
model the interaction of APTs and a DIFT-based detection
system in [10], [11], [12]. The game models in [10], [11],
[12] are non-stochastic as false-negatives generated by DIFT
are not considered. Recently, a stochastic game model was
proposed in [13] where the notion of conditional branching in
programs was considered. However, [13] does not capture the
time spent by the attacker in the system. Analyzing the trade-
off between resource efficient detection and quickest detection
of APTs require embedding time into the game model.

Multi-agent reinforcement learning (MARL) algorithms are
proposed in the literature to obtain both Nash Equilibrium
(NE) strategies and Stackelberg equilibrium strategies of
Markov games. In [21] authors provide a value-function-based
reinforcement learning algorithm to solve for NE of discounted
zero-sum Markov games. Recently, a two-time scale algorithm



to compute an NE of a discounted Markov game is given in
[22]. The convergence of MARL algorithms for nonzero-sum
games is guaranteed only for special cases where the NE of
the game is unique [23]. In [24], a Q-learning-based algorithm
is provided to compute discounted Stackelberg equilibrium
in Markov games when discounted payoffs are considered.
Convergence of the Q-learning algorithm in [24] is shown for
the cases of zero-sum games, team games, and for nonzero-
sum games with unique best response map for the follower.
While papers [21]-[24] deal with discounted reward structure,
to analyze strategic interactions of adversaries with long-term
goals, such as APTs, average reward criteria is more suitable
as it captures the long-run rewards.

III. PRELIMINARIES

In this section, we introduce the information flow graph, the
defender model, and the adversary model considered in this
paper.

A. Information Flow Graph (IFG)

An information flow graph (IFG) is a directed graph whose
nodes represent the different components of the computer
system (e.g., programs, files, network sockets) and edges rep-
resent the feasibility of transferring information flows between
the nodes. IFG is constructed from the system logs that capture
the history of a system’s execution in terms of the spatio-
temporal relationships between processes and objects (files
and network endpoints) [6].

Collecting and visualizing log data for security analysis
is known as provenance-enhanced auditing and it is heavily
desired by large enterprises and government agencies due to
its ability to answer two key security questions: (i) how an
attack infiltrated their systems and (ii) what are the ramifica-
tions of the attack. Unfortunately, classical auditing systems
cannot efficiently answer these questions; this is because they
cannot effectively embed the causal relationships into uniform
records, like provenance-enhanced systems [6].

When causal relationships are extracted from audit logs into
provenance graphs [6], security-experts can run provenance-
dependent queries to derive the origin of an attack and
the ramifications of an attack. Identifying the origins of an
attack is completed by doing a backward traversal, which
analyzes the ancestral dependencies of the attack. Forward
analysis techniques traverse through the graph in the forward
direction, which effectively determines the ramifications of the
attack. Then a point to point analysis technique that extract
the intersections of the graphs resulting from forward and
backward analysis is used to build an IFG [6]. We use the
IFG to depict the victim system in our DIFT vs. APT game.
We construct IFG using the system log data collected using
RAIN framework [6].

B. Adversary Model: Advanced Persistent Threat (APT)

Advanced persistent threats (APTs) are sophisticated at-
tackers, such as groups of experienced hackers, that establish
an illicit, long-term presence in a system in order to mine

valuable information/intelligence. The targets of APTS, which
are very specifically chosen, typically include large enterprises
and governmental organizations. The attacker spends time and
resources to identify the vulnerabilities that it can exploit to
gain access into the system and to design an attack that will
likely remain undetected for a long period of time. These
attacks are stealthy and differ from the conventional cyber
attacks in complexity and their ability to evade the intrusion
detection systems by adopting a nominal system behavior.

An APT attack consists of different attack stages: Initial
Compromise, Foothold Establishment, Privilege Escalation,
Internal Reconnaissance, Lateral Movement, and Attack Com-
pletion. Once the attacker has completed the initial compro-
mise, it will establish a persistent presence by opening up
a communication channel with their Command & Control
(C&C) server (foothold establishment). Then the attacker
collects user credentials such as usernames and passwords to
access components of the system that contain critical and sen-
sitive information about the system. APTs are equipped with
advanced reconnaissance techniques that are used to study
the system behavior and spy on the detection mechanisms
employed. We consider an APT attack that consists of multiple
attack stages.

C. Defender Model: Dynamic Information Flow Tracking

We consider a Dynamic Information Flow Tracking (DIFT)
based defense mechanism [5]. DIFT consists of three main
components: (i) tainting at tag sources, (ii) tag propagation
policies, and (iii) trapping at tag sinks. Firstly, DIFT taints
all the information flows incoming to the set of vulnerable
input channels in the system which an adversary can exploit
to enter into the system. Then, DIFT tracks the propagation
of the tainted flows through the system during various system
operations. Finally, DIFT performs security analysis called
‘trapping’ in order to verify the authenticity of the tagged
information flows when an unauthorized usage of a tainted
flow is detected. Tag propagation rules and tag check rules
at the traps are defined by systems security experts and often
called as the security policy of the DIFT. The security policy,
i.e., tag check rules, of DIFT is based on the properties of
the flow such as the terminal points of the flow and the path
traversed. While DIFT is widely used for detection of cyber
attackers (see [5], [6] and the references therein), its excessive
memory and runtime overhead makes it difficult to integrate
into ordinary systems. In this paper, we consider a memory
constrained DIFT to defend the system against an APT attack.

IV. PROBLEM FORMULATION

In this section, we present the two player non-cooperative
Stackelberg semi-Markov game (Γ) formulation between the
defender player (DIFT), denoted as PD, and the adversarial
player (APT), denoted as PA.

