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Abstract

This tutorial paper attempts to bring together the literature
on the Asymptotic Waveform Evaluation (AWE) technique.
The efficient generation of moments and using moments to
determine stable and accurate AWE approximations are
discussed. Techniques to determine AWE macromodels and
extend AWE to distributed elements are also discussed.

1 The Evolution of AWE

Although it is of a relatively recent vintage [20], Asymptotic
Waveform Evaluation (AWE) has been the subject of a large
number of papers [23}{21][11[9][41][52][26][25][27][46]{17]1[48}
[30)113]{22][28][32]{2]{33](34][24][371[31][36][16][35][15]. With
this invited tutorial paper we hope to set the record straight on what
AWE is, what it is not, and give a feel for its evolution.

AWE drew its inspiration first from the seminal work of Pen-
field, Rubinstein, and Horowitz{38], which applied the efficient
Elmore delay({8] estimate to the RC-trees that can arise in integrated
circuit modeling. Since these estimates were not always accurate, an
essential attempt of the early work was to bound the transient
response waveform([50]. A number of subsequent works concen-
trated on tightening the bounds[53] [42]and/or extending the domain
of applicability of these techniques beyond RC-tree structured cir-
cuits[6][49]. A second point of inspiration was the work of McCor-
mick and Allen[43], which showed that interconnect circuit
moments (the coefficients of expansion of a circuit driving point or
transfer function in a Maclaurin series about s=0 in the frequency
domain) could lead to lower order circuit models that provided rea-
sonably accurate transient responses. From there it was but a short
step to the formalization and generalization of what has come to be
known as AWE.

Why did we name it Asymptotic Waveform Evaluation? AWE
finds successively higher, but relatively low order approximations to
much higher order systems. These low order approximations consist
of a few dominant poles (and zeros). As the order of the approxima-
tion increases, the related approximate transient responses asymptot-
ically approach the actual, inspiring the name. At first we called it
Asymptotic Waveform Estimation but as our confidence grew we
redubbed “Estimation” “Evaluation”.

What is AWE? As originally presented [35], AWE comprised
two essential steps: recursive solution of an equivalent dc circuit to
find driving point or transfer function moments (coefficients of the
Maclaurin Series expansions of those functions about the s-plane
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origin, s=0); and Padé Approximation [10] to match a low order
system to the first few terms in that expansion. To be honest, we did
not know what we originally did was Padé approximation. The
result was derived in such a convoluted manner [35] that we didn't
recognize Padé approximation to be part of it. And had we known
that, we might not have pursued it, given the reputation of Padé
approximations to yield unstable poles[4]. By the time we realized
what we were doing was Padé approximation the results we had
obtained were too good to cause us to stop.

This paper attempts to bring together the literature on AWE
and put it in perspective. We will discuss the basic AWE algorithm
in the next section. Section 3 will discuss moment generation tech-
niques. Sections 4,5 and 6 will concentrate on techniques to obtain
stable and accurate AWE approximations. Section 7 discusses tech-
niques to include AWE Macromodels in other simulators. Section 8
will discuss the extensions of AWE to handle distributed elements.

2 The Basic Algorithm

The AWE algorithm is a technique to approximate time domain
(transient) responses of large linear circuits in terms of a few domi-
nant poles and their residues. This low order approximation forms a
reduced order model for a given high order circuit.

The AWE algorithm consist of two main parts —moment com-
putation and moment matching. Let us first define a time moment of
a function.

The time domain moments of a signal f (f) are related to the
Taylor series coefficients about s = (0 (Maclaurin Series) of the
signal’s Laplace transform, F (s) :

F(s) = jf(r) T
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is the #P coefficient of the Taylor series expansion of
y

F (s) about s = 0, which is closely related to the i’ * time
moment of f (f) given by

i — moment = jt‘f(t) dt 4)
0
A lumped, linear, time-invariant circuit can be described

by a first-order matrix differential equation, such as

Tx (1) +W%J;E = b(t) (5)

The above expression holds true independent of the way
that the circuit equations are formulated (e.g., by modified
nodal analysis[12], sparse tableau{11], etc.) The vector x (¢)
contains the fundamental circuit variables of interest; these
could be currents, voltages, charges, etc., depending on the for-
mulation method. The matrix T represents the contributions of
memoryless elements (such as resistances), while the matrix W
contains contributions from memory elements (capacitances

and inductances). The right-hand side vector b (f) describes

the influence of independent sources. Taking the Laplace trans-
form of (5), and assuming zero initial conditions, yields

