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Abstract—This paper studies the synthesis of controllers for
cyber-physical systems (CPSs) that are required to carry out
complex tasks that are time-sensitive, in the presence of an
adversary. The task is specified as a formula in metric interval
temporal logic (MITL). The adversary is assumed to have the
ability to tamper with the control input to the CPS and also
manipulate timing information perceived by the CPS. In order
to model the interaction between the CPS and the adversary, and
also the effect of these two classes of attacks, we define an entity
called a durational stochastic game (DSG). DSGs probabilistically
capture transitions between states in the environment, and also
the time taken for these transitions. With the policy of the
defender represented as a finite state controller (FSC), we present
a value-iteration based algorithm that computes an FSC that
maximizes the probability of satisfying the MITL specification
under the two classes of attacks. A numerical case-study on a
signalized traffic network is presented to illustrate our results.

I. INTRODUCTION

Cyber-physical systems (CPSs) rely on the smooth integra-
tion of physical system components, communication channels,
computers, and algorithms [1]. The tight coupling of cyber
and physical components introduces additional attack surfaces
that can be exploited by an intelligent adversary [2]. In
applications such as robotics, the CPS is expected to operate
with a large degree of autonomy in dynamic and potentially
hazardous environments. Several instances of attacks on CPSs
have been recorded and reported, including in vehicles [3],
power systems [4], and nuclear reactors [5].

Temporal logic (TL) frameworks like linear temporal logic
(LTL) enable the expression of system properties such as
safety, liveness, and priority [6], [7]. Off-the-shelf model
checking tools can be used to determine if a TL specification
can be satisfied by constructing an appropriate finite state
automaton (FSA), and searching for a ‘feasible’ path in this
FSA [8], [9]. The FSA is constructed such that a path in it
is ‘feasible’ if and only if the LTL formula is satisfied [10].
However, a drawback of LTL is that it does not allow for the
specification of time-critical properties that involve deadlines
or intervals. An example of such a property is ‘visit a target
state every 2 time units.’
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We focus on the satisfaction of objectives specified in Metric
Interval Temporal Logic (MITL) [11]. MITL uses intervals
of length larger than zero to augment timing constraints to
modalities of LTL. An MITL formula can be represented by a
timed automaton (TA) [12]. TAs extend FSAs by incorporating
finitely many clock variables to model the passage of time
between successive events. Transitions between pairs of states
in the TA will then depend on the satisfaction of ‘clock
constraints’ in those states.

We assume that the CPS has to satisfy the MITL objective
in the presence of an adversary. This could lead to a situation
when an adversary could alter the timed behavior of the sys-
tem, thereby causing violation of the objective. The adversary
is assumed to have the ability to launch attacks on the clocks of
the system (timing attack) or tamper with inputs to the system
(actuator attack). A timing attack will prevent the system from
reaching desired states within the specified time interval. An
actuator attack will allow the adversary to steer the system
away from a target set of states.

We model the interaction between the defender and adver-
sary as a stochastic game (SG). The goal for the defender
is then to maximize the probability of satisfying an MITL
objective under any adversarial input, while the adversary
attempts to thwart the objective by timing and actuator attacks.
The main challenge in this setting is incorporating time into
the SG model, since the adversary has the ability to affect
the perception of the (correct) time index by the CPS. One
approach could be to extend the SG model in [13], [14] to
include time as an additional state, but this will allow the
adversary to (unrealistically) effect arbitrary changes of this
state by manipulating the timing signal. Instead, we define a
new type of game that we call durational stochastic games
(DSGs) to capture the effect of a timing attack in a principled
manner. A DSG probabilistically captures transitions between
states, and also the time taken for these transitions. It also
generalizes SGs (which do not have a notion of time) and
semi-Markov decision processes [15] (which have a notion
of timed transitions between states, but only assume a single
agent giving inputs).

The defender could incorrectly perceive the time index that
it observes if it is the target of a timing attack. This incomplete
information for the defender makes it computationally chal-



lenging to synthesize an optimal policy. To address this, we
propose the use of finite state controllers (FSCs) to represent
the defender policy [16]. FSCs have been used as policies
when the agent is in a partially observable environment.
An FSC can be viewed as a probabilistic FSA driven by
observations of the environment, and producing a distribution
over actions of the agent as its output. By representing the
policy in this way, the defender can commit to policies with
finite memory to maintain an estimate of the time index.
This will allow it to synthesize a policy to satisfy the MITL
objective even when subject to a timing attack.

This paper makes the following contributions.
• We define a new entity called a durational stochastic

game (DSG) that captures both time-sensitive objectives
and the presence of an adversary.

• We construct the defender policy using finite state con-
trollers (FSCs). This will allow it to satisfy the MITL
objective in cases of timing attacks. The states of the
FSC correspond to the difference between values of the
estimated and observed time indices.

• We prove that satisfying the MITL formula is equivalent
to reaching a subset of states of a global DSG constructed
by composing representations of the MITL objective,
CPS under attack, and FSC. We give a computational
procedure to determine this set.

• We develop a value-iteration based algorithm that maxi-
mizes the probability of satisfying the MITL formula for
FSCs of fixed sizes under any adversary policy.

• We evaluate our approach on a representation of a sig-
nalized traffic network. The adversary is assumed to have
the ability to mount actuator and timing attacks on the
traffic signals. Our numerical results indicate a significant
improvement in the probability of satisfying the given
MITL specification compared to two baselines.

The remainder of this paper is organized as follows. Section
II gives background on MITL. We define the DSG and
formally state the problem of interest in Section III. Section IV
presents our main results. A numerical case-study is presented
in Section V. Section VI discusses related work, and Section
VII concludes the paper. The Appendix gives an example on
two-tank system and some proofs.

II. PRELIMINARIES

We introduce MITL and the representation of an MITL
formula by a timed automaton. Throughout this paper, we
denote by R the set of real numbers, and by R≥0 the set of
non-negative real numbers. The set of rationals is denoted by
Q. The comparison between vectors is component-wise. Bold
symbols represent vectors. If V ∈ Rn is a vector of dimension
n, then V(i) denotes the i-th element of V.

Metric Temporal Logic (MTL) [17] augments timing con-
straints to the modalities of linear temporal logic (LTL). An
MTL formula is developed from the same set of atomic
propositions Π as in LTL and a time-constrained until operator
UI , and can be inductively written as: ϕ := >|π|¬ϕ|ϕ1 ∧
ϕ2|ϕ1UIϕ2, where I ⊆ [0,∞) is an interval with endpoints

in N∪{∞}. We will focus on Metric Interval Temporal Logic
(MITL) [11], a restriction of MTL to intervals I = [a, b] with
a < b which is known to be decidable [11].

Further, we work with the point-based semantics, where
MITL formulas are interpreted on timed words over an alpha-
bet 2Π. A timed word is a sequence η = {(πi, ti)}∞i=0 where
πi ∈ 2Π, ti ∈ R≥0. A time sequence {ti}∞i=0 associated with
any timed word η must satisfy the following:
• Monotonicity: for all i ≥ 0, ti+1 > ti;
• Progress: for all t ∈ R≥0, there exists some ti ≥ t.

