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Abstract—The strong impact of layout intricacies on analog-
circuit performance poses great challenges to analog layout auto-
mation. Recently, template-based methods have been shown to
be effective in reuse-centric layout automation for CMOS ana-
log blocks such as operational amplifiers. The layout-retargeting
method first creates a template by extracting a set of constraints
from an existing layout representation. From this template, new
layouts are then generated corresponding to new technology
processes and new device specifications. For large analog layouts,
however, this method results in an unmanageable template due to a
tremendous increase in the number of constraints, especially those
emerging from layout symmetries. In this paper, we present a new
method of multilevel symmetry-constraint generation by utilizing
the inherent circuit structure and hierarchy information from the
extracted netlist. The method has been implemented in a layout-
retargeting system called Intellectual Property Reuse-based
Analog IC Layout (IPRAIL) and demonstrated 18 times reduction
in the number of symmetry constraints required for retargeting
an analog-to-digital converter layout. This enables our retargeting
engine to successfully handle the complexities associated with
large analog layouts. While manual relayout is known to take
weeks, our layout-retargeting tool generates the target layout in
hours and achieves comparable electrical performance.

Index Terms—Analog integrated circuit (IC), device matching,
IC layout, layout automation.

I. INTRODUCTION

AGGRESSIVE design cycles and rapid migrations towards
newer technologies necessitate a reuse-based design phi-

losophy in the semiconductor industry. Decades of innovations
in the computer-aided-design (CAD) tools for digital circuits
have resulted in standard flows and methodologies for the
optimum reuse of existing digital designs. Unfortunately, the
analog domain still awaits major innovations to facilitate ef-
fective design reuse. Indeed, with the recent focus on systems-
on-chips that combine analog and digital functionalities on the
same integrated circuit, the absence of CAD tools in the analog
domain presents a serious bottleneck to the fast realization of
mixed-signal designs.
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In analog design, tradeoffs between the major design goals
like gain, bandwidth, stability, noise reduction, linearity, and
power minimization demand considerable effort and time from
the designers. Recently, significant progress has been made in
the area of optimization tools [1], [2] that automatically synthe-
size analog circuits to meet desired performance specifications.
However, the electrical behavior of high-performance analog
designs is affected not only by the device sizes and biasing but
also by the layout styles and intricacies.

Process and temperature variations introduce severe mis-
matches in transistors that are designed to behave identically
[3]. Such mismatches drastically affect the performance of
analog circuits [4], [5], leading to dc offsets and lower common-
mode rejection. In differential structures, mismatches can also
lead to finite even-order distortion. These effects can be alle-
viated by the symmetric layout of matched transistors. Thus,
due to their strong impact on design performance, matching and
symmetry, along with floorplanning, placement, and parasitic-
driven wiring consideration, are of immense importance in
analog layouts. Often, layout designers leverage their years
of accumulated expertise to “squeeze-in” the desired analog-
circuit performance by careful manual crafting of layouts.

Naturally, complex requirements on analog layouts pose a
huge challenge to their design automation [4], [5]. Over the
years, macro-cell-based constraint-driven automated placement
and routing methodologies have been proposed for analog cir-
cuits [6]–[8]. Despite the generality of these layout-automation
schemes, their output layouts are often inferior to the layouts
manually crafted by expert designers in terms of electrical
performance and quality; therefore, these layout-automation
schemes are yet to attain acceptance in the industry.

Several attempts have been made to include designer’s
knowledge in the analog layout-automation process. These
methods rely on templates constructed by designers through
procedural languages [9]–[12], and require significant effort for
template setup. Recently, layout retargeting by reusing designer
expertise embedded in existing layouts has been proposed. The
Intellectual Property Reuse-based Analog IC Layout (IPRAIL)
tool suite, presented in [13] and [14], automatically creates
a symbolic structural template from an existing layout by in-
corporating floorplan, symmetry, and device/wiring-alignment
information. This structural template is then used to generate
new layouts for new performance specifications and technology
processes.

While these template-based layout-automation schemes suc-
cessfully incorporate designer’s expertise, they suffer from re-
stricted topologies and can retarget designs only to compatible
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processes. These limitations in topology can be largely alle-
viated by combining templates with device-layout generators
[15]. More importantly, automatic tools such as IPRAIL that
reuse the templates allow for a rapid evaluation of whether
a given layout topology results in the desired circuit perfor-
mance. Furthermore, different layouts corresponding to differ-
ent specifications can be easily generated after the template
is constructed once [16]. Thus, in addition to the retention of
designer’s expertise, the template-based methods offer several
advantages that far outweigh their limitations.

Unfortunately though, all of these procedural/template-based
schemes suffer a few critical shortcomings that prevent au-
tomation of large analog layouts. Firstly, the layout symmetry
for matched transistors is manually imposed on the template
through a graphical user interface and can get increasingly
prohibitive as the circuit size increases. Secondly, and more
importantly, the feasibility and efficiency of layout retargeting
are strongly affected by the number of symmetry/matching
constraints. This poses serious challenges to the retargeting
of large layouts that contain numerous symmetry constraints.
Therefore, the techniques in [9]–[14] are seldom used to handle
layouts larger or more complex than operational amplifiers.

In this paper, we present techniques for efficient constraint
generation that enable automatic layout retargeting of large
analog IP blocks. Our new contributions are as follows.

1) Large analog circuits require symmetric layouts not only
for matched transistors, but also for entire subcircuits that
need to be identical to each other. Subcircuits may be split
into halves and laid apart in one- or two-dimensionally
symmetric styles so as to ensure similar effects of process
and temperature gradients for all subcircuits that are iden-
tical by design. Utilizing extensive mappings between
the extracted netlist and layout representations of the
design, a new multilevel constraint-generation method is
introduced. This multilevel templating scheme achieves
a smaller template size, thereby allowing retargeting of
large layouts.

2) We present an automatic method of identifying only rel-
evant matched transistors from the circuit netlist and im-
posing corresponding layout-level symmetry constraints.

3) Large analog IP blocks usually contain on-chip resistors
and capacitors. Such passive devices significantly affect
circuit performance and need to be laid out carefully to
minimize the parasitic effects. Furthermore, passive de-
vices identical by design are also laid out symmetrically.
Our layout-retargeting tool has the ability to automati-
cally impose constraints to maintain these symmetry and
spacing restrictions in passive devices.