(T+sW)X(s) = B(s) 6)
Equation (6) can be used to determine the moments of the
circuit’s impulse response X () . If we assume that the Laplace

transform of X (¢) has a Taylor series expansion about s = 0,
and that the input sources are impulses, then we have

X(s) = Xo+5X, +5°X,+ ... )

and

B(s) = B, (independent of s). 8)

Substituting (7) and (8) into (6) yields

(T+sW) - (Xg+5X;+5°X,+...) =1(9)

Equating like powers of § in the above expression, we find
that

TX, = B, and (10)

11)

Equations (10) and (11) can be solved recursively to deter-
mine the moments of x (¢) . First (10) is solved for X ;. Notice
that this is equivalent to performing a dc steady-state solution

TX, = -WX,_, for k>0.

of (5), with the input sources set to dc values B o- After X has
been determined, it can be used in equation (11) to compute the
right-hand side vector —WX ; this allows us to solve for X .
The procedure continues recursively, until 2g moments have
been obtained.

The moment computations described above can be per-
formed very efficiently. To solve (10), the matrix 7 must be fac-
tored into lower and upper triangular (LU) form. Once this has
been done, the LU factors of T may be re-used to solve (11)
with a different right-hand side. Thus, only 1 LU-factorization
is required. Also note that the circuit may be re-solved for a dif-
ferent impulse response requiring another factorization; only

the value of B, must be changed.

Suppose now that the 2g low-order moments for a partic-
ular circuit response H (§) have been determined

(12)

The AWE algorithm matches these moments to a

H(s) = my+sm,; +s2m2+

reduced-order model (s) by using Padé approximation.
The reduced-order model has g poles, and is described by a
strictly proper rational function:

q-1
by ST+ +bys+ b,

H(s) =

(13)

9
a7+ ... +as+1

Setting (12) equal to (13) and cross-multiplying by the
denominator yields a set of linear equations that can be solved

for the coefficients {a,,} and {b,} of the reduced-order
model{52]. The poles {p,} of the approximate model can

then be determined by finding the roots of the denominator
polynomial. This allows the reduced-order model to be
expressed as a partial fraction expansion:

. Lok
A(s) = zs_’p

r=1

(14)

where the {k;} are the residues corresponding to the
poles {p;}.

With the impulse response of the circuit described by the
analytic approximation (14), it is possible to determine the
response to any kind of input. For example, the step response
can be found by multiplying (14) by 1/, and evaluating the
inverse Laplace transform of the product analytically. Thus, it
is not necessary to repeat the moment computations when the
input signal changes.

3 Moment Generation

Though the recursive solution technique described in the
previous section reduces the cost of finding moments to a sin-
gle LU factorization and a number of Forward and Backward
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Substitutions of the circuit matrix, LU factorization remains the
dominant cost of determining an AWE approximation for most cir-
cuits of reasonable size. Thus a great deal of effort has gone into
improving the efficiency of moment generation.

It is often erroneously claimed that the cost of finding the LU

factors of a circuit matrix is O (n3) , where n is the dimension of the
circuit matrix. Using sparse matrices, it has been shown that the cost

of finding the LU factors is O (nM— 1‘7) for matrices that typically
arise in circuit simulation. For tree structured circuits, commonly
seen in integrated circuit interconnect it can be shown that the cost of

LU factorization is actually O (n) . For structures which do not sig-
nificantly differ from tree structures the order is close to O (n) .

An application specific implementation of the AWE algorithm,
RICE, [30] which exploits the fact that interconnect circuits are
largely tree structured with relatively few non-tree elements has
been developed. This technique used path tracing, compaction and
factorization to speed up the generation of circuit moments. For
many interconnect circuits, RICE showed a significant speed up over
a general implementation of AWE using the Sparse 1.3[{19] Package
from Berkeley for sparse matrix manipulation. Suitably tuned sparse
matrix techniques can be competitive with path tracing while retain-
ing generality for non-tree structured circuits.

