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Today�s Questions: 

What are the open problems in circuit 
simulation?   Where are the opportunities to 
have an impact on industry?
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Personal View of 1990s

� Market Driver : Wireless Communications 
- RF simulation becomes mainstream 

� Technology Driver : Deep-Submicron Integrated 
Circuit Processes
- Local parasitics are important 

� New (Enabling) Numerical Technology : Krylov-
subspace methods 
- Full-Chip RF simulation 
- Model reduction for circuit, signal-integrity analysis 
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Example 1 : RF Circuit Simulation 

� Multiple Timescale Problems
- Carrier : 1 GHz 
- Voice/Data : 10-100kHz 

� RF systems are designed to shift frequencies 
� Intrinsically nonlinear, time-varying! confusing 

f0
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Example 1: RF Circuit Simulation 

� Dedicated tools provide value for designers
- Steady-state methods trade equations for insight 
- A good trade if you can solve lots of equations fast 

� Before : Spectral methods (harmonic balance) 
- Good match to microwave design, linear circuits, traditional RF 

performance metrics 

� Alternative : Shooting methods 
- Good match to existing circuit simulators, strongly nonlinear 

models  
- Very robust
- Lack dynamic range; frequency-domain modeling  is hard 
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Multiple Timescale Problems 

� Multi-Interval Chebyshev-based method : 
continuum between spectral and Gear

I II III IV V

Subintervals
High order where smooth, low order where irregular ; 
helps w/ linear, nonlinear convergence also! And we 
can use frequency-domain models. 
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Predictions 

1990s 2000+

� Communications Driver 
- Narrowband 
- 1-5GHz 

� Digital DSM ICs
- Local Parasitics 
- Managing Scale 

� Analysis Focus
- Simulation 

� Still Communications 
- Wideband 
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Multiple Timescale Problems 

� Open problem :  unstructured (marginal �carrier�) 
systems.  
- Frequency synthesis 
- Clock & data recovery 

� Challenge : noise analysis
- At transistor-level (accurate) 
- In time comparable to steady-state methods 
- With a supporting analysis framework 

� Key numerical technology : ??? 
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Predictions 

� Communications Driver 
- Narrowband 
- 1-5GHz 

� Digital DSM ICs
- Local Parasitics 
- Managing Scale 

� Analysis Focus
- Simulation 

� Still Communications 
- Wideband 
- >> 5GHz 



10

High-Frequency Modeling 

� Distributed effects become relevant for AMS ICs 
somewhere above 5GHz 

� Challenge : Circuit model generation from 
integral equation codes 
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Lumped Linear Systems 

� State-space models, input    , output

� Frequency domain form 

DuCxyBuAx
dt
dx

+=+=

u y

BAsICDsH 1)()( −−+=

DuCxyBuAxsx +=+=

)()()( susHsy =

Model reduction : in a rigorous manner, generate a 
system of the same form,  but smaller dimension, 
with input-output behavior approximately the same
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Distributed Linear Systems 

� State-space models, input    , output 

� High-frequency  problems produce frequency-
dependent
- full-wave integral equation solvers 

- solvers with substrate interactions
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Passivity 

� Passive systems do not generate energy.   We cannot 
extract out more energy than is stored.  A passive
system does not provide energy that is not in its storage 
elements.   t

0)()(Energy ≥= ∫
∞−

τττ dvi

! Strictly passive systems dissipate energy and satisfy

0)()(Energy >= ∫
∞−

τττ dvi
t

! If the reduced model is not passive it can 
generate energy from nothingness and the 
simulation will explode 
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Causality 

� We further suppose our systems have a 
convolutional representation 

� A causal system is not anticipative 
- present outputs depends on past inputs, not on 

future inputs

∫
∞−
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Projection methods for linear systems 

" Projection squashes matrices to smaller size

A A^Q

TQ

" How to get       ?   How to represent          ?  Q )(sA
Projection must match frequency response 
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Our Procedure

1) Projection: from matrices of size ~100,000 frequency 
dependent, to size ~20 still frequency dependent

2) Interpolation: captures frequency dependency with 
globally uniformly convergent rational approximant

3) Realization of a reduced dynamical linear system
- can do this because the interpolation functions are rational 

4) Passivity check +  further reduction
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Step 3: Realization (example)

