A Vision for Automotive CPS

Raj Rajkumar
Professor, Electrical and Computer Engineering & Robotics Institute
Carnegie Mellon University
raj@ece.cmu.edu
http://www.ece.cmu.edu/~raj
Automobiles and Societal Impact

• About 40,000 people are killed and 3 million people are injured every year in the US alone in automobile accidents.

• Globally,
 – Road traffic injuries is **the leading killer** of people aged 10 to 24.
 – About **400,000 automobile fatalities** every year.
 – **Annual cost** of road injuries in medical care, disability and property damage is **$518 billion**.

• Traffic congestion:
 – The average US driver spends **a week stuck in traffic per year**.
 – In the **EU, 80 billion euros wasted per year** due to traffic congestion.

• Independence?
 – For women, **10 years of transportation dependency** (95 - 85)
CMU’s Tartan Racing Wins Autonomous Driving Urban Challenge
Intermediate Milestones

• Pedestrian, child, bicyclist or animal **warnings**
• Part-time chauffeuring
 – Virtual Valet
 – Highway Chauffeur
 – Traffic jam Chauffeur
• Dependable, safe and real-time embedded **computing** and communications
• **Cables** (tend to) **go away**
What’s Ahead?

• **External**: Complexity and *uncertainty in the environment*
 – Weather, lighting, and road conditions; construction; accidents; and obsolete information.

• **Internal**: *Online and safe recovery* from failures of sensors, actuators, computing or communications.
 – Sensors
 • Calibration, wear and tear, failures.
 • Occasional loss of GPS

• **Vehicular Networks**
 – communicate securely and coordinate carefully

• **Societal acceptance**
 – Reliability, cost and maintenance

• **Legal** implications

• **Incremental** deployment
Research Challenges

- **Robust perception** of a continually changing world
 - Deal with exceptions
- **Know how to behave** safely under all conditions
- Detect, isolate and **recover from failures** of sensors, actuators, computing and communications
- Diagnostics and **prognostics**
- **Verification & validation** not just of the software but of the entire system
- **Cost-effective** transducers
Broader Implications

- If a car can drive itself in relatively unstructured and uncontrolled environments and be safe,
 - **Rail**: “cars” on well-defined rails (“railroads”) with different physical dynamics
 - **Aviation**: A2A and A2I (A2X ~ V2X)
 - **Autonomous Mobile Entities**
 - Assisted living for seniors, young, the busy, the bored at home
 - Healthcare: mobile and infrastructural entities that understand, alert, alleviate and aid