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Abstract

Securing Network Services for Wireless Ad Hoc and Sensor Networks

Loukas Lazos

Chair of the Supervisory Committee:
Professor Radha Poovendran

Electrical Engineering

Wireless ad hoc and sensor networks are envisioned to be self-organized, self-healing

and autonomous networks, deployed when no fixed infrastructure is either feasible or cost-

effective. However, the sucessful commercialization of such networks depends on the imple-

mentation of secure network services, for supporting secure applications.

In this dissertation, we investigate the following important problems for the wireless ad

hoc environment. We address the problem of group access control for secure group commu-

nications in ad hoc networks. Compared to the existing approaches for infrastructure-based

networks, we show that in the ad hoc case, the network topology must be taken into account

in the design of a resource-efficient key management schemes. To conserve energy, we incor-

porate the node location, the “power proximity” between nodes, the path loss characteristics

of the medium and the routing topology, in the key management scheme design.

Furthermore, we address the problem of secure localization, that is, the problem of en-

abling the nodes of an ad hoc network to determine their location, in the presence of adver-

saries. We propose a novel range-independent localization algorithm called SeRLoc that is

well suited in resource-constrained environments such as Wireless Sensor Networks (WSN).

Furthermore we propose a high-resolution localization algorithm called HiRLoc, that im-

proves the accuracy of SeRLoc, with no extra hardware requirements, while it provides the

same robustness against attacks.

We also investigate the wormhole attack in ad hoc networks, an attack that can disrupt





vital network functions. We present a graph theoretic framework for modeling wormholes

and derive the necessary and sufficient conditions for detecting and defending against worm-

hole attacks. Based on our framework, we show that any candidate solution preventing

wormholes should satisfy our framework, and propose a cryptographic mechanism based on

local broadcast keys that prevents wormholes.

Finally, we study two fundamental problems on the quantification of the performance

of WSN. We address the problem of coverage in stochastically deployed WSN and the

problem of detecting mobile targets crossing the deployment region. Using tools from Inte-

gral Geometry and Geometric Probability we provide analytical formulas for heterogeneous

WSN, where sensors do not have identical sensing capabilities.
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Chapter 1

INTRODUCTION

The ability to manufacture low-cost wireless-embedded devices, has facilitated the de-

ployment of a large number of those devices, interconnected in an ad hoc networking mode.

Wireless ad hoc networks, as opposed to cellular or wireless LAN networks, do not rely on

a pre-deployed network infrastructure. Communication is realized via multi-hop message

forwarding, with the intermediate network nodes being responsible for relaying traffic from

the source to the destination. Hence, ad hoc networks appear as the solution to numerous

applications where cost, time, or space do not allow the deployment of an infrastructure-

based network. As an example, ad hoc networks are expected to significantly facilitate

civilian applications such as disaster relief and emergency rescue operations, patient moni-

toring and drug inventory management, home networking, as well as military applications

such as surveillance networks, target monitoring and real-time information distribution [1].

While ad hoc networks offer significant advantages in terms of flexibility and cost, they

pose great challenges in realizing secure communications via attack-resistant network func-

tions. Oftentimes, ad hoc networks operate untethered in hostile environments in which

case, an adversary may eavesdrop communications, attempt to inject false messages into

the network, impersonate valid network nodes, or compromise nodes causing them to mis-

behave. Given that ad hoc networks rely on the cooperation principle, attacks on even a

few network nodes can have a significant impact in the overall network performance.

Furthermore, the wireless devices operate on limited battery capacity and, hence, are

constrained in both computational power and communication capabilities. Hence, secu-

rity mechanisms developed for wired networks cannot always be applied to the resource

constrained ad hoc networks. As an example, public key cryptography solutions cannot

be adopted in sensor networks, due to the computationally intensive exponentiations re-
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quired [20]. While computational constraints limit the range of cryptographic mechanism

that can be employed, the energy expenditure due to communication has been noted as

the dominant factor in battery depletion [97]. In fact, studies in [97] show that the ratio

of the energy required to transmit one bit of information compared to the energy required

to execute one instruction is on the order of 1,500 to 2,200 for the sensors in [105]. To

extend the lifetime of the devices, it is critical that both the communication model and the

algorithms used, reduce the energy requirements for communication.

If network nodes are equipped with omnidirectional antennae, the broadcast communi-

cation model conserves significant amounts of energy when one message must by delivered

to multiple recipients. A single transmission is sufficient to deliver the same message to

any receiver within the sender’s communication range. However, while group communica-

tions benefit in terms of energy efficiency from the broadcast nature of the communication

medium, anyone within the communication range of the sender can eavesdrop the broad-

casted data. Hence, one needs to develop mechanisms that will ensure that only authorized

parties have access to the broadcasted data, at any time.

While access control protects the confidentiality of the data transmitted, securing the

communication medium does not guarantee the uninterrupted provision of network service.

There have been numerous side channel attacks reported in the literature [32, 48, 52, 85,

93] that have been shown to degrade the network functionality and interrupt the network

communications. As an example, an adversary may attempt to disrupt the routing service

in order to prevent the communication among the network nodes [52, 85]. Routing can be

disrupted by launching a variety of attacks [52, 64, 85], that are not necessarily related to

routing. For instance, by spoofing the locations of the network nodes, an adversary can

cause a significant disruption of routing that relies on geographical forwarding [64]. Hence,

security must be considered at all layers of the network, in order to provide the required

fault tolerance to attacks. We now describe the problems investigated in this dissertation.

1.1 Problems Addressed and Contributions

In this dissertation, we investigate five challenging problems in wireless ad hoc networks.

We initially study the problem of energy efficient key management for secure multicast in
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wireless ad hoc networks. We then study the problem of secure location estimation for ad hoc

and sensor networks. Furthermore, we address the problem of the wormhole attack [48,52],

a type of attack that is easy to mount and difficult to detect [48]. To facilitate the analytical

evaluation of the security level achieved using our methods, we also investigate the problem

of stochastic coverage in heterogeneous sensor networks. Finally, we address the problem

of detecting mobile targets in heterogeneous sensor networks.

1.1.1 Resource-Effcient Group Key Management for Secure Multicast in Ad Hoc Networks

As group-oriented services become the focal point of ad hoc network applications, secur-

ing the group communications becomes a default requirement. Group applications such as

broadcast-on-demand, teleconferecing, telemedicine, pay-per-view, are expected to migrate

from the wired networks to the wireless ad-hoc networks. Due to the anticipated size of

such networks and the limited energy resources of the wireless devices, securing group com-

munications requires the availability of an energy-efficient and scalable key management

system, that can accommodate the dynamics of the communication group. Group member-

ship is expected to be highly dynamic due to users subscribing and unsubscribing from the

multicast services, as well as intermittent connectivity due to the varying network topology.

In this dissertation, we address the problem of key management for secure multicast

communications in wireless ad hoc networks, that is, the energy-efficient distribution and

maintenance of cryptographic quantities to the members of a communication group called,

the multicast group, so that access to group data is restricted only to valid group members,

at any time. We formulate the problem of key management as an optimization problem

and study its complexity under three important network resources; storage, bandwidth

and energy expenditure. While optimal solutions exist in terms of storage and number of

messages transmitted by the entity managing the group membership, also known as the

Group Controller (GC), we show that finding the optimal solution with respect to the

network bandwidth and energy expenditure requirements, is an NP-hard problem.

We also show that optimization of storage requires bandwidth and energy resource that

grow exponentially with the group size and, hence, no universal solution exists that would
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simultaneously optimize all three resources. Hence, we study tree-based key structures

that are known to be scalable in both storage and bandwidth [52, 90, 123], and attempt to

optimize these structures with respect to energy expenditure.

We show that the energy expended by the network to distribute cryptographic quanti-

ties depends both on the network topology and path-loss parameters of the medium, and

introduce a new metric called average key update energy to evaluate the energy efficiency

of key management schemes. To reduce the energy expended by the ad hoc network to

perform key management, we devise a topology dependent key management scheme that

exploits node location information to built a key-tree hierarchy, in the absence of any other

information. When routing information is available, we first propose a simple heuristic al-

gorithm that takes into account the energy required to deliver a message to each member

of the communication group. We illustrate the impact of different routing strategies on the

energy efficiency of the key management schemes. Finally, we propose a cross-layer design

based on network flows, that explicitly takes into account the flow of the information from

the GC to the members of the communication group, and show that its performance is

within a bound from the optimal solution. Our cross-layer designs for key management lead

to a significant reduction in energy expenditure compared to previous approaches that did

not take into account the network topology [21,111,112].

1.1.2 Secure Location Estimation in Wireless Ad Hoc and Sensor Networks

Wireless ad hoc and sensor networks primarily provide network services, such as environ-

ment monitoring, and/or user communication. While communication among users does not

always require knowledge of location information, in environmental monitoring application

collected data need to be correlated with the geographical position where the information

is recorded. As an example, the report for an overheated room from a sensor si is useful

only when the report is associated with the location (xi, yi) of si. Given the location of the

sensor, one can react either using the network itself (actuation networks), or using some

external intervention method. Hence, nodes need to be aware of their positions in order to

stamp the reported events with the location where the events occurred. Finally, location
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is assumed to be known in many ad hoc network protocols such as the key management

scheme we develop in this dissertation, or geographical routing [6].

Since ad hoc networks may be deployed in a non-deterministic way, the position of the

nodes cannot be known a priori. Hence, nodes need to estimate their location via a process

known as the location estimation process or the localization process [4, 15, 31, 44, 45, 81, 83,

84,94, 104,106,117]. The use of the widely available Global Positioning System (GPS) [45]

may not be feasible, since the network devices are envisioned to be low-cost and have a

small form factor. Furthermore, even if GPS-enabled devices are assumed, GPS cannot be

employed in indoor environments. Hence, a number of techniques have been proposed for

node localization in ad hoc networks that do not make use of the GPS, except for a small

number of reference points [4, 15, 44, 81, 83, 94, 104, 117]. These techniques investigate the

problem of location estimation in a non-adversarial setting.

However, ad hoc networks may be deployed in hostile environments where nodes operate

untethered. The network becomes vulnerable to conventional and new attacks [48, 52, 85]

aimed at interrupting the functionality of location-aware applications and network functions

by exploiting the vulnerabilities of the location estimation process. Hence, one needs to

ensure that the location of nodes is robustly estimated in the presence of adversaries.

In this dissertation, we investigate the problem of secure location estimation in the pres-

ence of adversaries. We propose SeRLoc, a novel range-independent localization scheme

for wireless ad hoc networks based on a two-tier network architecture, that achieves de-

centralized, resource-efficient robust node localization, and can accommodate limited node

mobility. We illustrate well known security threats against the localization process, such as

the wormhole attack [48, 85], the Sybil attack [32, 82], and compromise of network entities,

and provide mechanisms that allow each node to determine its location even in the presence

of those threats. Furthermore, we analytically evaluate the probability of success for each

type of attack using spatial statistics theory [29]. Based on our performance evaluation, we

show that SeRLoc localizes nodes with higher accuracy than state-of-the-art decentralized

range-independent localization schemes [15,44,81,83], and is robust against varying sources

of error. We also present HiRLoc, a high resolution localization algorithm that improves

the accuracy of SeRLoc, while not degrading its robustness to attacks.
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1.1.3 Graph Theoretic Framework for Preventing the Wormhole Attack in Ad Hoc Net-

works

One severe attack in ad hoc networks, able to disrupt vital network function such as the

location estimation process [63–65], routing [48,52,85], and the data aggregation process [96]

is the wormhole attack. In the wormhole attack, the adversary establishes a low-latency

unidirectional or bi-directional link, such as a wired or long-range wireless link, between

two points in the network that are not within communication range of each other. The

attacker then records one or more messages at one end of the link, tunnels them via the link

to the other end, and replays them into the network in a timely manner. The wormhole

attack is easily implemented and particularly challenging to detect, since it does not require

breach of the authenticity and confidentiality of communication, or the compromise of any

host.

In this dissertation, we present a graph theoretic framework for modeling wormhole

links and derive the necessary and sufficient conditions for detecting and defending against

wormhole attacks. Based on our framework, we show that any candidate solution preventing

wormholes should construct a communication graph that is a subgraph of the geometric

graph defined by the radio range of the network nodes. Making use of our framework,

we propose a cryptographic mechanism based on local broadcast keys in order to prevent

wormholes. Our solution does not need time synchronization or time measurement, requires

only a small fraction of the nodes to know their location, and is decentralized. Hence, it is

suitable for networks with the most stringent constraints such as ad hoc networks.

1.1.4 Stochastic Coverage for Heterogeneous Sensor Networks

Sensors networks may be deployed to monitor physical properties such as temperature,

humidity, air quality, or track the motion of objects moving within the FoI. The availability

of monitoring information can be measured by computing the coverage of the FoI, achieved

by the sensor network deployment. Coverage quantifies how well a FoI is monitored1. The

1Once the information has been collected by the sensors, an additional mechanism known as data aggre-
gation [56], is required to timely communicate the available information for processing.
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coverage problem has been studied under different objectives, depending on the requirements

and constraints of the applications. If the location of the deployed sensors can be pre-

selected, the coverage problem reduces to the problem of finding the optimal placement for

sensors such that a target coverage is met [51,92].

However, for large sensor networks, it is impractical to perform deterministic coverage

of the FoI, since the number of sensors that need to be placed is often prohibitively large.

Instead, sensors are deployed in the field of interest according to a pre-selected distribution.

For stochastically deployed sensor networks, the coverage problem quantifies how well the

FoI is monitored when a number of sensors is deployed according to a known distribution.

This problem is also known as the stochastic coverage problem [55,72,75,78,125].

In this dissertation, we analyze the following stochastic coverage problem. Given a planar

FoI and N sensors deployed according to a known distribution, compute the fraction of

the FoI that is covered by at least k sensors (k ≥ 1). The problem can also be rephrased

as, given a FoI and a sensor distribution, how many sensors must be deployed in order for

every point in the field of interest to be covered by at least k sensors with a probability p (k-

coverage problem) [125]. We formulate the stochastic coverage problem as a set intersection

problem, arising in Integral geometry and Geometric Probability [102]. Our formulation

allows us to derive analytical coverage expressions even when the sensors have heterogeneous

sensing capabilities and are deployed according to any stochastic distribution.

1.1.5 Detecting Mobile Targets in Heterogeneous Sensor Networks

Target detection and field surveillance are among the most prominent applications of Wire-

less Sensor Networks (WSN). The quality of detection achieved by the deployment of a

WSN can be quantified by evaluating the probability of detecting a mobile target cross-

ing an FoI. For the purposes of target detection, a smaller number of sensors needs to be

deployed compared to the number of nodes that must be deployed to achieve coverage of

the FoI, since sensors have the opportunity to detect a mobile target along its trajectory

within the FoI.

In this dissertation, we analytically evaluate the target detection probability when N
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sensors are deployed to monitor a FoI. We map the target detection problem under both

stochastic and deterministic sensor deployment, to a line-set intersection problem, and derive

analytic formulas using tools from Integral Geometry and Geometric Probability. Compared

to previous works, our formulation allows us to consider a heterogeneous sensing model,

where each sensor can have a different and arbitrary sensing area.

For stochastic sensor deployment, we also analytically evaluate the mean time until a

target is first detected, a critical measure for timely detection. For the deterministic de-

ployment case, we show that the probability of detecting a target increases as the distance

among the sensors monitoring the FoI increases. We also show that the number of terms re-

quired to compute the placement of sensors that maximizes the target detection probability,

grows exponentially with the number of sensors that monitor the FoI.

1.2 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we investigate the problem

of key management for secure group communication in wireless ad hoc networks. In Chapter

3, we address the problem of secure location estimation in wireless ad hoc and sensor

networks. In Chapter 4, we present a graph theoretic formulation of the wormhole attack in

ad hoc networks, and propose a distributed solution. In Chapter 5, we address the problem

of stochastic coverage in heterogeneous sensor networks. In Chapter 6, we analytically

characterize the detection probability of mobile targets in heterogeneous sensor networks.

In Chapter 7, we present the summary of our contributions and future research directions.
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Chapter 2

RESOURCE-EFFICIENT GROUP KEY MANAGEMENT FOR
SECURE MULTICAST IN AD HOC NETWORKS

Many group applications already implemented in wired networks will be extended to

wireless ad hoc networks. As an example, video-on-demand, teleconferencing, telemedicine,

are envisioned to be realized in the wireless ad hoc environment. Critical requirements for

the commercial success of such group applications is the provision of security and resource-

efficiency. Multicast is the most suitable model for reducing the incurring network load when

traffic needs to be securely delivered from a single authorized sender to a large group of valid

receivers. Provision of security for multicast sessions can be realized through encrypting

the session traffic with cryptographic keys [17, 120, 123]. All multicast members must hold

valid keys in order to be able to decrypt the received information.

While multicasting in group communications provides both energy and bandwidth ef-

ficiency, access control policies are necessary in order to restrict access to the contents of

multicast transmissions to valid members of the Multicast Group (MG). A bandwidth and

computationally efficient solution to this problem uses a single symmetric cryptographic

key, called the Session Encryption Key (SEK), that is shared by the multicast source and

all members of the MG [17,120,123]. Using the SEK, the sender needs to perform only one

encryption and one transmission to send data to the MG, while the MG members need

only perform a single decryption to receive the data.

In the case where the MG is dynamic, the valid members of MG need to be updated

with a new SEK after every membership change so that new members do not gain access

to past data (backward secrecy [17, 120, 123]), and deleted members do not access future

transmissions (forward secrecy [17, 120, 123]). In order to update the SEK, additional keys

called Key Encryption Keys (KEKs) are used by the entity managing the cryptographic

keys, known as the Group Controller (GC). Hence, the problem of controlling access to the
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multicast data reduces to the problem of managing and distributing the SEK and KEKs

to the members of MG. This problem is known as the Key Management Problem or Key

Distribution Problem (KDP) [17,120,123].

Previous research on the KDP in wired networks [17,120,123] mainly focused on design-

ing scalable systems that reduce costs in terms of key storage at each member, and number

of messages the GC has to transmit to update keys after a membership change. Through

the use of tree-based key structures, member key storage and GC transmissions have been

reduced to the order of O(log |MG|) [17,120,123].

While key storage and sender communication cost are important performance metrics

even in wireless ad-hoc networks, total energy expended by the network, and total commu-

nication overhead, are critical parameters for the viability and operability of many network

services, including the secure multicast service, when the network devices are resource-

limited. However, the energy and total communication overhead were not a major concern

in wired networks. Thus, the solutions proposed for the KDP in wired networks [17,120,123],

are not sufficient for wireless ad-hoc networks.

2.1 Our Contributions

We make the observation that, for the wireless ad hoc network environment, the energy

expenditure and bandwidth requirement for distributing messages from a single source to

multiple receivers (physical layer), depends upon the network topology (network layer).

Hence, one can distribute cryptographic keys in a resource efficient way (application layer)

by employing a cross-layer design. The Figure 2.1 shows the type of cross-layer interaction

used in the design of the key management scheme.

We examine the KDP under four metrics, each of which involves optimizing one of

following network resources: (a) member key storage, (b) GC transmissions, (c) number

of messages sent by the network to update the SEK and related KEKs, which we refer to

as MG update messages, and (d) the energy expended by the network for delivering the

update messages to valid members of MG after a member deletion, which we refer to as

average update energy cost. We formulate the relevant optimization problem for each metric,

and provide the optimal solution when possible. We show that metrics (a) and (b) do not
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Figure 2.1: Schematic of the type of cross-layer interaction that is used in our energy-efficient
key management scheme.

depend on the network topology and unique solutions to the KDP can be obtained that

are equivalent to the optimal solutions provided for wired networks [17, 120, 123]. Metrics

(c) and (d), however, are directly related to the network topology and depend on both the

network and physical layer.

We prove that finding the key assignment structure that minimizes the MG update

messages is an NP-complete problem. We further prove that finding the key assignment

structure that minimizes update energy cost for rekeying is also an NP-complete problem.

In addition, we show that no solution can concurrently optimize all four metrics and hence,

there exists a tradeoff among them. Hence, we focus on finding a heuristic that bounds

member key storage and GC transmissions, and at the same time provides suboptimal

performance in terms of MG update messages and update energy cost.

Our proposed heuristics rely on the key-tree structures used in wired networks [17,120,

123] however, they take the network topology into account to reduce the average update

energy cost and bandwidth requirements. We study the properties of the average update

energy cost in terms of the network size, key tree degree and medium path loss model, and

derive an upper bound of the metric in terms of these parameters. We optimize the degree

of the key tree to derive the lowest upper bound.

Observing that energy savings occur when an identical message is delivered to a set of

nodes reached by common routing paths, we define and use the idea of “power proximity”

to group nodes in the key tree. We also make the observation that when the transmission

medium is homogeneous with constant attenuation factor, the “power proximity” property

is a monotonically increasing mapping to physical proximity. Hence, we replace “power
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proximity” with physical proximity by using Euclidean distance. When the medium is

heterogeneous, we note that due to varying path loss parameter, “power proximity” is no

longer a monotonic mapping to physical proximity. In this case, we directly incorporate

“power proximity” by considering the transmission power in grouping nodes in the key tree.

We also present an analytical computation of the average update energy when rout-

ing information is available. We develop a simple suboptimal, cross-layer algorithm called

RawKey that considers the node transmission power (physical layer property) and the mul-

ticast routing topology (network layer property) in order to construct an energy-efficient key

management scheme (application layer property). After showing that the cross-layer design

has to make use of underlying broadcast routing, we analyze the impact of recently proposed

multicast routing protocols on the energy expenditure due to key updated communication

overhead. We consider power-efficient multicast routing algorithms such as the Broadcast

Incremental Power (BIP) [122], the Embedded Wireless Multicast Advantage (EWMA) [16],

the Minimum Spanning Tree (MST) [7] and the Shortest Path Routing (SPR) [7].

Finally we propose a heuristic called VP3, that makes use of network flows to build an

energy and bandwidth efficient key assignment structure. We establish performance bounds

for VP3 and through extensive simulations, show that VP3 makes near optimal key assign-

ment decisions. We present the energy and bandwidth efficiency improvement achieved

by VP3 over RawKey. This improvement comes at the expense of increased algorithmic

complexity of O(|MG|2) versus O(|MG|) of RawKey. Finally, we propose On-line VP3, an

O(|MG|) complexity algorithm, that performs dynamic maintenance of the key assignment

structure, by inserting and deleting members without having to rebuild the key assignment

structure after each membership change.

2.2 Network Assumptions and Notation

Network deployment

We assume that the network consists of N multicast members plus the GC, randomly

distributed in a specific area. We consider a single-sender multiple-receiver communication

model. All users are capable of being relay nodes and can collaboratively relay information
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Table 2.1: Notation used for the key distribution problem.

GC : Group Controller
{m}Kl,j

: Message m is encrypted with key Kl,j

MG : Multicast Group
Sl,j(T ) : Set of multicast group members that hold key Kl,j in T
N : Multicast group size
PMi : Total power required to unicast a message from GC to Mi

Mi : ith member of MG
EMi : Total energy required to unicast a message from GC to Mi

T : Key distribution tree
EMi→Mj : Energy expenditure of Mi when transmitting a message to Mj

h : Height of T
ES : Energy cost the GC and MG, when multicasting to group S
d : Degree of T
l : Level of a node in T
A → B : m : A sends message m to B
Kl,j : Key assigned to the jth node at level l in T
R : The multicast routing tree with set of nodes MG

between an origin and destination. We also assume that the network nodes have the ability

to generate and manage cryptographic keys. The nodes of the network are assumed to be

in a fixed location, after their initial placement. We assume that nodes have a mechanism

to acquire their location information via a localization method [4, 15,44,64,65,83,94].

Network initialization

We assume that the network has been successfully initialized and initial cryptographic

quantities for trust establishment (at least pairwise trust) have been distributed [23,33,73]

We further assume that the underlying routing is optimized in order to minimize the total

power required for broadcast. Although it is known that finding the optimal solution for

total minimum power broadcast is NP-complete [16], several heuristics with suboptimal

performance have been proposed in the recent literature [16, 122]. Since our goal is to

design key management algorithms and not protocols, we do not address the MAC layer

implementation of our algorithms.
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Wireless medium and signal transmission

We consider the cases of a homogeneous and heterogeneous medium separately, since the

complexity and inputs of the algorithms that we propose differ depending on the type of the

medium. In the case of the homogeneous medium, we assume that the transmission power

P (di,j) required for establishing a communication link between nodes i and j, is proportional

to a constant exponent (attenuation factor γ) of the distance di,j , i.e. P (di,j) ∝ dγ
i,j .

For simplicity, we set the proportionality constant to be equal to one. An example of a

homogeneous path loss medium is an obstacle-free, open space terrain with Line of Sight

(LOS) transmission. Note that for fixed length messages, transmission power is proportional

to energy expenditure and vice versa.

For a heterogeneous medium, no single path loss model may characterize the signal

transmission in the network deployment region. Even when node locations are relatively

static, path loss attenuation can vary significantly when the network is deployed in moun-

tains, dense foliage, urban region, or inside different floors of a building. In [98], different

path loss models have been presented based on empirical data. Two most common mod-

els with varying path loss for calculating the power attenuation at a distance d from the

transmitter are: (a) Suburban area - A slowly varying environment where the attenuation

loss factor changes slowly across space. (b) Office building - A highly heterogeneous envi-

ronment where the attenuation loss factor changes rapidly over space. We will use these

models in simulations where we illustrate our algorithms.

Antenna model

We assume that omnidirectional antennas are used for transmission and reception of the

signal [122]. The omnidirectionality of the antennas results in a property unique in the

wireless environment known as the wireless broadcast advantage (WBA) [122]. However, in

secure multicast the broadcast advantage can be exploited only if more than one receiver

within the range holds the decryption key. Hence, the use of omnidirectional antenna does

not guarantee WBA when the security is an added feature. Table 2.1 presents the notation

used in the rest of the chapter.
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2.3 Basic Problems on Key Management for Group Communications in Ad
Hoc Networks

In this section, we present four suitable metrics for the KDP in wireless ad-hoc networks.

For each metric, we formulate an optimization problem and present the optimal solution.

We show that the formulations for the member key storage and GC transmission metrics

reduce to equivalent formulations to wired networks and hence, the same solutions apply.

On the other hand, the formulations for the MG transmissions and energy update cost are

specific to wireless networks.

2.3.1 Member Key Storage, k(Mi, Dk)

Let Dk denote a key assignment structure to the members of MG. We want to find the

optimal key assignment structure D∗
k that minimizes the average number of keys assigned

to each member Mi:

D∗
k = arg min

Dk

1
N

N∑

i=1

k(Mi, Dk). (2.1)

Note that in (2.1), the quantity minimized is the average number of keys since key assign-

ment structures need not assign the same number of keys to every member.

Theorem 2.1. The optimal key assignment structure D∗
k that minimizes member key stor-

age can be represented as an N -ary key tree, where the GC shares a unique KEK with each

member, and the SEK with all members of MG [17,120,123].

Proof. Each member needs to hold the SEK in order to decrypt the multicast data. In

addition, the GC needs to be able to securely update the SEK to every member in case

of a membership change. Hence, each member needs to share at least one pairwise KEK

with the GC, to decrypt the SEK update. Thus, the optimal member key storage solution

assigns two keys to each member of MG, and can be represented as an N -ary key tree.

Note that the optimal solution for the member key storage metric is independent of the

nature of the network, wireless or wired. Hence, the solution for wireless networks is the

same as the one provided for wired networks in [17,120,123].
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2.3.2 GC Transmissions, tx(Mi, Dtx)

Let tx(Mi, Dtx) denote the number of messages transmitted by the GC when Mi leaves MG,

and keys are assigned according to the key assignment structure Dtx . We want to find the

optimal D∗
tx that minimizes the average number of key messages transmitted by the GC,

to the members of MG, after Mi leaves the group.

D∗
tx = arg min

Dtx

1
N

N∑

i=1

tx(Mi, Dtx) (2.2)

Note that we minimize the average number of GC transmissions required to rekey MG, to

take into account unbalanced key assignment structures as well.

Theorem 2.2. The optimal key assignment structure D∗
tx for member deletions, can be

obtained by distributing one KEK to every possible subset of MG [17,120,123].

Proof. If each possible subset of MG shares a unique KEK, an arbitrary set of members

can be represented by the index of the corresponding KEK. Hence, after the deletion of any

set of members, the GC can notify all remaining valid members of MG to use their unique

common KEK as the new SEK, by just broadcasting the index of the KEK corresponding

to the remaining members. Hence, by assigning a unique key to every possible subset

of members, the GC can update the SEK after the deletion of any set of members, by

transmitting a single message.

As in the case of member key storage, the number of GC transmissions depends on

Dtx and not on the network topology. Hence, the optimal solution for wireless networks is

identical to the one for wired networks [17,120,123].

2.3.3 MG Key Update Messages, mMi(Dm)

Let mMi(Dm) denote the number of messages transmitted/relayed by the nodes of the

network in order to update the SEK and KEKs after deletion of Mi. We want to find the

optimal key assignment structure D∗
m that minimizes the average number of messages mAve

transmitted/relayed by all network nodes for updating the SEK and KEKs, when a member



17

leaves the group.

D∗
m = arg min

Dm

1
N

N∑

i=1

mMi(Dm) (2.3)

In contrast to the previous two metrics, mMi depends both on the network topology

as well as the choice of Dm. The number of messages the nodes of the network have to

transmit/relay after the deletion of a member, varies depending on the specific member

being deleted. Thus, we use the average number of MG update messages mAve, to evaluate

the efficiency of a key assignment structure Dm.

Theorem 2.3. Finding the optimal key assignment structure D∗
m, that minimizes the av-

erage number of MG update messages mAve, is an NP-complete problem.

Proof. Under Theorem 2, the GC can update the SEK after the deletion of any set of

members from MG, by transmitting a single message to the remaining valid members of

MG, when using the optimal structure D∗
tx . Hence, the problem of minimizing the number of

messages transmitted/relayed by the network nodes reduces to the problem of minimizing

the number of messages transmitted/relayed by the nodes of the network to deliver one

message from the GC to every member of MG. In turn, the latter problem can be mapped

to the problem of finding the minimum power broadcast routing tree Rm rooted at the GC,

in which each node of the network can either broadcast a message with unit power p = 1, or

not transmit at all (p = 0). This routing problem is known as the Single Power Minimum

Broadcast Cover problem (SPMBC) [16], with input parameter p = 1 and has been proven

NP-complete in [16]. Hence, the problem of minimizing the average number mAve of MG

update messages is also NP-complete.

2.3.4 Average Energy Update Cost, ẼMi(DE)

Let ẼMi(DE) denote the total energy expended by all network nodes, in order to deliver

the rekey messages to MG after a member deletion. We want to find the optimal key

assignment structure D∗
E , that minimizes the average update energy EAve.

D∗
E = arg min

DE

1
N

N∑

i=1

ẼMi(DE) (2.4)
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The total energy expenditure depends on the network topology and the choice of DE .

Thus, as was the case for mMi , ẼMi varies depending on which member is deleted from MG.

Therefore, we choose the average update energy cost EAve, to evaluate the performance of

DE over MG.

Theorem 2.4. Finding the optimal key assignment structure D∗
E, that minimizes the av-

erage update energy EAve, is an NP-complete problem.

Proof. Under Theorem 2, the GC can update the SEK after the deletion of any set of

members from MG, by transmitting a single message to the remaining valid members of

MG, when using the optimal structure D∗
tx . Hence, the problem of minimizing the total

energy expenditure required to update the SEK after the deletion of any set of members

reduces to the problem of distributing one message to all valid members of MG, expending

the least amount of energy. The latter problem is equivalent to finding a broadcast routing

tree RE , rooted at the GC, that minimizes the energy required to deliver one message from

the GC to every valid member of MG. This problem is known as the Minimum Broadcast

Cover problem (MBC) [16, 24], a generalized version of the SPMBC problem, for cases in

which the transmission power level for a node can adopt any value p ∈ [0, pmax]. The

MBC problem has been proved to be NP-complete in [16, 24] and, hence, the problem of

minimizing the average update energy EAve is also NP-complete.

Our notation stresses the fact that the optimal solution for one of the four problems

does not imply optimality for the other three. For instance, the optimal solution to the

member key storage problem, requires the GC to unicast the SEK to each member of

MG every time a member joins or leaves MG. Hence, demanding O(N) number of GC

transmissions. On the other hand, the optimal solution to the GC key transmission problem

for leave operations requires each user to store at least 2(N−1) keys, thus making user storage

requirements grow exponentially with group size [17, 120,123]. Hence, we must make some

tradeoffs in order to build a scalable solution in all four metrics, and energy and bandwidth

efficient.

A key assignment structure that is scalable in both member key storage and GC trans-

missions was independently proposed in [123] and in [120]. In both proposals it was shown
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(a)

Deletion of member M1

(1) GC → M2 : {K ′
1.1}K3.2

(2) GC → {M3,M4} : {K ′
1.1}K2.2

(3) GC → {M2 −M4} : {K ′
0}K′

1.1

(4) GC → {M5 −M8} : {K ′
0}K1.2

(b)

Figure 2.2: (a) A binary logical hierarchical key tree. Members are placed at the leaf nodes.
Each member holds the keys traced along the path from the leaf to the root of the tree. If
M1 leaves MG all keys known to it (K0, K1.1) are updated. (b) Update messages in the
order in which they are sent by the GC after M1 leaves the multicast group.

that using a Logical Key Hierarchy (LKH) such as d-ary key trees reduces member key stor-

age and GC transmissions to O(logd N). While key trees are minimal structures in terms of

member key storage and GC transmissions, not all key trees are energy-efficient. However,

we show that key tree structures designed by incorporating the metrics of mAve and EAve,

lead to energy and bandwidth-efficient solutions to the KDP. Before we present the problem

formulation for key trees, we introduce the LKH structure.

2.4 Logical Key Hierarchies and Key Distribution Trees

To explain the logical key hierarchy LKH) structure, we first provide some necessary defin-

itions:

Definition 2.1. –Node Depth, r(i)–The depth r(i) of node i is the length, measured in

edges, of the path traced from the node to the root of the tree.

Definition 2.2. –Node Weight, w(i)–The node weight w(i) of node i, is equal to the number

of edges leaving i.

Definition 2.3. –Leaf Ancestor Weight, wa(i)–The leaf ancestor weight wa(i) of node i is

the sum of the weights of all nodes traced on the path from i to the root of the tree.
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(a)

Messages sent from GC Number

{K ′
α−1.1}Kα.i , i = 2 . . . α α− 1

{K ′
α−2.1}K′

α−1.1
1

{K ′
α−2.1}Kα−1.i

, i = 2 . . . α α− 1

. . . . . .

{K ′
0}K′

1.1
1

{K ′
0}K1.i

, i = 2 . . . α α− 1

Total # of messages α logα N − 1

(b)

Figure 2.3: (a) An α-ary hierarchical tree of height h = logα N. After the deletion of member
M1, the logα N keys traced from M1 to the root (except for the pairwise key shared between
M1 and the GC) of tree need to be updated, (b) the update messages sent from the GC to
sub-groups to update the KEKs and SEK due to the deletion of M1.

Figure 2.2 shows a binary key distribution tree for a network of N = 8 nodes, plus the

GC. Each node of the tree is assigned a KEK, Kl,j , where l denotes the tree level, and j

denotes the node index. (i.e. K1,2 is assigned to node 2 at level 1 of the tree). The root

node is at level 0, and K0 can also be used as the SEK.

In [120,123], each user is randomly assigned to a tree leaf, and holds the keys traced on

the path from the leaf to the root of the tree. (i.e. user M5 in Figure 2.2 is assigned the set

of keys {K3,5,K2,3,K1,2,K0}). We denote the subset of users that receive key Kl,j , as Sl,j .

For example, S1,1 = {M1,M2,M3,M4}. Under this regime, the number of KEKs stored by

each member is equal to the depth of its leaf. Thus, worst-case storage requirements for

any node will be dlogd Ne KEKs, and the SEK.

Figure 2.2(a) shows what keys will have to be updated if user M1 leaves MG. In

this case, the GC will have to transmit the sequence of messages shown in 2.2(b). Each

message in 2.2(b) is represented in Figure 2.2(a) by a dashed arrow. The arrows leaving K1,1

represent the first two messages in figure 2.2(b), while the arrows leaving K0 represent the
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last two messages in figure 2.2(b). It has been shown that GC transmissions due to member

deletions increase as a function of α logα N [41, 79, 107]. The cost of join operations on the

other hand, is proportional to the depth of the leaf the new user is assigned, a function of

logα N [41, 79,107].

In figure 2.3(a), we show the general case of an α-ary hierarchical tree of height h =

logα N. We can verify that the communication for deleting a member from the multicast

group is α logα N − 1 messages [17]. If M1 is deleted, the GC needs to update all the keys

traced at the path from M1 to the root of the tree, except for the pairwise key shared

between M1 and the GC (a total of logα N keys). In figure 2.3(b), we show the encrypted

messages sent by the GC to update all keys (except for the pairwise key) known to member

M1. The GC needs to send (α − 1) messages to update Ka−1.1 ( (α − 1) members hold

Ka−1.1 after the deletion of M1), and α messages to update each of the rest logα N − 1

keys. Hence, the number of keys sent by the GC for deleting M1 or any other member is

equal to α logα N − 1. In [17], the authors propose the use of key trees in conjunction with

pseudo-random functions to reduce the communication cost to (α− 1) logα N messages per

member deletion.

2.5 The Average Update Energy Cost

In this section, we examine the dependency of the average update energy cost when the

key assignment structure is a tree of degree α with N leaves (a multicast group size of N

members) on α,N , and derive an upper bound for EAve.

2.5.1 Dependency of EAve on the group size N , the tree degree α, and the network topology

Let ẼMi denote the energy expenditure for updating the compromised keys after the deletion

of the ith member. Also, let p(Mi) denote the probability for member Mi to leave the

multicast group. We define the average key update energy, EAve, required for key update

after a member deletion as:

EAve =
N∑

i=1

p(Mi)ẼMi . (2.5)
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Figure 2.4: (a) Theorem 1: When a message is sent to all members of MG, all relay
nodes TR = {r1, r2, . . . , r|TR|} have to transmit. When a message is sent to any sub-group
SGi ⊆ MG, a subset TRi ⊆ TR of relay nodes need to transmit. (b) Theorem 2: A single
transmission of power (dGC,Mf

)γmax reaches all members of MG with one hop, resulting in
routing tree R, (c) The optimal multicast routing tree R∗ always requires less power than
R, by definition.

EAve depends on the energy ẼMi required to deliver key updates if each member Mi were

to be deleted from the multicast group MG. Regardless of which member is deleted, the

GC needs to transmit (α logα N −1) key update messages [123]. These messages are routed

to different sub-groups SGi ⊆ MG, where i = 1 . . . (α logα N − 1) . Letting ER
X denote the

energy expenditure for sending an identical message to every member of the sub-group

X ⊆ MG via the routing tree R, the energy expenditure ẼMi for updating keys after the

deletion of member Mi ∈ MG is:

ẼMi =
α logα N−1∑

i=1

ER
SGi

. (2.6)

The ẼMi depends on the routing tree R and cannot be analytically expressed unless a

specific realization of R is provided. Hence, we derive an upper bound on ẼMi , making use

of a sequence of properties of the WBA. To do so, we first prove the following theorem:

Theorem 2.5. The energy required to deliver a message to a sub-group of members SGi ⊆
MG via a routing tree R, cannot be greater than the energy required to deliver a message
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to all members of MG, via the same routing tree R.

ER
SGi

≤ ER
MG, ∀ SGi ⊆ MG. (2.7)

Proof. Let TR = {r1, r2, . . . , r|TR|} denote the set of all relay nodes in the multicast routing

tree R utilized by the multicast group MG. In order to deliver a single message to every

member of the multicast group MG, every node in TR has to transmit. Hence,

ER
MG =

∑

ri∈TR

Eri , (2.8)

where Eri denotes the energy required for transmission of one message by relay node ri.

In order to deliver a message to a sub-group SGi ⊆ MG, a subset TRi ⊆ TR of the relay

nodes has to transmit (no more than the total number of relay nodes can transmit). Hence,

|TRi| ≤ |TR|, ∀SGi ⊆ MG. The energy to deliver a message to a sub-group SGi is:

ER
SGi

=
∑

TRi

Eri ≤
∑

TR

Eri = ER
MG, ∀ SGi ⊆ MG (2.9)

In figure 2.4(a) we illustrate Theorem 1. To deliver a message to all members of MG,

all relay nodes need to transmit. However, in order to deliver a message to a sub-group SGi

no more than the whole set TR of relay nodes may transmit. Hence, the energy required to

deliver a message to any sub-group of MG, is no greater than the energy required to deliver

a message to all members of MG.

Using Theorem 2.5, we can bound the energy expenditure for updating keys after the

deletion of Mi expressed in (2.6) as:

ẼMi =
α logα N−1∑

i=1

ER
SGi

≤ ER
MG (α logα N − 1) . (2.10)

The bound in (2.10) holds for an arbitrary routing tree R. Hence, when we use the minimum
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total power routing tree R∗, and bound the average key update energy EAve as:

EAve =
N∑

i=1

p(Mi)ẼMi ≤
N∑

i=1

p (Mi) ER∗
MG (α logα N − 1)

≤ ER∗
MG (α logα N − 1)

N∑

i=1

p (Mi)

≤ ER∗
MG (α logα N − 1) . (2.11)

The bound in (2.11) has two different components. The first component is the minimum

energy ER∗
MG, required for sending a message to the whole multicast group MG. While

ER∗
MG depends on the wireless medium characteristics and the network topology, we can

relax the network topology dependency by bounding ER∗
MG using only the wireless medium

characteristics and the size of the deployment region.

Let γmax denote the maximum value of the attenuation factor for the heterogeneous

medium where the network is deployed, and Ttrans denote the duration of the transmission

of one message. Let Mf denote the farthest member from the GC, and let dGC,Mf
, the

distance between GC and Mf , denote the radius of the deployment region1. Then, the

following theorem holds:

Theorem 2.6. The energy required to deliver a single message to every member of the

multicast group MG via the minimum total power routing tree R∗ is no greater than the

energy required to deliver a single message from the GC to Mf via a one hop transmission

and assuming an attenuation factor of γmax between the GC and Mf .

ER∗
MG ≤ ER

Mf
=

(
dGC,Mf

)γmax Ttrans. (2.12)

Proof. Let γi denote the attenuation factor in the link between the GC and member Mi,

with γi ≤ γmax ∀Mi ∈ MG. The transmission power required for communication via a one

hop link between Mi and GC is, P (dGC,Mi) = (dGC,Mi)
γi , Since dGC,Mi ≤ dGC,Mf

, γi ≤

1The diameter or the size of the deployment region may also be defined as the maximum physical distance
between any two nodes of the network. However, such a definition leads to a looser upper bound and is
not considered.
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γmax, ∀Mi ∈ MG, it follows that:

P (dGC,Mi) = (dGC,Mi)
γi ≤ (dGC,Mf

)γmax , ∀Mi ∈ MG. (2.13)

Hence, by letting the GC transmit with power (dGC,Mf
)γmax , we reach every member Mi ∈

MG. This is equivalent to constructing a multicast routing tree R where every member is

connected to the GC with one hop. The power required to deliver a message to all members

of MG according to R, cannot be less than the minimum total power obtained by R∗.

Hence, the energy expenditure to deliver a message to all Mi ∈ MG, via R∗ cannot be

greater than the energy expenditure to deliver the same message to all Mi ∈ MG via R,

ER∗
MG ≤ ER

MG ≤
(
dGC,Mf

)γmax Ttrans. (2.14)

In figure 2.4(b), the GC transmits with power (dGC,Mf
)γmax , thus being able to reach

every member with one hop. In figure 2.4(c) we show a generic optimal multicast routing

tree R∗ for the same network as in figure 2.4(b). Since R∗ is optimal it holds that ER∗
MG ≤

(
dGC,Mf

)γmax Ttrans. The second component of the bound in (2.11), is the number of update

messages sent by the GC for deleting a member from the multicast group. While the number

of messages grows logarithmically with the group size N , and N is not a design parameter,

we can calculate the tree degree α∗ that minimizes the number of update messages.

d

dα
(α logα N − 1) = 0 ⇒ α∗ = e. (2.15)

The degree of the tree has to be an integer number and hence, the lowest upper bound for

EAve is achieved when α = 3. The lowest upper bound for the average key update energy,

independent of the network topology and probability distribution of member deletions is:

EAve ≤ (α∗ logα∗ N)
(
dGC,Mf

)γmax Ttrans = (3 log3 N)
(
dGC,Mf

)γmax Ttrans. (2.16)

We now examine how we can reduce EAve by exploiting the “power proximity” property.
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2.6 Impact of “Power Proximity” on the Energy Efficiency of Key Manage-
ment

EAve is directly related to the individual energies ẼMi , for updating keys after each member

leaves the multicast group. In (2.6), we expressed ẼMi , as the sum of the energies ER
SGi

,

required to deliver key updates to sub-groups SGi, via the routing tree R. The routing

tree R is optimized for distributing the multicast application data to group members and

hence, is not a design parameter. The sub-groups SGi are determined by how we place

the members to the leafs of the key distribution tree, i.e. the way that we choose to assign

common KEKs to members. To reduce ER
SGi

, we need to group members in the key tree

in such a way that less energy is required to deliver to them key updates via R. To do

so, we introduce the property of “power proximity.” “Power proximity” is similar to the

physical proximity, with transmission power used as a metric instead of Euclidean distance.

A formal definition is given below.

Definition 2.4. –“Power proximity”– Given nodes (i, j, k) we say that the node i is in

“power proximity” to node j compared to node k, if P (di,j) < P (dj,k), where P (da,b) denotes

the transmission power required for establishing communication2 between nodes a, b.

Given the definition of “power proximity,” we show how we can incorporate it in the key

tree design in both the cases of a homogeneous and heterogeneous medium.

2.6.1 Network deployed in a homogeneous medium

In a homogeneous medium, the transmission power for communication between nodes i, j

is a monotonically increasing function of the distance di,j . Under the assumption that

routing is designed to reduce the total transmission power, nodes in physical proximity

have overlapping routing paths [122]. Intuitively, nodes that are physically close will also

have common links in the path traced from the GC towards them. Hence, if nodes located

2Note that although we do not directly consider the routing tree as a design parameter, the idea of “power
proximity” is inherent in energy-aware routing [122]. By letting the weights of each link to indicate the
amount of power required to maintain the link connectivity, we can construct a minimum spanning routing
(MST) tree based on “power proximity.” In fact, the MST of this type uses the criterion of the definition
of “power proximity.”
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physically close also share common keys, they receive the same key updates from the GC

and the energy and bandwidth overhead associated with the key distribution is reduced.

To illustrate the need for designing a physical proximity based key distribution, we

consider the ad hoc network in figure 2.5(a), which is deployed in a homogeneous medium.

Note that EGC,M2 > EGC,M1 since dGC,M2 > dGC,M1 . The routing tree shown in figure 2.5(a)

is optimal in total transmit power. In the key tree of figure 2.5(c), denoted as Tree A, we

randomly place the four members of the multicast group in the leaves of the key tree,

independent of the network topology as in wired networks. The second row of Table 2.2

shows the average key update energy for Tree A, denoted as EA
Ave, and computed based

on (2.5) by assuming that it is equally likely (p(Mi) = 1
N ) for each member to leave the

multicast group.

Assume now that the members are grouped according to their physical proximity. Then,

M1 is grouped with M4, and M2 with M3, resulting in the physical proximity based key

tree of figure 2.5(d), denoted as Tree B. The third row of Table 2.2, shows the average key

update energy for Tree B, denoted as EB
Ave, and computed based on (2.5) by assuming that

it is equally likely (p(Mi) = 1
N ) for each member to leave the multicast group. The energy

saved by performing a rekey operation with the physical proximity based key Tree B over

the random key Tree A for the network of figure 2.5(a) is computed as:

EA
Ave −EB

Ave =
2
4

(
ER
{M2,M4} + ER

{M1,M3} − ER
{M1,M4} − ER

{M2,M3}
)

=
2
4

(EGC→M2 −EGC→M1) > 0, (2.17)

where EA→B denotes the energy required for transmission of a key from node A to node B.

The saved energy in (2.17) is positive since for a homogeneous medium (constant γ) and

dGC,M2 > dGC,M1 , it is implied EGC→M2 > EGC→M1 .

2.6.2 Network deployed in a heterogeneous medium

We now consider the case of an ad hoc network deployed in a heterogeneous medium, where

the attenuation factor γ varies over space. Under heterogeneous path loss, physical prox-

imity in not a monotonic property of “power proximity.” Closely located nodes do not
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Figure 2.5: An ad hoc network and the corresponding routing tree with the minimum total
transmission power, deployed in (a) a homogeneous medium, (b) a heterogeneous medium,
(c) a random key distribution tree, Tree A, (d) a key distribution tree based on physical
proximity, Tree B, (e) a key distribution tree based on “power proximity,” Tree C.

necessarily receive messages via overlapping routing paths. Hence, node location informa-

tion alone is not sufficient for constructing an energy-efficient key tree.

To illustrate the above observation, we consider the ad hoc network shown in fig-

ure 2.5(b), in which nodes have the same locations as in figure 2.5(a). However, there

exists a physical obstacle between nodes M1 and M4. Thus, the attenuation factor for sig-

nal transmission between M1 and M4 is significantly higher than the obstacle-free network

regions, and in the optimal routing tree in total transmission power, M4 is connected to the

network through M3.

We now show that in an environment with variable path loss, we are able to construct an

energy-efficient key tree by correlating nodes according to their “power proximity,” rather
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Table 2.2: Comparison of EAve for the key trees of figure 2.5(c), (d), (e). EAve is computed
based on eq. (2.5) for p(Mi) = 1

4 , i = 1 . . . 4

Method Average key update energy

Random tree EA
Ave = 1

4

(∑
i E

R
{Mi} + 2ER

{M2,M4} + 2ER
{M1,M3}

)

Physical proximity EB
Ave = 1

4

(∑
i E

R
{Mi} + 2ER

{M1,M4} + 2ER
{M2,M3}

)

“Power proximity” EC
Ave = 1

4

(∑
i E

R
{Mi} + 2ER

{M1,M2} + 2ER
{M3,M4}

)

than physical proximity. We may acquire such information either by using path loss in-

formation in addition to the node location [44, 45, 63, 64, 83], or by measuring the required

transmission power for communication between pairs of nodes. Members that are closely

located in terms of power are grouped together (placed adjacently to the key tree).