A. Environment of the game and player roles

Let the directed graph G = (VG ,EG) denote the environ-
ment of Γ, where VG and EG represent the set of nodes,



VG = {v0,v1,v2, . . . ,vN}, and the set of edges, EG ⊆ VG ×VG ,
respectively. The set of nodes {vi} ⊂ VG , for i = 1,2, . . . ,N,
depict the nodes in the IFG. Let D0 ⊂ VG\{v0} denote the
set of vulnerable nodes in the IFG which are identified as
PA’s possible entry points into the system. Define edge set
E0 := {(v0,vi) : vi ∈ D0}, i.e., E0 denotes the initial foothold
of the attack. Then, the edge set EG \ E0 consists of the
edges in the IFG that represent the feasibility of transferring
information flows between the nodes of the IFG. Further, we
consider APT attacks that consist of M number of attack
stages. Let the set D j ⊂VG\{v0}, for j = 1,2, . . . ,M, represent
the nodes in the IFG corresponding to the targets of the APT
in stage j of the attack. A node vi is called a jth destination
node if vi ∈D j, for j = 1,2, . . . ,M.

APTs often use advanced reconnaissance techniques to
continuously probe the victim system and study the system’s
configuration profile such as operating system settings and the
defense mechanisms deployed in the system. Therefore, we
assume PA is well aware of the defense policy used by PD.
Hence in Γ, PD is the leader player and PA is the follower
player.

B. State space and action space

The state of the game at time t refers to the position of
the tagged information flow at time t. Let S := s0∪{s j

i }, for
i = 1,2, . . . ,N and j = 1,2, . . .M, define the state space of Γ.
The state of the game at t is said to be s j

i ∈ S , if the position
of the tagged information flow at time t is the ith node of the
IFG and the attack is in stage j. The state s0 represents the
node v0 in G and the state of the game at time t = 0 is s0.

Let AD and AA denote the action spaces of PD and PA,
respectively. Further, let AD(s) (AA(s)), for s ∈ S , denote the
set of actions allowed for the player PD (PA) in state s. Then,
AD(s) is defined as follows.

AD(s)=

{
{0,1}, if s = s j

i and vi /∈ {D j}, for j = 0,1, . . .M,

/0, otherwise.
(1)

Here, the actions “0” and “1” in the first case of Eq. (1)
represent PD not deciding and deciding to perform a security
analysis on an observed tagged flow at the node vi of the IFG
corresponding to the state s j

i , respectively. Also, vi is required
to be a non-destination node in stage j since we assume that no
security analysis can be performed at the target locations. In
other words, a destination (target) is acquired by the APT if the
adversarial information flow reaches the node corresponding
to that destination. For all other states in S , the action set
of PD is the empty set. This is because security analysis
cannot be performed at the entry points and the destination
nodes. The reason that security analysis cannot be performed
at the entry points is due to the fact that DIFT concludes if a
tagged flow is benign or malicious based on the nature of the
information flow which in turn depends on the path traversed
by the information flow. Thus performing security analysis at
the entry points is not useful.

For given pair of nodes v,v′ ∈VG\{v0}, v′ is said to be an
out-neighbor of v if there exists an outgoing edge from v to v′

in G, i.e., (v,v′) ∈ EG . Let N (v) denote the out-neighbor set
of node v, i.e., N (v) = {v′ : (v,v′) ∈ EG}. Next we define the
set AA(s) in the following.

AA(s) =


D0∪{∅}, if s = s0,

N (vi)∪{∅}, if s = s j
i , j = 1, . . . ,M,

/0, otherwise.
(2)

The action ∅ represents PA abandoning the attack (dropping
out of the game) before getting detected by PD. The first case
in Eq. (2) defines the action set of PA at node v0 in G as the set
of entry points in the system and abandoning the attack. The
second case of Eq. (2) defines the action set of PA at a node vi
corresponding to a state s j

i as the set of out-neighbors of node
of vi and abandoning the attack. The last case in Eq. (2) sets
the action set of PA as the empty set for all the other states.

C. Player policies and information structure

Let t = 0,1,2, . . . be the decision-making instants in Γ.
Define s(t),d(t), and a(t) to designate the state of Γ, PD’s
action, and PA’s action at the decision time t, respectively.
We assume both players in Γ use stationary policies, i.e.,
choice of actions at t only depends on the current state s(t).
Notice that the stationary policies require the least amount
of memory while implementing the policies in real-world
scenarios. We denote the set of all feasible stationary policies
of PD and PA by PD and PA, respectively. Then a stationary
policy pD ∈ PD is a column vector, pD =

[
pD(s)

]
s∈S , where

pD(s) =
[
pD(s,d)

]
d∈AD(s)

. Each entry pD(s,d) gives the prob-
ability of PD choosing an action d in a state s. Similarly, we
denote a stationary policy of PA, pA ∈ PA, by pA =

[
pA(s)

]
s∈S ,

where pA(s) =
[
pA(s,a)

]
a∈AA(s)

.
Typically, APT attacks are composed of a program code

that enforces a well defined deterministic set of commands
that directs the information flows from one node to another
node in the IFG in order to achieve a malicious goal. Hence, in
Γ we define PA to be the set of pure policies, i.e., pA : (s,a)→
{1,0}, for pA ∈ PA, s ∈ S, and a ∈ AA(s). Conversely, it has
been shown that under Stackelberg leader-follower settings,
the leader can perform better (in average sense) when using
a proper mixed policy compared to the best leader can do
with any pure policy [25]. Therefore, we let PD to be set of
mixed policies, i.e., pD : (s,d)→ [1,0], for pD ∈ PD, s ∈ S, and
d ∈AD(s).