4 Searching the Padé Table

It has been known historically {4] that Padé approximation can
produce poles with positive real parts for stable systems. In such
cases the time domain response of the approximation will be
unbounded. Another problem associated with Padé approximations
is that successively higher orders of approximation are not guaran-
teed to converge uniformly to the actual high order system function,
though such convergence can often be observed. This raises two
important questions about Padé approximation: How do we guaran-
tee a stable approximation? How accurately does our approximation
model the actual system function? We attempt to answer these ques-
tions in the remainder of this paper.

The standard form of AWE approximation assumes that a gth
order approximation consists of g poles and g — 1 zeros, as thisis a
common form of many system functions. However, AWE approxi-
mations can have any number of poles and zeros[51]. This gives rise
to an entire table of Padé approximants shown in (15). As we move
to the right on this table the number of zeros in the approximation is
increased while moving down the table increases the number of

poles in the approximation. An approximation P, has n poles and

m zeros.
Poy Py ... Py, .
Py Py oo Py e (15)
P P,..P,, ..

In general, when dealing with bandlimited signals we can

restrict consideration to approximants that have more poles than
zeros. Given the plethora of approximations available it is relatively
easy to find a stable approximation, however finding an accurate
approximation is another issue.

Searching the entire Padé table is possible but can be time con-
suming due to the quadratically increasing number of possible Padé
approximants. Two popular techniques to search the Padé table
described in mathematical literature [3] are the diagonal sequence
and the horizontal sequence.

The diagonal sequence searches the Padé table along a subdiag-
onal, typically the subdiagonal which has one more pole than zero.
The original form of AWE approximation [35] [20] is of this type.
While approximations of this kind generally approach the actual sys-
tem function as the order of the approximation is increased, no guar-
antees can be made.

The horizontal sequence fixes the number of poles in the
approximation and then horizontally traverses the Padé table pro-
gressively increasing the number of zeros in the approximation. It
has been shown that a horizontal sequence with n poles uniformly
converges to the n lowest frequency poles as the number of zeros is
increased and the appproximation itself converges uniformly to the
system function within a circle of radius R (shown in Figure 1) equal
to the magnitude of the largest pole in the approximation [14]. The

Jjo

3
J

Figure 1: Radius of convergence for a four pole
approximation

rate of convergence of each pole is dependent on the ratio of the
magnitude of that pole to the magnitude of the smallest pole outside
the circle of convergence.

The reason why the horizontal sequence tends to converge to
the low order poles can easily be explained. Consider, an approxima-
tion P, (5) with many more zeros than poles m » n

b,s"+b,_;s" "+ +b,

n n

-1
8T L+

(16)

— 1 m+n
=my+ms' +...+m,, "+

e

When these equations are cross multiplied it follows that the
moments used to calculate the poles are the moments m_, _,_,

18.1.3



through m,, , ,_. As can be simply inferred from the time

domain definition of moments in (3), the higher moments tend
to emphasize the long time response and thus the low fre-
quency poles of the system.

Assuming that our system is band limited, the high fre-
quency zeros that lie outside the region of convergence can be
ignored and an accurate bandlimited low order response to the
system function can be obtained. If it is desired to increase the
bandwidth of the approximation the order of the approxima-
tion must be increased. A practical limit on the bandwidth may
be reached due to the presence of a cluster of poles which
reduces the convergence of additional poles. The convergence
rate of the horizontal sequence can be slow when the ratio of
the magnitude of the smallest pole outside the circle to that of
the largest pole within the circle is almost unity. This is often
the case when a large cluster of poles is encountered at a cer-
tain frequency. The details of the horizontal sequence
approach are described in [51] [45]

A variation on the horizontal sequence approach is the
“moment shifting” approach [29]. In this approach too the low
frequency poles are emphasized by using progressively higher
order moments to determine the poles. The use of progres-
sively higher moments is achieved by matching step, ramp or
even a quadratic input response instead of the impulse
response. In this case the lowest order moments are used to
match the particular solution of the input. For example, when
the input is a ramp we have

g-1 qg—2
A, Ay b 57T b, 8T+ 4Dy

7+_+ q g—1
s s sT+a T +...+a
g-1 0 (17)
m, m, 2,
e, 9,
= = + p +mytmas+ ..My, 8 .

The conventional ¢ pole g — 1 model is used and the
lowest 2 moments are used to “match” the particular solution
to the ramp input while higher moments are used to match the
poles of the circuit. Results have shown that this technique can
more or less guarantee stable approximations. However, accu-
racy must be ensured by other means.