Manual intervention during template creation restricts the
usability of retargeting tools to smaller layouts. The tool pre-
sented in this paper achieves effective automation of template
creation and subsequent layout generation, thereby allowing the
retargeting of large analog layouts. Some preliminary results of
this work were presented in [17] and [18].

The rest of the paper is organized as follows. Section II
briefly describes the layout-reuse methodology with emphasis
on IPRAIL and discusses various challenges in retargeting large

analog layouts. Section III provides an overview of the pro-
posed constraint-generation scheme. Sections IV–VI elaborate
the various steps to establish mappings between the netlist
and layout representations of the existing design. Section VII
describes the actual constraint-generation process. Section VIII
presents experimental results. Section IX concludes the paper.

II. TEMPLATE-BASED LAYOUT-REUSE METHODOLOGY

Template-based layout automation attempts to extract the
complex layout styles in existing high-quality analog layouts
and generate a new layout targeted at a different set of func-
tional specifications or a different technology. In this section,
we provide an overview of IPRAIL [14], which incorporates
template-based layout automation via layout reuse.

A. IPRAIL Tool Suite

A manually crafted analog layout along with source and tar-
get technology design rules is read into IPRAIL, which consists
of a Layout Template Extractor and a Layout Generator. The
Layout Template Extractor automatically creates a symbolic
layout template that retains the input layout’s topology, connec-
tivity, and matching. The new device sizes for the target layout
are obtained by manual circuit simulation or from automatic
circuit-synthesis tools [1], [2]. By imposing these new device
sizes pertaining to new specifications on the symbolic template,
the Layout Generator constructs a target layout that maintains
all the designer expertise embedded in the source layout.
1) Layout Template Extractor: The Layout Template Ex-

tractor identifies the active and passive devices, detects device
matching and symmetry, and extracts device connectivity and
net topology from the source (input) layout. Based on the ex-
tracted information and the technology-process design rules, it
transforms the layout into a constraint-based resizable symbolic
template representation. The symbolic layout template is an ab-
stract representation of the extracted layout properties, namely
device floorplan, connectivity, technology-process design rules,
and analog layout intricacies.

The detailed flow of template extraction is shown in Fig. 1.
First, the input layout is parsed and stored in the corner-
stitching data structure [19]. The entire plane of each mask layer
is represented explicitly in terms of solid and space rectangles
called tiles. Each tile in a layer plane is connected to other tiles
in the same plane by four stitches on its lower-left and upper-
right corners.

Next, transistors and nets are extracted from the layout ac-
cording to the algorithm proposed in [20]. The extractor detects
the overlaps between polysilicon and diffusion tiles to identify
all unit transistors, i.e., transistors with a single tile for the gate
terminal. From the unit transistor’s terminals, viz. gate, drain,
and source, the nets are identified by a depth-first search [21]
that traces the electrically connected tiles.

On-chip resistors are detected by searching through the tiles
of the nets in the circuit. A single tile or a series of connected
tiles of a net are classified as a resistor when the resistive value
exceeds a user-defined threshold. Once a resistor is detected, its
parent net is split into two. In IPRAIL, metal–insulator–metal
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Fig. 1. Layout-template-extractor flow.

Fig. 2. Geometric constraints in graph form. (a) Layout example; (b) horizontal-constraint graph.

or polysilicon–polysilicon capacitors are defined as overlaps
of two tiles in different layers that belong to different nets.
Searching through the nets, the extractor detects capacitors
when the capacitance due to the overlap exceeds a user-defined
threshold.

Next, various layout properties such as connectivity and
design rules between tiles are extracted and expressed as linear
constraint equations [22] to sustain the layout integrity and
correctness upon retargeting. The variables in the constraints
correspond to the four edges of the tiles. Such constraints
may be expressed in graph form, where each tile variable is
represented by a node in the graph. A directed weighted arc
connecting two such nodes represents a constraint where the
weight of the arc represents the constant in the constraint in-
equality. Consider the simple layout of Fig. 2, the connectivity
between rectangles M and N in the horizontal direction is
retained by two constraint arcs of weight “0” between edges
p4 and p5. The design-rule constraint is further decomposed
into three types: minimum width—an arc from p1 to p2,
minimum spacing—an arc from p2 to p3, and minimum
extension—an arc from a2 to p4. Horizontal and vertical con-
straint graphs are constructed independently.

Matching between a pair of transistors is established by
laying out the transistors symmetrically. Two transistor layouts
are deemed symmetric if they are geometric mirror images of

Fig. 3. Simplified layout of a symmetric pair of unit transistors. S0 denotes
the axis of symmetry.

each other. As illustrated in the simplified example of Fig. 3,
this implies equisized channel, drain, and source regions, iden-
tical orientation, and close proximity of the two transistors.
The mirroring and location are then enforced by the following
equations

(ebottom − fbottom) = 0 (1)

(hleft − s0) − (s0 − gright) = 0. (2)

The layout-symmetry-detection algorithm, Direct Layout-
Symmetry Detection (DLSD) [23], adopted initially in IPRAIL,
relies on scanning the entire layout for symmetric transistors.
All extracted unit transistors are stored in a queue sorted by
their bottom edges. Devices with the same ordinate of bottom



948 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

Fig. 4. Flow of the layout generator.

Fig. 5. Passive device retargeting with shadow tiles. (a) MIM or P–P capacitor; (b) on-chip unit resistor; (c) passive replaced by shadow tile; (d) simplified
constraints for passive retargeting. Distances from neighbors are obtained according to (3).

edges are then pairwise compared for the existence of geometric
mirror images. After the detection of all symmetric transistor
pairs, all axes of symmetry with the same abscissa are merged
into a single axis.
2) Layout Generator: Fig. 4 illustrates the various steps

for the target-layout generation from the extracted symbolic
template. First, the layout generator updates the template with
the transistor and passive device sizes obtained from manual
circuit-simulation or circuit-synthesis tools. As the updated
template consists of the symmetry, connectivity, and design-
rule constraints, the problem of target-layout generation from
the symbolic template essentially is a modified symbolic com-
paction problem [22].