Definition 1 (MITL Semantics). The satisfaction of an MTL
formula ϕ at time t by a timed word η, written (η, t) |= ϕ,
can be recursively defined in the following way:

1) (η, t) |= > if and only if (iff) (η, 0) is true;
2) (η, t) |= π iff (η, t) satisfies π at time t;
3) (η, t) |= ¬ϕ iff (η, t) 6|= ϕ;
4) (η, t) |= ϕ1 ∧ ϕ2 iff (η, t) |= ϕ1 and (η, t) |= ϕ2;
5) (η, t) |= ϕ1UIϕ2 iff ∃k ∈ I such that (η, t + k) |= ϕ2

and for all m < k, (η, t+m) |= ϕ1.

MITL admits derived operators in the same way as LTL: i):
ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2); ii): ϕ1 ⇒ ϕ2 := ¬ϕ1 ∨ ϕ2;
iii): 3Iϕ := >UIϕ (constrained eventually); iv): 2Iϕ :=
¬3I¬ϕ (constrained always). MITL and MTL also allow for
the composition of operators, thereby providing a richer set
of specifications. For example, 3I12I2ϕ means that ϕ will be
true at some time within interval I1, and from that time, it
will continue to hold for the duration of I2.

Given an MITL formula ϕ, a timed Büchi automaton (TBA)
can be constructed to represent ϕ [12]. In order to do this, we
first define a set of clock constraints Φ(C) over a clock set C
as: φ = >|⊥|c ./ δ|φ1 ∧ φ2, where ./∈ {≤,≥, <,>}, c ∈ C
is a clock, and δ ∈ Q is a non-negative constant. A TBA is
defined in the following way.

Definition 2 (Timed Büchi Automaton [12]). A timed Büchi
automaton is a tuple A = (Q, 2Π, q0, C,Φ(C), E, F ). Q is a
finite set of states, 2Π is an alphabet over atomic propositions
in Π, q0 is the initial state, E ⊆ Q×Q× 2Π× 2C ×Φ(C) is
the set of transitions, and F ⊆ Q is the set of accepting states.
A transition 〈q, q′, a, C ′, φ〉 ∈ E if A enables the transition
from q to q′ when a subset of atomic propositions a ∈ 2Π and
clock constraints φ ∈ Φ(C) evaluate to true. The clocks in
C ′ ⊆ C are reset to zero after the transition.

Given a set of clocks C and V ⊆ R|C|, v : C 7→ V is the
valuation of C. v(c) denotes the valuation of a clock c ∈ C.
The valuation vector v is then v = [v(1), · · · ,v(|C|)]T . For
some δ ∈ Q, we define v + δ := [v(1) + δ, · · · ,v(|C|) + δ]T .

The configuration of A is a pair (q,v), with q ∈ Q and v
is the valuation defined above. A transition < q, q′, a, C ′, φ >
taken after δ time units from (q,v) to a configuration (q′,v+δ)

is written (q,v)
a,δ−−→ (q′,v′), where v + δ |= φ and v′(c) =

v(c) + δ for all c /∈ C ′. Given an input sequence a0, a1, · · ·
with ai ∈ Π, we can construct a corresponding sequence of
configurations ρ = (q0,v0)

a0,δ0−−−→ (q1,v1) · · · , called a run



of A. The run ρ is feasible if for all i ≥ 0 there exists a
transition < qi, qi+1, a, Ci, φ > in A such that (i) v0 = 0, (ii)
0 + δ0 |= φ0, (iii) v1(c) = v0(c) + δ0 for all c /∈ C0, and
(iv) vi + δi |= φi and vi+1(c) = vi(c) + δi for all c /∈ Ci.
A feasible run ρ on the TBA A is accepting if and only if it
intersects with F infinitely often.

III. PROBLEM FORMULATION

In this section, we introduce the adversary and defender
models that we will consider in this paper. We then present an
entity called a durational stochastic game (DSG) that models
the interaction between the defender and adversary. The DSG
also models the possible amount of time taken for a transition
between two states to be completed. We end the section by
formally stating the problem that this paper seeks to solve.

We consider a CPS whose dynamics is given as

x(k + 1) = f(x(k), uC(k), uA(k), w(k)), (1)

where k is the time index, x(k) is the state of the system,
uC(k) and uA(k) are the defender’s and adversary’s inputs,
and w(k) is a stochastic disturbance. The time index starts
at k = 0, and is known to both players. The initial state
x(0) and statistical information of w(k) is also known to both
players. The defender aims to synthesize a sequence of inputs
to maximize the probability of the MITL objective ϕ being
satisfied. The adversary aims to reduce this probability.

A. Adversary and Defender Models

The adversary can launch an actuator attack or a timing
attack, or a combination of the two to achieve its objective.

During an actuator attack, the adversary manipulates control
signals received by the actuator. The sequence of inputs
supplied by the adversary in this case is called the actuator
attack policy, denoted τ . This attack can be effected when
the defender communicates with the actuator via an unreliable
communication channel. In Equation (1), the adversary can
tamper with the control input uC(k) by injecting a signal
uA(k). Then, the transition of the system to the next state
will be jointly determined by uC(k) and uA(k).

To launch a timing attack, an adversary can target the time
synchronization protocol of the defender [18], [19]. This will
affect the defender’s perception of the (correct) time index.
The sequence of inputs supplied by the adversary in this case
is called the timing attack policy, denoted ξ. The adversary
manipulates time stamps k associated with measurements
made by the defender as k + κ, where κ ≥ −k is an integer.
The policies τ and ξ will be defined in Section III-C.

At each time k, the adversary can observe the state x(k)
and the correct time index k. The observation made by
the adversary at time k is defined as ObskA := {x(k), k}.
The adversary also knows the policy (sequence of inputs) µ
committed to by the defender. Thus, the overall information
IA available to the adversary is IA :=

⋃
m=0:k

ObsmA ∪ {µ}.
Different from the information available to the adversary,

the defender observes the system state x and a time k′,
i.e., Obsk

′

C := {x(k′), k′}, where x(k′) = x(k) is the state

measurement at time k with possibly incorrect time stamp
k′ due to a timing attack by the adversary. The overall
information available to the defender is IC :=

⋃
m=0:k

ObsmC .

A formal representation of µ will be given in Section IV-B.

B. Durational Stochastic Game

We present an abstraction of the CPS (1), that we term
a durational stochastic game (DSG). A DSG models the
interaction between the defender and adversary, and captures
the time taken for a state transition. Let ∆ be a discrete set of
possible amounts of time taken for a transition between two
states in the DSG, given specific agent actions. Then,

Definition 3 (Durational Stochastic Game). A (labeled)
durational stochastic game (DSG) is a tuple G =
(SG , sG,0, UC , UA, InfG,C , InfG,A, P rG , TG ,Π, L, C). SG is
a finite set of states, sG,0 is the initial state. UC , UA are finite
sets of actions and InfG,C , InfG,A are the information sets of
the defender and adversary respectively. PrG : SG×UC×UA×
SG 7→ [0, 1] encodes PrG(s′G |sG , uC , uA), the transition prob-
ability from state sG to s′G when the controller and adversary
take actions uC and uA. TG : SG×UC×UA×SG×∆ 7→ [0, 1]
is a probability mass function. TG(δ|sG , uC , uA, s′G) denotes
the probability that a transition from sG to s′G under actions
uC and uA takes δ ∈ ∆ time units. Π is a set of atomic
propositions. L : SG 7→ 2Π is a labeling function that maps
each state to atomic propositions in Π that are true in that
state, and C is the set of clocks.