Recall that in Γ, we assume that PA posses the full infor-
mation on any defense policy pD ∈ PD chosen by PD since
we let PD to be the leader and PA to be the follower. But
neither player knows the exact action taken by their opponent
player at a decision epoch t. That is, at any s(t), PA does not
know whether PD performs a security analysis and PD does
not know whether PA decides to abandon the attack or make
further progression in the system at the current location of
the attack indicated by s(t). In fact at time t, PD can only
observe that a tagged flow is incoming to a location given by



s(t) and is unaware of whether this tagged flow is a benign or
an adversarial flow. While making a decision at s(t), PD only
assumes that if an incoming tagged flow is an adversarial flow,
then PA will always choose an optimal action corresponding
to the defender’s policy. Hence, Γ is an imperfect information
game. Further we assume both players knows each other’s
type, feasible space of policies and the payoff functions. Thus,
Γ is a complete information game.

D. State transitions, rewards, and sojourn time

Let P(pD, pA) denote the state transition matrix of Γ

induced by the policies pD ∈ PD and pA ∈ PA. Then P(pD, pA)
can be expressed as P(pD, pA) =

[
p(s′|s, pD, pA)

]
s,s′∈S , where

p(s′|s, pD, pA) = ∑
d∈AD(s)

∑
a∈AA(s)

p(s′|s,d,a)pD(s,d)pA(s,a).

Here, p(s′|s,d,a) denotes the probability of transitioning
from the current state s to a state s′ when PD and PA are
choosing their respective actions d and a, respectively, at s.
Then for each tuple (s,s′,d,a), where s,s′ ∈ S , d ∈AD(s), and
a ∈ AA(s), p(s′|s,d,a) of Γ is defined in Eq. (3). Moreover,
in the following, we assume s = s j

i such that vi /∈ D j, for
j = 1,2, . . . ,M, unless otherwise specified.

p(s′|s,d,a)=



1, s′ = a,d = 0,a ∈AA(s)\{∅}
1, s′ = a,vi ∈D0,a ∈AA(s)\{∅}
1, s′ = a,s = s0,a ∈D0
1, s′ = s0,vi /∈D j : j = 1,2, . . . ,M,a =∅
1, s′ = s j+1

i ,vi ∈D j : j = 1,2, . . . ,M−1
1, s′ = s0,vi ∈DM
fn(s), s′ = s0,d = 1,a ∈AA(s)\{∅}

1− fn(s), s′ = a,d = 1,a ∈AA(s)\{∅}
0, otherwise.

(3)
Note that, the fifth case of Eq. (3) ensures that at a state

that correspond to destination of that stage, i.e., s = s j
i and

vi ∈ D j, the next state is uniquely given by s′ = s j+1
i . This

captures the stage transition of the attack. In other words, the
current state of the game being a destination of stage j is
equivalent to saying that the next stage of the attack begins
at the same destination node. Term fn(s) ∈ [0,1] of a state
s = s j

i denotes the probability of PD declaring an adversarial
flow as a benign flow (false-negatives) after performing the
security analysis for a tagged information flow at node vi in
stage j, where j = 1, . . . ,M. Thus fn(s) gives a measure of the
accuracy of the security rules employed by PD at each node
in vi in identifying adversarial flows in the jth stage of the
attack. Note that, as the security rules implemented by DIFT
depends on the path traversed by the flow, the stage of the
attack also has an effect in deciding the value of fn(s). In
other words, the chances of DIFT incorrectly concluding an
adversarial flow as benign is less at a stage j′ when compared
to stage j, when j′ > j. Also notice that the structure of Γ

allows repeated attacks by PA. PA can continuously attack
the system by relaunching the attack: (i) after abandoning a
previous attempt, (ii) if it gets detected by PD before reaching
the final goal, and (iii) after successfully completing the attack

by evading detection (cases 4, 6 and 7 in the definition of
p(s′|s,d,a) above). This captures the persistent nature of the
APT attacks we consider here.

Let r̄D(s, pD, pA) (r̄A(s, pD, pA)) denote the expected imme-
diate reward of PD (PA) at a state s ∈ S when the players
are following their respective policies pD ∈ PD and pA ∈ PA.
Then, r̄D(s, pD, pA) = ∑

d∈AD(s)
∑

a∈AA(s)
r̄D(s,d,a)pD(s,d)pA(s,a),

where r̄D(s,d,a) = ∑
s′∈S

rD(s,d,a,s′)p(s′|s,d,a). Given that the

players choose the actions d and a in a state s, the terms
r̄D(s,d,a) and rD(s,d,a,s′) denote the expected immediate
reward to PD at a state s ∈ S and the immediate reward
to PD when transitioning from state s to s′, respectively.
Similarly, we can define the terms r̄A(s,d,a), rA(s,d,a,s′)
and the corresponding equations governing the connections
between these terms for PA. In the following, we provide the
values assigned to each term rD(s,d,a,s′) and rA(s,d,a,s′) in
Γ. We assume s = s j

i such that vi /∈ D j, for j = 1,2, . . . ,M,
unless otherwise specified.

rD(s,d,a,s′)=



β j, d = 0,a ∈D j, j = 1,2, . . . ,M
σ j, d = 0,a =∅
β j +CD(s), d = 1,a ∈D j, j = 1,2, . . . ,M,

s′ = a
CD(s), d = 1,a ∈AA(s)\{{∅}∪{D j}},

j = 1, . . . ,M,s′ ∈ S\s0
α j +CD(s), d = 1,a ∈AA(s)\∅,s′ = s0
σ j +CD(s), d = 1,a =∅
0, otherwise.