For the network in figure 2.5(b), we construct the key distribution tree in figure 2.5(e)

denoted as Tree C. We place members adjacent to the key tree according to their “power

proximity.” M1 is grouped with M2, and M3 with M4 in order to minimize the total

communication power variance of clusters of two members. The last row of Table 2.2, shows

the average key update energy for Tree C, denoted as EC
Ave, and computed based on (2.5)

by assuming that it is equally likely (p(Mi) = 1
N ) for each member to leave the multicast

group. The energy saved for performing a rekey operation by incorporating location as well

as the path loss information instead of location alone is computed as the energy gain due

to use of Tree C over Tree B :

EB
Ave −EC

Ave =
2
4

(
ER
{M1,M4} + ER

{M2,M3} − ER
{M1,M2} − ER

{M3,M4}
)

=
2
4

(EM2→M3) > 0. (2.18)

Based on our analysis in Sections 2.6.1 and 2.6.2 we make the following conclusions:

Remark 1: When the medium is homogeneous, we can reduce the energy expenditure for

key distribution by assigning common keys to members within physical proximity.

Remark 2: When the medium is heterogeneous medium, we need to employ “power prox-
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imity” to generate an energy-efficient key tree hierarchy.

Based on remarks 1 and 2, we develop our key distribution algorithms for the homoge-

neous and heterogeneous cases.

2.7 Physical Proximity Based Key Distribution for a Homogeneous Medium

In this Section, we present an algorithm for the homogeneous medium that exploit physical

proximity to generate an energy-efficient key distribution tree. In order to systematically

construct a key tree hierarchy, we cluster nodes based on their location. We translate the

physical clustering of the nodes into a key tree hierarchy, thus obtaining an energy-efficient

key distribution tree. The task of developing an energy-efficient key distribution scheme is

reduced to the task of identifying (a) a physical proximity based clustering mechanism, and

(b) building a cluster hierarchy that utilizes the physical proximity based clustering. We

discuss both tasks in the following sections.

2.7.1 Physical proximity based clustering for energy-efficient key distribution

For the homogeneous medium, we assume that only the node location information is avail-

able. Hence, any clustering technique needs to be model-free while taking the location into

account. We also note that for the homogeneous case, the Euclidean distance between the

nodes is a natural metric for identifying and grouping neighbor nodes. Certainly some other

distance metric such as the Minkowsky metric [115] can be used as well, but the monotonic-

ity of the power to the distance in the case of constant γ, makes the Euclidean distance a

very attractive metric, since it leads to low complexity algorithms.

Problem formulation

Let the coordinates of node i be xi = (xi1 , xi2). The squared Euclidean distance between

two nodes i and i′ is equal to:

d2
i,i′ =

2∑

j=1

(
xij − xi

′
j

)2
= ‖xi − xi′‖2 . (2.19)

If C denotes an assignment of the nodes of the network into α clusters, the dissimilarity
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function expressing the total inter-cluster dissimilarity W (C) is:

W (C) =
α∑

k=1

∑

C(i)=k

‖xi −mk‖2 , (2.20)

where C(i) = k denotes the assignment of the ith point to the kth cluster, and mk denotes the

mean (centroid) of cluster k. Inter-cluster dissimilarity refers to the dissimilarity between

the nodes of the same cluster. We want to compute the optimal cluster configuration C∗

that minimizes (2.20), subject to the constraint that the sizes of the resulting clusters are

equal. This can be expressed as:

C∗ = arg min
C

α∑

k=1

∑

C(i)=k

‖xi −mk‖2 , 3 |C(i)| = |C(j)|, ∀i, j. (2.21)

Note that this formulation provides an optimal way to create α sub-clusters from one

cluster. This location based clustering has to be iteratively applied to generate the desired

cluster hierarchy.

Solution approach

If we relax the constraint |C(i)| = |C(j)|, ∀i, j, in (2.21), and allow clusters of different

sizes, the solution to the optimization problem in (2.21), can be efficiently approximated by

any mean square based clustering algorithm that uses Euclidean metric. The K-means [115]

algorithm uses squared Euclidean distance as a dissimilarity measure to cluster different

objects, by minimizing the total cluster variance (minimum square error approach). Note

that K-means may result in a sub-optimal local minimum solution depending on the initial

selection of clusters, and hence, the best solution out of several random initial cluster

assignments should be adopted [115]. However, K-means is easily implemented and hence, is

an ideal solution for computationally limited devices. Algorithmic details on solving (2.21)

without any constraint on the cluster size are given in [115].

In order to satisfy the equal cluster size constraint, posed in (2.21), we need a refine-

ment algorithm (RA) that balances the cluster sizes. According to (2.21), the RA should

result in balanced clusters with the lowest total inter-cluster dissimilarity. In the binary

tree case, given two clusters A, B with |A| > |B|, the refinement algorithm moves objects

i1, i2, . . . , ik ∈ A, with k =
⌊ |A|−|B|

2

⌋
, from cluster A to cluster B, such that the inter-

cluster dissimilarity after the refinement is minimally increased. We choose the objects
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i1, i2, . . . , ik ∈ A such that:

ij = arg min
i∈A

[d2
i,mB

− d2
i,mA

], j = 1 :
⌊ |A| − |B|

2

⌋
, (2.22)

where mA and mB are the centroids of clusters A,B. We study the optimality of the

refinement algorithm in Appendix 2.14.1

2.7.2 A suboptimal energy-efficient key distribution scheme based on physical proximity

We now develop an algorithm that maps the physical proximity based clustering into a

hierarchical key tree structure. We need to construct a key tree of fixed degree α. Initially,

the global cluster is divided into α sub-clusters using K-means. Then, we employ the

RA algorithm that balances the cluster sizes by moving the most dissimilar objects to

appropriate clusters. The RA leads to the construction of a balanced key tree when N =

αn, n ∈ Z and allows us to construct a structure as close to the balanced as possible

when N 6= αn. Each cluster is subsequently divided into α new ones, until clusters of

at most α members are created (after logα N splits). Since our algorithm uses only location

information as input, we call it Location-Aware Key Distribution Algorithm (LocKeD).

The figure 2.6 presents the pseudo code for LocKeD. We now describe the notational and

algorithmic details of figure (2.6).

Let P denote the set containing all the two-dimensional points (objects) corresponding

to the location of the nodes. Let C ={C(1), C(2),. . .,C(α)} denote a partition of P into

α subsets (clusters), i.e.
⋃

i C(i) = P. Initially, all objects belong to the global cluster P.

The function AssignKey() assigns a common key to every subset (cluster) of its argument

set. For example, AssignKey(P) will assign the SEK to every member of the global cluster

P.

The index variable counts the number of steps required until the termination of the

algorithm. The thres variable holds the number of members each cluster ought to contain

at level l = index of the key tree construction. The root of the tree is at level l = 0.

The Kmeans(C(i), α) function divides the set C(i) into α clusters and returns the cluster

configuration to variable R. The Refine(R,thres) function balances the clusters sizes of
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Location-Aware Key Distribution

C = {P}
AssignKey(C)
index=1
while index < dlogα(N)e

C temp ={∅}
thres = d N

αindex e
for i = 1 : |C|

R=Kmeans(C(i), α)
R=Refine(R, thres)
AssignKey(R)
C temp = C temp

⋃
R

index++
end for

C = C temp
end while

(a)

Refinement Algorithm - RA

CLow = {C(i) ∈ C : |C(i)| < thres}
CHigh = {C(i) ∈ C : |C(i)| > thres}
repeat until CHigh = ∅

find x∗ ∈ A, A ∈ CHigh

x∗ = arg min
x∈A

[diss(x,mB)− diss(x,mA)],

∀ x ∈ A, ∀ A ∈ CHigh, ∀ B ∈ CLow

move x∗ to cluster B

CLow = {C(i) ∈ C : |C(i)| < thres}
CHigh = {C(i) ∈ C : |C(i)| > thres}

end repeat

(b)

Figure 2.6: Pseudo code for (a) the location-aware key distribution algorithm (LocKeD) and
(b) the Refinement Algorithm (RA). Repeated application of Kmeans() function followed by
the Refinement Algorithm Refine() for balancing the clustering sizes, generates the cluster
hierarchy. Function AssignKey() assigns a common key to every member of its argument.

clusters in R according to the thres variable. Then, AssignKey() is applied to assign different

keys to every cluster in R. The process is repeated until dlogα Ne steps have been completed.

Computational Complexity of LocKeD: In terms of algorithmic complexity, the

LocKeD algorithm iteratively applies K-means up to N times in the worst case (generation

of a binary tree). K-means has algorithmic complexity of O(N) [115]. Hence, the complexity

of the LocKeD is O(N2).

Application of LocKeD on a sample network: Consider the network in fig-

ure 2.7(a), deployed in a homogeneous medium with an attenuation factor γ = 2. We will

construct a location-aware key distribution tree of degree α = 2 with nodes {2, 3, . . . , 9}
being the members {M2,M3, . . . , M9} of the multicast group, respectively. Initially, all

members belong to the global cluster P.

Note that the GC does not participate in the clustering. The key tree is constructed by
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executing the following steps:

Step 1: Assign the SEK K0 to every member of the global cluster P.

Step 2: Create two clusters by splitting the global cluster. The two clusters that yield

minimal total cluster dissimilarity are:

C1 = {M2,M3, M4,M6,M8,M9}, C2 = {M5,M7}.

Since we seek to construct a balanced key tree, apply the refinement algorithm to

balance the clusters sizes. Move M2 and M6 to cluster C2. Assign two different

KEKs to members of clusters C1 and C2. Members of C1 are assigned KEK K1.1 and

members of C2 are assigned KEK K1.2.

Step 3: Create clusters of two members, by splitting the clusters of four members. The

four created clusters are:

C3 = {M2,M6}, C4 = {M3,M4}, C5 = {M8,M9}, C6 = {M5,M7}.
Again, different KEKs are assigned to members of clusters C3-C6. Members of C3 are

assigned KEK K2.1, members of C4 are assigned KEK K2.2, members of C5 are as-

signed KEK K2.3 and members of C6 are assigned KEK K2.4. At this point we have

completed the dlogα Ne steps required by LocKeD and the algorithm terminates.

The resulting hierarchical key tree constructed using LocKeD is shown in figure 2.7(b). We

now study the heterogeneous case.

2.8 “Power Proximity” Based Key Distribution for a Heterogeneous Medium

2.8.1 Characteristics of the heterogeneous medium

When the wireless medium is heterogeneous, the signal attenuation factor is not unique for

the network deployment area. An office building is a typical example of an environment

where the attenuation factor varies even across very short distances. The signal attenuation

for nodes located in different floors is significantly higher than for nodes located in the same

floor [98]. The heterogeneity of the medium creates additional challenges in performing

energy-efficient key distribution.
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Figure 2.7: (a) An ad hoc network deployed in a homogeneous medium and the correspond-
ing routing paths. Iterative application of the location based clustering and the resulting
cluster hierarchy. (b) The key distribution tree resulting from the application of LocKeD.

Constraint 1: As shown by the example in Section 2.6.2, in a heterogeneous medium,

physical proximity between two nodes does not equate to less transmission power needed

for communication between those nodes. Hence, in a heterogeneous medium, Euclidean

distance is not a suitable metric to express the dissimilarity between the objects (nodes)

that need to be clustered.

We showed in Section 2.6.2 that direct use of “power proximity” leads to energy-efficient

key distribution, when the medium is heterogeneous. Hence, we propose the use of trans-

mission power as the dissimilarity measure for performing the clustering. We define the

dissimilarity between two nodes i,j for the heterogeneous medium as:

diss(i, j) = P (di,j). (2.23)

We note that the K-means algorithm used as critical component of the balanced clustering

algorithm in the homogeneous medium case, cannot use any arbitrary dissimilarity measure

but Euclidean distance, since it utilizes the notion of mean vectors. Hence, for heterogeneous

case, we cannot use K-means as a component of our “power proximity” based algorithm.

Constraint 2: In a heterogeneous environment, different network regions need to be

described using different path loss models [98]. Depending upon node location and the

medium, a different function shall be used to calculate the dissimilarity between two nodes.
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Hence, any solution approach should allow the simultaneous use of arbitrary and multiple

dissimilarity measures representing different network regions.

Our task of developing an energy-efficient key distribution algorithm for the heteroge-

neous medium is reduced to, (a) identifying a “power proximity” based algorithm to identify

clusters with high success, (b) generating a cluster hierarchy that will be mapped into a key

tree hierarchy. We now present techniques suitable for “power proximity” based clustering.

2.8.2 “Power proximity” based clustering for energy-efficient key distribution

As noted above, the K-means clustering cannot be part of the balanced clustering algorithm

to be developed in heterogeneous case. A candidate solution needs to be able to handle ar-

bitrary dissimilarity metrics. We use two different approaches for clustering in the hetero-

geneous case. The first approach employs a clustering technique known as K-medoids [53],

that minimizes the total inter-cluster dissimilarity. Hence, K-medoids exploits “power prox-

imity” in the optimal way. In order to create a key tree of fixed degree, K-medoids clusters

have to be balanced and the algorithm has to be iteratively applied for every level of the

tree. Though optimal in cluster quality, the complexity of K-medoids is prohibitive for large

networks and therefore, we adopt a sub-optimal solution based on randomized sampling.

Our second approach is based on Divisible Hierarchical Clustering (DHC) [53]. DHC

minimizes the average inter-cluster dissimilarity within each cluster, while directly gener-

ating a cluster hierarchy. The hierarchical feature of DHC, along with the ability to use

any arbitrary dissimilarity measure, makes this solution attractive for creating a key tree

hierarchy. In order to produce a balanced key tree, we need to ensure that at each stage

the clusters are balanced. We describe both approaches in detail in the following sections.

Minimizing the total inter-cluster dissimilarity

We now describe the first formulation that satisfies the constraint 1 and constraint 2 and

exploits the “power proximity”.

Problem formulation

We need a clustering technique that, (a) uses power P (di,j) as a dissimilarity measure
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to generate clusters and group together the most “similar” nodes, (b) generates clusters of

equal size. While using an arbitrary dissimilarity metric other than the Euclidean distance,

it is not feasible to define the centroid of a cluster. Hence, the total cluster dissimilarity

cannot be computed with respect to the centroid, as in (2.21).

To overcome this limitation, we identify the most centrally located object within a cluster

as a cluster representative, called medoid. We then compute the inter-cluster dissimilarity by

adding the dissimilarities of each object of a cluster with its medoid. In order to construct

α clusters C = {C1, C2, . . . , Cα}, we select α medoids, M = {m1,m2, . . . mα}, one for

each cluster. For each choice of medoids, an object i, i /∈ M , is assigned to the cluster

Cj , j = 1 . . . α, if:

diss(i,mj) ≤ diss(i, mr), ∀r = 1, . . . , α, (2.24)

where mx denotes the medoid of the cluster Cx. Using the medoids as reference points, the

total inter-cluster dissimilarity is computed as:

W (C) =
N∑

i=1

min
mj=1,..,α

diss (i, mj) . (2.25)

We want to find the optimal medoids M∗ = {m∗
1,m

∗
2, . . . , m

∗
α} that minimize (2.25), subject

to the constraint that the sizes of the resulting clusters are equal. Therefore:

C∗ = arg min
{mr},C

N∑

i=1

min
mj=1,..,α

diss (i,mj) , 3 |C(i)| = |C(j)|, ∀i, j. (2.26)

Solution approach

Let us first consider solving the optimization problem in (2.26), without the constraint

|C(i)| = |C(j)|, ∀i, j, imposed on the cluster sizes. Kaufman and Rousseeuw [53] proposed

a solution that minimizes the total inter-cluster dissimilarity in (2.26). Their K-medoids

method called Partitioning Around Medoids (PAM) [53], repeats successive exchanges be-

tween medoids and ordinary objects until the medoid set resulting in the smallest cluster

dissimilarity is found. While PAM is optimal, it scales poorly with group size and hence,

Kaufman and Rousseeuw proposed a scalable sub-optimal K-medoids method called Clus-

tering LARge Applications (CLARA) [53], based on randomized sampling.

K-medoids algorithm however, leads to clusters of unequal sizes [53]. Hence, in order

to satisfy the constraint posed in (2.26), we need the refinement algorithm (RA) of figure
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2.6(b) to balance the cluster sizes. The criterion by which successive objects i1, i2, . . . , ik ∈ A

with k =
⌊ |A|−|B|

2

⌋
, are moved from cluster A to cluster B with |A| > |B|, is modified to

reflect the dissimilarity metric used in the heterogeneous medium. We choose the objects

i1, i2, . . . , ik ∈ A such that:

ij = arg min
i∈A

[P (di,mB )− P (di,mA)], j = 1 :
⌊ |A| − |B|

2

⌋
, (2.27)

where mA and mB refer to the medoids of clusters A and B, respectively. By minimally

increasing W (C) at each object re-assignment, we achieve the optimal solution for the

constrained optimization problem in (2.26) in the case of binary trees. Following similar

analysis as in the case of the homogeneous medium, when more than two clusters need to

be balanced (degree of the tree > 2), we can show that while the refinement algorithm

presented is only sub-optimal, the complexity of the optimal solution is prohibitively high

as the number of nodes grows. Hence, we adopt the sub-optimal solution. The algorithmic

details of k-medoids are presented in Appendix 2.14.2.

We now present the second approach that is based on minimizing the average dissimi-

larity within each cluster.

Minimizing the average inter-cluster dissimilarity

We now describe a clustering technique that minimizes the average dissimilarity within

a cluster, instead of the total cluster dissimilarity. The advantage of using the average

over the total dissimilarity is that we do not comparably compute the dissimilarity with

respect to a single cluster object as in K-medoids method. Furthermore, we can provide

a solution inspired by divisible hierarchical clustering (DHC) that inherently provides a

cluster hierarchy. We first introduce the following quantities.

Cluster Diameter: Diameter diam of a cluster A is defined as the highest dissimilarity

between two objects within the cluster given by:

diam(A) := max
i,j∈A

P (di,j) (2.28)

Average inter-cluster dissimilarity of an object: For an object i in cluster A, the average

inter-cluster dissimilarity, denoted by a(i) is defined as the average of the dissimilarities of
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i with all other objects in A as:

a (i) =
1

|A| − 1

∑

j∈A,j 6=i

P (di,j). (2.29)

Average intra-cluster dissimilarity of an object: For an object i, i ∈ A, and given a

cluster B, i∈ B, the average intra-cluster dissimilarity, denoted w(i, B) is given by:

w (i, B) =
1
|B|

∑

j∈B

P (di,j). (2.30)

Description of the algorithm: Initially, all objects are moved to a global cluster A. The

object i∗ ∈ A

i∗ = arg max
i∈A

a(i), (2.31)

with the highest dissimilarity is moved to a new cluster B. Quantities a(i) and w(i, B) are

then recomputed for all i ∈ A. An

object m ∈ A is moved from cluster A to cluster B, only if m is more similar to cluster B,

m = arg max
i∈A

[a(m)− w(m, B)] , a(m)− w(m,B) ≥ 0. (2.32)

The moving of objects is repeated until no object in A is more similar to B, i.e. a(i) ≤
w(i, B), ∀i ∈ A. At this stage clusters A and B have been finalized as parent clusters. In

the next step, the cluster with the biggest diameter is further split into two new clusters

using the previous steps. Though this procedure generates a binary hierarchical tree, we can

modify it to generate a tree of arbitrary degree α. To construct one level of a hierarchical

tree of degree α, the following steps are followed:

Step 1: Perform (α-1) successive splits of the global cluster, leading to α total clusters.

Step 2: Set α clusters as parents on the first level of the hierarchy.

Step 3: Repeat steps 1-2 until every child cluster contains α objects.

In DHC, the two clusters created by a split of one cluster have minimum average inter-

cluster dissimilarity. However, this minimization need not necessarily lead to clusters of

equal sizes. Hence, the RA algorithm needs to be applied to balance the cluster sizes.



40

After Step 1, we utilize the RA algorithm developed in figure 2.6(b). According to

figure 2.6(b), an object x∗ ∈ A is moved from a cluster A ∈ CHigh with more objects than

the threshold thres, to a cluster B ∈ CLow with less objects than thres, if:

x∗ = arg min
x∈A

[diss(x, mA)− diss(x,mB)], ∀ x ∈ A, ∀ A ∈ CHigh, ∀ B ∈ CLow. (2.33)

However, no notion of a mean point or representative cluster object exists if average inter-

cluster dissimilarity is used. We therefore move the object x∗ ∈ A, from a cluster A ∈ CHigh

with more objects than the threshold thres, to a cluster B ∈ CLow with less objects than

thres, if:

x∗ = arg max
x∈A

[a(x)− w(x,B)] , ∀ x ∈ A, ∀ A ∈ CHigh, ∀ B ∈ CLow. (2.34)

The algorithmic details of DHC are given in the Appendix 2.14.2. We now present the

performance evaluation of the algorithms we developed.

2.9 Routing-aware Key Distribution

The solutions developed so far do not take into account the routing paths of the routing

tree. In this section we develop a solution that relies on the multicast routing tree R for

constructing an energy-efficient key distribution tree T . By accumulating information from

the routing tables during the route path establishment, the GC can compute the energy

Ei(R), i = 1..N required to unicast a message to each member of the multicast group. Then,

the GC can characterize a node I as inner compared to an outer node O, if EI(R) ≤ EO(R).

As an example in Figure 2.8(a), node six is an outer node compared to node seven, but is

an inner node compared to node eight. As the total network transmission power increases,

one expects more inner nodes to be covered by transmissions to outer nodes.

Assume that node I is an inner node compared to node O, i.e. EI ≤ EO and that

by transmitting to O we cover I. The energy expenditure for sending a message to both

I and O is EO if I and O share a common key, and EO + EI if I and O do not share a

common key. Hence, by assigning a common key to I and O we save EI with maximum

savings achieved when EI = EO. Consider for example nodes nine (inner node) and five

(outer node) in Figure 2.8(a). By transmitting to node five we cover node nine, due to the
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Figure 2.8: (a) The routing paths of a wireless ad hoc network. (b) Key distribution tree
built with the Routing-Aware key distribution algorithm. (c) Best possible Key distribution
tree. (d) Worst possible key distribution tree
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broadcast advantage. Assume that nodes five and nine need to receive a key only common

to them and i) they already share a common key, ii) they do not share a common key. In the

first case the energy expenditure for sending a key to both five and nine is E{5,9} = 31.45

Energy Units (EU), while in the second case the key has to be unicasted to each node and

the required energy is E{6,7} = 58.02 EU.

By assigning common keys to groups of nodes that differ the least in Ei, we save the

most energy for sending keys common only to those groups. Consider nodes nine and five

in Figure 2.8(a), and assume they already share a common key. We save 26.57 EU for

transmitting a key to both of them, which is the highest out of any other possible member

pairing. By also assigning a common key to {5, 6, 8, 9} we need only 31.45 EU to update a

key to the subgroup, saving 19.46 EU if only pairs {6, 8} and {5, 9} shared a common key

and 46.03 EU if there was no key overlap.

If we sort all members according to Ei, i = 1..N in ascending order, we minimize the

energy expenditure difference (Ei+1 − Ei) between consecutive members and maximize the

energy savings Ei if transmission to node O covers node I. Therefore, by assigning common

keys to members differing the least in Ei (placing them under the same parent node in

the key distribution tree) we achieve high energy savings. We propose the placement of

the multicast members to the leaves of the key distribution tree according to the ascending

order of energy expenditure Ei. In figure 2.9 we present our Routing-Aware Key distribution

scheme (RAwKey).

Routing-Aware Key Distribution Scheme (RAwKey)

Step 1: Compute all Ei(R) from the GC to each member of the multicast group.

Step 2: Sort E = {E1, E2, ..., EN} in ascending order.

Step 3: Add members as leaf nodes to the key distribution tree from left to right

in the same order as E.

Figure 2.9: The steps of the Routing-Aware Key Distribution scheme (RAwKey).

Though this is not the optimal solution, its performance and implementation simplicity make
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it an extremely attractive method for key management in secure multicast communications

for ad hoc networks.

2.9.1 Application of RAwKey to a sample network

We now illustrate the construct of the key tree for the nine-node network shown in Fig-

ure 2.8(a). The GC can communicate with each member of the multicast group by using

the routing paths indicated. Sorting the energies for reaching each member of the multi-

cast group gives E{M3} < E{M7} < E{M4} < E{M2} < E{M6} < E{M8} < E{M9} < E{M5}.

The resulting key distribution tree is shown in Figure 2.8(b). The optimal key distribu-

tion tree, obtained by exhaustive searching, is shown in Figure 2.8(c). We can observe

that the two trees are almost identical with only members M4 and M7 been interchanged.

The worst possible tree, also obtained through exhaustive search is shown in Figure 2.8(d).

The optimal possible tree has EOptim
AV E (R, T ) = 62.7 EU, the tree created with RAwKey has

ERAwKey
AV E (R, T ) = 63 EU (0.5% worse than the optimal tree) and the worst possible tree

has EWorst
AV E (R, T ) = 78.3 EU (24.9% worse than the optimal tree).

2.9.2 Complexity of RAwKey

RAwKey requires the computation of the unicast energies to reach every member of the

multicast group sorted in ascending order. During the building of the multicast routing tree

the GC can acquire the order by which nodes are added to the tree. In the case of SPR the

order of adding nodes to the multicast tree is the same as sorting the unicast energies and

no further steps are required.

When BIP or MST is used as a routing algorithm, the order by which nodes are added

to the multicast tree is not the same as the ascending order of unicast energies. However,

the set is almost ordered since nodes requiring less transmit power to be reached are in

general added first to the routing tree. Hence, an efficient sorting algorithm for almost

sorted data can significantly reduce the sorting time. Bubblesort [7] is known to have very

good performance for almost sorted data with O(N) complexity in the best case (almost

sorted sets). The EWMA uses MST as a base algorithm and hence, an almost ordered set
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can also be acquired.

2.10 VP3: Vertex-Path, Power-Proximity, A Cross-Layer Approach

The VP3 algorithm borrows its name from the network and physical layer information it

exploits, in order to build an energy-efficient key distribution tree; Vertex-Path, Power-

Proximity (VP3). We first introduce the main ideas of VP3, and then present algorithmic

details. VP3 reduces EAve by constructing key trees that assign the same KEKs to members

that receive messages via common routing paths. For instance, if a member Mi lies on the

path from the GC to member Mj , and a message is sent to both Mj and Mi, the latter

will receive the message for free. Hence, by assigning a common KEK, Kk,l to subgroup

Sk,l = (Mi,Mj), VP3 decreases the energy expenditure required for updating the SEK and

common KEKs, whenever transmitting a message to both nodes.

To explore this idea, VP3 discovers which members of MG share the longest paths or,

equivalently, which members have paths that differ the least, a property that is extracted

from a given broadcast routing tree R. The network paths from the GC to each node are

represented as binary codewords of length equal to N . The kth position of the ith codeword

Ci(k), has a value of one if node k has to transmit in order for a message unicasted by the

GC to reach node i, and a zero otherwise3. Thus, the length of a path from the GC to

node i, PAi, can be obtained by computing the Hamming Weight Hw(Ci) of the codeword

Ci that represents PAi [119]:

Hw(Ci) =
N∑

k=1

Ci(k). (2.35)

Once codewords have been constructed for each node, we need a metric that allows us to

measure the path distance, defined below, between the paths of any two nodes:

Definition 2.5 (Path Distance). Let PAi and PAj represent the sets of nodes in the

broadcast routing tree R that will relay a unicast message from the GC to nodes i and j

respectively. We define the path distance between i and j as the sum of the nodes k ∈
{(PAi ∪ PAj)− (PAi ∩ PAj)}.

3Construction of the codewords is equivalent to generating the connectivity matrix for the network.
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Path distance expresses the difference between two paths, in number of nodes. We

measure the path distance between i and j, by computing the Hamming Distance Hd(i, j),

between their corresponding codewords [119]:

Hd(i, j) =
N∑

k=1

Ci(k)⊕ Cj(k). (2.36)

2.10.1 The VP3 Algorithm

We assume two sets of parameters as inputs: (a) the NxN binary connectivity matrix C,

where each row Ci is a codeword that represents the node path from the GC to node i,

such that entry Ci(k) = 1 if node k ∈ PAi, and Ci(k) = 0 otherwise and, (b) a vector E

of length N , where the ith entry Ei, indicates the energy expenditure required to unicast a

message from the GC to node i, following the path indicated by the connectivity matrix C.

To construct a d-ary key distribution tree, we execute the following steps:

Step 1: Calculate the Hamming weight Hw(Ci) for each row in C, corresponding to the

path from the GC to node i.

Step 2: Choose the node i∗ with the maximum Hamming weight i∗ = arg maxi∈MG(Hw(Ci)).

If there is more than one node that satisfies this condition then, from this list, pick

the node i∗ to be the one with maximum Ei.

Step 3: Pick the (d−1) nodes with the shortest Hamming distances Hd(i∗, j), j ∈ MG\i∗.
If there are more than (d− 1) nodes with equal Hd(i∗, j) always pick first, if any, the

node or nodes found on the path from the GC to i∗. For the remaining nodes, pick

those with the largest Ej . Assign a unique KEK to all members chosen in this step.

Step 4: Repeat Steps 2, 3 until all nodes belong in subgroups of at most d nodes and are

assigned a unique KEK.

Step 5: Generate a matrix C ′ with rows corresponding to the subgroups generated in

Step 4 and columns corresponding to the network nodes. An entry C ′
i(k) = 1 if node
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(a) (b)

1 2 3 4 5 6 7 8 Hw E

1 0 0 0 0 0 0 0 0 0 4

2 0 0 1 0 0 0 0 0 1 5

3 0 0 0 0 0 0 0 0 0 3

4 0 0 0 0 0 0 0 0 0 2

5 0 0 1 0 0 0 1 0 2 8

6 1 0 0 0 0 0 0 0 1 6

7 0 0 1 0 0 0 0 0 1 6

8 1 0 0 0 0 0 0 0 1 5

(c)

Figure 2.10: (a) The broadcast routing tree for an ad-hoc network of eight nodes plus the
GC. Nodes {1 − 8} are members of MG. The numbers on the links indicate the units of
energy required to transmit a message through that link. The ovals indicate the grouping
of the members into the key tree after the execution of VP3. (b) The key distribution tree
constructed by VP3 for the network in Figure 2.10(a). (c) The Connectivity Matrix for the
network in Figure 2.10(a). The first row and first column denote the node ID, column 10
denotes the Hamming weight of each codeword, and the last column denotes the energy
required to unicast a message to each node.

k is traversed by the path from the GC to any of the members of subgroup Si, and

C ′
i(k) = 0 otherwise. Compute the vector E′, the ith entry of which indicates the

energy expenditure required to multicast a message from GC to all members of Si,

following the paths indicated by the connectivity matrix C ′. Execute Steps 1 ∼ 4 with

inputs C ′, E′.

Step 6: Repeat Steps 1 ∼ 5 until all nodes belong to a single group.
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2.10.2 Applying VP3 on a Sample Network

We now present the application of VP3 on the sample network of Figure 2.10(a). The

numbers on the links indicate the energy link cost. Nodes 1 − 8 correspond to members

M1 −M8 of MG. Figure 2.10(c) shows the connectivity matrix C for MG, the Hamming

weights Hw(Ci) for each row Ci, and the energy expenditure Ei necessary to send a message

from the GC to member Mi.

We want to construct a binary key tree (d = 2) using VP3. Column Hw in Figure 2.10(c)

shows the result of executing Step 1. Step 2, identifies node i∗ = 5 as the node with the

greatest Hw, and withdraws it from the pool.

Using Step 3, VP3 finds nodes {7, 2} to have the shortest Hd to 5. Since we need to

choose only one node (d = 2), and 7 is on the path from GC to 5, {M5,M7} are assigned

a unique KEK, and node 7 is removed from the pool. Note that because node 7 lies on the

path from the GC to node 5, the choice made by VP3 maximizes the length of the common

path over the set of available choices, nodes 2 and 7.

In Step 4, VP3 repeats Steps 2, 3; nodes {2, 6, 8} have the highest Hw, and 6 is selected

since it has the highest Ei. Since node 8 has the smallest Hd to 6, nodes 6, 8 are paired and

{M8,M6} are assigned a unique KEK. Similarly, VP3 groups {M2, M3} and {M1,M4} and

a unique KEK is assigned to each group.

In Step 5, VP3 recomputes the connectivity matrix C ′ and energy matrix E′ for the pairs

generated in Step 4, and repeats Steps 1 to 4. Nodes {2, 3, 5, 7}, {1, 4, 6, 8} are grouped, and

members {M2,M3, M5,M7}, {M1,M4,M6,M8}, are assigned unique KEKs, respectively. At

this point the SEK is assigned to all members and the key tree construction is completed.

Figure 2.10(b) presents the key distribution tree.

2.10.3 Balancing Trees for Improved Energy-Efficiency

In [79], Moyer et al. define the concept of balanced trees and show that maintaining such

trees ensures that GC transmissions during rekey operations are kept at O(d logd N).

Definition 2.6 (Balanced Tree). A tree is said to be balanced, if leaf depth differs by at
most one between any two leaves of the tree [79].
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(a) (b)

Figure 2.11: (a) An unbalanced ternary key tree of N = 10, wa(T ) = 7.5. (b) Balancing
the tree reduces wa(T ) to 7.2.

We note that, depending on the size of MG, the application of VP3 may yield an

unbalanced tree . Unbalanced trees have been shown to require more GC key transmissions,

since their average leaf ancestor weight wa(T ), is larger compared to that of balanced

trees [41, 79, 107]. Hence, unbalanced trees, on average, require more energy for rekeying,

as will be shown in Section 2.11.

We now illustrate how the use of balanced trees reduces wa(T ) in a tree, which leads

to savings in GC transmissions. Figure 2.11(a) shows an unbalanced ternary key tree for

a ten node network, in which the empty branches at levels 0 and 1 are left indicated. The

ancestor weight wa(Mi), for the leftmost nine leaves is eight, wa(M10) = 3, and wa(T ) =

7.5. By contrast, Figure 2.11(b) shows a balanced tree with wa(Mi) = 7, i ∈ {1, ..., 8},
wa(M9) = wa(M10) = 8, and wa(T ) = 7.2. Nevertheless, an analysis of Figures 2.11(a)

and 2.11(b) reveals that the subgroups in both representations are mostly unaffected. For

example, subgroups S2,1 and S2,2 in Figure 2.11(a), have the same members as S1,1 and S1,2

in Figure 2.11(b).

Our simulation results show that balancing trees has significant impact on energy con-

sumption as N increases. Hence, we have modified VP3 to always construct balanced trees

without affecting the efficiency of the resulting partitions of MG into subgroups of the de-

sired size. We do this by distributing members among the branches of T , as evenly as N
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will allow. If an even distribution of members among the branches of T is not feasible, we

favor grouping of the remaining members into the subgroups with shortest paths. We now

describe the algorithmic steps involved in balancing the tree.

Before building the key tree structure, we calculate the number of members that should

be assigned to each subgroup at level h of the tree. This is done by computing the number

of branches B, in the balanced tree at level (h−1), B = ddlogd Ne−1. We then assign g = bN
B c

members to each subgroup at level h. The remaining L = N − gB members are assigned

one to each of the last L subgroups to be formed by the first iteration of VP3. For example,

for the tree in Figure 2.11(b), the number of subgroups at level h is equal to the number of

nodes in the balanced tree at level (h − 1), B = 3(dlog310e−1) = 9, and each subgroup will

have at least g = b10
9 c = 1 node. We then have L = 10− (1)(9) = 1 node left (M10), which

is assigned to the last group formed by the first iteration of the algorithm, S2,9. Note that

the added computational cost of balancing the trees is that of computing three quantities:

B, g and L.

In Figure 2.12, we present the pseudo-code for VP3, including the balanced tree mod-

ification. The ConnectivityMatrix() function computes the connectivity matrix for its

argument set. The EnergyMatrix() function computes the energy required to reach a set

of nodes sharing a common key from the GC, where each set is an element of the argument.

Initially, the argument to both functions is the set of all members of MG. With the con-

struction of every subsequent level l of the key tree, the argument will be the set of groups

generated in the previous level. The AssignKey() function assigns a KEK to every element

of the argument set.

2.10.4 Algorithmic Complexity of VP3

The algorithmic complexity of VP3 is determined by the complexity of its subgrouping

process. The algorithm first identifies the codeword Ci∗ , with the largest Hamming weight,

then computes the Hamming distances from all other codewords to Ci∗ , and picks the (d−1)

codewords with the shortest Hamming distance to Ci∗ . This process has to be repeated dN
dj e

times at each of (h− 1) tree levels, where j = h− i, and i is the tree level being built. The
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C = ConnectivityMatrix(MG), E = EnergyMatrix(MG)

B = d(dlogd Ne−1), g = bN
B
c

for l = 1 : dlogd(N)e
Hw(i) =

PN
j=1;j 6=i Ci(j),∀ rows Ci

for k = 1 : B

i∗ = arg maxi∈MG Hw(i)

if |i∗| > 1 then i∗ = arg maxi∈i∗ Ei

MG = MG\{i∗}
j′ = {j ∈ MG � arg minj∈MG Hd(i∗, j)}
if l > 1 then gs = d, else gs = g

if l = 1 and k ≥ N − gB then gs = gs + 1

if |j′| > (gs− 1) choose j′ path GC → i∗

and (gs− 2) ∈ j′ � arg maxi∈j′ Ei

MG = MG\{j′}, G = G ∪ j′

AssignKey(j′)

endfor

MG = G

C = ConnectivityMatrix(MG)

E = EnergyMatrix(MG)

endfor

Figure 2.12: Pseudo-code for VP3. The ConnectivityMatrix() function computes the
connectivity matrix for its argument set. The EnergyMatrix() function computes the
energy required to reach a group of vertices from the GC, where the groups are elements of
the vector argument. The AssignKey() function assigns a common key to every element of
the argument set.

total number of operations for this process is:

h−1∑

j=0

d N

dj e−d∑

i=0

[
(d + 2)

(⌈
N

dj

⌉
+ id

)
− d− 1

]
< d3N2. (2.37)

Since in general, we are interested in trees with small d, the worst case algorithmic com-

plexity of VP3 is O(N2).4

2.10.5 An Analytical Bound for Subgroup Choices in VP3

In this section we evaluate the deviation of a subgrouping choice made by VP3 from the

optimal choice, by computing the worst case cumulative path divergence ∆(S), defined be-

4Our simulation results show that d ∈ {3, 4} provide the best results in both, average update energy and
MG update messages.
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Figure 2.13: The cumulative path divergence between nodes 6 and 8 is ∆(6, 8) = 1. Note
that the common path between nodes 6 and 8 goes from the GC to node 2 and ∆(2, 6) = 0.

low, for a subgroup S, of arbitrary size, with subgroup head α(S):

Definition 2.7. –(Sub)group Head, α(S)–We define the (sub)group head α(S), of a (sub)group
S, as the (sub)group member that satisfies α(S) = arg maxi∈S{Ei}.

Definition 2.8. –Cumulative Path Divergence–The cumulative path divergence ∆(S) of a
subgroup S with subgroup head α(S), is defined as:

∆(S) =
N∑

k=1


Cα(S) ◦


 ∨

j∈S,j 6=α(S)

Cj





 , (2.38)

where the symbol ∨ denotes successive bitwise OR operations over the codewords of all
members of the set S\α(S), the symbol ◦ denotes a single bitwise AND operation, and Ci

denotes the complement operation on codeword Ci.

∆(S), expresses the number of additional transmissions required by the network, so that

a multicast message sent by the GC reaches all members of S\α(S), once the subgroup head

α(S) has already been reached.

As an example, in Figure 2.13 the path distance between nodes {2, 6} is Hd(2, 6) = 3,

but their path divergence is ∆(2, 6) = 0, since node 2 is in the path from GC to node 6,

and is reached for free whenever a message is sent to node 6. Similarly, for S = {6, 8, 10},
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α(S) = 6, and ∆(S) can be computed as:

C6 = 1101100000, C6 = 0010011111,

C8 = 1100001000, C10 = 1000000010,

∆(S) =
10∑

k=1

[
C6 ◦ (C8 ∨ C10)

]
= 2.

∆(S) = 2 denotes the two additional transmissions 7 → 8 and 9 → 10 required to deliver a

message m to nodes 8 and 10, when m is sent to 6.

VP3 aims to reduce the energy cost of the key distribution tree by maximizing energy

savings when building a partition of MG into subgroups of size d. The idea is to maintain to-

tal subgroup cost ES , as close to the unicast cost of the subgroup head as possible. Thus, we

consider a subgroup S achieves optimal cost if ES = Eα(S), where α(S) = arg maxi∈S{Ei}.
It is important to point out that ES = Eα(S) implies that ∆S = 0, i.e., no additional

transmissions are required to reach any of the members in S\α(S), when α(S) is reached.

Hence, ES = Eα(S) indicates that a message multicasted from the GC to S will be relayed

with the minimum number of MG update messages for the given routing tree R. That is,

ES = Eα(S) implies optimal energy update cost and optimal MG update messages when

transmitting a message to S, for fixed R.

We note that while ES = Eα(S) implies ∆(S) = 0, the converse is not true, as can be

shown by the example of Figure 2.13. Let S = {3, 5, 6}, and assume that E4→3 > E4→5. In

that case, though ∆(S) = 0, we can see that ES = E6 − E4→5 + E4→3 > E6.

We now calculate the worst case cumulative path divergence for a subgroup S of size d,

when S is generated using the decision process of VP3:

Lemma 2.1. The maximum cumulative path divergence ∆∗
d(S), for a subgroup S of size

d > 2 is:
∆∗

d(S) = (d− 1)maxHw(i), i ∈ R.

Proof. VP3 will achieve its worst-case bound when |S\α(S)| = (d − 1) subgroup members

have ∆(α(S), i) = max[Hw(j), i ∈ S\α(S), j ∈ R]. We present a construct that achieves
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C

Figure 2.14: (a) Worst case for VP3. For the subtree rooted at C, VP3 will select the
following subgroups: {A, B, F}, {C, D, E} first, and leave node G isolated. Similar choices
will leave nodes K and J isolated. Therefore S7 = {G,K, J}.

this worst-case bound in Figure 2.14. Assume d = 3 and, without loss of generality, assume

EA > EE > EG > EF > ED, so that VP3’s first subgroup choices within the subtree RC

rooted at node C will be S1 = {A,B, F} and S2 = {C,D, E}, as shown in Figure 2.14. Note

that these choices leave node G isolated from those nodes of the broadcast routing tree R

that have not been grouped yet. Similarly, VP3’s subgrouping choices for subtrees RH and

RI , rooted at nodes H and I respectively, will leave one isolated node in each subtree, nodes

J and K. Since the roots of d = 3 subtrees are all connected to GC, the only subgrouping

choice there remains for VP3 to take, is S7 = {G, J,K}, the three nodes shown in gray

in Figure 2.14. Note that the paths of the three subgroup members have a common node

in GC, hence, the length of their common path is zero, and ∆(α(S7), i) = Hd(i, GC) =

Hw(i), ∀i ∈ S7\α(S7). Finally, since Hw(G) = Hw(J) = Hw(K) = maxHw(i) for i ∈ R,

and |S7\α(S7)| = (d− 1), we have that ∆(S7) = (d− 1)maxHw(i).

2.11 Performance Evaluation in the Absence of Routing Information

2.11.1 Simulation setup

Simulation studies were performed on randomly generated network topologies confined in

a specific region. Since there is no algorithm to provide the minimum energy solution for

the key distribution tree construction, we performed an exhaustive search for small group



54

0 2 4 6 8 10
50

100

150

200

250

300

350

Network Topologies

A
ve

ra
ge

 R
ek

ey
 E

ne
rg

y 
(E

.U
.)

LocKeD,   Homogeneous Medium N=64

Min
LocKeD
Mean
Max

0 50 100 150 200 250 300
50

100

150

200

250

300

Number of nodes

A
ve

ra
ge

 R
ek

ey
 E

ne
rg

y 
(E

.U
.)

LocKeD,   Homogeneous Medium

Min
LocKeD
Mean
Max

(a) (b)

Figure 2.15: Experiment 1- Homogeneous Medium: (a) Application of LocKeD in a free
space area for 10 different network topologies of 64 nodes plus the GC, compared with
the energy expenditure of the minimum, maximum and mean performing tree out of the
10,000 examined tree structures. (b) Application of LocKeD in a free space area for different
network sizes averaged over 100 network topologies.

sizes N = 8, N = 16. For larger group sizes, N = 32, 64, 128, 256, we generated for each

network instance, 10,000 different random key tree structures. Out of the 10,000 randomly

generated structures, we selected the key trees that resulted in the minimum and maximum

EAve, and compared them with the performance of our algorithms. We also computed the

mean performance of the 10,000 random key trees and compared that with LocKeD and

PAKeD-KM. We repeated the same comparison for 100 different network topologies and

averaged the results.

2.11.2 Experiment 1: Network deployed in a homogeneous medium - Free space case

In our first experiment we assumed that the network was deployed in an open space area. We

confined the network in a 10x10 region and evaluated the performance of LocKeD. In figure

2.15(a), we compare the LocKeD with the minimum and maximum performing tree as well

as the average, out of the 10,000 randomly generated tree structures. We can observe the

key tree with the best performance spends 1.3%-16.7% less energy than LocKeD. However,

if location is neglected, LocKeD spends 24.4%-54.2% less, compared to the key tree with
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Figure 2.16: Experiment 2 Heterogeneous Medium: Application of PAKeD for different
network sizes, compared with the energy expenditure of the minimum, maximum and mean
performing tree out of the 10,000 randomly generated tree structures when, (a) the network
is deployed in a suburban area (b) the network is deployed in an office building.

the maximum average key update energy and 14.2%-36.4% less, compared to the mean of

all generated trees, for the 10 networks in figure 2.15(a).

In figure 2.15(b), we show the results of LocKeD as a function of the multicast group

size N , averaged over 100 network topologies for each N . The LocKeD spends on average

9% more energy for re-keying, compared to the key tree with the minimum EAve. LocKeD

spends on average 57% less energy for re-keying, compared to the key tree with the maximum

EAve, and 32% less, compared to the mean of all randomly generated trees.

2.11.3 Experiment 2: Network deployed in a heterogeneous Medium - Suburban area

In our second experiment, we evaluated the performance of the PAKeD for a slowly varying

heterogeneous medium. We considered a suburban area where the attenuation factor γ

is not constant throughout the network deployment region. However, we assumed that

it changes slowly across space. In figure 2.16(a), we compare the PAKeD-KM with the

minimum, maximum, and average performing tree out of the 10,000 randomly generated

trees, as a function of the multicast group size N , for networks deployed in a suburban

area. We observe that the PAKeD-KM spends on average 19% more energy for rekeying,
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Figure 2.17: Comparison of PAKeD-KM with LocKeD for a network deployed in a, (c)
suburban area, (d) office building.

compared to the key tree with the minimum average key update energy. The PAKeD-KM

spends on average 70% less energy for rekeying, compared to the key tree with the maximum

average update, and 59%, compared to the mean of all randomly generated trees.

We note that the key tree with the maximum EAve spends almost three times as much

energy as the tree constructed with PAKeD-KM. This is due to the fact that sending

messages in a heterogeneous environment requires more energy than in a homogeneous one,

and using an inefficient key distribution scheme can lead to great waste of energy resources.

In figure 2.17(a), we compare the PAKeD-KM with LocKeD, for networks of different

group sizes deployed in a suburban area. We observe that LocKeD performs 20% worse than

the PAKeD-KM. By comparing figures 2.16(a) and 2.17(a), we note that the performance

of the LocKeD is still significantly better than the average and worst case random key trees.

2.11.4 Experiment 3: Network deployed in a heterogeneous medium - indoor environment

In our third simulation experiment, we evaluated the performance of the PAKeD algorithm

for a rapidly changing heterogeneous medium. In figure 2.16(b), we compare the PAKeD-

KM with the minimum and maximum performing tree as well as the average out of the 10,000

randomly generated trees, for different multicast group sizes in an indoor environment. We
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observe that the PAKeD-KM spends on average 17% more energy for rekeying, compared

to the key tree with the minimum average key update energy. The PAKeD-KM spends on

average 72% less energy for rekeying, compared to the key tree with the maximum average

update, and 56% less when compared to the mean of all randomly generated trees.

In figure 2.17(b), we compare PAKeD-KM with LocKeD for different group sizes de-

ployed in an office building. As expected, LocKeD performs poorly in the indoor envi-

ronment by spending 96% more energy for rekeying than PAKeD-KM. In the indoor en-

vironment physical proximity is not increasing monotonically with “power proximity” and

clustering based on location fails to give an energy-efficient key distribution tree.

2.12 Performance Evaluation in the Presence of Routing Information

Evaluation of RAwKey algorithm

In this section we evaluate the performance of our routing aware key distribution algorithm.

In Figure 2.18(a), we observe that RAwKey yields significant savings compared to a tree

structure that does not take into account the routing information. It has slightly worse

performance compared to the best tree out of the 10,000 trees and gives significant savings

compared to the median and worse possible tree. In Figure 2.18(b), we compare the per-

formance of RAwKey with the location-aware key distribution scheme (LocKeD). We show

the percentage difference (ERAwKey
AV E −ELocKeD

AV E

ERAwKey
AV E

%) between RAwKey and LocKeD for different

number of nodes. RAwKey outperforms LocKeD by 5.4-8.2%, since LocKeD may fail to

capture the circularity of the broadcast advantage.

2.12.1 Performance of RAwKey under different routing algorithms

In our fifth experiment we compared the performance of RAwKey under different routing

algorithms and for different multicast group sizes. We generated random topologies and

constructed the multicast routing tree using BIP [122], EWMA [16], MST [7] and SPR

[7]. We applied RAwKey under the different routing algorithms and measured EAV E . In

Figure 2.20 we observe that SPR gives the minimum re-key energy expenditure, BIP and

MST have similar performance, while EWMA needs increasing energy for re-keying as the
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Figure 2.18: (a) Performance of RAwKey for different N . (b) Comparison RAwKey with
LocKeD for different N . (c) Comparison of the RAwKey under different routing algorithms.

multicast group size grows.

If we study the routing trees resulting from the application of the four algorithms (Fig-

ure 2.19) we observe that SPR, BIP and MST tend to be multi-hop in contrast to EWMA

that covers many nodes with one transmission. Although a single transmission is beneficial

for broadcasting a message to all members of the multicast group and reducing the total

transmit power, it proves inefficient when messages need to be transmitted to small sub-

groups or even unicasted. Re-keying after a member deletion involves many transmissions to

smaller groups than MG. SPR is optimized for unicast transmissions and therefore delivers

keys to single members with minimal energy cost. On the other hand, EWMA requires the

most energy for unicasting, since it favors long range transmission to cover many nodes.

2.12.2 Evaluation of VP3 algorithm

To evaluate the performance of VP3, we generated random network topologies confined

to a region of size 100x100. Following the network generation, we used the Broadcast

Incremental Power (BIP) algorithm [122] to construct and acquire the routing paths from

the GC to every group member5. The routing tree was also used to calculate the energy

5Any other suitable routing algorithm can be applied as well [16, 122].
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Figure 2.19: Multicast routing tree constructed with (a) BIP, (b) MST, (c) SPR, (d) EWMA.

required to reach any group of members.