The exact transistor sizes for the target design are imposed
on the template by two additional constraint arcs, for each
transistor, with equal and opposite weights added in opposite
directions. For passive devices, to prevent overlaps or close
proximity to other devices upon retargeting, a shadow tile [16]
is placed on top of the devices prior to the symbolic template
generation, as shown in Fig. 5(c). A shadow tile is a temporary
nonphysical-layer rectangle that is used to allocate a dedicated
area for the passive device by applying spacing constraints to
rectangles on every layer. The constraint for a shadow tile arises
due to one of the following: coupling constraints, specialized
design rules for passives as observed in certain technologies,

or as input from the designer. Such constraints are of the
general form

xshadow − xother ≥ d. (3)

Connectivity between a passive device and nets at its ends are
maintained by constraints on port rectangles. Constraints are
added between the shadow tile and the port rectangles in order
to maintain connectivity upon retargeting. This is illustrated
in Fig. 5(d). If the new device demands complete structural
changes, it is obtained from a device library and placed inside
the shadow tile. Otherwise, the new sizes are used to simply
expand or compress the existing device.

The problem of target-layout generation is solved first hor-
izontally and then vertically. In the horizontal direction, the
problem can be expressed in the following form:

min (xR − xL) (4.1)

subject to xi − xj ≥ constant (4.2)

xi − xj = constant (4.3)

xi − xk = xk − xj (4.4)

where xL, xR represent the left and right boundaries of the
target layout. The variables xi, xj , and xk correspond to the
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left or right edges of the tiles or symmetry axes of the layout.
As has been illustrated in Fig. 2, the constraints in (4.2) and
(4.3) can be expressed in graphical form where the right-hand-
side constant represents the weight of the edges in the graph.
However, as the right-hand-side constants are not known a
priori for the equidistance constraints of (4.4), these cannot be
expressed in graphical form.

The problem in (4) is a standard linear-programming (LP)
[24] formulation. However, solving large problems with LP
can be very expensive computationally. If the constraints in
(4.4) are ignored, then the problem reduces to the standard
layout-compaction problem and can be solved by the graph-
based longest path algorithm [21]. In order to solve the modified
compaction problem with graph-based methods, the constraints
of (4.4) need to be transformed to a graph-imposable form.
This is accomplished by a combination of LP and graph-
based longest-path algorithm [25]. From the constraint graph
corresponding to (4.2) and (4.3), a smaller set of constraints,
called core constraints, are obtained such that the variables in
the core constraints are the ones that appear in (4.4). This is
accomplished by one shortest path run on the constraint graph
for each variable in the equidistance constraint of (4.4). This
small set of core constraints along with the constraints in (4.4)
are then solved by LP. This yields the right-hand side constants
for (4.4) in the form

xi − xk = xk − xj = constant. (5)

These transformed constraints are then imposed back on
the constraint graph corresponding to (4.2) and (4.3). The
entire problem is then solved with the graph-based longest path
algorithm. Finally, as the longest path algorithm results in some
unwanted extension of rectangles, the rectangle-minimization
algorithm [26] is applied to obtain the final target layout.

Here, it must be noted that the retargeting from a given
technology to a completely different target technology may
lead to infeasible constraints. Then, positive cycles are encoun-
tered during the execution of the longest path algorithm. Such
positive cycles are detected and reported by IPRAIL.

B. Challenges in Retargeting Layouts of Large Designs

1) Symmetric Layout of Matched Transistors: The primary
challenge in retargeting large analog layouts lies in the es-
calating number of constraints due to the increase in layout
size and complexity. Industrial analog layouts typically consist
of numerous multifinger transistors laid out symmetrically in
one- or two-dimensional cross-coupled topologies, as shown in
Figs. 6 and 7, respectively. Under the DLSD scheme [23], the
layout of Fig. 6 has 21 axes of symmetry marked by the axes
s1 to s21 and 66 matched unit-transistor pairs. The layout in
Fig. 7 has 12 axes of symmetry as indicated by the axes s1 to
s12 and 30 matched unit-transistor pairs.

As has been explained in Section II-A2, each symmetry
axis introduces equidistance constraints that necessitate multi-
ple longest-path-based transformations on the constraint graph
[25]. Clearly, the presence of a large number of symmetry

Fig. 6. One-dimensional cross-coupled symmetric multifinger-transistor pair
(also called interdigitation or interleaving symmetry). The rectangles with
dotted patterns represent the polysilicon layer.

Fig. 7. Two-dimensional cross-coupled symmetric multifinger-transistor pair.
The rectangles with dotted patterns represent the polysilicon layer.

constraints renders the process computationally expensive.
Also, as we found during our retargeting experiments, too many
redundant symmetry constraints may even render the problem
unsolvable. This prohibitive increase in the size of the problem
is experienced in retargeting large analog layouts.

Furthermore, layouts often have unrelated devices that may
be symmetrically laid out by mere chance rather than by design.
These unwanted symmetry constraints result in an increase
in layout area. While the designer may explicitly identify the
desired symmetry axes through a graphical user interface, it
becomes unreasonable as the size and complexity of the layout
increases.
2) Symmetric Layout of Matched Passive Devices: Large

layouts often have multiple passive devices that are designed
to be identical to each other. Consider the resistor-chain layout
of Fig. 8. Three resistors are laid out in an interdigitated fash-
ion with one-dimensional common-centroid symmetry [4]. This
ensures identical resistances of the resistors A, B, and C,
regardless of process and temperature gradients, or in other
words, matching between the resistors.
3) Layout of Matched Blocks: In addition to matched de-

vices, large analog circuits usually contain entire blocks that
are identical by design. Process and thermal gradients across
the entire layout introduce differences between blocks that are
meant to behave identically. Consider a 2-bit comparator circuit
that is composed of four unit comparators. In order to alleviate
the differences in the performances of the unit comparators and
the consequent nonlinearities in electrical behavior, they need
to be laid out in a common-centroid fashion. This is illustrated
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Fig. 8. One-dimensional symmetric layout of on-chip resistors.

Fig. 9. Four comparator subcircuits (A, B, C, and D) laid out in a split-
symmetric common-centroid layout.