(4)
Here, α j > 0, β j < 0 and σ j > 0 terms denote the reward
for detecting PA before reaching a destination node in D j,
penalty for PA evading detection in stage j and reaching a
destination node in D j, and reward for PA abandoning the
attack in stage j, respectively. These values solely depend on
the importance of the set of destination nodes (e.g., sensitivity
of data, monetary value) at each stage j to the victim entities.
The term CD(s) in a state s∈ s j

i , for i= 1, . . .N and j = 1, . . .M,
denotes the cost of performing security analysis at node vi in
a stage j, where j = 1, . . .M.

We set rA(s,d,a,s′) =−rD(s,d,a,s′). Hence, Γ has a zero-
sum reward structure. This implies that the adversary (PA) we
consider in Γ strategizes not only to reach the target destina-
tions in the system, but also to make the defender incur the
maximum cost corresponding to the security analysis. Hence
in Γ, we assume PA enforces the worst case attack scenario
to PD. Furthermore, APT adversaries maintain stealthiness
in the victim systems by often using busy nodes in IFG,
i.e., nodes through which most of the benign information
flows in the system pass through, and mimicking the behavior
of benign flows (e.g., maintaining the rates of malicious
information flows within the standard flow bounds) when
transferring the adversarial information flows. Such stealthy
attack approaches boost PA’s ability of successfully evading
anomaly and signature based intrusion detection systems. Also



note that the performance overhead introduced by DIFT on
the system while performing the security analysis, such as
processing time and throughput, are proportional to the depth
of security analysis employed at the busy nodes. Therefore,
typically fn(s) values associated with the busy nodes are
higher compared to the fn(s) values of other nodes in the
IFG. The busyness of a node can be computed empirically
by using the total number of tagged flows passing through
each node at each stage. Additionally, the values of fn(s)
and CD(s) depend on the properties of the processes in the
computer system, i.e., nodes of IFG, such as complexity of
the arithmetic and logic operations allowed to perform at
each node and the resources allocated (e.g., memory, storage,
processing power) to each node by the system. Therefore, the
zero-sum reward structure considered in Γ also enforces the
stealthiness of PA by encouraging PA to choose high cost
nodes when transferring malicious information flows between
nodes in the IFG.

Let the expected time spent in a state transition at a state s to
all other states when the player policies pD and pA are in effect
be τ̄(s, pD, pA) := ∑

s′∈S
τ(s,d,a,s′)p(s′|s,a,d)pD(s,d)pA(s,a).

The term τ(s,d,a,s′), referred to as sojourn time, gives the
time spent in a state transition from a state s to s′ when PD

and PA are using actions d ∈ AD(s) and a ∈ AA(s), respec-
tively. The governing sojourn time distributions, τ(s,d,a,s′),
when d = 0 can be extracted from the differences between
timestamps of two consecutive events recorded in the system
logs. Estimates for τ(s,d,a,s′) when d = 1 depends on the
security rules implemented by DIFT at s and the amount of
resources, such as memory, storage and processing power,
allocated by the system at each node in the IFG. Hence,
heuristic approaches that involve simulating multiple instances
of DIFT for each pair (s,s′) ∈ S and for all a ∈ AA(s) are
required to obtain estimates of τ(s,d,a,s′), when d = 1.

V. SOLUTION CONCEPT

In this section, we present the solution concept used to find
optimal policies of PD and PA in Γ. First we introduce the
payoff evaluation criteria in Γ. Then we introduce the concepts
of best response and Stackelberg equilibrium in games.

A. Limiting average reward criteria

The persistent nature of APTs causes PA to strategize in
farseeing manner, considering all the rewards and penalties
that PA can incur in far future. Conversely, a patient defender,
PD, can take advantage of a such patient APT adversary, PA,
as it allows PD to efficiently use the resources across time
to successfully detect PA compared to an impatient defender.
In the process of making decisions, an impatient defender
forces itself to use resources at his disposal to detect PA only
considering the short term rewards and penalties that can be
incurred. But in cyber security, a defender being more patient
will allow the adversary to cause enough damage to the system
before getting detected. Therefore, to capture the persistent
nature of PA and the trade-off of PD between being patient to
be more resource efficient and being impatient to detect PA

quickly in order to avoid further damage to the system, we use
infinite horizon limiting average payoff evaluation criteria.

Definition V.1. Let U(s0, pD, pA) denote the limiting average
payoff of Γ when the initial state of Γ is set to s0 and the
players are following the policies pD ∈ PD and pA ∈ PA. Then
we define U(s0, pD, pA) as follows.

U(s0, pD, pA) = limsup
T→∞

T
∑

t=0
r̄D(s(t), pD, pA)

T
∑

t=0
τ̄(s(t), pD, pA)

, (5)

where s(t) ∈ S denote the state at time t with s(0) = s0.

Using the definition in Eq. (5), we define the limiting
average payoff of the players PD and PA as UD(s0, pD, pA) =
U(s0, pD, pA) and UA(s0, pD, pA) =−U(s0, pD, pA), respectively.
Notice that the expected rewards and the expected sojourn
times integrated in the payoff structure characterize the trade-
off between resource efficiency vs. quickest detection.

Next we formally define the followers response to the
leader’s policy in Stackelberg settings using U(s0, pD, pA).

B. Best response of PA

Recall that in Stackelberg game settings the leader (PD)
first commits to a policy (pD ∈ PD). Then the follower (PA)
observes the leader’s policy (pD ∈ PD) and chooses a pol-
icy (pA ∈ PA) that maximizes the follower’s payoff function
(UA(s0, pD, pA)). We call such a policy of PA a best response
of PA and it is defined as follows.

Definition V.2. Let BR(pD) denote the best response of PA.
Then for a given defender’s policy pD ∈ PD,

BR(pD) = arg max
pA∈PA

UA(s0, pD, pA) = arg min
pA∈PA

U(s0, pD, pA). (6)

Next we introduce the equilibrium concept we employed to
analyze Γ using the definition of BR(pD).