2.12.3 Comparison between VP3 and RAwKey

In our first experiment, we compared VP3 with RAwKey. We also compared VP3 with

a random key assignment algorithm as in wired networks [120, 123]. Since for a fixed key

tree degree d, the key assignment structures built by VP3, RAwKey, and the random

key tree algorithm have the same member storage and GC transmissions requirements, we

compared the three methods in terms of average MG update messages mAve, and average

update energy EAve.

Figure 2.23(a) shows the mAve (top graph), and EAve (bottom graph), for trees of degree

d = 4 and for different multicast group sizes N. All trees were left unbalanced. Due to space

limitations, we have omitted the results for binary and ternary trees. In the top graph of
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Figure 2.20: Comparison of the RAwKey under different routing algorithms.

Figure 7(a), we observe that sudden increases in mAve occur when N = di + 1, i ∈ Z+.

The increases in mAve are a consequence of leaving the key tree unbalanced, since in that

case the average leaf ancestor weight wa(Mi) significantly increases for those nodes with

large Hamming weight Hw during the transition from N = di to N = di + 1. As, noted,

an increase in wa(Mi) for those nodes with large Hw implies an increase in the number of

GC transmissions directed to nodes with longer paths, which in turn leads to an increased

number of relaying messages.

The bottom graph of Figure 2.23(a) shows the EAve for different multicast group sizes N.

We observe that the sudden increases in mAve from the top graph of Figure 2.23(a), translate

into sudden increases in EAve, also due to the use of unbalanced trees. As N continues to

increase, however, wa(T ) decreases, and EAve is reduced. This happens because the size

of the deployment area is fixed. Thus, as N increases and the nodes become more densely

packed, the number of relaying messages required to rekey MG increases, but the average

energy cost per relayed message decreases.

Figure 2.23(b) shows the performance improvement achieved by VP3, over RAwKey,

on both mAve and EAve, for key trees of degree d ∈ {2, 3, 4}. While average improvement

on both metrics is 20%, the average for networks of size N ≥ 150 increases to 28%. The
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Figure 2.21: ∆(S) that was observed in 29,300 randomly generated networks. Networks of
size N ∈ [8, 300] where generated at random, 100 networks for each size. The histograms
show the percentage of subgroups of size d ∈ {3, 4, 5, 6} that showed ∆(S) > 0, over the
total number of subgroups that were formed by VP3, for all networks.

difference in performance between VP3 and RAwKey occurs due to the near optimal decision

process of VP3 when compared to RAwKey, which ignores path direction [67,68].

Figure 2.22(a) compares both, mAve and EAve for key trees of degree d ∈ {2, 3, 4},
generated using VP3. We note that binary trees are clearly outperformed by ternary and

quaternary trees, which in turn perform quite similarly for the selected sizes of MG. This

happens because the number of GC transmissions increase much more rapidly for binary

trees, due to the increase in tree height. Nevertheless, the trend is inverted for d > 4, because

the increase in subgroup size d implies an increase in the number of unicast transmissions

required for rekeying. This increase outweighs reductions due to shorter tree height. Our

simulations show that the best results are obtained when we use key trees of degree d ∈
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Figure 2.22: (a) Comparison in performance of VP3 for trees of degree d ∈ {2, 3, 4}. The
graph on the top shows mAve, and the graph on the bottom shows EAve. (b) Average MG
update messages and average update energy for different multicast group sizes, for balanced
and unbalanced trees.

{3, 4}.

2.12.4 Effect of the Use of Balanced Tree Topologies with VP3

In our second experiment, we evaluated the effect of balancing the key tree structures, as

described in Section 2.10.

The top graph in Figure 2.22(b) shows the effect of balanced tree topologies on mAve.

We observe that mAve grows almost linearly with N. This is to be expected, since the MG

update messages required to complete rekey operations are not bounded by the size of the

area in which networks were generated.

The bottom graph in Figure 2.22(b) shows the improved EAve achieved by VP3 when

balancing the tree structure. EAve is almost constant for networks of size N ≥ 50, both

for ternary and quaternary trees. The size of the deployment area is fixed, thus, as N

increases and the nodes become more densely packed, the number of MG update messages

increases, but the average energy cost per message decreases. Since VP3 provides near

optimal grouping of members, the increase in relay messages does not increase EAve.
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Figure 2.23:A comparison between the VP3, RAwKey and the random key tree algorithm.
(a) The graph on top shows the average number of MG update messages, and the graph
below shows average update energy. Each data point is the average result over 100 randomly
generated networks. (b) % of improvement in both mAve and EAve obtained by VP3 over
RAwKey for different sizes of MG.

2.12.5 Path Divergence of VP3

For our third experiment, we generated 100 networks for each network size N ∈ [8, 300] (a

total of 29,300 networks), in an area of 100x100. We then employed VP3 to partition each

network into groups of size d ∈ {3, 4, 5, 6} (steps 1−4 of VP3) and evaluated ∆(Si) for each

of the resulting subgroups, using (2.38)6.

The histograms in Figure 2.21 present the percentage of subgroups that showed a

∆(Si) > 0, for subgroups of different size. As an example, in Figure 2.21(a) only 0.03%

subgroups of size d = 3 out of the subgroups formed from the 29,300 networks tried, had

∆(S) > 0.

Note that while the worst-case bound indicates that ∆∗
3(S) = maxHw(i), the conditions

required to achieve this divergence occur in the specific network topology shown in the

Figure 2.14 in Appendix II, and all its isomorphics. In fact, none of the subgroups obtained

in our simulations exceeded ∆(S) = 1, for d = 3, and we did not find a case in which

∆(S) > 7, for d ∈ {3, 4, 5, 6}. Our simulations suggest that the worst-case bound in (2.38)

6For d = 2 it can be proved analytically that VP3 partitions each network into subgroups with ∆(S) = 0.
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may be overly pessimistic for most networks, and that the vast majority of groups generated

by the decision process of VP3 have zero path divergence.

2.13 Summary of Contributions

We studied the problem of energy-efficient key management for group communications in

wireless ad hoc networks. We considered the key management problem under four metrics,

namely member key storage, GC transmissions, MG update messages and average update

energy. For each metric we formulated an optimization problem and showed that the prob-

lem has unique solutions in terms of member key storage and GC transmissions, while it is

NP-complete in terms of MG messages and average update energy. Since no unique solution

concurrently optimizes all four metrics, we considered the problem of minimizing the MG

update messages and average update energy, while keeping the member key storage and the

GC transmissions bounded.

We noted that while the balanced key trees are efficient solutions in terms of key storage

and MG update messages, the key trees did not consider energy and network bandwidth

as a design parameter. In order to incorporate the energy/bandwidth-efficiency into the

key trees, we introduced a new performance evaluation metric called average energy update

cost. We characterized this metric in terms of the network topology, the properties of the

propagation medium and the degree of the key tree. We then noted that depending on

whether the propagation medium is homogeneous or heterogeneous, we could formulate

problems with different cost functions and computational complexities for the cross-layer

design problem. We also presented the complexities of our algorithms and showed the pitfalls

of trying to find a globally optimal solution. We also proposed RAwKey, a routing-aware

key distribution algorithm that takes into account the routing paths used to distribute keys

to valid members of the multicast group. Finally, we presented VP3, a heuristic cross-

layer key distribution algorithm that takes into account network flows in order to provide

a resource efficient key distribution scheme. We presented simulation results and applied

our algorithms to different environments and showed significant energy savings using our

algorithms that demonstrate the advantage of a cross-layer design approach.
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(a) (b)

Figure 2.24: Sub-optimality of the refinement algorithm. Three un-balanced clusters A,B, C
with |A| = n + k, |B| = n − k1, |C| = n − k2 and k = k1 + k2, (a) moving r to B and q
to C, results in a sub-optimal solution, (b) moving l, r to B and g to C, results in a better
solution than moving l to B and r to C.

2.14 Appendix

2.14.1 On the Optimality of the Refinement Algorithm

The refinement algorithm7 balances the clusters sizes obtained from the application of the

clustering algorithm. When we balance two clusters, we move an object from cluster A to

cluster B so that we minimally increase the total inter-cluster dissimilarity. For the binary

case, this greedy approach leads to an optimal solution for the constrained optimization

problem in (2.21). However, if the number of clusters is greater than two, the refinement

algorithm in (2.22) need not lead to balanced clusters of minimum total dissimilarity. We

illustrate these points with the example given below.

Consider the clusters A,B, C shown in figure 2.24, with |A| = n + k, |B| = n − k1,

|C| = n − k2 and k = k1 + k2. We specialize to the case where k = 2, k1 = 1 and k2 = 1.

According to the refinement algorithm, we must move two objects from A to B,C (one to

7The pseudo-code of the algorithm is presented in figure 2.6(b).



66

B, one to C). We initially find the object i∗ ∈ A such that:

i∗ = arg min
i∈A

[d2
i,mX

− d2
i,mA

], X = {B, C}. (2.39)

For figure 2.24(a) there are two optimal objects, i∗ = {l, r} that can be moved from set A

since dl,mA
= dr,mA and dl,mB

= dr,mB . Assume that object r is moved from A to B. Note

that object r minimally increases the cluster dissimilarity, out of all objects of A that could

be possibly moved to cluster C. Hence, if any other object (q for example) is moved from A

to C to balance C, the total cluster dissimilarity will be higher compared to the case where

l is moved to B and r is moved to C.

Finding the two objects from cluster A to be moved to clusters B and C respectively

so that the total dissimilarity is minimized requires exhaustive search through all possible

combinations of object movements. In our example, two points out of the (n + 2) points in

set A need to be moved. There are (n + 2)(n + 1) possible combinations to be inspected.

In the general case where k1, k2, . . . , ks objects need to be moved from cluster A that has

n + k initial points, to clusters B1, B2, . . . , Bs which contain n− k1, n− k2, · · ·n− ks points

respectively, where k =
∑s

i=1 ki, the number of possible combination is:

(
n + k

k1

)(
n + k − k1

k2

)
. . .

(
n + ks

ks

)
. (2.40)

A careful consideration shows that when the number of clusters involved is more than

two, identification and moving of a set of objects to different clusters need to consider all

clusters simultaneously, not just the cluster with extra objects. In other words, simply

moving the extra objects with the highest dissimilarity from the bigger clusters to the

smaller ones need not lead to optimality. We illustrate it now.

Consider the figure 2.24(b). Set k = 2, k1 = 1, and k2 = 1. Hence, to construct

balanced clusters, two objects need to be removed from the cluster A and the size of the

clusters B and C should increase by one. We need to move objects with minimal increase

in dissimilarity. Assume that moving node r or l from A to B increases minimally the total

cluster dissimilarity. Also assume that the node g in cluster B has the lowest dissimilarity

with respect to cluster C. Then, moving both objects l, r to cluster B and then moving
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object g from cluster B to cluster C will result in lower total cluster dissimilarity than

simply moving l to B and r to C.

From this example, we note that examining and maintaining a list of points and their

dissimilarities for the every cluster and every point is important. Hence, when there are

more than two clusters, the complexity of finding the globally optimal solution for the

optimization problem in (2.21) requires inspection in each cluster and is even higher than

the one expressed in (2.40). Therefore, due to the complexity of finding the optimal solution,

it is preferable to adopt the sub-optimal solution for balancing the clusters, provided by the

refinement algorithm.

2.14.2 Algorithmic details of PaKeD-KM and PaKeD-DH

Power Aware Key Distribution based on K-Medoids (PAKeD-KM)

In figure 2.25(a), we present the pseudo code for the Power-Aware Key Distribution - K-

Medoids (PAKeD-KM) algorithm, that utilizes a “power proximity” clustering algorithm

based on K-medoids [115], [53]. We now describe the notational and algorithmic details of

PAKeD-KM given in figure 2.25(a).

Initially, all members (objects) belong to the global cluster P. The AssignKey(P) func-

tion assigns the SEK to all members of the group. The Power(C,γ) function computes the

dissimilarities between members according to the path loss information, and stores them in

matrix diss.

Choice between CLARA and PAM in PAKeD-KM: Depending on the network

size, we employ either PAM or CLARA as a method for dividing the global cluster into

sub clusters. CLARA algorithm is chosen over PAM if the network size N is bigger than

a threshold MaxSize. Studies in [53] showed that PAM becomes inefficient for data sets

bigger than 100 objects. The choice is stored in variable Clust with the default being PAM.

If MaxSize > 100, Clust is set to CLARA.

The Divide(C(i), α,Clust) function partitions C(i) to α clusters according to Clust

method, and returns the created clusters to variable R. The Refine(R,thres) function bal-

ances the cluster sizes and the AssignKey(R) assigns keys to the clusters in R. After



68

dlogα(N)e steps the algorithm terminates.

Power Aware Key Distribution based on Divisible Hierarchy (PAKeD-DH)

In figure 2.25(b), we present the pseudo code for the Power-Aware Key Distribution -

Divisible Hierarchical clustering (PAKeD-DH) algorithm, that utilizes a “power proximity”

clustering algorithm, based on divisible hierarchical clustering [115], [53].

For the PAKeD-DH algorithm, the basic steps are as described in Section 2.8.2. Initially,

the SEK is assigned to all members of the multicast group with AssignKey(P) and the

dissimilarity matrix diss is computed as in PAKeD-KM algorithm. The cluster with the

highest diameter is split into sub clusters A,B. In order to create the cluster B, the average

dissimilarities a(i) and w(i, B) are stored in Diss A, Diss B, respectively. Cluster splitting

is repeated until α clusters have been created. Then, the α clusters are balanced with the

refinement algorithm Refine(), according to the threshold thres, and a key is assigned to

each cluster. This process is repeated for every level of the tree hierarchy. The algorithm

terminates after dlogα(N)e steps.

Computational Complexity of PAKeD-DH: The complexity of divisible hierarchi-

cal clustering is O(N3) [53]. Divisible hierarchical clustering outputs a cluster hierarchy and

need not be iteratively applied as in the case of K-means or K-medoids clustering. Hence,

the complexity of PAKeD-DH is O(N3).
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Power-Aware Key Distribution (PAKeD)

K-medoids Clustering (PAKeD-KM)

C = {P}
AssignKey(C)
diss = Power(C, γ)

if |C| > MaxSize
Clust=CLARA

end if

index=1

while index < dlogα(N)e
C temp ={∅},
thres = d N

αindex e

for i = 1 : |C|
R=Divide(C(i), α, Clust)
R=Refine(R, thres)
AssignKey(R),
C temp = C temp

⋃
R

index++
end for

C = C temp
end while

(a)

DH Clustering (PAKeD-DH)

C = {P}, index = 1
AssignKey(C)
diss = Power(C, γ)
while index < dlogα(N)e
thres = d N

αindex e
for j=1:|C|

C temp = ∅
while |C temp| ≤ α

A := maxJ∈C temp diam(J), B = ∅
Diss A = Ave Diss(A, diss)
i∗ = arg maxi∈A Diss A
A = A− {i∗}, B = {i∗}
If |A| = 1 stop
else repeat

Diss A = Ave Diss(A, diss)
Diss B = Ave Diss(B, diss)

max diss = maxi∈A(Diss A−Diss B)
m = arg maxi∈A(Diss A−Diss B)
if max diss > 0

B = B
⋃{m}, A = A− {m}

else
end repeat
C temp = C temp

⋃{A,B}
end while

end for
C =Refine(C temp, thres)
index=index++
end while

(b)

Figure 2.25: Pseudo code for the Power-Aware Key Distribution algorithm (PAKeD), (a)
when clustering is performed using K-medoids (PAKeD-KM), and (b) when we directly
generate a hierarchical key tree using divisible hierarchical clustering (PAKeD-DH).
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Chapter 3

SECURE LOCALIZATION IN WIRELESS AD HOC NETWORKS

Many of the applications proposed for wireless ad hoc and node networks require knowl-

edge of the origin of the sensed information. For example, in a disaster relief operation using

a node network, to locate any survivor in a collapsed building, it is critical that nodes report

monitoring information along with their location. Furthermore, location is assumed to be

known in many ad hoc network operations such as, routing protocols, or security protocols

where location information is used to prevent threats against network services [48, 62]. In

the previous chapter, we assumed that the node location in known in order to perform

energy-efficient key management.

Since ad hoc networks may be deployed in hostile environments and operate unsuper-

vised, they are vulnerable to conventional and new attacks [48, 52] aimed at interrupting

the functionality of location-aware applications by exploiting the vulnerabilities of the lo-

calization scheme. Though many localization techniques have been proposed for wireless

ad hoc networks [4,15,44,81,83,94,104,117], research in secure location estimation is in its

infancy.

In this chapter, we address the problem of location estimation in wireless ad hoc and

node networks in an adversarial environment. We propose two localization algorithm called

SeRLoc and HiRLoc, that enable the network nodes to estimate their position robustly

even in the presence of security threats. Since network nodes are hardware and power

limited, we rely on a two-tier network architecture to limit the computation at the node

side. Our network is comprised of a small number of nodes equipped with special hardware,

we call locators, and a large number of resource constrained node devices. However, we

preserve the characteristics of ad hoc networks by randomly deploying both the nodes and

the locators, and by allowing them to communicate in ad hoc mode. Moreover, since distance

measurements are susceptible to distance enlargement/reduction, we do not use any such
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measurements to infer the node location. We refer to methods that are not using distance

measurements as range-independent localization schemes [15,44,81,83]. For the problem of

secure location estimation, we make the following contributions.

3.1 Our Contributions

We address the problem of secure localization in wireless ad hoc networks, and propose

SeRLoc, a novel range-independent localization scheme based on a two-tier network archi-

tecture, that achieves decentralized, resource-efficient node localization. We describe well

known security threats against ad hoc networks, such as the wormhole attack [48, 85], the

Sybil attack [32, 82], and compromise of network entities, and provide mechanisms that al-

low each node to determine its location even in the presence of those threats. Furthermore,

we analytically evaluate the probability of success for each type of attack using spatial sta-

tistics theory [29]. Based on our performance evaluation, we show that SeRLoc localizes

nodes with higher accuracy than state-of-the-art decentralized range-independent localiza-

tion schemes [15,44, 81,83], and is robust against varying sources of error. We also present

HiRLoc, a high-resolution localization algorithm that provides improved localization accu-

racy compared to SeRLoc, while it preserves the robustness against attacks and does not

require additional hardware resources.

3.2 Related Work

3.2.1 Related Work on Localization

Localization schemes can be classified to range-dependent and range-independent based

schemes. In range-dependent schemes, nodes determine their location based on distance or

angle estimates to some reference points with known coordinates. Such estimates may be

acquired through different methods such as time of arrival (TOA) [45,117], time difference

of arrival (TDOA) [94,104], angle of arrival (AOA) [84], or received signal strength indicator

(RSSI) [4].

In the range-independent localization schemes, nodes determine their location without

any time, angle, or power measurements. In [15], the authors propose an outdoor localization
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scheme called Centroid, where nodes estimate their position as the centroid of the locations

of all the beacons transmitted from reference points. Centroid method is easy to implement

and incurs low communication cost. However, it results in a very crude approximation of

node location.

In [83], the authors propose DV-hop, where each node determines the number of hops to

nodes with known locations called landmarks, using a distance vector like method. Once the

number of hops to at least three landmarks is known, nodes use an average hop size estimate

to determine their distance to the landmarks, and apply multilateration to determine their

absolute location. In [81], the authors follow a similar approach to DV-hop, with the

exception of computing the average hop size offline using an approximate formula [54] with

the assumption that every network node has at least a neighborhood of 15 nodes.

In [44], the authors propose APIT, a range-independent localization scheme that localizes

nodes based on beacons transmitted from reference points called anchors, and neighbor node

information. In APIT, a node s performs a test to determine whether it is inside the triangle

defined by a 3-tuple of anchors heard by the node. The test is repeated for all 3-tuples of

anchors heard by s and the location is computed as the center of gravity of the triangles’

overlapping region.

Two methods have been proposed that utilize connectivity information to determine

the node location. In [31], the authors formulate a semi-definite program based on the

connectivity-induced constraints, and obtain the optimal position estimates. In [106], the

authors use multidimensional scaling to acquire an arbitrary rotation of the network topol-

ogy. Further more, if any three nodes know their location, the network topology can be

mapped to the absolute node location. Both schemes in [31, 106] require centralized com-

putation and extensive communications and hence, are not used for comparison in the

performance evaluation.

3.2.2 Related Work on Secure Localization

While an extensive literature exists for location estimation schemes for WSN in a benign

environment [15, 31, 44, 45, 81, 83, 94, 104, 106], few articles have appeared addressing the
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problem of sensor location estimation and verification in an adversarial setting [13, 59, 63–

66,71,73,103,116,118].

Sastry et al. [103] proposed the ECHO protocol for verifying the location claim of a

node, using a challenge response scheme and a combination of RF and Ultrasound signals.

ECHO is based on a distance bounding protocol proposed by Brands and Chaum [13].

C̆apkun and Hubaux proposed Verifiable Multilateration (VM) for securing range-based

localization schemes [118]. In VM, a node must verify its distance to at least three reference

points in order to securely estimate its position. C̆apkun et al. also proposed a location

verification method based on hidden reference points that can verify the validity of the

location claims of nodes [116].

Liu et al. [74] proposed an attack-resistant location estimation technique that can filter

bogus beacon information provided that the majority of significant majority of beacons

is benign. Li et al. [71] discuss a variety of attacks specific to the localization process

and propose robust statistical methods that provide attack resistant localization. Finally,

Kuhn [59] has proposed an asymmetric security mechanism for securing GPS-like navigation

signals.

3.3 Problem Statement & Network Model

3.3.1 Problem Statement

We study the problem of enabling nodes of an ad hoc network to determine their location

even in the presence of malicious adversaries. This problem will be referred to as Secure

Localization. We consider secure localization in the context of the following design goals:

(a) decentralized implementation, (b) resource efficiency, (c) range-independence, and (d)

robustness against security threats.

3.3.2 Network Model

Network deployment

We assume a two-tier network architecture with a set of nodes S of unknown location ran-

domly deployed with a density ρs within an area A, and a set of specially equipped nodes
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L we call locators, with known location1 and orientation, also randomly deployed with a

density ρL << ρs.

Antenna model

We assume that nodes are equipped with omnidirectional antennas and transmit with a

power Ps, while locators are equipped with M directional antennas with a directivity gain

G > 1, and can transmit with a power PL > Ps. Let the signal attenuation over space be

proportional to some exponent γ of the distance d between two nodes, times the antenna

directivity gain G, (G = 1 for omnidirectional antennas) i.e. Ps
Pr

= cG2dγ , with 2 ≤ γ ≤ 5,

where c denotes a proportionality constant and Pr denotes the minimum required receive

power for communication. If rss denotes the node-to-node communication range and rsL

denotes the node-to-locator communication range then,

Ps

Pr
= c(rss)γ ,

Ps

Pr
= cG(rsL)γ (3.1)

From (3.1), it follows rsL = rssG
1
γ . Similarly, if rLs denotes the locator-to-node communi-

cation range, the locator-to-locator communication range rLL is equal to rLL = rLsG
2
γ . For

notational simplicity we will refer to rss as r, and to rLs as R.

System parameters

Since both locators and network nodes are randomly and independently deployed, it is

essential to select the system parameters, so that locators can communicate with the network

nodes. The random deployment of the locators with a density ρL = |L|
A (| · | denotes the

cardinality of a set) is equivalent to a sequence of events following a homogeneous Poisson

point process of rate ρL [29]. The random deployment of the nodes with a density ρs = |S|
A ,

is equivalent to a random sampling of the area A with rate ρs [29]. Making use of Spatial

Statistics theory [29], if LHs denotes the set of locators heard by a node s, i.e. being within

1By acquiring their position either through manual insertion or through GPS receivers [45]. Though GPS
signals can be spoofed, knowledge of the coordinates of several nodes is essential to achieve any kind of
node localization, for any localization scheme.
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range R from s, the probability that s hears exactly k locators, given that the locators are

randomly and independently deployed, is given by the Poisson distribution:

P (|LHs| = k) =
(ρLπR2)k

k!
e−ρLπR2

. (3.2)

Based on (3.2), we compute the probability for every node to hear at least k locators

P (|LHs| > k) :

P (|LHs| ≥ k, ∀s ∈ S) = (1−
k−1∑

i=0

(ρLπR2)i

i!
e−ρLπR2

)|S|. (3.3)

Equation (3.3) allows the choice of ρL, R so that a node will hear at least k locators

with any desired probability. Derivations of (3.2), (3.3) are presented in Appendix 3.10.1.

3.4 SeRLoc: Secure Range-Independent Localization Scheme

In this Section we present the SEcure Range-independent LOCalization scheme (SeRLoc)

that enables nodes to determine their location based on beacon information transmitted by

the locators, even in the presence of security threats.

3.4.1 Location Determination

In SeRLoc, nodes determine their location based on the beacon information transmitted

by locators. Figure 3.1(a) illustrates the idea behind the scheme. Each locator transmits

different beacons at each antenna sector with each beacon containing, (a) the locator’s

coordinates, (b) the angles of the antenna boundary lines with respect to a global axis.

If a node receives a beacon transmitted at a specific antenna sector of a locator Li, it

has to be included within that sector. Given the locator-to-node communication range R,

the coordinates of the transmitting locators and the sector boundary lines provided by the

beacons, each node determines its location as the center of gravity (CoG) of the overlapping

region of the different sectors. The CoG is the least square error solution given that a

node can lie with equal probability at any point of the overlapping region. In figure 3.1(a),

the node hears beacons from locators L1 ∼ L4 and determines its position as the CoG of

the overlapping region between the four antenna sectors. We now present the algorithmic

details of SeRLoc.
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Figure 3.1: (a) The node hears locators L1 ∼ L4 and estimates its location as the Center
of Gravity CoG of the overlapping region of the sectors that include it. (b) Determination
of the search area.

Step 1 –Collection of localization information–In step 1, the node collects information

from all the locators that it can hear. A node s can hear all locators Li ∈ L that lie

within a circle of radius R, centered at s.

LHs = {Li : ‖s− Li‖ ≤ R, Li ∈ L}. (3.4)

Step 2 –Search area–In step 2, the node computes a search area for its location. Let

Xmin, Ymin, Xmax, Ymax denote the minimum and the maximum locator coordinates

form the set LHs.

Xmin = min
Li∈LHs

Xi, Xmax = max
Li∈LHs

Xi, Ymin = min
Li∈LHs

Yi, Ymax = max
Li∈LHs

Yi. (3.5)

Since every locator of set LHs needs to be within a range R from node s, if s can

hear locator Li with coordinates (Xmin, Yi), it has to be located left from the vertical

boundary of (Xmin+R). Similarly, s has to be located right from the vertical boundary

of (Xmax−R), below the horizontal boundary of (Ymin +R), and above the horizontal

boundary of (Ymax − R). The dimensions of the rectangular search area are (2R −
dx)x(2R − dy) where dx, dy are the horizontal distance dx = Xmax −Xmin ≤ 2R and
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Figure 3.2: (a) Steps 3,4: Placement of a grid of equally spaced points in the search area,
and the corresponding grid score table. The node estimates its position as the centroid of
all grid points with the highest score, (b) Step 3: Grid-sector test for a point g of the search
area.

the vertical distance dy = Ymax − Ymin ≤ 2R, respectively. In figure 3.1(b), we show

the search area for the network setup in figure 3.1(a).

Step 3 –Overlapping region, Majority vote–In step 3, nodes determine the overlapping

region of all sectors they hear. Since it is computationally expensive for each node

to analytically determine the overlapping region based on the line intersections, we

employ a grid scoring system that defines the overlapping region based on majority

vote.



78

Grid score table: The node places a grid of equally spaced points within the rec-

tangular search area as shown in figure 3.2(a). For each grid point, the node holds

a score in a grid score table, with initial values equal to zero. For each grid point,

the node executes the grid-sector test detailed below, to decide if the grid point is

included in a sector heard by a locator of set LHs. If the grid score test is positive the

node increments the corresponding grid score table value by one, otherwise the value

remains unchanged. This process is repeated for all locators heard LHs, and all the

grid points. The overlapping region is defined by the grid points that have the highest

score in the grid score table. In figure 3.2(a), we show the grid score table and the

corresponding overlapping region.

Note that due to the finite grid resolution, the use of grid points for the definition

of the overlapping region induces error in the calculation. The resolution of the grid

can be increased to reduce the error at the expense of energy consumption due to the

increased processing time.

Grid-sector test: A point g : (xg, yg) is included in a sector of angles [θ1, θ2] origi-

nating from locator Li if it satisfies two conditions:

C1 : ‖g − Li‖ ≤ R, C2 : θ1 ≤ φ ≤ θ2, (3.6)

where φ is the slope of the line connecting g with Li. Note that the node does not

have to perform any angle-of-arrival (AOA) measurements. Both the coordinates of

the locators and the grid points are known, and hence the node can analytically

calculate φ. In figure 3.2(b), we show the grid-sector test, with all angles referred to

the x axis.

Step 4 –Location estimation–The node determines its location as the centroid of all the

grid points that define the overlapping region:

s̃ : (xest, yest) =

(
1
n

n∑

i=1

xgi ,
1
n

n∑

i=1

ygi

)
, (3.7)

where n is the number of grid points of the overlapping region, and (xgi , ygi) are

the coordinates of the grid points. Alternatively, the sensor may define the Region
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of Intersection (ROI) of all the sectors as the region where it is located, without

computing a single point as its position.

3.4.2 Security Mechanisms of SeRLoc

We now describe the security mechanisms of SeRLoc, that facilitate node localization in the

presence of security threats.

Encryption

All beacons transmitted from locators are encrypted with a globally shared symmetric key

K0. In addition, every node s shares a symmetric pairwise key KLi
s with every locator

Li, also pre-loaded. Since the number of locators deployed is relatively small, the storage

requirement at the node side is within the storage constraints (a total of |L| keys). For

example, mica motes [76] have 128Kbytes of programmable flash memory. Using 64-bit

RC5 [99] symmetric keys and for a network with 200 locators, a total of 1.6Kbytes of

memory is required to store all the keys of the node with every locator. In order to save

storage space at the locator (locators would have to store |S| keys), pairwise keys KLi,s are

derived by a master key KLi , using a pseudo-random function [109] h and the unique node

IDs: KLi,s = h(KLi(IDs)).

Locator ID authentication

The use of a globally shared key for the beacon encryption allows to a malicious node to

inject bogus beacons into the network. To prevent nodes from broadcasting bogus beacons,

we require nodes to authenticate the source of the beacons using collision-resistant hash

functions [109].

We use the following scheme based on efficient one-way hash chains [61], to provide

locator ID authentication. Each locator Li has a unique password PWi, blinded with

the use of a collision-resistant hash function such as SHA1 [109]. Due to the collision

resistance property, it is computationally infeasible for an attacker to find a PWj , such that

H(PWi) = H(PWj), PWi 6= PWj . The hash sequence is generated using the following
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L : broadcast Li : { (Xi, Yi) || (θ1, θ2) || (Hn−j(PWi)) ‖ j ‖ IDLi }K0

LHs = {Li : ‖s− Li‖ ≤ R} ⋂ {H(Hn−j(PWi)) = Hn−j+1(PWi)}
s : define As = [Xmax −R, Xmin + R, Ymax −R, Ymin + R]
for k=1:res

for w=1:res
g(k,w) = (xgi , ygi) =

(
Xmax −R + kXmax−Xmin

res , Ymax −R + w Ymax−Ymin
res

)

for z = 1 : |LHs|
if {‖g(k, w)− Lz‖ ≤ R}⋂{θ1 ≤ ∠g(k, w) ≤ θ2}

GST (k, w) = GST (k,w) + 1
MGs = {g(k,w) : {k, w} = arg maxGST}

s̃ : (xest, yest) =


 1
|MGs|

|MGs|∑

i=1

xgi ,
1

|MGs|
|MGs|∑

i=1

ygi




Figure 3.3: The pseudo-code of SeRLoc.

equation:

H0 = PWi, H i = H(H i−1), i = 1, · · · , n, (3.8)

with n being a large number and H0 never revealed to any node. Each node is pre-loaded

with a table containing the ID of each locator and the corresponding hash value Hn(PWi).

For a network with 200 locators, we need 8 bits to represent locator IDs. In addition,

collision-resistant hash functions such as SHA1 [109] have a 160-bit output. Hence, the

storage requirement of the hash table at any node is only 4.2Kbytes. To reduce the storage

needed at the locators, we employ an efficient storage/computation method for hash chains

of time/storage complexity O(log2(n)) [27].

The jth broadcasted beacon from locator Li includes the hash value Hn−j(PWi), along

with the index j. Every node that hears the beacon accepts the message only if:

H(Hn−j+1(PWi)) = Hn−j(PWi). (3.9)

After verification, the node replaces Hn−j+1(PWi) with Hn−j(PWi) in its memory, and

increases the hash counter by one, so as to perform only one hash operation in the reception

of the next beacon from the same locator Li. The index j is included in the beacons, so
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that nodes can re-synchronize with the current published hash value, in case of loss of some

intermediate hash values. The beacon of locator Li has the following format:

Li : { (Xi, Yi) || (θ1, θ2) || (Hn−j(PWi)) ‖ j ‖ IDLi }K0 , (3.10)

where || denotes the concatenation operation and {m}K denotes the encryption of message

m with key K. Note that our method does not provide end-to-end locator authentication,

but only guarantees authenticity for the messages received from locators directly heard to a

node. This condition is sufficient to secure our localization scheme against possible attacks.

The pseudo-code for SeRLoc is presented in figure 3.3.

3.5 Threat Analysis

In this section we describe possible security threats against SeRLoc and show that SeRLoc

is resilient against those threats. Note that our goal is not to prevent the attacks that may

be harmful in many network protocols, but to allow sensors to determine their location, even

in the presence of such attacks.

3.5.1 The Wormhole Attack

Threat model

To mount a wormhole attack, an attacker initially establishes a direct link referred as worm-

hole link between two points in the network. Once the wormhole link is established, the

attacker eavesdrops messages at one end of the link, referred as the origin point, tunnels

them through the wormhole link and replays them at the other end, referred as the desti-

nation point. The wormhole attack is very difficult to detect, since it is launched without

compromising any host, or the integrity and authenticity of the communication [48,85].

In the case of SeRLoc, an attacker records the beacons transmitted from locators at

the origin point and replays them at the destination point, thus providing false localization

information to the sensors attacked. In figure 3.4(a), the attacker records beacons at region

B, tunnels them via the wormhole link in region A and replays them, thus leading sensor s

to believe that it can hear locators {L1 ∼ L8}.
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Figure 3.4: (a) Wormhole attack: An attacker records beacons in area B, tunnels them via
the wormhole link in area A and re-broadcasts them. (b) Computation of the common area
Ac, where locators are heard to both s,O.

Detecting wormholes in SeRLoc

We now show how a node can detect a wormhole attack using two properties: The single

message/sector per locator property and the communication range constraint property.

Single message/sector per locator property: The origin point O of the wormhole

attack defines the set of locators LHr
s replayed to the sensor s under attack. The location

of the sensor defines the set of locators LHd
s directly heard to the sensor s, with LHs =

LHr
s ∪ LHd

s . Based on the single message/sector per locator property we show that the

wormhole attack is detected when LHr
s ∩ LHd

s 6= ∅.

Lemma 3.1. Single message per locator/sector property: Reception of multiple messages

authenticated with the same hash value is due to replay, multipath effects, or imperfect

sectorization.

Proof. In the absence of any attack, it is feasible for a sensor to hear multiple sectors due to

multipath effects. In addition, a sensor located at the boundary of two sectors can also hear

multiple sectors even if there is no multipath or attack, due to imperfect sectorization. We

assume that the locator transmits simultaneously the same but fresh hash value is used to

authenticate them per beacon transmission. Due to the use of an identical but fresh hash in

all sectors per transmission, if an adversary replays a message from any sector of a locator
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directly heard to the sensor under attack, the sensor will have already received the hash via

the direct path and hence, detect the attack.

If we consider reception of multiple messages containing the same hash value due to

multipath effects or imperfect sectorization to be a replay attack, a sensor will always

assume it is under attack when it receives messages with the same hash value. Hence, an

adversary launching a wormhole attack will always be detected if it replays a message from

locator Li ∈ LHd
s , i.e. if LHr

s ∩ LHd
s 6= ∅. In figure 3.5(a), As denotes the area where,

Li ∈ LHd
s (circle of radius R centered at s), Ao denotes the area where Li ∈ LHr

s (circle of

radius R centered at O), and the shaded area Ac denotes the common area Ac = As ∩Ao.

Proposition 3.1. The detection probability P (SG) due to the single message/sector per

locator property is equal to the probability that at least one locator lies within an area of size

Ac, and is given by:

P (SG) = 1− e−ρLAc , with Ac = 2R2φ−Rl sinφ, φ = cos−1 l

2R
. (3.11)

with l being the distance between the origin point and the sensor under attack.

Proof. If a locator Li lies inside Ac, it is less than R units away from a sensor s and therefore

Li ∈ LHd
s . Locator Li is also less than R units away from the origin point of the attack O,

and therefore, Li ∈ LHr
s . Hence, if a locator lies inside Ac, LHr

s ∩LHd
s 6= ∅, and the attack

is detected due to the single message/sector per locator property. The detection probability

P (SG) is equal to the probability that at least one locator lies within Ac. If LHAc denotes

the set of locators located within area Ac then:

P (SG) = P (|LHAc | ≥ 1) = 1− P (|LHAc | = 0) = 1− e−ρLAc , (3.12)

where Ac can be computed from figure 3.4(b) to be:

Ac = 2R2φ−Rl sinφ, φ = cos−1 l

2R
, (3.13)

with l = ‖s−O‖.
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Figure 3.5: (a) Single message/sector per locator property: a node s cannot hear two
messages authenticated with the same hash value. (b) Communication range violation
property: a node s cannot hear two locators more than 2R apart. (c) Combination of the
two properties for wormhole detection.

Figure 3.6(a) presents the detection probability P (SG) vs. the locator density ρL and

the distance ‖s−O‖ between the origin point and the sensor under attack, normalized over

R. We observe that if ‖s−O‖ ≥ 2R, then Ac = 0 and the use of the single message/sector per

locator property is not sufficient to detect a wormhole attack. For distances ‖s−O‖ ≥ 2R,

a wormhole attack can be detected using the communication range constraint property

presented below.

Communication range violation property: Given the coordinates of node s, all locators

LHs heard by s should lie within a circle of radius R, centered at s. Since node s is not
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Figure 3.6: Wormhole detection probability based on, (a) the single message/sector per
locator property: P (SG). (b) A lower bound on the wormhole detection based on the
communication range violation property: P (CR). (c) A lower bound on the wormhole
detection probability for SeRLoc.

aware of its location it relies on its knowledge of the locator-to-sensor communication range

R to verify that the set LHs satisfies lemma 3.2.

Lemma 3.2. Communication range constraint property: A sensor s cannot hear two loca-

tors Li, Lj ∈ LHs, more than 2R apart, i.e. ‖Li − Lj‖ ≤ 2R, ∀Li, Lj ∈ LHs.

Proof. Any locator Li ∈ LHs has to lie within a circle of radius R, centered at the sensor s

(area As in figure 3.5(b)), ‖Li − s‖ ≤ R, ∀Li ∈ LHs. Hence,

‖Li − Lj‖ = ‖Li − s + s− Lj‖ ≤ ‖Li − s‖+ ‖s− Lj‖ ≤ R + R = 2R. (3.14)
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Using the coordinates of LHs, a sensor can detect a wormhole attack if the communi-

cation range constraint property is violated. We now compute the detection probability

P (CR) due to the communication range constraint property.

Proposition 3.2. A wormhole attack is detected due to the communication range constraint

property, with a probability:

P (CR) ≥
(
1− e−ρLA∗i

)2
, A∗i = x

√
R2 − x2 −R2 tan−1

(
x
√

R2 − x2

x2 −R2

)
, (3.15)

where x = ‖s−O‖
2 .

Proof. Consider figure 3.5(b), where ‖s−O‖ = 2R. If any two locators within As, Ao have

a distance larger that 2R, a wormhole attack is detected. Though P (CR) is not easily

computed analytically, we can obtain a lower bound on P (CR) by considering the following

event. In figure 3.5(b), the vertical lines defining shaded areas Ai, Aj , are perpendicular to

the line connecting s,O, and have a separation of 2R. If there is at least one locator Li in

the shaded area Ai and at least one locator Lj in the shaded area Aj , then ‖Li−Lj‖ > 2R

and the attack is detected. Note that this event does not include all possible locations of

locators for which ‖Li − Lj‖ > 2R, and hence it yields a lower bound. If LHAi,Aj denotes

the event
(|LHAi | > 0 ∩ |LHAj | > 0

)
then,

P (CR) = P (‖Li − Lj‖ > 2R, Li, Lj ∈ LHs)

≥ P (CR
⋂
LHAi,Aj ) (3.16)

= P
(
CR | LHAi,Aj

)
P (LHAi,Aj ) (3.17)

= P (LHAi,Aj ) (3.18)

= (1− e−ρLAi)(1− e−ρLAj ), (3.19)

where (3.16) follows from the fact that the probability of the intersection of two events is

always less or equal to the probability of one of the events, (3.17) follows from the definition

of the conditional probability, (3.18) follows from the fact that when LHAi,Aj is true, we



87

always have a communication range constraint violation (P (CR | LHAi,Aj ) = 1), and (3.19)

follows from the fact that Ai, Aj are disjoint areas and that locators are randomly deployed.

We can maximize the lower bound of P (CR), by finding the optimal values A∗i , A
∗
j . In

Appendix 3.10.2 we prove that the lower bound in (3.19) attains its maximum value when

A∗i = maxi{Ai} subject to the constraint Ai = Aj (Ai, Aj are symmetric). We also prove

that A∗i , A
∗
j , are expressed by:

A∗i = A∗j = x
√

R2 − x2 −R2 tan−1

(
x
√

R2 − x2

x2 −R2

)
, and x =

‖s−O‖
2

. (3.20)

Substituting (3.20) into (3.19) yields the required result: P (CR) ≥ (
1− e−ρLA∗i

)2
.

In figure 3.6(b), we show the maximum lower bound on P (CR) vs. the locator density

ρL, and the distance ‖s − O‖ normalized over R. The lower bound on P (CR) increases

with the increase of ‖s − O‖ and attains its maximum value for ‖s − O‖ = 4R when

A∗i = A∗j = πR2. For distances ‖s − O‖ > 4R a wormhole attack is always detected based

on the communication range constraint property, since any locator within Ao will be more

than 2R apart from any locator within As.

Detection probability Pdet of the wormhole attack against SeRLoc: We now com-

bine the two detection mechanisms, namely the single message/sector per locator property

and the communication range constraint property for computing the detection probability

of a wormhole attack against SeRLoc.

Proposition 3.3. The detection probability of a wormhole attack against SeRLoc is lower

bounded by Pdet ≥ (1− e−ρLAc) + (1− e−ρLA∗i )2e−ρLAc .

Proof. In the computation of the communication range constraint property, by setting Ai =

Aj and maximizing Ai regardless of the distance ‖s− O‖, the areas Ai, Aj , and Ac do not

overlap as shown in figure 3.5(c). Hence, the corresponding events of finding a locator at any

of these areas are independent and we can derive a lower bound on the detection probability
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Pdet by combining the two properties.

Pdet = P (SG ∪ CR) = P (SG) + P (CR)− P (SG)P (CR)

= P (SG) + P (CR) (1− P (SG))

≥ (1− e−ρLAc) + (1− e−ρLA∗i )2e−ρLAc . (3.21)

The left side of (3.21) is a lower bound on Pdet since P (CR) was also lower bounded.

In figure 3.6(c), we show the lower bound on Pdet vs. the locator density ρL and the

distance ‖s − O‖ normalized over R. For values of ‖s − O‖ > 4R, PCR = 1, since any

Li ∈ LHd
s will be more than 2R away from any Lj ∈ LHr

s and hence, the wormhole attack

is always detected. From figure 3.6(c), we observe that a wormhole attack is detected

with a probability very close to unity, independent of the origin and destination point

of the attack. The intuition behind (3.21) is that there is at most (1− Pdet) probability

for a specific realization of the network, to have an origin and destination point where a

wormhole attack would be successful. Even if such realization occurs, the attacker has to

acquire full knowledge of the network topology and based on the geometry, locate the origin

and destination point where the wormhole link can be established.

Location resolution algorithm: Although a wormhole can be detected using one of the

two detection mechanisms, a sensor s under attack cannot distinguish the set of locators

directly heard LHd
s from the set of locators replayed LHr

s and hence, estimate its location.

To resolve the location ambiguity sensor s executes the Attach to Closer Locator Algorithm

(ACLA). Assume that a sensor authenticates a set of locators LHs = LHd
s ∪ LHr

s , but

detects that it is under attack.

Step 1: Sensor s broadcasts a randomly generated nonce ηs and its IDs.

Step 2: Every locator hearing the broadcast of node s replies with a beacon that includes

localization information and the nonce ηs, encrypted with the pairwise key KLi,s

instead of the broadcast key K0. The sensor identifies the locator L′i that replies first

with an authentic message that includes ηs.
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Attach to Closer Locator Algorithm (ACLA)

s : broadcast { ηs ‖ IDs }
if Li hears { ηs ‖ IDs } reply

Li : { ηs ‖ (Xi, Yi) || (θ1, θ2) || (HEn−j(PWi)) ‖ j ‖ IDLi }KLi,s

L′i : first authentic reply from a locator.
LHd

s = {Li ∈ LHs : sector{Li} intersects sector{L′i}}
s : execute SeRLoc with LHs = LHd

s

Figure 3.7: The pseudo-code of ACLA.

Step 3: Sensor s identifies the set LHd
s as all the locators whose sectors overlap with the

sector of L′i, and executes SeRLoc with LHs = LHd
s .

The pseudo-code of ACLA is presented in figure 3.7. Note that the closest locator to

sensor s will always reply first if it directly hears the broadcast from s, and not through

a replay from an adversary. In order for an adversary to force sensor s to accept set LHr
s

as the valid locator set, it can only replay the nonce ηs to a locator Li ∈ LHr
s , record the

reply, tunnel via the wormhole and replay it in the vicinity of s. However, a reply from a

locator in LHr
s will arrive later than any reply from a locator in LHd

s , since locators in LHr
s

are further away from s than locators in LHd
s .

To execute ACLA, a sensor must be able to communicate bi-directionally with at least

one locator. The probability Ps→L of a sensor having a bi-directional link with at least one

locator and the probability Pbd that all sensors can bi-directionally communicate with at

least one locator can be computed as:

Ps→L = 1− e−ρLπr2G
2
γ
, Pbd = (1− e−ρLπr2G

2
γ )|S|. (3.22)

Hence, we can select the system parameters ρL, G so every sensor has a bi-directional link

with at least one locator with any desired probability.
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3.5.2 Sybil Attack

Threat model

In the Sybil attack [32,82], an adversary is able to fabricate legitimate node IDs or assume

the IDs of existing nodes, in order to impersonate multiple network entities. Unlike the

wormhole attack, in the Sybil attack model, the adversary may have access to cryptographic

quantities necessary to assume node IDs. Hence, the adversary can insert bogus information

into the network. A solution for the Sybil attack was recently proposed in [82].

Sybil attack against SeRLoc

In SeRLoc, nodes do not rely on other nodes to compute their location. Hence, an attacker

has no incentive to assume node IDs. An adversary can impact SeRLoc if it successfully

impersonates locators. Since nodes are pre-loaded with valid locator IDs along with the

hash values corresponding to the head of the reversed hash chain, an adversary can only

duplicate existing locator IDs by compromising the globally shared key K0.

Once K0 has been compromised, the adversary has access to both locators IDs, the hash

chain values published by the locators, as well as the coordinates of the locators. Since

nodes always have the latest published hash values from the locators that they directly

hear, an adversary can only impersonate locators that are not directly heard to the nodes

under attack. The adversary can generate bogus beacons, attach a published hash value

from a locator not heard to the node under attack, and encrypt it with the K0.

Defense against the Sybil attack

Though we do not provide a mechanism to prevent an adversary from impersonating locators

except for the ones directly heard to a node, we can still determine the position of nodes

in the presence of Sybil attack. In order to compromise the location estimation process of

SeRLoc, the adversary needs to impersonate more than LHd
s locators in order to displace

the node s. To avoid node displacement we propose the following enhancement.

Since the locator density ρL is known before deployment, we can select a threshold value

Lmax as the maximum allowable number of locators heard by each node. If a node hears
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Figure 3.8: P (|LHs| ≥ Lmax), vs. Lmax for varying locator densities ρL.

more than Lmax locators, it assumes that is under attack and executes ALCA to determine

its position. The probability that a node s hears more than Lmax locators is given by:

P (|LHs| ≥ Lmax) = 1− P (|LHs| < Lmax)) = 1−
Lmax−1∑

i=0

(ρLπR2)i

i!
e−ρLπR2

. (3.23)

Using (3.23), we can select the value of Lmax so that there is a very small probability

for a node to hear more than Lmax locators, while there is a very high probability for a

node to hear more than Lmax
2 locators. If a node hears more than Lmax locators without

being under attack, the detection mechanism will result in a false positive alarm and force

the node to execute ACLA to successfully locate itself. However, if a node hears less than
Lmax

2 , the node is vulnerable to a Sybil attack. Hence, we must select a threshold Lmax so

that any node hears less than Lmax
2 locators with a probability very close to zero.

In figure 3.8, we show P (|LHs| ≥ Lmax) vs. Lmax, for varying locator densities ρL.

Based on figure 3.8, we can select the appropriate Lmax for each value of ρL. For example,

when ρL = 0.03, a choice of Lmax = 46 allows a node to localize itself when under Sybil

attack with a probability P (|LHs| ≥ 23) = 0.995, while the false positive alarm probability

is P (|LHs| > 46) = 0.1045.
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3.5.3 Compromised network entities

In this section we examine the robustness of SeRLoc against compromised network entities.

We consider a node or a locator node to be compromised if an attacker assumes full control

over the behavior of the node and knows all the keys stored at the compromised node.

Compromised nodes

Though nodes are assumed to be easier to compromise, an attacker has no incentive in

compromising nodes, since they do not actively participate in the localization procedure.

The only benefit from compromising a node is gain access to the globally shared key K0.

Compromised locators

An adversary that compromises a locator Li gains access to the globally shared key K0, the

pairwise keys KLi,s that the compromised locator shares with every node, as well as all the

hash values of the locator’s hash chain. By compromising a single locator, the adversary can

displace any node, by impersonating the compromised locator from a position closer to the

node under attack compared to the closest legitimate locator. The adversary impersonates

multiple locators in order to force location ambiguity to the node under attack. Once the

attack is being detected, node s executes ACLA to resolve its location ambiguity. Since the

adversary is closer to the node s than the closest legitimate locator, its reply will arrive to

s the earliest. Hence, s will assume that the impersonated set of locators is the valid one

and will be displaced.