� Real part of 
frequency response

! Inductive part of 
frequency response
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High-Frequency Modeling 

� Our procedure : distributed ! lumped 

� What about : distributed ! distributed ? 
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Predictions 

� Communications Driver 
- Narrowband 
- 1-5GHz 

� Digital DSM ICs
- Local Parasitics 
- Managing Scale 

� Analysis Focus
- Simulation 

� Still Communications 
- Wideband 
- >> 5GHz 

� Digital + Analog SoCs 
- Global parasitics 
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Global Parasitic Analysis

� Trend in analog/RF/mixed-signal circuit design : 
- Put everything together (integrate)! 
- Systems-on-chip, systems-in-package 
- Single-chip RF 
- Digital + analog together 

� Integration is good because it reduces cost
- (fewer parts)  

� Integration is bad because it reduces isolation
- (fewer parts) 



21

Most Problematic Areas 

� Ultra-sensitive systems  
- RF designs : very low input signal levels, high gain 

through signal path 
- Small unanticipated effects can degrade 

performance, stability
- Need extreme (~120 dB) isolation 

� Massive Coupling
- Everything couples to every thing else : matrices are 

potentially dense or nearly so
�Substrate networks 
�Package inductances  

- Computationally intractable except for tiny circuits 
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Key Questions for Massive Parasitic Models

� Q1: Do we really need to model all those 
couplings? 
- If not, how many do we need? 

� Q2: If many, how to analyze them? 
- How to represent dense parasitic models? 
- How to extract?
- How to simulate?
- [Multi-level representations will play a key role.] 

� Model problem: substrate analysis
- Resistances only 
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Two Approaches to Substrate Analysis 

� Full Numerical Approach : 
- Throw the problem to a field solver 
- Wait a long time and get a big resistance matrix 
- Take the whole network and feed it to a circuit 

simulator 
� Heuristic Approach : 

- Only keep couplings believed to be important 
�Neglect far-away portions of layout 
�Discard �large� resistors 
�Discard �small� areas 
�Limit type of analysis that can be performed 

� Which to use? 
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Suggests An Obvious Methodology 

� Massive coupling problems are not about 
extraction � can�t extract everything and bring in 
context later. 

� Look at impedances controlling strong (possibly 
indirect) paths  
- Use to place lower bound on global coupling 
- Discard anything that doesn�t substantially increase 

coupling 

� Find an efficient way to represent the rest 
- Must work in analysis tools : circuit simulators 
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Exploiting Multilevel Information 

� Multilevel decomposition can be used to further 
decompose matrix into dominant/secondary 
interactions 

� Primary Interactions       
(Keep)

� Third-Order 
Interactions (Drop)

� Second-Order 
Interactions (Keep.  
How?)
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Global Parasitic Analysis

� Open problem : simulate tightly coupled system, 
rigorously bound the effect of parasitic couplings.

� Key: context + algorithms. Think methodology & 
design, not simulation. 

� Prediction : by 2012, radiation-aware IC routers.  
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Predictions 

� Communications Driver 
- Narrowband 
- 1-5GHz 

� Digital DSM ICs
- Local Parasitics 
- Managing Scale 

� Analysis Focus
- Simulation 

� Still Communications 
- Wideband 
- >> 5GHz 

� Digital + Analog SoCs 
- Global parasitics 
- Managing Abstraction
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Design Across Multiple Abstraction Levels

� The old way  (for analog/RF design):
- Decide on some high-level specs, budget between 

blocks 
- Design the blocks, simulate, layout; repeat till converged 

� The new way : 
� Modeling is key, right?  
� Might as well drag out the model reduction card 

here too! 
� Success for : time-varying linear systems, weakly 

nonlinear systems 
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Nonlinear Systems  

� Explicit  Projection [many references]

- All detailed information in is generally 
required 

- Almost as expensive as original model ; model  
complexity unbounded as component number  

- Cannot push to higher abstraction levels!!!! 

dz
dt V f Vz Bu tT= +( ) ( )^dx

dt f x Bu= +( )

f ( )•

N →∞
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Polynomial Approximations  

� Expand nonlinearity in multi-dimensional polynomial 
series

� Differential equation becomes

� To match first few  terms in functional series 
expansion, only need first few polynomial terms   

dx
dt A x A x A x Bu= + + + +1 1 2 2 3 3( ) ( ) ( ) ...