C. Stackelberg equilibrium

Stackelberg equilibrium provides a natural framework to
analyze the equilibrium in leader-follower settings. The fol-
lowing defines the policies and payoff of Γ under Stackelberg
equilibrium.

Definition V.3. A policy pair (p∗D, p∗A) ∈ (PD,PA) in Γ is said
to form a Stackelberg equilibrium if,

U(s0, pD,BR(pD))6U(s0, p∗D, p∗A) for all (pD, pA) ∈ (PD,PA),

where p∗A = BR(p∗D). Then the payoff of Γ at Stackelberg
equilibrium is given by,

U∗(s0, p∗D, p∗A) = max
pD∈PD

U(s0, pD,BR(pD)). (7)

VI. AN ALGORITHM TO SOLVE FOR STACKELBERG
EQUILIBRIUM

In this section, we provide a reinforcement learning-based
algorithm to compute optimal player policies p∗D ∈ PD and
p∗A ∈ PA. The outline of our approach is as follows. We first



prove that an algorithm that tracks Stackelberg equilibrium at
each state s ∈ S is sufficient to compute Stackelberg equilib-
rium of Γ. It has been shown in [24] that such an algorithm
exists for computing Stackelberg strategies in Markov games.
The following theorem extends the result given in Theorem 1
of [24] for discounted Markov games to the case of limiting
average semi-Markov games considered in this paper.

Theorem VI.1. Let U∗(p∗D, p∗A) =
[
U∗(s, p∗D, p∗A)

]
s∈S be the

limiting average equilibrium payoff vector of Γ under Stackel-
berg equilibrium player policies p∗D and p∗A. Then the following
statements are equivalent.

1) Policy pair (p∗D, p∗A) forms a Stackelberg equilibrium point
in Γ with equilibrium payoff U∗(p∗D, p∗A).

2) For each s ∈ S , the policy pair (p∗D(s), p∗A(s)) forms
a Stackelberg equilibrium point in the static |AD(s)| ×
|AA(s)| matrix game Q(s) =

[
Q(s,d,a)

]
d∈AD(s),a∈AA(s)

with Stackelberg equilibrium payoff U∗(s, p∗D, p∗A) :=
max

pD∈PD
U(s, pD,BR(pD)), where each entry of Q(s) is de-

fined as

Q(s,d,a) = ∑
s′∈S

p(s′|s,d,a) [ rD(s,d,a,s′)

−ρτ(s,d,a,s′)+ U∗(s′, p∗D, p∗A)
]
, (8)

where ρ = U∗(s0, p∗D, p∗A) and s0 ∈ S is the initial state
of Γ. Furthermore, |AD(s)| and |AA(s)| represent the
cardinality of the sets AD(s) and AA(s).

Proof of Theorem VI.1 is presented in the Appendix.
Motivated by the single agent average reward Q-learning

algorithm presented in [26] for semi-Markov decision pro-
cesses and using Theorem VI.1, we present a two time-scale
Q-learning-based algorithm that tracks Stackelberg equilib-
rium of Γ. Moreover, our algorithm generalizes the algorithm
presented in [26] to the case of two player zero-sum semi-
Markov game under Stackelberg equilibrium settings. The core
update equations of our proposed algorithm is given below. For
s,s′ ∈ S , d ∈AD(s), a ∈AA(s), pD ∈ PD, pA ∈ PA, and iterates
of the algorithm t = 0,1, . . . ,

Qt+1(s,d,a)=(1− γ1(m(t,s,d,a)))Qt(s,d,a)+ γ1(m(t,s,d,a))

[rD(s,d,a,s′)−ρ
t
τ(s,d,a,s′)+U t(s′, pA, pD)], (9)

ρ
t+1=(1− γ2(t))ρ t+ γ2(t)

[T (t)ρ t + rD(s,d,a,s′)
T (t +1)

]
. (10)

The term m(t,s,d,a) denotes the total number of times
action pair (d,a) is tried in a state s till iteration t. Functions
γ1(m(t,s,d,a)) and γ2(t) represent the learning rates. T (t) and
U t(s′, pA(s), pD(s)) denote the sum of the time spent in all the
states visited till iteration t and the limiting average payoff of
the Stackelberg matrix game Qt(s), respectively. Notice that
Eq. (9) is the iterative version of Eq. (8) and Eq. (10) updates
the limiting average payoff of Γ, ρ t .

Next we present proof of convergence of the iterates given
in Eq. (9) and Eq. (10). The proof of the convergence

result uses Borkar’s Lemma [27] presented in the following
proposition.

Proposition VI.2 (Borkar’s Lemma). Let {xt} ∈ Rn and
{yt} ∈ Rl be two sequences with t = 0,1, . . . iterates

xt+1 = xt +δ1(t)[F(xt ,y1)+W t
1 ], (11)

yt+1 = yt +δ2(t)[G(xt ,y1)+W t
2 ]. (12)

Let λ : y→ x. Then, given the iterates in Eqs. (11) and (12) are
bounded, {(xt ,yt)} converges to (λ (y∗),y∗) with probability
one under the following conditions.

1) The maps F :Rn+l→Rn and G :Rn+l→Rl are Lipschitz.

2)
∞

∑
t=0

δ1(t) =
∞

∑
t=0

δ2(t) = ∞,
∞

∑
t=0

δ1(t)2 =
∞

∑
t=0

δ2(t)2 < ∞, and

lim
t→∞

sup δ2(t)
δ1(t)

= 0.

3) W t
1 and W t

2 are two sequences of random variables (noise)

satisfying,
∞

∑
t=0

δ1(t)W t
1 ,

∞

∑
t=0

δ2(t)W t
2 < ∞, almost surely.