To avoid node displacement by a single locator compromise we can intensify the resilience

of SeRLoc to locator compromise by involving more than one locators in the location reso-

lution algorithm at the expense of higher communication overhead. A node s under attack,

can execute the enhanced location resolution algorithm detailed below.

Step 1: Node s broadcasts a randomly generated nonce ηs, the set of locators heard LHs

and its IDs.

s : { ηs ‖ LHs ‖ IDs }. (3.24)
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Enhanced Location Resolution Algorithm

s : broadcast { ηs ‖ LHs ‖ IDs }
RLs = {Li : ‖s− Li‖ ≤ rsL}
RLs : broadcast { ηs ‖ LHs ‖ IDs ‖ (Xi, Yi) ‖ Hn−k(PWi) ‖ j ‖ IDLi }K0

BLs = {Li : ‖RLs − Li‖ ≤ rLL}
⋂

LHs

BLs : broadcast { ηs ‖ (Xi, Yi) ‖ (θ1, θ2) ‖ Hn−k(PWi) ‖ j ‖ IDLi }KLi,s

s : collect first Lmax authentic beacons from BLs

s : execute SeRLoc with collected beacons

Figure 3.9: The pseudo-code for the enhanced location resolution algorithm.

Step 2: Every locator Li receiving the broadcast from s appends its coordinates, the

next hash value of its hash chain and its IDLi , encrypts the message with K0 and

re-broadcasts the message to all sectors.

Li : {ηs‖ LHs ‖ IDs ‖ (Xi, Yi) ‖ Hn−k(PWi) ‖ ‖ j ‖IDLi }K0 . (3.25)

Step 3: Every locator receiving the re-broadcast, verifies the authenticity of the message,

and that the transmitting locator is within its range. If the verification is correct

and the receiving locator belongs to LHs, the locator broadcasts a new beacon with

location information and the nonce ηs encrypted with the pairwise key with node s.

Li : { ηs ‖ (Xi, Yi) ‖ (θ1, θ2) ‖ Hn−k(PWi) ‖ j ‖ IDLi }KLi,s
. (3.26)

Step 4: The node collects the first Lmax authentic replies from locators, and executes

SeRLoc with LHs = Lmax.

The pseudo-code for the enhanced location resolution algorithm is presented in figure 3.9.

Note that for a locator to hear the node’s broadcast it has to be within a range rsL = rG
1
γ

from the node. Furthermore, in order for a the node to make the correct location estimate,

all locators within a range R from s need to provide new beacon information. Every locator

positioned within R from a node s is within the range of any locator positioned at a distance

rsL from the node s.

Each beacon broadcast from a locator has to include the nonce ηs initially broadcasted by

the node and be encrypted with the pairwise key between the node and the locator. Hence,
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given that the node has at least Lmax
2 locators within range R with very high probability

(see figure 3.8), the adversary has to compromise at least
(

Lmax
2 + 1

)
locators, in order to

compromise the majority vote scheme of SeRLoc. In addition, the attacker has to possess the

hardware capabilities to process and transmit
(

Lmax
2 + 1

)
replies before Lmax

2 replies from

valid locators reach the node under attack. Our enhanced location resolution algorithm

significantly increases the resilience of SeRLoc to locator compromise, at the expense of

higher communication overhead at the locators.

3.6 HiRLoc: A High-resolution Range-Independent Localization Scheme

Though SeRLoc, localizes nodes with sufficient accuracy for most applications, there might

be requirements for high-resolution localization with no degradation on the security level or

significant increase of the hardware requirements. In this section we examine whether such

requirements of high accuracy localization can be satisfied.

In SeRLoc, nodes compute their location by collecting only one beacon transmission from

each locator. Since subsequent rounds of transmissions contain identical sector information

as the first round of transmissions, the reduction of the ROI in SeRLoc can only be achieved

by, (a) increasing the locator density ρL so that more locators are heard at each node, and

higher number of sectors intersect or, (b) by using narrower antenna sectors to reduce the

size of the sectors Si(j). Both these methods reduce the localization error at the expense

of higher number of devices with special capabilities (more locators), and more complex

hardware at each locator (more antenna sectors).

In this section we present the High-resolution Range-independent Localization scheme

(HiRLoc) that allows nodes to determine their location with high accuracy even in the

presence of security threats. In HiRLoc, the location estimation accuracy is increased

by exploiting the temporal dimension, and without incurring the costs of deploying more

locators, or equipping them with expensive antenna systems. The locators provide different

localization information at consecutive beacon transmissions by, (a) varying the direction

of their antennas and, (b) varying the communication range of the transmission via power

control. We now explore how both these methods lead to the reduction of the ROI.
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3.6.1 Location Determination

As in SeRLoc, in order to determine their location, nodes rely on beacon information trans-

mitted from the locators. Locators change their orientation over time and retransmit bea-

cons in order to improve the accuracy of the location estimate. Based on the beacon

information, nodes define the sector area Si(j) as the confined area covered by the jth

transmission of a locator Li.

A node s receiving the jth beacon transmission from locator Li, is included within the

sector area Si(j). Let LHs(j) denote the set of locators heard by a node s, during the jth

transmission round. By collecting beacons from the locators Li ∈ LHs(j), the node can

compute its location as the CoG of the Region of Intersection (ROI) of all the sectors Si(j).

Note that a node can hear beacons from multiple locators, or multiple beacons generated

by the same locator. Hence, the ROI after the mth round of beacon transmissions can be

expressed as the intersection of all the sectors corresponding to the beacons available at

each node:

ROI(m) =
m⋂

j=0



|LHs(j)|⋂

i=1

Si(j)


 . (3.27)

Since the ROI indicates the confined region where the node is located, reducing the size

of the ROI leads to an increase in the localization accuracy. Based on equation (3.27), we

can reduce the size of the ROI by, (a) reducing the size of the sector areas Si(j) and, (b)

increase the number of intersecting sectors Si(j).

Varying the antenna orientation

The locators are capable of transmitting at all directions (omnidirectional coverage) using

multiple directional antennas. Every antenna has a specific orientation and hence cor-

responds to a fixed sector area Si(j). The antenna orientation is expressed by the angle

information contained in the beacon θi(j) = {θi,1(j), θi,2(j)}, where θi,1(j), θi,2(j) denote

the lower and upper bounds of the sector Si(j).

Instead of reducing the size of the intersecting sectors by narrowing the antenna beamwidth,

locators can change the orientation of their antennas and re-transmit beacons with the
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(a) (b)

(c)

Figure 3.10: (a) The node is located within the intersection of the sectors S1(j), S2(j),
which defines the region of intersection ROI. (b) The ROI is reduced by the rotation of the
antenna sectors by some angle α. (c) Locator L1 is equipped with three directional antennas
of beamwidth 2π

3 each. The transmission of beacons at each sector, followed by antenna
rotation by π

3 , followed by a transmission of update beacons, is equivalent to equipping L1

with six directional antennas of beamwidth π
3 .

new sector boundaries. A change in the antenna orientation can occur either by changing

the orientation of the locators, or by rotation of their antenna system. A node collects

multiple sector information from each locator over a sequence of transmissions: Si(j) =

Si(θi(j), j), j = 1 . . . Q. As expressed by equation (3.27), the intersection of a larger number

of sectors can lead to a reduction in the size of the ROI. As an example, consider figure 3.10

where a node s hears locators L1, L2. In figure 3.10(a), we show the first round of beacon

transmissions by the locators L1, L2, and the corresponding ROI(1). In figure 3.10(b), the

locators L1, L2 rotate their antennas by an angle α and transmit the second round of bea-

cons with the new sector boundaries.The ROI in the two rounds of beacon transmissions,

can be expressed as:

ROI(1) = S1(1) ∩ S2(1), ROI(2) = S1(1) ∩ S1(2) ∩ S2(1) ∩ S2(2). (3.28)
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(a) (b)

(c)

Figure 3.11: (a) The node is located within the intersection of the sectors S1(j), S2(j), which
defines the ROI, (b) the locators reduce their communication range and transmit updated
beacons. While s is outside the communication range of L1, it can still hear the transmission
of L2. The new beacon information leads to the reduction of the ROI. (c) The intersection
of multiple sectors originating from the same locator with the same angle boundaries but
different transmission range Ri(j) is equal to the sector with the smallest communication
range.

The antenna rotation can be interpreted as an increase on the number of antenna sectors

of each locator via superposition over time. For example, consider figure 3.10(c), where a

locator is equipped with three directional antennas of beamwidth 2π
3 . Transmission of one

round of beacons, followed by antenna rotation by π
3 and re-transmission of the updated

beacons is equivalent to transmitting one round of beacons when locators are equipped with

six directional antennas of beamwidth π
3 .

Varying the Communication range

A second approach to reduce the area of the ROI, is to reduce the size of the intersecting

sectors. This can be achieved by allowing locators to decrease their transmission power and
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re-broadcast beacons with the new communication range information. In such a case, the

sector area Si(j) is dependent upon the communication range Ri(j) at the jth transmission,

i.e. Si(j) = Si(R(j), j). To illustrate the ROI reduction, consider figure 3.11(a), where

locators L1, L2 transmit with their maximum power; node s computes: ROI(1) = S1(1) ∩
S2(1). In figure 3.11(b), locators L1, L2 reduce their communication range by lowering their

transmission power and re-transmit the updated beacons. While locator L1 is out of range

from node s and, hence, does not further refine the node’s location, s can still hear locator

L2 and therefore, reduce the size of the ROI.

Hybrid approach

The combination of the variation of the antenna orientation and communication range leads

to a dual dependency of the sector area Si(θi(j), R(j), j). Such a dependency can also be

interpreted as a limited mobility model for the locators. For a locator Li moving in a

confined area, the antenna orientation and communication range with respect to a static

node varies, thus providing the node with multiple sector areas Si(j). The mobility model is

characterized as limited, since the locator has to be within the range of the node for at least

a fraction of its transmissions in order to provide the necessary localization information.

The algorithmic details of HiRLoc are given in 3.12

3.7 Security Threats Against HiRLoc

In this section, we explore the security threats against HiRLoc, that can occur when nodes

are deployed in an untrusted environment. We show that HiRLoc has equivalent security

to SeRLoc and the same detection and prevention mechanisms can be employed.

3.7.1 The Wormhole Attack

Wormhole attack against HiRLoc—antenna orientation variation

An adversary launching a wormhole attack against HiRLoc, records beacons at the origin

point, and replays them at the destination point, in order to provide false localization

information. Note that since in step 1 of HiRLoc, the node determines the set of locators
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HiRLoc-I: High-resolution Robust Localization Scheme

Li : broadcast { (Xi, Yi) || (θi,1(1), θi,2(1)) || Ri(1)}
s : define LHs = {Li : ‖s− Li‖ ≤ Ri(1)}
s : define As = [Xmax −Ri(1), Xmin + Ri(1), Ymax −Ri(1), Ymin + Ri(1)]
s : store S ← Si(1) : { (Xi, Yi) || (θi,1(1), θi,2(1)) || Ri(1)}, ∀Li ∈ LHs

j = 1
for k = 1 : Q− 1

for w = 1 : N − 1
j + +
L reduce R(j) = R(j − 1)− R(1)

N
L : broadcast { (Xi, Yi) || (θi,1(j), θi,2(j)) || Ri(j)}
s : S ← Si(j) : { (Xi, Yi) || (θi,1(j), θi,2(j)) || Ri(j)}, ∀Li : ‖s−Li‖ ≤ Ri(j)

⋂
Li ∈ LHs

endfor
j + +
Ri(j) = Ri(1), ∀Li ∈ LHs

L rotate θi(j) = {θi,1(j − 1) + 2π
MQ , θi,2(j − 1) + 2π

MQ}
L : broadcast Li : { (Xi, Yi) || (θi,1(j), θi,2(j)) || Ri(j)}

s : store S ← Si(j) : { (Xi, Yi) || (θ1(j), θ2(j)) || Ri(j)},∀Li : ‖s−Li‖ ≤ R(j)
⋂

Li ∈ LHs

endfor
s : compute ROI =

⋂|S|
i=1 Si

Figure 3.12: The pseudo-code for the High-resolution Robust Localization algorithm (ver-
sion I).

LHs that are within range, and accepts future transmissions only from that set of locators,

the attacker has to replay the recorded beacons in a timely manner, i.e. before the second

round of beacon transmissions occurs.

Furthermore, the attacker must continue to forward all subsequent beacon transmissions

occurring at the origin point due to the antenna orientation variation, in order to compromise

the majority vote scheme used in step 3, and displace the node. For example if each locator

performs (Q− 1) antenna rotations, due to majority voting the attacker has to replay more

than Q|LHs| beacons corresponding to sectors that lead to a ROI different than the node’s

location.

Defending against the wormhole attack—antenna orientation variation

All beacons considered in the ROI computation originate from locators Li ∈ LHs deter-

mined in step 1 of HiRLoc. To avoid node displacement the node must be capable of
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identifying the valid set of locators LHv
s from the replayed one, LHr

s . Since the set LHs

is defined before any antenna rotation, this step is identical to the LHs determination in

SeRLoc. Hence, the mechanisms developed for SeRLoc for identifying LHv
s can also be

employed in the case of HiRLoc.

Wormhole attack against HiRLoc—communication range variation

When HiRLoc is applied with the communication range variation option, identifying the

set of valid locators from the replayed ones is not sufficient to prevent wormhole attacks.

Even if locator Li belongs to the valid set of locators LHv
s , node s can get out of the range

of locator Li, when Li reduces its communication range. Hence, an adversary can replay

beacons from valid locators as soon as the node under attack gets out of the communication

range of locators.

Defending against the wormhole attack—communication range variation

In the case of the communication range variation we can detect a wormhole attack using

the following approach. Instead of computing the ROI after the collection of all beacon

transmissions, the node computes an estimate of the ROI(1) by using all the beacons

transmitted with the maximum communication range. The computation of the ROI(1) is

identical to the computation of the ROI in the case of the SeRLoc. Once the initial estimate

of the ROI(1) is computed robustly, any subsequent estimation of the ROI(j) must intersect

with the initial one. Since subsequent ROI estimates are refinements of ROI(1), if the node

computes a ROI(j) that does not intersect with the initial one, it detects that it is under

attack. Hence, an adversary can only hope to displace the node within the region of the

initial estimation of the ROI(1).

3.7.2 Sybil Attack

Sybil attack against HiRLoc—antenna orientation variation

In order for an attacker to impersonate a locator and provide bogus beacon information

to a node s, the attacker has to, (a) compromise the globally shared key K0 used for the
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beacon encryption, (b) acquire a published hash value from a locator not directly heard by

the node s.

Once the attacker compromises K0, it can record a beacon from a locator not heard by

s, decrypt the beacon using K0, alter the beacon content, and forward the bogus beacon to

node s. Since the node does not directly hear the transmission from the impersonated loca-

tor, it will authenticate the bogus beacon. By impersonating sufficient number of locators,

the attacker can forward to a node s a higher number of bogus beacons than the valid ones,

compromise the majority vote scheme, and displace s.

Defense against the Sybil attack

Since the locators are randomly distributed, on average, each node will hear the same

number of locators. Hence, when a node is under attack, it will hear an unusually high

number of locators (more than double the valid ones). We can use our knowledge of the

locator distribution to detect the Sybil attack by selecting a threshold value Lmax as the

maximum allowable number of locators heard by each node. If a node hears more than Lmax

locators, it assumes that is under attack and executes ALCA to determine its position. Since

ACLA utilizes the pairwise keys KLi
s to identify the valid set of locators, the Sybil attack

will not be successful, unless the attacker compromises locators.

Sybil attack against HiRLoc—communication range variation

When HiRLoc uses the communication range variation option, an adversary launching a

Sybil attack can also impersonate locators Li ∈ LHs when their communication range is

reduced so that they are no longer heard to the node. In such a case, limiting the number of

locators heard to a maximum allowable number does not guarantee that the valid beacons

will be more than the fabricated ones. In order to avoid node displacement we follow the

same approach as in the case of the wormhole attack in the communication range variation

option. The node computes an estimate of the ROI by using only the beacons with the

maximum communication range and by limiting the number of locators heard. Once the

initial estimate of the ROI is computed, any subsequent estimation ROI(j) has to intersect
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with the initial one. Otherwise the node detects that is under attack and rejects that

estimate. Hence, an adversary can only hope to displace the node within the region of the

initial estimation ROI(1).

3.7.3 Compromised network entities

Network entities are assumed to be compromised when the attacker gains full control over

their behavior. While an attacker has no incentive to compromise nodes, since nodes do

not actively participate in the localization procedure, compromise of a single locator can

potentially lead to the displacement of any node in the network, as we analyzed in SeRLoc.

An adversary compromising a locator gains access to both the globally shared key K0,

the master key KLi used for the construction of all the pairwise keys, as well as the locator’s

hash chain. During the execution of ACLA, a compromised locator can displace a node if

it transmits from a location that is closer to the node than the closest valid locator. To

avoid node displacement by a single locator compromise, we strengthen the robustness of

the ACLA algorithm by adopting the Enhanced Location Resolution Algorithm (ELRA), in

order to resolve any location ambiguity. The advantage of ELRA is that it involves replies

from more than one locators, so that a single locator compromise is not sufficient to displace

a node. The pseudo-code of ERLA is presented in 3.9.

3.8 Performance Evaluation

In this section we compare the performance of SeRLoc with state-of-the-art localization

techniques, namely DV-Hop [83], Amorphous localization [81], Centroid localization [15],

APIT [44] and its theoretical ideal version PIT [44]. We show that SeRLoc has superior

performance in localization error and requires significantly fewer resources than other meth-

ods. We also show that SeRLoc is robust against both error in the locators’ coordinates

and estimation of the antenna sector that includes the sensors.
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Figure 3.13: (a) Average localization error LE vs. average number of locators heard LH for
a network of |N | = 5, 000 and locator-to-sensor ratio R

r = 10. (b) LE vs. LH for varying
antenna sectors.

3.8.1 Simulation Setup

We randomly distributed 5,000 sensors within a 100x100 rectangular area. We also randomly

placed locators within the same area and computed the average localization error as:

LE =
1
|S|

∑

i

‖s̃i − si‖
r

, (3.29)

where S is the set of sensors, s̃i is the sensor estimated position, si is the real position and

r is the sensor-to-sensor communication range.

3.8.2 Localization Error vs. Locators heard

In our first experiment, we investigated the impact of the average number of locators heard

LH in the localization error. In order to provide a fair comparison of SeRLoc with other

methods, we normalize LH for SeRLoc by multiplying LH with the number of sectors used.

For example, when LH = 9, with SeRLoc using three sectors, every sensor hears on average

three locators and not nine.

In figure 3.13(a), we show the LE vs. LH with SeRLoc using three sectors and R
r = 10.

We observe that in terms of location estimation alone, SeRLoc is superior to all other range-
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independent algorithms compared [15, 44, 81, 83]. Note that SeRLoc achieves a localization

error of 0.5r, with very few locators (LH = 12 which is equivalent to four locators with 3-

sectored antennas). To achieve LE = 0.5r, we need a locator density of ρL = 4
πR2 = 0.0032

for R = 20.

3.8.3 Localization Error vs. Antenna Sectors

In our second experiment, we examined the impact of the number of antenna sectors M on

the average localization error LE. In figure 3.13(b), we show the LE vs. LH, for varying

number of antenna sectors. We can observe that for LH = 3, the LE is comparable for

all values of M . However, as the value of LH increases, the LE decreases more rapidly

for higher number of antenna sectors, due to the fact that the overlapping region becomes

smaller when the antenna sectors become narrower.

The gain in the localization accuracy, comes at the expense of hardware complexity

at the locator, since more complex antenna designs have to be employed to generate the

sectoring. Additionally, errors in the estimation of the antenna sector where a sensor is

included, become more frequent, since more sensors are located at the boundary between

two sectors.

3.8.4 Localization Error vs. Sector Error

Sensors may be located close to the boundary of two sectors of a locator, or be deployed

in a region with high multipath effects. In such a case, a sensor may falsely assume that

it is located in another sector, than the actual sector that includes it. We refer to this

phenomenon as sector error (SE) and define it as:

SE =
# of sectors falsely estimated

LH
. (3.30)

A sector error of 0.5 indicates that every sensor falsely estimated the sectors of half the

locators heard. In figure 3.14(a), we show the LE vs. the SE for varying LH, and 8-sector

antennas. We observe that the LE does not grow significantly large (larger than the sensor

communication range r), until a fraction of 0.7 of the sectors are falsely estimated.
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SeRLoc algorithm is resilient to sector error due to the majority vote scheme employed

in the determination of the overlapping region. Even if a significant fraction of sectors are

falsely estimated, these sectors do not overlap in the same network area and hence a score

low in the grid-sector table.

Note that the for a SE > 0.7, LE increases with LH. When the SE grows beyond

a threshold, the falsely estimated sectors dominate in the location determination. As LH

grows, the falsely estimated overlapping region, shrinks due to the higher number of over-

lapping sectors. Hence the CoG that defines the sensor estimated location gets further apart

than the actual sensor location.

In figure 3.14(b), we show the LE vs. SE for LH = 10 and varying number of antenna

sectors. We observe that the narrower the antenna sector the smaller the LE, even in

the presence of SE. For a small SE the overlapping region is dominated by the correctly

estimated sectors and hence, shrinks with increasing antenna sectors. For large SE the

overlapping region is dominated by the falsely estimated sectors and hence, an increase in

LH does not reduce the LE.

Summarizing our findings for the sector error, we note that SeRLoc is resilient to sector

error due to the majority vote mechanism employed in the overlapping region determination.

3.8.5 Localization Error vs. GPS Error

GPS, or any alternative localization scheme used to provide locators with their location,

may have limited accuracy. To study the impact of the error in the locators’ position,

on LH, we induced a GPS error (GPSE) to every locator of the network. A value of

GPSE = r means that every locator was randomly placed at a circle of radius r centered

at the locator’s actual position.

In figure 3.15(a), we show the average localization error LE vs. the GPSE in units of

r, for varying number of LH when locators use 8-sector antennas. We observe that even

for large GPSE the LE does not grow larger than 1.2r. For example, when GPSE = 1.8r

and LH = 3, LE = 1.1r. According to figure 3.13(a), DV-hop and amorphous localization

require LH = 5 to achieve the same performance in complete absence of GPSE, while APIT
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Figure 3.14: (a) LE vs. sector error SE for varying LH. (b) Average localization error LE
vs. sector error SE for varying number of antenna sectors for a network of |S| = 5, 000 and
R
r = 10.

requires LH = 12 to reduce the LE = 1.1r, with no GPSE induced in the locators’ positions.

Note that once the GPSE error becomes significantly large (over 1.6r) an increase in LH

does not improve the accuracy of the location estimation.

3.8.6 Communication Cost vs. Locators Heard

In this section we analyse the communication cost of SeRLoc and compare it with the

communication cost of the existing range-independent localization algorithms. In figure

3.15(b), we show the communication cost in number of transmitted messages vs. LH, when

200 sensors are randomly deployed.

We observe that DV-hop and Amorphous localization, have significantly higher com-

munication cost compared to all other algorithms, due to the flood-based approach for the

beacon propagation. The centroid scheme, has the lowest communication cost (|L|) since it

only transmits one beacon from each locator to localize the sensor. APIT requires |L|+ |S|
beacons to localize the sensors, while SeRLoc requires |ML| number of beacons, where L is

the set of locators and M is the number of antenna sectors.

Under the assumption that the number of sensors is much higher than the number of



107

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

GPS error (r)

A
vg

. L
E

 (
r)

Avg. LE vs. GPSE − 8−sector antenna

LH=3
LH=6
LH=10
LH=15
LH=20

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

10
5

Avg. number of LH

T
ra

ns
m

itt
ed

 m
es

sa
ge

s

Communication cost vs. LH

Centroid
SerLoc 3
SerLoc 8
APIT
Dv−hop
Amorphous

(a) (b)

Figure 3.15: (a) LE vs. locator GPS error in units of r for varying average number of
locators heard LH. (b) Communication cost vs. LH, for a network of 200 sensors.

locators, (|S| À |L|), SeRLoc has a smaller communication than APIT, since SeRLoc is in-

dependent of the number of sensors deployed. In addition, SeRLoc achieves low localization

error for smaller values of LH, and hence requires a smaller number of reference points.

3.8.7 HiRLoc: Localization error vs. Locators heard and Communication overhead

In our first experiment for HiRLoc, we examined the impact of the average number of

locators heard LH on the localization accuracy of HiRLoc and compared it with the state-

of-the-art range-independent localization algorithms.

In figure 3.16(a) we show the average localization error LE in units of sensor commu-

nication range r for varying number of locators heard at each sensor. HiRLoc-AV denotes

HiRLoc that uses antenna orientation variation to improve upon the accuracy of the lo-

cation estimate of sensors. HiRLoc-RV denotes HiRLoc that uses communication range

variation to improve upon the accuracy of the location estimate of sensors. For HiRLoc-AV

and HiRLoc-RV, we performed only one rotation of the antenna at each locator and only

one reduction in the communication range, respectively and used 3-sectored antennas.

We can observe that HiRLoc-AV has the best performance among all algorithms while

HiRLoc-RV gives the second best performance. The localization error drops rapidly under
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(a) (b)

Figure 3.16: (a) Comparison of the average localization error in units of sensor commu-
nication range (r) for varying average number of locators heard at each sensor. SeRLoc,
HiRLoc-AV and HiRLoc-RV use three sectored antennas. One locator for SeRLoc and
HiRLoc correspond to three locators for all other algorithms. HiRLoc-AV uses only one
antenna rotation and HiRLoc-RV uses only one communication range reduction. (b) Com-
parison of the communication overhead in number of transmitted messages for varying
average localization error. HiRLoc-AV uses only one antenna rotation and HiRLoc-RV uses
only one communication range reduction.

r even for small values of LH while it is equal to LE = 0.23r for LH = 15.2 HiRLoc-AV

is superior than HiRLoc-RV for the same value of LH, since in HiRLoc-AV locators still

transmit with the same transmission power once their antenna has been rotated. Hence, the

same set of locators is heard at each sensor in any transmission round. On the other hand,

in HiRLoc-RV, once the transmission range has been reduced some of the locators heard in

the previous round may get out of the range of the sensor and, hence, the improvement in

the accuracy of the location estimation using HiRLoc-RV is less than the one achieved with

HiRLoc-AV.

In figure 3.16(b) we show the communication cost required for localization in number of

transmitted messages, for varying average localization error LE. The communication cost

was computed for a sensor network of 200 sensors. Note that SeRLoc and HiRLoc are

2LH = 15 corresponds to each sensor hearing on average 5 locators since locators were equipped with
3-sectored antennas.
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Figure 3.17: (a) Normalized ROI vs. number of antenna rotations for varying LH. The
ROI is normalized with respect to the ROI acquired with no variation of the antenna
orientation (application of SeRLoc). (b) Normalized ROI vs. number of antenna rotations
for varying size of antenna sectors.

the only algorithms whose communication cost is independent of the number of sensors

deployed. All other algorithms rely on neighbor sensor information to estimate the sensor

location and, hence, the communication cost grows with the increase of the size of the sensor

network.

We observe that for small localization error (less than r) HiRLoc requires less messages

for localization compared to all other algorithms. This result seems counter intuitive, since

each locators in our experiment had to transmit twice the number of messages compared to

SeRLoc. However, fewer locators were required in order to achieve the desired localization

accuracy, and, hence, the overall communication cost was lower for HiRLoc. As the required

localization accuracy decreases (above r) SeRLoc becomes more efficient than HiRLoc, since

it can achieve good precision with a relatively small number of locators. It is important to

note that though HiRLoc and SeRLoc have similar performance in communication overhead,

HiRLoc needs a much smaller number of locators to achieve the same localization accuracy.

This fact becomes evident in the following experiments.
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3.8.8 HiRLoc: Antenna orientation variation

In our second experiment for HiRLoc, we examined the impact of the number of antenna

rotations on the size of the ROI. In figure 3.17(a) we show the ROI vs. the number of

antenna rotations, and for varying LH, when 3-sector antennas are used at each locator.

Note that the ROI is normalized over the size of the ROI given by SeRLoc denoted by

ROI(1) (no antenna rotation). From figure 3.13(a), we observe that even a single antenna

rotation, reduces the size of the ROI by more than 50%, while three antenna rotations

reduce the size to ROI(4) = 0.12ROI(1), when LH = 5. A reduction of 50% in the size of

the ROI by a single antenna rotation means that one can deploy half the locators compared

to SeRLoc and achieve the same localization accuracy by just rotating the antenna system

at each locator once. The savings in number of locators are significant considering that the

reduction in hardware requirements comes at no additional cost in communication overhead.

We also observe that as LH grows HiRLoc does not reduce the ROI by the same

percentage compared to lower LH = 5. This is due to the fact that when the number of

locators heard at each sensor is high, SeRLoc provides an already good estimate of the

sensor location (small ROI) and hence, the margin for reduction of the ROI size is limited.

In figure 3.17(b) we show the normalized ROI vs. the number of antenna rotations,

and for varying number of antenna sectors at each locator. As in the case of high LH,

when the antenna sectors become narrow (16-sector antennas) SeRLoc already gives a very

good location estimate and hence, HiRLoc does not provide the same improvement as in

the case of wider sectors. Furthermore, when the sectors are already very narrow, it would

be expensive to develop a mechanism that would rotate the antennas at each locator with

great precision. Hence, HiRLoc is very efficient when wide antenna sectors are used at each

locator.

3.8.9 HiRLoc: Communication Range variation

In our third experiment for HiRLoc, we examined the impact of the communication range

variation on the size of the (ROI). In figure 3.18(a) we show the normalized ROI vs.

the number of communication range variations, and for different LH values, when 3-sector
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Figure 3.18: (a) ROI vs. number of range reductions for varying LH. The ROI is nor-
malized with respect to the ROI acquired with no variation of the communication range
(application of SeRLoc). (b) Normalized ROI vs. number of range reductions for varying
size of antenna sectors.

antennas are used at each locator. Each locator transmits beacons at four different com-

munication ranges.

From figure 3.18(a), we observe that the communication range variation, though sig-

nificantly improves the system performance, does not achieve the same ROI reduction as

the antenna orientation variation3. This behavior is explained by the fact that the gradual

reduction of the communication range reduces the number of beacons heard at each sensor,

in contrast with the antenna orientation variation case where the same number of locators

is heard at the sensors at each antenna rotation. In addition, we observe that greater ROI

reduction occurs when the LH at each locator is high. This is justified by considering that a

higher LH allows for more sectors with lower communication range to intersect and hence,

smaller ROI.

In figure 3.18(b), we show the normalized ROI vs. the number of communication range

variations, and for varying number of antenna sectors at each locator. Though the ROI

reduction is not as high as in the antenna orientation variation case, the communication

3The comparison is valid for the same number of LH, the same number of antenna sectors and the same
number of variations in the antenna rotation and communication range, respectively.
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range variation leads to significant performance improvement. As in our previous experi-

ment, narrower antenna beams give a good location estimate and hence, has smaller margin

for improvement.

3.9 Summary of Contributions

We introduced the problem of secure localization in wireless ad hoc and sensor networks.

We proposed a range-independent, decentralized localization scheme called SeRLoc, that

allows nodes to determine their location in an un-trusted environment. We also analyti-

cally evaluated the probability of spoofing the node’s location due to security threats such

as the wormhole attack, the Sybil attack and compromise of network entities, and showed

that SeRLoc provides accurate location estimation even in the presence of those threats.

In doing so, we used the geometric and radio range information to detect the attacks on

localization scheme. Our simulation studies also show that SeRLoc localizes sensors with

higher accuracy than state-of-the-art range-independent localization schemes, while requir-

ing fewer reference points and lower communication cost. Furthermore, our simulation

studies showed that SeRLoc is resilient to sources of error such as location error of reference

points as well as error in the sector determination. We also presented HiRLoc, a high-

resolution localization algorithm that provides improved localization accuracy compared to

SeRLoc, while it preserves the robustness against attacks and does not require additional

hardware resources.

3.10 Appendix

3.10.1 Choosing the system parameters

The random deployment of a set L of locators with a density ρL = |L|
A is equivalent to a

sequence of events following a homogeneous Poisson point process of rate ρL. The random

deployment of a set S of nodes with a density ρs = |S|
A , is equivalent to a random sampling

of the deployment area with rate ρs [29].



113

Probability of hearing more than k locators

Since locators are randomly deployed, the probability for a locator to be in an area of size

Ag is pg = Ag

A . In addition, the random locator deployment implies statistical independence

between locators being within a network region Ag. Hence, the probability that exactly k

locators are in Ag is given by the binomial distribution.

P (k ∈ Ag) =
(|L|

k

)
pk

g(1− pg)|L|−k. (3.31)

For |L| À 1 and AÀ Ag we can approximate the binomial distribution with a Poisson

distribution:

P (k ∈ Ag) =
Ag

A |L|
k!

e−
Ag
A |L| =

ρLAg

k!
e−ρLAg . (3.32)

By letting Ag = πR2 we can compute the probability of having exactly k locators inside a

circle of radius R, centered at the sensor.

P (|LHs| = k) =
(ρLπR2)k

k!
e−ρLπR2

. (3.33)

Using (3.33), we compute the probability that every sensor hears at least k locators. The

random sensor deployment implies statistical independence in the number of locators heard

by each sensor and hence:

P (|LHs| ≥ k, ∀ s) = (1− P (|LHs| < k))|S| = (1−
k−1∑

i=0

(ρLπR2)i

i!
e−ρLπR2

)|S|. (3.34)

3.10.2 Maximizing the lower bound on P (CR)

The lower bound on detection probability based on the communication range constraint

property is given by:

P (CR) ≥ (1− e−ρLAi)(1− e−ρLAj ). (3.35)

We want to compute the values of A∗i , A
∗
j , that maximize the right side of (3.35). From

figure 3.19,

Ai(x) = 2
∫ R

R−x

√
R2 − z2dz, Aj(x) = 2

∫ R

R+x−l

√
R2 − z2dz. (3.36)
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Figure 3.19: Computing the maximum lower bound on P (CR).

where l = ‖s−O‖. Since, both Ai, Aj are expressed as function of x, the lower bound LB(x)

on P (CR) can be expressed as:

LB(x) = (1− e−ρLAi(x))(1− e−ρLAj(x)). (3.37)

To maximize LB(x) we differentiate over x and set the derivative equal to zero:

LB′(x) = ρLA′i(x)e−ρLAi(x) + ρLA′j(x)e−ρLAj(x)

−ρL

(
A′i(x) + A′j(x)

)
e−ρL(Ai(x)+Aj(x))

= ρLA′i(x)
(
e−ρLAi(x) − e−ρL(Ai(x)+Aj(x))

)

+ρLA′j(x)
(
e−ρLAj(x) − e−ρL(Ai(x)+Aj(x))

)
= 0. (3.38)

A trivial solution to LB′(x) = 0 is Ai(x) = 0, or Aj(x) = 0, but both yield a minimum

rather than a maximum (LB(x) = 0). However if we set Ai(x) = Aj(x), from (3.36), (3.36),

R + x − l = R − x ⇒ x = l
2 . In addition, differentiating (3.36), (3.36) and evaluating at

x = l
2 yields A′i(

l
2) = −A′j(

l
2). Hence, for Ai(x) = Aj(x), LB′(x) = 0, and the maximum

value on the lower bound LB(x) is achieved. The values of Ai, Aj that maximize LB(x)

are,

A∗i (x) = 2
∫ R

R−x

√
R2 − z2dz = x

√
R2 − x2 −R2 tan−1

(
x
√

R2 − x2

x2 −R2

)
, (3.39)
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Chapter 4

A GRAPH THEORETIC FRAMEWORK FOR PREVENTING THE
WORMHOLE ATTACK IN WIRELESS AD HOC NETWORKS

Infrastructureless networks such as wireless ad hoc and sensor networks rely on the

collaboration among network nodes in implementing most, if not all, network operations.

Moreover, due to limited resources of the wireless devices, algorithms and protocols are de-

signed and implemented to allow distributed collaborative communication and computing

involving multiple nodes. For example, two nodes that are not within the direct commu-

nication range will have to rely on intermediate nodes to exchange messages, thus forming

multihop networks.

To implement distributed algorithms and coordinate the cooperation among network

nodes, a number of control messages need to be exchanged in every local neighborhood. For

example, to deliver protocol status updates, nodes broadcast their up-to-date information.

In addition, the inherent broadcast nature of the wireless medium significantly reduces

the energy expenditure for sending an identical message from a single sender to multiple

receivers within the same neighborhood. Hence, broadcasting is an efficient and frequent

operation in many network functions. However, a wireless ad hoc network may be deployed

in hostile environments, where network nodes operate un-tethered. Moreover, the wireless

medium exposes any message transmission to a receiver located within the communication

range. Hence, in a wireless environment, it is critical to secure any broadcast transmission

from a node to its immediate neighbors. A node receiving a broadcast transmission must

verify that (a) the message has not been altered in transit (integrity), (b) it originates from

a valid and identifiable network source (authenticity), (c) the message is not a replay of

an old transmission (freshness) and that, (d) in case of a local broadcast intended only for

immediate neighbors, that the source lies within the receiving node’s communication range.

Recently, it has become evident that verification of the integrity, authenticity and
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freshness of a message via cryptographic methods, is not sufficient to conclude that a

local broadcast message originated from a one-hop (immediate) neighbor of the receiv-

ing node [48, 85, 127]. In this paper, we investigate a specific type of attack, known as the

wormhole attack [48,85,127]. Such attacks are relatively easy to mount, while being difficult

to detect and prevent. In a wormhole attack, an adversary records information at one point

of the network (origin point), tunnels it to another point of the network via a low-latency

link (destination point), and injects the information back into the network. Since in the

wormhole attack the adversary replays recorded messages, it can be launched without com-

promising any network node, or the integrity and authenticity of the communication, and

hence, the success of the attack is independent of the strength of the cryptographic method

used to protect the communication. In addition, the lack of communication compromise

makes this type of attack “invisible” to the upper network layers [48]. As a consequence,

using a wormhole attack, an adversary can lead two nodes located more than one hop away

into believing that they are within communication range and into exchanging information

as if they were immediate neighbors.

Several approaches have been presented for defending against the wormhole attack [19,

46–48, 124, 127]. The solutions proposed attempt to bound the distance that any message

can travel [48] or securely discover the set of one-hop neighbors [19,46,47,124,127]. In this

paper, we show that any defense mechanism against the wormhole attack can be interpreted

by a graph theoretic framework. We make the following contributions.

4.0.3 Our Contributions

We present a graph theoretic framework for modeling of the wormhole attack and state the

necessary and sufficient conditions for any candidate solution to prevent such an attack.

We show that any previously proposed methods [19,46–48,124,127] or future solutions have

to satisfy our conditions in order to prevent wormholes. In addition, we also propose a

cryptographic mechanism based on keys only known within each neighborhood, which we

call local broadcast keys (LBKs), in order to secure the network from wormhole attacks and

show that our solution satisfies the conditions of the graph theoretic framework. We present
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a centralized method for establishing LBKs, when the location of all the nodes is known to

a central authority (base station). Furthermore, we propose a decentralized mechanism for

LBK establishment that defends against wormholes with a probability very close to unity.

Based on Spatial Statistics theory [29], we provide an analytical evaluation of the level of

security achieved by our scheme to support our claims.

Compared to previously proposed methods [19,47,48], our solution does not require any

time synchronization or highly accurate clocks. In addition, our method requires only a

small fraction of the network nodes to know their location. Finally, our approach is based

on symmetric cryptography rather than expensive asymmetric cryptography and hence is

computationally efficient, while it requires each node to broadcast only a small number of

messages thus having a small communication overhead. Due to its efficiency, our method

is applicable to ad hoc networks with very stringent resource constraints, such as wireless

sensor networks.

4.1 Problem Statement

In this section, we present the wormhole attack model and illustrate how a wormhole at-

tack can significantly impact the performance of network protocols, such as routing, and

applications of wireless ad hoc networks, such as monitoring. We then abstract the prob-

lem using graph theory and provide the necessary and sufficient conditions to prevent the

wormhole attack. Throughout the rest of the paper, we will use the terms wormhole attack

and wormhole problem interchangeably to refer to a network with wormhole links.

4.1.1 Wormhole Attack Model

To launch a wormhole attack, an adversary initially establishes a low-latency link between

two points in the network. We will refer to the attacker’s link as wormhole link or simply

wormhole. Once the wormhole link is established, the attacker eavesdrops on messages at

one end of the link, referred to as the origin point, tunnels them through the wormhole link,

and replays them at the other end of the link, referred to as the destination point.

If the distance separation between the origin point and destination point is longer than

the communication range of the nodes, any node at the origin point will rely on multi-hop
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paths to communicate with nodes at the destination point. Hence, the attacker can use

the low-latency link to re-broadcast recorded packets at the destination point faster than

they would normally arrive via the multi-hop route. A low-latency link can be realized

with a wired connection, an optic connection, a long-range, out-of-band wireless directional

transmission, or even a multi-hop combination of any of the aforementioned types of con-

nections, as long as the latency in the wormhole path is less than or equal to the latency in

the legitimate multi-hop path.

In a wormhole attack, the devices and wormhole links deployed by the adversary do not

become part of the network. The devices used to mount the attack do not need to hold any

valid network Ids and, hence, the adversary does not need to compromise any cryptographic

quantities or network nodes in order to perform the attack. Any key used by valid network

nodes for encryption remains secret, and the integrity and authenticity of the replayed

messages is preserved. The lack of need to compromise any valid network entity makes

the wormhole attack “invisible” to the upper layers of the network [48]. Furthermore, the

adversary need not allocate computational resources for compromising the communications,

thus making the wormhole attack very easy to implement.

The assumption of not compromising the network communications is a reasonable one

since if the adversary were to gain access to cryptographic keys used in the network, it

would have no need to record messages at one part of the network, tunnel them via a

direct link, and replay them to some other part of the network. Instead, the adversary

can use the compromised keys to fabricate any message and inject it into the network as

legitimate. Using compromised keys to impersonate a valid node, and fabricate and inject

bogus messages into the network, known as the Sybil attack [32, 82], is overall a different

problem than the wormhole attack and is not addressed in this paper. We present our

reasoning on assuming non-compromise of cryptographic keys and nodes in our discussion

in Section 4.7.

Finally, in our wormhole attack model, we assume that the adversary does not launch

any Denial-of-Service (DoS) attacks against network entities. The goal of the adversary

is to remain undetected and, hence, DoS attacks, such as jamming of the communication

medium as well as battery exhaustion attacks, are not performed by an adversary mounting
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(a) (b)

Figure 4.1: (a) Wormhole attack on a distance vector-based routing protocol. (b) Wormhole
attack against an on-demand routing protocol.

a wormhole attack. We now present examples on the impact of a wormhole attack on

network protocols.

4.1.2 Wormhole Threat Against Network Protocols

Wormhole attack against routing protocols

Ad hoc network routing protocols can be classified into periodic protocols [12, 80, 88] and

on-demand protocols [50,87]. In periodic protocols, every node is aware of the routing path

towards any destination at any given time and periodically exchanges information with its

neighbors to maintain the best network routes. In on-demand protocols, a routing path

is discovered only when a node wants to send messages to some destination. A wormhole

attack can affect both categories of routing protocols in the following ways.

Periodic Protocols

Periodic protocols are based on the distance vector routing algorithm, which was initially

proposed for wired networks [7]. In distance vector routing, each node stores a routing table

that contains for each possible destination the associated routing cost, usually in number

of hops, and the corresponding next hop towards that destination. Periodically, or when a

route change occurs, each node broadcasts its routing table in order to inform its neighbors
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about possible route changes. Every node that receives a route update adjusts its own

routing table based on the broadcast received from the neighboring nodes.

As an example, consider figure 4.1(a) which shows an ad hoc network of 13 nodes. In

figure 4.1(a), a node si is connected to a node sj if the distance between them is less than the

communication range r. Consider an attacker establishing a wormhole link between nodes

s9 and s2, using a low-latency link. When node s9 broadcasts its routing table, node s2

will hear the broadcast via the wormhole and assume it is one hop away from s9. Then,

s2 will update its table entries for node s9, reachable via one hop, nodes {s8, s10, s11, s12},
reachable via two hops, and broadcast its own routing table. Similarly, the neighbors of s2

will adjust their own routing tables. Note that nodes {s1, s3, s4, s5, s7} now route via s2 to

reach any of the nodes {s9, s10, s11, s12}.

On-demand Protocols

A wormhole attack against on-demand routing protocols can result in similar false route

establishment as in the case of periodic protocols. Consider the route discovery mechanism

employed in DSR [50] and AODV [87] protocols. A node A initiates a route discovery to

node B by broadcasting a route request message. All nodes that hear the route request

message will re-broadcast the request until the destination B has been discovered. Once

the destination B is reached, node B will respond with a route reply message. The route

reply message will follow a similar route discovery procedure, if the path from B to A has

not been previously discovered. If an attacker mounts a wormhole link between the route

request initiator A and the destination B, and if A, B are more than one hop away, then a

one-hop route via the wormhole will be established from A to B.

As an example, consider figure 4.1(b) which is the same topology as in figure 4.1(a).

Consider that the attacker establishes a wormhole link between nodes s9 and s2 and assume

that node s9 wants to send data to node s2. When node s9 broadcasts the route request,

the attacker will forward the request via the wormhole link to node s2. Node s2 will reply

with a route reply and the attacker using wormhole link will forward the reply to node s9.

At this point, nodes s2, s9 will establish a route via the wormhole link, as if they were one
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Figure 4.2: Wormhole attack against a local broadcast protocol.

hop neighbors. Similarly, if any of the nodes {s1, s3, s4, s5, s7} wants to send data to any of

the nodes {s9, s10, s11, s12}, the routing paths established will include the wormhole link.

From our examples and the existing literature [48], we note that the existence of worm-

hole links impacts the network routing service performance in the following three ways:

(1) nodes can become sinkholes [52] without even being aware that they are victims of a

wormhole attack (as noted in both figures 4.1(a), and 4.1(b), nodes s2, s9 become sinkhole

nodes and attract all traffic from surrounding nodes). Hence, a significant amount of traffic

is routed through the wormhole link and the attacker can control and observe a significant

amount of traffic flow without the need to deploy multiple observation points. (2) If an

attacker kept the wormhole link functional at all times and did not drop any packets, the

wormhole would actually provide a useful network service by expediting the packet deliv-

ery. However, by selectively dropping packets, the attacker can lower the throughput of the

network. (3) Furthermore, by simply switching the wormhole link on and off, the attacker

can trigger a route oscillation within the network, thus leading to a DoS attack, driving the

routing service to be unusable.

Wormhole attack against local broadcast protocols

In many applications, nodes need to communicate some information only within their neigh-

borhood. For example, in localization protocols [63,104,106], nodes determine their location

based on information provided by the neighbors. In wireless sensor networks, sensors per-
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forming monitoring (for example tracking the movement of an object), may broadcast local

measurements to a central node or clusterhead that estimates target related parameters,

such as location and velocity of the target. In such applications, false local information can

lead to significant performance degradation of the estimation algorithms. Currently, all the

tracking algorithms assume that the input data is noisy and at times may use cryptographic

mechanisms to verify the authenticity of the data.

As an example, consider the setup in figure 4.2, where sensor node s1 is responsible for

triggering an alarm in region A, if the temperature in region A rises above a certain thresh-

old. Let’s assume that sensor s1 makes use of a majority-based algorithm that triggers the

alarm if the majority of its immediate neighbors report temperature measurements above a

specific threshold. Assume that an attacker records the temperature broadcasts from region

B and re-broadcasts the data to region A via the wormhole link. If the number of distinct

measurements replayed via the wormhole link exceeds the collected distinct measurements

from region A, the temperature in region A may never impact the decision to trigger the

alarm in A.

From the above examples, we note that in order to prevent the wormhole attack, there

must be some mechanism to ensure that any transmission received by a node s indeed

originates from a valid one-hop neighbor of s that is located within its communication

range. We now show that these ideas can be formalized using a graph theoretic framework.

4.1.3 Graph theoretic formulation of the wormhole problem and its solution

Consider an ad hoc network deployed with any node i having a communication range r.

Such a network can be modeled as a geometric graph [86], defined as follows:

Definition 4.1. –Geometric Graph–Given a finite set of vertices V ⊂ Rd (d = 2, for planar

graphs), we denote by G(V, r) the undirected graph with vertex set V and with undirected

edges connecting pairs of vertices (i, j) with ‖i−j‖ ≤ r, where ‖ ¦‖ is some norm on Rd [86].

The entries of the edge, or connectivity matrix, denoted by e, are given by

e(i, j) =





1, if ‖i− j‖ ≤ r

0, if ‖i− j‖ > r.
(4.1)
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Geometric graphs have long been considered a useful model for deriving insightful ana-

lytic results in wireless ad hoc networks [8,23,33,34]. The network protocols developed for

ad hoc networks are implicitly designed based on the geometric graph model. For example,

routing algorithms assume that for two nodes that are not within communication range, a

multi-hop route must be constructed. In addition, the networking protocols define one-hop

neighbors of an arbitrary node s as those nodes that can directly hear any broadcast trans-

mission from node s. However, the existence of wormhole links violates the model in (4.1)

by allowing direct links longer than r, thus transforming the initial geometric graph G(V, r)

into a logical graph G̃(V, EG̃), where arbitrary connections can be established. Hence, even

a single non-trivial wormhole will always result in a communication graph with increased

number of ones in the binary connectivity matrix compared to the connectivity matrix of

the wormhole-free communication graph. We now formalize the wormhole problem based

on the geometric graph property expressed in (4.1).

Wormhole problem: A network is vulnerable to the wormhole attack if there exists at

least one edge e(i, j) such that e(i, j) = 1 for ‖i − j‖ > r, where r is the communication

range of nodes.

Any candidate solution to the wormhole problem should construct a communication

graph G′(V, EG′), where no link longer than r exists. Any edge e(i, j) of the communi-

cation graph G′(V,EG′) satisfies (4.1), and hence, the communication graph solving the

wormhole problem will always be a subgraph of the geometric graph of the network, i.e.

G′(V,EG′) ⊆ G(V, r). figure 4.3 graphically represents the extraction of the wormhole-free

communication graph G′(V,EG′) from the wormhole-infected graph G̃(V, EG̃) via the ap-

plication of a transformation S : G× G̃ → G′, when the geometric graph G(V, r) is known.

