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Advances in embedded system software, including event and data based computation models, 
high-level simulation and analysis, concurrent programming concepts, and real time scheduling, 
can take decades to have a significant impact on practice. A key barrier to adoption of new 
techniques is the tendency for engineers to fall back to their first-learned techniques. Such 
tendencies are ubiquitous, and explains in part why, for example, soda and fast food companies 
pay American high-schools to allow on-campus sales (thus increasing the odds that those students 
will fall back to consuming those products as adults), as well as in engineers preferring the text 
editors, operating systems, and programming languages learned in college. More importantly, the 
entire perspective of software development formed in college tends to serve as the means by which 
an engineer understands and assimilates future techniques; changing that perspective can take 
many years. For example, early introduction of objects via object-oriented programming can, some 
argue, encourage engineers to give more importance to organization than to algorithms and thus 
enhance the ability to build large complex software projects.  
 
The present introduction of programming with an emphasis on data-oriented languages like C, 
C++, or Java, without a concept of time or of computation models, inhibits adoption of key 
advances in embedded system software. Algorithm-oriented or object-oriented programming does 
not present time as a first class system aspect, whereas in cyber-physical embedded computing 
systems, time is perhaps the most important aspect. While many advances for cyber-physical 
software will be proposed and made in the coming years, their adoption will be hampered if the 
proper foundation for their adoption is not built during the teaching of software development to 
engineering students. Adoption of advances will continue to be limited to highly-specialized 
industry sub-groups who invest tremendous resources into training their engineers to utilize 
sophisticated embedded software techniques.  
 
We believe that explicit time management is a fundamental concept that should be taught early in a 
computing curriculum as part of a programming approach we refer to as time-oriented 
programming. Such management can be achieved via a computation model of synchronous state 
machines, which can be captured in state machine languages or in more common languages like C, 
C++, or Java. Some claim that such concepts are too advanced for young students. We have found 
instead that, with proper abstractions (as is done for all programming), the concepts can be easily 
understood by young students, and that the result is a solid understanding of how to write real-time 
programs, with or without an RTOS, and an understanding that computation models are far more 
significant than programming languages.  
 
The first abstraction involves a virtual microcontroller – an exceptionally clean microprocessor 
with direct access to I/O pins and with a built-in timer plus ISR functionality. The student 
immediately sees how, with an ISR called automatically every X milliseconds as configured by the 
programmer, accurate time-based input and output can be achieved in C code.  
 



The second abstraction is the synchronous state machine. It is easy to show the limitations of the 
sequential program model (used by C, C++, and Java) for creating time-oriented code. In contrast, 
state machines with a known clock period (which is entirely distinct from a microprocessor’s clock 
period), which we call synchronous state machines, naturally express timed behavior. Each state 
performs its action once and then the system stays in that state until the next clock tick, when 
transitions are evaluated and one of them taken. Declaration of variables of varying data types, 
sequential-program instructions used for actions (using the combinational restrictions for 
sequential code as is common in hardware description language approaches) and complex 
conditions, together mean that synchronous state machines are on par with common programming 
languages like C with respect to expressivity. Additions to the transition constructs, akin to the 
branching constructions in Algorithm State Machines whose roots lie in digital design, can further 
improve expressivity while maintaining the synchronous state functionality. To obtain specific 
timing behavior (such as holding an output signal for a particular time, or repeating an action at a 
particular rate), the developer adjusts the state machine’s period and/or introduces a variable to 
maintain counts as certain states execute and hence to count clock ticks—in other words, the 
developer explicitly manages time in his/her description. Such explicit time management cultivates 
a perspective of time as a first class system aspect. Multiple concurrent synchronous state 
machines can be synchronized by using the same clock period, or can utilize asynchronous 
communication mechanisms for communication.  
 
These abstractions must be implemented to realize real systems. The virtual microcontroller can be 
emulated on a wide variety of physical platforms, including any of many microcontrollers or  
FPGAs—we have created several such mappings. Synchronous state machines can be translated to 
C running on the virtual microcontroller, either automatically, or manually using straightforward 
templates. The net result is that a synchronous state machine can execute on a precisely-timed 
physical platform with predictable and consistent results. Multiple concurrent synchronous state 
machines can be implemented on a single virtual microcontroller as long as the worst case set of 
states’ actions can be completely executed in the given clock period, using traditional WCET and 
state machine analysis techniques. Eventually, various timing simplifications can be introduced, 
ultimately leading to timed threading or process models, and providing a perspective better able to 
absorb additional temporal ideas such as timing specifications, temporal constraint or assertion 
languages, etc.  
 
A third abstraction involves interfacing with sensors. Sensor interfacing typically involves low-
level electronics details that detract from more important issues, while also requiring continual 
data from the sensor (e.g., a button wires to a microcontroller). A solution is to provide a wrapper 
around even the most basic sensors, such that each sensor communicates via packets. This is 
already done for wireless sensors, and something similar is done for sensors on buses wherein 
sensors are polled or transmit data at a fixed rate, but generally is not the norm for sensors directly 
connected to a microcontroller’s pins. Packet based communication enables sensors to be shut 
down between transmissions to save power. A formalism to translate packet data to a continuous-
time abstraction of the sensor data (0/1 or integer data) is needed, which should include error data 
as normal data to be expected, and thus for which behavior must be explicitly defined. The virtual 
microcontroller can be extended to communication via packets over each of its pins, enabling easy 
plug and play functionality of sensors and the microcontroller, enhancing the time-oriented 
educational experience by providing for richer functionality.   
 



While the typical research position for this CPS program likely does not focus on education, after 
two decades of conducting research, I believe that a focus on education ultimately can provide a 
significant return on investment, leading to a new cadre of engineers having a solid perspective 
and foundation with which to solve new CPS problems and utilize new CPS solutions. It is an 
essential, even prerequisite, piece of the puzzle that is often overlooked.   
 
Nevertheless, the concepts described above could conceivably find their way into forming basic 
implementation platforms in real CPS systems, such as in cars or trains. The advantage would be 
straightforward analyzable programs with clear timed behavior, at the expense of some cost 
overhead due to the abstraction layers. However, virtualization is becoming more common even in 
cost constrained systems, and thus physical realization of the above concepts is conceivable.  
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