4) For all y ∈ Rl , the ODE dx
dt = F(x(t),y) has an asymp-

totically stable critical point λ (y) such that function λ is
Lipschitz.

5) The ODE dy
dt = G(λ (y(t)),y(t)) has a global asymptoti-

cally stable critical point.

We show a relation between updating equations given in
Eq. (9) and Eq. (10) and the two sequences presented in
Eq. (11) and Eq. (12) of Proposition VI.2.

Define two mappings F1 and F2 associated with Eq. (9) as

F1(Qt(s,d,a)) = ∑
s′∈S

P(s′|s,a,d)
[
r(s,a,d,s′)−ρ

t
τ(s,a,d,s′)

+U t(s′, pA(s), pD(s))
]
,

(13)
F2(Qt(s,d,a)) = r(s,a,d,s′)−ρ

t
τ(s,a,d,s′)+U t(s′, pA, pD).

(14)
Also define mappings G1 and G2 associated with Eq. (10),

G1(ρ
t) = ∑

s′∈S
P(s′|s,a,d)

[ rD(s,a,d,s′)+T (k)ρk

T (k+1)

]
, (15)

G2(ρ
t) = P(s′|s,a,d)

[ rD(s,a,d,s′)+T (k)ρk

T (k+1)

]
. (16)

Eq. (14) and Eq. (16) are the Robbins-Monro stochastic
approximation [28] versions of Eq. (13) and Eq. (15), respec-
tively. The following equations express the update equations
given in Eq. (9) and Eq. (10) in the form of Eq. (11) and
Eq. (12) using the maps F1, F2, G1, and G2.

Qt+1(s,d,a)=Qt(s,d,a)+ γ1(m(t,s,d,a))[F(Qt(s,d,a))+W t
1 ],(17)

ρ t+1 =ρ t + γ2(t)[G(ρ t)+W t
2 ], (18)

where F(Qt(s,d,a)) = F1(Qt(s,d,a)) − Qk(s,d,a), W t
1 =

F2(Qt(s,d,a)) − F1(Qt(s,d,a)), G(ρ t) = G1(ρ
t) − ρ t , and

W t
2 = G2(ρ

t)−G1(ρ
t).



We present an algorithm to compute Stackelberg equilib-
rium policies in Γ in Algorithm VI.1.

Algorithm VI.1 Algorithm to compute Stackelberg equilib-
rium of Γ

1: Input: State space (S), transition structure (P), rewards
(rD), sojourn times (τ), number of iterations (I >> 0)

2: Output: Stackelberg equilibrium policies, (p?D, p?A) ←
(pI

A, pI
D) and limiting average payoff value ρ?

3: Initialization: t← 0, Q0← 0, p0
D← PD , p0

A← PA, s = s0
4: while t 6 T do
5: t← t +1
6: Draw dt from pt

D(s) and at from pt
A(s)

7: Observe immediate reward rD(s,dt ,at ,s′) and sojourn
time τ(s,dt ,at ,s′)

8: Reveal the next state s′ according to P
9: Solve Stackelberg matrix game Qt(s′) to find

U t(s′, pA, pD) and update player policies pt
D(s
′) and pt

A(s
′)

10: Update Qt(s,d,a) and ρ t :

Qt+1(s,d,a)=(1− γ1(m(t,s,d,a)))Qt(s,d,a)+

γ1(m(t,s,d,a))[rD(s,d,a,s′)−ρ
t
τ(s,d,a,s′)+U t(s′, pA, pD)]

ρ
t+1=(1− γ2(t))ρ t+ γ2(t)

[T (t)ρ t + rD(s,d,a,s′)
T (t +1)

]
11: Update the state of Γ: s← s′

12: end while

Theorem VI.3 provides the convergence guarantee of Algo-
rithm VI.1.

Theorem VI.3. All Qt(s,d,a) and ρ t sequences in Eq. (9)
and Eq. (10) converge and at the convergence, policy pair
(pD, pA) forms a Stackelberg equilibrium in Γ, given that the
sequences Qt(s,d,a) and ρ t are bounded under the conditions
in Proposition VI.2 and under the following assumptions.

1) A unique learning rate γ1(m(t,s,d,a)) in Eq. (9) is
decayed based on the number of times an action pair
(d,a) ∈ (AD(s),AA(s)) is tried at a state s ∈ S . Also a
unique learning rate γ2(t) in Eq. (10) is decayed based
on the number of times ρ is updated.

2) The Markov chain induced by the P(pD, pA) for any
pD ∈ PD and pA ∈ PA contains only a single recurrent
class (unichain Markov structure) and there exists at least
one s ∈ S that will be common to all the Markov chains
induced by P(pD, pA).

Proof of Theorem VI.3 uses boundedness of the iterates
Qt(s,d,a) in Eq. (9) which we prove in Lemma VI.5. First,
we define the weighted sup-norm of a vector with respect to
another vector and then present the lemma.

Definition VI.4. Let ||u||ε denote the weighted sup-norm of
a vector u with respect to the vecor ε ∈ Rn. Then,

||u||ε = max
k=1,...,n

|u(k)|
ε(k)

,

where |u(k)| represent the absolute value of the kth entry of
vector u.

Lemma VI.5. The iterates Qt(s,d,a) in Eq. (9) are bounded
under the conditions 2) and 3) in Proposition VI.2 and
assumption 2) given in Theorem VI.3.

Proof of Lemma VI.5 is given in the Appendix. Now we
present the proof of Theorem VI.3.
Proof of Theorem VI.3: Boundedness of the iterates Qt(s,d,a)
are proved in Lemma VI.5. Limiting average cost, ρ , is
finite due to finiteness of rewards rD(s,d,a,s′), sojourn times
τ(s,d,a,s′), and finite state space in Γ [29]. Hence ρ iterates
are bounded.