In this work, we assume the transition probability PrG
and probability mass function TG are known to both the
defender and adversary. In Definition 3, the transition proba-
bility between states is jointly determined by actions taken
by the defender and adversary, which models an actuator
attack. The asymmetry of information sets of the two agents
models a timing attack. This can be justified as follows: let
the actions available to the agents at a state s ∈ SG be
UC(s) and UA(s), and let the respective information sets be
InfG,C(s) and InfG,A(s). In order to capture the information
pattern described in Section III-A, we have InfG,C(s) =
{(s0,v0), · · · , (s, v̄)}, i.e., the defender knows the path from
the initial state s0 to current state s along with the time stamp
of each state being reached. We reiterate that the time stamps
observed by the defender could have been manipulated by the
adversary, and hence may be incorrect. The adversary knows
the path from the initial state s0 to current state s along with
the correct time stamps of each state being reached, and the de-
fender policy, i.e., InfG,A(s) = {(s0,v0), · · · , (s,v)} ∪ {µ}.

For the remainder of this paper, we use the DSG G as
an abstraction of the CPS described in Section III-A. The
mapping from the CPS model (1) to a DSG is presented in
Algorithm 1. Algorithm 1 partitions the state space and the
admissible control and adversary action sets (lines 5-6). We
use Monte-Carlo simulation [20] to compute the transition
probability distributions PrG and and TG (lines 8-17).



C. Problem Statement

Comparing the information sets of the two agents, we
observe that the adversary receives more information than
the defender, including the correct time and the defender’s
policy. This asymmetric information pattern can be modeled
as a Stackelberg game [21], with the defender as leader and
the adversary as follower. In this paper, we use finite state
controllers to represent the policy of the defender. For the
time-being, however, it will suffice to think of the defender’s
policy as a probability distribution over the defender actions,
given the state of DSG. The adversary policies corresponding
to the two types of attacks is formally stated below.

Definition 4 (Adversary policies). The actuator attack policy
is a map τ : SG × V 7→ UA. That is, τ specifies an action
uA ∈ UA(s) for each state (s,v) ∈ S.

The timing attack policy is a map ξ : V × V 7→ [0, 1]. That
is, ξ encodes ξ(v′|v), the probability that the adversary will
manipulate the correct clock valuation v to a valuation v′.

We define a Stackelberg equilibrium, which indicates that
a solution to a Stackelberg game has been found. Denote the
leader’s policy by µ and follower’s policy by the tuple (τ, ξ).
Let QL(µ, (τ, ξ)) and QF (µ, (τ, ξ)) be the utilities gained by
the leader and follower by adopting their respective policies.

Definition 5 (Stackelberg Equilibrium (SE)). A tuple
(µ, (τ, ξ)) is an SE if µ = arg max

µ′
QL(µ′, BR(µ′)), where

BR(µ′) = {(τ, ξ) : (τ, ξ) = arg maxQF (µ′, (τ, ξ))}. That is,
the leader’s policy is optimal given that the follower observes
this and plays its best response.

We are now ready to state the problem.

Problem 1. Given an MITL objective ϕ, and a DSG in which
the defender’s objective is to maximize the probability of
satisfying ϕ and the adversary’s objective is to minimize this
probability, compute a control policy that is in SE, i.e.,

max
µ

min
τ,ξ

P(ϕ). (2)

IV. SOLUTION APPROACH

This section presents the main results of the paper. We first
compute a product durational stochastic game (PDSG), given
a DSG that abstracts the CPS, and a TBA corresponding to
the MITL formula ϕ. We represent the defender’s policy as
a finite state controller (FSC), and compute a global DSG
(GDSG) by composing the PDSG and FSC. We solve Problem
1 by proving that maximizing the probability of satisfying ϕ is
equivalent to maximizing the probability of reaching a subset
of states of the GDSG, termed generalized accepting maximal
end components (GAMECs). Then, we present a value-iteration
based algorithm to synthesize an FSC that will lead to an SE
of the game between defender and adversary.

A. Product Durational Stochastic Game Construction

Definition 6 (Product Durational Stochastic Game). A PDSG
P constructed from a DSG G , TBA A, and clock valuation set

Algorithm 1 Constructing a DSG abstraction for CPS.

1: procedure CONSTRUCT DSG
2: Input: CPS model f(x(k), uC(k), uA(k), w(k))
3: Output: DSG G
4: Initialize time-horizon K
5: Partition the state space as X = ∪ni=1Xi

6: Partition control and adversary input as sets of poly-
topes UC = {uC1

, · · · , uCΞ
}, UA = {uA1

, · · · , uAΓ
}

7: S = {X1, . . . , Xn} and L is determined accordingly
8: for l = 1, . . . , n do
9: for all uC ∈ UC and uA ∈ UA do

10: for k = 1, . . . ,K do
11: x← sampled state in Xi

12: ûC , ûA ← sampled inputs from uC , uA
13: j ← region containing f(x, ûC , ûA, ϑ)
14: Use particle filter to approximate transition

probabilities PrG and duration function TG between sub-
regions Xi and Xj for all i and j.

15: end for
16: end for
17: end for
18: end procedure

V is a tuple P = (S, s0, UC , UA, InfC , InfA, P r,Acc). The
set S = SG×Q×V is a finite set of states, s0 = (sG,0, q0,v0)
is the initial state, UC , UA are finite sets of actions and
InfC , InfA are the information sets of the defender and
adversary respectively. Pr : S × UC × UA × S 7→ [0, 1]
encodes Pr ((s′, q′,v′)|(s, q,v), uC , uA), the probability of a
transition from state (s, q,v) to (s′, q′,v′) when the defender
and adversary take actions uC and uA respectively. The
probability

Pr ((s′, q′,v′)|(s, q,v), uC , uA)

:= TG(δ|s, uC , uA, s′)PrG(s′|s, uC , uA) (3)

if and only if (q,v)
L(s′),δ−−−−→ (q′,v′). Acc = SG × F × V is a

finite set of accepting states.

At a state (s, q,v) ∈ S, let InfC(s, q,v) :=
{(s0, q0,v0), · · · , (s, q, v̄)} (the defender knows the path
from the initial state of PDSG to the current state, along
with the manipulated time stamps) and InfA(s, q,v) :=
{(s0, q0,v0), · · · , (s, q,v)} ∪ {µ} (the adversary knows the
defender’s policy µ and the path from the initial state to the
current state, along with the correct time stamps).

The following result establishes the consistency of the
PDSG P . The proof can be found in the Appendix.

Proposition 1. The function Pr(·) is well-defined. That is,
Pr ((s′, q′,v′)|(s, q,v), uC , uA) ∈ [0, 1] and∑

(s′,q′,v′)

Pr ((s′, q′,v′)|(s, q,v), uC , uA) = 1. (4)

From (3), we observe that a transition exists in P if and
only if the label associated with the target state matches the



atomic proposition corresponding to the transition in the TBA,
and the clock constraint is satisfied. Further, for any run β :=
(s0, q0,v0), (s1, q1,v1), . . . on P , we can obtain a run ρ on
A and a path on G. That is, there is a one-one mapping from
runs on the PDSG to those on the TBA and DSG. We define
the following two projections over the runs on P . Given a run
β, we let Untime(β) = (s0, q0), (s1, q1), · · · , be the untimed
sequence of states, and let Time(β) = (q0,v0), (q1,v1), · · · ,
be the configuration sequence corresponding to β.