Fig. 10. Dummy transistors to improve matching.

in Fig. 9, where four unit comparators A, B, C, and D are
laid out symmetrically in two dimensions. The unit comparator
denoted by A is split and laid out across the ends in two parts
A1 and A2. In general, identical blocks may be laid out with
one- or two-dimensionally symmetric layouts and may also be
translated with respect to each other. A naive direct-constraint
generation for flipped or translated devices and nets leads to a
tremendous increase in the template size for large circuits.
4) Dummy Devices: Analog circuits with strict matching

requirements employ dummy transistors. Consider the layout
in Fig. 10. Here, the two transistors on the sides are either
not electrically connected to any other device or connected
to nonsignal nets such as ground or power supply, thus are
called dummy transistors. Dummy transistors are generally laid
out symmetrically to the corresponding actual transistors. This
ensures that the drain and the source regions of the actual
transistors have an identical environment and therefore superior
matching. Dummy transistors need to be identified and main-
tained upon retargeting.
5) Guard Rings: In lightly doped substrates, guard rings are

commonly used in analog layouts to isolate sensitive circuits.
Guard rings in the original layout need to be retained upon
retargeting. As illustrated in Fig. 11, this introduces additional

Fig. 11. Guard ring around a sensitive analog circuit. Constraints on the guard
ring are: 1) minimum distance from the boundary of the sensitive analog section
to the edge of the guard ring: x2 − x1 > d; and 2) width of the guard ring:
x3 − x2 > w.

constraints such as the width of the guard ring (x3 − x2 > w)
and distance of the guard ring from the boundary of the sensi-
tive analog layout (x2 − x1 > d). These constraints need to be
extracted and imposed for retargeting.

III. MULTILEVEL MAPPING AND

CONSTRAINT GENERATION

In this section, we present a new method of multilevel map-
ping and constraint generation aimed at reducing the number
of constraints necessary for retargeting large analog layouts.
It is based on two key techniques. First, at the device level, a
method for automatic detection of designer-intended symme-
tries in the source layout is developed. This avoids generation
of redundant and/or unwanted constraints. Second, for identical
blocks of devices (either flipped or translated), an extensive par-
titioning and mapping between the netlist and layout represen-
tations of the design are incorporated. Based on this, a reduced
set of constraints that suffices for ensuring flips/translations of
identical blocks upon retargeting is generated.

The layout–netlist mapping and constraint-generation flow
is illustrated in Fig. 12. The process starts with the netlist
extracted from the layout description. This consists of nets,
passive devices, and unit transistors. By detecting the layout
patterns and connectivity of the unit transistors, multifinger
transistors are identified and a compact netlist is obtained.

An analog design environment usually consists of a library
of schematics of analog cells that are sized during circuit
design. These cells are used as subcircuits in large analog
circuits. Examples of such commonly used subcircuits are
differential stages, current mirrors, comparators, etc. In the
netlist subcircuit-extraction step, two goals are accomplished.
First, all instances of the library subcircuits in the compact
netlist are identified and a list of designer-intended matched
transistors in each subcircuit instance is recognized. This list
of matched transistor pairs in the netlist is used to extract
the transistors’ layout-symmetry constraints. Second, based on
identified subcircuits, a partitioned netlist is created.

From the partitioned netlist obtained at the end of subcircuit
extraction, clustering of the physical layout tiles is executed
next. This results in a partitioned layout representation. The
partitions of the layout are then further analyzed to generate
a list of identical layout clusters.

The netlist- and layout-partitioning process establishes map-
ping at different levels between the layout and the netlist. Actual
constraint generation at the layout level is triggered from the
list of matched transistors within each layout cluster and the
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Fig. 12. Overview of the multilevel-mapping and constraint-generation flow.

lists of identical layout clusters. For large analog circuits, such
mapping and partitioning is essential to reduce the size of the
template to manageable levels.

Table I presents the multilevel constraint-generation algo-
rithm. First, the procedure ExtractNetsTransistors extracts the
netlist from the layout. Next, the DetectMultiFingerTransistors
procedure groups the physically contiguous unit-transistor sets
in the layout into multifinger transistors. The routine Extract-
NetlistSubcircuits inside the loop identifies all instances of
the library subcircuits. This identifies all the matched transis-
tors that are meant to be symmetric in the layout. Next, the
CreateLayoutClusters procedure accomplishes layout partition-
ing based on how the extracted subcircuit instances are laid out.
The routine GenerateIntraClusterSymmetry-Constraints then
generates the symmetry constraints within each layout cluster
based on the list of matched transistors obtained previously.
The constraints between different layout clusters are gen-
erated by GenerateInterClusterSymmetry-Constraints. Finally,
the constraints for interconnect symmetry are generated by the
procedure GenerateInterconnect-SymmetryConstraints.

IV. MULTIFINGER-TRANSISTOR DETECTION

The netlist obtained after extraction comprises of a set of unit
transistors (TS) and a set of nets (NS). The unit transistors in

the layout are grouped into a set of contiguous unit transistors
based on their physical adjacency and identical terminal con-
nectivity. One or more sets of contiguous unit transistors with
identical terminal connectivity are then grouped as a multifinger
transistor.

In a multifinger-transistor-layout structure, a set of con-
tiguous unit transistors (C) is defined as a collection of unit
transistors (T ) that posses the same width and length, share
the same active rectangle, are physically adjacent, and connect
to the same gate (GT ), source (ST ), and drain (DT ) nets. A
multifinger transistor (M) is defined as a set of one or many
set(s) of contiguous unit transistors that connect to the same
gate, source, and drain nets. For example, the common-centroid
layout of Fig. 13 has two multifinger transistors, each with
two sets of three contiguous unit transistors. And the one-
dimensional cross-coupled symmetric transistor pair of Fig. 6
contains two multifinger transistors, each with three sets of two
contiguous unit transistors.

The DetectMultiFingerTransistors procedure in Table II
presents the algorithm for the detection of multifinger transis-
tors from the extracted netlist. Each multifinger transistor is
stored in a hash table with the hash key formed by the drain,
gate, and source nodes. For each unit transistor T connected to
a net N , a new multifinger transistor M is created if it does
not already exist in the hash table. This is accomplished by a
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TABLE I
MAPPING AND CONSTRAINT-GENERATION ALGORITHM

Fig. 13. Common-centroid layout that has two multifinger transistors, each
with two sets of three contiguous unit-transistors.

call to the routine CheckCreateMFT. The routine CheckCre-
ateContiguous then checks if the unit transistor T is aligned
with one of the sets of contiguous unit transistors in M . If
T is not physically contiguous with any C ∈ M , a new set
of contiguous unit transistors is created. In either case, the
routine InsertSorted inserts T into a list of unit transistors of
the corresponding set of contiguous unit transistors.