5 Shifting and Multipoint AWE
algorithms

Another way to improve stability and accuracy of AWE
approximations, is to improve the quality and quantity of sys-
tem function information. In the original AWE paper [20],
moments, i.e. the coefficients of the Taylor series expansion
about § = 0, were the primary source of modeling informa-
tion. However, it was recognized that using expansions exclu-
sively about § = O would produce large time domain errors
near the initial time point (¢ = (). To overcome this, the ini-
tial condition, or the first coefficient of the expansion about
§ = oo, was used in addition to the moment information.

This idea was extended improve the accuracy of AWE

approximations near the initial time (t = 0), through the use of
both moment as well as derivatives[52] (the coefficients of the

Taylor series expansion of § = oo in the frequency domain).
The use of derivative information has proved useful in piece-

' wise linear transient simulation [23] as it is important to match

the initial conditions accurately. Such multi-point Padé
approximations have been discussed in the literature as well
[3]. Also in [51], the first attempts were made at expanding the
system function at points other than s = ( and 5 = oco. In
[40] arguments are made for using expansions about § = oo

(and a single term about § = 0) “instead of AWE”. However,
we prefer to recognize AWE as rational approximations of
functions using expansions about any combination of points in
the s-plane.

The concept of expanding the system function in a Taylor
series at some point other than § = O was originally called
“frequency shifting” [S1]. The expansion about a new fre-
quency often improved both the stability and accuracy of an
AWE approximation. If an expansion point s = h along the
positive real axis is chosen the procedure described in basic
algorithm is modified only slightly. Instead of (6) we then have

[T+hW+ (s—h)W1X(s) = B(s) (18)

The vector X (5) is then expanded as a series in

(s—h). A recursion relationship between the “shifted”
moments can be developed, which is similar to (10)and (11).
The only difference is that now the matrix T+ AW must be
LU-factored, instead of T'. This may be advantageous in cases
where the matrix T is singular, relaxing topological con-
straints. However, the sparsity of the matrix is often reduced by
frequency shifting; W may have nonzero entries where the
entries of T were zero. This may diminish the computational
efficiency of the LU factorization. Complex frequency shifts
can be entertained in a similar manner.

A merged AWE approximation can be formed from mul-
tiple shift frequencies. The approximation will contain infor-
mation from each shift frequency. A general technique to
include multiple shift frequencies in an AWE approximation is
described in [22]. The process begins by forming an AWE
approximation with the first shift frequency. A merged approx-
imation is formed by repeatedly deflating each subsequent set
of shifted moments by the existing approximation. The
deflated moment set is used to form an AWE approximation—
this set of poles and residues is added to the previous approxi-
mation, as a corrector. This process continues until the energy
contained in the deflated data set is sufficiently small.

Another multipoint AWE algorithm has been described in
[7]. In this technique, a number of shift frequencies along the
J axis are combined to find accurate high order approxima-
tions for circuits which have a number of high-Q poles close to
the imaginary axis. This technique performs expansions about
s =0 and § = JO_ . . If there exist poles that appear in

both of these expansions, then the search is considered com-
plete. Otherwise, more frequencies are selected using a binary
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search and expansion is carried out about until each intermedi-
ate frequency has at least one pole in common with the fre-
quency above and below it. This search scheme is summarized
in Figure 2.

”

Figure 2: Circle of “confidence
expansion

for each Taylor series

6 AWE and numerical integration
algorithms

A generalization of the AWE technique which relates
AWE to conventional numerical integration techniques is
introduced through the concept of a mapping. A mapping

defines a relationship between the eigenvalues, A, , of the cir-

cuit, and the eigenvalues, XB, of a related circuit. This pro-
vides a unifying theory—integration time points, moments,
derivatives and shifted moments and shifted derivatives can be
considered as mapped data points, which can be used to form
AWE approximations.

The mappings for forward Euler, backward Euler and
trapezoidal integration [47] are derived in [22]. The numerical
strengths and weaknesses of each method are discussed. The
relationship of these mappings to moments, derivatives, and
shifted moments is established. This generalization has led to a
significant improvement in the obtainable accuracy of the
AWE approximations.