Note that the wormhole infected graph G̃, the geometric graph G, and the communi-

cation graph G′, have the same set of vertices V since, as mentioned in Section 4.1.1, the

devices deployed by the adversary launching a wormhole attack do not become part of the

network (they do not acquire valid network identities). Also, note that the sets of edges

Er, EG′ , EG̃ are determined based on fixed node locations. If the nodes of the network are

mobile, the set of edges on each graph may change according to the node locations at any
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Figure 4.3: The wormhole embedded graph theoretic model. The wormhole-infected graph
G̃(V,EG̃) is transformed via a solution S(G, G̃) into a communication graph G′(V, EG′),
with EG′ ⊆ EG.

given time. Despite the changing network topology, at any time and for a given location,

any valid solution to the wormhole problem should construct a communication graph that is

a subgraph of the geometric graph. We now formalize the necessary and sufficient condition

for solving the wormhole problem in the following theorem.

Theorem 4.1. Given a geometric graph G(V, r) defined as in (4.1), and an arbitrary logical

graph G̃(V, EG̃), a transformation S : G× G̃ → G′ of G̃(V, EG̃) into a communication graph

G′(V, EG′) is a solution to the wormhole problem iff the set of edges of G′ is a subset of the

set of edges of the G(V, r), i.e. EG′ ⊆ EG.

Proof. Assume that G′ = S(G, G̃) prevents the wormhole attack. Let CX denote the con-

nectivity matrix of graph X. If EG′ * EG, there exists a pair of nodes (i, j) for which:

CG(i, j) = 0 and CG′(i, j) = 1. For such node pairs, e(i, j) = 1, with ‖i − j‖ > r, and

the communication range constraint is violated. Hence, in order for S(G, G̃) to prevent the

wormhole attack, it follows that EG′ ⊆ EG.

The converse follows immediately. If EG′ ⊆ EG, then CG′(i, j) ≤ CG(i, j), ∀i, j ∈ V.

Hence, there is no edge e′(i, j) ∈ EG′ such that e′(i, j) = 1, ‖i − j‖ > r, and the graph G′

is wormhole free.

Note that a trivial graph G′ with no links (EG′ = ∅) satisfies the conditions of the The-

orem 4.1. However, to ensure communication between all network nodes, we seek solutions
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that construct a connected subgraph of G. A necessary but not sufficient condition for a

connected subgraph to exist is that the original graph G is also connected.

We also note that the transformation G′ = S(G, G̃) requires the knowledge of the geo-

metric random graph G(V, r), defined by the location of the vertices, and the communication

range r. When nodes do not have a global view of the network (know the location of other

nodes), to verify Theorem 4.1, an alternative way to construct a connected subgraph of

the geometric random graph G(V, r) must be developed. If the geometric graph can be

constructed, all wormhole links can be eliminated using corollaries 4.1, 4.2.

Corollary 4.1. We can identify and eliminate the wormhole links of a logical graph G̃(V,EG̃)

by performing an exclusive or (XOR) operation between the connectivity matrices of G̃ and

the geometric graph G(V, r), corresponding to the set of vertices V and communication range

r.

To illustrate how we can identify the wormhole links using Corollary 4.1, consider the

network of figure 4.1(a). Each row i of the connectivity matrix denotes the links of node i

(we have assumed that links between nodes are bi-directional). Using the notation CX(i)

for the row vector of matrix CX corresponding to the node si, the row vectors corresponding

to node s2, for the connectivity matrices CG, and CG̃ are

CG̃(2) = [1 0 1 1 1 0 0 0 1 0 0 0 0] , CG(2) = [1 0 1 1 1 0 0 0 0 0 0 0 0] .

By performing an XOR operation between CG̃, CG, we can identify all wormhole links and

corresponding nodes that are affected by the non-zero entries in matrix
(
CG̃ ⊕ CG

)
. In

figure 4.1(a), the second row of the matrix CG̃ ⊕ CG resulting from the XOR operation is

(
CG̃ ⊕ CG

)
(2) = [0 0 0 0 0 0 0 0 1 0 0 0 0] , (4.2)

and a wormhole link exists between node s2 and node j for which
(
CG̃ ⊕ CG

)
(2, j) = 1. In

our example the wormhole link between node s2 and node s9 is successfully identified.

Note that according to Theorem 4.1 any connected subgraph of G(V, r) is sufficient to

prevent any wormhole attack. For a subgraph of G(V, r) an XOR operation may identify

valid links of G(V, r) as wormhole links. However, along with the false positives, all the



126

wormhole links are detected. For example, consider a subgraph G′(V, EG′) ⊂ G(V, r) for

the network of figure 4.1(a), for which node s2 is not connected to node s3. For the subgraph

G′, the second row of the connectivity matrix is

CG′(2) = [1 0 0 1 1 0 0 0 0 0 0 0 0] ,
(
CG̃ ⊕ CG′

)
(2) = [0 0 1 0 0 0 0 0 1 0 0 0 0] .

By performing an XOR operation between CG̃, CG′ , we identify all wormhole links (link from

node s2 to node s9) and some false positives (link from node s2 to node s3). Eliminating

both the wormhole links and the false positives to construct graph G′ is an acceptable

solution as long as G′ is a connected graph. We summarize the wormhole elimination in

Corollary 4.2.

Corollary 4.2. We can identify and eliminate the wormhole links of a logical graph G̃(V, EG̃)

by performing an exclusive or (XOR) operation between the connectivity matrices of G̃ and

any subgraph G′(V ′, E′
G) of G(V, r), where G(V, r) is the geometric random graph corre-

sponding to the set of vertices V and communication range r.

Theorem 4.1 and corollaries 4.1, 4.2, provide the necessary framework to detect and

prevent any wormhole attack. We will specifically utilize them in the context of geometric

random graphs, since we assume that our network is randomly deployed. Based on our

graph theoretic formulation, the wormhole problem can be reduced to the problem of con-

structing a communication graph that is a connected subgraph of the geometric random

graph, without the explicit knowledge about the geometric graph. Before we present our

solution on constructing a subgraph of the geometric random graph, we describe the needed

network model assumptions.

4.2 Network Model Assumptions

Network deployment

We assume that the network consists of a large number of nodes, randomly deployed within

the network region A. We also assume that a small fraction of network nodes, called guards,

is assigned special network operations. Network nodes are deployed with a density ρs while

guards are deployed with a density ρg, with ρs À ρg.
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Antenna model

We assume that the guards can transmit with higher power than regular nodes and/or are

equipped with different antenna types. Specifically:

(a) Network nodes - We assume that network nodes are equipped with omnidirectional

antennas and transmit with a power Ps. The directivity gain of the node antenna is Ds = 1.

(b) Guards - We assume that guards can transmit with a power Pg > Ps. We also

assume that guards can be equipped with either omnidirectional or directional antennas,

with a directivity gain Dg >= 1.

Based on the antenna model assumptions, both symmetric as well as asymmetric modes

of communication between different network nodes are possible. Let the signal attenuation

over space be proportional to some exponent γ of the distance d between two nodes, times

the antenna directivity gain D ∈ {Ds, Dg}, i.e. Ps
Pr

= cD2dγ , with 2 ≤ γ ≤ 5, where c

denotes the proportionality constant and Pr denotes the minimum required receive power

for communication. If rnn denotes the node-to-node communication range and rng denotes

the node-to-guard communication range, then [5],

Ps

Pr
= cD2

s(rnn)γ = c(rnn)
γ
,

Ps

Pr
= cDsDg(rng)γ = cDg(rng)

γ
. (4.3)

From (4.3), it follows rng = rnn(Dg)
1
γ . Similarly, if rgn denotes the guard-to-node commu-

nication range (guards transmit with Pg > Ps and hence, rgn > rng), the guard-to-guard

communication range rgg is equal to rgg = rgn(Dg)
2
γ . For notational simplicity, we will refer

to the node-to node communication range as rnn = r, the guard-to-node communication

range as rgn = R, and the guard directivity gain as D. Table 4.1 summarizes the four

possible communication modes with appropriate ranges indicated.

The assumption that guards are able to transmit with higher power than network nodes is

a reasonable one, especially for low-power networks such as sensor networks. A typical sensor

has a communication range from 3 ∼ 30m with a transmission power of Ps = 0.75mW [76].

Hence, guards need to transmit with a power Pg = 75mW to achieve a communication

range ratio R
r = 10 when γ = 2 even without the use of directional antennas.

Note that we have assumed that the communication range of both the guards and the

nodes does not vary with direction and the environment (unit disk graph model). This
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Table 4.1: The four communication modes between nodes and guards. Each entry denotes
the range of communication for that mode.

Receiver

Sender Node Guard

Node r rD
1
γ

Guard R RD
2
γ

assumption has been made to facilitate the derivation of analytical expressions quantifying

the level of security achievable by our method1. Clearly, while the unit disk model pro-

vides theoretical performance bounds, knowledge of the statistics of the variation of the

communication range is needed to provide a more robust approach. We discuss the effect of

the variation of the communication range due to the heterogeneity of the wireless medium

in Section 3.8 and present performance evaluation analysis that takes the variation into

account.

Resource constraints

We assume that network nodes are resource limited in the following ways:

(a) Due to hardware limitations (lack of GPS receiver), nodes may not know their

location at all times. In addition, due to limited resource-constraints, generic nodes may

not attempt to determine their location. However, we assume that guards do know their

location either through GPS [45] or through some other localization method [104,106].

(b) We also assume that due to hardware limitations, there is no time synchronization

between the network nodes or the guards. In addition, nodes do not posses hardware to

perform highly accurate time measurements in the nanoseconds.

(c) Due to computational power limitations, network nodes cannot perform expensive

asymmetric cryptographic operations such as digital signatures [30, 100]. Instead, they

1The unit disk graph model has been used to represent ad hoc networks with identical devices being
deployed in order to derive insightful theoretical results in diverse research topics, such as security [23,33],
network connectivity [8, 34], routing [40,57,58], and topology control [121].



129

rely on efficient symmetric cryptography to generate, manage, and distribute cryptographic

quantities and execute cryptographic operations, such as encryption/decryption, authenti-

cation, and hashing. We also assume that nodes and guards can be pre-loaded with needed

cryptographic quantities before deployment.

System parameters

Since both guards and network nodes are randomly deployed, it is essential that we appro-

priately choose the network parameters, namely the guard density ρg and the guard-to-node

communication range R, for a given deployment area A, so that guards can communicate

with nodes.

The random deployment of the network nodes and guards can be modeled after a Spatial

Homogeneous Poisson Point Process [29]. The random placement of a set U of guards with

a density ρg = |U |
A (| · | denotes the cardinality of a set) is equivalent to a sequence of events

following a homogeneous Poisson point process of rate ρg. Given that |U | events occur in

area A, these events are uniformly distributed within that area. The random deployment

of a set S of nodes with a density ρs = |S|
A , is equivalent to a random sampling of the

deployment area with rate ρs [29].

Based on Spatial Statistics theory [29], if GHs denotes the set of guards heard by a

sensor s, (i.e., being within range R from s), then the probability that a node hears exactly

k guards is given by the Poisson distribution

P (|GHs = k|) =
(ρgπR2)k

k!
e−ρgπR2

. (4.4)

Based on (4.4), we can compute the probability that every node of the network hears at

least one guard as

P (|GHs| > 0,∀s ∈ S) = (1− e−ρgπR2
)|S|. (4.5)

Using (4.5), we can determine the desired guard density ρg or guard-to-node communication

range R, so that each node hears at least one guard with a probability p,

ρg ≥ − ln(1− p
1
|S| )

πR2
, R ≥

√√√√− ln(1− p
1
|S| )

πρg
. (4.6)
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Both inequalities in (4.6) are independent from the node density ρs. Hence, once the de-

ployment region is sufficiently covered by guards, nodes can be deployed as dense as desired

with P (|GHs| > 0,∀s ∈ S) remaining constant.

4.3 Local Broadcast Keys

As we showed in Section 4.1.3, broadcasted messages that are destined only to the local

neighborhood are timely replayed in regions that are not within the communication range of

the source of the messages. Since the replayed messages are both authentic and decryptable

at the destination point of the attack, a wormhole link is established between the nodes at

the origin point of the attack and the nodes at the destination point, as if the nodes were

one-hop neighbors. Hence, wormhole links violate the communication range constraint by

allowing nodes that are not within communication range to directly communicate. In order

to prevent the establishment of wormhole links, we showed that any candidate solution

should construct a communication graph that is a subgraph of the geometric graph of the

network.

A wormhole attack is successful when the replayed messages that are destined only to the

local neighborhood are decryptable and can be authenticated outside that neighborhood.

Once the attacker replays broadcasted messages outside the local neighborhood in a timely

manner, nodes at the ends of the wormhole link are led to believe that they are one-hop

neighbors. However, if only the nodes within a local neighborhood can decrypt and/or au-

thenticate the messages broadcasted within that neighborhood, nodes out of communication

range of each other will not conclude that they are one-hop away. Hence, the communica-

tion graph constructed by securely identifying the one-hop neighbors is a subgraph of the

geometric graph of the network and the wormhole attack is eliminated.

In order for a broadcast message intended for one-hop neighbors to be decryptable only

by the one-hop neighbors, each node should be able to encrypt broadcast messages with

keys only known to all of its one-hop neighbors. We call such keys Local Broadcast Keys

(LBKs). Hence, the problem of eliminating wormhole links reduces the problem of allowing

nodes to establish LBKs with their one-hop neighbors. Once the LBKs are established, the

resulting communication graph will be a subgraph of the geometric graph of the network.
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In this section, we first define local broadcast keys and constructively show that LBKs

construct a wormhole-free communication graph that is a subgraph of the geometric graph

of the network. We then present one centralized and one decentralized mechanism for

establishing LBKs, followed by a probabilistic analysis of the level of security achieved.

4.3.1 Definition and Correctness

Definition 4.2. –Local Broadcast Key–For a node i, we define the neighborhood Ni as

Ni = {j : ‖i − j‖ ≤ r}. Given a cryptographic key K, let UK denote the set of nodes that

hold key K. We assign a unique key Ki called Local Broadcast Key LBK of i, to all j ∈ Ni

so that UKi = Ni and Ki 6= Kj ,∀i 6= j. Hence, by definition, all one-hop neighbors of node

i possess the LBK of node i. We follow the convention that any message from node i to j

is encrypted with Ki, though either Ki or Kj can be used between nodes i, j. Hence, a link

between nodes i, j exists iff i ∈ Nj or j ∈ Ni.

Theorem 4.2. Given Ki, Ni, ∀i ∈ V, where V is the set of vertices defined by network

nodes, and an arbitrary logical random graph G̃(V, EG̃), the edge matrix EG′ , defined by

eG′(i, j) =





1, if i ∈ UKj ∪ j ∈ UKi

0, if Else,
(4.7)

yields the desired wormhole-free graph G′(V,EG′), such that EG′ ⊆ EG, where G(V, r) is the

geometric random graph defined in (4.1).

Proof. By the definition of EG′ , there exists a link eG′(i, j) = 1 if and only if the two nodes

hold at least one LBK. But, according to the definition of LBK, a node i ∈ UKj iff i ∈ Nj ,

which in turn implies that i, j satisfy (4.1), which defines the links of the geometric graph

G(V, r). Hence, eG′(i, j) = 1, iff ‖i−j‖ ≤ r, EG′ = EG and, therefore, G′ ≡ G. According to

theorem 4.1, if a transformation S(G, G̃) results in a graph G′(V, EG′) such that EG′ ⊆ EG,

then G′ is a wormhole-free graph.

As a side remark, we note that since G′ ≡ G and if G is connected, then G′ is also con-

nected. Also, given that LBKs are established for any network nodes, the wormhole attack
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can be prevented even in the absence of any location information. The LBK solution recon-

structs the geometric graph G(V, r) by encrypting the information exchange and disclosing

the decryption keys only to direct neighbors. However, the challenge of establishing LBKs

in a network may or may not require location information. In what follows, we present two

mechanisms by which we can assign local broadcast keys to the nodes of the network.

4.3.2 Local broadcast key establishment mechanisms

Key distribution from a central authority

Wireless ad hoc networks have been visualized to operate under both centralized and decen-

tralized control depending on the applications and the services that they provide. Though

our research mainly focuses on decentralized systems, for completeness, we first show how

LBKs can also be established in centralized systems.

Assume that a central authority has a global view of the network topology (knows the

location of all nodes) and that a security association has been established between every

node and the central authority (every node shares a pairwise key with the central author-

ity). Similar assumptions have been made in the centralized wormhole prevention scheme

presented in [124]2. It is quite simple to see that the central authority can construct the geo-

metric graph G(V, r) using the location of the nodes and the communication range constraint

r. Once the geometric graph G(V, r) is constructed, the central authority can distribute a

unique LBK to each node and its one-hop neighbors, via the secure channel established

based on the security association shared with each node. Once the LBKs have been estab-

lished, any broadcast encrypted with the LBK of a node si can only be decrypted by the

one-hop neighbors of si. Hence, using wormhole to replay messages at one neighborhood

encrypted with the LBK of another will not introduce any vulnerability3.

The centralized authority-based LBK establishment mechanism exhibits drawbacks that

are commonly noted in any centralized solution. First, the central authority constitutes a

2The authors in [124] assume that a base station receives information about the relative position of each
node via a channel secured with a group key known to all nodes and the base station.

3Since the central authority can reconstruct the geometric graph G(V, r), it can also inform every node
about their one-hop neighbors via a secure channel and, hence, prevent the wormhole attack.
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single point of failure. Second, in case of a mobile ad hoc network, the base station needs

frequent updates of the location of each node in order to maintain an up-to-date geometric

graph and update the LBKs according to the changing topology. The LBK update has to

be performed via unicast messages from the base station to every node and, hence, can

add prohibitively high overhead for the network. Finally, the centralized method requires

knowledge of the entire network topology (location of all nodes). A base station can acquire

the node location if the network is systematically deployed, or by using a wormhole-resistant

localization method [63,66,71,73,118]. We now describe a decentralized LBK establishment

mechanism that requires only a small fraction of the nodes to have knowledge of their

location.

Decentralized establishment of local broadcast keys

We present a three-step algorithm to allow nodes to establish LBK in a decentralized man-

ner. In step one, every guard Gi broadcasts fractional keys FKi to the network. Every

node collects the fractional keys from all guards that it can hear. In step two, every node

broadcasts the Ids of the fractional keys that it holds. If two nodes si, sj share more than

th fractional keys, they use all common fractional keys to generate a pairwise key Ksi,sj .

In step three, a node s generates an LBK Ks and unicasts it to every node that it shares a

pairwise key with. Before we describe the three steps in detail, we present the cryptographic

mechanisms of our decentralized LBK scheme.

Cryptographic Mechanisms

Encryption: To protect the distribution of the fractional keys, all broadcasts from the

guards are encrypted with a global symmetric key K0, preloaded before deployment. In

addition, a node s shares a symmetric pairwise key Ks,gi with every guard gi, also preloaded.

Since the number of guards deployed is relatively small, the storage requirement at the

node is within the storage constraints (a total of |U | keys), even for memory scarce nodes.

For example, mica motes [76] have 128Kbytes of programmable flash memory. Using 64-bit

RC5 [99] symmetric keys and for a network with 200 guards, a total of 1.6Kbytes of memory
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is required to store all the symmetric pairwise keys of the node with all the guards.

In order to save storage space at the guard side (guards would have to store |S| keys),

the pairwise key Ks,gi is derived by a master key Kgi , using a pseudo-random function [109]

h and the unique node Ids, Ks,gi = hKgi
(Ids). Hence, given an Ids, a guard can compute

its pairwise key with any node whenever needed, without having to store any pairwise keys.

Guard ID authentication

The use of a global symmetric key K0 does not provide any authentication on the source

of the message. Hence, any guard or node holding the global key can broadcast fractional

keys encrypted with K0. Though we have assumed that the global symmetric key K0 is

not compromised and that network entities do not operate maliciously, in order to allow

nodes to authenticate the guards within one-hop, we provide a lightweight authentication

mechanism4. Our scheme is based on efficient one-way hash chains [61], that have also been

used extensively in broadcast authentication protocols [89,91].

Each guard gi is assigned a unique password PWi. The password is blinded with the use

of a collision-resistant hash function such as SHA-1 [109]. Due to the collision resistance

property, it is computationally infeasible for an attacker to find a value PW ′
i , such that

H(PWi) = H(PW ′
i ), PWi 6= PW ′

i . The hash sequence is generated using the following

equation:

H0 = PWi, Hq = H(Hq−1), i = 1, · · · , n,

with n being a large number and H0 never revealed to any node. In addition, due to the

one-way property of the hash chain, it is computationally infeasible for an adversary to

derive values of the hash chain that have not been already published by the guard [61].

Each node is preloaded with a table containing the Id of each guard and the corresponding

hash value Hn(PWi). For a network with 200 guards, we need 8 bits to represent node Ids.

In addition, hash functions such as SHA-1 [109] have a 128-bit output. Hence, the storage

requirement of the hash table at any node is only 3.4Kbytes. To reduce the storage needed

4The guard authentication mechanism provides a basis for the future enhancement of the system against
other type of attacks, such as the Sybil attack [32,82].
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at the guard side, we employ an efficient storage/computation method for hash chains of

time/storage complexity O(log2(n)) and compute any hash chain values when needed [27].

Steps of the key establishment scheme

Step 1: Initially, every guard gi generates a random fractional key FKi. Guards broadcast

their fractional keys encrypted with the global symmetric key K0. Every broadcast

message also contains the coordinates (Xi, Yi) of the transmitting guard, the next

hash value in the hash chain that has not been published, Hn−q(PWi), and the hash

chain index q. The broadcast message format is

Guard gi : { FKi ‖ (Xi, Yi) ‖ Hn−q(PWi) ‖ q }K0 , (4.8)

where {A‖B}K denotes concatenation of A,B and encryption with key K.

Every node collects the fractional keys from all the guards that it can hear and verifies

that H(Hn−q(PWi)) = Hn−q+1(PWi). If a node has not received some intermediate

values of the hash chain due to packet loss, it can use the hash index q to re-synchronize

to the current published hash value. Assume that the latest hash value of the chain of

guard gi stored by a node s is Hn−z(PWi), with z < q. Node s can re-synchronize with

the hash chain of guard gi upon receipt of the hash value Hn−q(PWi) by applying

(q − z) consecutive hash operations to Hn−z(PWi).

For all received messages for which the verification of the hash is correct, the node

stores the fractional keys FKi, the coordinates of each guard (Xi, Yi), the latest pub-

lished hash values of the chain, H(Hn−q(PWi)), and the hash index m. In figure

4.4(a), guards g1 ∼ g5 broadcast their fractional keys FKi encrypted with the global

broadcast key K0. Nodes s1 ∼ s7 decrypt the message with the key K0, and verify the

authenticity of the broadcasting guards.

Step 2: Once the nodes have collected the fractional keys from all the guards that they

hear, they broadcast a message indicating the identities of the fractional keys that

they hold and a node specific threshold value, encrypted with the global symmetric
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(a) (b)

(c) (d)

Figure 4.4: (a) Guards g1 ∼ g5 broadcast fractional keys FK1 ∼ FK5 encrypted with the
global broadcast key K0. The location of the guards and the hash chain value is also included
in every broadcast. (b) Nodes announce the Id’s of the fractional keys that they hold. (c)
Neighbor nodes that have in common at least three fractional keys (th = 3) establish a
pairwise key. Node s1 has at least three common fractional keys with all nodes within one
hop. (d) Node s1 establishes a broadcast key Ks1 with every one hop neighbor and uses it
to broadcast a message m encrypted with Ks1 .

key K0. Since every node is aware of the correspondence between the fractional keys

that it has acquired and the identities of the guards that provided the fractional keys,

the nodes need only broadcast the identities of the guards that they heard, in order to

indicate which fractional keys they hold. The identities of the guards uniquely define

the identities of the fractional keys broadcasted by those guards5.

If two neighbor nodes s1, s2 have in common fractional keys {FK1, FK2, . . . FKm}
with m above a threshold th, they individually generate a pairwise key, Ks1,s2=H(FK1‖FK2‖

5Note that two guards may individually generate the same FK, but given a guard Id, the FK is unique
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. . . ‖FKm), where H is a collision-resistant hash function [61]. A node s1 can verify

the claim of another node s2 about holding a specific set of keys by challenging the

claimant node. If node s2 claims to hold a set of keys {FK1‖FK2‖ . . . ‖FKm}, it

should be able to generate the key Ks1,s2 . To verify such a claim, the verifying node

s1 first broadcasts a nonce, encrypted with the key Ks1,s2 generated from the frac-

tional keys corresponding to the guard Ids transmitted by the claimant node s2. If

the claimant node s2 indeed holds the keys {FK1‖FK2‖ . . . ‖FKm}, it will be able to

generate the same pairwise key Ks1,s2 , decrypt the nonce, and reply to the verifying

node.

For example, if node s1 is the verifying node and s2 is the claimant node, s1 encrypts

a nonce η1 with Ks1,s2 and challenges node s2 to reply with J(η1), where J(x) is a

simple function, such as J(x) = x − 1. If node s2 were to really hold the fractional

keys that it advertised, it would generate the pairwise key Ks1,s2 , and hence, will be

able to decrypt the nonce and reply with J(η1), encrypted with Ks1,s2 . The message

exchange occurring between s1 and s2 in Step 2 is

s1 → s2 : {η1}Ks1,s2
s1 → s2 : {J(η1)}Ks1,s2

.

Note that we require that the claimant node replies to the challenge η1 with J(η1)

rather than the nonce itself in order to prevent an adversary from replaying the chal-

lenge message as a valid response.

In figure 4.4(c), the threshold value is set to th = 3. Node s1 establishes a pairwise

key with all its neighbors that have at least three fractional keys in common. Note

that s1 does not share sufficient fractional keys with s6 and s7 in order to establish a

pairwise key. Hence, even in the presence of a wormhole link between s1 and s6 or s7,

non-neighboring nodes will not be able to establish a pairwise key.

Step 3: After pairwise keys have been established with one-hop neighbors, node si ran-

domly generates an LBK Ksi and unicasts it to every neighbor, encrypted with the

pairwise key Ksi,sj . Node si stores its LBK Ksi, used for encrypting its own mes-

sages, and also stores the LBKs of all its one-hop neighbors that it shares sufficient
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Figure 4.5: (a) Nodes s1, s2 are within communication range (l ≤ r). All guards located in
the area Ac are heard to both nodes s1, s2. (b) A lower bound on Plocal for varying guard
densities ρg and for a node density ρs = 0.5, when R

r = 10.

fractional keys with, in order to decrypt their broadcast messages. We assume that

Ksi 6= Ksj , ∀si 6= sj . In figure 4.4(d), s1 has established a LBK Ks1 with its neighbors

s1 ∼ s5 and uses it to encrypt the transmission of message m.

Before we present our decentralized local broadcast key establishment scheme in algo-

rithmic form, we analyze the critical problem of allowing nodes to determine the threshold

value for establishing pairwise keys with their immediate neighbors.

4.3.3 Setting the threshold for key establishment

In this section, we examine how the value of the threshold th affects the probability of

sharing more than th fractional keys with immediate and non-immediate neighbors. We then

propose mechanisms to increase the connectivity with one-hop neighbors while decreasing

the probability of non-immediate neighbors to share more than th fractional keys.
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Key establishment with immediate neighbors

Let the distance between two nodes s1, s2 be l = ‖s1−s2‖, as in figure 4.5(a). Any guard gi

that lies within the shaded area Ac is heard by both nodes s1, s2 and hence, its fractional key

FKi is received by both s1, s2. From figure 4.5(a), we can compute the area Ac as follows

φ = cos−1 l

2R
, Ac = 2R2φ−Rl sinφ. (4.9)

If GHAc denotes the set of guards located within Ac, the probability Pkey for two nodes

that are at a distance l ≤ r to establish a pairwise key is equal to the probability that more

than th guards are located in Ac,

Pkey = P (|GHAc | ≥ th) = 1− P (|GHAc | < th) = 1−
th−1∑

i=0

[
(ρgAc)

i

i!
e−ρgAc

]
. (4.10)

From (4.10), we compute the probability Plocal for a node to be connected to all the nodes

within its neighborhood. Let P (Ns = i) denote the probability for a node s to have i

neighbors. Since neighbors’ nodes can be located at any distance 0 ≤ l ≤ r from node s,

we can derive a lower bound on Plocal by considering the worst case where every neighbor

is located at the circle of radius r centered at the node s. Assuming that every one-hop

neighbor is at the boundary of the communication range yields the worst case for Plocal,

since Ac attains its minimum value for l = r, and, hence, the probability of finding th guards

in Ac becomes the smallest. Plocal is expressed as

Plocal ≥
|S|∑

i=0

P (Ns = i, |GHAc | ≥ th,∀i) (4.11)

≥
|S|∑

i=0

P (Ns = i)P (|GHAc | ≥ th,∀i) (4.12)

≥
|S|∑

i=0

P (Ns = i)P i
key (4.13)

≥
|S|∑

i=0

((
ρsπr2

)i

i!
e−ρsπr2

)
1−

th−1∑

j=0

(
(ρgAc)

j

j!
e−ρgAc

)


i

, (4.14)

with Ac given by (4.9) for l = r. In the computation of Plocal, (4.12) follows from the fact

that nodes are independently deployed from guards, (4.13) follows from the randomness in
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the guard deployment (finding GHAc guards in an area Ac is independent on where Ac is

located), and (4.14) follows from (4.10).

Given parameters r, ρs, we can select the threshold th and the parameters R, ρg, so

that the probability Plocal is close to unity (i.e., nodes establish pairwise keys with almost

all their neighbors). In figure 4.5(b), we show the lower bound on Plocal vs. th, for varying

guard densities ρg and for a node density ρs = 0.5, when R
r = 10.

From (4.14), we can select the threshold th such that Plocal is very close to unity. For

example, for ρg = 0.03, setting the threshold to th ≤ 15 will allow one-hop neighbors to

share more than th fractional keys with a probability very close to unity. However, if we

choose a low threshold value, neighbors more than one-hop away will also have in common

more than th fractional keys. Hence, an adversary can establish a wormhole link between

nodes more than one-hop away. In the next section, we examine the statistics on establishing

keys between non-immediate neighbors.

Avoiding key establishment with non-immediate neighbors

To satisfy the definition of LBKs, nodes more than one hop away must not have more

than th fractional keys in common. In figure 4.6(a), we show the probability Pkey(l) of two

nodes to share more than th fractional keys depending on the distance l between them, as

expressed by (4.10).

From figure 4.6(a), we observe that the value of the node-to-node communication range r

is critical for the selection of the threshold. For example, if we set r = 10m and th = 5, two

nodes within communication range (l < 10m) establish a pairwise key with a probability

almost unity. Two-hop neighbors located at a distance l = 2r from a node s have a Pkey =

0.43 to share more than th = 5 fractional keys. Such a probability value is prohibitively

high. In order to reduce the Pkey for non-immediate neighbors, we examine the reasons why

Pkey is high for distances l > r and propose remedies to avoid key establishment between

non-immediate neighbors.

Problem 1: In our analysis in Section 4.3.3, we have considered the threshold to be

a global variable, the same for all deployed nodes. However, in a random deployment, not
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Figure 4.6: (a) Pkey for varying threshold values when ρg = 0.03. (b) Nodes s1, s2 hear
guards g1 ∼ g3. An adversary replays the fractional key Id broadcast information of s1 at
point s2, and the fractional key Id broadcast information of s2 at point s1. If the threshold
is set to th = 3, sensors s1 and s2 are led to believe they are one hop away, establish a
pairwise key and communicate through the wormhole link.

all nodes hear the same number of guards. Hence, for some nodes, the threshold value is

too high to allow them to connect to their immediate neighbors, while for other nodes, the

threshold value is too low to isolate non-immediate neighbors. To avoid the shortcomings of

selecting a global threshold for all nodes, we propose each node to select its own threshold,

based on number of guards heard at each node.

Problem 2: The use of omnidirectional antennas can increase the number of non-

immediate neighbors vulnerable to the wormhole attack under the following scenario. Con-

sider figure 4.6(b), where nodes s1, s2 are not within communication range. Due to the

omnidirectionality of the guard antennas, both s1, s2 are able to hear the same set of guards

{g1, g2, g3} and, hence, acquire the same set of fractional keys {FK1, FK2, FK3}. In Step

2 of our decentralized LBK establishment scheme, the two nodes broadcast the Ids of the

fractional keys that they hold, indicating the guards that they hear. Since the two nodes are

not within communication range, in the absence of a wormhole they would not be able to

establish an LBK. However, consider an adversary mounting wormhole attack that records

the fractional key Ids broadcast information of s1, tunnels it via the wormhole link to s2,
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and replays it. Similarly, the adversary records the fractional key Id broadcast of s2, tunnels

it at s1 and replays it. If the threshold for establishing communication is set to th = 3,

s1, s2 will establish a pairwise key Ks1,s2 , assuming that they are one hop away.

To account for the lack of direction in the distribution of the fractional keys at the

expense of increased hardware complexity, guards may be equipped with M directional

antennas of beamwidth 2π
M each. Guards transmit different fractional keys at each antenna

sector and, hence, two nodes need to hear the same antenna sectors of the same guards in

order to acquire common fractional keys.

Local threshold computation

In the previous section, we argued that setting the threshold globally can prohibit some

immediate neighbors from establishing pairwise keys and allow some non-immediate neigh-

bors to share more than th fractional keys. Hence, it is preferable that each node locally

computes the threshold th based on the number of guards that it hears.

Assume that a sensor s1 can hear |GHs1 | guards and wants to establish a pairwise key

with node s2 located at distance l ≤ r from s1, as in figure 4.5(a). The probability that

s1, s2 hear th common guards, given that |GHs1 | guards are heard by s1, is equivalent to

the probability that th guards are located within Ac, given that |GHs1 | of them are located

within the area inside the circle of radius R centered at s1. Due to the random guard

deployment, if GHs1 guards are located within a specific region, those guards are uniformly

distributed [29]. Hence, if a single guard is deployed within the communication area of a

node πR2, the probability for that guard to be within Ac is pg = Ac
πR2 . Since we assume

random guard deployment, the event of a guard gi being within Ac is independent of the

event of guard gj being within Ac. Hence, the probability that more than th guards are

deployed within Ac, given that a total of |GHs1 | are deployed within πR2 is,

Pkey = P (|GHAc | ≥ th| |GHs1 | = k)

=
k−th∑

i=0

(
k

th + i

)
pth+i

g (1− pg)k−th−i

=
k−th∑

i=0

(
k

th + i

)
Ac

πR2

th+i

(1− Ac

πR2
)k−th−i. (4.15)
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Figure 4.7: (a) Pkey for a varying threshold value equal to th = |GHs1 | − 3. (b) Use of
directional antennas for the distribution of fractional keys.

Note that the binomial in (4.15) cannot be approximated by a Poisson distribution since k

may not be much bigger than one and Ac has a comparable size to πR2. In figure 4.7(a), we

show the Pkey, for different values of guards heard |GHs1 | and different distances between

s1, s2, when the threshold is set to th = |GHs1 | − 3. The selection of th = |GHs| − 3 serves

as an example to illustrate the idea of the locally computed threshold. In Section 3.8, we

will provide extensive simulation studies for the selection of th.

Using (4.15), each node si can determine the threshold thsi individually depending on

the number of guards that it hears. For example, if node si has a threshold of thsi and

node sj has announced that it holds at least thsi fractional keys known to si, node si will

challenge sj with a nonce ηi and sj will reply with J(ηi) encrypted with Ksi,sj . However,

node sj may hear a different number of guards and, hence, decide upon a different threshold

value thsj . In such a case, sj will repeat the pairwise key establishment process in order to

agree on an additional pairwise key with node si. It is also possible that min
(
thsi , thsj

) ≤
|⋂(IDsi , IDsj )| < max

(
thsj , thsj

)
and, hence, only unidirectional secure communication

can be established between two one-hop neighbors. To establish only bi-directional links

between one-hop neighbors, we can modify the pairwise key establishment condition by

selecting a common threshold value thsi,sj at both engaging nodes. To achieve maximum
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network connectivity, nodes, si, sj can set the common threshold value thsi,sj equal to the

minimum of the two individual thresholds, thsi , thsj . However, in such a case, the probability

of establishing a wormhole with a non-immediate neighbor grows larger for the node with

the higher threshold. To tradeoff connectivity for protection against wormholes, nodes si, sj

can set the threshold value thsi,sj equal to the maximum of the two individual thresholds,

thsi , thsj . Two nodes si, sj establish a pairwise key according to the following rule

Ksi,sj =





H (FK1, FK2, . . . FKm) , if m = |⋂ (
IDsi , IDsj

) | ≥ max{thsi , thsj}
∅, otherwise.

(4.16)

The algorithm in figure 4.8 summarizes our decentralized local broadcast key establishment

scheme. In the local threshold computation, each node individually determines its own

threshold (a parameter directly related to the success in preventing wormholes) based on

the number of guards it hears. However, during the wormhole attack, a node may hear

a much higher number of guards compared to its neighbors. In such a case, the node

under attack can be misled to compute a threshold value that cannot be met by any of its

one-hop neighbors and, hence, be disconnected from the rest of the network. To address

this problem, using our method, the node first detects if it is under wormhole attack. If a

wormhole is detected, the node uses a mechanism called Closest Guard Algorithm (CGA)

described in Section 4.4.3 to separate the one-hop guards from the replayed ones. Once the

one-hop guards have been determined, the node selects the threshold value based on the

guards that are directly heard.

Key establishment using directional antennas.

In figure 4.6(b), we showed how the omnidirectionality of the guards’ antennas allows non-

immediate neighbors to have more than th fractional keys in common. In order to avoid the

distribution of the same fractional keys to nodes located more than one-hop away, guards

may be equipped with directional antennas.

Each guard has M directional antennas with sectors being 2π
M wide. At each sector,

guards transmit different fractional keys. However, guards include the same hash value of

the hash chain to all M messages transmitted at the different antenna sectors. The use of
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Decentralized local broadcast key establishment scheme

U = {Set of guards}, S = {Set of nodes}
U : Broadcast {FKi‖(Xi, Yi)‖Hn−q(PWi)‖q}K0 .
S : Verify H(Hn−q(PWi)) = Hn−q+1(PWi), ∀ gi ∈ GHs.
S : Broadcast IDsi = {Idg1‖Idg2‖ . . . ‖IDgm ‖thsi}K0 , where m = |GHs|.
for all si ∈ S

for all IDsj heard by si

if |⋂(IDsi , IDsj )| ≥ thsi,sj , Generate: Ksi,sj = H(FK1‖FK2‖ . . . ‖FKm)
si: {ηi}Ksi,sj

→ sj sj : {J(ηi)}Ksi,sj
→ si

if J(ηi) valid → Nsi = Nsi ∪ {sj} end if
end if

end for
end for
for all si ∈ S

for all sj ∈ Nsi

Send si : {Ksi}Ksi,sj

end for
end for

Figure 4.8: The decentralized local broadcast key establishment scheme.

the same hash value in all sectors for every periodic transmission of fractional keys will not

allow an attacker to replay a message heard at another antenna sector. If a node s hears

sector j of a guard gi and an attacker replays to s a message transmitted at sector k of gi,

node s will have already received the latest published hash value of the hash chain via the

directly heard sector j and will not authenticate the replay of the sector k.

In figure 4.7(b), we show the same network as in figure 4.6(b) with each guard using

three directional antennas of beamwidth 2π
3 . Although nodes s1, s2 hear the same guards

g1 ∼ g3, since they are located in different directions, they acquire different fractional keys.

Hence, s1, s2 do not share sufficient number of fractional keys for the establishment of a

pairwise key, even if an attacker mounts a wormhole link between s1, s2.

Communication cost of the decentralized key establishment scheme

In this section, we compute the communication cost of the decentralized LBK establishment

scheme in terms of number of messages that are transmitted in the whole network as well as

the number of messages transmitted individually by each node. In Step 1, guards broadcast
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the beacons containing the fractional keys. If U denotes the set of guards deployed in the

network, the cost of Step 1 is equal to |U |, where | · | denotes the cardinality of the set.

In Step 2, every node broadcasts the identities of the guards that it heard. If S denotes

the set of nodes deployed in the network, the number of broadcasts is equal to |S|. Once

the fractional keys have been broadcasted, each node establishes pairwise keys with all their

one-hop neighbors. The challenge response scheme executed for the establishment of the

pairwise keys requires the exchange of two messages with each one-hop neighbor, and every

node has, on average, ρsπr2 neighbors. Hence, the communication cost of the challenge

response scheme is equal to 2|S|ρsπr2.

In Step 3, every node unicasts the LBK to all its one-hop neighbors. The cost of this

step is equal to |S|ρsπr2 messages. Adding the cost of all three steps yields a network-wide

communication cost C for the decentralized key establishment scheme equal to

C = |U |+ |S|+ 3|S|ρsπr2. (4.17)

The communication cost Cg for each guard g is equal to one message per LBK establishment

(guards may periodically broadcast new fractional keys to update the current LBKs or

accommodate changes in the network topology). The communication cost Cs for each node

s is computed as follows: each node broadcasts one message to announce the fractional keys

that it holds. In addition, each node s exchanges one message with each one-hop neighbor

in order to establish a pairwise key when it initiates the key establishment, and one message

when the key establishment is initiated by the one-hop neighbors. Finally, each node s needs

to unicast its LBK to each of its one-hop neighbors, thus the communication cost for each

node is Cs = 3ρsπr2 + 1.

Note that the network-wide communication cost C and the individual node communi-

cation cost have been calculated based on the assumption that two pairwise keys are estab-

lished between one-hop neighbors. If only one key is established according to (4.16), the

network-wide communication cost reduces to C = |U |+ |S|+ 2|S|ρsπr2, and the individual

node communication cost reduces to Cs = 2ρsπr2 + 1.

In the case where the guards are equipped with directional antennas, they transmit

a different fractional key at each antenna sector. Hence, each guard needs to transmit
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Figure 4.9: A wormhole attack scenario. Node s1 hears broadcasts from guard set
GHs1 = {g1, . . . , g5} and node s2 hears broadcast from guard set GHs2 = {g6, . . . , g10},
with GHs1

⋂
GHs2 = ∅. An attacker replays messages from GHs1 in the vicinity of s2 and

messages from GHs2 in the vicinity of s1. Nodes s1, s2 have |GHs1

⋃
GHs2 | > th fractional

keys in common and hence establish pairwise key Ks1,s2 .

Cg = M messages per LBK establishment, where M denotes the number of antenna sectors

at each guard. While the node communication cost Cs does not change, the network-

wide communication for the case of guards equipped with directional antennas becomes

C = M |U |+ |S|+ 2|S|ρsπr2.

4.4 Securing the Broadcast of Fractional Keys

The LBKs prevent wormhole attacks once they have been established. However, we need

to ensure that an adversary does not mount a wormhole attack during the broadcasting

of the fractional keys. In this section, we provide mechanisms to secure the fractional key

distribution from wormholes.

4.4.1 Wormhole attack against the fractional key distribution

We first show how an adversary can successfully operate a wormhole link between two

nodes that are out of communication range by exploiting the fractional key distribution

mechanism. Recalling that R(> r) is the range of the guard, consider figure 4.9, where

an adversary establishes a bi-directional wormhole link between nodes s1, s2, with s1, s2

being several hops away. In step 1 of the decentralized LBK establishment scheme, guards

broadcast their fractional keys. The adversary records all messages heard by s1, s2 and
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replays the messages heard by s1 in the vicinity of node s2, and messages heard by s2 in

the vicinity of s1. After the replay, nodes s1, s2 have a common set of fractional keys of size

|GHs1

⋃
GHs2 |. Independent of the threshold value selected, s1, s2 will share more than th

fractional keys since they hear exactly the same sets of guards.

In step two of the LBK establishment scheme, the nodes s1, s2 will broadcast the Ids

of the fractional keys that they hold. The adversary will forward those messages to both

nodes, and since s1, s2 share more than th fractional keys, they establish a pairwise key

through the wormhole link. Once the pairwise key is established, the two nodes will also

share LBKs and the wormhole link will be in operation.

4.4.2 Detection of the wormhole attack

We now show how a node can detect a wormhole attack during the broadcast of the frac-

tional keys using two properties: The single message per guard/sector property and the

communication range constraint property.

Single message per guard/sector property

Lemma 4.1. Single message per guard/sector property: Reception of multiple copies of an

identical message from the same guard is due to replay or multipath effects.

Proof. Proof of Lemma 4.1 is the same as the proof of Lemma 3.1.

Based on proposition 4.1, we can detect wormhole attacks, in case the origin point of

the attack is close to the nodes under attack so that the attacker records transmissions

from guards that are directly heard to the nodes under attack. Assume that guards use

omnidirectional antennas for the transmission of the fractional keys. If an attacker replays

a transmission of a guard gi that is directly heard to node s, the node can detect the attack

since it will have received the same fractional key through the direct link at an earlier time.

If the guards use directional antennas and the attacker replays messages from guards

directly heard to the node under attack but from a different sector, the attacked node will

detect that it is infeasible to hear two sectors of a single guard. Moreover, the hash values

being identical for all sectors per transmission, the replay will be detected. Since the direct
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signal from gi will reach s earlier than any replay, assuming that the guard transmits in all

sectors simultaneously. In addition, the node will acquire the latest published value of the

hash chain of gi through the direct link. Hence, any replay containing an already published

hash value will not be authenticated. Note that in the case of directional antennas a node

can hear two different sectors if it located at the boundary between two sector regions due

to imperfect sectorization or due to multipath effects. We also treat imperfect sectorization

as a replay attack, and a node accepts the earliest received message as the authentic one.

Proposition 4.1. The detection probability P (SG) due to the single message per guard/sector

property is equal to the probability that at least one guard lies within an area of size Ac and

is given by

P (SG) = 1− e−ρgAc , with Ac = 2R2φ−Rl sinφ, φ = cos−1 l

2R
, (4.18)

with l being the distance between the origin and the destination.

Proof. The proof of Proposition 4.1 is the same as the proof of Proposition 3.1

In figure 3.6(a), we show the detection probability P (SG) vs. the guard density ρg and

the distance ‖s−O‖ between the origin point and the node under attack, normalized over R,

for R
r = 10. We observe that if ‖s−O‖ ≥ 2R, the single message per guard/sector property

cannot be used to detect a wormhole attack since the disks As, Ao do not overlap (Ac = 0).

For distances ‖s − O‖ ≥ 2R, a wormhole attack can be detected using the communication

range constraint property detailed next.

Communication range constraint property

The set of guards GHs heard by a node s has to satisfy the Communication Range constraint

(CR). Given the coordinates of node s, all guards heard should lie within a circle of radius R,

centered at s. Since node s is not aware of its location, it relies on its knowledge of the guard-

to-node communication range R to verify that the set GHs satisfies the communication range

constraint.

Proposition 4.2. Communication Range constraint property (CR): A node s cannot hear

two guards gi, gj ∈ GHs, that are more than 2R apart, (i.e., ‖gi − gj‖ ≤ 2R, ∀i, j, i 6= j).
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Proof. Any guard gi ∈ GHs heard by node s, has to lie within a circle of radius R, centered

at the node s (area As in 3.4(a)), ‖gi − s‖ ≤ R, ∀i ∈ GHs. Hence, there cannot be two

guards within a circle of radius R, that are more than 2R apart.

‖gi − gj‖ = ‖gi − s + s− gj‖ ≤ ‖gi − s‖+ ‖s− gj‖ ≤ R + R = 2R. (4.19)

Recall that guards include their coordinates with every transmission of fractional keys

and, hence, a node s knows the location of all the guards gi ∈ GHs. Using the guards’

coordinates, a node can detect a wormhole attack if the communication range constraint

property is violated. We now compute the probability P (CR) of detecting a wormhole

attack using the communication range constraint property.

Proposition 4.3. A wormhole attack is detected using the communication range constraint

property, with a probability

P (CR) ≥
(
1− e−ρgA∗i

)2
, with A∗i = d

√
R2 − d2 −R2 tan−1

(
d
√

R2 − d2

d2 −R2

)
, (4.20)

and d =
‖s−O‖

2
.

Proof. The proof of Proposition 4.3 is the same as the proof of Proposition 3.2.

Detection probability Pdet of the wormhole attack

We now combine the two detection mechanisms, namely the single message per guard/sector

property and the communication range constraint property, for computing the detection

probability of a wormhole attack during the broadcast of the fractional keys.

Proposition 4.4. The detection probability of a wormhole attack during the broadcast of

fractional keys is lower bounded by Pdet ≥ (1− e−ρgAc) + (1− e−ρLA∗i )2e−ρgAc .

In figure 4.10, we show the lower bound on Pdet vs. the guard density ρg and the

distance ‖s − O‖ normalized over R. For values of ‖s − O‖ > 4R, PCR = 1, and, hence, a
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Figure 4.10: A lower bound on the wormhole detection probability Pdet.

wormhole attack is always detected. From figure 3.6(c), we observe that a wormhole attack

during the distribution of the fractional keys is detected with a probability very close to

unity, independent of where the origin and destination point of the attack are located. The

intuition behind (6.29) is that there is at most (1− Pdet) probability for a specific realization

of the network, to have an origin and destination point where a wormhole attack would be

successful. Even if such realization occurs, the attacker has to acquire full knowledge of the

network topology and, based on the geometry, locate the origin and destination point where

the wormhole link can be established.

4.4.3 Key establishment in the presence of wormholes

Although a wormhole can be detected using the two detection mechanisms, a node under at-

tack cannot distinguish the valid subset of guards from the replayed ones. Once a wormhole

is detected, there needs to be an additional mechanism to identify the set of guards directly

heard to the node, from those replayed. We now describe the Closest Guard Algorithm

(CGA) that resolves the guard ambiguity.
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Closest Guard Algorithm (CGA)

Assume that a node s authenticates a set of guards GH ′
s, but detects that it is under attack.

To determine the valid set of guards (guards within one hop from s), node s executes the

following three-step algorithm:

Step 1: The node s broadcasts a message containing a Closest Guard Reply Request

CGR REQ and a nonce ηs encrypted with the globally shared key K0, and its Ids

concatenated at the end of the encrypted part of the message. The message format

of the request transmitted by sensor s is as follows

{CGR REQ‖ηs}K0‖Ids.

Step 2: Every guard hearing the message broadcasted from s replies with a message con-

taining J(ηs), where J(x) is a computationally efficient function, such as J(x) = x−1,

its coordinates, the next hash value of its chain that has not been published, and its

Idg. The message is encrypted using the pairwise key Ks,gi , shared between the sensor

s and each guard gi. The message format broadcasted by each guard gi hearing the

sensor’s request is as follows

{
(Xi, Yi)‖J(ηs)‖Hn−k(PWi)

}
Ks,gi

‖Idgi .

The node identifies the guard g′i, whose reply arrives first as the closest guard to s.