V. SUBCIRCUIT EXTRACTION

The multifinger-transistor detection results in a compact
netlist. The subcircuit extraction process identifies instances
of library subcircuits in this compact netlist. As mentioned in
Section III, this partitioning of the netlist is essential for the
following: 1) the automatic identification of matched-transistor
pairs in the netlist and 2) the subsequent layout clustering.

The subcircuit extraction involves detection of the instances
of a subcircuit Ψ in the circuit netlist Γ as illustrated in Fig. 14.
This is accomplished by a subgraph isomorphism algorithm
[27]. First, both the subcircuit Ψ and the circuit Γ are expressed
as undirected bipartite graphs. Fig. 15 shows the bipartite
graphs corresponding to the differential pair and the differential

TABLE II
ALGORITHM FOR MULTIFINGER-TRANSISTOR DETECTION

Fig. 14. (a) Differential-pair subcircuit (Ψ); (b) a differential-stage circuit
(Γ) that comprises an instance of a differential pair as indicated by the encircled
part of the schematic.

stage circuits of Fig. 14. A bipartite graph of a netlist comprises
of two types of vertices—vertices corresponding to nets and
vertices corresponding to devices. Each arc in a bipartite graph
connects a net vertex with a device vertex. In the bipartite
graphs of Fig. 15, the circular vertices correspond to the nets
and the rectangular vertices correspond to the transistors.

The subgraph-isomorphism algorithm identifies instances of
the subcircuit Ψ in a circuit Γ by iterative labeling-based
partitioning. In this scheme, the vertices of the bipartite graphs
corresponding to the subcircuit Ψ and the circuit Γ are itera-
tively labeled. Initially, each device vertex is labeled with the
device type, e.g., N or P type for MOSFETs. Each net is initially
labeled with the number of devices connected to it. Thus, the
net n5 in Fig. 15(a) has an initial label 3. During iterative
labeling, the device and net vertices are relabeled according to
the following equations

mlabel = mlabel + wt(S) ∗ Slabel
m

+ wt(D) ∗ Dlabel
m + wt(G) ∗ Glabel

m (6)

N label = N label + wt(S) ∗
∑

i

mlabel
i

+ wt(D) ∗
∑

j

mlabel
j + wt(G) ∗

∑

k

mlabel
k . (7)



BHATTACHARYA et al.: MULTILEVEL SYMMETRY-CONSTRAINT GENERATION FOR RETARGETING ANALOG LAYOUTS 953

Fig. 15. Bipartite graphs of (a) a differential-pair subcircuit; (b) a differential-stage circuit. The circular vertices represent nets and the rectangular vertices
represent transistors.

Here, Slabel
m , Dlabel

m , and Glabel
m represent the source, drain,

and gate terminals of the transistor m. The source, drain, and
gate terminals are assigned a weight as indicated by wt(S),
wt(D), and wt(G). As illustrated in (7), the new label of a net
is calculated based on the labels of the transistors connected to
the net through its source, drain, and gate terminals. Thus, the
label of net n5 in Fig. 15(a) after the second iteration is given
as n5label = 3 + wt(S) ∗ 2N + wt(D) ∗ N .

The algorithm proceeds in two phases. Phase I identifies a
key vertex in the bipartite graph of the subcircuit Ψ and a
set of candidate vertices with the same label in the bipartite
graph of the circuit Γ. This is accomplished by the iterative
labeling of the bipartite graphs of the subcircuit Ψ and the
circuit Γ. Prior to labeling, the vertices corresponding to the
external nets of the subcircuit Ψ are marked as corrupt vertices.
In the bipartite graph of the differential pair subcircuit of
Fig. 15(a), the corrupt vertices are indicated by shaded circles.
During each subsequent labeling step, all neighboring vertices
of a corrupt vertex are marked as corrupt. Thus, for the bipartite
graph of the differential pair in Fig. 15(a), the second labeling
iteration marks the vertices m1, m2, and m3 as corrupt vertices.
The search for the key vertex terminates when either all net
or all device vertices in the bipartite graph of the subcircuit
Ψ are marked corrupt. Clearly, vertices with the same labels
in the bipartite graph of the circuit Γ and the bipartite graph
of subcircuit Ψ indicate possible matches. All vertices with
the smallest label in the bipartite graph of the circuit Γ are
considered candidate vertices if there exists a vertex with the
same label in the bipartite graph of subcircuit Ψ. This vertex
in the bipartite graph of subcircuit Ψ is called the key vertex.
For the bipartite graphs of Fig. 15, the vertices corresponding
to net n5 in subcircuit Ψ and the vertex corresponding to net n6
in circuit Γ are the key and the candidate vertices, respectively.

Phase II of the isomorphism algorithm starts from the key
vertex in the subcircuit Ψ and one candidate vertex in the
circuit Γ. The algorithm then iteratively relabels the neigh-
boring vertices of the key and candidate vertices to identify a
match. During each iteration, vertices in the bipartite graph of
the circuit Γ that have the same label as the vertices in the bipar-

tite graph of the subcircuit Ψ are marked as potential matches.
When all vertices in Ψ have corresponding vertices with identi-
cal labels in Γ, an instance of the subcircuit is obtained.

The matched transistor pairs in the library subcircuits are
assumed to be known a priori. The labeling of the vertices in
the bipartite graphs during subcircuit extraction establishes a
mapping between the individual devices of the subcircuit and
its instance in the circuit netlist. This is utilized for identifying
the matched transistor pairs in the circuit netlist. For the
example in Fig. 14(a), the devices m1 and m2 in the differential
pair are matched transistors. The corresponding devices m3 and
m4 in the differential stage circuit of Fig. 14(b) are therefore
marked as matched transistors. Thus, the subcircuit extraction
step also identifies all designer-intended matched transistor
pairs in the circuit.

At times, a given transistor in the circuit netlist may be a
part of different subcircuits. An example of this is current
mirror transistors that reflect current from a bias current source
to various major subcircuits, e.g., a comparator. Here, the mirror
transistor is a part of both the current mirror and comparator.
In the subgraph-isomorphism algorithm, we do not replace the
set of transistors that comprise a subcircuit from the circuit
netlist upon the detection of an isomorphism. Rather, we tag a
transistor with information about which subcircuit it belongs to.
Allowing multiple subcircuit tags to a transistor ensures correct
detection of matchings in such cases. In the case of a transistor
with multiple subcircuit tags, the matching constraints arise
due to one or more of the subcircuits it is affiliated to.