Observing both maps F and G are linear maps in Qt(s,d,a)
and ρ t , respectively (see Eq. (9) and Eq. (10)). Therefore
it follows that F and G are Lipschitz (Condition 1) in
Proposition VI.2.

We set γ1(m(t,s,d,a)) =
1

m(t,s,d,a)
and γ2(t) =

1
t

in

Eq. (9) and Eq. (10) to satisfy assumption 1) in Theorem VI.3.

Notice that δ1(t) = γ1(m(t,s,d,a)) =
1

m(t,s,d,a)
and δ2(t) =

γ2(t) =
1
t

in Eq. (17) and Eq. (18) satisfies the condition 2)
(standard step size assumptions for stochastic approximation
algorithms) in Proposition VI.2.

VII. SIMULATIONS

In this section, we provide simulation results of Algo-
rithm VI.1. Simulations were performed on an IFG extracted
from a log data set related to an attack, ScreenGrab, conducted
by US DARPA red-team during an evaluation of RAIN system
[6] for the transparent computing program. The resulting IFG
is shown in Figure 1. During ScreenGrab attack, the adversary
aims to get access to the ScreenGrab process (see node v12
in Figure 1) to capture the screenshot of the victim’s desktop.
For simulation purposes, we consider ScreenGrab attack as a
two stage attack and select IFG nodes v1 and v10 as the entry
point and the destination of stage 1, respectively.

State space of Γ induced by IFG in Figure 1 is shown in
Figure 2. IFG nodes v6 and v7 are being excluded in the state
space (Figure 2) as they do not have a path to the destination of
first attack stage (v10). The nodes s1

10 and s2
10 in Figure 2 shows

the transitioning between attack stages. We calculate fraction
of flows through each node from the log data and multiply the
resulting distribution by a negative constant to estimate the CD

values. Rewards and sojourn times are appropriately chosen
for the simulation purposes. Figure 3 shows the convergence
of the Stackelberg limiting average payoff value of Γ (ρ) in
Algorithm VI.1 within a span of 1000 iterations. Figure 4 (a)
illustrates the corresponding pD at the Stackelberg equilibrium.

Figure 4 compares the two cases where protecting stage 1
destination is more beneficial compared to protecting stage
2 destination (Figure 4 (a)) and vice-versa (Figure 4 (b)).
The results suggest that, at the equilibrium, PD assign more
weight in performing security analysis at stage 1 nodes when
first case is considered and vice-versa. Figure 5 compares the



equilibrium policy of defender, p?D under low (Figure 5 (a))
and high (Figure 5 (b)) CD values. Results show PD takes
more conservative approach in performing security analysis
when high security analysis costs are involved.

Figure 1: IFG of ScreenGrab attack. Nodes v1 and v10 have been
chosen as the entry point and the destination of first attack stage,
respectively. Destination node of the second stage, v12, represents
the goal of the attack, ScreenGrab process.

Figure 2: State space of Γ induced by the IFG in Figure 1.
Attack progressing from first stage to second stage is captured
by the states s1

10 and s2
10 (purple colored nodes). Transitions

from all the states excluding the state s2
10 to state s0 are due

to action ∅ of PA and/or action {1} of PD.

Figure 3: Convergence of the limiting average payoff value,
ρ in Algorithm VI.1.

Figure 4: Figures show the Stackelberg equilibrium policy of
PD (i.e., pD ∈ PD) computed using Algorithm VI.1. The figure
on the left considers a case where α1 > α2, β 1 < β 2, and
σ1 > σ2. On the contrary figure on the right considers the
case of α1 < α2, β 1 > β 2, and σ1 < σ2. In both cases same
CD values, τ values and P.

Figure 5: Figures show the Stackelberg equilibrium policy of
PD (i.e., pD ∈ PD) computed using Algorithm VI.1. Let CD be
the security cost values used in the left figure. Then figure on
the right considers a case where CD values are scaled by 10.
All other parameters in Γ are same for both cases.

VIII. CONCLUSIONS

In this paper, we presented a game theoretic model that
captures the system level interactions between APTs and
DIFT for enabling a resource efficient mechanism that can
effectively detect and prevent threats imposed by APTs. We
modeled the interaction between APT and DIFT as a two-
player, zero-sum, Stackelberg semi-Markov game. Our game
model addresses the trade-off between resource efficiency
and quickest detection of APTs. An infinite-horizon, limiting
average payoff criteria is used to analyze the game. The game
consists of multiple stages where each stage corresponds to a
stage in the attack. The transition probabilities of the game,
depend on the effectiveness of the defense mechanism (DIFT)
such as false-negative rates, are assumed to be unknown.
We presented a two-time scale Q-learning algorithm that
converge to a Stackelberg equilibrium of the DIFT vs. APT
game. The convergence of the algorithm is proved utilizing
the structure of the Markov chain induced by the policies
of the players. In order to validate the proposed model and
algorithm, we conducted simulations on ScreenGrab attack
data obtained from Refinable Attack INvestigation (RAIN)
[6] framework. In future, we plan to extend our model to
have a nonzero-sum game reward structure and analyze the



underlying Stackelberg equilibrium. It will be also interesting
to extend the current attacker model to a multi-attacker case
and study the equilibrium of the Stackelberg semi-Markov
game with one leader and multiple followers.
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APPENDIX

Proof of Theorem VI.1: We first assume 2) holds
and prove 1). Since 2) holds, for each s ∈ S
we have pD(s)Q(s)pA(s) = pD(s)Q(s)BR(pD(s)) 6
p∗D(s)Q(s)BR(p∗D(s)) = p∗D(s)Q(s)p∗A(s) = U∗(s, p∗D, p∗A). The
equality holds only when pD(s) = p∗D(s). This immediately
suggests U∗(p∗D, p∗A) > U∗(pD, pA) and proves the first
statement.