B. Defender Policy Representation: Finite State Controllers

We now formally define the defender’s policy µ. Since the
adversary can manipulate the clock valuation v observed by
the defender, the defender has only partial information over the
DSG. This is evident from the following: let there exist a run
β = (s0, q0,0)(s1, q1,1)(s2, q2,2) on PDSG P without any
clock being reset that is manipulated by the adversary as β′ =
(s0, q0,0)(s1, q1,1)(s2, q2,0.5). The run β′ is not reasonable
since the time sequence Time(β′) = (q0,0), (q1,1), (q2,0.5)
is not monotone. The presence of such a run will allow the
defender to conclude that a timing attack has been effected
by the adversary. Moreover, after a timing attack has been
detected, the defender will be aware that the observed clock
valuation is incorrect, and thus cannot be relied upon for
control synthesis. The defender will then need to keep track
of an estimate of the clock valuation in order to detect a
timing attack, and use this estimate for control synthesis. The
defender’s policy is represented as a finite state controller
(FSC) defined as follows.

Definition 7 (Finite State Controller [22]). A finite state
controller (FSC) is a finite state automaton F = (Y, y0, µ),
where Y = Λ × {0, 1} is a finite set of internal states, Λ is
a set of estimates of clock valuations, the set {0, 1} indicates
if a timing attack has been detected (1) or not (0). y0 is the
initial internal state. µ is the defender policy, given by:

µ =

{
µ0 : Y × S × Y × UC 7→ [0, 1], if H0 holds;
µ1 : Y × SG ×Q× Y × UC 7→ [0, 1], if H1 holds,

(5)
where µ0 and µ1 respectively denote the control policies that
will be executed when hypothesis H0 or H1 holds.

In Definition 7, the hypothesis H0 models the scenario
where no timing attack has been detected by the defender, and
H1 models the case when a timing attack has been detected.
Equation (5) specifies the probability of reaching the next
internal state y′ and taking the corresponding action uC , given
the current internal state y, observed clock valuation v (if no
timing attack has been detected), and state s of G. The FSC
allows the defender to synthesize policies with finite memory
rather than memoryless policies. In this paper, we assume
the size of the FSC is given and fixed and limit our focus
to computing µ. The two players can track an estimate of
the clock valuation according to the probability distribution
TG . Moreover, we do not explicitly specify a timing attack
detection scheme, and assume it is known. Timing attack

detection schemes that are compatible with our framework
include [18] and [19]. In the nominal case, the defender adopts
the policy µ0. Once a timing attack has been detected by the
defender, the defender ignores the observed clock valuation
v, and switches to policy µ1. The design of a timing attack
detection strategy is beyond the scope of this paper, and we
leave it as future work.

C. Proposed Solution

To incorporate the evolution of the estimate of the clock
valuation maintained by the defender, we compose this with
the PDSG. We call this entity the global DSG (GDSG).
We prove that maximizing the probability of satisfying the
MITL objective ϕ is equivalent to maximizing the probability
of reaching a specific subset of states in the GDSG called
generalized accepting maximal end components (GAMECs).
The control policy is then computed using a value iteration
based procedure. Given an FSC F and the PDSG P , we can
construct GDSG in the following way.

Definition 8 (Global DSG (GDSG)). A GDSG is a tu-
ple Z = (SZ , sZ,0, UC , UA, InfZ,C , InfZ,A, P rZ , AccZ),
where SZ = S × Y is a finite set of states, sZ,0 =
(s0, q0,v0, y0) is the initial state. UC and UA are finite sets
of actions and InfZ,C and InfZ,A are the information sets
of the defender and adversary respectively. PrZ : SZ ×
UC × UA × SZ 7→ [0, 1] is a transition function where
PrZ ((s′, q′,v′, y′)|(s, q,v, y), uC , uA) is the probability of
a transition from state (s, q,v, y) to (s′, q′,v′, y) when the
defender and adversary take actions uC and uA respectively.
The transition probability

PrZ ((s′, q′,v′, y′)|(s, q,v, y), uC , uA) =
∑

v′′ ξ(v
′′|v)µ0(y′, uC |s, q,v′′, y)

·Pr ((s′, q′,v′)|(s, q,v), uC , uA) , if H0 holds;
µ1(y′, uC |s, q, y)TG(δ|s, uC , uA, s′)
·PrG(s′|s, uC , uA), if H1 holds;

(6)

AccZ = Acc× Y is the set of accepting states.

At a state (s, q,v, y), the information set of the defender is
InfZ,C(s, q,v, y) = {(s0, q0,v0, y0), · · · , (s, q, v̄, y)}. That
is, the defender knows the path from the initial state of
GDSG to the current state, along with the time stamps,
which might have been manipulated by the adversary. The
information set of the adversary is InfZ,A(s, q,v, y) =
{(s0, q0,v0, y0), · · · , (s, q,v, y)}∪{µ}. That is, the adversary
knows the path from the initial state to the current state, along
with the correct time stamps, and the defender’s policy. In the
sequel, we focus on the GDSG Z in Definition 8, and denote a
state (s, q,v, y) in Z as s. Given a run β = {(si, qi,vi, yi)}i≥1

on Z , we define Untime(β) = {(si, qi)}i≥1 and Time(β) =
{(qi,vi)}i≥1, respectively. To compute an optimal policy that
satisfies ϕ, we need to determine accepting runs on Z . To
this end, we introduce the concepts of generalized maximal
end component (GMEC) and generalized accepting maximal
end component (GAMEC) [14]. We note that the accepting



condition for a GMEC in this paper differs from that in [14],
since we are working with timed automata.

Definition 9 (Sub-DSG). A sub-PDSG of a PDSG P =
(S, s0, UC , UA, InfC , InfA, P r,Acc) is a tuple (N,D) where
∅ 6= N ⊆ S is a set of states, and D : N → 2UC is
a function such that D(s) ⊆ UC(s) for all s ∈ N and
{s′|Pr(s′|s, uC , uA) > 0,∀uA ∈ UA(s), s ∈ N} ⊆ N .

Definition 10. A Generalized End Component (GEC) is a sub-
PDSG (N,D) such that the underlying directed graph G(N,D)

of (N,D) is strongly connected. A GMEC is a GEC (N,D)
such that there exists no other GEC (N ′, D′) 6= (N,D), where
N ⊆ N ′ and D(s) ⊆ D′(s) for all s ∈ N .

A GAMEC is a GMEC if Acc ∩N 6= ∅.

Algorithm 2 presents a procedure to compute the set of
GAMECs, C of the GDSG Z . Let E denote the set of states
in a GAMEC. The correctness of Algorithm 2 is established in
the following result. The proof can be found in the Appendix.

Proposition 2. Algorithm 2 returns all GAMECs of Z .

The equivalence between the satisfying the MITL objective
ϕ and reaching states in the GAMEC is stated below:

Theorem 1. Given an initial state s0 ∈ SZ , the minimum
probability of satisfying ϕ is equal to the minimum probability
of reaching the states E of GAMEC. That is,

min
τ,ξ

P(ϕ|s0) = min
τ,ξ

P(reach E|s0), (7)

where P(ϕ|s0) and P(reach E|s0) are the probabilities of
satisfying ϕ and reaching E when starting from s0.

To prove Theorem 1, we need an intermediate result [12].