VI. LAYOUT PARTITIONING

A. Layout Clustering

The subcircuit-extraction step creates several netlist parti-
tions, each corresponding to a subcircuit instance. In a layout,
devices and nets that belong to the same netlist partition are
clustered together based on their spatial proximity. The algo-
rithm for layout clustering is shown in Table III.

The algorithm starts from any seed device mseed which
belongs to a netlist partition Ψ. First, a layout cluster Lc is
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TABLE III
LAYOUT-CLUSTERING ALGORITHM

created containing only mseed. All devices that are proximal
to mseed in the layout are collected in a queue Qprox. This
is accomplished by a scan-line [22]-based procedure named
ProximalDevices. From a given device, four scan lines look for
other devices in close proximity to its left, right, top, and bottom
edges. If a device m in Qprox, is in the netlist partition Ψ, then
m is added to the same layout cluster Lc that mseed belongs to.
If m does not belong to Ψ, the algorithm recursively calls itself
to start a new layout cluster. The algorithm terminates when all
devices in the layout are grouped into layout clusters.

For the example in Fig. 9, the algorithm identifies two
clusters A1 and A2 for the layout of the comparator circuit A.
Each such layout cluster contains a subset of the devices in the
corresponding netlist partition. In practice, even a single device
may be split across different layout clusters. For example, a
multifinger transistor may be composed of two or more con-
tiguous transistor sets that are laid out far apart to account for
different process gradients. Thus, a layout cluster may consist
of only some contiguous transistor sets of a given multifinger
transistor.

B. Identical-Layout-Cluster Detection

The previous steps mark each contiguous transistor set of
a multifinger transistor in the layout with its netlist partition
(i.e., which subcircuit instance it belongs to) and layout-cluster
information. At this stage, we proceed to detect identical layout
clusters. Two layout clusters are identical only when their
devices and nets have one-to-one correspondence in terms of
sizes, connectivity, and relative positions. The algorithm for
detecting identical layout clusters is shown in Table IV.

Consider two layout clusters LA and LB located on the same
abscissa. First, all tiles in the clusters are collected in heaps [21]
HA and HB , respectively. The tiles are then sorted in increasing
order with respect to the coordinates of the leftmost corner. The
two heaps are pairwise compared. If they are identical, LA and
LB are translate-matched clusters. In case they are not, another
heap HBR is created for cluster LB , where the tiles are sorted
in decreasing order of their rightmost corner. If the two heaps

TABLE IV
ALGORITHM FOR IDENTIFYING IDENTICAL LAYOUT CLUSTERS

HA and HBR are identical upon pairwise comparison, then
they represent flip-matched clusters. For example, in the simple
layout of Fig. 9, the clusters A1 and C1 are translate matched,
while clusters B1 and C1 are flip matched.

VII. MULTILEVEL-CONSTRAINT GENERATION

Apart from the connectivity and the design-rule constraints
described in Section II, additional constraints are needed
to maintain symmetry between multifinger transistors, nets,
different layout clusters, and passive devices. This section de-
scribes a multilevel-constraint-generation method that reduces
the number of such constraints necessary for retargeting large
analog layouts.

A. Intracluster-Symmetry Constraints

Recall that the subcircuit-extraction step partitions the netlist
according to subcircuit instances and also identifies the matched
transistor pairs in each partition. Also recall that each netlist
partition has one or more layout clusters associated with it. The
intracluster-symmetry-constraint-generation scheme checks for
the symmetric layout of matched transistor pairs within these
layout clusters. By triggering layout-symmetry detection from
circuit-level transistor-matching information, it avoids detect-
ing unintended symmetries that may reside in the layout. Upon
detection of layout symmetry in the input layout, it generates
the symmetry-dictated layout constraints similar to (1) and (2)
for retargeting.

The algorithm for intracluster-layout-symmetry detection is
shown in Table V. For each transistor pair intended to be
matched, the DetectTopology routine identifies the pair’s layout
topology by traversing through the list of their contiguous
transistor sets. Based on two-dimensional common-centroid,
one-dimensional cross-coupled (also known as interdigitation
or interleaving), or simple symmetric-pair topologies, the unit
transistors are inserted into two or four sorted lists. Thus, for
the common-centroid topology of Fig. 7, the six unit transistors
in the top and bottom halves of the transistors M1 and M2,
respectively, are collected into a list LL. The bottom and top
halves of M1 and M2 are collected into another list LR. The
unit transistors in LL and LR are then pairwise compared in the
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TABLE V
INTRACLUSTER-SYMMETRY-DETECTION ALGORITHM

CheckSymmetry routine to detect the vertical axis of symmetry
s12 and generate the corresponding constraints. For the horizon-
tal symmetry axis s6, the bottom halves of both M1 and M2 are
collected into a list LB, and the top halves are collected into a
list LT and pairwise compared. For the one-dimensional cross-
coupled (interdigitation or interleaving) symmetric layout of
Fig. 6, six unit transistors are inserted into each list LL and LR

and a single axis of symmetry s11 is detected. Prior coordinate-
based double sorting of the unit transistors in each multifinger
transistor ensures that pairwise comparison can detect all axes
of symmetry. If the matched transistors are split across different
layout clusters, the symmetry constraints are generated inside
the corresponding layout clusters.

Symmetric layouts for dummy transistors cannot be handled
by simply identifying matched transistors in the circuit netlist.
This is because dummy transistors are not electrically con-
nected to any other device through signal nets or are connected
to nonsignal nets such as ground or power supply. Usually, a
dummy transistor is laid out in close proximity to an actual
transistor. Thus, there exist direct constraint arcs due to design
rules between vertices corresponding to the tile edges of the
dummy and actual transistors in the layout constraint graph.
As a result, a dummy transistor is identified by a local search
around the vertices corresponding to the tile edges of the actual
transistors in the constraint graph. Once the dummy transistor
and the associated actual transistor are identified from the

layout, symmetry is detected by pairwise comparison of the
corresponding layout tiles.

B. Intercluster-Symmetry Constraints

Recall from Section II-B that identical layout clusters may be
laid out either mirrorwise flipped or translated with respect to
each other. Fig. 9 illustrates an example of two such translated
and flipped identical clusters. This section describes the gen-
eration of constraints between layout clusters for maintaining
translations or flips of identical clusters upon retargeting. While
this can be accomplished by generating constraints between
every pair of devices belonging to two identical layout clus-
ters, it leads to an exceedingly large number of constraints.
The method described here generates a reduced number of
constraints that would suffice for retargeting.