Step 3: Using the communication range constraint property, node s identifies the valid

set of guards GHs as all the guards that are not more than 2R away6 from g′i and uses

the fractional keys received from GHs to establish pairwise keys and LBKs with its

immediate neighbors. Figure 4.11 summarizes the steps of the CGA algorithm. Note

that in order for a node s to identify its closest guard, we assume that no packet loss

occurs during the execution of the CGA.

6In the case where the guards are equipped with directional antennas, node s identifies the valid set of
guards GHs as all the guards whose sectors overlap with the sector of the closest guard g′i.
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Closest Guard Algorithm (CGA)

GH ′
s : Guards heard by node s

s : broadcast {CGR REQ‖ηs}K0‖Ids

forall gi � ‖gi − s‖ ≤ r(Dg)
1
γ

gi : broadcast {(Xi, Yi)‖J(ηs)‖Hn−k(PWi)}Ks,gi
‖Idgi

endfor
s : identify g′i ∈ GH ′

s that replies first with the correct J(ηs)
s : set GHs : {gi ∈ GH ′

s � ‖g′i − gi‖ ≤ 2R}

Figure 4.11: The pseudo-code for the Closest Guard Algorithm (CGA). A node under a
wormhole attack uses the CGA to separate the valid set of guards (one-hop) from the
replayed ones.

An implementation issue with the CGA algorithm involves collisions of multiple CGA REQ

messages at the guards and collisions of multiple replies at the nodes. Known techniques

for multiple access of the same medium, such as CSMA protocols [7] and/or CDMA mode

of communication [95] can be employed to enable the use of the same medium by multiple

users. To mitigate the effect of collisions at the guards, nodes may randomize the time of

broadcasting the CGA REQ messages. Note that just a few nodes that are under attack

need to execute the CGA algorithm, unless the adversary performs a large scale wormhole

attack by deploying multiple wormhole links to attack many nodes at once.

For the case of collisions of replies originating from guards occurring at the node side,

note that although a node may hear several guards, it can only bi-directionally communicate

with a small fraction of the guards it hears, since regular nodes have a much smaller commu-

nication range than guards. In fact, in our deployment, bi-directional communication with

only one guard is sufficient to resolve the ambiguity between the valid set of guards and the

replayed one. Hence, not many guards (if more than one) will reply to the node’s request.

Moreover, in order to provide a valid response from the replayed set of one-hop guards,

an adversary needs to (a) record the CGA REQ transmitted by the node, (b) tunnel it

via the wormhole link at the origin point of the attack, (c) replay it at the origin point of

the attack, (d) record the guards reply, (e) tunnel the reply via the wormhole link to the

destination point of the attack, and (f) replay the guards’ reply at the destination point.
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However, any replies from the replayed guards will arrive at the node much later than the

reply originating from the one-hop guards7. Hence, the replies provided by the attacker will

not collide with the one provided by the closest guard.

In the case where no additional mechanism exists to resolve collisions, the node can

engage in a challenge-response protocol with each guard within the set GH ′
s, such as the

one in [47]. In order to compare the distances between different guards, the node needs to

be equipped with an accurate timer, so that it can measure the round-trip-time (RTT) in

the challenge-response exchange. Using the RTT from the challenge-response for different

guards, the node can identify the closest guard and, hence, the valid set of guards. In our

present scheme, nodes are not required to be equipped with such accurate timers (that was

the reason why the CGA was proposed as opposed to a method that uses timers). However,

if nodes can be equipped with timers, the node can also reject any reply that has an RTT

longer than 2 r(Dg)
1
γ

c + δ, where r(Dg)
1
γ denotes the node-to-guard communication range, c

denotes the speed of light, and δ denotes an upper bound on the guard processing delay.

Hence, the node can verify that any reply with a RTT smaller than 2r(Dg)
1
γ

c + δ comes from

a guard within its range and can reject those replies taking more than 2r(Dg)
1
γ

c + δ.

4.5 Performance Evaluation

In this section, we provide simulation studies that evaluate to what extent our method

prevents the wormhole attack. For varying network parameters, we evaluate the percentage

of one-hop neighbors that are able to establish a pairwise key and, hence, a local broadcast

key, as a function of the threshold th. We also evaluate the percentage of non-immediate

neighbors that have more than th fractional keys in common, as a function of th. Finally, we

show that in the case where it is possible to establish a wormhole link, that link is no longer

than two hops, and based on our simulation results, we provide the rationale to determine

the appropriate threshold value to establish LBK for each network setup.

7Note that we have assumed that the adversary does not jam the communication medium.
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4.5.1 Simulation setup

We generated random network topologies confined in a square area of size A=10,000m2.

For each network topology we randomly placed 5,000 nodes within A, equivalent to a node

density of ρs = 0.5 nodes/m2 We then randomly placed the guards with density ρg, varying

from 0.005 to 0.05 guards/m2. To ensure statistical validity, we repeated each experiment

for 1,000 networks and averaged the results.

Since the level of protection against wormholes depends upon the guard density ρg, we

want to maintain a constant density across the whole network deployment area. However, if

we deploy guards in the same area as the nodes of the network, nodes located at the border

of the deployment area will experience a smaller guard density than nodes in the center of

the area. To eliminate the border effects, we need to over-deploy guards at the borders of

the borders of the deployment area or deploy guards at a slightly larger area than the area

of the nodes.

To illustrate how deploying guards at a larger area can address the border effects issue,

assume that nodes are to be deployed in a square of size A= AxA. In order to provide the

same level of security at the borders as in the inside of the deployment area, we randomly

deploy guards within a square of size (A + R)x(A + R), where R is the guard-to-node

communication range. The number of guards that need to be over-deployed in order to

eliminate the border effects is equal to Gover = ρg(R2+2AR). In our performance evaluation,

we simulated the constant deployment density by deploying guards in the area (A+R)x(A+

R) and nodes in the area AxA.

In addition, as described in Section 4.3.3, we allowed each node s to locally compute

the threshold based on the number of guards |GHs| that it hears. Hence, depending on

|GHs|, each node selects a different threshold value equal to th = |GHs|−c, where c is some

constant value. Our simulation graphs provide a mechanism to choose the appropriate value

for the constant c, in order to maximize the probability of key establishment with one-hop

neighbors, while keeping the probability of sharing more than the threshold keys with non-

immediate neighbors below a desired value. In order to refer all results to a common axis,

we use |GHs| − th instead of th.
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Figure 4.12: Percentage of immediate neighbors that share more than th fractional keys for
rs = 0.5 nodes/m2, A= 10, 000m2 when, (a) different antennas are used at the guards and
rg = 0.01 guards/m2, (b) different antennas are used at the guards and rg = 0.04 guards
m2.

4.5.2 Key establishment with one-hop neighbors

In our first experiment, we evaluated the percentage of one-hop (immediate) neighbors

pimmed that each node is able to establish a pairwise key with, as a function of the threshold

th, the guard density ρg and the number of antenna sectors M used by the guards. In figure

4.12(a), we present pimmed vs. |GHs| − th, for a guard density ρg = 0.01 guards/m2 and for

different antennas sectors. We observe that for a threshold value th ≤ |GHs| − 5, the nodes

establish a pairwise key with almost all their neighbors when omnidirectional or sectored

antennas with M = 3, 4, 6, 8 sectors are used (pimmed > 0.99). For M = 16 we achieve8 a

pimmed > 0.99 for threshold values smaller than th ≤ |GHs| − 7.

Note that the use of directional antennas does not significantly affect the threshold value

for which nodes are able to establish pairwise keys with their immediate neighbors. This fact

8In today’s technology, it may seem excessive to assume that guard nodes have 16 antennas each. However,
as the frequency used for communication increases, the size of the antennas will decrease and, hence, in
the near future it will be feasible to install more directional antennas in a single guard. Furthermore, the
use of multiple-array patched antennas (antennas integrated on a chip) has enabled the implementation
of directional antennas of very small factor. The goal of simulating such a high number of antennas at the
guards is to explore the tradeoff between hardware complexity and level of security.
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Figure 4.13: Percentage of immediate neighbors that share more than th fractional keys
for rs = 0.5 nodes/m2, A= 10, 000m2 when, (a) omnidirectional antennas are used at the
guards and rg varies, (b) 4-sector directional antennas are used at the guards and rg varies.

is an indication that immediate neighbors hear the same antenna sectors and, hence, acquire

the same fractional keys. However, when directional antennas are used, less neighbors more

than one-hop away will share more than th fractional keys as we will show in our second

experiment.

In figure 4.12(b), we present pimmed vs. |GHs| − th for a higher guard density ρg = 0.04

guards/m2. We observe that for ρg = 0.04 guards/m2 we need a threshold value th ≤
|GHs| − 13 to allow all one-hop neighbors to establish pairwise keys. Since for ρg = 0.04

guards/m2 each node hears almost four times more guards than for ρg = 0.01 guards/m2,

more guards are likely to be heard only to a fraction of the local neighborhood rather

than the whole. Hence, we need a threshold value significantly lower than GHs to allow

all immediate neighbors to share a sufficient number of fractional keys for establishing

a pairwise key. To further reinforce this fact, in figures 4.13(a) and 4.13(b) we present

pimmed vs. |GHs| − th, for varying guard densities ρg, and for omnidirectional and 4-sector

directional antennas, respectively. We observe that from ρg = 0.005 guards/m2 to ρg = 0.05

guards m2 we need to increase the |GHs| − th by 10 in order to achieve the same pimmed.

In figures 4.14(a) and 4.14(b), we present pimmed vs. |GHs| − th for varying guard-to-
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Figure 4.14: Percentage of immediate neighbors that share more than th fractional keys for
rs = 0.5, A= 10, 000 when, (a) Omnidirectional antennas are used at the guards, rg = 0.03,
and R varies, (b) 8-sector antennas are used at the guards, rg = 0.03, and R varies.

node communication ranges R, for omnidirectional and eight-sector directional antennas,

respectively. We observe that as the communication range R increases we need a higher

difference |GHs| − th in order to achieve the same pimmed. This is due to the fact that as R

increases, each node is able to hear more guards (same effect as increasing the guard density

ρg). Hence, out of the bigger set of possible guards heard, more guards are heard only to a

fraction of the local neighborhood, and a lower threshold value relative to |GHs| is needed

to allow all immediate neighbors to share more than th fractional keys.

4.5.3 Isolation of non-immediate neighbors

In order to prevent wormhole attacks, we must ensure that non-immediate neighbors remain

isolated by not being able to establish a pairwise key. In our second experiment, we evaluated

the percentage of non-immediate neighbors pnon−im that share more than th fractional keys

as a function of th, for different guard densities ρg and number of antenna sectors M. For

each node, we took into account in the percentage calculation only those neighbors that

heard at least one common guard with the node under consideration.

In figure 4.15(a), we show pnon−im vs. |GHs| − th in a logarithmic scale for a guard
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Figure 4.15: Percentage of non-immediate neighbors that share more than th fractional keys
for rs = 0.5 nodes/m2, A= 10, 000m2 when (a) different antennas are used at the guards
and rg = 0.01 guards/m2, (b) different antennas are used at the guards and rg = 0.04
guards m2.

density of ρg = 0.01 guards/m2. From figure 4.15(a), we observe that the use of directional

antennas can drop the pnon−im up to half compared to the omnidirectional antennas case,

at the expense of hardware complexity at the guards. For example, for a threshold value

th = |GHs| − 3, pnon−im =0.0358, 0.0280, 0.0252, 0.0236, 0.0197, 0.0118 for M = 1, 3, 4,

6, 8, 16 antenna sectors, respectively. In figure 4.15(b), we present pnon−im vs. |GHs| − th

for a guard density ρg = 0.04 guards/m2. We observe that for a higher guard density we

are able to further limit the number of non-immediate neighbors that share more than th

fractional keys. For example, when th = |GHs|− 10, pnon−im =0.0117, 0.091, 0.089, 0.0079,

0.0068, 0.004 for M =1, 3, 4, 6, 8, 16 antenna sectors, respectively.

In figures 4.16(a), (b) we present pnon−im vs. |GHs|− th for varying guard densities and

show how we achieve higher isolation of non-immediate neighbors with the increase of ρg.

In figure 4.17(a), we present pnon−im for different guard-to-node communication ranges R

and show how we achieve higher isolation of non-immediate neighbors with the increase of

R. As expected, a higher guard density ρg and a higher R achieve better non-immediate

neighbor isolation for all values of the threshold th, since for both cases the set of guards
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Figure 4.16: Percentage of non-immediate neighbors that share more than th fractional keys
for rs = 0.5, A= 10, 000 when, (a) Omnidirectional antennas are used at the guards and rg

varies, (b) 16-sector directional antennas are used at the guards and rg varies.

heard at each node becomes bigger and more guards are only heard to a fraction of the

non-immediate neighbors.

4.5.4 Length of a potential wormhole link

Our simulation results confirmed that by choosing appropriate network parameters, namely

guard-to-node communication range R, guard density ρg, and number of directional anten-

nas M, we can eliminate wormhole links with a very high probability. An adversary would

have to gain a global view of the network topology by knowing all the locations of the nodes

and the guards in order to identify, if any, a potential origin and destination point to launch

its attack. In this section, we show that even in the case where that adversary does identify

two points to launch his attack, the length of the wormhole link established is not longer

than two hops. In fact, any non-immediate neighbors that share more than th fractional

keys are located just outside the perimeter that defines their node-to-node communication

range r.

In figure 4.17(b), we show the average distance normalized over r, between non-immediate

neighbors that have in common more than th fractional keys. We observe that for thresh-
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Figure 4.17: Percentage of non-immediate neighbors that share more than th fractional keys
for rs = 0.5, A= 10, 000 when, (a) 16-sector directional antennas are used at the guards,
rg = 0.03, and R varies. (b) Average distance in number of hops between non-immediate
neighbors that share more than th fractional keys.

old values lower than th ≤ |GHs| − 10, all non-immediate neighbors that share sufficient

fractional keys are no more than two hops away, regardless of the number of directional an-

tennas used at the guards. As the threshold increases towards its maximum value |GHs|, the

length of any potential wormhole link becomes smaller. For example, by examining figures

4.15(b) and 4.17(b), for 16-sector directional antennas and th = |GHs| − 5, an attacker has

a pnon−im = 0.0004 probability to establish a wormhole link between two non-immediate

neighbors and that the link is 1.05r long.

The worst case result of our approach allows the establishment of two-hop wormhole

links with a very small probability. Those wormhole links can be a disruption for the nodes

around the destination point. However, the impact of such wormholes is localized in the

two-hop neighborhood around the destination point of the wormhole attack and does not

affect the whole network. To illustrate this, consider a wormhole attack against a distance

vector-based routing protocol as shown in figure 4.1(a) of Section 4.1. If a wormhole link

is established between nodes s3 and s4, no traffic will be affected except for the messages

directed from s3 to s4. On the other hand, if a wormhole link is established between nodes s6
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and s9, all traffic that is passing through the vertex cut between s6 and s9 will be controlled

by the attacker. While in our simple example the minimum cut between nodes s1 ∼ s7 and

s9 ∼ s13 consists of only one edge, in real network deployment scenarios the minimum cut

is expected to have a much bigger size, due to the high network density and size9.

Another possible effect of a short wormhole is to disrupt the communication of certain

key nodes of the network. As previously noted in the paper, a two-hop wormhole can force

a single node to route through the wormhole link and give the attacker the advantage to

control the traffic flow from/to that node. Our scheme does not prevent this type of attack.

However, we anticipate that the operation of ad hoc networks that are envisioned to operate

in a decentralized manner will not be dependent upon the existence of a single or a small

number of “key nodes” that can be easily targeted by an attacker. Instead, the network

operation will depend on the cooperation principle of an abundance of densely deployed

devices with similar capabilities. If the network operation relies on the existence of few key

nodes, the adversary can significantly disrupt the network by launching a variety of attacks,

such as DoS attacks, since a key node is a single point of failure.

Finally, as an example, short wormholes are not a major network disruption in majority-

based event-driven applications such as the one described in the figure 4.2 of Section 4.1.

Revisiting the example of temperature monitoring, a clusterhead triggers an alarm if the

majority of one-hop neighbors reports a temperature measurement greater than a threshold.

In the case of a short wormhole, one can anticipate that nodes located within a two-hop range

from the clusterhead will not have significantly different temperature readings compared to

the nodes within the one-hop range. Furthermore, the number of nodes located within the

ring between the circles of radius r and 1.05r centered at the clusterhead is significantly

smaller compared to the number of nodes located within the disk of radius r centered at

the clusterhead ([ρsπ(1.05r2 − r2)] = 0.0625ρsπr2) and, hence, even if the measurements of

the two-hop nodes are greater than the threshold, they cannot overcome the majority of the

measurements originating from nodes within the communication range r. As an example,

9Having a minimum cut of very few edges leaves the network vulnerable to many types of attacks such as
DoS attacks, and node capture attacks, since it allows the adversary to concentrate its attack on a very
small part of the network.
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if r = 10m and ρs = 0.05 nodes/m2, then there are 15.7 nodes on average within one hop

from the clusterhead, while only 1.6 nodes on average exist between r and 1.05r from the

clusterhead.

4.5.5 Determining the threshold value

For different system parameters, combining the plots for immediate and non-immediate

neighbors, we can determine what is the appropriate threshold value to achieve both isola-

tion of non-immediate neighbors, and allow one-hop neighbors to establish pairwise keys.

For example, when ρg = 0.01 guards/m2, from figures 4.12(a) and 4.15(a), a threshold of

th = |GHs| − 4 isolates 97.91% of the non-immediate neighbors, while allowing 93.13%

of one-hop neighbors to establish pairwise keys, when M = 16. From figures 4.12(b) and

4.15(b), a threshold of th = |GHs| − 14 isolates 99.996% of the non-immediate neighbors,

while allowing 98.64% of the immediate neighbors to establish pairwise keys for M = 16.

Depending on the hardware complexity constraints at the guards (transmission power

and number of directional antennas) and the security requirements, we can select the ap-

propriate threshold value th to achieve the maximum connectivity to immediate neighbors.

For example, if due to hardware complexity constraints only omnidirectional antennas can

be used and the required non-immediate neighbor isolation is above 99%, one can achieve a

pimmed = 0.64 for ρg = 0.01 when th = |GHs| − 2 (see figures 4.12(a) and 4.15(a)). By in-

creasing the guard density to ρg = 0.04 guards/m2 for the same constraints, we can achieve

a Pimmed = 0.90 (see figures 4.12(b) and 4.15(b)). Hence, for any hardware constraint and

security requirement, we can select the threshold value th and the network parameters, ρg,

R, so that we maximize pimmed, while keeping pnon−im below a specific value.

4.5.6 Re-evaluating the system behavior under irregular radio pattern

In our simulation study up to Section 4.5.5 we have considered an idealized model for the

communication range of both the guards and the nodes of the network. Every guard has

the same communication range R and every node has the same communication range r. In

this section, we study how the security parameters, namely the probability of establishing a
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pairwise key with a one-hop neighbor pimmed, the probability of sharing more than th frac-

tional keys with a non-immediate neighbor pnon−im, and the length of a potential wormhole

link vary, when the communication range R varies at each direction.

To simulate the variation of the communication range of each guard, we considered three

different experiments. In the first experiment, each guard is equipped with an omnidirec-

tional antenna, and for each possible direction it has a communication range R′ that is ran-

domly selected between the values of [(1−f)R, (1+f)R], where f denotes the fraction of vari-

ation of the communication range10. We assigned to f the values f : {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
During this experiment, nodes could directly communicate with guards outside the nom-

inal communication range R, on average, every guard heard the same number of guards

|GHs| as in the case where the communication range R did not vary. Hence, the probability

of establishing a pairwise key with a one-hop neighbor pimmed, the probability of sharing

more than th fractional keys with a non-immediate neighbor pnon−im, and the length of a

potential wormhole link did not show any variation.

In the second experiment, we biased the communication range of each guard to have

smaller values than the nominal communication range R. Specifically, we assigned to each

guard a communication range value randomly selected between the values of [(1− f)R, R].

Hence, each node would hear, on average, a smaller number of guards compared to the case

where the guard communication range was equal to R for all guards. In figure 4.18(a), we

show the pimmed vs. the |GHs| − th for varying values of f. We observe that the probability

of establishing a pairwise key with the one-hop neighbor does not vary significantly with

the variation of R. This is due to the fact that the threshold is locally decided at each node

and ,hence, the parameter that affects the Pimmed is the threshold relative to |GHs| and not

the absolute value of GHs. Furthermore, as we observe in figure 4.17(a), varying the value

of R does not have a significant impact on pimmed.

In figure 4.18(b), we show the probability for two non-immediate neighbors to share more

fractional keys than the threshold, vs. |GHs|−th for varying values of f. We observe that as

f increases, the curves for the Pnon−im are shifted to the left of the graph. This is essentially

10A similar radio model was used for the evaluating the performance of the localization scheme in [44].
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Figure 4.18: Network parameter values: rs = 0.5 nodes/m2, ρg = 0.04 guards/m2, A=
10, 000m2. (a) Percentage of immediate neighbors that share more than th fractional keys
when R′ ∈ [(1− f)R, R]. (b) Percentage of non-immediate neighbors that share more than
th fractional keys when R′ ∈ [(1− f)R, R].

the same result as if we were decreasing the density of the guards (i.e., each node would

hear a smaller number of guards (see figure 4.16(a))). In figure 4.19(a), we show the average

distance normalized over r between non-immediate neighbors that have in common more

than th fractional keys. We observe that for threshold values lower than th ≤ |GHs| − 10,

all non-immediate neighbors that share sufficient fractional keys are no more than two hops

away, for any value of the fraction f. We also note that when the communication range of

the guards is smaller than the nominal range R, the average wormhole length increases (the

curves of the wormhole length are shifted to the left). This is due to the fact that as the

fraction f increases, each node hears, on average, a smaller number of guards. Hence, it is

more probable that two nodes not within communication range have in common a smaller

number of fractional keys.

In the third experiment, we biased the communication range of each guard to have higher

values than the nominal communication range R. Specifically, we assigned to each guard a

communication range value randomly selected between the values of [R, (1 + f)R]. Hence,

each node would hear, on average, a higher number of guards compared to the case where
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Figure 4.19: Network parameter values: rs = 0.5 nodes/m2, ρg = 0.04 guards/m2, A=
10, 000m2. (a) Average distance in number of hops between non-immediate neighbors that
share more than th fractional keys when R′ ∈ [(1 − f)R,R]. (b) Percentage of immediate
neighbors that share more than th fractional keys when R′ ∈ [R, (1 + f)R].

the guard communication range was equal to R for all guards. In figure 4.19(b), we show

the Pimmed vs. the |GHs|− th for varying values of f. Again, the probability of establishing

a pairwise key with the one-hop neighbor does not vary significantly with the variation of

R. This result is consistent with the graph of figure 4.13(a), where the variation of R does

not have a significant impact on Pimmed.

In figure 4.20(a), we show the probability for two non-immediate neighbors to share more

fractional keys than the threshold vs. |GHs|−th for varying values of f. We observe that as f

increases, the curves for the Pnon−im are shifted to the right of the graph. This is essentially

the same result as if we were increasing the density of the guards, (i.e., each node would

hear a higher number of guards (see figure 4.16(a))). In figure 4.20(b), we show the average

distance normalized over r between non-immediate neighbors that have in common more

than th fractional keys. We observe that for threshold values lower than th ≤ |GHs| − 10,

all non-immediate neighbors that share sufficient fractional keys are no more than two

hops away, for any value of the fraction f. We also note that when the communication

range variation is biased towards a higher value than the nominal communication range

R, the average wormhole length decreases (the curves of the wormhole length are shifted
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Figure 4.20: Network parameter values: rs = 0.5 nodes/m2, ρg = 0.04 guards/m2,
A= 10, 000m2. (a) Percentage of non-immediate neighbors that share more than th frac-
tional keys when R′ ∈ [R, (1 + f)R]. (b) Average distance in number of hops between
non-immediate neighbors that share more than th fractional keys when R′ ∈ [R, (1 + f)R].

to the left). This is due to the fact that as the fraction f increases, each node hears, on

average, a higher number of guards. Hence, it is less probable that two nodes not within

communication range have in common a higher number of fractional keys.

As a conclusion, based on our simulation results, we showed that our system can adapt

to the variation of the communication range at the guards, since the threshold value is

decided based on the number of guards heard at each node |GHs|. While the variation of

the communication range R affects the absolute value of GHs, each node locally adapts its

threshold to account for the variation.

4.6 Related Work

4.6.1 Previously proposed mechanisms for preventing the wormhole attack.

The wormhole attack in wireless ad-hoc networks was first introduced in [48, 85]. In [48],

Hu et al. propose two solutions for the wormhole attack. The first is based upon the notion

of geographical leashes. Each node includes in every packet its location li and a timestamp
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indicating the time ts the packet is sent. Since nodes are loosely synchronized, when a

node with location lj receives a packet at time tp, it verifies the packet could have traveled

the distance ‖li − lj‖ + δ in a time tp − ts + ∆, where δ is the location error and ∆ is the

synchronization error.

The second solution in [48] is based on temporal leashes. To implement a temporal leash,

the sender includes in every packet a timestamp ts indicating the time ts the packet is sent

and an expiration time te. A node that receives a packet at time tr verifies that tr < te

before it accepts the packet. Temporal packet leashes require tight synchronization between

all nodes of the network. To illustrate the importance of the synchronization error if the

sender’s time is ∆ time units ahead of the receiver’s time, a packet can travel a distance up

to ∆ ∗ c (c = 3 × 108 m/sec) longer than the distance imposed by the expiration time te.

Similarly if the sender’s time is ∆ units behind the receiver’s time, the receiver has to lie

within a distance ∆∗ c closer to the sender, compared to the distance imposed by te. Hence,

the synchronization error should be in the order of nanoseconds for the synchronization

error to be negligible.

In [47], Hu et al. provide a bounding distance protocol based on [14] that utilizes a three-

way handshake scheme to ensure that the communicating parties are within some distance.

The sender sends a challenge to a receiver, who replies immediately with a response. The

sender acknowledges the response by another response to complete the three-way handshake.

Both parties verify that they lie within some distance by multiplying the round-trip time

of flight with the speed of light. Though this protocol does not require the two nodes to be

synchronized in order for the protocol to be executed, each node needs to have immediate

access to the radio transmitter in order to bypass any queuing and processing delays. In

addition, nodes should be equipped with highly accurate clocks with nanosecond precision

to avoid distance enlargement.

In [127], Zhu et al. propose a cryptographic solution as a defense mechanism against

the wormhole. Based on pre-loaded keys, nodes are able to derive a pairwise key with any

other node without the need for any information exchange. Following a neighbor discovery

phase, nodes unicast to every neighbor a cluster key encrypted with the previously derived

pairwise key. While the network is secured against the wormhole attack once pairwise keys
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have been established, the authors of [127] point out that the network is still vulnerable

to wormholes during the neighbor discovery phase. If an attacker tunnels and replays the

HELLO messages between two nodes that are not one hop neighbors, the two nodes will

assume that they are one-hop away and establish a cluster key.

A centralized solution for detecting wormhole links, based on multidimensional scaling

(MDS), is presented by Wang and Bhargava [124]. Using received signal strength mea-

surements, every node estimates its distance to all its neighbors and reports its distance

estimates to a powerful base station. The base station applies MDS to generate a visu-

alization of the network topology. In addition, a smoothing surface operation mitigates

the effects of the error in the distance estimation. In a wormhole-free network, the recon-

structed topology will correspond to a flat surface. However, in the presence of wormholes,

the surface is bent in a circular pattern in order for the two nodes communicating via the

wormhole to appear connected. The main limitation of this method is that it requires a

relatively dense and uniformly distributed network to detect the wormhole links. Such a

visualization cannot be applied to networks with irregular shapes, such as a string topology

(nodes connected in one line) or networks with string parts. In addition, based on the

simulation results in [124], while the method detects long wormholes (several hops long),

smaller wormholes (two to three hops long) can stay undetected with a significantly high

probability.

In [46], Hu and Evans utilize directional antennas to prevent wormhole links. Unlike our

method, every node of the network is equipped with directional antennas and all antennas

should have the same orientation. Different directions called zones are sequentially num-

bered and every node includes the transmitting zone at each message. A receiver hearing

information at a zone A verifies that the sender transmitted the message at the correct

zone B, where A,B are opposite zones. Based on information provided by neighbors that

assist the wormhole detection by acting as verifiers, every node discovers its neighbors. As

pointed out by the authors of [46], a valid verifier must exist in order for the wormhole to

be detected, since not all neighbors can act as verifiers. Finally, as noted by the authors

of [46], this method can only prevent single wormholes and does not secure the network

against multiple wormhole links [46].
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4.6.2 Interpretation of related work based on our framework

In this section, we show that previously proposed defense mechanisms against the wormhole

attack satisfy the graph theoretic model we presented in section 4.1.

Time-based methods

In time-based methods [48], every transmitted message has a limited lifetime, less or equal

to the communication range r of the nodes divided by the speed light. Hence, messages

cannot travel distances longer than the communication range, and links are only established

between direct neighbors. For any two synchronized neighbors i, j, node i accepts a message

transmitted at time Ts from node j if it is received at a time Tr < Ts + r
c , where c is the

speed of light. Hence, ei,j = 1 if and only if ‖i − j‖ ≤ r, a condition that satisfies the

geometric graph model in (4.1). Note that as a requirement, time-based methods have

to use the fastest available medium (RF or optical transmission) in order to prevent the

wormhole attack.

In an alternative time-based method [14, 19, 47], nodes measure the time of flight of a

challenge-response message before communicating with another node. By limiting the time

of flight to twice the communication range over the speed of light, nodes ensure that they

establish a link only with their direct neighbors. Hence, time of flight methods also satisfy

the geometric graph model in (4.1).

Location-based methods

In location-based methods [48], every message contains the coordinates of its origin. Hence,

any receiving node can infer its distance from the origin of the message and compare it to

the communication range r. If ‖i− j‖ ≤ r, the message is accepted, otherwise the message

is rejected. Hence, a link between two nodes i, j can be established ei,j = 1 if and only if

‖i− j‖ ≤ r, a condition that satisfies the geometric graph model.
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Wormhole visualization

In the wormhole visualization method [124], the base station executing the Multidimensional

Scaling (MDS) algorithm constructs the logical graph G̃ of the network based on the distance

estimations of each node of the network. By visualizing wormholes as links that will cause

the flat network area to curve in a circular way and eliminating surface anomalies, the base

station applies a transformation to G̃ that reconstructs the corresponding geometric graph

G.

4.7 Discussion

In our wormhole attack model in Section 4.1.1, we have assumed that the adversary mount-

ing the attack does not compromise the integrity and authenticity of the communication.

Hence, the success of the attack is independent of the cryptographic methods used to secure

the communication. The strength of the wormhole attack lies in the fact that the adver-

sary does not need to compromise any cryptographic quantities or network nodes in order

to perform the attack in a timely manner. The lack of any compromised entities makes

the wormhole attack “invisible” to the upper layers and, hence, the attack is very difficult

to detect [48]. Furthermore, the attacker does not need to allocate any computational re-

sources to compromise the communication, thus making the wormhole attack very easy to

implement.

Our most compelling argument for assuming no key or host compromise in a wormhole

attack scenario is that, if the adversary were to be able to compromise cryptographic keys,

there would be no need to record messages at one part of the network, tunnel them via a

low-latency link, and replay them to some other part of the network. Instead, the adversary

could use the compromised keys to fabricate any message and inject it into the network

as legitimate. Using compromised keys to fabricate and inject bogus messages into the

network, known as the Sybil attack [32, 82], is overall a different problem than the one

addressed in this chapter.

Since the wormhole attacker does not need to compromise the network communications,

we have used a globally shared symmetric key for the protection of the beacon broadcasts
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from the guards in order to achieve energy-efficient communications (utilize the broadcast

advantage of the wireless medium in omnidirectional transmissions). We are indeed aware

that a compromise of a single node exposes the globally shared key and allows access to the

contents of the guards broadcasts. However, alternative methods for concealing and authen-

ticating the broadcasts of the guards come at the expense of energy-efficiency. Asymmetric

key cryptography is known to be computationally expensive for the energy-constrained de-

vices [21]. On the other hand, using pairwise keys shared between the guards and the nodes

would provide a higher level of security under key compromise, since only the communi-

cation of the node holding the pairwise key is exposed. However, the use of pairwise keys

requires the fractional keys to be unicasted from each guard to each node within the com-

munication range, thus making the use of the wireless medium highly inefficient in energy

resources.

Furthermore, under key and/or node compromise the wormhole problem essentially be-

comes a node impersonation (Sybil attack) problem and, hence, cannot be prevented by any

of the methods that address the wormhole attack. To illustrate this, consider the case where

two nodes not within range have been compromised and that an attacker has deployed a

wormhole link between the two nodes11. In such a case, the attacker can implement the

wormhole attack via the compromised nodes by recording the information at the origin

point, decrypting it and modifying necessary quantities to make the message look legiti-

mate, re-encrypting the message, and tunneling it to the destination point. To prevent this

type of attack, additional verifiable information needs to be available, such as verifiable

geographical positions for each node or protection against impersonation attacks [82]. In

this paper, we have not assumed that such information is available.

Similarly, other schemes that have been proposed for preventing the wormhole attack

[46, 48, 124, 127] cannot eliminate wormholes under key/node compromise. We now show

for each of the methods in [46, 48, 124, 127] which step is vulnerable to wormholes under

key/node compromise.

In [127], different cluster keys are used to encrypt the communication within different

11A similar scenario can be considered if the cryptographic keys held by the nodes are compromised and
the attacker impersonates the two nodes without using the actual nodes for the attack implementation.
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one-hop neighborhoods. If cluster keys are compromised, an adversary can record messages

at one neighborhood A, decrypt them with the compromised cluster key of neighborhood

A, tunnel the messages via the wormhole link to a neighborhood B that is not within the

communication range of neighborhood A, re-encrypt the messages with the compromised

key of neighborhood B, and replay the messages in neighborhood B. Cluster keys can also

be compromised if the adversary compromises the pairwise keys that are used by the nodes

to distribute the cluster keys during the initialization phase. For the method in [127],

compromise of two nodes that are not within communication range or two pairwise keys is

sufficient to create a wormhole.

In [48], the authors use temporal packet leashes to prevent a message from traveling

distances longer than a pre-defined distance. Each packet contains an expiration time te

whose integrity is verified via the use of a keyed message authentication code, such as a

key hash function (HMAC). When a node receives a packet, first it verifies that the HMAC

for the expiration time is correct (i.e., the expiration time has not been altered while the

packet is in transit). If the integrity verification is correct, the receiving node verifies

that the packet has not traveled longer than the distance indicated by te (the nodes in

the network are tightly synchronized). If an adversary were to compromise the keys of a

node, it could alter the expiration time to any desired value and properly adjust the keyed

message authentication code so that the message can travel any desired length. Thus, the

compromise of a single node allows the creation of a wormhole of arbitrary length.

In the wormhole visualization method [124], detection of a wormhole is based on the

reconstruction of the network topology via multi-dimensional scaling (MDS) and visualiza-

tion of wormholes as loops in the network plane. In order to visualize the network topology,

every sensor of the network has to report the distance from its one-hop neighbors to a base

station. The distance report is protected by a group key known to every sensor. If the group

key gets compromised, the adversary can alter the distance reports from the legitimate sen-

sors and manufacture false reports, allowing the creation of wormhole links undetectable by

the visualization method. Moreover, it would be very difficult for the visualization method

to capture short wormholes in the case where the attacker manipulates the distance reports

of the nodes. In the directional antenna method presented in [46], nodes rely upon re-
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ports from neighbor nodes to verify the validity of the neighbor discovery protocol. Hence,

compromised neighbors can mislead nodes into accepting wormhole links [46] as valid ones.

Though we have shown that the adversary can mount a wormhole attack under node/key

compromise, as in the seminal paper in [48], we argue that the strength of the wormhole

attack lies in the fact that the adversary does not allocate computational resources to

compromise nodes/keys and that it remains “invisible” to upper layers of the network

(the attack is implementable with minimal resources). Furthermore, under the node/key

compromise assumption, relatively more powerful attacks, such as the Sybil attack [32,82],

can be mounted, and there is no need for the adversary to record and replay messages (it

can forge messages instead of recording them). Nevertheless, the wormhole attack can still

cause significant disruption to vital network operations, such as routing, even if the network

communications are not compromised, and, hence, needs to be addressed.

4.8 Summary of Contributions

We presented a graph theoretic framework for characterizing the wormhole attack in wireless

ad hoc networks. We showed that any candidate prevention mechanism should construct a

communication graph that is a connected subgraph of the geometric graph of the network.

We then proposed a cryptography-based solution to the wormhole attack that makes use of

local broadcast keys. We provided a distributed mechanism for establishing local broadcast

keys in randomly deployed networks and provided an analytical evaluation of the probability

of wormhole detection based on spatial statistics theory. We analytically related network

parameters such as deployment density and communication range with the probability of

detecting and eliminating wormholes, thus providing a design choice for preventing worm-

holes with any desired probability. Finally, we also illustrated the validity of our results

with extensive simulations.
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Chapter 5

STOCHASTIC COVERAGE IN HETEROGENEOUS SENSOR
NETWORKS

One of the primary tasks of sensor networks is to monitor a Field of Interest (FoI).

Sensors may monitor physical properties such as temperature, humidity, air quality, or

track the motion of objects moving within the FoI. In many cases sensor networks may

initiate an automated reaction to the observed events (actuation networks). As an example,

motion detection sensors may trigger the lights to turn on after motion has been detected, or

sensors monitoring a patient’s blood stream may automatically increase the intake of sugars

in the event of low sugar level detection. In actuation networks, in order to guarantee the

robustness of the decision mechanism, it is critical to improve the detection accuracy and

reduce the probability of false alarm.

While robustness may be achieved by pursuing a multimodal approach that involves

multiple consistency checks before any actuation decision is taken, robustness also depends,

to a high degree, on the availability of monitoring information. In order to evaluate a

specific event, one needs to have sufficient observations of the event. On the other hand,

the number of available observations is directly related to the number of sensors able to

sense a particular event. Hence, to improve the robustness of the system, one needs to

increase the availability of the collected information.

The availability of monitoring information can be measured by computing the coverage of

the FoI, achieved by the sensor network deployment. Coverage quantifies how well a FoI is

monitored1. The coverage problem has been studied under different objectives, depending

on the requirements and constraints of the applications. If the location of the deployed

sensors can be pre-selected, the coverage problem reduces to the problem of finding the

1Once the information has been collected by the sensors, an additional mechanism known as data aggre-
gation [56], is required to timely communicate the available information for processing. We do not address
the aggregation problem in this article.
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optimal placement for sensors such that a target coverage is met [51,92].

However, for large sensor networks, it is impractical to perform deterministic coverage

of the FoI, since the number of sensors that need to be placed is often prohibitively large.

Instead, sensors are deployed in the field of interest according to a pre-selected distribution.

For stochastically deployed sensor networks, the coverage problem quantifies how well the

FoI is monitored when a number of sensors is deployed according to a known distribution.

This problem is also known as the stochastic coverage problem [55,72,75,78,125].

In this chapter, we analyze the following stochastic coverage problem. Given a planar

FoI and N sensors deployed according to a known distribution, compute the fraction of

the FoI that is covered by at least k sensors (k ≥ 1). The problem can also be rephrased

as, given a FoI and a sensor distribution, how many sensors must be deployed in order for

every point in the field of interest to be covered by at least k sensors with a probability p

(k-coverage problem) [125].

5.0.1 Our Contributions

On the problem of stochastic coverage in sensor networks, we make the following contri-

butions. We formulate the problem of coverage in sensor networks as a set intersection

problem. We use results from Integral Geometry to derive analytical expressions quantify-

ing the coverage achieved by stochastic deployment of sensors into a planar field of interest.

Compared to previous analytical results [72,78,92], our formulation allows us to consider a

heterogeneous sensing model, where sensors need not have an identical sensing capability.

In addition, our approach is applicable to scenarios where the sensing area of a sensor does

not follow the unit disk model, but has any arbitrary shape. To the best of our knowledge,

only [78] considers a heterogeneous sensing model, though obtaining results that eventually

only incorporate the mean value of the sensing range in the coverage computation. Further-

more, the formulation in [78] considers only uniformly deployed sensors. In our approach,

sensors can be deployed according to any distribution.

We provide formulas for k-coverage in the case of heterogeneous sensing areas, as well

as the simplified forms in the case of identical sensing areas. We verify our theoretical
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results by performing extensive simulations that show an almost exact match between our

theoretical derivation and simulation. We compare our analytical formulas with previous

analytic results [72, 78, 92] by computing the Kullback-Leibler distance [28] and illustrate

that our expressions provide a higher accuracy, since they do not suffer from the border

effects [9, 10]. Finally, we provide examples on how to use our analytical expressions to

compute the number of sensors that need to be deployed, in order to cover a FoI with a

desired probability.

The rest of the chapter is organized as follows. In Section 5.1, we present related work.

In Section 5.2, we state our network model and formulate the coverage problem as a set

intersection problem. In Section 5.3, we derive analytical expressions for coverage for both

heterogeneous and homogeneous sensor networks. In Section 5.4, we validate our analytical

expressions, by computing coverage via simulation, and provide examples of computing the

coverage in randomly deployed sensor networks. Section 5.5 presents a summary of our

contributions.

5.1 Related Work

In this section we describe previous work related to the coverage problem in wireless sensor

networks. The coverage problem in wireless sensor networks has been studied under different

objectives and metrics. The characteristic attributes that classify different approaches to

the coverage problem are, deterministic or stochastic sensor deployment, homogeneous or

heterogeneous sensing area, additional design constraints such as energy efficiency, minimum

number of sensors that need to be deployed, or network connectivity. Based on the objective,

the coverage problem formulation varies to reflect the different assumptions and objectives.

In [51], the authors studied the problem of deterministic node placement in order to

achieve connected coverage, that is, sense the FoI with the minimum number of sensors,

while keeping the sensor network connected. In [51], the sensing area is modeled after the

unit disk model and consider sensors with identical sensing range. The problem of connected

coverage has also been recently studied in [125]. The authors provide a geometric analysis

that relates coverage to connectivity and defines the necessary conditions for a network

covering a FoI to be connected. The conditions for coverage and connectivity are derived
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Table 5.1: Comparison of the related work on the coverage problem for sensor networks, in
terms of assumptions and constraints. Sensor deployment refers to the deployment method,
deterministic or stochastic as well as the prior knowledge about the location of the sensors.
Sensing model refers to the assumptions about the sensing areas. Heterogeneous model
refers to whether the analysis supports sensors with heterogeneous sensing capabilities.
Additional constraints refers to other objectives set, such as connectivity, energy efficiency
or minimization of the number of sensors deployed.

Reference Sensor Deployment Sensing Model
Kar and Banerjee [51] Deterministic Unit Disk
Xing et. al. [125] Known Location Unit Disk
Poduri and Sukhatme [92] Deterministic Unit Disk
Meguerdichian et. al. [75] Known Location Any
koushanfar et. al. [55] Known Location Any
Liu and Towsley [72] Random Any
Li et. al. Known Location Any
Miorandi and Altman [78] Random Any
Our work Stochastic Any
Reference Heterogeneous Model Additional Constraints
Kar and Banerjee [51] No Connectivity
Xing et. al. [125] No Connectivity
Poduri and Sukhatme [92] No K-connectivity
Meguerdichian et. al. [75] Yes Worst Coverage
koushanfar et. al. [55] Yes Best, Worst Coverage
Liu and Towsley [72] No None
Li et. al. [70] Yes Best, Worst Coverage
Miorandi and Altman [78] Yes None
Our work Yes None

based on the assumptions that the sensing area of each node is identical and circular, and

the location of the nodes is known. The authors extend their algorithms for the case of

probabilistic deployment, and also relax their assumptions to non-unit disk sensing areas,

by approximating the real sensing area with the biggest possible circular area included in

the real sensing area.

In [92], the authors study the problem of deterministic coverage under the additional

constraint that each sensor must have at least k neighbors. They propose a deployment

strategy that would maximize the coverage while the degree of each node is guaranteed to



179

be at least k, under the assumption that the sensing range of the sensors is isotropic.

In [75], the authors study the problem of coverage, as a path exposure problem. Using

a generic sensing model and an arbitrary sensor distribution, they propose a systematic

method for discovering the minimum exposure path, that is the path along which the net-

work exhibits the minimum integral observability2. In [55], the authors investigate the

problem of best- and worst-case coverage. In their formulation of the coverage problem,

given the location of the sensors and a generic sensing model where the sensing ability of

each sensor diminishes with distance, the authors use Voronoi diagrams and Delaunay trian-

gulation to compute the path that maximizes the smallest observability (best coverage) and

the path that minimizes the observability by all sensors (worst coverage). Authors in [70]

provide a decentralized and localized algorithm for calculating the best coverage.

In [72] the authors study the problem of stochastic coverage in large scale sensor net-

works. For a randomly distributed sensor network, the authors provide the fraction of the

FoI covered by k sensors, the fraction of nodes that can be removed without reducing the

covered area as well as the ability of the network to detect moving objects. The results

presented in [72], hold only for randomly (uniformly) deployed networks and under the

assumption that the sensing area of each sensor is identical. Furthermore, the analysis pre-

sented in [72], suffers from the border effects problem, illustrated in [9,10]. The results hold

asymptotically under the assumption that the FoI expands infinitely in the plane, while

the density of the sensor deployment remains constant.

In [78], the authors study the stochastic coverage problem in ad hoc networks in the

presence of channel randomness. For a randomly deployed sensor network, the authors

analyze the effects of shadowing and fading to the connectivity and coverage. They show

that the in the case of channel randomness, the coverage problem can still be modeled

with the assistance of the spatial Poisson distribution, by using expected size of the sensing

area of sensors. While the results in [78] are applicable to heterogeneous sensor networks

they hold only for randomly deployed networks, and are impacted from the border effects

problem [9,10], as noted in [78].

2The integral observability is defined as the aggregate of the time that a target was observable by sensors
while traversing a sensor network.
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The auhtors in [43] study the problem of selecting the minimum number of sensors

from a set of sensors that are randomly (uniformly) deployed such that the FoI is covered,

and the selected sensors form a connected network. The authors provide centralized and

decentralized heuristic algorithms that perform within a bound from the optimal solution.

The authors assume that the sensing area of the sensors can have any convex shape, and

sensors can have heterogeneous capabilities. As a requirement, the position as well as the

shape and size of each sensing area must be known after deployment.

Compared to previous work that derives analytical coverage expressions [72,78,92], our

formulation allows us to consider a network model where, (a) sensors can be deployed

according to any distribution, (b) sensors can have a sensing area of any arbitrary shape,

(c) sensors can have heterogeneous sensing areas. Furthermore, our formulation does not

suffer from the border effects problem. Table 5.1 summarizes the different assumptions and

objectives of previous works.

5.2 Model Assumptions, Problem Formulation and Background

5.2.1 Network Model

In many wireless sensor network applications, it is not practical to deploy the sensors de-

terministically due to the large number of sensors that need to be deployed and/or the type

of environment where they are deployed. As an example, sensors may be dropped off an

aircraft into a forest in order to monitor environmental parameters such as humidity, tem-

perature, air quality etc. Furthermore, in many applications, sensors do not remain static,

even after they have been placed in the FoI. Environmental changes, such as air, rain, river

streams etc., may move sensors over time [114]. For these types of applications the relevant

coverage question that quantifies the availability of monitoring information is how many

sensors do we need to deploy in order to achieve the desired coverage with a probability

higher than a threshold value.

Furthermore, sensors may not be deployed according to a random distribution over

the FoI. As an example, a subset of points in the FoI may be of greater interest than

other points and, hence, must be monitored by a larger number of sensors. In such a
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Figure 5.1: (a) A two-dimensional Gaussian distribution with mean value E(X, Y ) = [0, 0],
(b) projection of the Gaussian distribution into the planar field.

case, more sensors may be deployed around the critical subset of points. For example, a

desired heterogeneous coverage may be achieved by deploying sensors according to a two-

dimensional Gaussian distribution. In figure 5.1(a), we show the probability density function

for a two-dimensional Gaussian distribution with mean value equal to E(X, Y ) = [0, 0]. In

figure 5.1(b), we show the projection of the Gaussian probability density function into the

planar field.

Since the sensor deployment distribution may vary, it is desirable to have analytical

coverage results that can incorporate any arbitrary sensor distribution. In our analysis, we

study the stochastic coverage problem when sensors are deployed according to any distrib-

ution and derive analytical results even in the case of non-uniform sensor distribution.

In addition, it is desirable to develop analytical coverage formulas that hold not only for

homogeneous, but also for heterogeneous sensor networks. Heterogeneity in the sensing area

of sensors may be due to the following reasons. First, the manufacturing process for sensors

does not guarantee that sensors are equipped with identical hardware, able to produce

an identical sensing model. Furthermore, the heterogeneity of the environment where the

sensors are deployed distorts the sensing capabilities of the sensors measured in an ideal
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Figure 5.2: (a) A heterogeneous sensor network with randomly deployed sensors covering
an FoI A0, (b) The sensing area Ai of a sensor si.

environment. Finally, the sensor network may consist of sensors with different sensing

capabilities by design (hierarchical sensor networks). We analyse the coverage problem

adopting a general sensing model that captures the heterogeneity in the sensing capabilities

of sensors.

In this article we adopt the following network model.

- Field of Interest (FoI): Let A0 denote the Field of Interest (FoI) we want to

monitor, with area F0 and perimeter L0. We assume that the FoI is planar and can

have any arbitrary shape.

- Sensing area: Let Ai denote the sensing area of each sensor si, i = 1 . . . N, with

Fi, Li denoting the size of the area and perimeter of Ai. The sensing area can have

any arbitrary shape.

- Sensor deployment: We assume that N sensors are deployed according to a distri-

bution Y (A0) and in such a way that they sense some part of the FoI. For sensing,

it is not necessary that the sensors are located within the FoI. Instead, we require

that sensors can monitor some part of the FoI even if they are located outside of it.
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5.2.2 Problem Formulation

We study the following stochastic coverage problem.

Stochastic coverage problem: Given a FoI A0 of area F0 and perimeter L0, sensed by

N sensors with each sensor si having a sensing area Ai of size Fi and perimeter Li deployed

in the plane according to a distribution Y (A0), compute the fraction of A0 that is sensed by

at least k sensors, i.e. the fraction that is k-covered.

This problem is equivalent to computing the probability that a randomly selected point

P ∈ A0 is sensed by at least k sensors. The stochastic coverage problem can be mapped to

the following set intersection problem.

Set intersection problem: Let S0 be a fixed bounded set defined as a collection of points

in the plane, and let F0 and L0 denote the area and perimeter of S0. Let N bounded sets

Si (i = 1 . . . N) of size Fi and perimeter Li be dropped in the plane of S0 according to a

distribution Y (S0) and in such a way that every set Si intersects with S0. Compute the

fraction of S0 where at least k out of the N sets Si intersect.