Lemma 1. Let L be a timed regular language. Then, a word
{ρi}i≥1 ∈ Untime(L) if and only if there exists a sequence
{ti}i≥1 such that ti ∈ Q and the timed word {ρi, ti}i≥1 ∈ L.

Lemma 1 indicates that we can analyze a timed word by
focusing on its untimed projection and the corresponding time
sequence. We use this to prove Theorem 1.

Proof of Theorem 1. We establish that satisfying ϕ is equiva-
lent to reaching the set of states E . Then, we need to show that
any accepting run will reach E , and any run that reaches E is
accepting. Let L denote the timed language accepted by Z .
Let Untime(L) be the language obtained from L by discarding
the clock valuation and internal state components.

First, we prove that any accepting run β of GDSG Z reaches
E . We use a contradiction argument. Suppose there exists an
accepting run β that does not reach E . Since β satisfies ϕ,
we must have that β contains some accepting state in AccZ
infinitely many times (Definition 2). This implies that there
exists a GEC that contains some state s ∈ AccZ and s /∈ E ,
which violates Proposition 2.

Next, we show that any run β that reaches E is accepting.
We use Lemma 1. Since GAMECs are strongly connected
and each GAMEC contains at least one accepting state,

Algorithm 2 Computing the set of GAMECs C.

1: procedure COMPUTE GAMEC(Z)
2: Input: GDSG Z
3: Output: Set of GAMECs C
4: Initialization: Let D(s) ← UC(s) for all s ∈ S. Let
C ← ∅ and Ctemp ← {S}

5: repeat
6: C ← Ctemp, Ctemp ← ∅
7: for N ∈ C do
8: R← ∅
9: Let SCC1, · · · , SCCn be the set of strongly

connected components of underlying digraph G(N,D)

10: for i = 1, · · · , n do
11: for each state s ∈ SCCi do
12: D(s) ← {uC ∈ UC(s)|s′ ∈

N,Pr(s′|s, uC , uA) > 0, ∀uA ∈ UA(s)}
13: if D(s) = ∅ then
14: R← R ∪ {s}
15: end if
16: end for
17: end for
18: while R 6= ∅ do
19: dequeue s ∈ R from R and N
20: if ∃s′ ∈ N and uC ∈ UC(s′) such that

Pr(s|s′, uC , uA) > 0 for some uA ∈ UA(s′) then
21: D(s′)← D(s′) \ {uC}
22: if D(s′) = ∅ then
23: R← R ∪ {s′}
24: end if
25: end if
26: end while
27: for i = 1, · · · , n do
28: if N ∩ SCCi 6= ∅ then
29: C ← Ctemp ∪ {N ∩ SCCi}
30: end if
31: end for
32: end for
33: until C = Ctemp
34: for N ∈ C do
35: if AccZ ∩N = ∅ then
36: C = C \N
37: end if
38: end for
39: return C
40: end procedure

reaching E is equivalent to reaching some accepting state
infinitely often, which agrees with the acceptance condition of
Untime(L). Hence, we have Untime(β) ∈ Untime(L). Now,
from Equation (3), we have that a transition in P , and therefore
in Z , exists if and only if no clock constraint is violated, i.e.,

(q,v)
L(s′),δ−−−−→ (q′,v′). Otherwise, the transition probability

is 0, and hence the run β does not exist, which establishes
the claim. Given that Untime(β) ∈ Untime(L) holds, and



Time(β) never violates the clock constraints defined by TBA
A for any run that reaches E , we have that the set of runs that
reach E is in language L by Lemma 1.

Combining the two arguments above, we observe that
satisfying ϕ is equivalent to reaching the set E . This gives
min
τ,ξ

P(ϕ|s0) = min
τ,ξ

P(reach E|s0), completing the proof.

Let the vector Q(s) ∈ R|SZ | represent the probability of
satisfying ϕ when starting from a state s = (s, q,v, y) in Z .

Proposition 3. Let Q := max
µ

min
τ,ξ

P(ϕ) be the probability of

satisfying ϕ. Then,

Q((s, q,v, y)) = max
µ

min
τ,ξ

∑
uC∈UC

∑
uA∈UA

∑
(s′,q′,v′,y)∈SZ

τ((s, q,v, y), uA)Q((s′, q′,v′, y′))

PrZ ((s′, q′,v′, y′)|(s, q,v, y), uC , uA) , ∀(s, q,v, y). (8)

Moreover, the value vector is unique.

We define the following operators to prove Proposition 3.

(MµQ)(s) = min
τ,ξ

∑
s′

P (s′|s, µ, (τ, ξ))Q(s′),

(MQ)(s) = max
µ

min
τ,ξ

∑
s′

P (s′|s, µ, (τ, ξ))Q(s′),

where P (s′|s, µ, (τ, ξ)) is the probability of transiting from
state s to s′, given policies µ and τ . The operators Mµ and
M are characterized in the following lemma. The proof of the
lemma and Proposition 3 can be found in the Appendix.

Lemma 2. The sequence of value vectors obtained by com-
posing operators Mµ and M is convergent.

These results enable determining an optimal control policy
using a value-iteration based algorithm. Algorithm 3 computes
the value vector at each iteration. The value vector is updated
following Proposition 3. Given the optimal value vector Q∗

and the Stackelberg setting, we can extract the optimal de-
fender’s policy as the maximizer of Q∗ by solving a linear
program. The convergence of Algorithm 3 is discussed in
Theorem 2. The proof uses an inductive argument, and can
be found in the Appendix.

Theorem 2. Algorithm 3 converges in a finite number of
iterations. Moreover, the value vector returned by Algorithm
3 is in an ε-neighborhood of Q∗.

V. CASE STUDY

In this section, we demonstrate the solution approach of
Section IV on a signalized traffic network. The simulations
were carried out using MATLAB R© on a Macbook Pro with
a 2.6GHz Intel Core i5 CPU and 8GB RAM. The Appendix
contains an example on two-tank system.

Algorithm 3 Computing an optimal control policy.

1: procedure CONTROL SYNTHESIS(Z)
2: Input: GDSG Z
3: Output: value vector Q
4: Initialization: Q0 ← 0, Q1(s) ← 1 for s ∈ AccZ ,

Q1(s)← 0 otherwise, k ← 0
5: while max {|Qk+1(s)−Qk(s)| : s ∈ S} > ε do
6: k ← k + 1
7: for s /∈ AccZ do
8: Qk+1(s) ← maxµ minτ,ξ{∑

uC∈UC

∑
uA∈UA

∑
(s′,q′,v′,y)∈SZ

τ((s, q,v, y), uA)Q((s′, q′,v′, y′))

PrZ ((s′, q′,v′, y′)|(s, q,v, y), uC , uA)

}
9: end for

10: end while
11: return Qk

12: end procedure

A. Signalized Traffic Network Model

We consider signalized traffic network under the remote
control of a transportation management center (TMC). A sig-
nalized traffic network consists of a set of links {1, 2, . . . , L}
and intersections {1, 2, . . . , N} [23]. Each intersection can
take a ‘red’ signal which will not allow vehicles to pass
through the intersection, or a ‘green’ signal which will allow
vehicles to pass. The number of vehicles in link l at a time
k is xl(k) and x̄l denotes the capacity of link l. The number
of vehicles entering the traffic network at a time k is assumed
to follow a Poisson distribution. Vehicles can travel through a
link if and only if the subsequent intersection in the direction
of travel is green. The link is then said to be actuated. We
assume that the flow rate cl of each link l is given and fixed.
The TMC is given an MITL objective that needs to be satisfied
on the network. When the TMC issues a green signal at an
intersection n, the turn ratio γll′ ∈ [0, 1] denotes the fraction
of vehicles that will move to link l′ from link l through
intersection n. The maximum number of vehicles that can be
routed to l′ from l is determined by the supply ratio αll′ of link
l′, which is determined by the remaining capacity x̄l′ −xl′(k)
of link l′. Given the above parameters, the dynamics of the
link queues can be determined [23].