7. AWE Macromodels

In the previous sections, we discussed the process of find-
ing AWE approximations for a single circuit function. It is
straightforward to extend this technique to find AWE approxi-
mations for linear multiport circuit partitions. These AWE
approximations may determine the H,Y,Z or S parameters of
the multiport circuit. The cost of finding moments for an entire

multiport approximation is shown to be a single LU factoriza-
tion [21]. The moments of a number of multiport partitions can
be combined to form larger multiport partitions in a hierarchi-
cal manner [21]. The form of the macromodels are slightly
altered by the presence of arbitrary initial conditions and inde-
pendent sources within the partitions [21].

If the circuit solution of the global circuit is super-linear
in the number of circuit elements, solving it in a hierarchical
manner can speed up the circuit solution. In addition, some of
the resulting partitions may have structures enabling the use of
special solution techniques to determine their admittance rep-
resentations. Ladder networks and distributed elements are
some practical circuit partitions that fall into this category.
These special purpose solution techniques [21]can reduce the
solution time of such partitions by orders of magnitude in
some cases. The global matrix can be solved using a general
matrix solution technique, and thus generality is not compro-
mised.

This capability enables us to solve for macromodels of
the partitions, and then abstract them away during the solution
of the global circuit. This leads to significant memory savings
which can be crucial in solution of extremely large intercon-
nect circuits. A macromodel thus determined can also be cata-
logued and used again in the solution of any other related
circuit.

All the matrix elements in AWE macromodels may be
forced to have a common denominator [46] [18], that is the
same set of poles can be forced on all the elements of the mac-
romodel. In this case, an AWE approximation is determined
only for one element of the macromodel. The same set of poles
is then used for all the other elements of the macromodel,
while the residues are determined from the moments of each
corresponding element of the macromodel. The cost of macro-
model determination may be marginally reduced if the circuit
has a large number of ports, however the accuracy of the
approximation may be sacrificed.

Alternatively, the macromodels may permit different sets
of poles and residues for each element [48]. This allows differ-
ent orders of approximation for the different elements of the
macromodel which is desirable as different orders may be
required to approximate them accurately.

Macromodels can be combined with nonlinear transient
sirnulation in an accurate and efficient manner using a form of
recursive convolution [48] [18]. Recursive convolution of
rational functions was probably first described in [39].

8. Distributed Elements

The AWE technique has been extended to handle lossy
coupled transmission lines without resorting to lumped equiva-
lents [27] [9]. In the limit of increasing accuracy, distributed
models are more efficient than the lumped model approach due
to the large number of lumps required to accurately approxi-
mate the distributed nature of the lines. In the distributed
model, moments for the vanous circuit variables are found
from the constitutive differential equations. The circuit vari-
ables constitute a multiport admittance macromodel in the
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moment domain. This model can then be converted into a pole-resi-
due model by means of Padé approximation making it useful in time
domain simulation.

A second approach to simulating distributed elements with the
AWE technique recognizes that transmission line responses can
contain pure delays[44]. These represent the time required for a
wave to propagate from one end of the line to the other. It is difficult
for the standard AWE algorithm to capture such a response because
a rational function model has been assumed. In the time domain, the
model response consists only of real or complex conjugate exponen-
tials. To represent a pure delay, the AWE approximation must
employ decaying sinusoids to artificially force the response to be
close to zero for some initial time period. This can lead to spurious
ringing effects in the AWE waveforms for lower orders of approxi-
mation.

To overcome this problem, the AWE technique has been
extended to the generalized method of characteristics {5] for distrib-
uted elements. The delay factors are computed exactly and
“extracted” from the propagation functions for the lines. The
“remainder” responses can be viewed as containing the attenuation
and dispersion behavior of the propagation responses. A conven-
tional AWE analysis is used to accurately approximate the propaga-
tion response without delay. The resulting model is more accurate at
lower orders of approximation, and can be simulated efficiently in
the time domain, together with other linear and nonlinear elements.
Other researchers have developed Padé approximations about

§ = oo for distributed elements in a similar way [{40].

9. Conclusions

This paper has provided an overview of some of the continu-
ing tesearch on Asymptotic Waveform Evaluation (AWE) tech-
niques. Techniques to improve the efficiency of moment generation
have been discussed. A brief discussion of the various techniques to
improve the efficiency, accuracy and stability of AWE approxima-
tions has been provided. An overview of techniques to generate
AWE macromodels and extension of the AWE technique to handle
distributed elements has also been presented.
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