Here we assume 1) holds and then prove 2). Let s̄ ∈ S
be an arbitrary initial state of Γ. Then consider a pD, where
pD(s̄) 6= p∗D(s̄) and pD(s) = p∗D(s) for each s ∈ S\s̄. The
Bellman equation associated with the state s̄ is [29]:

arg max
pD(s̄)∈PD(s̄)

r̄D(s̄, pD(s̄),BR(pD(s̄)))−ρτ̄(s̄, pD(s̄),BR(pD(s̄)))

+ ∑
s′∈S

p(s′|s,d,a) [U∗(s′, pD, pA)] .

But we know from 1) that (p∗D, p∗A) forms a Stackelberg
equilibrium. Therefore, p∗D(s̄) and p∗A(s̄) = BR(p∗D(s̄)) will
maximize the aforementioned expression with the maximum
value of U∗(s̄, p∗D, p∗A). Now since s̄ can be any arbitrary state,
it immediately implies the second statement.
Proof of Lemma VI.5: Let F̂1(Qt(s,d,a)) (F̂1(Qt) for
brevity) is defined as, F̂1(Qt) = ∑

s′∈S
P(s′|s,a,d)

[
r(s,a,d,s′)+



U t(s′, pA(s), pD(s))
]

= ∑
s′∈S

P(s′|s,a,d)
[
r(s,a,d,s′)+ max

pD∈PD
U(s, pD,BR(pD))

]
= ∑

s′∈S
P(s′|s,a,d)

[
r(s,a,d,s′)+max

pD∈PD
pD(s′)Qt(s′)BR(pD(s′))

]
.

Then from Eq. (13) we have,

F1(Qt(s,d,a))= F̂1(Qt(s,d,a))−ρ
t
∑

s′∈S
P(s′|s,a,d)τ(s,a,d,s′).

By triangle inequality, |F1(Qt(s,d,a))|6

|F̂1(Qt(s,d,a))|+ |ρ t
∑

s′∈S
P(s′|s,a,d)τ(s,a,d,s′)|. (19)

Next we show the map F̂1(Qt) is a contraction with respect
to some weighted sup-norm under the assumption 2) of
Theorem VI.3.

|F̂1(Qt
1)− F̂1(Qt

2)|

=
∣∣∣ ∑

s′∈S
P(s′|s,a,d)

[
max

pD∈PD
pD(s′)Qt

1(s
′)BR(pD(s′))

− max
pD∈PD

pD(s′)Qt
2(s
′)BR(pD(s′))

]∣∣∣
6 ∑

s′∈S
P(s′|s,a,d) max

pD∈PD

∣∣∣[pD(s′)Qt
1(s
′)BR(pD(s′))

−pD(s′)Qt
2(s
′)BR(pD(s′))

]∣∣∣
= ∑

s′∈S
P(s′|s,a,d) max

pD(s′)∈PD(s′)
∑

d′∈AD(s′)
pD(s′,d′)

|Qt
1(s
′,d′,BR(pD(s′))−Qt

2(s
′,d′,BR(pD(s′))|

6 ∑
s′∈S

P(s′|s,a,d)max
k2
|Qt

1(k2)−Qt
2(k2)|, (20)

where k2 = 1, . . . ,n2 represents the indexing of (s,d′,a′,s′)
tuples, s,s′ ∈ S , d ∈ AD(s), a ∈ AA(s), d′ ∈ AD(s′) and a′ ∈
BR(d′)⊆AA(s′).

Note that, if we can substitute the term ∑
s′∈S

P(s′|s,a,d)
in Eq. (20) by an appropriate vector, then we can relate
Eq. (20) to its weighted sup-norm (see Definition VI.4).
Therefore, consider a semi-Markov decision process (SMDP)
with the same probability structure as in Γ and a minimizing
player whose action set is given by (d,a) ∈ AD(s)×AA(s).
Let rD(s,d,a,s′) = −1 and τ(s,d,a,s′) = 1 for all instances
of (s,d,a,s′). When stationary strategies are considered, the
following equation holds for the aforementioned SMDP under
assumption 2) given in Theorem VI.3 and Proposition 2.2 in
[30].

Q̄(k1) =−1+min
k1

∑
s′∈S

p(s′|k1)Q̄(k2)

6−1+ ∑
s′∈S

p(s′|k1)Q̄(k2)6−1, (21)

where k1 = 1, . . . ,n1 represents the indexing of tuples,
(s,d,a,s′). Then define a vector ε such that ε(k1) =−Q̄(k1).
The following holds for ε from Eq. (21).

∑
s′∈S

p(s′|k1)ε(k2)6 ε(k1)−1 6 ε̂ε(k1), (22)

where ε̂ = max
k1

ε(k1)−1
ε(k1)

6 1.

Using the vector ε and weighted sup-norm (see Defini-
tion VI.4) in Eq. (20), we observe

|F̂1(Qt
1)− F̂1(Qt

2)|6 ∑
s′∈S

P(s′|k2)ε(k2)||Qt
1−Qt

2||ε ,

Since ∑
s′∈S

p(s′|k1)ε(k2)6 ε̂ε(k1) by Eq. (22),

|F̂1(Qt
1)− F̂1(Qt

2)| ≤ ε̂ε(k1)||Qt
1−Qt

2||ε
||F̂1(Qt

1)− F̂1(Qt
2)||ε ≤ ε̂||Qt

1−Qt
2||ε , (23)

where ε̂ < 1.
This proves the map F̂1(Qt) is a contraction under weighted

sup-norm with respect to the vector ε given in assumption 2)
of Theorem VI.3. This completes the proof.