Note that the intracluster-constraint-generation process
groups devices inside a layout cluster into symmetric layout
pairs. It then extracts the constraints between the devices in
each such symmetric group within the cluster. The intercluster-
constraint-generation process establishes two key sets of con-
straints. First, it imposes constraints between identical groups
of devices located in two different layout clusters. Second,
it enforces additional constraints between groups of devices
inside a cluster.

Consider the examples in Fig. 16 that show the translation
and flip of two identical layout clusters named cluster1 and
cluster2. In the ith cluster, the intracluster-constraint-generation
process identifies that devices Bi and Ci represent a symmetric-
layout pair. Thus, each cluster has two groups, one group
comprises the device Ai and the other group comprises the
symmetric pair Bi and Ci.

The first step in an intercluster-constraint generation in-
volves identifying a representative device in each group within
each cluster, referred to as group-representative devices. For
cluster1, let devices A1 and B1 be the group-representative
devices. One group-representative device in each cluster is
considered as a cluster-representative device. In the example
in Fig. 16, the devices A1 and A2 are the cluster-representative
devices in cluster1 and cluster2.

For the translated clusters along a y-axis in Fig. 16(a),
the following set of equations relates the group-representative
devices B1 and B2 with the cluster-representative devices A1

and A2

x1 − x3 = x2 − x4 (8)

y1 − y3 = y2 − y4 (9)

where (x1, y1) and (x2, y2) are the lower left coordinates of
the devices A1 and A2, and (x3, y3) and (x4, y4) are the lower
left coordinates of the devices B1 and B2, respectively. The
two cluster-reference devices A1 and A2 are related by the
following equations

y1 − y2 ≥ d (10)

x1 =x2. (11)
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Fig. 16. (a) Translated matched clusters. (b) Flipped matched clusters. Symmetric devices Bi and Ci within each cluster are grouped together as indicated by
the shaded background. Intracluster symmetry is indicated with dotted lines.

Here, d is the distance between two cluster-reference devices
and is determined by coupling or design-rule constraints.

Similarly, for the flipped clusters along a y axis in Fig. 16(b),
the group-reference devices in the two clusters are related with
equations similar to (8) and (9). The two cluster-reference
devices are related by the following equation

y1 − s0 = s0 − y2 (12)

where s0 is the symmetry axis between cluster1 and cluster2.
Equations (10)–(12) are adjusted accordingly in case of trans-
lation or flip along the x axis.

Based on the intracluster and intercluster symmetries, if a
layout consists of c clusters with n devices in each cluster, the
number of symmetry axis is reduced from the worst case of
nc(nc − 1)/2 to (nc − 1), or by a factor of nc/2. And if each
cluster consists of g groups of intracluster symmetric devices,
where n > g, the total number of symmetry constraints will
reduce from the worst case of nc(nc − 1)/2 to n1/2c(c − 1),
or by a factor of n3/2/2, where c � 1.

C. Interconnect-Symmetry Constraints

Besides the intracluster and intercluster symmetries between
devices, symmetries between interconnects or wires of symmet-
ric devices are also important. In order to avoid unnecessary
constraints due to wire symmetry, only wire sections that be-
long to the symmetric devices or clusters and are symmetric on
the original layout are preserved.

Table VI presents an algorithm for the detection and gener-
ation of constraints for interconnect symmetry. The algorithm
uses the intracluster and intercluster symmetry lists found
earlier. First, for intracluster symmetric transistor pairs, gate,
source, and drain port tiles are located. For the intercluster pairs,
all port tiles of the outgoing nets of the clusters are detected.
Second, with a depth-first search [21] along each net, a tree
of interconnect rectangle tiles from each port is constructed.
Next, correct pairing of symmetric nets is established. For
a matched transistor pair, since drains and sources are not

TABLE VI
INTERCONNECT-SYMMETRY-DETECTION ALGORITHM

unique in the CMOS structure, there are five possible symmetric
types, i.e., gate–gate, source–source, drain–drain, source–drain,
and drain–source. For intercluster symmetries, the match pairs
between nets can be recognized from ports of the matched
devices in each cluster.

Once the interconnect-trees are correctly paired up, a recur-
sive procedure RecursiveCreateConstraints generates symme-
try constraints between the tiles of the nets. Two interconnect
tiles are deemed symmetric only when they have the same
size, are on the same layer, and have same distance to the
corresponding transistor or cluster-symmetry axis. If two inter-
connect tiles are symmetric, constraints of the form of (5) are
generated and the function is recursively called between next
tiles in each tree. The procedure terminates if two tiles are not
symmetric.
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TABLE VII
COMPARISON OF INTRACLUSTER-SYMMETRY DETECTION WITH DLSD

Fig. 17. Scaling of symmetry axes detected by DLSD and intracluster
constraint generation.

VIII. EXPERIMENTAL RESULTS

The multilevel-symmetry-constraint-generation scheme has
been implemented in IPRAIL. The tool was applied on several
analog layouts ranging from an operational amplifier to a 5-bit
flash analog-to-digital converter (ADC). In these experiments,
generation of the intracluster-symmetry constraints suffices for
the circuits other than the ADC. The experimental results
comparing the intracluster-symmetry-constraint generation
with the direct-layout-symmetry generation (DLSD) [23] are
presented first. Then, the results of retargeting the ADC lay-
out with both intra- and intercluster-constraint generation are
described.

Intracluster-symmetry-constraint generation starts with a list
of matched transistors detected through subcircuit extraction.
This method ensures avoidance of unintended layout symmetry
that may reside in the layout. The subcircuits are described
in schematic form, including transistors, interconnects, and
transistor matchings, and are usually available in a standard-
cell library. In case the subcircuits or standard-cell libraries are
not included with the layout, a built-in set of commonly known
subcircuits, such as a current mirror, a differential pair, etc.,
are used.

Table VII compares intracluster-symmetry-constraint gen-
eration with the DLSD method that was initially adopted in
IPRAIL. Various symmetry topologies were employed in these
layouts. The differential amplifier, the latched comparator, and
the 4:1 comparator comprised of symmetric transistors with
some multifinger structures. The voltage-controlled oscillator
(VCO) was laid out with extensive multifinger symmetric tran-
sistors. The two-stage and the folded-cascode operational am-

Fig. 18. Schematic of the unit comparator. M3 and M4 form the input
differential pair.