We assume there is an adversary who can initiate actuator
and timing attacks. An actuator attack will tamper with the
traffic signal issued by the TMC. For instance, if the TMC
actuates a link l at time k and the adversary attacks link l,
then this link will not be actuated at time k. A timing attack
will manipulate the timing information perceived by the TMC.
Hence, any time stamped measurement {xl, k} received by
the TMC indicating the number of vehicles at link l at time k
might be manipulated to {xl, k′}, where k′ is the time stamp
that has been changed by the adversary.

The signalized traffic network model can be mapped to a
DSG in the following way. States of the DSG are obtained



Fig. 1: Representation of a signalized traffic network. The
network consists of 4 intersections and 16 links. Intersections
are represented by squares, and links by arrows. Dotted arrows
denote outgoing links that are not explicitly modeled.

by partitioning the number of vehicles on each link (e.g.,
box partition) [23]. The control action set at each intersection
models which links can be actuated. The action set is then
realized by taking the Cartesian product of the action sets at
each intersection. The realized traffic signal at an intersection
is jointly determined by the actions of the TMC and adversary.
The transition and duration probability distributions between
states are obtained from Algorithm 1.

B. Experimental Evaluation

A representation of the signalized traffic network is shown
in Fig. 1. The network consists of 4 intersections (squares) and
16 links (arrows). We denote the intersections with incoming
links 1, 2, 3, and 4 as intersections 1, 2, 3, and 4, respectively.
The links represented by dotted arrows are not explicitly
modeled [23]. For each intersection in Fig. 1, the links that
can be actuated by the TMC are given as follows:
• Intersection 1: {{1}, {5, 6}};
• Intersection 2: {{2}, {7}};
• Intersection 3: {{3}, {8}};
• Intersection 4: {{4}, {9, 10}}.

We assume that the TMC can actuate exactly one subset of
links at each intersection so that no safety constraint will be
violated. The link capacities are set to x̄1 = · · · = x̄5 = 30
and x̄6 = · · · = x̄10 = 40. Flow rates associated to each link
are set to c1 = · · · = c4 = 10, c5 = · · · = c10 = 5 [23]. The
supply ratios αll′ = 1 for all l, l′, and the turn ratios are set to
γ12 = 0.3, γ23 = γ34 = γ52 = γ62 = γ73 = γ84 = 0.5.
Vehicles entering a link in (l1, . . . , l10) follow a Poisson
distribution with mean (5, 0, 0, 0, 5, 5, 0, 0, 5, 5). We consider
a time horizon of length 5. The defender’s strategy to detect a
timing attack is to compare the deviation between its estimated
and observed clock valuations with a pre-specified threshold
e = 2. In particular, when ‖λ − v‖ ≤ 2, hypothesis H0

holds and no timing attack is detected by the defender. When
‖λ− v‖ > 2, hypothesis H1 holds and an alarm indicating a
timing attack is triggered. In this case, the FSC equipped by
the controller has 5 internal states.

The TMC is given one of the following MITL objectives.
1) The number of vehicles at link 2 is eventually below 10

before deadline d = 5: ϕ1 = 3[0,5](x2 ≤ 10).
2) The number of vehicles at link 2 and 3 are eventually

below 10 before deadline d = 5:
ϕ2 = 3[0,5] ((x2 ≤ 10) ∧ (x3 ≤ 10)).

TABLE I: A sample sequence of the traffic light real-
ized at each intersection for the MITL specification ϕ3 =
3[0,5] ((x2 ≤ 10) ∧ (x3 ≤ 10) ∧ (x4 ≤ 10)). The letter ‘R’
represents a ‘red’ signal, and ‘G’ represents ‘green’ signal.

Intersection
Time 1 2 3 4

1 G R G R
2 R G R G
3 G G R G
4 G G G G
5 G R G G
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Fig. 2: Number of vehicles on Links 2, 3, and 4 at
each time corresponding to the MITL formula ϕ3 =
3[0,5] ((x2 ≤ 10) ∧ (x3 ≤ 10) ∧ (x4 ≤ 10)). In the presence
of an adversary, the defender adopts an FSC-based policy with
one realization shown in Table I. The dotted horizontal line
is the threshold for the maximum number of vehicles allowed
(= 10). The three curves indicate that the number of vehicles
in the links satisfies the MITL objective since they are each
lower than 10 before 5 time units.

3) The number of vehicles at link 2, 3 and 4 are eventually
below 10 before deadline d = 5:
ϕ3 = 3[0,5] ((x2 ≤ 10) ∧ (x3 ≤ 10) ∧ (x4 ≤ 10)).

Our experiments yield the probability of satisfying each
specification as: P(ϕ1) = 0.723, P(ϕ2) = 0.371, and
P(ϕ3) = 0.333. These values agree with intuition since ϕ3

being satisfied implies ϕ2 holds true, which in turn implies
that ϕ1 is true.

We compare our approach for the objective ϕ3 with two
baselines. In the first baseline, the TMC issues periodic green
signals for links 1, 2, 3, and 4 at intersections 1, 2, 3, and 4,
respectively. In the second baseline, the TMC always issues
green signals for links 1, 2, 3, 4 at intersections 1, 2, 3, 4.

For the two baseline scenarios, the TMC commits to deter-
ministic strategies. The adversary’s actuator attack strategies
are as follows. In the first case, the adversary launches
actuator attacks when the TMC issues a green signal, and
does not attack when the TMC issues a red signal. As a
result, the realized traffic signal will be red for all time at
every intersection. In the second case, the adversary launches



an actuator attack at every time instant. This results in the
realized traffic signal being red for all time at each intersection.
As a consequence, the number of vehicles in links 2, 3 and 4
will reach their capacities and the links will be congested for
the rest of the time horizon. Therefore, the probabilities of
satisfying the MITL specification using the baselines are zero.

Table I shows a realization of the traffic signals when the
defender adopts an FSC-based policy proposed in Section IV.
Figure 2 shows the number of vehicles in each link for this
realization. The graph indicates that the defender’s policy is
successful in ensuring that the MITL objective is satisfied.
Moreover, if the adversary’s timing strategy is such that when
the difference in the manipulated and actual clock valuations
is less than 2 (the pre-specified threshold), it remains stealthy,
even though this is not an explicitly specified goal.

The construction of the DSG using Algorithm 1 takes 24.22
seconds. The computation of the global DSG takes 367.9
seconds. Given the global DSG, Algorithm 3 takes 644.8
seconds to compute the defender’s FSC.

VI. RELATED WORK

Markov decision processes (MDPs) probabilistically repre-
sent transitions between states depending on an action taken
by an agent. Semi-Markov decision processes (SMDPs) [15]
are used to model Markovian dynamics where the time taken
for transitions between states is a random variable. SMDPs
have been typically used to analyze problems in production
scheduling [24], [25] and optimization of queues [26]–[28].