In the mapping of the stochastic coverage problem to the set intersection problem, the

fixed bounded set S0 corresponds to the FoI A0. The N bounded sets dropped according to

the distribution Y (S0) correspond to the sensing areas of the N sensors deployed according

to the distribution Y (A0). By computing the fraction of the set S0, where at least k out of

N sets Si intersect, we equivalently compute the fraction of the FoI that is k-covered3. In

figure 5.2(a), we show a sensor network randomly deployed over a FoI. In figure 5.2(b), we

show the sensing area of a sensor si. Note that our formulation does not require the FoI

to be infinitely extending in the plane. Instead, the FoI has to be a bounded region and,

hence, our formulation does not suffer from the border effects problem [9,10].

The set intersection problem has been a topic of research of Integral Geometry and

Geometric Probability [36,77,101,102,110]. In the following section, we show that the results

obtained for the set intersection problem can be used to analyse the coverage problem in

3Due to their equivalence, A0 and S0 as well as the terms sensing area and set are used interchangeably
in the rest of the article.
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wireless sensor networks. Before we provide analytical coverage expressions based on our

formulation, we present relevant background.

5.2.3 Background on Integral Geometry

In this section, we present relevant background on Integral Geometry that we use in Section

5.3 for deriving analytical coverage expressions based on our formulation. Interested reader

is referred to [36,77,101,102,110], as reference to Integral Geometry. We first introduce the

notion of motion for a point P in the plane, defined as follows [102]:

Definition 5.1. Motion in the Plane: Let P (xi, yi) denote a point in the Euclidean

plane, where xi, yi denote Cartesian coordinates. A motion is defined as a transformation

T : P (xi, yi) → P ′(x′i, y
′
i) such that,

x′i = xi cosφ− yi sinφ + x, y′i = xi sinφ + yi cosφ + y

−∞ < x < ∞, −∞ < y < ∞, 0 ≤ φ ≤ 2π. (5.1)

Any motion of a point P or a set of points4 A, is characterized by the horizontal dis-

placement α, the vertical displacement β and the rotation φ. A group of motions M denotes

a collection (set) of transformations in the Euclidean plane, i.e. the respective range for the

3-space (α, β, φ).

To quantify a group of motions M in the plane, we must define an appropriate measure

for the set of transformations of A determined by M. Such a measure is called the kinematic

measure and it must be invariant to the initial position of A, invariant under translation as

well as invariant under inversion of the motion. The need for such invariance will become

clear in the example following the definition of the kinematic measure.

To define the kinematic measure we must introduce the notion of kinematic density for

the group of motions M of a point P (x, y) or set of points A in the plane. The kinematic

density expresses the differential element of motion of a set of points in the plane, and is

defined as follows [102].

4In the case of a set of points, the set can be represented by a single point O based on which all other
points are determined.
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(a) (b)

Figure 5.3: (a) Set A1 is free to move within the plane in such a way that it intersects with
fixed set A0. (b) Fixed set A0 has a different initial orientation and position. The measure
of the set of positions of A1 such that it intersects A0, expressed via the kinematic density,
is the same regardless of the initial configuration of the two sets. The measure is invariant
to translations and rotations of any of the two sets.

Definition 5.2. Kinematic Density–The kinematic density dA for a group of motions

M in the plane for the set A, is defined as the differential form:

dA = dx ∧ dy ∧ dφ, (5.2)

where ∧ denotes the exterior product used in exterior calculus [37,38,102].

The above definition of the kinematic density, using the exterior product form, is the

only form up to a constant factor invariant under translation and inversion of motion.

Integrating the kinematic density of a set A over a group of motions M in the plane, yields

a measure for the set of motions M.

Definition 5.3. Kinematic measure–The kinematic measure m of a set of motions M
in the plane is defined by the integral of the kinematic density dA over M :

m =
∫

M
dA. (5.3)

To provide intuition behind the definition of the kinematic measure and the properties

of the kinematic density consider figure 5.3(a) showing a fixed set A0 and a set A1 free to
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move within the plane. We want to measure the set of motions (transformations) T such

that T (A1)
⋂A0 6= ∅, that is, measure the set of transformations T (A1) such that the two

sets intersect. This measure is the integral of dA1 over all points P ′(x, y) and all angles φ

such that T (A1)
⋂A0 6= ∅.

The invariant under translation property states that for any transformation T ′(A0), the

measure of the set of motions T such that T (A1)
⋂

T ′(A0) 6= ∅, must be equal to the measure

of the set of motions such that T (A1)
⋂A0 6= ∅. Similarly the measure must be invariant to

any translations of set A1. Furthermore, the measure is invariant to the order by which we

consider the possible motions of the set A1, or the initial positioning of sets A0,A1 [102].

Figure 5.3(b) shows a different positioning and orientation of the fixed set A0 that could be

due to the application of a translation or a different initial positioning.

The quotient of the measure of a group of motions Z over the measure of a group of

motionsM in the plane, where Z ⊆M yields the probability p(Z) for that group of motions

to occur:

p(Z) =
m(Z)
m(M)

. (5.4)

The kinematic measure allows us to compute the geometric probability for a specific set

configuration to occur, as depicted in (5.4). Equation (5.4), is used in our formulation to

derive the fraction of the FoI covered by a sensor deployment, as it is illustrated in the

following section.

5.3 Analytical Evaluation of Coverage in Heterogeneous Sensor Networks

In this section, we derive analytical expressions for stochastic coverage in heterogeneous

sensor networks. We first study the coverage problem for the case where only one sensor is

deployed, by studying the intersection of two sets in a plane. We initially consider a sensor

with a sensing area of convex shape. When the sensing area is convex, only the size and

perimeter of the sensing area are required to compute coverage. When the sensing area

has a non-convex shape, additional information such as the decomposition of the sensing

area to a union of disjoint convex shapes is required. In Section 5.3.3 extend our results for
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non-convex sensing areas.

We modify our analytical formulas for the case where the sensor is deployed according to

an arbitrary distribution. Using the results from the single sensor deployment, we generalize

for the case where multiple sensors are deployed and compute the fraction of the FoI covered

by at least k sensors, when a total of N sensors are deployed. Finally, we show how we can

derive previous analytical results [72,92] as specific cases of our model.

5.3.1 Random Deployment of a Single Sensor

In this section, we analyze the simplest case where a sensor s1 is randomly deployed in the

plane. We assume that s1 has a convex sensing area A1 of size F1 and perimeter L1. We want

to compute the fraction of the FoI covered by the sensor s1. The equivalent set intersection

problem is as follows. Let A0,A1 denote two sets in a plane with A0 being fixed, while A1

can move freely within the plane. Assume that all positions of A1 are equiprobable (sensor

si is deployed at random). Compute the fraction of A0 covered by A1.

Let A01 denote the intersection between sets A0,A1. Since A0,A1 are convex, A01 is

also convex. The fraction fr(A0) of A0 covered by A1, is computed by normalizing the size

of the area of A01 over the size of A0. The intersection area between the two sets A0,A1

can be computed with tools from integral geometry [101,102].

To compute fr(A0), we randomly select a point P ∈ A0. Let p(P ∈ A1) denote the

probability that P ∈ A1, that is, that point P belongs in the intersection between the sets

A0 and A1. Integrating p(P ∈ A1) over all P ∈ A0 yields the probability that any point

of A0 belongs to A1. Since all points are equiprobable, integration of p(P ∈ A1) over all

P ∈ A0 also computes the area F01 of the intersection set between A0,A1. Normalizing F01

over the F0, yields the desired fraction fr(A0). The following theorem holds for convex sets,

and will be extended in Section 5.3.3 for the case of non-convex sets [102].

Theorem 5.1. Let A0 be a fixed convex set of area F0 and perimeter L0, and let A1 be a

convex set of area F1 and perimeter L1, randomly dropped in the plane in such a way that

it intersects with A0. The probability that a randomly selected point P ∈ A0 is covered by



188

A1 is given by:

p(P ∈ A1) =
2πF1

2π(F0 + F1) + L0L1
. (5.5)

Proof. According to (5.4), in order to compute the probability that P is covered by A1, we

need to compute the quotient of the measure of all motions of A1 such that P ∈ A1, over

the measure of the set of motions of A1 such that A0
⋂A1 6= ∅. The latter represents all

possible positions where A1 can be dropped (recall that as a constraint, we require that A1

always intersects A0). We now provide the computation of the two measures, also sketched

in [101,102]:

m(A1 : P ∈ A0

⋂
A1)

(i)
=

∫

P∈A0
TA1

dA1

(ii)
=

∫

P∈A1

dA1

(iii)
=

∫

P∈A1

dx ∧ dy

∫ 2π

0
dφ

(iv)
= 2πF1. (5.6)

In (i), we integrate the kinematic density dA1 of set A1 over all motions of A1 such that

P ∈ A0
⋂A1. Since by assumption P ∈ A0 and A0 is fixed, we only need to integrate over

all P ∈ A1. In (ii), we integrate dA1 over all motions of A1 such that P ∈ A1. In (iii),

we express the kinematic density as its differential product form, and consider all possible

rotations of A1 such that P ∈ A1. In (iv), the integral of dx ∧ dy over all P ∈ A1 is equal

to the area F1 of A1. The integral of dφ over all φ is equal to 2π since A1 can freely rotate

around its reference point, leading to the value of 2πF1.

The result in (5.6) is intuitive. Given a fixed point P the number of translation motions

of the set A1 that can include P, is equal to the area F1 of A1. For each position of A1 that

include P, we can rotate A1 a total of 2π positions before we repeat the initial configuration.

Hence, the measure of positions of A1 such that P ∈ A1 under both rotation and translation

is equal to 2πF1.

Let P be a randomly selected point of the fixed set A0. All possible positions of A1 that

include P can be obtained by translating A1 according to the vector v, and rotating A1 by

φ ∈ [0, 2π]. The measure of all translation is F1 while the measure of all rotations is 2π,

hence the measure of all positions such that P ∈ A1 is 2πF1.
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We now compute the measure of all motions of A1 such that A0
⋂A1 6= 0 :

m(A1 : A0

⋂
A1 6= ∅) (i)

=
∫

A0
TA1 6=∅

dA1

(ii)
=

∫

A0
TA1 6=∅

dx ∧ dy ∧ dφ

(iii)
=

∫ 2π

0
(F0 + F1 + 2F01) dφ

(iv)
= 2π(F0 + F1) + L0L1. (5.7)

In (i), we integrate the kinematic density dA1 of set A1 over all motions of A1 such that

A0
⋂A1 6= ∅. In (ii), we write the kinematic density in its expanded differential form as

defined in (5.2). In (iii), we compute the area between A0,A1 which is called mixed area

of Minkowski and integrate over all possible rotations. The integration yields the desired

result. Proofs of (iii), (iv) are provided in the Appendix.

Given the two measures (5.6), (5.7) we can compute the probability p(P ∈ A1) as:

p(P ∈ A1) =
m(A1 : P ∈ A0

⋂A1)
m(A1 : A0

⋂A1 6= ∅) =
2πF1

2π(F0 + F1) + L0L1
. (5.8)

Note that p(P ∈ A1) is only dependent on the area and the perimeter of the convex

sets that intersect and not on the shape of those sets. Hence, there can be sets of arbitrary

shapes as long as they are convex. In Section 5.3.3, we will generalize (5.8) for non-convex

sets, corresponding to non-convex sensing areas. Based on Theorem 5.1 we can now compute

the fraction fr(A0) of A0 covered by A1, stated in the following lemma.

Lemma 5.1. The fraction fr(A0) of a fixed convex set A0 of area F0 and perimeter L0 that

is covered by a convex set A1 of area F1 and perimeter L1, when A1 is randomly dropped in

the plane in such a way that it intersects A0 is given by:

fr(A0) =
2πF1

2π(F0 + F1) + L0L1
. (5.9)
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Proof. In Theorem 5.1 we showed the probability that a randomly selected point P ∈ A0

also belongs to A1 when A1 is randomly dropped in the plane so that it intersects with A0.

Integrating (5.8) over all points P ∈ A0 provides the size of the area FC covered by A1 :

FC =
∫

P∈A0

p(P ∈ A1)dP
(i)
= p(P ∈ A1)

∫

P∈A0

dP

(ii)
= p(P ∈ A1)F0

(iii)
=

2πF0F1

2π(F0 + F1) + L0L1
. (5.10)

In (i), the probability p(P ∈ A1) is independent of the coordinates of P. In (ii), integrating

dP over all P ∈ A0 yields the size F0 of A0. In (iii), we substitute p(P ∈ A1) from (5.8).

Normalizing FC by F0 yields:

fr(A0) =
FC

F0
=

2πF0F1

2π(F0 + F1) + L0L1

1
F0

= p(P ∈ A1). (5.11)

5.3.2 Deployment of a Single Sensor According to a Distribution F (A0)

In this section, we consider the problem of computing the coverage achieved by a single

sensor, when the sensor deployment in the plane follows some non-uniform distribution

F (A0), with a probability density function f(x, y). As an example, the distribution of the

sensor may follow a zero-mean two dimensional gaussian distribution around the center of

A0, as illustrated in figure 5.1. This scenario may apply for instance, when the sensors are

dropped in groups above target points and disperse around the target points.

In the case of a non-uniform sensor distribution the problem of coverage can also be

mapped to the set intersection problem. As in the case of a random distribution, there is

a fixed set A0 that represents the FoI, and a “free” set A1 that is dropped into the plane

according to the non-uniform distribution F (A0), and in such a way that it intersects with

A0. We want to calculate the fraction fr(A0) of A0 covered by A1.

In order to compute fr(A0), in the case of a non-uniform distribution, we repeat the

same process as in the uniform distribution. First, we randomly select a point P ∈ A0 and

compute the probability that P also belongs to A1. This probability is again computed as

the quotient between the measures in (5.6) and (5.7). However, these measures are now

calculated as weighted functions of the probability density function f(x, y).
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Theorem 5.2. Let A0 be a fixed convex set of area F0 and perimeter L0, and let A1 be a

convex set of area F1 and perimeter L1, dropped into the plane according to a distribution

F (A0) and in such a way that it intersects with A0. The probability that a randomly selected

point P ∈ A0 is covered by A1 is given by:

p(P ∈ A1) =
2π

∫
P∈A1

f(x, y)dx ∧ dy∫
A0
TA1 6=∅ f(x, y)dx ∧ dy ∧ dφ

. (5.12)

Proof. The measure of all positions of set A1 that include point P is equal to:

m(A1 : P ∈ A0

⋂
A1)

(i)
=

∫

P∈A0
TA1

f(x, y)dA1

(ii)
=

∫

P∈A0
TA1

f(x, y)dx ∧ dy ∧ dφ

(iii)
=

∫

P∈A1

f(x, y)dx ∧ dy

∫ 2π

0
dφ

(iv)
= 2π

∫

P∈A1

f(x, y)dx ∧ dy. (5.13)

In (i), we integrate the kinematic density of A1 over all motions of A1 such that P ∈
A1

⋂A0, weighted over the probability density function f(x, y), of the sensor deployment.

In (ii), we expand dA1 according to 5.2. In (iii), we integrate over all angles φ, such that

P ∈ A1
5. In (iv), we substitute the integral over all angles φ with 2π. The measure of all

positions of set A1 such that A0
⋂A1 6= ∅ is equal to:

m(A1 : A0

⋂
A1 6= ∅) (i)

=
∫

A0
TA1 6=∅

f(x, y)dA1

(ii)
=

∫

A1 6=∅
f(x, y)dx ∧ dy ∧ dφ. (5.14)

In (i), we integrate the kinematic density of A1 over all motions of A1 such that

A1
⋂A0 6= ∅, weighted over the probability density function f(x, y), of the sensor deploy-

ment. In (ii), we expand dA1, according to 5.2. The probability that p(P ∈ A1) is equal to

5Since P is selected from A0, P ∈ A0

TA1 is equivalent to P ∈ A1.
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Figure 5.4: Non-convex sensing areas. (a) A rigid non-convex sensing area, (b) non-convex
sensing area with obstructed regions.

the quotient of the two measures:

p(P ∈ A1) =
m(A1 : P ∈ A0

⋂A1)
m(A1 : A0

⋂A1 6= ∅) =
2π

∫
P∈A1

f(x, y)dx ∧ dy∫
A0
TA1 6=∅ f(x, y)dx ∧ dy ∧ dφ

. (5.15)

Based on Lemma 5.1, the fraction of A0 covered by A1 is equal to p(P ∈ A1).

We now derive expressions for coverage in the general case where sensors do not have

convex sensing areas.

5.3.3 Random Deployment of Single Sensor with Non-convex Sensing Area

In our analysis so far we have assumed the sensing area of the sensors deployed has a convex

shape and is bounded by a single curve. However, the shape of the sensing area may not

necessarily be convex, or it may consist of multiple separate regions due to obstacles, such

as walls pillars, trees, etc. In figure 5.4(i), we show the a non-convex sensing area bounded

by a single curve. In figure 5.4(ii), we show a sensing area with certain areas obstructed by

obstacles. Such a non-convex sensing region is bounded by more than one closed curves. In

this section we compute the coverage achieved by the random deployment of a single sensor

with a non-convex6 sensing area.

6The boundary of the sensing area must be piecewise twice differentiatable.
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Theorem 5.3. Let A0 denote the FoI bounded by a simple7 curve, and let A1 denote the

sensing area of a sensor si, with A1 being the union of a finite number of separate convex

regions Ai
1, i = 1 . . .m, of total area F1 and total perimeter L1. The probability that a

randomly selected point P ∈ A0 is covered by A1 is given by:

p(P ∈ A1) =
2πF1

2π(mF0 + F1) + L0L1
. (5.16)

Proof. Theorem 5.3 is a special case of the fundamental kinematic formula of Blaschke [11]

that measures a group of motions in the plane for the case where non-convex areas intersect.

In Theorem 5.3, the number of separate convex sets m is defined by the number of closed

curves required to bound A1, that intersect with the FoI. When the sensing area A1 is

bounded by a simple curve, as in the case of a compact bounded set, or a convex set, (5.16)

reduces to (5.5) [102] (pp. 116). Detailed proof of Theorem 5.3 is omitted here, but is

provided in [102] (pp. 113–118).

Theorem 5.3 allows us to compute the fraction of A0 covered by the deployment of a

single sensor, when the sensing area of the sensor is non-convex, by applying Lemma 5.1.

Note that to compute p(P ∈ A1) prior knowledge of a decomposition of the sensing area to

a union of disjoint convex areas is required.

5.3.4 Random Deployment of Multiple Sensors

In this section, we compute the coverage achieved by the random deployment of N sensors,

with each sensor si having a sensing area Ai of size Fi and perimeter Li. As it is implied

by our notations, sensors need not have the same sensing area but can be heterogeneous.

We derive formulas for randomly deployed sensors with convex sensing areas. However,

equivalent formulas can be obtained for any other distribution and non-convex shapes by

using the results of the coverage achieved by a single sensor deployment, derived in Sections

5.3.2, 5.3.3.

7A simple curve is defined as a closed curve with no double points [102], pp. 113.
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We initially derive the probability p(S = k) that a randomly selected point P ∈ A0 is

covered by k sensors when N sensors are randomly deployed, using the results from Section

5.3.1. We then compute the probability that P ∈ A0 is covered by at least k sensors, as

well as the fraction of A0 covered by at least k sensors.

We then simplify our expressions in the case where the sensing areas are identical, and

provide formulas for the unit disk model commonly assumed in coverage problems [72, 92].

Finally, we show how our expressions can be reduced to formulas derived in [72, 92] under

the assumption that the FoI is infinite and the deployment density remains constant.

Theorem 5.4. Let N sensors be randomly and independently deployed over a FoI A0, of

area F0 and perimeter L0. Let each sensor si have a sensing area Ai of size Fi and perimeter

Li. The probability p(S = k) that a randomly selected point P ∈ A0 is covered by exactly k

sensors is given by:

p(S = k) =





∏N
i=1

(
2πF0+L0Li

2π(F0+Fi)+L0Li

)
, k = 0P(N

k )
i=1 (

Qk
j=1(2πFT (i,j))

QN−k
z=1 (2πF0+L0LG(i,z)))QN

r=1(2π(F0+Fr)+L0Lr)
, k ≥ 1.

(5.17)

where T is a matrix in which each row j is a “k-choice” of [1 . . . N ] (a vector of k elements

out of N), and G is a matrix in which each row j contains the elements of [1 . . . N ], that

do not appear in the jth row of T.

Proof. In order to prove Theorem 5.4, we map the problem of coverage to the set intersection

problem, as illustrated in our problem formulation in Section 6.1.2. Consider first, the case

where k = 0. When a single sensor si is deployed, the probability that it covers a randomly

selected point P ∈ A0 is given by Theorem 5.1. Hence, the probability p(P /∈ Ai) can be

computed as:

p(P /∈ Ai) = 1− p(P ∈ Ai)

= 1− 2πFi

2π(F0 + Fi) + L0Li

=
2πF0 + L0Li

2π(F0 + Fi) + L0Li
. (5.18)

Given that fact that the N sensors are independently deployed in the plane so that they

cover some part of A0, the probability p(S = 0) that none of the Ai, i = 1 . . . N covers
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point P is:

p(S = 0) = p(P /∈ A1, . . . , P /∈ AN )

(i)
=

N∏

i=1

p(P /∈ Ai)

(ii)
=

N∏

i=1

(
2πF0 + L0Li

2π(F0 + Fi) + L0Li

)
. (5.19)

Equality in (i) holds due to the independence in the deployment of the sensors si. In (ii),

we substitute p(P /∈ Ai) from (5.18).

In the case where k ≥ 1, we first need to compute the probability that P is covered

by exactly k specific sets. Let T denote a kx
(
N
k

)
matrix where each row j is a k-choice of

the vector [1 . . . N ], and let G denote a (N − k + 1)x
(
N
k

)
matrix where each row j contains

the elements of [1 . . . N ], that do not appear in the jth row of T. Consider for example,

T (1) = [1 . . . k] and G(1) = [k + 1 . . . N ]. The probability p(T (1)) that P is covered by

exactly the sets with indexes in the first row of T is given by:

p(T (1))
(i)
= p(P ∈ A1, . . . , P ∈ Ak, P /∈ Ak+1, . . . , P /∈ AN )
(ii)
= p(P ∈ A1), . . . , p(P ∈ Ak)p(P /∈ Ak+1), . . . , p(P /∈ AN )
(iii)
=

2πF1

2π(F0 + F1) + L0L1
. . .

2πFk

2π(F0 + Fk) + L0Lk

2πF0 + L0Lk+1

2π(F0 + Fk+1) + L0Lk+1
. . .

2πF0 + L0LN

2π(F0 + FN ) + L0LN

=

∏k
j=1(2πFi)

∏N
z=k+1(2πF0 + L0Lz)∏N

r=1 (2π(F0 + Fr) + L0Lr)

=

∏k
j=1

(
2πFT (1,j)

) ∏N−k
z=1

(
2πF0 + L0LG(1,z)

)
∏N

r=1 (2π(F0 + Fr) + L0Lr)
. (5.20)

In (i), we show which k sets include point P. Due to the independence in the set de-

ployment, in (ii), the intersection of the events in (i) becomes a product of the individual

events. In (iii), we substitute the individual probabilities from (5.8), (5.18). In the general

case, the probability that the sets with indexes of the ith row of T cover point P is given

by:

p(T (i)) =

∏k
j=1

(
2πFT (i,j)

) ∏N−k
z=1

(
2πF0 + L0LG(i,z)

)
∏N

r=1 (2π(F0 + Fr) + L0Lr)
. (5.21)
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Since we are not interested in a specific choice of sets to cover point P, the probability

that p(S = k) is a summation of p(T (i)) for all possible k-choices. Summing p(T (i)) over

all i yields (5.17):

p(S = k) =
(N

k )∑

i=1

p(T (i))

=
(N

k )∑

i=1

(∏k
j=1

(
2πFT (i,j)

)∏N−k
z=1

(
2πF0 + L0LG(i,z)

)
∏N

r=1 (2π(F0 + Fr) + L0Lr)

)

=

∑(N
k )

i=1

(∏k
j=1

(
2πFT (i,j)

) ∏N−k
z=1

(
2πF0 + L0LG(i,z)

))

∏N
r=1 (2π(F0 + Fr) + L0Lr)

. (5.22)

Once we have computed p(S = k), we can derive the probability that the randomly

selected point P is covered by at least k sensors.

Lemma 5.2. Let A0 be a FoI of size F0 and perimeter L0, and let N sensors with sensing

area Ai of size Fi and perimeter Li be independently and randomly deployed over A0. The

probability that a randomly selected point of A0 is covered by at least k sensors is given by:

p(S ≥ k) =





1 k = 0,

1−∑k−1
l=0

P(N
l )

i=1 (
Ql

j=1(2πFT (i,j))
QN−l

z=1 (2πF0+L0LG(i,z)))QN
r=1(2π(F0+Fr)+L0Lr)

k ≥ 1.

(5.23)

Proof. Lemma 5.2, holds by observing:

p(S ≥ k) = 1−
k−1∑

l=0

p(l = i), (5.24)

and substituting (5.17) to (5.24).

Lemma 5.2, allows us to compute the fraction fr(A0) covered by at least k sets.

Theorem 5.5. The fraction fr(A0) of a FoI A0 of area F0 and perimeter L0 that is covered

by at least k sensors when N sensors of sensing area Ai of size Fi and perimeter Li, are

randomly and independently deployed in the plane in such a way that they cover some part
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of the FoI is given by:

fr(A0) =





1 k = 0,

1−∑k−1
l=0

P(N
l )

i=1 (
Ql

j=1(2πFT (i,j))
QN−l

z=1 (2πF0+L0LG(i,z)))QN
r=1(2π(F0+Fr)+L0Lr)

k ≥ 1.

(5.25)

Proof. By mapping the coverage problem to the set intersection problem, the size FC of the

area covered by at least k sensors can be computed by integrating the probability that a

randomly selected point P ∈ A0 is covered by at least k sets, over all points P :

FC =
∫

P∈A0

p(S ≥ k)dP = p(P ≥ k)
∫

P∈A0

dP = p(P ≥ k)F0. (5.26)

Normalizing FC by F0 yields the result of Theorem 5.5.

The fraction fr(A0) covered by at least k sensors is equal to the probability that a

randomly selected point P is covered by at least k sensors.

Corollary 5.1. The fraction of A0 that is not covered by any sensor when N sensors are

randomly deployed is given by:

p(S = 0) =
N∏

i=1

(
2πF0 + L0Li

2π(F0 + Fi) + L0Li

)
. (5.27)

Proof. The Corollary follows from Theorem 5.4, for k = 0.

5.3.5 Coverage in the Case of Homogeneous Sensing Areas

The analytic expressions derived in Section 5.3.4 hold for heterogeneous sensor networks

where the sensing areas of the sensors are of different size and perimeter. In the case of

homogeneous sensor networks where for each sensor si, i = 1 . . . N Fi = F and Li = L, the

coverage expressions can be simplified to expressions involving binomials.

Corollary 5.2. The fraction fr(A0) of a FoI A0 of area F0 and perimeter L0 that is covered

by at least k sensors when N sensors of sensing area Ai of size Fi = F and perimeter Li = L

are randomly and independently deployed in the plane in such a way that they cover some
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part of FoI is given by:

fr(A0) =





1 k = 0,

1−∑k−1
l=0

(
(N

l )(2πF )l(2πF0+L0L)N−l

(2π(F0+F )+L0L)N

)
k ≥ 1.

(5.28)

Proof. The corollary holds by substituting FT (i,j) = F, LG(i,j) = L in (5.25).

Note that so far in our computations, the FoI is a bounded region. Previous analyt-

ical results for homogeneous sensor networks require that the FoI of interest is infinitely

expanding in the plane [72, 78, 92], and provide asymptotic formulas of coverage. Under

the same assumption and using Corollary 5.2, we can derive the same asymptotic results

expressed in the following Corollary.

Corollary 5.3. Let N sensors of sensing area Ai of size Fi = F and perimeter Li = L be

randomly and independently deployed in the plane, in such a way that they cover some part

of a FoI A0 of size F0 and perimeter L0. If A0 expands in the whole plane in such a way

such that the sensor density remains a constant ( N
F0
→ ρ), the fraction fr(A0) covered by

at least k sensors is given by:

fr(A0) →




1 k = 0,

1−∑k−1
l=0

(
(ρF )l

k! e−ρF
)

, k ≥ 1.
(5.29)

Proof. Let us first compute the probability that exactly k sets intersect in a randomly

selected point P ∈ A0. Substituting Fi = F, Li = L in (5.17) yields:

p(S = k) =
(

N

k

)(
2πF

2π(F0 + F ) + L0L

)k (
2πF0 + L0L

2π(F0 + F ) + L0L

)N−k

=
(

N

k

)
qk (1− q)N−k , (5.30)

where q = 2πF
2π(F0+F )+L0L . The binomial distribution can be approximated by a Poisson

distribution when N goes to infinity:

lim
N→∞

p(S = k) =
(Nq)k

k!
e−Nq. (5.31)
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As F0 →∞, F
F0
→ 0 and if the sensor deployment density N

F0
→ ρ where ρ is constant, Nq

asymptotically tends to:

lim
F0→∞, N

F0
→ρ

(Nq) = lim
F0→∞, N

F0
→ρ

(
2πNF

2π(F0 + F ) + L0L

)

= lim
F0→∞, N

F0
→ρ


 2πNF

2πF0

(
1 + F

F0
+ L0L

2πF0

)



=
NF

F0
= ρF, (5.32)

since L0
F0
→ 0 regardless of the shape of A0 [102]. Substituting (5.32) into (5.31), yields:

p(S = k) → (Nq)k

k!
e−Nq =

(N F
F0

)k

k!
e
−N F

F0 =
(ρF )k

k!
e−ρF . (5.33)

Hence, the fraction fr(A0) of A0 covered by at least k sensors with identical sensing area

Ai, when sensors are deployed randomly with a constant density ρ, as A0 expands in the

whole plane is given by:

lim
N→∞

fr(A0) = lim
N→∞

(
1−

k−1∑

l=0

p(S = k)

)

= 1− lim
N→∞

(
k−1∑

l=0

p(S = k)

)
= 1−

k−1∑

l=0

(
lim

N→∞
p(S = k)

)

=





1 k = 0,

1−∑k−1
l=0

(
(ρF )l

l! e−ρF
)

, k ≥ 1.
(5.34)

We now validate our theoretical results via simulation.

5.4 Validation of the Theoretical Results

In this section, we validate our theoretical results via simulation. We also compare our

results with the approximation formulas derived in [72, 78, 92]. Our evaluation is done in

terms of the Kullback Leibler distance (KL-distance) of the probability density functions

(pdfs), which provides a performance comparison in the average sense. Considering the pdf

obtained via simulation to be the desired distribution q, we compute the KL-distance of
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Figure 5.5: Fraction fr(A0) of A0, that remains non-covered as a function of the number
of sensors N that are deployed to monitor the FoI.

our theoretical formulas and the approximations provided in [72, 78, 92]. The KL-distance

for two distributions p, q, when q is the desired distribution and p is the true distribution is

defined as follows [28],

Definition 5.4. Kullback Leibler distance–The Kullback Leibler distance between a desired

distribution q and a true distribution p is equal to:

KL(p, q) =
∑
pi

pi log2

pi

qi
, (5.35)

where pi, qi denote the discrete values of the distributions p, q respectively.

We also compare theory, simulation and approximation results with respect to the total

variation distance (TV-distance), a metric that reflects the worst case performance and is

defined as follows.

Definition 5.5. Total variation distance–The total variation distance between two distrib-

utions q, p is the maximum difference between the probabilities that can be assigned to the

same event,

TV (p, q) = sup
i
{|pi − qi|}. (5.36)

We validate our formulas for homogeneous networks (sensors have identical sensing area)

as well as heterogeneous networks (sensors have different sensing areas).
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Figure 5.6: (a) The pdf of the fraction fr(A0) covered by exactly k sensors when N = 300
sensors with identical sensing area are randomly deployed. (b) The fraction fr(A0) covered
by at least k sensors when N = 300 sensors with identical sensing area are randomly
deployed. (c) The pdf of the fraction fr(A0) covered by exactly k sensors when N = 500
sensors with identical sensing area are randomly deployed. (d) The fraction fr(A0) covered
by at least k sensors when 500 sensors with identical sensing are randomly deployed.

5.4.1 Homogeneous Sensor Network- Unit Disk Sensing Area

In our first experiment, we randomly deployed a variable number of sensors with identical

sensing area in a circular FoI of radius R = 100m. All sensors had a circular sensing area of

radius r = 10m. We repeated the random deployment of sensors 100 times and averaged the

results. In figure 5.5(a), we show the fraction fr(A0) of A0, that remains non-covered as a

function of the number of sensors N that are deployed to monitor the FoI. The theoretical

formula that computes that desired fraction is obtained from Corollary 5.1 and is equal to:
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fr(A0) = p(S = 0) =
N∏

i=1

2πF0 + L0Li

2π(F0 + Fi) + L0Li
=

N∏

i=1

2πF0 + L0L

2π(F0 + F ) + L0L

=
(

2πF0 + L0L

2π(F0 + F ) + L0L

)N

, (5.37)

where F0 = πR2, L0 = 2πR,F = πr2, L = 2πr. The Poisson approximation of the fraction

of A0 that is non-covered is given by [ [72,78,92]:

fr′(A0) = p′(S = 0) = e
−NF

F0 . (5.38)

We observe that the simulation results verify our theoretical expression, while the Poisson

approximation deviates from the simulation results. In figure 5.6(a), we show the pdf of

the fraction fr(A0) covered by exactly k sensors when N = 300 sensors with identical

sensing area are randomly deployed. The equivalent sensor density is equal to ρ = 0.0095

sensors/m2. The same graphs for N = 500, N = 1, 000 (densities ρ = 0.016 sensors/m2,

ρ = 0.032 sensors/m2) are provided in figures 5.6(c) and 5.7(a), respectively. According to

Theorem 5.5, fr(A0) is equal to the pdf of the probability that a randomly selected point

P is covered by exactly k sensors. Our analytical derivation in Section 5.3.5, yields:

fr(A0) = p(S = k) =

(
N
k

)
(2πF )k(2πF0 + L0L)N−k

(2π(F0 + F ) + L0L)N
. (5.39)

The Poisson approximation of the fraction of A0 that is covered by exactly k sensors is

equal to [72],

fr′(A0) = p′(S = k) =
(NF

F0
)k

k!
e
−NF

F0 . (5.40)

For the pdf of the number of sensors covering exactly a fraction of the FoI, we computed

the KL-distance and TV-distance between the theoretical pdf in (5.39) from the simulated

pdf as well as KL-distance and TV-distance of the Poisson approximated pdf in (5.40) from

the simulated pdf. In Table 5.2, we summarize the comparison of the theoretical pdf and

its Poisson approximation. We observe a deviation of the Poisson approximated formula

from the simulated results, mainly due to the border effects [10]. On the other hand, our

theoretical pdf is almost identical to a real pdf (the KL-distance is equal to zero when the
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Figure 5.7: (a) The pdf of the fraction fr(A0) covered by exactly k sensors when N = 1000
sensors with identical sensing area are randomly deployed. (b) The fraction fr(A0) covered
by at least k sensors when N = 1000 sensors with identical sensing area are randomly
deployed.

two distribution compared are identical), showing that our analytical derivation accurately

predict the coverage achieved by the sensor deployment.

We also observe that the KL-distance for the Poisson approximation increases with

the increase of N. This is due to the fact that as the number of sensors increases, more

sensors will be deployed at the border of the deployment region, and, hence, the border

effect becomes more significant. On the other hand no such pattern occurs for the KL-

distance for our theoretical result. In terms of the worst case performance, the TV-distance

using (5.39) is significantly smaller compared to the TV-distance between the simulation

the Poisson approximation in (5.40).

In figure 5.6(b), we show the fraction of A0 covered by at least k sensors when N =

300. The same graphs for N = 500, N = 1, 000 are provided in figures 5.6(d) and 5.7(b),

respectively. For all graphs in figures 5.6, 5.7 we show the theoretical result according to

our expressions, the simulation values as well as the Poisson approximation.

5.4.2 Homogeneous Sensor Networks - Triangular sensing area

In our second experiment, we studied the impact of the shape of the sensing area of the

sensor to coverage. We randomly deployed 500 sensors in a circular FoI of radius 100m.

Each sensor had a triangular sensing area with each side of the triangle being equal to
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Table 5.2: Comparison of the KL-distance and TV-distance of our theoretical pdf p(S =
k) with the spatial Poisson approximation p′(S = k) for varying number of sensors with
identical sensing areas, randomly deployed in the FoI.

Theoretical Result in (5.39) Poisson Approximation in (5.40)
Number of Nodes (N) KL dist. TV dist. KL dist. TV dist.

(x10−3) (x10−3) (x10−3) (x10−3)
300 0.56 14.3 4.2 34.4
500 0.11 6.4 5.9 58.5
700 0.062 4.4 7.1 48.0
1000 0.096 3.6 9.4 52.1
1500 0.01 2.8 13.4 40.6

R = 100m, r = 10m, F0 = πR2, L0 = 2π, F = πr2, L0 = 2πr

r = 10m. The size of the sensing area of each sensor is equal to F = r2
√

3
4 while the

perimeter is equal to L = 3r. We repeated the experiment 100 times, computed the coverage

probability and averaged the results.

We then repeated the same experiment with sensors having a circular sensing area of

size equal to the triangular one, and compute the achieved coverage. for the circular sensing

area, the equivalent radius is equal to rc = r 3
1
4√
4π

. In figure 5.8(a), we compare the pdf of

the fraction of A0 covered by exactly k sensors obtained via theoretical computation as well

as the simulation outcome, for both triangular and circular sensing areas. In figure 5.8(b)

we show fraction of A0 covered by at least k sensors obtained via theoretical computation

as well as the simulation outcome, for both triangular and circular sensing areas.

We observe that independent of the shape of the sensing area the theoretical computation

using triangular sensing areas is almost equal to the theoretical computation using circular

sensing areas. This result shows that if the number of sensors deployed is relatively large,

the coverage achieved does not depend on the shape of the sensing area, but only on the size

of the sensing area. Though the circular and the triangular sensing areas have a different

perimeter, they achieve the same coverage since they have the same size F.

Analyzing formula (5.23), the coverage probability depends on the fractions F
F0

, L0L
F0

.

Since in our experiment the triangular sensing area had the same size as the circular sensing
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Figure 5.8: (a) The pdf of the fraction fr(A0) covered by exactly k sensors when N = 1000
sensors with identical sensing area are randomly deployed. (b) The fraction fr(A0) covered
by at least k sensors when N = 1000 sensors with identical sensing area are randomly
deployed.

area the difference in the coverage probability in the two deployments depends only on the

fraction L0L
F0

. However, the difference in the fraction L0L
F0

for triangles and circles is negligible

with respect to the value of 2π, or
(
2π + F

F0

)
where it is added. Hence, although A0 does

not extend infinitely, its size is sufficiently large such that the impact of the perimeter of the

sensing area L is negligible. This would not be the case if F0 and L where of comparable

size, or the perimeters of the sensing areas differed significantly.

The independence of the coverage achieved from the shape of the sensing areas, is also

illustrated in the Poisson approximation shown in (5.31), where the coverage only depends

on the size of the area F and not the perimeter L. As F0 increases both L
F0

and L0
F0

tend to

zero [102] and, hence, the perimeter of both the FoI and the sensing area do not influence

the coverage probability.

5.4.3 Heterogeneous Sensor Networks

In our second experiment, we considered a hierarchical (heterogeneous) sensor network,

where two types of sensors are deployed. Type A has a sensing area of disk shape with a

sensing range rA = 10m, while type B has a sensing area of disk shape with a sensing range
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Figure 5.9: Fraction fr(A0) of A0, that remains non-covered as a function of the number
of sensors N that are deployed to monitor the FoI, for the heterogeneous network deployed
in the second experiment.

of rB = 15m. We randomly deployed an equal number NA = NB = N
2 of sensors of each

type over a circular FoI of size F0 = πR2 where R = 100m. In figure 5.9, we show the

fraction fr(A0) of A0, that remains non-covered as a function of the number of sensors N

that are deployed to monitor the FoI. The theoretical formula that compute that is equal

to:

fr(A0) = p(S = 0) =
N∏

i=1

2πF0 + L0Li

2π(F0 + Fi) + L0Li
, (5.41)

where F0 = πR2, L0 = 2πR, Fi = πr2
i , L = 2πri. The Poisson approximation of the fraction

of A0 that is non-covered was illustrated in [78], and is given by,

fr′(A0) = p′(S = 0) = e
−NE[F ]

F0 . (5.42)

where E[F ] = πE[r2] denotes the expected value of the sensing area of the sensors deployed.

We observe that the simulation results verify our theoretical expression, while the Poisson

approximation deviates from the simulation results. In figure 5.10(a), we show the pdf of the

fraction fr(A0) covered by exactly k sensors when N = 300 sensors are randomly deployed.

The equivalent sensor density is equal to ρ = 0.0095 sensors/m2. The same graphs for

N = 500, N = 1, 000 (densities ρ = 0.016 sensors/m2, ρ = 0.032 sensors/m2) are provided

in figures 5.10(c) and 5.11(a), respectively. According to Theorem 5.5, fr(A0) is equal to
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Figure 5.10: Heterogeneous sensor network, with FoI being a disk of radius R = 100m.
An equal number of two types of sensors are deployed; Type A has a sensing area of radius
rA = 10m, while type B has a sensing area of rB = 15m. (a) The pdf of the fraction fr(A0)
covered by exactly k sensors when N = 300 sensors. (b) The fraction fr(A0) covered by
at least k sensors when N = 300 sensors. (c) The pdf of the fraction fr(A0) covered by
exactly k sensors when N = 500 sensors. (d) The fraction fr(A0) covered by at least k
sensors when N = 500 sensors.

the pdf p(S = k) of the probability that a randomly selected point P is covered by exactly

k sensors. Our analytical derivation in Section 5.3.4, yields:

fr(A0) = p(S = k) =





∏N
i=1

(
2πF0+L0Li

2π(F0+Fi)+L0Li

)
, k = 0P(N

k )
i=1 (

Qk
j=1(2πFT (i,j))

QN−k
z=1 (2πF0+L0LG(i,z)))QN

r=1(2π(F0+Fr)+L0Lr)
, k ≥ 1.

(5.43)

The Poisson approximation of the fraction of A0 that is covered by exactly k sensors is
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Figure 5.11: Heterogeneous sensor network, with FoI being a disk of radius R = 100m. An
equal number of two types of sensors are deployed; Type A has a sensing area of a disk shape
with radius rA = 10m, while type B has a sensing area of a disk shape with rB = 15m. (a)
The pdf of the fraction fr(A0) covered by exactly k sensors when N = 1000 sensors. (b)
The fraction fr(A0) covered by at least k sensors when N = 1000 sensors.

equal to,

fr′(A0) = p′(S = k) =
(NE[F ]

F0
)k

k!
e
−NE[F ]

F0 . (5.44)

For the pdf of the number of sensors covering exactly a fraction of the FoI in the hetero-

geneous case, we again computed the KL-distance and TV-distance between the theoretical

pdf in (5.43) from the simulated pdf as well as the KL-distance and TV-distance of the

Poisson approximated pdf in (5.43) from the simulated pdf. In Table 5.3, we summarize

the comparison of the theoretical pdf and its Poisson approximation. As in the case of the

homogeneous network, we observe a higher deviation of the Poisson approximated formula

from the simulated results. This deviation is not only due to the border effects [9, 10], but

also due to the use of the expected size of the sensing area of the sensors in the Poisson

approximated formula. On the other hand, our theoretical pdf is almost identical to a real

pdf, showing that our analytical derivation accurately predicts the coverage achieved by the

sensor deployment.

As in the case of the homogeneous sensor network, we also observe that the KL-distance

and TV-distance for the Poisson approximation increases with the increase of N. This is

due to the fact that the as the number of deployed sensors increases, more sensors will
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be deployed at the border of the deployment region and, hence, the border effect becomes

more significant. On the other hand no such pattern occurs for the KL-distance between

our theoretical result and the simulations.

Table 5.3: Comparison in terms of the KL-distance and TV-distance of our theoretical pdf
p(S = k) with the spatial Poisson approximation p′(S = k) for varying number of sensors
with identical sensing areas, randomly deployed in the FoI.

Theoretical Result in (5.43) Poisson Approximation in (5.44)
Number of Nodes (N) KL dist. TV dist. KL dist. TV dist.

(x10−3) (x10−3) (x10−3) (x10−3)
300 0.86 14.7 2.2 36.3
500 1.4 18.3 6.9 38.4
700 0.062 7.8 8.4 49.4
1000 0.096 10.9 12.3 59.6
1500 0.15 11.5 15.7 65.2

R = 100m, rA = 10m, rB = 15m, F0 = πR2, L0 = 2π

FA = πr2
A, LA = 2πrA, FB = πr2

B, LB = 2πrB, NA = NB = N
2

In figure 5.10(b), we show the fraction of A0 covered by at least k sensors when N = 300.

The same graphs for N = 500, N = 1, 000 are provided in figures 5.10(d) and 5.11(b),

respectively. For all graphs in figures 5.6, 5.7 we show the theoretical result according to

our expressions, the simulation values as well as the Poisson approximation.

In the case of heterogeneous sensor networks where each sensor has a different sensing

area, the formula in (5.43) has an exponentially increasing computational cost, since an

exponentially increasing summation of terms must be computed in order to derive the exact

coverage achieved. Such a computation may not be feasible for large networks. The higher

accuracy obtained using the exact formula, does not justify the tradeoff in computational

complexity with respect to the Poisson approximation provided by [78].

In such a case, a similar approximation can be used for our formulas by employing

the expressions derived for a homogeneous sensor network and substituting the size F and

perimeter L of the sensing area of the sensors with the expected size E[F ] and expected
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Figure 5.12: Heterogeneous sensor network, with FoI being a disk of radius R = 100m.
An equal number of two types of sensors are deployed; Type A has a sensing area of a
disk shape with radius rA = 10m, while type B has a sensing area of a disk shape with
rB = 15m. (a) The pdf of the fraction fr(A0) covered by exactly k sensors when N = 500
sensors. (b) The fraction fr(A0) covered by at least k sensors when N = 500 sensors.

perimeter E[L]. The theoretical approximation for such a case is:

fr(A0) = p(S = k) =

(
N
k

)
(2πE[F ])k(2πF0 + L0E[L])N−k

(2π(F0 + E[F ]) + L0E[L])N
. (5.45)

In figure 5.12(a) we show the pdf obtained via simulation for our heterogeneous sensor

network experiment, for N = 500 sensors, the theoretical values based on the exact formula

in (5.43), the Poisson approximation in (5.44), and the approximation in (5.45). In figure

5.12(b), we show the fraction of A0 covered by at least k sensors. We observe that for the

case of heterogeneous sensor networks where each sensor has a different sensing area, (5.45)

provides a better approximation than the (5.44), without incurring the computational cost

of (5.43). The KL-distance for the approximation obtained via (5.45) is equal to 2.3x10−3,

while the Poisson approximation gives a KL-distance equal to 6.8x10−3. With respect to the

worst case, the TV-distance for the approximation obtained via (5.45) is equal to 6.4x10−3,

while the Poisson approximation gives a TV-distance equal to 54.6x10−3.

5.4.4 An Example of Computing the Coverage in a Sample Network

In this section, we provide an example of applying our results to a sample sensor network.

Consider an FoI of size F0 = 106m2 and perimeter L0 = 4, 000m where sensors of identical
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sensing area F = 100π and perimeter L = 20π are randomly deployed. We want to compute

the number of sensors needed in order for a randomly selected point of the FoI to be covered

by at least one sensor with a probability pC = 95%. Or alternatively, the number of sensors

N needed, so that a fraction pC = 0.95 of the field of interest is covered by at least one

sensor.

Lemma 5.2 and Corollary 5.1 yield:

p(S ≥ 1) = 1− p(S = 0)

= 1−
N∏

i=1

(
2πF0 + L0L

2π(F0 + F ) + L0L

)

= 1−
(

2πF0 + L0L

2π(F0 + F ) + L0L

)N

.

We want to the probability of 1-coverage to be at least p(S ≥ 1) ≥ p. Hence,

P (S ≥ 1) = 1−
(

2πF0 + L0L

2π(F0 + F ) + L0L

)N

≥ pC ⇒

N ≥ log (1− pC)

log
(

2πF0+L0L
2π(F0+F )+L0L

) .

Substituting the values for pC , F0, L0, F, L yields N ≥ 9, 728 sensors.

5.5 Summary of Contributions

We studied the problem of stochastic coverage in heterogeneous sensor networks. By map-

ping the coverage problem to the set intersection problem, we derived analytical formulas

that compute the k-coverage when sensors are deployed in a Field of Interest according to

an arbitrary distribution Y. In our analysis, the sensors can have a sensing area of any shape

and also need not have identical sensing areas. We provided simplified expressions for the

case when the sensors are randomly deployed, as well as when the sensors have identical

sensing areas.

We verified our theoretical results via simulation and compared them with previous for-

mulas that characterized coverage in both homogeneous and heterogeneous sensor networks.

By evaluating the KL-distance between the analytic coverage formulas and the simulation,

we showed that our expressions provide a significantly higher accuracy. This is due to the
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fact that our results do not suffer from the border effects and hold exactly rather than

approximately. We also provided examples on how to utilize our expressions in order to

compute the number of sensors that need to be deployed in a Field of Interest, so that a

coverage requirement is met.
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Chapter 6

DETECTION OF MOBILE TARGETS IN HETEROGENEOUS
SENSOR NETWORKS

Target detection is a fundamental service required by most WSN applications. As an

example, in a habitat monitoring scenario, it is of interest to detect when an animal under

surveillance enters the FoI. In a military scenario, timely detection of any intrusion in

secure areas is critical. In this chapter, we address the problem of analytically quantifying

the quality of the target detection capability of a WSN.

When WSN are used for the purposes of target detection, a number of sensors N are

deployed to monitor a FoI. The sensor deployment can be either stochastic or determinis-

tic depending on the type of application and the FoI. Stochastic deployment is preferred

when (a) the FoI is not under the designer’s control at the time of deployment (hostile

environment) [18, 26] or, (b) it is more cost-effictive to randomly drop the sensors than

physically place them (large-scale networks) [26, 55]. Deterministic sensor deployment is

preferred when maximizing the target detection probability and/or minimizing the number

of sensors deployed is a priority [55].