etc.[ ]x x x x xn
T

( ) ...1 1 2≡ = [ ]x x x x x x x x xn n
T

( ) ...2 1 1 1 2≡ ⊗ =

f x A x A x A x( ) ...( ) ( )= + + +1 2 2 3 3

where

Each term      is a   -dimensional 
tensor, represented as an           matrix 

Aq q
n nq×
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Projection of polynomial terms 

� Draw     from reduced space as 
� Identity for Kronecker products 

� Project tensors 

� Gives reduced model 

x x Vz=

( ) ( ) ( )( )x x Vz Vz V V z z⊗ = ⊗ = ⊗ ⊗

A x x A Vz Vz A V V z z( ) ( ) ( )( ) ( ) ( )( )2 2 2⊗ = ⊗ = ⊗ ⊗

A V A VT^
( ) ( ) ,1 1= A V A V VT^

( ) ( )( ),2 2= ⊗

dz
dt A z A z A z Bu= + + + +( )

^ ( )
^
( ) ( ) ( )

^
( ) ...1 1 2 2 3 3

A V A V V VT^
( ) ( )( ),3 3= ⊗ ⊗ etc.
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Reduced polynomial models 

� Projection procedure produces reduced model in 
same polynomial form 
- key  tensor components are compressed to lower 

dimensionality 
- procedure is generally known 
- Kronecker forms provide convenient general notation

A V A V VT^
( ) ( )( ),2 2= ⊗

A2
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Computing Projection Spaces  

� How to get    ? 
- Analysis of linearized models [Ma88] -- Popular, Often 

Works
- Sampling of time-simulation data [Sirovich87]  -- Expensive
- Nonlinear balancing [Scherpen93] -- Not Computable

� No guarantees on system approximation properties,         
no a-priori way to tell when methods work or fail

� Variational Analysis Procedure : Extends 
Projection/Rational Interpolation Connection to 
Polynomial Systems

V

dz
dt V f Vz Bu tT= +( ) ( )^dx

dt f x Bu= +( )
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Problems with Polynomial Models   

� Model size grows exponentially with order of 
nonlinearity

- potentially large models 
- intrinsic in polynomial descriptions (e.g. Volterra series)
- practical for simple system nonlinearities needing only 

few terms in functional series (cubic at most) 

� Reduced models often unstable for large inputs 
- believed to be an artifact due to breakdown of polynomial 

approximations  
- probably hopeless to get a well-behaved reduced model 

if the truncated polynomial model is not well-behaved 
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Polynomials Approximate Only Locally

1)/( −= vtvesII
Consider second and eighth order approximates 

energy
inaccurategenerating
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Design Across Multiple Abstraction Levels

� Open problem : 
- Robustness guarantees for time-varying, weakly 

nonlinear systems 
- Strongly nonlinear (anything) 
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Predictions 

� Communications Driver 
- Narrowband 
- 1-5GHz 

� Digital DSM ICs
- Local Parasitics 
- Managing Scale 

� Analysis Focus
- Simulation 

� Still Communications 
- Wideband 
- >> 5GHz 

� Digital + Analog SoCs 
- Global parasitics 
- Managing Abstraction

� Synthesis Focus
- Parameter Variation
- Exploration & Optimization 
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Parametric Models 

� Why : 
- Design in the presence of variations, i.e. analysis for 

manufacturability
- Models in an automated design context (synthesis)

� Embed variation in model itself 

� Open problem : large # of parameters 

DuCxyBuxpAsx +=+= )(
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Emerging Methodologies

� Platforms, synthesis, re-targeting, re-use 
� Automated search, characterization, model 

generation 
� Prediction : Biggest driver for automation, 

simulations in parallel (not parallel simulation)
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Summary

� Still a future for numerics people? Yes! 
� Highest likelihood of impact 

- Esoterica (ultra-high frequencies, RF, optical).   New ways to 
analyze tough problems. 

- Tight coupling with design methodology, physical design, or IP 
creation tools. 

� Some open problems: 
- Unstructured multiple timescale problems, 
- Large-scale parasitic analysis
- Modeling of distributed, nonlinear, parameter-varying systems  
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