Stochastic games (SGs) generalize MDPs to the setting
when there is more than one agent taking an action [21]. The
satisfaction of an LTL formula for two-player SGs when the
players had competing objectives was presented in [13], [14].
In this paper, the authors synthesized a policy for the agent
that maximizes the probability of satisfying LTL formula.
However, this approach is not applicable to the case where
the adversary can launch a timing attack.

Reactive synthesis1 under TL constraints has been studied
in [29]–[32]. These approaches typically consider a turn-based
setting where the environment is viewed as an adversarial
player. In comparison, this paper considers a stochastic envi-
ronment with the defender and adversary taking their actions
simultaneously. Moreover, the works on reactive synthesis
assumes that the controller has complete knowledge of the
environment, whereas this is not the case in our setting.

Timed automata (TA) [12] extend FSAs by attaching finitely
many clock constraints to each state. A transition between
any two states will be influenced by the satisfaction of clock
constraints in the respective states. There has been significant
work in the formulation of timed temporal logic frameworks
[33]. Metric interval temporal logic (MITL) [11] is one such
fragment that allows for the specification of formulas that
explicitly depend on time. Moreover, an MITL formula can
be represented as a TA [11], [34] that will have a feasible
path in it if and only if the MITL formula is true.

1Reactive systems interact continuously with their environments. Reactive
synthesis is the construction of a reactive system from a logical specification.

A parallel body of work proposed the incorporation of
probabilities to a TA [35] to yield a probabilistic timed
automaton (PTA). Two-player SGs were used as an abstraction
of the PTA to present tight bounds on the aforementioned
probabilities in [36]. Stochastic timed games, defined in [37],
assumed two players choosing their actions deterministically,
and the environment as a ‘half-player’ whose actions were
probabilistic. The existence of a strategy for one player such
that the probability of reaching a set of states under any strat-
egy of the other player and the randomness in the environment
was shown to be undecidable in general. The authors of [38]
studied a two-player SG and showed that it was not possible
for a player to have an optimal strategy that guaranteed the
‘equilibrium value’ against every strategy of the opponent.
However, they showed the existence of an almost-sure winning
strategy for one player against any strategy of the other player.
This was not a Markovian policy, since it depended on not only
the most recent state, but also on previous states. In all the
papers mentioned here, the games were turn-based, and there
was not a temporal logic formula that had to be satisfied.

The satisfaction of an MITL formula in a motion-planning
context was studied in [39]–[41]. However, these works were
tailored for a single agent, and did not consider the presence
of an adversary. Moreover, the analyses in [39]–[41] restrict
their focus to MITL formulas with reachability accepting
conditions. The treatment in this paper is broader in scope,
and considers arbitrary MITL formulas.

FSCs were used to simplify the policy iteration procedure
for POMDPs in [42]. This approach was extended to explicity
carrying out the search for policies in the policy space in order
to iteratively improve the FSC in [22]. The satisfaction of an
LTL formula (for a single agent) in a partially observable
environment was presented in [43]. This was extended to
the setting with an adversary, who also only had partial
observation of the environment, and whose goal was to prevent
the defender from satisfying the LTL formula in [44]. These
treatments, however, did not account for the presence of timing
constraints on the satisfaction of a temporal logic formula.

VII. CONCLUSION AND FUTURE WORK

We investigated the problem of synthesizing controllers
for time critical CPSs under attack. We proposed durational
stochastic games to capture the interaction between the de-
fender and adversary, and also account for time taken for
transitions between states. The CPS had to satisfy a time-
dependent objective specified as an MITL formula. We used
a timed automaton representation of the MITL formula, the
DSG, and a representation of the defender policy as a finite
state controller to synthesize defender policies that would
satisfy the MITL objective under actuator and timing attacks
carried out by the adversary. We evaluated our solution method
on a representation of a signalized traffic network.

A formal characterization of spatial and temporal robustness
in the presence of an adversary is a topic of future research.
A second topic of interest is the computational complexity
of the control synthesis procedure in adversarial settings. A



potential method to reduce this complexity is to use a coarse
discretization to synthesize a control strategy [45], and then
refine it for the states with relatively poor performance to
compute an improved control strategy.
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APPENDIX

This appendix presents a case-study demonstrating our
approach on a two-tank system. We then provide proofs of
the some of the results presented in earlier sections.
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Fig. 3: Evaluation on a two-tank system for an MITL specification that requires water levels in the tanks to be at least 0.3,
and to be within 0.1 of each other, before time k = 5. An FSC-based defender policy is compared with a baseline policy that
does not account for the presence of an adversary. Fig. 3a shows the water level in the second tank, using the two policies.
The solid line represents the FSC-based policy, while the dashed and dash-dot lines represent the baseline in the presence and
absence of the adversary, respectively. The absolute value of the difference between water levels in the two tanks using the
two policies is presented in Fig. 3b. The solid line with circle markers represents the FSC-based policy, while the dashed line
and dash-dot line represent the baseline policy under adversarial and benign environments, respectively. We observe that the
baseline policy satisfies the MITL objective in the absence of the adversary, but fails to do so when an adversary is present.
The FSC-based policy, in contrast, satisfies the MITL objective in the presence of the adversary.

A. Simulation: Two-Tank System

We demonstrate our solution approach with simulations
carried out on the control of a two-tank system [46]. The
system is described by x(k + 1) = Ax(k) + Bu(k) + w(k),
where x(k) = [x1(k), x2(k)]T , u(k), and w(k) are state vari-
ables representing water levels, control input representing the
inflow rate, and stochastic disturbance at time k, respectively.
The defender transmits a control signal uC(k) to the actuator
through a wireless communication channel. We set the initial
levels in the two tanks to x(0) = [0.11, 0.35]T .

The system is subject to an attack initiated by an intelligent
adversary. The control signal u(k) received by the actuator is
compromised as u(k) = uC(k) + uA(k) due to the actuator
attack, where uC(k) and uA(k) correspond to signals sent by
the defender and adversary [47]. Due to the timing attack, the
time-stamped measurement {x, k} indicating the water level
at time k is manipulated as {x, k′}, where k′ is the time stamp
that has been modified by the adversary.

The state space (water levels in tanks) is partitioned into 49
rectangular regions, i.e., the water level in each tank is divided
into 7 discrete intervals with discretization resolution 0.1, each
representing a state of the DSG. The control and adversary
signals are in the ranges [0, 5 × 10−4] and [0, 2 × 10−4], re-
spectively [46]. Control and adversary action sets are obtained
by discretization of these sets of inputs. The disturbance w(k)
is zero mean i.i.d. Gaussian with covariance 1.5× 10−5. The
transition and duration probabilities are obtained by Algorithm
1. This procedure took about 18 seconds.

The system needs to satisfy an MITL specification given
by ϕ = 3[0,5]

(∨
z

∧
i∈{1,2}(z ≤ xi ≤ z + 0.1)

)
, where z ∈

{0.3, 0.4, 0.5, 0.6}. That is, before time k = 5, the water levels
in the two tanks should lie in the same discretization interval
and are each required to be no less than 0.3. If the MITL
specification is satisfied, the difference between water levels
in the two tanks should be at most 0.1.