In order to quantify the target detection capability of a WSN, we consider two detection

models. In the first model called the Instant Detection model (ID), a sensor s detects

a target X when the trajectory of X intersects the sensing area of si. A similar model

has also been considered in [3,18,22,42,126]. Often in realistic scenarios, a sensor needs to

collect multiple samples of the target for information processing, in order to perform reliable

detection, classify the target, and reduce the false alarm1 [2, 69]. Hence, we also consider

the Sampling Detection model (SD), where a sensor s must sample the target X for at least

tth units of time, before s can reliably determine the presence of X. Several previous works

have assumed the Energy Detection model (ED), where a target is detected if the energy

1We do not address the problem of data processing for target detection.
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level measured by a set of sensors exceeds a pre-defined threshold [25,55,75]. The ED model

also requires a threshold number of samples to reliably detect a target [2], and hence, ED

is a special case of the SD model.

If the number of sensors to be deployed is not sufficient to cover the entire border of the

FoI target detection is achieved only probabilistically. In such a case, a widely used metric

that quantifies the detection capability of a WSN is the probability of target detection by at

least one sensor [18]. This metric provides a worst-case guarantee on the number of sensors

able to detect a moving target. For applications that require enhanced fault tolerance and

reduced false alarms, detection by more than one sensors is critical [26,55,75]. In such cases,

the quality of detection is characterized by probability of detection by at least k sensors,

where k is a design parameter. Furthermore, in several applications it is critical that any

target crossing the FoI is detected in a timely fashion. The relevant metric that quantifies

the time delay in the detection process, is the mean time until the first detection [18, 42].

This metric is dependent not only on the sensor deployment and characteristics, but also

on the speed v of the target.

6.0.1 Our Contributions

In this chapter we make the following contributions. We map the target detection prob-

lem to a line-set intersection problem. Based on our mapping, we use tools from Integral

Geometry and Geometric Probability to analytically evaluate the probability of detect-

ing targets moving at a random direction within the FoI. Compared to previous works,

[3, 18, 22, 25, 42, 55, 75, 126], our formulation allows us to consider a heterogeneous sensing

model where sensors need not have identical sensing capabilities. We show our derivations

for sensing areas of arbitrary shape, and simplify our formulas when the sensing areas con-

form to the special case of the unit disk model, that is commonly adopted [3,18,22,42,126].

We consider the problem of target detection under both the ID and SD models, and by

introducing the concept of the effective sensing area, we show that the target detection

problem under the SD model can be reduced to the target detection problem under the ID

model.
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We analyze the target detection probability for both stochastic and deterministic sensor

deployment. For the stochastic deployment case, we compute the probability PD(k) that

a target X is detected by at least k sensors when it crosses a FoI We also compute the

mean time until the target is first detected as a function of the network parameters. For the

deterministic deployment case, we compute the worst-case probability of detection, denoted

as PD(1), in which the target is detected by at least one sensor, as a function of the pairwise

distances among the sensors. We show that PD(1) increases with the increase of pairwise

distances among sensors, and asymptotically approaches a fixed upper bound that is never

achieved. We show that the complexity of the exact formula for PD(1) grows exponentially

with the network size, and, hence, we provide lower and upper bounds.

The rest of the chapter is organized as follows. In Section 6.1, we state our model

assumptions, formulate the target detection problem, and provide relevant background on

Integral Geometry. In Section 6.2, we analytically evaluate the target detection probability

for stochastically deployed WSN. In Section 6.3, we analytically evaluate the probability

of detection for deterministically deployed WSN. In Section 6.4, we verify our theoretical

results via simulations. In Section 6.5 we present related work. Section 6.6 presents the

summary of our contributions.

6.1 Model Assumptions, Problem Formulation and Background

6.1.1 Network and Target Model Assumptions

In this section we state our assumptions about the network deployment, as well as the sensor

and target models we adopt.

Field of Interest (FoI)

We assume that sensors are deployed in the plane2 in order to detect targets crossing a

planar FoI, A0. The FoI is assumed to be a connected and closed set of area F0 and

perimeter L0 of arbitrary shape. In the case where the FoI is not convex, we assume that

2Although we present our analysis for the case where sensors are deployed in a plane, our results can be
extended in the three dimensions in a straightforward manner.
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(a) (b)

Figure 6.1: (a) A convex sensing area Ai of size Fi and perimeter Li, (b) A non-convex
sensing area with a convex hull boundary of size Lh

i and area size F h
i .

the size, denoted as F h
0 , and perimeter, denoted as Lh

0 , of the convex hull of FoI are known.

We do not address the case where the FoI has holes.

Network Deployment

Stochastic Network Deployment: Under stochastic network deployment, we assume

that N sensors are identically and independently distributed within a planar FoI, according

to a random (uniform) distribution.

Deterministic Network Deployment: Under deterministic network deployment, we

assume that N sensors can be placed at any desired position within the FoI.

Target Model

We assume that a target X crosses the FoI, by moving at a constant speed v, and direction

θ. Targets are assumed to have no physical dimensions, and hence, their trajectories are

assumed straight lines, with all trajectories crossing the FoI being equiparobable3. While

in reality, moving targets may not follow straight lines, asumming straight line motion

provides us with the worst case analysis, since the time the target remains within an FoI,

3Our analytic derivations can be extended to the case where the trajectory of the target is of arbitrary
shape, but illustrations using straight lines are preferred here for simplicity.
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given an entry and exit point, is minimized. Hence, the time that the target can be observed

by a sensor is also minimized. Straight line motion models have also been assumed in [18,42].

Sensing Model

We assume that each sensor si, i = 1 . . . N has a sensing area Ai that is a closed and

connected set of size Fi and perimeter Li. In the case where the sensing area is not convex,

we assume that the size, denoted as F h
i and perimeter, denoted as Lh

i of the convex hull of

Ai are known. Based on our assumptions, sensors need not have an identical sensing area

Ai. Figure 6.1.(a) illustrates a sensing area Ai of convex shape. Figure 6.1.(b) illustrates a

non-convex sensing area and the equivalent convex hull boundary. For detecting a moving

target X we consider the following two cases:

(a) ID model: A target X is detected by a sensor si if the trajectory of X crosses the

sensing area of si.

(b) SD model: A target X is detected by a sensor si if X is sensed (sampled) for at least

t ≥ tth units of time, where tth is a design parameter.

Figure 6.2(a) illustrates detection based on the ID model which places no constraint on the

length of the line segment of the trajectory within Ai. Figure 6.2(b) illustrates detection

based on the SD model model, where a target X moving at a constant speed v is detected,

only if the trajectory inside Ai is longer than vtth. We now provide our formulation for the

moving target detection problem.

6.1.2 Problem Formulation

For the case of the stochastic sensor deployment we formulate the moving target detection

problem as follows.

Moving target detection problem under stochastic deployment: Given a FoI A0

of area F0 and perimeter L0 sensed by N sensors with sensor si having a sensing area Ai

of size Fi and perimeter Li, randomly and independently deployed within the FoI, compute
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(a) (b)

Figure 6.2: (a) The instant detection model: a target X is detected if its trajectory crosses
the sensing area of si, (b) the sampling detection model: a target X is detected if it is sensed
for at least tth units of time. Given a constant speed v of X, the length of the trajectory of
X within the sensing area of si must be greater than vtth.

the probability PD(k) that a target X randomly crossing A0 by moving on a straight line is

detected by at least k sensors.

Mapping the moving target detection problem: The problem of moving target

detection under stochastic deployment can be mapped to a line-set intersection problem by

performing the following mapping. Let the FoI be mapped to a bounded set S0, defined as

a collection of points in the plane. Let S0 have an area of size F0 and perimeter of length

L0. Let the sensing area of sensor si be mapped to a bounded set Si with area size Fi and

perimeter length Li. Let the trajectory of the target X be mapped to a straight line `(ξ, θ)

in the plane, with parameters ξ and θ be the shortest distance of ` to the origin, and θ by

the angle of the normal to the line, with reference to the coordinate system, respectively.

Then, the moving target detection problem for stochastic WSN is equivalent to the following

line-set intersection problem.

Line-set intersection problem under stochastic deployment: Given a bounded set S0

of area F0 and perimeter L0 and N sets Si of area Fi and perimeter Li randomly and inde-

pendently placed inside S0, compute the probability PD(k) that a random line ` intersecting
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S0, also intersects at least k out of the N sets Si, i = 1 . . . N.

In the case of deterministic sensor deployment the moving target detection problem can

be stated as follows.

Moving target detection problem under deterministic deployment: Given a FoI

A0 of area F0 and perimeter L0 sensed by N sensors with each sensor si having a sensing

area Ai of size Fi and perimeter Li, and a target X randomly crossing A0 by moving on a

straight line, find the positions c1 . . . cN of the N sensors that maximize the probability PD

of detecting the target X.

Following a similar mapping as in the case of stochastic WSN, computing PD under de-

terministic sensor deployment can be mapped to the following line-set intersection problem.

Line-set intersection problem under stochastic deployment: Given a bounded set

S0 of area F0 and perimeter L0 and N sets Si of area Fi and perimeter Li, and a random

line l that intersects S0, find the positions ci . . . cN where the N sets should be placed in

order to maximize the probability that the line l intersects at least one of the N sets.

The mapping of the moving target detection problem to a line-set intersection problem

allows us to utilize tools from Integral Geometry and Geometric probability [102, 108, 113]

in analytically evaluating the detection probability PD. Throughout the rest of the paper

the terms sensing area Ai and set Si will be used interchangeably.

6.1.3 Relevant Background

To evaluate the detection probability PD using the line-set intersection formulation, we

need to quantify the number of lines that intersect with the any of the sets Ai, as well

as the number of lines that intersect with the FoI. However, the set of lines in the plane

intersecting a set A is uncountable. To bypass our difficulty in counting lines in the plane,

we adopt a measure from Integral Geometry and Geometric Probability [102, 108]. In

geometric probability, the measure m(l) of a set of lines `(ξ, θ) in the plane is defined as

follows [102,108]:
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Definition 6.1. Measure of set of lines m(`): The measure m of a set of lines `(ξ, θ)

is defined as the integral over the line density d` = dξ ∧ dθ

m(`) =
∫

dξ ∧ dθ, (6.1)

where ∧ denotes the exterior product [39].

In the case where A is convex, the measure of the set of lines that intersect A is equal

to:

m(` : `
⋂
A 6= ∅) =

∫

v
TA6=∅ dξ ∧ dθ =

∫ 2π

0
ξdθ = L, (6.2)

where L is the perimeter of A. Interested reader is referred to [102, 108], for the proof of

(6.2). In the case where A is non-convex, the measure in (6.2) can be computed by observing

that any line intersecting the convex hull of A, also intersects A. Hence, the measure of the

set of lines that intersect a non-convex set is equal to the perimeter of the convex hull of

that set, denoted as Lh.

A geometric interpretation for (6.2), can be obtainted by considering the thickness T (θ)

of a bounded set A, defined as [108]:

Definition 6.2. Thickness of a bounded set T (θ) : The thickness of a bounded set A
at direction θ is defined as the length of the projection of A to a line of direction θ.

The thickness of a set A measures the set of lines along the direction perpendicular to

θ, that intersect A. Figure 6.3(a), illustrates the thickness of a set Ai at direction θ. Figure

6.3(b) illustrates the thickness of a circular sensing area Ai, of radius r. Independent of the

direction of projection, the thickness of a disk is always equal to the diameter of the sensing

area, that is T (θ) = 2r, ∀θ. Thickness is related to m(`) via:

m(`) =
∫

`
TA6=∅ dξ ∧ dθ

(i)
=

∫ π
0 T (θ)dθ

(ii)
= πE(T ) = L. (6.3)

Step (i) holds due to the fact that for a fixed θ, the integral of dξ (set of positions) of the

lines that intersect A is equal to T (θ). Step (ii) holds due to the uniform distribution of the

lines:

E(T ) =
∫ π

0

1
π

T (θ)dθ. (6.4)
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(a) (b)

Figure 6.3: (a) The thickness T (θ) of a set A is equal to the length of the projection of A
on a line with direction θ. T (θ) measures the set of lines of direction perpendicular to θ that
intersect A. (b) For the case of a disk, T (θ) = 2r, ∀θ, where r is the radius of the disk A.

The relation between between m(`) and L as expressed in (6.3)can be interpreted as

follows. The measure m(`) of the set of lines `(ξ, θ) intersecting a bounded set A is equal to

the average length E(T ) of the projection of A over all possible directions, times the measure

of all the possible directions. In Section 6.2, making use of (6.2), (6.3), we analytically

evaluate PD(k).

6.2 Detecting Mobile Targets under Stochastic Sensor Deployment

In this section, we analytically evaluate the detection probability PD(k), that a target

crossing the FoI is detected by at least k sensors. We first evaluate the detection probability

under the ID model and show that PD(k) can be expressed as a function of the number of

sensors deployed and the length of the perimeters of the sensing areas of the sensors. We

then evaluate PD(k) under the SD model. Finally, we compute the mean time until a target

X crossing the FoI is first detected.

6.2.1 Instant Detection

In this section, we assume that a target X is detected when the trajectory of X crosses

the sensing area of a sensor si deployed within A0. Under the instant detection model, the
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probability that the target X is detected by at least k sensors is given by the following

theorem.

Theorem 6.1. Let A0 be a bounded FoI of area F0 and perimeter L0 monitored by N

sensors randomly deployed within A0, with sensor si, i = 1 . . . N having a sensing area of

size Fi and perimeter Li. The probability PD(k) that at least k ≥ 1 sensors detect a target

X crossing the FoI and moving on a straight line is given by:

PD(k) = 1−
k−1∑

w=0

|ZN,w|∑

j=1

|zj |∏

i=1

qzj(i)

|z̄j|∏

v=1

(
1− qz̄j(v)

)
, (6.5)

where ZN,w denotes the
(
N
w

)
w-tuples zj of vector [1, . . . , N ]. That is, ZN,w = {zj : zj(1),

. . . , zj(i), 0 . . . , zj(w) | j(i) ∈ [1, N ], j(i) 6= j(g),∀i 6= g}. The z̄j denotes the complement

(N − w)-tuple of zj with respect to vector [1, . . . , N ], and qi is given by qi = Li
L0

.

Proof. Let us first compute the probability that a target is detected by a single sensor si.

Based on our mapping in Section 6.1.2, this event is equivalent to the conditional probability

qi that a line intersecting A0, also intersects Ai. This probability is equal to the quotient

of the measure of the set of lines that intersect both A0,Ai over the measure of the set of

lines that intersect A0.

qi =
m(`

⋂A0
⋂Ai 6= ∅)

m(`
⋂A0 6= ∅)

(i)
=

m(`
⋂Ai 6= ∅)

m(`
⋂A0 6= ∅)

(ii)
=

Li

L0
. (6.6)

Step (i) holds due to the fact that Ai is within A0 and hence, any line intersecting Ai

also intersects A0. Step (ii) follows due to (6.2). The probability qi in (6.6) is computed

for the case where both A0,Ai are convex sets. In the case where any of the sets are not

convex, the length of the perimeter of the convex hull Lh, is used to compute qi.

Using (6.6), we now compute the probability that a line ` intersects exactly k sets.

Let ZN,k denote the
(
N
k

)
k-tuples zj of vector [1, . . . , N ]. That is, ZN,k = {zj : zj(1),

. . . , zj(i), . . . , zj(k) | j(i) ∈ [1, N ], j(i) 6= j(g), ∀i 6= g}. Let also z̄j denote the complement

of zj with respect to the vector [1, . . . , N ]. The probability that a line ` intersects all sets
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indicated by the k-tuple zj is given by:

P (zj)
(i)
= P

(
`
⋂
Azj(1)

6= ∅, . . . , `
⋂
Azj(k)

6= ∅,

`
⋂
Az̄j(1)

= ∅, . . . , `
⋂
Az̄j(N−k)

= ∅
)

(ii)
= P

(
`
⋂
Azj(1)

6= ∅
)

. . . P
(
`
⋂
Azj(k)

6= ∅
)

P
(
`
⋂
Az̄j(1)

= ∅
)

P
(
. . . `

⋂
Az̄j(N−k)

= ∅
)

=
|zj |∏

i=1

qzj(i)

|z̄j|∏

v=1

(
1− qz̄j(v)

)
, (6.7)

In (i) we express P (zj) as the probability that a random line intersects exactly the k sets

denoted by the k-tuple zj . Since the sets Ai are randomly and independently deployed

within the FoI, in (ii) the probability of the intersection of events becomes equal to the

product of the probabilities of the individual events.

To compute the probability of a random line intersecting any k sets, P (zj) must be

summed over all possible k-tuples zj .

P (ZN,k) =
∑

ZN,k

|zj |∏

i=1

qzj(i)

|z̄j|∏

v=1

(
1− qz̄j(v)

)
. (6.8)

Theorem 6.1 holds by noting that:

PD(k) = 1−
k−1∑

w=0

P (ZN,w). (6.9)

From Theorem 6.1, note that PD(k) depends only on the ratios LiL0 of Ai and not the

specific shape, or size of the sensing areas. Hence, Theorem 6.1 allows the analytic compu-

tation of the detection probability in the case of sensors with heterogeneous sensing areas.

However, the complexity of computing (6.5) grows exponentially with the network size. For

large-scale networks, PD(k) can be efficiently computed with the use of the following result.

Theorem 6.2. Let A0 be a bounded FoI of area F0 and perimeter L0 monitored by N

sensors randomly deployed within A0, with sensor si, i = 1 . . . N having a sensing area of

size Fi and perimeter Li. Let the probability qi that a target X is detected by sensor si
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be small, while the sum of the probabilities
∑

i qi is nearly a constant γ, as i → ∞. The

probability P (ZN,k) converges to a Poisson distribution of rate γ.

P (ZN,k) =
γk

k!
e−γ ,

∑

i

qi → γ, max
i

qi → 0. (6.10)

Proof. The proof of Theorem 6.2 is a special case of Lindeberg’s Central Limit Theorem and

is provided in [49].

Substituting (6.10) to (6.9) yields PD(k), for the case of large-scale heterogeneous WSN.

If sensors have sensing areas with perimeters of equal length (not necessarily identical

shapes), (6.5) can be simplified to the following form.

Corollary 6.1. The probability PD(k) that a target crossing the FoI will be detected by at

least k sensors, when all sensors have sensing areas with equal perimeters L is equal to:

PD(k) = 1−
k−1∑

i=0

(
N

i

)
Li(L0 − L)N−i

LN
0

. (6.11)

Proof. Corollary 6.1 follows by setting qi = L
L0

in (6.5).

Using Theorem 6.1, we can also evaluate the probability that a target X crosses the

FoI undetected by any sensor. Corollary 6.2, computes the probability of missing a target,

denoted as PM .

Corollary 6.2. The probability PM that a target crossing the FoI is not detected by any

sensor is equal to:

PM =
N∏

i=1

(
1− Li

L0

)
. (6.12)

Proof. The proof of Corollary 6.2 follows, by observing that PM = P (ZN,0), and zj =

∅, z̄j = {1, . . . , N}.

Depending on the application, (6.12) allows us to select Li, N so that PM remains below

any desired threshold value.
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(a) (b)

(c)

Figure 6.4: (a) The effective thickness of a rectangle on direction θ = 0, (b) the effective
thickness of a rectangle on a random direction θ, (c) the effective sensing area of a disk.

6.2.2 Sampling Detection

In this section, we evaluate the detection probability under the SD model. We analytically

compute the probability of detection PD(k) for heterogeneous WSN. Furthermore, we show

a mapping of the SD model to the ID model that allows us to derive detection results for

the SD model, using detection results derived under the relative simpler ID model.

Probability of target detection under the SD model

In SD, a target X moving at a speed v, must remain within the sensing area of a sensor si

for at least tth units of time, before si can detect X. Hence, the length of the intersection of
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the trajectory of X with the sensing area Ai has to be at least vtth. To measure the set of

lines that intersect a set A and have a cord within A of length longer than vtth we define

the notion of effective thickness T ′(θ).

Definition 6.3. Effective Thickness T ′(θ) : The effective thickness T ′(θ) for a set A is

defined as the measure of the set of lines m(`) perpendicular to the direction θ, for which

the length of the cord within A is greater or equal vtth. That is,

T ′(θ) =
∫

|`(ξ,θ)
TA|≥vtth

dξ. (6.13)

The probability of moving target detection under the SD model is given by the following

theorem.

Theorem 6.3. Let A0 be a bounded FoI of area F0 and perimeter L0 monitored by N

sensors randomly deployed within A0, with sensor si, i = 1 . . . N having a sensing area of

size Fi and perimeter Li. Let a target X cross the FoI moving on a straight line at a speed

v. The probability PD(k) that at least k sensors detect the target X when the target must be

sensed for at least time tth is given by

PD(k) = 1−
k−1∑

w=0

∑

ZN,w

|zj |∏

i=1

q′zj(i)

|z̄j|∏

v=1

(
1− q′z̄j(v)

)
, (6.14)

where q′i = E(T ′i )
E(T0) .

Proof. The proof of Theorem 6.3, follows the same steps of the proof of Theorem 6.1 in the

case of ID. The only difference between the two proofs is the computation of the probability

qi for a single sensor to detect a target X. Based on our mapping in Section 6.1.2, in the

case of SD, target detection is equivalent to the conditional probability q′i that a line that

intersects A0, also intersects Ai, with the length of the cord being |`⋂Ai| ≥ vtth. This

probability is equal to the quotient of the measure of the lines that intersect both A0,Ai

and have a cord length `
⋂Ai| ≥ vtth, over the measure of the set of lines that intersect A0.

q′i =
m(|`⋂A0

⋂Ai| ≥ vtth)
m(`

⋂A0 6= ∅) (6.15)
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The measure of the set of lines that intersect A0 is given by (6.2) and is equal to E(T0) = L0.

The measure of the set of lines that intersect both A0,Ai and have a cord length |`⋂Ai| ≥
vtth, is computed as follows:

m(|l
⋂
A0

⋂
Ai| ≥ vtth)

(i)
= m(|`

⋂
Ai| ≥ vtth)

(ii)
=

∫

|`TAi|≥vtth

dξ ∧ dθ

(iii)
=

∫ π

0
T ′i (θ)dθ

(iv)
= πE(T ′) (6.16)

Equation (i) holds due to the fact that Ai is a subset of A0. Hence, the length of the line

that is common to both A0 and Ai is equal to the length of the cord in Ai. In (ii), we

integrate the line density dl = dξ ∧ dθ over all lines that intersect Ai and have a length

of at least vtth. In (iii), for a fixed direction θ the integral of dξ over all lines for which

|`⋂Ai ≥ vtth| is equal to the effective thickness T ′(θ). The average effective thickness for

random lines is given by:

E(T ′) =
∫ π

0

1
π

T ′(θ)dθ. (6.17)

Hence, (iv) follows. The combination of (6.15), (6.16), (6.2) and (6.3) yields:

q′i =
πE(T ′i )

L0
=

πE(T ′i )
πE(T0)

=
E(T ′i )
E(T0)

(6.18)

Following the same steps as in the proof of Theorem 6.1, yields Theorem 6.3.

Mapping the SD model to the ID model

The ID model facilitates a geometric interpretation of the target detection problem. Any

target crossing the sensing area of a sensor is detected. However, no such geometric inter-

pretation exists for the SD model, and additional information is needed such as the length

of the line segment within each sensing area. We now provide a reduction from the SD

model to the ID model that allows us to map any results for the simpler ID model to the

SD one.
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Figure 6.5: The equivalent effective area for a sensor si with non-circular sensing area.

To map the SD model to the ID model, our goal is to define for each sensor si, an

effective sensing area A′i with the following property. If a target X crosses the boundary of

A′i (ID model), then X is detected under the SD model, for the sensing area A.

For sensing areas of arbitrary shape, the average effective thickness of Ai, does not

correspond to the average thickness of a subset of Ai. As an example, in figure 6.4.(a), all

lines of direction π
2 intersecting the rectangular sensing area Ai, have a line segment within

A longer than vtth (assuming vtth ≤ b.). However, for a direction θ 6= {0, π
2 , π} there is a

set of lines with a line segment within Ai shorter than vtth. The subset of Ai that does not

result in detection for lines in direction θ is depicted by the shaded areas in figure 6.4.(b).

Hence, one cannot define a subset of Ai with average thickness equal to the average effective

thickness of Ai.

However, from (6.14), the probability of detection PD(k) only depends on E(T ′i ), and

not the shape of the sensing area. Hence, we can define an effective sensing area A′ for each

sensor si, that is not necessarily a subset of A.

Definition 6.4. Effective Sensing Area A′ : Let the average effective thickness of a set A
be equal to E(T ′). The effective sensing area A′ is defined as a disk of radius r′ = E(T ′)/2.

Using the notion of the effective sensing area, we can map the target detection probability

under SD, to a target detection problem under ID, using the following corollary.

Corollary 6.3. The target detection probability under the SD model is equal to the target

detection probability under the ID model, when the sensing areas of the sensors are replaced

by the effective sensing areas.
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(a) (b) (c)

Figure 6.6: (a) Any sensor within a distance E(T )
2 from the trajectory of the target X,

detects X, (b) Equivalent formulation, for a target of average thickness E(T ), and sensors
with sensing areas reduced to point masses, detection occurs if a sensor si ”collides” with
the target, (c) the mean free path of a target X and the equivalent free area.

Proof. The proof follows by substituting Li = 2πr′ in (6.5).

In figure 6.5, we show the equivalence between the sensing area of a sensor si under

sampling detection. Note that in the case of the unit disk model, the effective sensing area

is a subset of the original sensing area. As an example, in figure 6.4.c the effective sensing

area of a disk of radius r, is a concentric disk of radius:

r′ =

√
r2 − (

vtth
2

)2. (6.19)

Through the rest of the paper we are focusing on the ID model, with equivalent results

holding for the SD model. We now compute the mean time until a target is first detected.

6.3 Detecting Mobile Targets under Deterministic Sensor Deployment

In this section, we analytically evaluate the detection probability under deterministic deploy-

ment of sensors. Specifically, we study the problem of maximizing the detection probability

of targets that randomly cross the FoI, by optimally placing N sensors within the FoI.

This problem is relevant in applications where one has full control of the environment and

it is cost efficient to physically place the sensors than randomly deploy them.
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We initially analyze the optimal sensor placement when only two sensors are placed

within the FoI. We then generalize for the result for the case of N sensors.

6.3.1 Optimal Placement of two Sensors

Assume that we have an FoI of arbitrary shape and two sensors s1, s2 that can be placed

anywhere within the FoI. For the simplicity of the calculation we assume that sensors s1, s2

have identical circular sensing areas of radius r. That is, A1 = A2 = A, with L = 2πr and

F = πr2. However, similar findings hold for sensing areas of any shape and size. We want to

find the optimal placement of sensors such that the probability of detection PD(1) of target

X by at least one sensor is maximized. The location of the sensors that maximizes PD is

provided by the following theorem.

Theorem 6.4. Let a target X cross a FoI of area F0 and perimeter L0, by moving on

a straight line across the FoI and in random direction. Let two sensors be available to

be placed within the FoI at any desired position. The probability of detection PD(1) is

maximized when sensors s1, s2 are placed at the opposite ends of the diameter4 of the FoI.

Proof. Based on our mapping in Section 6.1.2, the probability that a target X crossing the

FoI is detected by at least one sensor, is equal to the probability PD(1) that a random line

intersects with at least one set A1,A2, given that it intersects A0. This can be expressed in

terms of measures as:

PD(1) =
m (l

⋂
(A1

⋃A2))
m (l

⋂A0)
=

m2

L0
, (6.20)

where we denote m (l
⋂

(A1
⋃A2)) by m2 for simplicity. We now compute m2 depending

on the relative position of A1,A2.

Overalapping sensing areas.

Assume first that A1,A2 overlap as shown in figure 4.4.(a). Since A1
⋃A2 is a connected

and bounded set, the measure of the set of lines that intersects A1
⋃A2 is equal to the

length of the perimeter Lh of the convex hull of A1
⋃A2. The length of the perimeter Lh

4The diameter of the FoI is defined as the longest cord within the FoI.
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depends upon the distance d between the centers of the two sensing areas and hence, the

measure m2 can be expressed as a function of d :

m2(d) = Lh(d) = 2πr + 2d, 0 ≤ d ≤ 2r, (6.21)

where d ≤ 2r since for larger d the two sets do not intersect. Substituting (6.21) into (6.20)

yields:

PD(1) =
Lh(d)

L0
=

2πr + 2d

L0
, with 0 ≤ d ≤ 2r. (6.22)

The probability PD(1) attains its maximum value for d = 2r :

P ∗
D(1) =

2πr + 4r

L0
. (6.23)

We now evaluate the probability of detection for the case of non-overlapping sets.

Non-overlaping sensing areas

In the case where A1,A2 are non-overlapping sets, the union of the two sets is not a con-

nected set. Hence, as illustrated in figure 4.4.(b), a line intersecting the convex hull does

not necessarily intersect any of the two sets. In such a case, the measure of the set of lines

that intersect any of the two sets is equal to the measure of the set of lines that intersect

A1 plus the measure of the set of lines that intersect A2 minus the measure of the set of

lines that intersect both A1,A2 [113]:

m2 = m
(
`
⋂
A1

)
+ m

(
`
⋂
A2

)

−m
(
`
⋂(

A1

⋂
A2

))

= L1 + L2 −
(
Lin − Lh

)
, (6.24)

where Lin denotes the length of the inner string that wraps around A1,A2 as shown in figure

4.4.(c), and
(
Lin − Lh

)
measures the set of lines that intersect both A1,A2. The proof of

(6.24) is due to [113]. The measure in (6.24) can expressed as a function of the distance

d > 2r between the centers A1,A2, by calculating
(
Lin − Lh

)
. Using elementary geometric

calculations based on figure4.4.(c), it can be shown that:

Lin(d)− Lh(d) = 2d

√
1−

(
2r

d

)2

+ 4r arcsin
(

2r

d

)
− 2d (6.25)
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Hence, the measure m2 as a function of d becomes:

m2(d) = L1 + L2 − 2d

√
1−

(
2r

d

)2

−4r arcsin
(

2r

d

)
+ 2d. (6.26)

The function m2(d) in (6.26) is an increasing function of d, with an asymptote at L1 + L2.

Simple algebra shows that m2(d) for non-overlapping sets attains its minimum value for

d = 2r which is equal to the maximum value of m2(d) for overlapping sets. Hence, non-

overlapping sets always provide higher detection probability than overlapping ones. In fact,

PD(d) attains its maximum value as d approaches infinity.

maxPD(1) = lim
d→∞

PD(d) =
L1 + L2

L0
. (6.27)

The geometrical interpretation of this fact is that when the relative distance between A1,A2

grows, fewer lines intersect both sets, and hence, the measure of set of lines that intersect

any of the two sets tends to the sum of the measures of the set of lines that intersect only

one of the two sets, that in turn, maximizes PD(d). Therefore, in the case of two sets, the

probability of detection is maximized when the sets are placed the farthest apart given the

boundary of A0. For a given FoI, this occurs when the two sets are placed at the two ends

of the diameter of the set.

Theorem 6.4 provides the sensor placement that maximizes the detection probability for

the case of two sensors, and a given FoI. We now examine the probability of detection for

the case of N sensors.

6.3.2 Generalization to the Optimum Placement of N Sensors

When N sensors can be placed within the FoI, the probability of detecting a moving target

can be expressed based on the inclusion exclusion principle for unions of sets [35,113].

Theorem 6.5. Let a target X cross a FoI of area F0 and perimeter L0, by moving on a

straight line across the FoI and in random direction. Let N sensors be available to be placed
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within the FoI at any desired position. The probability of detection PD(1) is given by:

PD(1) =
N∑

i=1

(−1)i+1P (ΠN,i), (6.28)

where P (ΠN,i) is the probability that the target is detected by exactly i sensors5.

Proof. Theorem 6.5 holds by analyzing the union of events of detecting the target by any

single sensor to elementary probabilities. The proof of 6.5 is a special case of the set inclusion

exclusion principle [35].

For the deterministic deployment the relevant question is what sensor topology maxi-

mizes PD(1). The intuitive interpretation of Theorem 6.5 is that the detection probability

of a target by at least one sensor is equal to the probability that the target crosses each

sensor individually, minus the probability that the sensor crosses exactly any two sensors,

plus the probability that the target crosses exactly any three sensors, etc. Based on our

mapping to the line-set intersection problem, this is equivalent to a line intersecting any

of the N sets individually, minus the probability that a line intersects any two sets, etc.

Though Theorem 6.5 provides us with an exact formula for PD(1), the number of terms

to be evaluated grows exponentially in N. Since maximization of (6.28) becomes a difficult

task, we consider the bounds expressed in the following Corollary.

Corollary 6.4. The probability of target detection PD(1) is bounded by:

P (ΠN,1)− P (ΠN,2) ≤ PD(1) < P (ΠN,1) (6.29)

Proof. Follows by noting
∑N

i=3(−1)i+1P (ΠN,i) ≥ 0 and
∑N

i=2(−1)i+1P (ΠN,i) < 0.

We note that PD(1) can never achieve the upper bound for N > 1 since there will always

be a non-zero number of lines crossing two sensing areas. Hence, P (ΠN,2) is strictly positive.

The lower bound in Corollary 6.4 can be made arbitrarily tight by including more terms

P (ΠN,i).

5For deterministic sensor deployment P (ΠN,i) depends on the positioning of the sensors and is not given
by (6.8).
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Figure 6.7: Homogeneous WSN: (a) Probability of detecting a target by the deployment
of a single sensor with circular sensing area, as a function of the radius r. (b) Probability
of detecting a target by the deployment of a single sensor with square sensing area, as a
function of the side α.

Both the lower and upper bound in (6.29) are known to us in terms of the length of the

perimeters of the sensing areas and the pairwise distances among the sensors. Thus, we can

write for PD(1) :

N∑

i=1

Li

L0
−

(N
2 )∑

i=1

m2(di)
L0

≤ PD(1) <
N∑

i=1

Li

L0
, (6.30)

where m2(di) is the measure of the set of lines that intersects a pair of sensors, expressed

as a function of the pairwise distance di. To maximize the lower bound in (6.30), we need

to minimize the
∑

i m2(di). In Section 6.3.1 we showed that m2(di) is a monotonically

decreasing function of di. Hence, increasing the relative distance among the sensors also

increases the lower bound in (6.30). The exact solution that maximizes (6.30) depends both

on the number of sensors to be deployed and the shape and size of the boundary of the FoI.

6.4 Validation of the Theoretical Results

In this section, we validate our theoretical results be performing extensive simulations.

Initially we verify our formulas for stochastic WSN, by randomly deploying sensors within

an FoI and evaluating the probability of detection PD(k). We then repeat our experiments
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Figure 6.8: Homogeneous WSN: (a) Target detection probability by exactly k sensors. (b)
Target detection probability by at least k sensors.

by deploying sensors in a deterministic way.

6.4.1 Stochastic sensor deployment

In this section, we verify our theoretic formulas for stochastic WSN. We randomly deployed

N sensors in a circular FoI of radius R = 100m. We then generated random lines corre-

sponding to random trajectories of targets and measure the number of sensors that detect

the moving targets. We performed the following experiments.

Probability of detection for a single sensor

In our first experiment,we randomly deployed a single sensor, with a circular sensing area

of radius r. We varied r from 10m to 80m and measured the probability that a target

moving at a random trajectory is detected by the sensor. For each radius r we repeated the

experiment 100 times to ensure statistical validity. Based on our derivations in Section 6.2,

the probability that the target is detected is equal to:

PD = qi =
Li

L0
=

r

R
(6.31)
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In figure 6.7(a) we show the probability of detection PD for varying r for our first experiment.

We observe an almost exact match between the theory and the simulation, confirming that

the probability of a random line intersecting a set of perimeter Li given that it intersects

the overset of perimeter L0 is equal to the quotient of the two perimeters.

We also repeated our experiment when the deployed sensor had a square sensing area of

perimeter 4 ∗ α, where α denotes the length of the side of the square and was varied from

10m to 80m. In figure 6.7(b) we show the probability of detection PD for varying α for the

case of square sensing area. We observe that regardless of the shape of the sensing area,

our theoretical formula agrees with the simulation.

Probability of detection for homogeneous WSN

In our second experiment, we evaluated the detection performance of a WSN when all

deployed sensors have identical sensing areas. We initially deployed 30 sensors with a

circular sensing area of radius r = 10m and measured the probability of detection P (ZNk
)

that a target randomly crossing the FoI is detected by exactly k sensors. The probability

P (ZN,k) for the homogeneous case is given by:

P (ZN,k) =
(

N

k

)(
L

L0

)k (
1− L

L0

)N−k

. (6.32)

In figure 6.8(a) we show P (ZN,k) for a homogeneous WSN as a function of k. We also

evaluate the probability PD(k) that a target would be detected by at least k sensors, that

in the homogeneous case is given by (6.11). In figure 6.8(b), we show PD(k) as a function

of k. We observe that our theoretical formulas match the simulation results.

We also evaluated the probability PM of not detecting a target crossing the sensor field

as well as the probability of detection by at least one sensor PD(1), a function of the number

of sensors deployed. In figure 6.9(a) we show PM as a function of N. In figure 6.9(b) we

show PD(1) as a function of N. From figures 6.9(a), 6.9(b), one can select the number of

sensors to be deployed so that the probability of detection is above a pre-specified threshold.

As an example, if the detection requirement is set to PD(1) ≥ 95% more than 30 sensors

must be deployed.
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Figure 6.9: Homogeneous WSN: (a) Probability of missing a target as a function of the
network size. (b) Probability of target detection by at least one sensor as a function of the
network size.

Probability of detection for heterogeneous WSN

In our third experiment we deployed sensors with heterogeneous sensing capabilities and

evaluated the detection performance of the WSN. Each sensor deployed had circular sensing

area of a radius uniformly distributed in [0, 1]. We selected a small sensing area in order

to satisfy the condition maxi qi → 0 while
∑

i qi → γ, so that the probability of detection

of a target by exactly k sensors can be approximated by (6.10). We varied the number of

sensors deployed from N = 100 to N = 1000, and computed PD(1). The exact formula for

PD(1) is given by

PD(1) =
N∏

i=1

(
1− Li

L0

)
(6.33)

For large N according to Theorem 6.2, PD(1) tends to:

PD(1) = 1− e
−PN

i=1
Li
L0 (6.34)

In figure 6.10(a), we show the theoretical value of PD(1), the value according to Theorem

6.2, and the simulated value, as a function of N. We observe that when the conditions of

Theorem 6.2 are satisfied, one can compute PD(k) without incurring the high computational

cost of the exact formula (as k increases the number of terms in the exact formula of PD(k)
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Figure 6.10: Heterogeneous WSN: (a)Probability of target detection by at least one sensor
as a function of the network size, when the radius of the sensing area is uniformly distributed
within r ∈ [0, 1]. (b) Heterogeneous WSN: Probability of target detection by at least one
sensor as a function of the network size, when the radius of the sensing area is uniformly
distributed within r ∈ [0, 0.1].

increase exponentially). In figure 6.10(b) we show PD(1) when the radius of the sensors is

uniformly distributed in [0, 0.1].

6.4.2 Deterministic Deployment

In this section we examine the performance of deterministic deployment and compare it with

the performance of stochastic deployment. Initially, we study the detection probability for

just two sensors, and then we generalize for N sensors.

Deployment of two sensors

In the case of two sensors, we have shown that the highest detection probability is achieved

when the sensors are placed at the diameter of the FoI. In figure 6.11(a), we show the

detection probability as a function of the distance among two sensors normalized over the

diameter of the FoI. The FoI is a assumed to be a disk of radius R = 100m while the

radius of the sensing area of the sensors varies from r=10m to r=40m. We observe that as

the distance between the two sensors grows the detection probability asymptotically tends
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Figure 6.11: Deterministic deployment: (a) Detection probability by two sensors as a func-
tion of their distance, for varying r. (b) Detection probability bounds by deterministic
deployment and comparison with random deployment.

to 2r
R . Note also that the in the worst case scenario, the two sensors are placed on the same

position, in which case the detection probability is half of the asymptotic value.

Deployment of N sensors

For the case of N > 2 sensors no algorithm exist that will provide the positions of the

sensors that maximize PD(1). In Section 6.3.2 we showed that the number of terms required

to calculate the exact formula grows exponentially with N. Hence, we derived relevant lower

and upper bounds. Since an algorithm for obtaining the optimum deterministic performance

in the general case of N sensors is not known, we adopt a heuristic deployment strategy

and evaluate the lower and upper bounds.

According to our heuristic we place the sensors on the boundary of the sensing area at

the N vertices of a canonical polygon. This heuristic guarantees that sensing areas do not

overlap, unless the whole boundary is covered, in which case the detection probability equals

one. In figure 6.11(b) we show the lower and upper bound for the detection probability using

our heuristic, as well as the detection probability under stochastic deployment.

We observe, that the lower bound of our heuristic always outperforms the random sensor
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deployment. As the number of sensors deployed increases, the lower bounds deviates from

the upper bound because an exponentially growing number of terms from the exact detection

probability formula are ignored and hence, the bound becomes looser. Furthermore, the

upper bound is not an achievable bound and hence, given a fixed FoI the difference between

the upper bound and the maximum achievable detection probability grows. Recall that

the upper bound is an asymptotic value for an infinite FoI in which case the detection

probability tends to zero.

6.5 Related Work

The target detection problem in WSN has been a topic of study under different metrics and

assumptions [18,25,26,42,75]. In [42], the authors investigate the tradeoff between detection

quality and power conservation. Compared to our work, their formulation models sensing

areas as unit disks, and considers the mean free path as a quality of surveillance metric.

In [18], the authors provide analytic formulas for the mean delay until a target is detected,

when sensors follow a random scheduling sleeping pattern. In [25,75], the authors proposed

a collaborative detection model, where sensors collectively arrive at a consensus about the

presence of a target. Their formulation assumes homogeneous sensing areas, with detection

capability decaying as a function of distance. In [60], the authors provided algorithms for

optimum k-coverage of the boundary of a FoI In their problem, there is no constraint on

the number of sensors that can be deployed and, hence, detection occurs with probability

one once the boundary is 1-covered.

6.6 Summary of Contributions

We studied the problem of quantifying the target detection capability of heterogeneous

WSN. We analytically evaluated the detection probability of a mobile target when N sensors

are deployed to monitor a FoI. We considered both stochastically and deterministically

deployed WSN and mapped the target detection problem to a line-set intersection problem.

Using our formulation, we derived analytical expressions for the probability of detection for

heterogeneous WSN. In the case of stochastic deployment, we also analytically evaluated

the mean time until a target is first detected. For the case of deterministically deployed
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WSN, we showed the difficulty of computing the optimal sensor placement that maximizes

the detection probability and provided a heuristic. We derived lower and upper bounds

for the detection probability that depend only on the length of the sensing areas and the

pairwise distances among the sensors. Determining the sensor topology that maximizes the

detection probability for a given number of sensors N and FoI remains an open problem.

We verified our theoretical results via detailed simulations.
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Chapter 7

CONTRIBUTIONS AND FUTURE RESEARCH DIRECTIONS

7.1 Contributions

The successful commercialization of ad hoc and sensor networks significantly depends on

the ability to realize secure applications. The absence of infrastructure, the limited com-

putational and energy resources as well as the untethered network operation in potentially

hostile environments, make the problem of providing secure network functions a challenging

one. In this dissertation we addressed the following problems related to network security of

ad hoc and sensor networks, as well as performance evaluation of sensor networks.

In Chapter 2, we address the problem of key management for secure multicast commu-

nications in wireless ad hoc networks. We formulate the problem of key management as an

optimization problem and studied its complexity under three important network resources;

storage, bandwidth and energy expenditure. We showed that while optimal solutions exist

in terms of storage and number of messages transmitted, finding the optimal solution with

respect to the network bandwidth and energy expenditure requirements, is an NP-hard

problem. We also show that no optimal solution exist that would concurrently optimize all

three network resources. Hence, we studied tree-based key structures that are known to be

scalable in both storage and bandwidth.

We showed that the energy expended by the network to distribute cryptographic quan-

tities depends both on the network topology and path-loss parameters of the medium, and

introduced the average key update energy as a new metric to evaluate the energy efficiency

of key management schemes. To reduce the energy expended by the ad hoc network to

perform key management, we devised a topology-dependent key management scheme that

exploited node location information to built a key-tree hierarchy, in the absence of any

other information. When routing information is assumed available, we improved upon the

resource efficiency of our location-aware algorithm by employing a cross-layer design based
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on network flows, that explicitly takes into account the flow of the information from the

GC to the members of the communication group.

In Chapter 3, we investigated the problem of secure location estimation in the presence

of adversaries. We proposed a novel range-independent localization scheme for wireless

ad hoc networks based on a two-tier network architecture, that achieved decentralized,

resource-efficient robust node localization. We showed that SeRLoc is resilient to well

known security threats against the localization process, such as the wormhole attack, the

Sybil attack and compromise of network entities, and provided security mechanisms that

allow each node to determine its location even in the presence of those threats. Furthermore,

we analytically evaluated the probability of success for each type of attack using tools from

spatial statistics theory. Based on our performance evaluation, we showed that SeRLoc

localizes nodes with higher accuracy than state-of-the-art decentralized range-independent

localization schemes, and is robust against varying sources of error. We also presented

HiRLoc, a high-resolution localization algorithm that improves the accuracy of SeRLoc,

while not degrading its robustness to attacks.

In Chapter 4, we presented a graph theoretic framework for modeling wormhole attacks

in wireless ad hoc networks, and derived the necessary and sufficient conditions for detecting

and defending against wormhole attacks. Based on our framework, we showed that any

candidate solution preventing wormholes should construct a communication graph that is a

subgraph of the geometric graph defined by the radio range of the network nodes. Making

use of our framework, we proposed a cryptographic mechanism based on local broadcast

keys in order to prevent wormholes. Our solution does not need time synchronization or

time measurement, requires only a small fraction of the nodes to know their location, and

is decentralized.

In Chapter 5, we addressed the problem of stochastic coverage in heterogeneous sensor

networks. We formulated the stochastic coverage problem as a set intersection problem,

arising in Integral geometry and Geometric Probability. Our formulation allowed us to

derive analytical coverage expressions even when the sensors have heterogeneous sensing

capabilities and are deployed according to any stochastic distribution. We validated our

theoretical derivations by evaluating both the KL-distance as well as the TV-distance of
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our theoretical results from the results obtained via simulations and showed an almost

exact match. Our analytical formulas provide a network design tool for guarantee quality

of services in terms of coverage of a field of interest.

In Chapter 6, we addressed the problem of detection of mobile targets in sensor networks.

We analytically evaluate the target detection probability when N sensors are deployed to

monitor a field of interest. We mapped the target detection problem under both stochastic

and deterministic sensor deployment, to a line-set intersection problem, and derived analytic

formulas using tools from Integral Geometry and Geometric Probability. Compared to

previous works, our formulation allows us to consider a heterogeneous sensing model, where

each sensor can have a different and arbitrary sensing area.

For stochastic sensor deployment, we also analytically evaluated the mean time until

a target is first detected, a critical measure for timely detection. For the deterministic

deployment case, we showed that the probability of detecting a target increases as the

distance among the sensors monitoring the field of interest increases. We also showed that

the number of terms required to compute the placement of sensors that maximizes the

target detection probability, grows exponentially with the number of sensors that monitor

the field of interest.

7.2 Future Research Directions

The work presented in this dissertation can be extended to the following directions.

7.2.1 Secure Localization in Wireless Ad Hoc Networks and Sensor Networks

In Chapter 3, we stressed the importance of developing a secure location estimation scheme

that is robust against attacks from malicious adversaries. We developed SeRLoc and

HiRLoc, two range-independent localization schemes and illustrated their robustness to var-

ious types of attacks in wireless ad hoc networks, by analytically evaluating the detection

probability and the false alarm probability.

Both SeRLoc and HiRLoc rely on two-tier architectures, with locators having higher

capabilities than regular sensor nodes. For certain application such a node hierarchy may not

be feasible. In such a case the problem of secure localization must be investigated under a flat
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network architecture. Furthermore, detection of attacks using our algorithms is probabilistic

and suffers from false alarm. The false alarm can be a frequent phenomenon given the

imperfections of the communication medium. Developing methodologies to distinguish the

false alarm from attacks remains an open problem. Such methodologies will allow us to

increase the detection probability and at the same time reduce the false alarm rate. Finally,

while we were able to analytically evaluate the detection probability using tools from spatial

statistics, the problem of analytically evaluating the localization error in the presence of

adversaries has not been addressed. An analytical evaluation of the localization error, will

provide a design tool for selecting appropriate network parameters to guarantee the required

accuracy to applications using the localization service.

7.2.2 Detection of Mobile Targets in Wireless Sensor Networks

In Chapter 6, we provided formulas for analytical evaluation of the probability of detection of

mobile targets in wireless sensor networks. Our formulation analyzed the worst case scenario

in which targets were crossing the FoI moving on a straight line, thus remaining within the

FoI the minimum amount of time. As a future research direction, these analytical formulas

must be extended to arbitrary target trajectories, including simple curves or curves with

double points. Furthermore, addressing the problem of target detection when the target

has some knowledge of the network remains a challenge.

We also showed that in the deterministic sensor deployment the formula that character-

izes the detection probability with respect to the locations of the sensors has exponentially

increasing computational complexity, Hence, the positions of sensors that maximize the

detection probability cannot be determined for large networks. Developing heuristic al-

gorithms for sensor placement with suboptimal performance, remains an open problem.

Finally, characterization of the target detection probability in three dimensions is a natural

extension of this work, from the two-dimension plane.

7.2.3 Threat Modeling

The threat models that are presently used in evaluating the security of network functions

of ad hoc and sensor networks have migrated from the wired environment. The most
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commonly assumed adversary model of a global powerful adversary able to eavesdrop all

communications occurring in the network, and having unlimited computational resources,

is not a realistic for the ad hoc environment. Adversaries have only partial access to the

communications taking place in the network, constrained by their communication range.

Also the adversary goals in ad hoc networks vary significantly from the goals of ad-

versaries in wired networks. The cross-layer designs adopted in ad hoc networks generate

new types of network vulnerabilities. Adversaries disrupting protocols at one layer, can

significantly impact the functionality at another layer due to the cross-layer interaction.

Furthermore, the computational and energy constrains of the wireless devices make them

vulnerable to denial of service attacks, aiming at exhausting the battery of the devices.

Based on the ad hoc network characteristics and adopted applications, new threat mod-

els must be proposed that adequately capture the goals of the adversaries as well as their

capabilities.

7.2.4 Protocol Verification

While the protocol details for the main network functions start to formalize, security mech-

anism are being proposed to shield the network from adversaries aiming at interrupting

and/or degrading the network functionality. However, most security protocols that have

been proposed for wireless ad hoc and sensor networks do not provide provable security. In

fact, oftentimes algorithmic details and critical assumptions are left un-stated, leading to

implementation issues and flaws. Hence, it is imperative that any adopted security proto-

cols undergo a formal protocol verification process. A rigorous and step by step protocol

verification process can guarantee the provision of the acclaimed security for the critical

network functionalities.
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