TABLE VIII
COMPARISON OF LAYOUT RETARGETING OF ADC VIA DLSD AND

MULTILEVEL CONSTRAINT GENERATION

plifiers utilized multifinger-interleaved and common-centroid
symmetry topologies, respectively. And the 5-bit flash ADC
consisted of 32 instances of a latched comparator.

For each method, the number of symmetry axes, symmetric
transistor pairs, and symmetry constraints are reported. As
DLSD detects symmetries between every pair of unit transistors
in each multifinger transistor, a great number of redundant
symmetry axes were extracted and a large number of axes were
observed for the two-stage operational amplifier and the VCO
circuits. In the array structure of the comparator blocks in the
5-bit ADC, transistors of different clusters are aligned in rows
and columns. Therefore, the number of symmetries detected
from DLSD becomes excessively large.

The difference between the two symmetry-constraint-
generation methods is further compared for arrays of compara-
tors. Fig. 17 shows the number of symmetric transistor pairs,
in a logarithmic scale, detected by DLSD and the intracluster-
symmetry-detection method as the number of comparators is
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Fig. 19. Analog section of the 5-bit ADC in TSMC 0.25-µm technology. Area is 29300 µm2.

Fig. 20. Retargeted layout of the analog section of a 5-bit ADC in TSMC 0.18-µm technology. Area is 15300 µm2.

scaled. The graph shows that DLSD detects a huge number of
redundant symmetry axes. For instance, DLSD detects transis-
tor pairs about 3.2 times more in one comparator cell and about
48.7 times more in 8 × 8 comparator cells than the intracluster-
symmetry detection.

Next, the results of retargeting the 5-bit flash ADC layout
with both intra- and intercluster-constraint generation are pre-
sented. The 5-bit flash ADC comprises of a resistor chain,
an analog comparator array, and a digital decoder block. The
analog comparator array consists of 32 latched comparators.
Each comparator, whose schematic is shown in Fig. 18, com-
pares an input signal with different reference-voltage levels

obtained from a resistor chain acting as a voltage divider. Based
on the input voltage, the analog-comparator section produces
a thermometer code. This is then converted to a 5-bit binary
output by a 32-to-5 decoder.

The analog section of the ADC was initially designed and
laid out manually in the 0.25-µm CMOS Taiwan Semicon-
ductor Manufacturing Company (TSMC) technology process,
while the digital-decoder section was designed in a standard-
cell-based application-specified integrated circuit (ASIC) flow.
To minimize the mismatch between comparators due to process
gradients, they are laid out in a one-dimensional common-
centroid fashion. The resistor chain is constructed in the
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TABLE IX
SPECIFICATIONS OF THE 5-BIT ADC IN 0.25-µm TSMC AND THE TARGET

DESIGN IN TSMC 0.18 µm

polysilicon layer and laid out with one-dimensional common-
centroid symmetry. In order to alleviate the effect of process and
temperature gradients, each resistor is split into two rectangles
and laid out similar to the example shown in Fig. 8.

The ADC in TSMC 0.25-µm technology is then retargeted to
the TSMC 0.18-µm technology process with different perfor-
mance specifications. First, incorporating the scan-line method,
the intracluster- and intercluster-symmetry-constraint genera-
tion, a structural symbolic template was constructed from the
layout. The template, in a graph-constraint form, consisted
of 29 918 nodes, 320 937 arcs, and 2574 symmetry-related
arcs. The symmetry-related arcs were extracted from 186 intr-
acluster symmetric transistors, 31 intercluster symmetries, and
63 resistor symmetries. The statistics on constraints generated
by DLSD and the multilevel method are presented in Table VIII.

New transistor and resistor sizes for achieving the desired
specifications in TSMC 0.18-µm technology are obtained by
Spectre [28] simulations. These sizes are then enforced on the
template. The target layout was obtained by solving the tem-
plate using a combination of LP and a graph-based longest path
algorithm. The layout of the comparator-and-resistor section
is shown in Fig. 19 for the source layout and in Fig. 20 for
the target layout. The specifications achieved in the postlayout
simulation using Spectre [28] for both the designs (0.18- and
0.25-µm) are listed in Table IX.

Our experiments on IPRAIL were conducted on a 900-MHz
Sun UltraSparc10 workstation. For the 5-bit ADC, the layout-
template-extraction phase took 8 hour and 52 minutes, and the
generation of the target layout was completed in 1 hour and
51 minutes.

In addition, an automatic-retargeting program was tested on
comparator arrays of various sizes to determine the growth in
runtime and memory consumption of the algorithm. Fig. 21
shows the increment of runtime (in logarithm scale) and mem-
ory (in linear scale) when layout size increases.

IX. CONCLUSION

A new and efficient multilevel-symmetry-constraint-
generation method for analog layout retargeting is presented.
Several key techniques, such as multifinger transistor identi-
fication, subgraph isomorphism-based subcircuit extraction,
and layout clustering, have been developed. These techniques
establish extensive mappings between the netlist and the layout
representation of an analog design and accomplish automatic

Fig. 21. Runtime (in logarithm scale) and memory consumption (in linear
scale) when layout size increases. The template for a layout comprising 32
comparators consisted of 27 668 variables, 320 937 design-rule constraints, and
1932 symmetry constraints.

identification of matched transistor pairs. This facilitates
efficient multilevel-constraint generation that enables retarge-
ting of large analog layouts. The efficacy of the multilevel-
symmetry-constraint-generation scheme is demonstrated for
several complex analog layouts.

IPRAIL, a symbolic-template-based layout-retargeting tool,
has been enhanced with this multilevel-symmetry-constraint-
generation method. This enables IPRAIL to successfully
retarget large analog layouts as has been illustrated by the
retargeting of a 5-bit ADC layout. Large analog circuits that
are known to take several weeks for manual layout generation
are automatically retargeted to different processes and specifi-
cations within hours with comparable electrical performances.

Future research includes techniques for migrating physical
layouts to considerably different technologies. This entails
automatic device removal and generation, as well as constraint
relaxation to address potential template infeasibility. Addi-
tionally, explicit wire and device parasitic control is essential
for high-performance analog and radio-frequency integrated-
circuit layouts.
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