We compare our FSC-based policy with a baseline. The
baseline does not account for the presence of the adversary.
The results of our experiments are presented in Fig. 3. The
baseline is evaluated for scenarios where the adversary is
present and the adversary is absent. When there is no adver-
sary, we observe that the baseline policy satisfies the MITL
objective (the water levels in the tanks are 0.35 and 0.30,
and the difference in the levels is 0.05). However, when this
policy is used in the presence of the adversary, we observe
that the water level in the second tank falls below 0.3, and
the difference in the levels exceeds 0.1, thereby violating the
specification. This necessitates the use of an alternative control
strategy for systems under attacks. Using our approach, we
observe that the water levels in the two tanks are 0.33 and
0.30, and the difference in the levels is 0.03. Moreover, these
water levels are attained before the required deadline of k = 5,
which satisfies the MITL objective.

B. Proofs

Proof of Proposition 1. For any transition in P ,
Pr ((s′, q′,v′)|(s, q,v), uC , uA) ∈ [0, 1]. This is due to the
fact that TG(δ|s, uC , uA, s′) ∈ [0, 1] and PrG(s′|s, uC , uA) ∈
[0, 1]. Moreover, i) Pr ((s′, q′,v′)|(s, q,v), uC , uA) = 0
iff TG(δ|s, uC , uA, s′) = 0, or PrG(s′|s, uC , uA) = 0,
or both; ii) Pr ((s′, q′,v′)|(s, q,v), uC , uA) = 1 iff
TG(δ|s, uC , uA, s′) = 1 and PrG(s′|s, uC , uA) = 1. Let



Iδ(q,v),(q′,v′)
:= 1((q,v)

L(s′),δ−−−−→ (q′,v′)) be an indicator
function that takes value 1 if its argument is true, and 0
otherwise. Then, Equation (4) can be rewritten as:∑

(s′,q′,v′)

TG(δ|s, uC , uA, s′)PrG(s′|s, uC , uA) (9)

=
∑
s′∈SG

∑
δ∈∆

TG(δ|s, uC , uA, s′)Iδ(q,v),(q′,v′)

PrG(s′|s, uC , uA) (10)
= 1, (11)

Equation (9) holds by substituting from Equation
(3), Equation (10) follows from Definition 6 and
PrG(s′|s, uC , uA) > 0, and Equation (11) results
by observing that

∑
δ∈∆ TG(δ|s, uC , uA, s′) = 1 and∑

s′∈SG PrG(s′|s, uC , uA) = 1.

Proof of Proposition 2. We prove the correctness of Algo-
rithm 2 by first showing that no state or control action that
belongs to a GEC will be removed. Consider a GEC (N,D).

If there exists a state s and control action uC ∈ UC(s)
such that Pr(s′|s, uC , uA) > 0 for all uA and s′ ∈ N , then
according to lines 10 - 17 of Algorithm 2, state s and control
action uC will not be removed since D(s) 6= ∅. Therefore,
Algorithm 2 never removes states or actions from a GEC.

On the other hand, if there is a state s ∈ N such that
D(s) = ∅, then s will be removed (lines 10 - 17 of Algorithm
2). Moreover, any state that can be steered to s under some
adversary action uA will also be removed (lines 18 - 26).
Thus, any state or action that does not belong to GEC will be
removed by Algorithm 2, and the remaining states in (N,D)
after executions from lines 10 - 26 will form the GEC.

Combining the arguments above, we have that Algorithm 2
computes a set of GECs {(Ci, Di)}i≥1 such that any GEC is
contained by some (Ci, Di). Then by Definition 10 and line 35
of Algorithm 2, we have that the result returned by Algorithm
2 is the set of GAMECs.

Proof of Lemma 2. Given a control policy µ, the GDSG Z
is reduced to an MDP, M. Then, the composition of Mµ

corresponds to a value iteration on M. The convergence of
Mµ can be shown following the approach in [48].

Next, we show that the sequence obtained by composing M
is bounded and monotone. We observe that MQ(s) is a convex
combinations of all the neighboring states of s. Moreover,
Q(s) ∈ [0, 1] for all s, and is therefore bounded. We show that
the sequence of value vectors is monotonically non-decreasing
by induction. Define M−1Q := 0, and M0Q(s) = 0 for
s /∈ E , and M0Q(s) = 1 for s ∈ E . Then, M−1Q ≤ M0Q.
Suppose the sequence of value vectors is monotonically non-
decreasing up to iteration k. We have

Mk+1Q(s)

≥min
τ,ξ

{ ∑
uC∈UC

∑
uA∈UA

∑
(s′,q′,v′,y)∈SZ

τ((s, q,v, y), uA)Q((s′, q′,v′, y′))

PrZ ((s′, q′,v′, y′)|(s, q,v, y), uC , uA)

}
(12)

≥min
τ,ξ

{ ∑
uC∈UC

∑
uA∈UA

∑
(s′,q′,v′,y)∈SZ

τ((s, q,v, y), uA)Q((s′, q′,v′, y′))

Prk−1
Z ((s′, q′,v′, y′)|(s, q,v, y), uC , uA)

}
(13)

=MkQ(s), (14)

where Prk−1
Z ((s′, q′,v′, y′)|(s, q,v, y), uC , uA) is obtained

by substituting µk−1(g′, uC |g,v) into (6), inequality (12)
holds since Mk+1Q corresponds to a maximizing policy µk+1,
(13) holds by induction, and (14) follows from the construction
of µk. Therefore, Qk+1 ≥ Qk, implying the sequence of value
vectors is monotonically non-decreasing. From the bounded-
ness and monotonocity of MQ, the sequence is a Cauchy
sequence that converges to a value Q∗.

Proof of Proposition 3. We prove by contradiction. Let Q be
a value vector associated with the control policies in SE but
Equation (8) does not hold. Let Q∗ be the probability of
satisfying ϕ under control policies in SE. Since Q is the
value obtained for a control policy µ and adversary policies
(τ, ξ) that are the best responses to µ, Q = MµQ ≤ MQ.
Composing Mµ and M k times and as k →∞, we have

Q = lim
k→∞

Mk
µQ ≤ lim

k→∞
MkQ = Q∗,

where the first and last equalities hold by Lemma 2, and the
inequality follows from definitions of M and Mµ. If Q < Q∗,
we have that the policy µ is not in SE. If Q = Q∗, then
Equation (8) holds, which contradicts the hypothesis.

Now, suppose there exist value vectors Q and Q′ such that
Q 6= Q′ and their corresponding control policies µ and µ′

are both in SE. By assumption, we have Q = MQ ≥ M ′µQ.
Composing both sides of the inequality k times and letting
k →∞, from Lemma 2, Q∗ = lim

k→∞
MkQ ≥ lim

k→∞
Mk
µ′Q =

Q′. If Q > Q′, we have that policy µ′ is not in SE. Thus, we
must have Q = Q′ so that the policies µ and µ′ are both in
SE, which contradicts our initial assumption.

Proof of Theorem 2. We prove convergence by by showing
that the sequence of value vectors computed in Algorithm
3 is bounded and monotonically non-decreasing. Line 4 of
Algorithm 3 serves as our induction base, i.e., Q1 ≥ Q0.
Line 8 of Algorithm 3 is equivalent to computing Qk+1 as
Qk+1 = MQk. From Lemma 2, Qk+1 ≥ Qk. Convergence
follows from the Monotone Convergence theorem [49]. That
the control policy is within an ε-neighborhood of SE follows
from Line 5 of Algorithm 3.


